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Abstract

This work outlines one particular design
and assembly of Rijke’s tube with intro-
duced feedback in the form of a micro-
phone and a loudspeaker. The feedback
was used to control and stabilize the sys-
tem; thus, loud humming that is typi-
cal for Rijke’s tube was completely sup-
pressed. Further, a few experiments are
documented to show the basic proper-
ties of Rijke’s tube. These are only a
reconstruction of experiments presented
in available literature.
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platform, dynamic system, feedback
control, heating coil
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Abstrakt

Tato práce popisuje návrh a sestavení
Rijkeho trubice včetně zavedení zpětné
vazby v podobě mikrofonu a reproduktoru.
Takto zavedená zpětná vazba byla použita
k řízení a stabilizaci systému, což mělo za
následek úplné potlačení hlasitého hučení,
které je pro Rijkeho trubici typické. Dále
jsou na několika experimentech ukázány
základní vlastnosti Rijkeho trubice. Tyto
jsou pouze rekonstrukcí experimentů po-
psaných v dostupné literatuře.

Klíčová slova: Rijkeho trubice,
termoakustika, akustika, experimentální
platforma, dynamický systém,
zpětnovazební řízení, topná spirála

Překlad názvu: Rijkeho trubice –
Experimentální zařízení pro modelování
a řízení v termoakustice
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Chapter 1

Introduction

Rijke’s tube, or the Rijke tube, is a vertically oriented tube open at both
ends with a source of heat energy placed in the lower half. The transfer
of heat energy from the source can, under the right circumstances, cause
thermoacoustic instability. This is manifested as oscillations in pressure and
velocity of the gas filling the tube (typically air) which is observed as loud
humming. An important factor is the amount of heat energy transferred from
the source to the gas. To initiate the instability, the source has to be able
to provide enough energy. In this work, a heating coil connected to voltage
source was used as the heating element. The power consumption of the source
was around 380 W.

Rijke’s tube is suitable to be used as an experimental platform for educa-
tional purposes. The coupling between heat transfer and acoustics can be
subject to mathematical modeling of spatially distributed systems. Having
placed a microphone at one end of the tube, one can easily investigate the
humming resulting from the unstable coupling. Further, placing a loudspeaker
at the other end makes it possible to add an external signal into the system.
Moreover, the microphone as a sensor and the loudspeaker as an actuator
may form a feedback loop that can even stabilize the system; thus, suppress
the humming. The feedback loop can also serve to system analysis using
closed-loop identification techniques.

Description of the construction and particular setup is given in chapter 2.
Chapter 3 evaluates some of the performed experiments. It also documents
system stabilization and identification. Finally, conclusion, final remarks, and
possible directions for future research are mentioned in chapter 4.
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1. Introduction .....................................
1.1 Related Work

Rijke’s tube was discovered by P. L. Rijke in 1859. As he states in [8], he
used glass tube with a disc of wire-gauze inside. He used a burner to heat
the disc up. After removing the burner, the tube started to hum loudly. The
humming went away as the disc was cooling down. Author of [1] and [2] used
electrically driven heating coil and feedback control techniques to stabilize
the system. In fact, [1] was main inspiration when working on this project.
Worth mentioning are also [7] and [5] where horizontally mounted tubes with
blowers were used.

1.2 Mechanism of Rijke’s Tube

The presence of the source of heat energy creates an upward flow in the tube
(in fig. 1.1 depicted as blue arrow). This flow increases as the heating element
heats up. If the flow is fast enough, oscillations of acoustic velocity and
pressure are excited. Usually, fundamental frequency is dominant in these
oscillations. Fundamental frequency is given by the length of of the tube L
and the speed of sound in the tube c (approximately 343 m s−1) as

f0 = c

2L. (1.1)

Actually, the oscillations form standing half-wave inside the tube as depicted
in fig. 1.2.

