
prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague January 31, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Analysis of the Rescue File of BestCrypt Volume Encryption

 Student: Jan Vojtěšek

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Information Technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2017/18

Instructions

Introduce the BestCrypt Volume Encryption application, briefly describe its principles and user interface.
Explain the purpose and external appearance of its Rescue file.
Using reverse engineering methods, locate the functions dealing with the Rescue file and analyze its
contents.
Explain the way encryption keys are stored and protected against unauthorized use, discuss the security and
implications for the user.
Write a simple tool for decrypting data using the Rescue file.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Bachelor’s thesis

Analysis of the Rescue File of BestCrypt

Volume Encryption

Jan Vojtěšek

Supervisor: Ing. Josef Kokeš

11th May 2017

Acknowledgements

I would like to express my sincere thanks to my supervisor Ing. Josef Kokeš
for his valuable insight and reviews. I would also like to thank Jetico Inc. for
allowing me to analyze their product and for promptly fixing disclosed bugs
and vulnerabilities. Last but not least, I would like to thank my family for
their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 11th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Jan Vojtěšek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vojtěšek, Jan. Analysis of the Rescue File of BestCrypt Volume Encryption.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2017.

Abstrakt

Tato práce je zaměřena na reverzńı inženýrstv́ı a bezpečnostńı analýzu pro-
gramu na šifrováńı disku BestCrypt Volume Encryption. Obsahuje detail-
ńı popis doposud nedokumentovaného binárńıho formátu souboru, který se
použ́ıvá při záchranných operaćıch. Během bezpečnostńı analýzy bylo naleze-
no několik zranitelnost́ı a závad. Všechny zranitelnosti jsou podrobně popsány
a je uveden př́ıklad, jakým tato zranitelnost může zasáhnout běžného uživatele.
Autor také spolupracoval s vývojáři BestCrypt Volume Encryption ve snaze,
aby tyto zranitelnosti byly opraveny nebo aby byl alespoň zmı́rněn jejich
dopad. Součást́ı práce je i nástroj, který umožňuje připojit zašifrované svazky
disk̊u na některých operačńıch systémech založených na Unixu.

Kĺıčová slova šifrováńı disku, reverzńı inženýrstv́ı, BestCrypt Volume En-
cryption, kryptografie

ix

Abstract

This thesis focuses on reverse engineering and security analysis of a disk en-
cryption application called BestCrypt Volume Encryption. It provides a de-
tailed description of a previously undocumented binary file format used for
rescue procedures. Several vulnerabilities and bugs were found during the per-
formed security analysis. Each of those vulnerabilities is discussed in detail
and an example of how this vulnerability might affect the security of regular
users is given. The author also cooperated with the developers of BestCrypt
Volume Encryption in order to fix or at least mitigate those vulnerabilities.
A tool that makes it possible to mount encrypted volumes on some Unix-like
systems is also presented.

Keywords disk encryption, reverse engineering, BestCrypt Volume Encryp-
tion, cryptography

x

Contents

Introduction 1

1 BestCrypt Volume Encryption 3

1.1 Volume encryption . 3

1.2 Overview of BestCrypt Volume Encryption 5

1.3 Additional features . 7

1.4 Cryptographic primitives used 8

1.5 Rescue procedures . 12

2 Reverse engineering 15

2.1 Applications of software reverse engineering 15

2.2 Reverse engineering of binary file formats 16

2.3 Legality of reverse engineering 17

2.4 Tools used . 18

3 Rescue file contents 21

3.1 RECOVERY STRUCT contents 22

3.2 Decryption of KEY AND HASH structures 31

3.3 Security of the rescue file . 32

4 Results of security analysis 37

4.1 Extracting encryption keys from user space memory 37

4.2 Leaving removed additional passwords in the rescue file 40

4.3 System crash in the BestCrypt driver 41

4.4 Temporary password . 42

5 Developed tools 45

5.1 bcve otfe . 45

5.2 rsc dumper . 46

xi

Conclusion 47

Bibliography 49

A Acronyms 53

B Contents of enclosed CD 57

xii

List of Figures

1.1 Similarity between BCVE’s and Disk Management’s GUIs 6

xiii

List of Tables

3.1 RECOVERY STRUCT contents 23
3.2 KEY STRUCT contents . 24
3.3 Decrypted KEY AND HASH contents 29
3.4 Enumeration of all supported modes of operation 29
3.5 Enumeration of all supported block ciphers 30
3.6 ADDITIONAL PASSWORDS contents 31

xv

List of Algorithms

1 XTS encryption . 11
2 XTS decryption . 12
3 Decryption of KEY AND HASH structures 32

xvii

Introduction

Disk encryption is an integral part of information security. Companies and
individuals use it to lower the chances of unauthorized access to their data.
Since many people recognize the value of information and the performance
impact of encryption seems to be steadily decreasing, disk encryption software
is quite prevalent nowadays. On many mobile devices, disk encryption is now
even enabled by default. Some newer versions of Windows feature a built-in
disk encryption tool called BitLocker. However, many users opt for third-party
software, such as BestCrypt Volume Encryption.

If writing secure code is hard, implementing cryptography securely is even
more difficult. In order to lower the number of design flaws and implementa-
tion vulnerabilities, it is generally recommended to perform a security analysis.
That is precisely the goal of my thesis—to independently analyze the security
of BestCrypt Volume Encryption. As an independent security researcher, I
stand in a unique position. On one hand, I am able to analyze code from a
different perspective than the people who wrote it and I am unrestricted by
company policies on what I can publish. On the other hand, since I analyze
closed source software, I have to use reverse engineering, which makes my
efforts significantly more difficult.

There are three main conceptual goals of this thesis. First of all, I am
cooperating with the developers of BestCrypt Volume Encryption. If I find
any vulnerability or a bug, I will immediately disclose it to them along with a
proposed fix or mitigation. In this way, I hope to make this piece of software
more secure for all of its users.

This thesis also aims to educate common users of disk encryption software.
The problem with security software is the fact that its regular users are usually
unable to assess its security by themselves. Readers of this thesis should be
able to understand weaknesses both inherent to disk encryption and specific
to BestCrypt Volume Encryption.

Last but not least, I also hope that this thesis will help other security
researchers analyze BestCrypt Volume Encryption in the future. The docu-

1

Introduction

mented contents of the rescue file and the developed tools should save them
some time and enable them to focus more on other parts of this disk encryption
software.

The first two chapters of this thesis are theoretical. The first one introduces
BestCrypt Volume Encryption along with the cryptography it uses. Chapter 2
describes the techniques I used to obtain the results presented in the next
chapters. In chapter 3, the contents of the rescue file are described in detail
with an emphasis on security of the rescue file. Chapter 4 contains mostly a
description of vulnerabilities that were found during security analysis. Finally,
an overview of the tools I developed can be found in chapter 5.

2

Chapter 1

BestCrypt Volume Encryption

BestCrypt Volume Encryption (BCVE) is a Windows application designed for
transparent encryption of storage volumes. It helps its users keep confidential
data on stolen or lost devices encrypted. BCVE was developed by a Finnish
company named Jetico Inc. Oy, who originally started developing encryption
products back in 1993. Jetico is still active at the time of writing—BCVE
continues to receive both new features and security updates.

This thesis analyzes only BCVE v.3.72.01 and while most of the results
are likely going to be applicable to newer and older versions as well, I will
describe undocumented internals of BCVE that might be changed at any time.
Similarly, some functionality described in this thesis might not be present in
older versions of this program. BCVE also comes in two editions: personal
and enterprise. It is not a goal of this thesis to analyze the enterprise edition.

1.1 Volume encryption

As stated earlier, BCVE encrypts whole volumes at once, making it a volume
encryption software. This is only one of many possible approaches to encryp-
tion of data stored on a hard disk. Some widely used approaches similar to
volume encryption will be listed and briefly described in this section.

• Full disk encryption

Full disk encryption software encrypts all sectors on the physical disk,
with the possible exception of the boot sector and up to 63 following
sectors. Encryption and decryption are transparent, meaning that the
data is decrypted on read operations and encrypted on write operations.
Transparent software encryption and decryption is usually implemented
in a custom driver.

Since full disk encryption encrypts physical disks as a whole, it becomes
difficult to decrypt parts of the disk without compromising the security

3

1. BestCrypt Volume Encryption

of the rest of the disk. If full disk encryption is used on volumes that
reside on multiple hard disks, each disk has to be encrypted separately.
On the upside, full disk encryption is suited for hardware implementa-
tion. Hardware full disk encryption is completely transparent to software
and can achieve better performance than a software implementation.

• Filesystem-level encryption

Encryption can also be implemented at the filesystem level. Implement-
ations may vary, but usually only the content of files is encrypted, while
metadata and the structure of the filesystem itself stay unencrypted.
This naturally leads to a variety of security and privacy concerns. But
in cases where leaving the metadata in plaintext is an option, filesystem-
level encryption can be more lightweight because many filesystem oper-
ations can be performed without incurring the encryption overhead.

Filesystem-level encryption is most notably implemented inside NTFS
as a feature called Encrypting File System.

• Container-based encryption

Container-based encryption software packs a whole directory structure
into a single encrypted file called a container. This container can then
be mounted as a volume for transparent read and write access. The
advantage of this approach is its adjustable scope of encryption—it only
encrypts the files that the user selected without affecting the perform-
ance of the rest of the system. Containers are also easily moved from
one machine to another. On the other hand, not everything can be en-
crypted within a container—including but not limited to system files,
paging files, and hibernation files.

Container-based encryption was implemented in the discontinued applic-
ation TrueCrypt. Other implementations include a fork of TrueCrypt,
VeraCrypt, or BestCrypt Container Encryption.

• Volume encryption

Volume encryption works similarly to full disk encryption—the biggest
difference is that instead of encrypting physical disks, volumes (logical
disks) are encrypted. This means that encryption is not limited to simple
volumes—for example on Windows systems users can encrypt spanned,
striped, mirrored, and RAID-5 volumes across multiple disks too. While
this can be done by using full disk encryption as well, volume encryption
tends to be more convenient and generally easier to use.

If the encrypted volume contains a boot loader or anything essential for
the process of booting up, volume encryption software has to start run-
ning even before the boot loader. That usually means replacing the boot
sector with its own code, which later passes control back to the original

4

1.2. Overview of BestCrypt Volume Encryption

boot loader. This is a complex process and it can cause significant errors
when implemented incorrectly. Therefore, there is a need for a robust
implementation of rescue procedures for solving potential errors. This
is a drawback that volume encryption shares with full disk encryption.

Besides BCVE, volume encryption is also implemented in Windows as
a feature called BitLocker.

• Partition encryption

Partition encryption software encrypts just a single disk partition. This
is usually more flexible than full disk encryption, since access can be
given to each partition separately. Partition encryption also allows users
to shrink a partition before encryption in order to speed up initial en-
cryption. Note that full disk encryption and encryption of a single par-
tition spanning the entire disk do essentially the same thing.

Partition encryption can also be thought of as a subset of volume en-
cryption. Volume encryption software can encrypt volumes consisting
of a single partition too.

1.2 Overview of BestCrypt Volume Encryption

Even though BCVE features a command-line interface, not all its functionality
is exposed through it. Therefore, this section will describe BCVE’s GUI and
walk the reader through some of the use cases relevant to the rest of this
thesis.

After installing and running BCVE, the user is presented a GUI sim-
ilar to the Microsoft Management Console’s snap-in Disk Management (see
Figure 1.1). However, while Disk Management displays information about
disks and volumes in general, BCVE’s GUI focuses more on items relevant to
volume encryption. Some information present in Disk Management is not dis-
played in BCVE. This includes unallocated space, disks containing no volumes,
or CD/DVD discs.

1.2.1 Encryption and decryption of a volume

After selecting a volume to encrypt, the user chooses an encryption algorithm.
AES, RC6, Serpent, and Twofish are the only choices, with AES being selected
by default. All of them use the XTS mode of operation with a 256-bit data
encryption key and a 256-bit tweak key. The user also selects whether she
wants to format the volume and whether she wants to encrypt all sectors
or just perform minimal initial encryption1. If the user wants to format the
volume, the format is done after the initial encryption by a standard Windows

1Minimal initial encryption is going to be described in section 1.3.2.

5

1. BestCrypt Volume Encryption

Figure 1.1: A screenshot of Microsoft Management Console’s snap-in Disk
Management (left) and of BestCrypt Volume Encryption (right)

tool using transparent encryption. The user is also asked to input a new
master password. The password must be at least 8 characters in length and
must contain only 7-bit ASCII characters.

