ASSIGNMENT OF BACHELOR'S THESIS

Title: \quad Timing Attack on the RSA Cipher
Student
Supervisor:
Study Programme:
Study Branch:
Department:
Martin Andrýsek
Ing. Jiří Buček
Informatics
Information Technology
Department of Computer Systems
Validity:

Instructions

Review known timing side channel attacks on RSA decryption and signing operations. Create a demonstration application that will perform timing attack on RSA in order to determine the private key. The application will be used in courses on cryptology and computer security as a part of laboratory exercises. Consider an attack on a local computer or over the network and evaluate its time complexity.

References

Will be provided by the supervisor.
prof. Ing. Róbert Lórencz, CSc.
Head of Department
prof. Ing. Pavel Tvrdík, CSc.
Dean

Bachelor's thesis

Timing Attack on the RSA Cipher

Martin Andrýsek

Supervisor: Ing. Jiří Buček

16th May 2017

Acknowledgements

I would like to thank to Ing. Jiří Buček for leading me in this thesis and my friends for support me during writing.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical University in Prague has the right to conclude a license agreement on the utilization of this thesis as school work under the provisions of Article 60(1) of the Act.

In Prague on 23rd May 2017

Czech Technical University in Prague Faculty of Information Technology
© 2017 Martin Andrýsek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the Copyright Act and its usage without author's permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Andrýsek, Martin. Timing Attack on the RSA Cipher. Bachelor's thesis. Czech Technical University in Prague, Faculty of Information Technology, 2017. Also available from: 〈https://github.com/vydrous/BP-code〉.

Abstrakt

Tato práce se zabývá replikací útoku na RSA kryptosystém časovým postranním kanálem, který je realizován měřením času algoritmu opakovaných čtverců s Montgomeryho násobením. Útok se zameřuje na mě̌̌ení času trvaní dešifrování rozdílných zpráv s určitými vlastnostmi. Práce popisuje základní principy a slabiny RSA kryptosystému. Výsledkem práce je demonstrativní aplikace, která bude použita ve výuce v předmetech, zabyvajícími se počítačovou bezpečností.

Klíčová slova RSA, kryptoanalýza, časový útok, postranní kanál, Montgomeryho násobení

Abstract

This thesis is focused on replication of timing attack on RSA cryptosystem introduced by Paul Kocher, which is done by measuring time of square and multiply algorithm with Montgomery multiplication. The attack is based on measuring execution time of decryption function on messages with different properties. The thesis describe main principles and vulnerabilities of RSA cryptosystem. Implementation should be used for education purposes, mainly in security courses.

Keywords RSA, cryptanalysis, timing attack, side channel, Montgomery multiplication

Contents

Introduction 1
1 State-of-the-art 3
2 RSA 5
2.1 Principle 5
2.2 Optimization 7
3 Attacks 11
3.1 Attack on multiply 11
3.2 Attack on square 12
4 Defense 15
4.1 Additional reduction 15
4.2 Masking 15
5 Realisation 17
5.1 RSA implementation 17
5.2 Attack implementation 19
Conclusion 23
Bibliography 25
A Acronyms 27
B Contents of enclosed CD 29

List of Figures

2.1 RSA illustration[1] . 7

Introduction

In 1996 Paul Kocher presented timing attack on several cryptosystems including RSA. The cryptosystems have in common that all of them are using modular exponentiation and they are public key cryptosystems. Kochers idea was to attack square and multiply algorithm which uses Montgomery multiplication. He intend to exploit execution time of decrypting and signing algorithms because there is dependency on private exponent. After Kocher there have been more tries with better success, for example J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-L. Willems who improved Kochers study.

This thesis will explain the main thoughts of RSA cryptosystem, its known vulnerabilities and how to defend against them. Thesis also introduce reader to timing attack problematic. It will compare two targets of timing attack, Kochers original attack on multiplication versus Dhems attack on square. Although both attack can be easily defended just by eliminating data dependency in decryption (resp. signing) algorithm.

Chapter

State-of-the-art

By exploiting data dependency on secret exponent we should be able to recover key.

We should decide what is the optimal amount of messages. It should not be too many so that we can guess the key in reasonable time but it have to be enough to guess the key.

Next, we should create some defensive mechanism in cryptosystem in order to make attack fail.

RSA

RSA is public-key cryptosystem which was invented by Ron Rivest, Adi Shamir and Leonard Adleman. The cryptosystem was published in the 1977.