Figure 1.1: An illustration of Rijke’s tube
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...................................1.3. Feedback Control

Figure 1.2: Fundamental acoustic mode in Rijke’s tube (p is pressure, v is
acoustic velocity)

1.3 Feedback Control

Feedback loop consisting of a microphone and a loudspeaker (fig. 1.3) enables
the system analysis and stabilization. The external signal w is used for system
identification.

Figure 1.3: Feedback loop
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Chapter 2

Construction of Rijke’s Tube

This chapter describes selected components and the process of construction of
Rijke’s tube with feedback loop formed of an electret microphone, preamplifier,
PC with data acquisition board, power amplifier, and a loudspeaker. The
preamplifier is one of custom design built on a prototyping shield. Couple
of off-the-shelf electret microphone modules with built-in preamplifiers were
tried but all of them happened to either offset or distort measured signal.
For this reason, custom preamplifier was designed which turned out to be a
cheap and effective solution. The final setup of the apparatus is in fig. 2.1.

Figure 2.1: The constructed apparatus

5



2. Construction of Rijke’s Tube ..............................
2.1 Quartz Glass Tube

Assuming the heating element to reach high temperatures, quartz glass was
selected as appropriate material for the tube. Quartz glass is fused quartz (or
fused silica) without any additives that would lower the melt temperature. Its
high melting point and low coefficient of thermal expansion make it resistant
to thermal shocks. Actually, the tube did not break even if it came in contact
with the heating element. The dimensions of the tube are

L = 1310 mm, (2.1)
d = 85 mm (2.2)

where L is its length and d is inner diameter.

To keep the tube in vertical position, custom stand was built. It is made
of aluminium profiles and tube bushings that allow the tube to be fixed in
different heights. This makes it easy to set a particular distance between the
tube and the loudspeaker. Another bushings are used to hold the microphone
and the heating element.

2.2 Heating element

Kanthal wire with diameter 0.64 mm rolled into a coil was used as the heating
element. The length of the wire was approximately 1.4 m making its resistance
at room temperature

R0 = 6.09 Ω. (2.3)

The coil was connected to voltage source Mean Well SPV-1500-48 (see [6])
with output voltage U = 48 V. The maximum current that can be drawn
from the source is Imax = 32 A. Therefore, its maximum power consumption
is more than 1.5 kW which sufficient to heat up the coil. In fact, the actual
power consumption when the coil is not heated up yet can be calculated as

P = U2

R0
= 378.3 W. (2.4)

After heating the coil up, its resistance increases a little (see section 3.4)
lowering the power consumption to 373 W.

6



..................................... 2.3. Microphone

It is possible to make the the power consumption higher by making the
wire shorter. Nonetheless, a thicker wire should be used because the one used
here burned at around 500 W. (According to [4], the wire can operate at
temperatures up to 1400 ◦C.)

2.3 Microphone

To measure sound signal at the top of the tube, an electret microphone
MCE-100 with an internal FET amplifier was used. This microphone works
as a capacitor that requires connecting to bias voltage. The sound signal is
then measured as voltage changes around the bias voltage. Parameters of the
microphone are in tab. 2.1.

The frequency range of the microphone is sufficient, since higher frequencies
are not expected to be present in the spectrum of measured sound signal.
The sensitivity is given by the manufacturer for frequency of 1 kHz only. For
simplicity’s sake, we can assume the frequency response to be flat through-
out the frequency range. However, it would be preferable to measure the
microphone frequency response so we could determine signal distortion.

The microphone was connected to the preamplifier via coaxial cable of
length 1.5 m with audio jack connector at both ends.