After filling out the password, another dialog is presented to the user,
asking her to move her mouse or input random keystrokes in order to collect
additional entropy. After some amount of randomness has been collected,
BCVE proceeds to actually encrypt the volume. When the encryption is over,
the user is informed that the rescue file has been updated and is asked to back
it up.

The process of decryption is simple. The user is asked for the master
password and has to confirm that she really wants to decrypt the volume. If
all goes well, the volume is decrypted.

1.2.2 Mounting and dismounting a volume

To successfully mount a volume, all the user has to do is input a correct pass-
word. This starts the transparent encryption and decryption of all reads and
writes to the sectors on the encrypted volume. Once the volume is mounted,
the user can work with it just like with any other volume.

Dismounting doesn’t require any password. However, BCVE will not dis-
mount a volume if there are any open handles to a file stored within that
volume. Jetico, the developer of BCVE, claims, that after a successful dis-
mount, “access to plain data from the volume will be impossible” [22].

6

1.3. Additional features

1.2.3 Passwords in BCVE

A typical BCVE user never sees her encryption key. Unless some additional
feature (such as two-factor authentication) is enabled, a password is all the
user needs to mount or decrypt a volume. Since passwords might get com-
promised, BCVE allows to change the master password. To do that, the user
has to enter the old master password as well as the new one. The change of
the master password is immediately finished. That makes me assume that
BCVE does not re-encrypt the volume after a password change.

In addition to the master password, there are also up to four additional
passwords per volume. Anyone with a knowledge of the master password is
able to create, modify, and delete them. Additional passwords can be used
to mount an encrypted volume. However, BCVE does not allow its users to
permanently decrypt a volume using an additional password.

1.3 Additional features

BCVE also offers a fair amount of other features. Some of them are going to
be discussed in this section.

1.3.1 Pre-boot authentication

Pre-boot authentication is used only if boot or system volumes are encryp-
ted. Boot volume is the volume where most of the operating system files are
stored [26], [32]. It typically contains a folder called “Windows”. System
volume is located on an active partition and contains the Boot Manager and
Boot Configuration Data. BitLocker might also write to the system volume.

Both volumes are needed during booting and therefore must be accessible
before Windows starts booting. BCVE solves this by overwriting the boot
sector with its own code. This way it makes sure that the firmware passes
control directly to it [18]. BCVE then proceeds to load the rest of its code and
prompts the user for a password. After entering a correct password, it starts
the transparent encryption and decryption of boot/system volumes and passes
control back to the original first stage boot loader. Pre-boot authentication
is described in more detail in [17].

1.3.2 Minimal initial encryption

Minimal initial encryption is a feature designed for speeding up the process of
initial encryption. BCVE first ensures that it will transparently encrypt and
decrypt all subsequent reads and writes to the volume and asks the user to
format it2. Note that if only a quick format is performed, some sectors on the
volume will stay unencrypted. This leads to potential security issues if the

2BCVE therefore initially only encrypts sector writes done during the format.

7

1. BestCrypt Volume Encryption

volume already contained confidential data. It also lets an adversary guess the
amount of used space on the volume [22] because the yet unencrypted sectors
are likely to be distinguishable from random data. BCVE offers the user to
overwrite the whole volume with pseudorandom data before the encryption
starts to solve those problems3.

1.3.3 Two factor authentication

In addition to passwords (something users know), the encrypted volumes can
be protected with a second authentication factor: SafeNet eToken Pro4 (some-
thing users have). If two-factor authentication is enabled, users have to both
connect this hardware security token to a USB port and type a correct pass-
word to get access to the volume. Both are then used to derive encryption
keys. The token is only used for key derivation and so it is not needed any-
more after the volume has been mounted. In version 3 of BCVE, two-factor
authentication is available with any conventional removable disks too.

1.3.4 AES instruction set

Given the widespread use of AES, Intel added six new instructions offering
hardware support for AES to the x86 instruction set [14]. BCVE makes use of
those instructions if they are available to the processor it is running on. This
results in about 30% increase in the overall throughput of disk operations [22].
The use of the AES instruction set can be turned off in order to fall back to
a pure software implementation of AES.

1.4 Cryptographic primitives used

Given the fact that BCVE is an encryption application, one might expect it to
use a large amount of cryptographic primitives. Indeed, BCVE makes use of
both symmetric and asymmetric encryption, hash functions, and cryptograph-
ically secure PRNGs. While asymmetric encryption is used in the enterprise
edition of BCVE for secure communication with the Jetico Central Manager,
symmetric encryption is vital to both editions of BCVE—it is used to actually
encrypt the volume.

BCVE offers its user a choice of four symmetric block ciphers: AES, RC6,
Serpent, and Twofish. All of them were finalists in the AES process5 and are

3This is done at the expense of initial encryption speed.
4https://safenet.gemalto.com/multi-factor-authentication/authenticators/pki-usb-

authentication/etoken-5110-usb-token/
5The AES process was organized by NIST and its goal was to set a new standard block

cipher and to call this cipher AES. There was a total of 15 ciphers submitted, with five of
them making it to the second round (I refer to those as AES finalists). Eventually, a cipher
called Rijndael was chosen to become AES. All ciphers submitted had to operate on blocks
of 128 bits and support key sizes of 128, 192, and 256 bits.

8

1.4. Cryptographic primitives used

implemented in BCVE with the largest possible key size of 256 bits. During
reverse engineering, I have found that three more symmetric block ciphers
are supported for already encrypted volumes: CAST-128, GOST, and Blow-
fish. This section is meant to provide a quick introduction to the individual
cryptographic primitives used as well as the XTS mode of operation.

1.4.1 AES

The Advanced Encryption Standard [7] is a block cipher published by Vincent
Rijmen and Joan Daemen in 1998. Originally named Rijndael, it won its name
after a rigorous assessment in the Advanced Encryption Standard process [29].
Unlike many previous block ciphers, AES does not use a Feistel network [16].
Instead, it consists of several rounds of substitution and permutation and it
was designed for efficient implementation in both hardware and software.

1.4.2 RC6

Rivest cipher 6 [31] is a block cipher based on its extremely simple predecessor
named RC5. It is fully parameterized, meaning the size of the key and the
number of rounds can be adjusted. But since certain versions of RC6 were
submitted to the AES process, the parameters in those versions are the ones
most widely used in practice. RC6 is a proprietary algorithm and it was
patented by RSA Data Security, Inc.

1.4.3 Serpent

Serpent [2] is another AES finalist block cipher. Since parts of its design
were similar to DES, the extensive research of DES was partially applicable
to Serpent. Serpent was designed for maximum security. While the authors
considered 16-round Serpent to be sufficiently secure [2], the published version
of Serpent used 32 rounds. This way, Serpent was expected to withstand
decades of cryptanalysis.

Serpent ended up second in the AES process. The most significant draw-
back of Serpent was its performance. It was slow compared to the other AES
finalists [36].

1.4.4 Twofish

Twofish [37] is a block cipher published by Bruce Schneier et al. The design of
Twofish is similar to its predecessor called Blowfish. It uses a Feistel network
and its S-boxes are key-dependent. Like RC6, the size of the key can be vari-
able, but it is most commonly implemented with key sizes of either 128, 192,
or 256 bits. Twofish was designed to be efficient on most computer architec-
tures and in hardware. It also allows several performance trade-offs between

9

1. BestCrypt Volume Encryption

encryption speed and key schedule speed as well as between encryption speed
and the amount of memory used.

1.4.5 64-bit block ciphers

While all the block ciphers described above were AES finalists and therefore
had a 128-bit block size6, the following three block ciphers encrypt blocks
of 64 bits. The problem with 64-bit block ciphers is that they are in some
cases vulnerable to collision attacks [3]. This might also be the case with
BCVE, since the same encryption key is used to encrypt a whole volume7 and
an adversary can potentially make the user store their own chosen plaintext
blocks on the volume8. In practice, those attacks are prevented by using the
XTS or LRW mode of operation, so they might only be applicable to older
volumes using CBC mode. However, it is still generally recommended to steer
away from using 64-bit block ciphers. This is exactly what BCVE is doing,
since it does not allow the user to choose those ciphers for newly encrypted
volumes.

1.4.6 Blowfish

Blowfish [35] is a 64-bit block cipher designed by Bruce Schneier. It is struc-
tured as a Feistel network and uses key-dependent S-boxes. Its key schedule
algorithm is relatively slow and it needs more than four kilobytes of memory for
encryption. While those properties might make Blowfish impractical in some
cases, they are also useful for the construction of password hashing functions
such as bcrypt.

1.4.7 CAST-128

CAST-128 [1] is 16-round Feistel cipher notably used in GPG and PGP. A
related cipher, CAST-256, was submitted to the AES process, but did not
make it among the AES finalists. CAST-128 encrypts 64-bit blocks and does
not support keys larger than 128 bits.

1.4.8 GOST 28147-89

GOST [11] is a Feistel cipher developed by the KGB in the 1970s. It was
declassified after the dissolution of the Soviet Union. An interesting feature
of GOST is that no S-boxes were originally published. Users of GOST had to
generate their own. However, in order to avoid weak S-boxes, a standard one
was specified in 2015.

6This was one of the requirements in the AES process.
7Due to the birthday paradox, the probability of a collision is non-negligible for larger

volumes.
8The adversary can also try to guess the contents of some sectors.

10

1.4. Cryptographic primitives used

1.4.9 SHA-2

SHA-2 [30] is a family of cryptographic hash functions designed by the NSA.
It is a successor of SHA-1—a hash function whose collision was published in
2017 [39]. SHA-2 is also a predecessor of a differently designed hash function
SHA-3 (Keccak). There are six SHA-2 functions in total, mostly differing
in the size of their digests. SHA-2 is widely used in cryptographic protocols
such as TLS, SSH, IPSec and in many others. Because of its prevalence and
its low memory usage, many dedicated ASICs have been built for SHA-2
hash functions [10]. They usually outperform software implementations by a
significant margin.

1.4.10 XTS mode of operation

A block cipher defines just a transformation of a fixed size block to another
fixed size block. To encrypt and decrypt data of arbitrary length, a mode of
operation is used on top of a block cipher. Modes of operation are independent
of block ciphers and therefore any combination of a block cipher and a mode
of operation can be used. There are many modes of operation, but for the
purpose of disk encryption, XTS is recommended in an IEEE standard [19].

XTS is a tweakable [24] mode of operation. It is based on the XEX mode
and it provides special handling for encrypting data whose size is not a multiple
of the cipher block size. In the context of BCVE, the disk sector size is always
a multiple of the cipher block size, so XEX and XTS are very similar in
function. Basically, the only difference is that XEX uses the same encryption
key to generate a tweak and to encrypt plaintext blocks.

XTS uses two different keys for encryption. The first key (I am going to
refer to this key as the tweak key from now on) is used together with a position
of the block to derive the tweak. During encryption, a plaintext block is first
XORed to the tweak, then encrypted with a block cipher using the second key
(this is going to be called the data key from now on) and finally XORed again
with the tweak to obtain the final ciphertext.

Algorithm 1 XTS encryption

1: T ← Ek1(i)
⊗

αj

2: C ← Ek2(P ⊕ T)⊕ T

In the XTS algorithms, k1 denotes the tweak key, k2 is the data key, i is the
sector number, j is the position of the block within a sector, P is the plaintext
block, C is the ciphertext block, α is 2. E is block cipher encryption, D is block
cipher decryption, ⊕ is the bitwise XOR operator, and

⊗
is multiplication in

GF (2block size).

Decryption is straightforward—a ciphertext block is first XORed to the
tweak, then decrypted with a block cipher using the data key and finally

11

1. BestCrypt Volume Encryption

XORed again with the tweak. Note that the value of the tweak is different for
each block position on the disk.

Algorithm 2 XTS decryption

1: T ← Ek1(i)
⊗

αj

2: P ← Dk2(C ⊕ T)⊕ T

Please note that using XTS does not prevent an adversary with recurring
access to the encrypted volume from observing if a block has changed its con-
tent or not. An adversary can also revert a block to a previously observed
content or completely randomize a plaintext block by flipping a bit in the
corresponding ciphertext block. Since XTS does not use any integrity mech-
anisms, any change to an encrypted volume is undetectable by the encryption
application.

1.5 Rescue procedures

An inherent risk in disk encryption is a possibility of data loss. Passwords
might get forgotten, hard drives might get corrupted, modified boot loaders
might crash, critical data might get accidentally overwritten, etc. BCVE
offers its users a number of rescue procedures to minimize this risk. However,
in order to be able to use those rescue procedures, the user has to first save
and back up the rescue file. Rescue procedures then try to use data stored in
the rescue file to recover from a wide variety of possible errors.

1.5.1 Rescue file

BCVE asks the user to save the rescue file after any major change is performed
to a volume. Those changes include encryption/decryption of a volume,
change of the master password, or setting up two-factor authentication. In
fact, the rescue file is stored in the installation directory of BCVE9 and it
is updated automatically. If the user wishes to back up the rescue file, it is
simply copied to a user-chosen location.

The point of the rescue file is that it is accessible in case of failure. There-
fore, it is generally not a good idea to store the rescue file on an encrypted
volume. Consequently, the rescue file is usually more accessible to potential
adversaries. It is essential, that access to the rescue file does not make it easier
for an adversary to decrypt a volume. Jetico, the developer of BCVE, claims
that “information inside Rescue File is encrypted exactly in the same way as
on volumes, so there is no risk that someone not knowing proper passwords
can use the file” [22]. One of the main goals of my thesis is to verify this
statement.

9It is possible to reconfigure BCVE to save the rescue file automatically elsewhere.

12

1.5. Rescue procedures

The rescue file stores 0xCF4 bytes of data per encrypted volume. Since it
does not appear to contain any meaningful ASCII readable strings, the format
of the rescue file is most likely binary. About half of the file is filled with zero
bytes. This suggests that some parts of the rescue file are filled conditionally
or that they are reserved for future use. After a successful decryption of
a volume, rescue data for that volume is still left in the rescue file. It is
overwritten when the decrypted volume is encrypted again.

To back up the rescue file, a user can either selectRescue->Save Rescue

Data in the menu bar or back it up manually by copying the file. Recovery
decryption is run by selecting Rescue->Decrypt with Rescue File.

1.5.2 Rescue bootable medium

If a system/boot volume is encrypted, BCVE no longer asks the user to save
the rescue file. Instead, it suggests creating a bootable recovery medium. This
medium can be a CD/DVD, a USB, or a floppy disk. The bootable medium is
needed because Windows won’t boot without a mounted system/boot volume
and therefore any errors have to be resolved before passing control to the
Windows boot loader.

Note that the bootable medium contains the rescue file [22], so any ana-
lysis performed on the rescue file applies to any rescue bootable medium too.
Another thing worth pointing out is that even when BCVE does not allow
the user to back up the rescue file using the GUI, its contents are still being
updated in the background.

13

Chapter 2

Reverse engineering

Reverse engineering is the process of analyzing anything man-made in order to
learn details of its design and implementation. It can be applied to both hard-
ware and software. While hardware reverse engineers actually study tangible
pieces of hardware, software reverse engineers usually deal with executable
code. This can be machine code to be executed directly by a CPU, bytecode
to be processed, or source code of a script to be interpreted. The findings
described in this thesis are going to be mostly obtained by performing soft-
ware reverse engineering of machine code compiled for the x86 instruction set
architecture.

2.1 Applications of software reverse engineering

Reverse engineering used to be closely associated with military or commercial
espionage [4]. However, there are many more reasons for performing reverse
engineering nowadays. Note that since reverse engineering is just a tool, it
can be used by both people with good and malicious intents.

• Malware analysis

Reverse engineering is useful for finding out whether a piece of software is
malicious or not. If it is, malware analysts can also gather more inform-
ation to detect similar pieces of malware in the future. In some cases,
analysts can find an exploited zero-day vulnerability or take advantage
of flaws found in malware (e.g., to write ransomware decryptors). This
type of reverse engineering is often made harder by the use of obfuscation
and anti-debugging tricks.

• Achieving interoperability

Reverse engineering can be used for system integration or replacement
of legacy systems if there isn’t sufficient documentation available. It is
needed if the original developers of the system to be integrated can’t be

15

2. Reverse engineering

reached or do not wish to cooperate. Reverse engineering is also a way of
documenting unknown file formats or network protocols [13]. Examples
of the use of reverse engineering for achieving interoperability include
ReactOS10, Samba11, and Wine12.

• Security analysis

Software vulnerabilities can be found by means of reverse engineering.
Based on the intentions of the reverse engineer, found vulnerabilities
are usually either reported13 and fixed or attempted to be exploited.
Security analysts might also look for backdoors or try to assess software
quality.

• Reverse engineering of competitors’ products

There are several reasons why companies might be interested in analyz-
ing their competitors’ products. They might want to confirm suspicions
that it uses their software without an appropriate license or infringes on
one of their patents. Examining the product can also provide them with
valuable information that they might use to improve their own product.
Note that this is often done illegally.

• Removal of copy protection

Copy protection mechanisms are built to prevent the unauthorized re-
production of copyrighted work. Software pirates try to understand and
locate those mechanisms by means of reverse engineering in order to re-
move them. It is considered almost impossible to completely prevent a
determined and skilled attacker who is given enough time from defeating
a copy protection mechanism [34], [5].

2.2 Reverse engineering of binary file formats

The main benefits of binary file formats are efficient parsing and space saving.
On the other hand, their human-readability is much lower than that of text
file formats. Any sequence of bytes can be interpreted in multiple ways, so
completely reverse engineering a binary file format is often impossible without
having access to an application that uses the examined file format. Reverse
engineering can be made even more difficult by compression, encryption, or ob-
fuscation. However, it is sometimes possible to infer some information about
a binary file format just by observing examples, since they might contain
some identifiable elements. Those elements include strings of text, pieces

10https://www.reactos.org/
11https://www.samba.org/
12https://www.winehq.org/
13The most recommended way to do this is “responsible disclosure”. It means giving

developers a certain amount of time to patch the vulnerability before publishing it.

16

2.3. Legality of reverse engineering

of code, offsets within the file, magic numbers, sizes of data blocks, check-
sums, etc. Moreover, those elements often form arrays or any other data
structures. Many encoding schemes are also easy to identify and a high Shan-
non entropy [38] of data blocks might suggest that they are compressed or
encrypted.

The ability to reverse engineer applications that use the file format helps a
lot. It is possible to locate procedures that read or write to the file by observing
either system calls or library functions. Once those procedures are located,
they are a good starting point for reverse engineering. The procedures reading
the file usually perform some kind of parsing and the procedures writing to
the file should only write data adhering to the file format. More reverse
engineering can then be performed to figure out where does the data written
to the file come from and what is the data read from the file used for.

An application handling the analyzed files can also be used without actu-
ally reverse engineering its code. One can perform small edits in the applic-
ation and observe corresponding changes in the analyzed file. Likewise, one
can edit the analyzed file and see if it changed the behavior of the application.
Letting the application generate a file that is as simple as possible can also be
helpful for analysis.

An important thing to keep in mind is that completely reverse engineering
a binary file format is a difficult task. Its contents might differ based on the
version and edition of the application using it and some parts of it might be
obscure and only used rarely. Reverse engineering complex proprietary file
formats, such as Microsoft’s DOC, therefore requires a lot of work.

2.3 Legality of reverse engineering

Performing reverse engineering is under many circumstances barely legal or
outright illegal. Specific cases naturally depend on the jurisdiction used. I
will discuss reverse engineering under EU law in this section.

Software reverse engineering is covered in Directive 2009/24/EC of the
European Parliament and of the Council of 23 April, 2009 on the legal pro-
tection of computer programs [6]. It contains the following paragraph:

The unauthorised reproduction, translation, adaptation or trans-
formation of the form of the code in which a copy of a computer
program has been made available constitutes an infringement of
the exclusive rights of the author. Nevertheless, circumstances
may exist when such a reproduction of the code and translation of
its form are indispensable to obtain the necessary information to
achieve the interoperability of an independently created program
with other programs. It has therefore to be considered that, in
these limited circumstances only, performance of the acts of repro-
duction and translation by or on behalf of a person having a right

17

2. Reverse engineering

to use a copy of the program is legitimate and compatible with
fair practice and must therefore be deemed not to require the au-
thorisation of the rightholder. An objective of this exception is to
make it possible to connect all components of a computer system,
including those of different manufacturers, so that they can work
together. Such an exception to the author’s exclusive rights may
not be used in a way which prejudices the legitimate interests of
the rightholder or which conflicts with a normal exploitation of the
program.

Please note that the term interoperability is defined very broadly in [6].
How to determine whether a specific application of reverse engineering is legal
or not is therefore sometimes unclear and relies on an interpretation of this
term.

Reverse engineering of software is also often explicitly prohibited in an
end-user license agreement. This is also the case with BCVE. Please note
that Jetico, the developer of BCVE, granted me permission to perform reverse
engineering of BCVE and to publish results of my security evaluation. Such
an explicit permission overrides the standard end-user license agreement.

2.4 Tools used

Reverse engineers typically use tools such as disassemblers, debuggers, or de-
compilers. A brief description of tools used for my thesis is presented in this
section.

2.4.1 IDA

The Interactive Disassembler (IDA) is a multi-platform proprietary disassem-
bler with support for many instruction sets and executable file formats. It
provides a debugger for both local and remote debugging of various types of
executables. IDA is scriptable with either Python or its own custom scripting
language called IDC. The developer of IDA, Hex-Rays, also offers a decompiler
that is integrated into IDA.

Increasing productivity is one of design goals of IDA. It attempts to present
a graph-based view of disassembled instructions. This allows reverse engineers
to examine the analyzed function’s structure and to quickly identify loops and
error handling. IDA is also able to recognize and name many standard library
functions generated by well-known compilers. All variables and parameters
can be given custom names and comments can be entered. IDA saves all in-
formation about the analyzed executable in its own database format, which
can then be shared with other reverse engineers. IDA is also designed to be
extensible and allows its users to create custom plugins for additional func-

18

2.4. Tools used

tionality. Hex-Rays organizes an annual plugin contest and rewards the most
innovative ones.

2.4.2 VirtualBox

VirtualBox is an open-source virtualization product for x86 computers origin-
ally developed by Innotek. It runs on most modern desktop operating systems
and allows the creation of guest virtual machines that can run a wide range of
operating systems too. If the host processor supports hardware-assisted virtu-
alization, VirtualBox can take full advantage of it. VirtualBox also offers a lot
of features, such as shared folders, shared clipboard, snapshots, multiscreen
support, or virtual USB controllers. Virtualization is especially useful in soft-
ware development as it allows developers to share the same environment by
cloning and taking snapshots.

For the purposes of reverse engineering, virtualization is convenient for
kernel debugging. One does not have to worry about breaking their system
and can in case of failure just revert the virtual machine to the last snapshot.
Kernel debugging of virtual machines is also harder to detect from within the
guest, since the debugger is running on the host system. The ability to easily
create virtual disk images comes in handy for analyzing volume encryption
software.

2.4.3 Hiew

Hiew is a Windows hex editor specialized in editing executable files, such as
PE or ELF files. It parses and shows their headers and displays not only offsets
within the file but also expected virtual addresses after process loading. Hiew
can edit files in text, hex, or disassembly mode. It supports search functions
as well as advanced editing, such as assembling instructions, copying data
blocks, or XORing data blocks.

2.4.4 Active@ Disk Editor

Active@ Disk Editor is a tool for displaying and editing raw disk sectors.
Contents of physical disks, partitions, or volumes can be viewed. It allows
searching for an occurrence of a sequence of bytes and decodes contents of key
sectors, such as MBR or NTFS boot sector.

19

Chapter 3

Rescue file contents

This chapter contains a detailed description of the rescue file format. While the
primary goal is to analyze the security implications of the rescue file format,
this chapter might also be prove to be useful for ordinary users of BCVE.
They can now examine the contents of their own rescue files before they back
them up for recovery purposes. Note that some users might choose to store
their rescue files on an unencrypted disk, in the cloud, or even share their
rescue files with other people. In such cases, they are now able to assess the
potential security risk for themselves.

Special attention is going to be paid to answering the following questions
in particular:

• Does the rescue file leak any sensitive information?

As discussed in section 1.5.1, the rescue file is usually more accessible to
a potential adversary than the encrypted volume itself. Consequently,
just reading the rescue file should not give an adversary any information
that might significantly compromise security of corresponding BCVE
users.

• Are encryption keys stored securely?

Since the user authenticates with a password, BCVE has to be able
to derive encryption keys just from the password and the rescue file.
An adversary should not be able to obtain the encryption keys unless
he correctly guesses a password. Usually, individual data items can
be stored in plaintext (accessible to anyone), encrypted (accessible to
anyone knowing a secret key), or hashed with a one-way hash function
(accessible to anyone able to guess the plaintext content). Each data
item in the rescue file should be stored in an appropriate way.