Parameter Value

Frequency range 50–10 000 Hz
Sensitivity 5 mV Pa−1 at 1 kHz
Impedance 6 kΩ

Operating voltage 1.5–10 V
Dimensions 9.7 mm × 6.7 mm

Table 2.1: Electret microphone MCE-100 parameters
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2. Construction of Rijke’s Tube ..............................
2.4 Preamplifier

To make the microphone signal measurable by the data acquisition board,
it needs to be amplified first. For this purpose, an audio preamplifier was
designed. Its schematic is in fig. 2.2 and list of used components is in tab.
2.2. When designing the preamplifier, an inspiration was taken from [3]. Fig.
2.3 captures the preamplifier assembled on prototyping shield.

Jumper J2 is to provide 12 V power supply for the loudspeaker amplifier.
Hence, the amplifier and preamplifier can be powered from a single power
supply.
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Figure 2.3: Designed preamplifier assembled on prototyping shield

8



..................................... 2.4. Preamplifier

Name Description

U1 5 V positive voltage regulator L78L05 (see [10])
U2 Operational amplifier OP07C (see [11])
R1 Resistor 220 Ω
R2 Resistor 470 Ω

R3, R8 Resistor 10 kΩ
R4, R5, R7 Resistor 47 kΩ

R6 Resistor 1 kΩ
R9 Resistor 33 kΩ
R10 Trimmer resistor (potentiometer) 5 kΩ

C1, C3, C6, C7, C11 Ceramic capacitor 100 nF
C2 Electrolytic capacitor 2200 µF, 16 V

C4, C5 Electrolytic capacitor 470 µF, 16 V
C8 Electrolytic capacitor 100 µF, 6 V

C9, C10 Electrolytic capacitor 1 µF, 6 V
C12, C13 Electrolytic capacitor 10 µF, 16 V

J1 Connector PC-GK2.1, connected to 12 V, 2 A DC
power supply

J2 Jumper providing 12 V power supply
J3 Jack 3.5 mm mono connector for input signal
J4 Output signal jumper

Table 2.2: List of components used to assemble the preamplifier

The preamplifier is based on OP07C, a high precision op-amp (operational
amplifier) with very low input offset voltage. The whole circuit is to be
powered by single 12 V source connected to socket J1. The op-amp is wired
as a non-inverting amplifier and its non-inverting input is biased toward
one-half the source voltage by voltage divider formed of resistors R4 and
R5. Capacitor C9 filters out the DC component of the input signal and the
AC component is then superposed on the bias voltage of 6 V. As a result,
the amplified op-amp output signal is also superposed on this bias voltage.
Capacitor C12 passes only the AC component. That together with presence
of the pull-down resistor R8 yield the output signal on jumper J4 without the
DC component. In other words, the output signal is a waveform oscillating
around 0 V.

Potentiometer R10 allows adjusting the gain. The minimum gain is

Amin = 1 + R9
R10 = 7.6 (2.5)

and by adjusting the potentiometer we can set the gain arbitrarily high.
However, the output signal is constrained by the supply voltage.

9



2. Construction of Rijke’s Tube ..............................
Resistors R6 and R7 together with capacitor C10 filter out the power

supply noise by bypassing it to ground without affecting the input signal. To
suppress the power supply noise even more, two RC circuits are used. One
consisting of R1, C3, and C4. The other consisting of R2, C5, and C6. C1,
C2, C7, C8, and C11 are bypassing or decoupling capacitors.

Voltage regulator U1 serves to provide 5 V power supply for the microphone.
In-series resistor R3 is necessary to avoid damaging the internal FET amplifier.

2.5 Speaker and Amplifier

At bottom end of the tube, universal loudspeaker Monacor SP-10/4 was
placed. Its parameters are in tab. 2.3. It is driven by audio power amplifier
TDA2030A (see [9]) that was bought as off-the-shelf module. Its maximum
output power is 18 W.

Parameter Value

Impedance 4 Ω
Wattage 15–25 W

Dimensions 105 mm × 55 mm

Table 2.3: Loudspeaker Monacor SP-10/4 parameters

2.6 Data Acquisition

To acquire data from the microphone and actuate the loudspeaker, a computer
with data acquisition board MF624 by Hummusoft was used. It contains
8 channel fast 14 bit ADC (analog-to-digital converter) and 8 channel 14
bit DAC (Digital-to-analog converter.) The output of microphone preampli-
fier was connected to the board’s ADC and the power audio amplifier was
connected to board’s DAC.