• Is there anything missing from the rescue file?

The rescue file is supposed to store all the information needed to perform
rescue decryption of a volume. If any important data item was missing,

21

3. Rescue file contents

rescue decryption could potentially fail and the user would consequently
lose access to her data.

• Does BCVE handle the rescue file safely?

I decided to analyze not only the rescue file contents but also the way
BCVE uses the rescue file. It is in my opinion equally important, since
an adversary is in some cases able to tamper with the rescue file and
trick a user into using this tampered rescue file for rescue procedures.
A vulnerability in the code responsible for reading the rescue file could
potentially be exploited with a specially crafted rescue file.

The rescue file contains an array of structures 0xCF4 bytes long. Each of
those structures (I will be referring to them as RECOVERY_STRUCTs from now
on) contains rescue information relevant to a single encrypted volume.

3.1 RECOVERY STRUCT contents

Most of the rescue file contents described in this chapter were identified by
reverse engineering BCVE. My efforts were significantly simplified by inform-
ation found in Horňák’s thesis that studied BCVE’s boot loader [17]. The
contents of the KEY_AND_HASH structure are described there along with the
secondary key derivation algorithm. Parts of the KEY_STRUCT structure are
also described there.

After I finished reverse engineering the rescue file format, BCVE’s support
team shared with me a header file containing RECOVERY_STRUCT’s definition.
I used it to verify the correctness of my previous findings and also started
using identifiers found in there. The header file definition also listed items
related to EFI and items specific to the enterprise edition of BCVE that I did
not reverse engineer beforehand.

Each of the following subsections is meant to describe a single data item
found in the RECOVERY_STRUCT (Table 3.1).

3.1.1 Rescue file signature

File signatures are present in many binary file formats—they are included in a
file to indicate its file format. They can then be used as a simple sanity check
to avoid processing files that are evidently not in the required file format. A
file signature can also be used to determine the type of an unknown file.

BCVE’s rescue file signature is a 16-byte magic number that is being
checked any time BCVE accesses the rescue file. This magic number also
happens to be a part of the fourth S-box in Blowfish. Since the S-boxes in
Blowfish are actually hexadecimal digits of pi [35] and the magic number is
sixteen bytes long, this is definitely not a coincidence.

22

3.1. RECOVERY STRUCT contents

Offset Size Description Encrypted

0x0 0x10 Rescue file signature No

0x10 0x200 Array of up to eight KEY_STRUCTs No

0x210 0x200 KEY_AND_HASH_PUBKEY_MASTER Yes

0x410 0x4 Number of disk extents No

0x414 0x4 Decrypted volume flag No

0x418 0x8 Starting offset of the first disk extent No

0x420 0x8 Size of the first disk extent No

0x428 0x10 Disk signature of the first disk extent No

0x438 0x40 MBR Signature on an EFI disk No

0x478 0xC Location of UEFI dummy files No

0x484 0x198 Reserved No

0x61C 0x8 Timestamp No

0x624 0x4 Flags No

0x628 0x200 Encrypted first sector Yes

0x828 0x60 Master password KEY_AND_HASH Yes

0x888 0x60 Administrator password KEY_AND_HASH Yes

0x8E8 0x1 Mode of operation No

0x8E9 0x1 Block cipher identifier No

0x8EA 0x1 IsSystemVolume flag No

0x8EB 0x1 IsBootVolume flag No

0x8EC 0x8 Salt No

0x8F4 0x200 Original boot sector No

0xAF4 0x1B0 ADDITIONAL_PASSWORDS Partially

0xCA4 0x50 Reserved No

Table 3.1: RECOVERY STRUCT contents

3.1.2 KEY STRUCT

Volumes that BCVE encrypts might not be accessible during recovery. That
is why BCVE stores information about the structure of the encrypted volume
in the rescue file, so that it is able to reconstruct the volume from the disk
extents14 the volume consists of. Definition of the individual disk extents
(along with the RAID level the extent is a part of) is stored in a structure called
KEY_STRUCT (Table 3.2). There is enough space for eight KEY_STRUCTs—if an
encrypted volume consists of more than eight disk extents, only information
about the first eight disk extents is saved in the rescue file.

14Disk extent is a contiguous block on a single disk.

23

3. Rescue file contents

Offset Size Description

0x0 0x10 KEY_STRUCT signature

0x10 0x6 LBA of the first sector

0x16 0x6 LBA of the last sector

0x1C 0x6 Total number of encrypted sectors

0x22 0x10 Disk identifier

0x32 0x1 Windows disk number

0x33 0x1 Extent number

0x34 0x1 Volume type

0x35 0x1 BIOS disk number

0x36 0x2 Reserved

0x38 0x6 LBA of the replaced sector

0x3E 0x2 Reserved

Table 3.2: KEY STRUCT contents

3.1.2.1 KEY STRUCT signature

It might seem that the presence of the KEY_STRUCT signature is unnecessary
in the KEY_STRUCT. But the reason for its existence is that some KEY_STRUCTs
are also stored directly on disk [17]. The presence of this signature is certainly
justified when storing critical data structures on raw disks.

3.1.2.2 Disk extent position and size

Disk extent is a contiguous subset of a whole disk. It can be therefore
uniquely identified by specifying its start and end offset within a disk. In
the KEY_STRUCT, both start and end of a disk extent are defined by their sec-
tor LBAs15. It might seem redundant to also store the total number of sectors
in the disk extent (since it can be computed from the start and end LBAs),
but according to BCVE developers the Total number of encrypted sectors can
be lower than the entire span of the disk extent if the initial encryption was
terminated prematurely.

3.1.2.3 Disk identifier

A disk identifier is used to specify the disk an extent is situated on. If the
disk uses the GPT partition style, the identifier is the 16-byte disk GUID. If
it uses MBR partitioning, the first four bytes are the MBR signature and the
remaining 12 bytes are filled with zero bytes.

15LBA is a linear addressing scheme often used for identifying disk sectors.

24

3.1. RECOVERY STRUCT contents

3.1.2.4 Windows and BIOS disk numbers

In addition to the disk signature, BCVE also stores two other disk identifiers.
The first one is the number Windows assigns to the disk. Windows then makes
the raw disk accessible as \\.\PhysicalDriveX, where X is the Windows disk
number.

The second identifier is the number used with BIOS INT 13h—a real mode
interrupt call used for low-level disk services [21]. To specify which disk should
the interrupt handler operate on, the x86 register DL is set to the 8-bit BIOS
disk number value. Note that BIOS disk numbers with the most significant
bit cleared are reserved for floppy disks, so hard disk numbering starts from
the hexadecimal value of 0x80.

3.1.2.5 Extent number

This byte contains the ordinal number of the disk extent within the volume in
the order as it was returned by the IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS
control code. With the exception of simple and mirrored volumes (where the
order does not matter), the disk extent ordinal number is needed to correctly
reconstruct the volume.

The KEY_STRUCTs are stored in the rescue file in an ascending order of
this extent number so the presence of this field in the rescue file feels a bit
redundant. However, as discussed before, the KEY_STRUCT is stored in other
places as well, where all the KEY_STRUCTs might not be stored in the same
order.

3.1.2.6 Volume type

Windows allows its users to create dynamic volumes for better performance
and/or reliability. This subsection contains the enumeration of all volume
types supported by BCVE along with their respective values that are stored
in the rescue file.

• 0x01 — Simple volumes

Simple volumes contain just a single disk extent. Please note that
volumes that consist of multiple disk extents on the same disk are con-
sidered to be spanned volumes by BCVE even though Windows regards
them as simple volumes.

• 0x02 — Spanned volumes

Spanned volumes link multiple disk extents together. They are useful
for enlarging the volume size.

25

3. Rescue file contents

• 0x03 — Striped volumes

While spanned volumes concatenate disk extents, striped volumes inter-
leave them in order to increase throughput. Striped volumes can only
be created from equally sized disk extents.

• 0x04 — Mirrored volumes

Mirrored volumes duplicate data on multiple disk extents in order to
achieve fault-tolerance.

• 0x05 — RAID-5 Volumes

RAID-5 volumes use three or more disk extents to gain both better reli-
ability and read throughput. Data is stored similarly to striped volumes
and parity is computed and split across all disk extents.

3.1.2.7 LBA of the replaced sector

The very first sector of an encrypted volume is replaced with BCVE specific
data. Its original contents are stored in an encrypted form in the rescue
file. If the replaced sector resides on this disk extent, its LBA is stored here.
Otherwise, this field is filled with 0xFF bytes.

3.1.3 KEY AND HASH PUBKEY MASTER

This data item stores an encryption key used for communication with Jetico
Central Manager. As it is used only in the enterprise edition of BCVE, I did
not analyze its contents.

3.1.4 Number of disk extents

The total number of disk extents that form the encrypted volume is stored
here. This is usually equal to the number of KEY_STRUCTs present in this
RECOVERY_STRUCT. But RECOVERY_STRUCTs of volumes that consist of more
than eight disk extents contain just eight KEY_STRUCTs, while this number is
set to the actual amount of disk extents.

3.1.5 Decrypted volume flag

After a volume has been permanently decrypted, the RECOVERY_STRUCT cor-
responding to it is not removed from the rescue file. In fact, the only modific-
ation done to the rescue file is that the Decrypted volume flag is set in order
to mark the RECOVERY_STRUCT as inactive. This is perhaps done to avoid
having to shift the entire contents of the rescue file located after the inactive
RECOVERY_STRUCT. When a new RECOVERY_STRUCT is to be written to the res-
cue file, BCVE first checks for any inactive RECOVERY_STRUCTs. If there is one,

26

3.1. RECOVERY STRUCT contents

BCVE replaces it with the new one. Otherwise, the new RECOVERY_STRUCT is
appended to the rescue file.

I would consider it more prudent to remove the inactive RECOVERY_STRUCT
from the rescue file. While the encryption keys contained in it are unlikely to
be useful for an adversary, he can still try to guess the user-chosen password
for the decrypted volume. It is possible that the user has reused this password
elsewhere or used a slightly modified version of it for other volumes [8], [41].
Since BCVE does not need the inactive RECOVERY_STRUCT anymore, I would
recommend clearing the contents of inactive RECOVERY_STRUCTs.

3.1.6 Information about the first disk extent

The rescue file might contain multiple RECOVERY_STRUCTs. To match an en-
crypted volume with the corresponding active RECOVERY_STRUCT, three data
items located at offsets 0x418 through 0x438 are used. They contain the
position of the first extent within the disk in bytes, the size of the first ex-
tent in bytes and an identifier of the disk the first extent is located on. It
is not entirely clear to me, why are those three data items used instead of
the KEY_STRUCT of the first disk extent, which contains essentially the same
information.

3.1.7 EFI related data items

Since studying the BCVE boot loader is beyond the scope of this thesis, I did
not analyze these data items. I was made aware of their presence by BCVE
developers and include them here just for the sake of completeness.

3.1.8 Timestamp

Any time a major change is made to a RECOVERY_STRUCT, its timestamp is
updated to the value retrieved by a call to GetSystemTime. This is a Windows
API function that returns current system time in UTC.

The whole timestamp is packed into eight bytes, the first five bytes are
filled with the current second, minute, hour, day and month in this order and
the last three bytes contain the current year.

3.1.9 Flags

Even though there is space for up to 32 flags, only one of them is used in
BCVE v.3.72.01. It is stored at the second least significant position in the
little-endian 32-bit integer. It is set if a remote administrator is able to decrypt
the volume using his own password. However, as this flag is only applicable
to the enterprise edition of BCVE, I did not study it any further.

27

3. Rescue file contents

3.1.10 Encrypted first sector

The first sector of any encrypted volume is used by BCVE to store its data.
Since the actual encrypted contents of the first sector need to be available
during recovery decryption, they are included in the rescue file.

The reason for replacing the first sector with BCVE specific data is most
likely to prevent the boot sector signature from occurring16. The presence of
this signature indicates that there is valid x86 code located at the start of the
volume. The encrypted first sector might accidentally contain this signature,
which may in the worst case trick some operating systems into actually trying
to execute pseudorandom bytes.

A consequence of storing the encrypted first sector in the rescue file is
that anyone able to guess a correct password is able to decrypt the first sector
even without having access to the encrypted volume. This is usually not an
issue because the first sector is unlikely to contain any sensitive information.
However, most of the time the first sector allows an adversary to infer what
filesystem is used and get basic information about disk geometry.

An issue with first sector replacement implementation is that writes to the
first sector are not reflected in the rescue file—the only way to force BCVE
to update the encrypted first sector in the rescue file is to both remount
a volume and then perform some change that forces it to generate a new
rescue file (such as changing the master password). I’ve tried to encrypt a
FAT-formatted volume, reformat it to NTFS while it is mounted, change the
master password17, export a rescue file, dismount the volume, and finally
perform rescue decryption using the exported rescue file. The first sector of
the decrypted volume then contained a FAT Boot Sector even though the rest
of the volume was formatted with NTFS. Windows naturally refused to mount
such a volume, notifying me that it was corrupted18.

3.1.11 Master password KEY AND HASH

Encryption keys are arguably the most important part of the rescue file. They
are packed in the rescue file in a structure called KEY_AND_HASH (Table 3.3).
This structure is stored in the rescue file encrypted with a key derived from the
master password and salt. Encryption uses the selected block cipher in CBC
mode with an IV full of zero bytes. The process of decryption of KEY_AND_HASH
structures is described in section 3.2.

16The boot sector signature on IBM-compatible PCs is composed of two bytes (0x55
0xAA) located at offset 0x1FE.

17Changing the master password updates the rescue file, so I hoped that it would update
the encrypted first sector as well.

18I discussed this bug with Jetico and I was told that users are not supposed to format
mounted encrypted volumes. However, this was not mentioned in the BCVE help file, so
they now added a warning about this to their official documentation.

28

3.1. RECOVERY STRUCT contents

Offset Size Description

0x0 0x20 XTS data key

0x20 0x20 XTS tweak key

0x40 0x20 Hash of both XTS keys

Table 3.3: Decrypted KEY AND HASH contents

Identifier Mode of operation Legacy value

0 CBC Yes

4 LRW Yes

8 XTS No

Table 3.4: Enumeration of all supported modes of operation

3.1.12 Administrator password KEY AND HASH

In the enterprise edition of BCVE, a remote administrator can add a recovery
password for each encrypted volume. This password is used to protect the
XTS encryption keys in a KEY_AND_HASH structure in exactly the same way as
it is done with the master password.

3.1.13 Mode of operation

The lower four bits of this byte are used to identify the block cipher mode of
operation used. Possible values are listed in Table 3.4. Note that this mode
of operation is used for the encryption of volumes—KEY_AND_HASH structures
are always encrypted with a block cipher in CBC mode.

The fifth least significant bit of this byte is used as a flag. If it is cleared,
the logical index (denoted as i in Algorithm 1) used in LRW and XTS modes is
set to the LBA of the current sector. Otherwise, it is set to the sector position
within the encrypted volume—the first sector of an encrypted volume uses a
logical index with value 0, the second sector uses a logical index with value 1,
etc.

In the current (v.3.72.01) version of BCVE, this byte is unconditionally
set to 0x18, meaning that XTS mode of operation is used and sector position
within the volume is used as a logical index.

3.1.14 Block cipher identifier

This byte specifies the symmetric block cipher used (for encryption of both
disk sectors and KEY_AND_HASH structures). Enumeration of all possible values
is in Table 3.5. Note that BCVE currently only offers the block ciphers in XTS
mode for newly encrypted volumes.

29

3. Rescue file contents

Identifier Block cipher Legacy value

1 AES Yes

2 Twofish Yes

3 Blowfish Yes

4 CAST-128 Yes

5 GOST Yes

6 Serpent Yes

7 RC6 Yes

8 AES XTS No

9 Twofish XTS No

10 Serpent XTS No

11 RC6 XTS No

Table 3.5: Enumeration of all supported block ciphers

3.1.15 IsSystemVolume and IsBootVolume flags

If the IsSystemVolume byte is set to 0x01, this volume is a system volume. If it
is 0x00, it is not a system volume. The same logic applies to the IsBootVolume
flag. Please note that one volume can be both a boot and a system volume
at the same time [26] and any of those two flags is set if and only if pre-boot
authentication is enabled.

3.1.16 Salt

A salt is used in password hashing to make it harder for adversaries to use
precomputed tables (such as rainbow tables) and to try to guess passwords in
bulk. It is a nonsecret pseudorandom value that is usually concatenated with
a password before hashing.

The salt used in BCVE is 64 bits long and is generated by a PRNG before
initial encryption. It is used to derive a secondary key in order to decrypt
KEY_AND_HASH structures (see Algorithm 3). Note that there is exactly one
salt per RECOVERY_STRUCT, which means that the same salt is used to hash up
to six passwords.

3.1.17 Original boot sector

If pre-boot authentication is turned on, BCVE replaces the boot sector in
order to start transparent encryption and decryption of encrypted volumes
early in the boot process. When pre-boot authentication is no longer needed,
the original content of the boot sector is restored from the rescue file, where
it is saved in plaintext. The boot sector is usually occupied by a MBR, which
does not contain any extremely sensitive information, so there is no direct risk
associated with storing the original boot sector in plaintext.

30

3.2. Decryption of KEY AND HASH structures

Offset Size Description

0x0 0x20 ADDITIONAL_PASSWORDS signatures

0x20 0x60 First additional password KEY_AND_HASH

0x80 0x4 First additional password present flag

0x84 0x60 Second additional password KEY_AND_HASH

0xE4 0x4 Second additional password present flag

0xE8 0x60 Third additional password KEY_AND_HASH

0x148 0x4 Third additional password present flag

0x14C 0x60 Fourth additional password KEY_AND_HASH

0x1AC 0x4 Fourth additional password present flag

Table 3.6: ADDITIONAL PASSWORDS contents

3.1.18 ADDITIONAL PASSWORDS

There can be up to four additional passwords in each RECOVERY_STRUCT and
they are stored in a structure called ADDITIONAL_PASSWORDS (Table 3.6). This
structure starts with two 16-byte signatures, whose presence indicates that this
structure is properly formatted and that additional password KEY_AND_HASH

structures might follow. Information about each additional password is stored
in an encrypted KEY_AND_HASH structure in exactly the same way as it is
done with the master password. Each KEY_AND_HASH structure is followed by
a 32-bit flag that indicates whether the preceding KEY_AND_HASH structure
actually contains valid data.

3.2 Decryption of KEY AND HASH structures

There can be multiple (up to six) encrypted KEY_AND_HASH structures in every
RECOVERY_STRUCT—each of them protected with a different password. The
decryption of KEY_AND_HASH structures has already been studied in Horňák’s
thesis [17] and is also described in Algorithm 3, where the function Substr
returns a substring of its first argument specified by a start offset (second
argument) and length (third argument). Decrypt denotes decryption of its
first argument with the selected block cipher in CBC mode with an IV full of
zero bytes.

In most settings, CBC mode is meant to be used with a random and
unpredictable IV [12] because CBC mode with a predictable IV might be
susceptible to chosen-plaintext attacks. An example of such an attack was
BEAST [33]. However, mounting chosen-plaintext attacks is impossible in this
context, since each secondary key is used to encrypt exactly one KEY_AND_HASH
structure. Also note that the IV might be completely predictable, but the first
plaintext block to be encrypted in CBC mode (part of the XTS data key) is
pseudorandom and unpredictable.

31

3. Rescue file contents

While I consider the way KEY_AND_HASH structures are protected to be
cryptographically secure, very little is done to make “password cracking”19

harder for adversaries. SHA-256 was designed to be fast and given its pre-
valence (and the fact that it is used in Bitcoin), many efficient hardware and
software implementations are publicly available. Note that since all decrypted
KEY_AND_HASH structures contain the same data, the whole system is no more
secure than the weakest password used. And the fact that all passwords share
the same salt also makes password cracking easier for adversaries.

Algorithm 3 Decryption of KEY AND HASH structures

1: function decrypt key and hash(keyAndHash, password, salt)
2: bufferLen← 1000016
3: curBufferLen← 0
4: passwordLen← GetStringLength(password)
5: saltLen← 8
6: while curBufferLen < bufferLen do

7: buffer ← buffer|salt|password ⊲ | denotes concatenation
8: curBufferLen← curBufferLen+ saltLen+ passwordLen

9: end while

10: buffer ← Substr(buffer, 0, bufferLen)
11: secondaryKey ← SHA-256(buffer)
12: decryptedKeyAndHash← Decrypt(keyAndHash, secondaryKey)
13: dataKey ← Substr(decryptedKeyAndHash, 0, 2016)
14: tweakKey ← Substr(decryptedKeyAndHash, 2016, 2016)
15: hash← Substr(decryptedKeyAndHash, 4016, 2016)
16: if SHA-256(dataKey|tweakKey) = hash then

17: passwordCorrect← true

18: else

19: passwordCorrect← false

20: end if

21: return passwordCorrect

22: end function

3.3 Security of the rescue file

At this point, I’d like to answer the questions asked at the beginning of this
chapter.

19By password cracking I mean any attempts to repeatedly guess the password such as
dictionary, brute-force, and hybrid attacks.

32

3.3. Security of the rescue file

3.3.1 Does the rescue file leak any sensitive information?

After having analyzed almost all the contents of the rescue file in detail, I
conclude that I have found no particularly sensitive information present in
the rescue file in plaintext. However, when I started reverse engineering the
rescue file format, I expected most of its contents to be encrypted. As it
turned out, the only encrypted data items were the replaced first sector and
the encryption keys—which absolutely need to be encrypted. While none
of the individual plaintext data items alone significantly help an adversary,
together they provide valuable information which adversaries typically gather
during reconnaissance. In theory, the whole rescue file (with the possible
exception of the file signature, salt, and encryption algorithm identifier) could
have been encrypted for better security.

Another design decision that I disagree with is keeping RECOVERY_STRUCTs
of permanently decrypted volumes in the rescue file. This only provides ad-
versaries with additional information and lets them try to guess old passwords,
which (as discussed before) might help them in some cases. I would consider
removing inactive RECOVERY_STRUCTs from the rescue file or at least clearing
their contents20.

Finally, a user might want to encrypt multiple volumes, but export rescue
information only about one of them. This is possible by manually extracting
the needed RECOVERY_STRUCT from the rescue file, but only users who under-
stand the undocumented rescue file format are able to do that. After reading
this thesis and optionally using the provided tools, users of BCVE should be
able to do just that.

3.3.2 Are encryption keys stored securely?

The decryption of KEY_AND_HASH structures (described in Algorithm 3) can be
split into two logical parts. In the first part, a key derivation function is used
in order to obtain the secondaryKey. In the second part, a KEY_AND_HASH

structure is decrypted using the secondaryKey and a hash is computed to test
its validity. I consider the second part to be secure, but I do not believe the
key derivation function used in the first part is suitable for use in BCVE.

Password cracking is arguably the easiest and most obvious attack vector
on volumes encrypted with BCVE. Given the way password hashing is imple-
mented in BCVE, it is possible to try dozens of thousands of passwords per
second even on commodity desktop CPUs [20]. Note that implementations on

20After discussing this with Jetico, it turned out that they are keeping this information in
the rescue file in plaintext to make their technical support procedures more effective. By not
encrypting the whole rescue file, they are able to extract important pieces of information from
the rescue file even without asking the user for a password. By keeping old RECOVERY -
STRUCTs in the rescue file, they might be able to help their users if an error occurred during
decryption. This is a trade-off between usability and security and I consider it reasonable
to choose more usability in this case.

33

3. Rescue file contents

GPUs, FPGAs, and ASICs are going to be much more efficient. It is also al-
most certain that technological advances are going to progress faster than the
users’ ability to choose stronger passwords, which would result in password
cracking being even more powerful in the future.

I would recommend Jetico to use a standard password hashing function
such as bcrypt or scrypt. These functions contain a cost parameter and are also
memory-hard, which makes them less efficient to compute on special-purpose
hardware. In case Jetico does not want to implement new hash functions21,
a rather easy to implement approach (but less recommended) would be to
increase and parameterize bufferLen from Algorithm 3.

Instead of relying on a single hash function, BCVE could also support
multiple functions similarly to the way it uses block ciphers. In the very
unlikely event of an attack on SHA-256 that would make it unsuitable for
use in BCVE, Jetico would have to perform some architectural changes to
replace it. Supporting multiple hash functions would make it easier for Jetico
to gradually replace hash functions by introducing new ones and obsoleting
old ones.

Note that password cracking is ineffective against encrypted volumes that
are protected only with strong passwords. But research and leaked database
dumps have shown that a majority of user-chosen passwords are vulnerable to
password cracking [9], [23]. The fact that multiple passwords can be chosen
to protect the same information makes matters even worse, so I estimate that
password cracking is a real threat to a significant portion of BCVE userbase.
That is why I think that Jetico should implement stronger password hashing
algorithms22.