The board was used together with Simulink Real-Time Windows Target.
The reading frequency was 10 kHz. Fig. 2.4 and 2.5 depict Simulink models
that implement data collection and feedback loop control. To filter out high-
frequency noise, low-pass filter with time constant τ = 1 ms was used in the

10



................................... 2.6. Data Acquisition

data acquisition. However, to eliminate time delay, it was not used in the
feedback loop.

Copyright	1994-2016	The	MathWorks,	Inc.
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InfoInfo Switch	ToSwitch	To
Normal	ModeNormal	Mode

Analog
Input

Analog	Input
Humusoft

MF624	[auto]

Spectrum
Analyzer

1

0.001s+1

Low-pass	Filter Scope2

Figure 2.4: Simulink model implementing data acquisition
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Figure 2.5: Simulink model implementing feedback loop
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Chapter 3

Experimental Evaluation

This chapter gives an evaluation of performed experiments. Firstly, the insta-
bility of the system is observed. Secondly, feedback is introduced to stabilize
the system. Then, system identification is done. And finally, temperature of
the heating coil is estimated.

3.1 Instability Observation

Fig. 3.1 shows the initial growth of oscillations of acoustic pressure in the
tube. A close look at the oscillations is given in fig. 3.2 from which we can see
dominant frequency of 131.6 Hz. This value is consistent with the expectation
of standing half-wave in the tube and it satisfies (1.1). This frequency can also
be seen in amplitude spectrum 3.3 of measured signal (for x = L/4) together
with the second harmonic of twice the frequency. As shown in spectrum 3.4,
for heating coil position x = L/3 the second harmonic is not that significant
as for x = L/4.
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3. Experimental Evaluation................................
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...................................3.2. Feedback Control
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Figure 3.4: Single-sided amplitude spectrum of measured signal for x = L/3

3.2 Feedback Control

To stabilize the system, simple proportional regulator is sufficient for heating
coil position x = L/3. For x = L/4, it turned out to be impossible. Values of
control constant K around 0.3 stabilize the system making the humming go
away. The result of regulation is shown in fig. 3.5 where K changes from 0
to 0.3. Since the the humming disappears and the regulation loop consists of
proportional feedback only, resulting signal fed to the speaker is zero. This
means that the regulator actually stabilizes the system. Hence, the process
of stabilization should not be confused with active noise cancelation.

If the constant K is increased a little, the system becomes unstable again
(fig. 3.6). This time a higher harmonic is dominant, specifically the 13th (fig.
3.7).
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3. Experimental Evaluation................................
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................................. 3.3. System Identification
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Figure 3.7: Single-sided amplitude spectrum of higher harmonic instability

3.3 System Identification

The stable closed-loop system was identified by adding external signal w into
the regulation loop. For this signal, PRBS (pseudorandom binary sequence) of
duration 20 s was generated. The first ten seconds were used for identification
and the other ten were used for verification of identified system. In order to
be able to identify it, signal measured by the microphone and signal fed to
the loudspeaker were collected. From these, the system was identified using
parametric method known as ARX. The number of poles was set to 44 and
the number of zeros was set to 22. This method gave relatively accurate (see
fig. 3.8 and 3.9). Fig. 3.10 frequency response obtained from ARX method.
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17
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3.4 Heating Coil Temperature

The heating coil temperature can be estimated by measuring increase of its
resistance. Using approximation of linear temperature coefficient of resistance
for kanthal wire (obtained from [4])