3.3.3 Is there anything missing from the rescue file?

I’ve found two instances of outdated or incomplete data in the rescue file—
changes to the first sector are not written to the rescue file and there is enough
space for only eight KEY_STRUCTs.

While I understand the challenge of updating the rescue file in real time as
the contents of the first sector are changed, I would expect BCVE to at least
write the current contents of the first sector to the rescue file every time it
generates an updated rescue file. This does not happen, so rescue decryption
restores the first sector to the state it was at the moment of initial encryption.

In practice, this is mostly an issue if the user decides to reformat a moun-
ted encrypted volume and then perform rescue decryption. Reformatting a
volume with the same filesystem and cluster size usually results in no change
to the first sector, so rescue decryption might work just fine. If a volume

21Even though the recommended hash functions are based on Blowfish and SHA-256,
which are already implemented in BCVE.

22I discussed this topic with Jetico and they told me that they plan to implement another
password hashing function—most likely scrypt, but they still haven’t made a final decision.

34

3.3. Security of the rescue file

is reformatted to a different filesystem or to the same filesystem with a dif-
ferent cluster size, rescue decryption leaves the volume in a corrupted state.
There are also other pieces of software that might want to write to the first
sector. Some database engines might store data on raw disks, some virtual-
ization/emulation tools might store virtual disks directly on raw disks, etc.
Configuring such tools after initial encryption and then performing rescue
decryption would also leave the volume in a corrupted state.

Note that the problems described above only occur if rescue decryption was
performed—normal decryption restores the first sector to the correct state.
To Jetico’s credit, it recommends to only use rescue decryption in cases when
standard decryption cannot be used. However, this is still an issue and users
of BCVE are not warned about it. I’ve talked about the need for replacing
the first sector with BCVE developers and I am still not sure if it really is
necessary to replace it. If it isn’t, not replacing the first sector would solve
this issue. Another approach would be to replace the last sector instead of the
first one, since the last sector is less likely to store critical data. Or BCVE
could just warn its users about this issue and make it possible to save the
updated encrypted first sector to the rescue file23.

The fact that the size of all RECOVERY_STRUCTs is a constant also sets some
arbitrary limits on the data that can be stored within it. There can be only
eight KEY_STRUCTs in one RECOVERY_STRUCT, which means that if a volume
consists of more than eight disk extents, information about some of them is go-
ing to be discarded and not saved in the rescue file. Rescue decryption cannot
be used on such volumes in cases when the encrypted volume is inaccessible
(but individual disk extents might be). This is more of a borderline case than
a serious issue, but if it actually happens, a tool provided in this thesis can
be used (with some preprocessing) to extract the decrypted contents of the
inaccessible volume.

3.3.4 Does BCVE handle the rescue file safely?

Parsing complex binary file formats is a frequent source of software vulner-
abilities. Those vulnerabilities are often associated with multimedia software
(such as the Stagefright library) because there is a fairly large attack surface,
multimedia software is quite prevalent, regular users share multimedia files
frequently, and those files are sometimes parsed even without explicit user’s
consent [40]. But generally, binary file format attacks can be applied any time
there is a vulnerability in parsing and users might receive and parse files from
untrusted sources. For example, if there was a vulnerability in parsing rescue
files and an adversary had one-time access to a rescue file and to an encrypted
volume, he could replace the rescue file with a specially crafted one and then
overwrite the first sector of the encrypted volume. Overwriting the first sector

23Jetico eventually chose to update their documentation and tell users that they should
not format mounted encrypted volumes.

35

3. Rescue file contents

makes the user unable to mount the volume and perform standard decryption
(but rescue decryption would still work). This might force the user into per-
forming rescue decryption using the malicious rescue file (which might in turn
allow the adversary to get arbitrary code execution).

I originally planned to fuzz the rescue file format, but after reverse en-
gineering BCVE for a while, I realized that I would most likely be unsuc-
cessful in finding any software vulnerabilities. This is due to the fact that
RECOVERY_STRUCTs are fixed in size and BCVE just moves them from disk to
memory. Once a RECOVERY_STRUCT is in memory, all accesses to it are through
structure members, so there is little chance of BCVE performing any invalid
memory access. Instead of fuzzing the rescue file format, I just manually re-
viewed the procedures responsible for parsing rescue files and must conclude
that Jetico did a good job here, since I was unable to find any software vul-
nerabilities.

36

Chapter 4

Results of security analysis

I reverse engineered several parts of BCVE in order to look for any vulnera-
bilities there. All the sections in this chapter are meant to be independent of
each other and each should discuss a specific vulnerability or security analysis
of a certain BCVE component. One design flaw that was found is not described
in this thesis—I found it two weeks before the submission of this thesis and
since it requires some non-trivial fixes, Jetico did not have nearly enough time
to release a fixed version of BCVE. In accordance with responsible disclosure,
the description of this design flaw is in a separate document and it will be
published at a later date.

4.1 Extracting encryption keys from user space

memory

It is considered a good security practice to wipe encryption keys and other
sensitive data from memory as soon as they are no longer needed [15]. In my
analysis of BCVE, I found that some copies of encryption keys and passwords
were indeed wiped from memory—but not all of them.

In one case, a password on the stack was left in memory even after it was
popped from the stack. It was then later overwritten when the stack grew
back to its original size. However, there may exist such an execution path,
where the stack of that thread never reaches its original size and the pass-
word is therefore left in memory. This also unnecessarily prolongs the time
the password is present in plaintext in memory. An adversary could poten-
tially exploit this behavior if there was a memory disclosure vulnerability or
a leak of uninitialized stack variables in the code following password handling
subroutines.

In another case, XTS encryption keys stored on the heap were not wiped
before the memory chunk they were in was freed. This left them in memory
until the same chunk was allocated for some other use and filled with some

37

4. Results of security analysis

other data. In my tests, the reallocation occurred shortly after freeing, but this
is dependent on the heap allocator. The behavior of the heap allocator might
differ based on the allocation technique used and the overall heap memory
exhaustion, so the XTS encryption keys could possibly be left in memory for
a much longer time.

Perhaps the most serious instance of not wiping encryption keys is the
fact that expanded24 secondary keys are left in memory even after dismount.
To explain why this happens, let me describe at a higher level what happens
when BCVE mounts a volume.

To mount an encrypted volume, BCVE asks the user for a password. A
secondary key is then derived from this password as described in Algorithm 3.
This secondary key is expanded into a scheduled key and used to decrypt
KEY_AND_HASH structures, which contain the XTS encryption keys. The prob-
lem is that the output of the key schedule is written to a global buffer25 and is
never wiped. This global buffer is used solely for expanded secondary keys, so
it is only overwritten when another secondary key needs to be expanded. This
is a serious issue, since the expanded secondary key is in memory even after
the volume has been dismounted, unless the user entered some other password
into BCVE. Using the secondary key an adversary can decrypt the correspond-
ing KEY_AND_HASH structure and use the XTS encryption keys contained in it
to decrypt the whole encrypted volume.

So far, I’ve established that an expanded secondary key is left in memory
after a volume has been dismounted and that an adversary can use this key to
decrypt the corresponding encrypted volume. At this point, I will list several
approaches that an adversary can use to obtain this secondary key.

• Reading it directly from virtual memory

The most straightforward approach is to read memory of a running
BCVE manager process. This can be done by calling OpenProcess and
ReadProcessMemory. Since the BCVE manager executable does not
support load time relocation, standard ASLR is not applied to its main
module. ReadProcessMemory can therefore be directly called with the
base address of the global buffer.

Note that the BCVEmanager has to be run with administrator privileges
in order to perform most administrative tasks. However, standard user
privileges suffice for mounting and dismounting encrypted volumes. If
the BCVE manager runs with administrator privileges, an adversary also
needs administrator privileges in order to be able to read its memory.

24Block cipher keys are typically expanded into scheduled keys, that are actually used
during encryption. For instance, AES-256 uses a 256-bit key that is transformed into fifteen
128-bit round keys. For better performance, key schedule is usually performed only once per
encryption for each key.

25This global buffer is positioned at address 0x006043EC in BCVE v.3.72.01.

38

4.1. Extracting encryption keys from user space memory

• Extracting it from physical memory

An adversary could also try to obtain an image of physical memory using
DMA, kernel-mode drivers, or cold boot attacks [15]. A drawback of this
approach is that the adversary now has to locate the expanded keys in
the image. This would be hard to do with unexpanded keys, since it is
very hard to distinguish them from any other pseudorandom data26. On
the other hand, scheduled keys of some block ciphers are easy to locate.
For instance, AES-256 expanded keys can be found by performing key
schedule on each 32-byte sequence and checking if its output matches
the next 208 bytes.

This approach can be used by adversaries with physical access to a locked
computer running BCVE. Also note that the expanded key could be in
physical memory even some short time after the BCVE manager process
terminates [32].

• Searching in a memory dump

An adversary might also try to search for encryption keys in memory
dumps—specifically application crash dumps, BSoD dumps (if the sys-
tem is configured to create complete memory dumps [25]), or in custom
dumps created by tools such as ProcDump27. The chances of any of
those dump files existing and containing encryption keys are not that
high, but this approach might enable adversaries to decrypt volumes
even without a recently running BCVE manager process.

• Searching in a paging or hibernation file

The expanded secondary key is only used once to decrypt KEY_AND_HASH
structures and the page it is in does not appear to be frequently used.
It is therefore possible that it gets written to a paging file if the system
is low on memory. If the system is configured to store the paging file on
an unencrypted volume, an adversary might be able to search in it for
encryption keys. Since Windows does not by default clear the paging file
at shutdown [27], adversaries might be able to find expanded secondary
keys even on hard disks of powered-down computers.

Windows stores the hibernation file in the root of the boot volume [32].
If the boot volume is not encrypted and a user chooses to hibernate the
computer with the BCVE manager running (and encryption keys in its
memory), an adversary should be able to extract the encryption keys
from the hard disk28.

26But an adversary could still brute-force it by trying to use all 32-byte sequences from
the image as a key.

27https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx
28The contents of the hibernation file are compressed, but an adversary should be able

to analyze them using memory forensics tools such as Volatility.

39

4. Results of security analysis

I consider this to be a serious vulnerability that might allow adversaries to
decrypt recently dismounted volumes and in some cases even decrypt volumes
on powered-down computers without a need for repeated physical access. I
disclosed some problematic functions (where sensitive data wasn’t wiped) to
Jetico, but it is possible that there are some more that I am not aware of—
especially in code specific to the enterprise edition of BCVE, which I did not
analyze. I recommend that Jetico performs an audit to make sure that all
passwords and encryption keys are wiped during dismount (or even better
whenever they are no longer needed).

In BCVE v.3.73.04, the expanded secondary key is wiped from memory
before the mount process is finished. All the other found instances of unerased
keys or passwords are now being explicitly wiped from memory as well.

4.2 Leaving removed additional passwords in the

rescue file

One of the first things that I noticed during my analysis of BCVE was that
adding, deleting, or changing additional passwords does not affect the contents
of the rescue file in any way. This led me to believe that BCVE does not save
additional passwords in the rescue file and that it is therefore impossible to
perform rescue decryption using an additional password. However, I’ve later
found out that BCVE does indeed use additional passwords in the rescue file,
it just does not produce an updated rescue file immediately after the user
modified additional passwords. The modification of additional passwords is
only written to the rescue file if some other change (such as changing the
master password) is performed to the volume. This might make the user
unknowingly save a rescue file which contains outdated information about
additional passwords. If the user wants to perform rescue decryption using
such a rescue file, she might not be able to decrypt it using a newly added
additional password, which might in extreme cases lead to loss of data.

If the user removed or changed additional passwords without performing
some other change to the volume, she is almost certainly not aware that in-
formation about the old additional password is still stored in the rescue file.
On the other hand, an adversary with access to the rescue file can still try to
decrypt the encrypted volume by cracking the old additional password. This
can be especially damaging if the user just wanted to try adding and remov-
ing a test additional password. If she performed some other change between
adding and removing it, information about this test password (which is likely
to be deliberately weak) is still going to be left in the rescue file. What’s more,
changing an additional password in order to strengthen it is to little effect if
the rescue file does not get updated.

If the user removes an additional password and then performs some other
change to the volume (so that the rescue file gets actually updated), the

40

4.3. System crash in the BestCrypt driver

KEY_AND_HASH structure of the removed additional password is overwritten by
pseudorandom data29. This is likely done in order to make hardware attempts
to recover the overwritten KEY_AND_HASH structures much harder. This shows
that Jetico is probably aware of the need to remove unused additional pass-
words from the rescue file and I think that the above-mentioned issue was just
an implementation bug.

Users are accustomed to password authentication. That is perhaps why
passwords are the default authentication mechanism in BCVE and why BCVE
contains features for adding, changing, and removing them. At this point,
I’d like to point out that there might be a difference between how effective
a change of password is and how users might perceive its effectiveness. In
most systems with password authentication, a password change is a relatively
effective way to ensure that only people knowing the new password are going
to be able to use the system. On the other hand, in BCVE a password is
merely used to retrieve the XTS encryption keys. If an adversary is able to
obtain the encryption keys, change or removal of passwords will not prevent
him from accessing the volume in the future. That is why I recommend
that users of BCVE do not use additional passwords and do not change the
master password. If they suspect that an adversary might be able to decrypt a
volume, a much better thing to do (than just changing passwords) is to decrypt
and reencrypt the volume with a new master password. This naturally takes
significantly more time than just changing a password, but it also generates
and uses new encryption keys.

This vulnerability was disclosed to Jetico and fixed in BCVE v.3.73.04. In
this version, BCVE updates the rescue file and asks the user to back it up any
time an additional password is added, deleted, or changed.

4.3 System crash in the BestCrypt driver

A significant portion of BCVE is implemented as a software driver30. The
main responsibility of BCVE’s driver is to intercept and transparently en-
crypt all reads and writes to encrypted volumes. From a security perspective,
this has the obvious advantage that even if there was a malicious process on
the same machine as BCVE, unless it is running with elevated privileges, it
cannot access BCVE’s driver’s code and data. On the other hand, this also
puts more responsibility on Jetico, since a bug in their driver could cause a
system crash31. Even worse, a software vulnerability in the driver could enable
unprivileged adversaries to execute arbitrary code in Ring 0. That is why I
decided to take a quick look at BCVE’s driver.

29This no longer the case with newer version of BCVE, which overwrite
KEY AND HASH structures with zero bytes.

30A software driver is a driver that is not associated with any hardware device.
31On Windows, a system crash is also commonly referred to as a “Blue Screen of Death”.

41

4. Results of security analysis

The primary mechanism of communication between a user space process
and a kernel space driver are ioctl system calls. They work similarly to reg-
ular system calls in a request-response pattern. However, they are invoked
differently than regular system calls and each driver can choose to accept a
different set of ioctl codes. Since BCVE’s driver accepts several dozen ioctl
codes, analyzing them one by one would be a tedious task. So I decided to
fuzz ioctl requests in order to see how resilient the driver is.

I used a fuzzer called Dynamic Ioctl Brute-Forcer32. I found that sending
an ioctl request with a control code of 0x70014 to BCVE’s x86-64 driver caused
a BSoD. The control code 0x70014 corresponds to a rarely called operation
used to verify that a specified disk extent functions correctly [28]. BCVE’s
driver attempts to forward this request to the actual underlying device driver
that knows how to handle it. However, while doing so, it tries to dereference
a pointer with value 0x70 for comparison. Because access to the null page is
usually an invalid memory access and there is no exception handler for it, this
results in a BSoD.

Since this dereference is used only for comparison, I do not think that it
can be used for a local privilege escalation exploit33. Apart from the fact
that this ioctl code could be potentially sent to BCVE’s driver by a benign
application or used as a denial of service, it is also important to know that
this is a way to force the system into creating a crash dump. If there is an
encrypted volume currently mounted with BCVE, the crash dump is likely to
contain its XTS encryption keys.

Jetico fixed this bug and sent me a yet unreleased test version of the
BCVE driver. I verified that this bug is no longer present in this test version.
However, it might take some time to release this fixed version, since it has to
be first signed and tested by Microsoft.

4.4 Temporary password

While reverse engineering code responsible for mounting and decrypting BCVE
volumes, I noticed that BCVE always tries to first decrypt KEY_AND_HASH

structures with a hardcoded password “7?S!p,J.”. When I used this password
for an encrypted volume, BCVE was able to mount it and perform rescue
decryption even without asking me for a password. I searched BCVE for
code that encrypts KEY_AND_HASH structures with this password and found it
only in the enterprise edition of BCVE. As analyzing the enterprise edition of
BCVE was not a goal of my thesis, I turned to Jetico and asked them what
is this password useful for.

32https://github.com/iSECPartners/DIBF
33However, null pointer dereferences can be quite dangerous in drivers. If BCVE’s driver,

for example, attempted to read a function pointer, an adversary could allocate the null page
and feed it an arbitrary function pointer.

42

4.4. Temporary password

According to Jetico, this password is used to temporarily enable unatten-
ded restart. If an administrator wants to reboot multiple computers, he uses a
feature called “suspend protection”. It first sets passwords to this hardcoded
value, reboots, mounts the volumes by trying this password, and then sets
the passwords back to their original values. I did not test and analyze this
feature, so I do not know if it is designed and implemented securely. However,
it is important that after reboot Jetico properly destroys all KEY_AND_HASH
structures protected with this hardcoded password, since it would be easy to
decrypt them for an adversary who knows how this feature works.

43

Chapter 5

Developed tools

Two simple tools were developed and are attached to this thesis. They are
meant to be useful for both regular BCVE users and security researchers.

The first tool, bcve_otfe, allows its users to decrypt and mount volumes
encrypted with BCVE on some Unix-like operating systems. It only needs a
minimal amount of information to do so, which makes it useful for performing
rescue decryption. bcve_otfe also functions as a reimplementation of basic
BCVE functionality—anyone wishing to learn how BCVE encryption works
at a higher level can study it instead of having to reverse engineer BCVE.

The second tool, rsc_dumper, parses the rescue file and outputs its con-
tents in a human-readable way. If its user enters a valid password for a
RECOVERY_STRUCT, encryption keys are going to be printed as well as the
decrypted first sector. Regular BCVE users can use this tool to figure out
the exact contents of their rescue files before backing them up to unencrypted
storage devices. Security researchers can use this tool to quickly obtain pass-
word hashes, encryption keys, and other useful pieces of data from the rescue
file.

5.1 bcve otfe

BCVE was developed to run solely on Windows systems. This can pose a
significant problem in cases when Windows fails to boot, since it would be
hard for regular users to access data on system or boot volumes. To overcome
this, Jetico advises users of BCVE to create a bootable medium that can be
used to decrypt volumes in case of failure [22]. bcve_otfe offers an alternate
(and arguably more convenient) solution to this problem—the ability to mount
volumes encrypted with BCVE on Unix-like operating systems that support
NBD (network block device). bcve_otfe takes as input an encrypted volume,
a rescue file, and a password. It uses it to create a loop device that makes the
decrypted volume accessible as a block device. This block device can then be
mounted just like any other regular block device or copied to another file.

45

5. Developed tools

bcve_otfe is implemented entirely in user space. To achieve this it acts as
an NBD server. The NBD server communicates with the NBD client (which is
typically implemented as a kernel module) through Unix domain sockets. To
avoid having to deal with NBD directly, a simple tool called BUSE34 serves
as an abstraction layer.

bcve_otfe is designed to work with any volumes encrypted with version 3
of BCVE, with the exception of volumes that use the RC6 block cipher, be-
cause the cryptographic library used, Botan35, recently obsoleted it. It should
also work with volumes encrypted with earlier versions of BCVE that use the
XTS mode of operation with one of the currently supported block ciphers.

This tool is licensed under GNU GPL v2.0, because it statically links
BUSE, which is released under the same license. bcve_otfe is written in
C++. Detailed instructions on how to compile it and use it can be found in
the provided README file.

5.2 rsc dumper

During my analysis of BCVE, I often needed to extract a certain piece of
information from the rescue file. Soon I figured out that it would be more
convenient to have a dedicated tool for parsing rescue files, rather than using
hex editors and primitive tools for decryption of KEY_AND_HASH structures. So
I developed rsc_dumper—at first it was only meant for my personal use only.
However, I later decided to publish this tool, since I thought that other people
might benefit from it as well.

rsc_dumper is implemented in C++ and makes use of the Botan cryp-
tographic library. It parses each RECOVERY_STRUCT separately and prints all
unencrypted data items in a human-readable way. If a user enters a pass-
word for a given RECOVERY_STRUCT, rsc_dumper will verify the validity of this
password and if it is valid, it will also print the secondary key, both XTS
encryption keys, and the decrypted first sector. Note that decryption might
not work for RECOVERY_STRUCTs created with a BCVE v2 or earlier and for
volumes encrypted with RC6.

Unlike bcve_otfe, rsc_dumper is licensed under the MIT License. For
instructions on how to build it and use it, please read the provided README
file.

34https://github.com/acozzette/BUSE
35https://botan.randombit.net/

46

Conclusion

The primary goal of this thesis was to reverse engineer the format of the
BestCrypt Volume Encryption rescue file. This format was extensively ana-
lyzed and its description is presented in chapter 3. The contents of the rescue
file were found to be sufficiently secure—the biggest issue was the choice of the
password hashing function, which was arguably not slow enough and could be
computed efficiently in application-specific hardware.

Some other minor issues and ideas for improvements were presented to
the developers of BCVE as well. In particular, a non-security bug that might
make volumes corrupted after rescue decryption was found.

Another goal of my thesis was to perform a security analysis of BCVE.
In total, three vulnerabilities were found. Two of them were fixed in BCVE
v.3.73.04 and the third one remains unfixed at the time of submission of this
thesis, so its description is not present in this document.

The first vulnerability was caused by not wiping a certain encryption key
from memory. This allowed adversaries who gained access to a system with
a recently dismounted BCVE volume to decrypt this volume. In some cases,
this key might have even been written to unencrypted paging files, hibernation
files, or memory dumps. That would allow adversaries to decrypt volumes on
powered-down computers.

The second vulnerability concerned additional passwords. Information
about deleted or modified additional passwords was not properly deleted from
rescue files. This might have caused users to export a rescue file that contained
information about old additional passwords. An adversary with access to
such a rescue file could try to decrypt a volume by cracking no longer valid
additional passwords.

Another contribution of this thesis is the development of two tools. The
first one allows users who provide a password and a rescue file to decrypt and
mount encrypted volumes on some Unix-like systems. The second one prints
the contents of the rescue file (optionally with password hashes and encryption
keys) in a human-readable way.

47

Conclusion

Even though the scope of this thesis was fairly large, it did not even re-
motely cover all components of BCVE, so I still have many ideas for further
analysis. First and foremost, I analyzed neither functionality specific to the
enterprise edition of BCVE nor the implementation of two-factor authentica-
tion mechanisms. Both would certainly deserve a rigorous security assessment
on their own. It might also be worthwhile to inspect the way BCVE collects
entropy for key generation and to try to apply various side-channel attacks to
BCVE. Another option for analysis is to reverse engineer the exact contents
of BCVE rescue bootable media and figure out what do they contain in addi-
tion to the rescue file. Taking a closer look at BCVE drivers and attempting to
find and report eventual privilege escalation vulnerabilities would also benefit
users of BCVE. Last but not least, BCVE employs some protections against
boot loader tampering. Evaluating their effectiveness might be an interesting
research topic as well.

48

Bibliography

[1] Adams, C. The CAST-128 Encryption Algorithm. RFC 2144, RFC Ed-
itor, May 1997.

[2] Anderson, R.; Biham, E.; Knudsen, L. Serpent: A Proposal for the Ad-
vanced Encryption Standard. 1998.

[3] Bhargavan, K.; Leurent, G. On the Practical (In-)Security of 64-bit Block
Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. 2016,
https://sweet32.info/SWEET32_CCS16.pdf [accessed 09-May-2017].

[4] Chikofsky, E.; Cross, J. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 1990.

[5] Collberg, C.; Thomborson, C. Watermarking, Tamper-Proofing, and Ob-
fuscation - Tools for Software Protection. Technical report, University of
Arizona, 2010.

[6] Council of European Union. DIRECTIVE 2009/24/EC OF THE
EUROPEAN PARLIAMENT AND OF THE COUNCIL on the legal
protection of computer programs. 2009, http://eur-lex.europa.eu/

legal-content/EN/TXT/?qid=1435057541496&uri=CELEX:32009L0024

[accessed 04-May-2017].

[7] Daemen, J.; Rijmen, V. The Design of Rijndael. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2002, ISBN 3540425802.

[8] Das, A.; Bonneau, J.; Caesar, M.; et al. The Tangled Web of Password
Reuse. 2014, http://www.jbonneau.com/doc/DBCBW14-NDSS-tangled_

web.pdf [accessed 09-May-2017].