α ≈ 2 × 10−5 K−1 (3.1)

we can estimate the wire temperature T as

T = T0 + R−R0
αR0

(3.2)
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............................... 3.4. Heating Coil Temperature

where R0 is the wire resistance at room temperature T0 and R is its resis-
tance at temperature T . Resistance R0 is given by (2.3). Resistance R was
determined from measured voltage of the power supply

U = 48.06 V (3.3)

and measured current running through the wire when heated up

I = 7.77 A. (3.4)

Applying Ohm’s law we get

R = U

I
= 6.19 Ω. (3.5)

Finally, by considering room temperature

T0 ≈ 20 ◦C (3.6)

we obtain

T = 803 ◦C. (3.7)

Nonetheless, this quantification is a very rough approximation only.
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Chapter 4

Conclusion

In this thesis, the process of construction of Rijke’s tube is described. It also
documesnts a few experiments performed to illustrate basic properties of the
tube. For instance, observations has shown that fundamental frequency of the
tube dominates the spectrum of the oscillations which corresponds to standing
half-wave inside the tube. Also, stabilization of the tube using proportional
regulator was achieved. Finally the tube as a system was identified using
parametrical methods.

All the performed experiments might be improved if frequency response of
used microphone and preamplifier was available. Knowledge of the response
would make it possible to determine the signal distortion.

Possible direction for future research is measuring the sound at different
places and measuring the air flow in the tube. Another interesting obser-
vations might be done by changing the position of the heating coil and the
loudspeaker.

21



22



Appendix A

Bibliography

[1] J. P. Epperlein, B. Bamieh, and K. J. Astrom. Thermoacoustics and
the rijke tube: Experiments, identification, and modeling. IEEE Control
Systems, 35(2):57–77, April 2015.

[2] Jonathan Peter Epperlein. Topics in Modeling and Control of Spatially
Distributed Systems. PhD thesis, University of California, Santa Barbara,
2014.

[3] F.W. Hughes. Op-amp handbook. Prentice-Hall, 1986.

[4] Kanthal R© – Part of Sandvik Group. Kanthal A-1, Resistance heating
wire and resistance wire, January 2017.

[5] Konstantin Matveev. Thermoacoustic Instabilities in the Rijke Tube:
Experiments and Modeling. PhD thesis, California Institute of Technology
Pasadena, California, 2003.

[6] Mean Well Enterprises Co., Ltd. SPV-1500 series, 1500W Single Output
Power Supply, August 2009.

[7] Winston Pun. Measurements of Thermo-Acoustic Coupling. PhD thesis,
California Institute of Technology Pasadena, California, 2001.

[8] P. L. Rijke. Lxxi. notice of a new method of causing a vibration of the
air contained in a tube open at both ends. Philosophical Magazine Series
4, 17(116):419–422, 1859.

[9] STMicroelectronics. TDA2030A, 18 W hi-fi amplifier and 35 W driver,
July 2011. Rev. 2.

23



A. Bibliography.....................................
[10] STMicroelectronics. L78L, Positive voltage regulators, June 2016. Rev.

26.

[11] Texas Instruments. OP07x Precision Operational Amplifiers, November
2014. Rev. G.

24



Appendix B

Abbreviations

AC Alternating current
ADC Analog-to-digital converter
DAC Digital-to-analog converter
DAQ Data acquisition
DC Direct current
FET Field-effect transistor
Op-amp Operational amplifier
PC Personal computer
PRBS Pseudorandom binary sequence
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Appendix C

CD Contents

The enclosed CD contains the following files.

. Lukas_Cerny_BP_May_2017.pdf – this bachelor thesis in pdf format. Lukas_Cerny_BP_Assignment.pdf – bachelor project assignment.MicrophonePreamplifier.pdf – schematic of the designed preamplifier. libs/ – directory containing libraries required to use DAQ board. ReadData.slx – Simulink model implementing data acquisition. FeedbackLoop.slx – Simulink model implementing feedback loop. InitMF624.m – MATLAB script initializing DAQ board
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