[9] Dell’Amico, M.; Michiardi, P.; Roudier, Y. Password Strength: An Em-
pirical Analysis. In Proceedings of the 29th Conference on Information
Communications, INFOCOM’10, Piscataway, NJ, USA: IEEE Press,
2010, ISBN 978-1-4244-5836-3, pp. 983–991.

49

https://sweet32.info/SWEET32_CCS16.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1435057541496&uri=CELEX:32009L0024
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1435057541496&uri=CELEX:32009L0024
http://www.jbonneau.com/doc/DBCBW14-NDSS-tangled_web.pdf
http://www.jbonneau.com/doc/DBCBW14-NDSS-tangled_web.pdf

Bibliography

[10] Docherty, J.; Koelmans, A. Hardware Implementation of SHA-
1 and SHA-2 Hash Functions. Technical report, 2011, http:

//async.org.uk/tech-reports/NCL-EECE-MSD-TR-2011-170.pdf

[accessed 03-May-2017].

[11] Dolmatov, V. GOST 28147-89: Encryption, Decryption, and Message
Authentication Code (MAC) Algorithms. RFC 5830, RFC Editor, March
2010.

[12] Dworkin, M. SP 800-38A 2001 Edition. Recommendation for
Block Cipher Modes of Operation: Methods and Techniques.
Technical report, National Institute of Standards and Tech-
nology, 2001, http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-38a.pdf [accessed 09-May-2017].

[13] Eilam, E. Reversing: Secrets of Reverse Engineering. John Wiley & Sons,
Inc., 2005, ISBN 978-0-7645-7481-8.

[14] Gueron, S. Intel Advanced Encryption Standard (AES) New Instructions
Set. Technical report 3.01, 2016, https://software.intel.com/

en-us/articles/intel-advanced-encryption-standard-aes-

instructions-set/ [accessed 03-May-2017].

[15] Halderman, J. A.; Schoen, S. D.; Heninger, N.; et al. Lest We Remember:
Cold-boot Attacks on Encryption Keys. 2008.

[16] Hoang, V. T.; Rogaway, P. On Generalized Feistel Networks. Advances in
Cryptology CRYPTO 2010, volume 6223, 2010.

[17] Horňák, J. Bezpečnostńı analýza programu BestCrypt Volume Encryp-
tion. Master’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, 2016.

[18] IBM Corporation. Inside the Linux boot process. https://www.ibm.com/
developerworks/library/l-linuxboot/l-linuxboot-pdf.pdf [ac-
cessed 03-May-2017].

[19] IEEE. Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices. Technical report, 2007, http://grouper.ieee.org/

groups/1619/email/pdf00086.pdf [accessed 03-May-2017].

[20] Intel Corporation. Fast SHA-256 Implementations on Intel Architec-
ture Processors. Technical report, 2012, https://www-ssl.intel.com/

content/dam/www/public/us/en/documents/white-papers/sha-256-

implementations-paper.pdf [accessed 04-May-2017].

[21] Intel Corporation; Compaq Computer Corporation; Phoenix Technolo-
gies Ltd. BIOS Boot Specification. Technical report 1.01, 1996.

50

http://async.org.uk/tech-reports/NCL-EECE-MSD-TR-2011-170.pdf
http://async.org.uk/tech-reports/NCL-EECE-MSD-TR-2011-170.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://www.ibm.com/developerworks/library/l-linuxboot/l-linuxboot-pdf.pdf
https://www.ibm.com/developerworks/library/l-linuxboot/l-linuxboot-pdf.pdf
http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf

Bibliography

[22] Jetico Inc. Oy. BestCrypt Volume Encryption Help File. http://

www.jetico.com/web_help/PDF/BCVE.pdf [accessed 03-May-2017].

[23] Kelley, P. G.; Komanduri, S.; Mazurek, M. L.; et al. Guess Again
(and Again and Again): Measuring Password Strength by Simulating
Password-Cracking Algorithms. In Proceedings of the 2012 IEEE Sym-
posium on Security and Privacy, SP ’12, Washington, DC, USA: IEEE
Computer Society, 2012, ISBN 978-0-7695-4681-0, pp. 523–537, doi:
10.1109/SP.2012.38.

[24] Liskov, M.; Rivest, R.; Wagner, D. Tweakable Block Ciphers. Journal of
Cryptology, volume 24, 2011, ISSN 1432-1378.

[25] Microsoft Corporation. Complete Memory Dump. https://

msdn.microsoft.com/en-us/library/windows/hardware/ff539190(v=

vs.85).aspx [accessed 04-May-2017].

[26] Microsoft Corporation. Definitions for system volume and boot volume.
https://support.microsoft.com/en-us/help/314470/ [accessed 03-
May-2017].

[27] Microsoft Corporation. How to Clear the Windows Paging File at
Shutdown. https://support.microsoft.com/en-ca/help/314834/how-
to-clear-the-windows-paging-file-at-shutdown [accessed 04-May-
2017].

[28] Microsoft Corporation. IOCTL DISK VERIFY control code.
https://msdn.microsoft.com/en-us/library/windows/hardware/

ff560420(v=vs.85).aspx [accessed 04-May-2017].

[29] National Institute of Standards and Technology. Advanced En-
cryption Standard. 2001, http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.197.pdf [accessed 03-May-2017].

[30] National Institute of Standards and Technology. Secure Hash Standard.
2015, http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[accessed 03-May-2017].

[31] Rivest, R. L.; Robshaw, M.; Sidney, R.; et al. The RC6 Block Cipher.
1998.

[32] Russinovich, M. E.; Solomon, D. A.; Ionescu, A. Windows Internals, Part
2. Microsoft Press, 6th edition, 2012, ISBN 978-0-7356-6587-3.

[33] Sarkar, P. G.; Fitzgerald, S. Attacks On SSL - A Comprehensive Study
of BEAST, CRIME, TIME, BREACH, LUCKY 13 & RC4 Biases.
2013, https://www.nccgroup.trust/globalassets/our-research/us/
whitepapers/ssl_attacks_survey.pdf [accessed 09-May-2017].

51

http://www.jetico.com/web_help/PDF/BCVE.pdf
http://www.jetico.com/web_help/PDF/BCVE.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff539190(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff539190(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff539190(v=vs.85).aspx
https://support.microsoft.com/en-us/help/314470/
https://support.microsoft.com/en-ca/help/314834/how-to-clear-the-windows-paging-file-at-shutdown
https://support.microsoft.com/en-ca/help/314834/how-to-clear-the-windows-paging-file-at-shutdown
https://msdn.microsoft.com/en-us/library/windows/hardware/ff560420(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff560420(v=vs.85).aspx
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/ssl_attacks_survey.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/ssl_attacks_survey.pdf

Bibliography

[34] Sasirekha, N.; Hemalatha, M. A Survey on Software Protection Tech-
niques against Various Attacks. Global Journal of Computer Science and
Technology, volume 12, 2012.

[35] Schneier, B. Description of a new variable-length key, 64-bit
block cipher (Blowfish). Berlin, Heidelberg: Springer Berlin
Heidelberg, 1994, ISBN 978-3-540-48456-1, pp. 191–204, doi:
10.1007/3-540-58108-1 24, https://www.schneier.com/academic/

archives/1994/09/description_of_a_new.html [accessed 03-May-
2017].

[36] Schneier, B.; Whiting, D. A Performance Comparison of the Five AES
Finalists. 2000, https://www.schneier.com/academic/paperfiles/

paper-aes-comparison.pdf [accessed 09-May-2017].

[37] Schneier, B.; Whiting, D.; Kelsey, J.; et al. Twofish: A
128-Bit Block Cipher. 1998, https://www.schneier.com/academic/

paperfiles/paper-twofish-paper.pdf [accessed 09-May-2017].

[38] Shannon, C. E. A Mathematical Theory of Communication. Bell system
technical journal, volume 27, 1948.

[39] Stevens, M.; Bursztein, E.; Karpman, P.; et al. The first collision for full
SHA-1. 2017, https://shattered.io/static/shattered.pdf [accessed
03-May-2017].

[40] Thiel, D. Exposing Vulnerabilities in Media Software. 2008, https://

www.nccgroup.trust/globalassets/our-research/us/whitepapers/

isec_thiel_exposing_vulnerabilities_media_software_0.pdf

[accessed 09-May-2017].

[41] Wash, R.; Rader, E.; Berman, R.; et al. Understanding Password
Choices: How Frequently Entered Passwords Are Re-used across Web-
sites. In Twelfth Symposium on Usable Privacy and Security (SOUPS
2016), Denver, CO: USENIX Association, 2016, ISBN 978-1-931971-
31-7, pp. 175–188, https://www.usenix.org/conference/soups2016/

technical-sessions/presentation/wash [accessed 04-May-2017].

52

https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html
https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html
https://www.schneier.com/academic/paperfiles/paper-aes-comparison.pdf
https://www.schneier.com/academic/paperfiles/paper-aes-comparison.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://shattered.io/static/shattered.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/isec_thiel_exposing_vulnerabilities_media_software_0.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/isec_thiel_exposing_vulnerabilities_media_software_0.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/isec_thiel_exposing_vulnerabilities_media_software_0.pdf
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash

Appendix A

Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

ASLR Address Space Layout Randomization

BCVE BestCrypt Volume Encryption

BEAST Browser Exploit Against SSL/TLS

BIOS Basic Input/Output System

BSoD Blue Screen of Death

BUSE A Block Device in Userspace

CBC Cipher Block Chaining

CD Compact Disc

CPU Central Processing Unit

DES Data Encryption Standard

DMA Direct Memory Access

DVD Digital Video Disc

EFI Extensible Firmware Interface

ELF Executable and Linkable Format

EU European Union

53

A. Acronyms

FAT File Allocation Table

FPGA Field-Programmable Gate Array

GNU GNU’s Not Unix!

GNU GPL GNU General Public License

GPG GNU Privacy Guard

GPT GUID Partition Table

GPU Graphics Processing Unit

GUI Graphical User Interface

GUID Globally Unique Identifier

HDD Hard Disk Drive

HTTP Hypertext Transfer Protocol

IDA Interactive Disassembler

IEEE Institute of Electrical and Electronics Engineers

IV Initialization Vector

LBA Logical Block Addressing

LRW Liskov, Rivest, and Wagner

MBR Master Boot Record

MIT Massachusetts Institute of Technology

NBD Network Block Device

NIST National Institute of Standards and Technology

NSA National Security Agency

NTFS New Technology File System

PBKDF2 Password-Based Key Derivation Function 2

PE Portable Executable

PGP Pretty Good Privacy

PRNG Pseudorandom Number Generator

RAID Redundant Array of Independent Disks

54

RC6 Rivest Cipher 6

SHA Secure Hash Algorithms

SSL Secure Sockets Layer

TLS Transport Layer Security

TPM Trusted Platform Module

USB Universal Serial Bus

UTC Coordinated Universal Time

XEX Xor-Encrypt-Xor

XTS XEX Tweakable Block Cipher with Ciphertext Stealing

55

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables

bcfmgr.idb.............................IDA database of bcfmgr.exe
bsod poc.ex ...PE file containing the system crash proof of concept
bcfnt.sys.........................PE file of the driver that crashes

src.......................................the directory of source codes
thesis the directory of LATEX source codes of this thesis
flaw..................the directory of LATEX source codes of flaw.pdf
bcve otfe......................implementation sources of bcve otfe

BUSE-master....................implementation sources of BUSE
rsc dumper...................implementation sources of rsc dumper

sample rsc files.......various .rsc files to test rsc dumper with
bsod poc.cpp..........................source code of bsod poc.ex

text..the thesis text directory
BP Vojtesek Jan 2017.pdf...................the text of this thesis
flaw.pdf......................description of the unfixed design flaw

57

	Introduction
	BestCrypt Volume Encryption
	Volume encryption
	Overview of BestCrypt Volume Encryption
	Additional features
	Cryptographic primitives used
	Rescue procedures

	Reverse engineering
	Applications of software reverse engineering
	Reverse engineering of binary file formats
	Legality of reverse engineering
	Tools used

	Rescue file contents
	RECOVERY_STRUCT contents
	Decryption of KEY_AND_HASH structures
	Security of the rescue file

	Results of security analysis
	Extracting encryption keys from user space memory
	Leaving removed additional passwords in the rescue file
	System crash in the BestCrypt driver
	Temporary password

	Developed tools
	bcve_otfe
	rsc_dumper

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