2.1 Principle

The cipher is based on modular exponentiation. The whole process of crypting message is divided to four steps

2.1.1 Key generation

These steps are needed to generate public and private keypair

- Generate p and q, which have to be distinct prime numbers.
- Compute n, where $n=p q$
- Compute Euler's totient function $\phi(n)$. Because we know p and q it is simple to compute it.

$$
\phi(n)=(p-1)(q-1)
$$

- Generate e such as $\operatorname{gcd}(e, \phi(n))=1$. To fasten calculation number with small Hamming weight is used. Usually it is 65537 because it is prime and have Hamming weight 2
- Compute $d=e^{-1} \bmod \phi(n)$
- The pair (e, n) is released as public key
- The pair (d, n) is secret private key

2.1.2 Key distribution

- Alice would like to send Bob secret message.
- Bob generates public key (e, n) and his private key (d, n).
- Bob sends Alice public key using reliable route (it has not to be secret route).
- Due to high value of n possible attacker will not be able compute d from public keypair (e, n) because factorization of n is not possible in polynomial time.
- Alice uses it to encrypt her message and sends it to Bob. Bob decrypts her message using his private key.

2.1.3 Encryption

Encryption is done by using public keypair (e, n):

$$
c=\left|m^{e}\right|_{n}
$$

where m is plaintext message and c is encrypted message which will be sent to receiver.

2.1.4 Decryption

Decryption is done similar thanks to relation $e d \equiv 1(\bmod \phi(n))$. We can simply power ciphertext to our private exponent d to obtain original message.

$$
\left|c^{d}\right|_{n}=\left|\left(m^{e}\right)^{d}\right|_{n}=\left|m^{e d}\right|_{n}=\left|m^{1}\right|_{n}=m
$$

2.1.5 Signing

RSA signing is used to verify identity of sender. The process is similar to decryption but instead of message we are powering hash of the message. We are using our private exponent to sign hash so the receiver could easily decrypt hash using public exponent and compare it to actual hash of the received message.

2.1.6 Example

Prime numbers $p=7$ and $q=5$ are chosen. Modulus is computed

$$
n=p * q=7 * 5=35 .
$$

Figure 2.1: RSA illustration[1]

Next we generate public exponent e usually we use number with small Hamming weight. Let $e=17$. Condition that $\operatorname{gcd}(e, \phi(n))=1$ is met since

$$
\phi(n)=(p-1)(q-1)=6 * 4=24 .
$$

Now we can compute private exponent

$$
d=e^{-1} \bmod \phi(n)=17
$$

Now we send public keypair $(17,35)$ to subject which we want to communicate with. Other subject powers his message using public exponent 17 . Let $m=10$ so our encrypted message will be

$$
c=m^{e} \bmod n=10^{17} \bmod 35=5 .
$$

Subject sends 5 as encrypted message, we decrypt it using private exponent

$$
m=c^{d} \bmod n=5^{1} 7 \bmod 35=10
$$

and we have desired message.

2.2 Optimization

Because we generally use high value of modulus n the exponentiation of such high numbers is very time consuming so there are some algorithms to increase speed of computation.

2.2.1 Chinese remainder theorem

By using CRT we can significantly speed up decryption of received messages. This method is not usable during encrypting phase because we need to know p and q factors of n. Assuming that $p>q$ we can precompute:[2]

$$
\begin{aligned}
& d P=e^{-1} \quad(\bmod p-1) \\
& d Q=e^{-1} \quad(\bmod q-1) \\
& q \operatorname{Inv}=q^{-1} \quad(\bmod p)
\end{aligned}
$$

After that, we compute message m with given c :

$$
\begin{gathered}
m_{1}=c^{d P} \quad(\bmod p) \\
m_{2}=c^{d Q} \quad(\bmod q) \\
h=q \operatorname{Inv} \cdot\left(m_{1}-m_{2}\right) \quad(\bmod p) \\
m=m_{2}+h q
\end{gathered}
$$

Finding modular exponentiation cost grows with cube of number of the bits in n, so it is still more efficient to do two exponentiation with half sized modulus

2.2.2 Montgomery Multiplication

Classic modular multiplication could be quite slow for large numbers, due to processor have to run several operations before it gets desired remainder. On the other hand P. L. Montgomery developed algorithm which assumes that processor do division by power of 2 really fast.

Montgomery presented algorithm, which transform numbers to Montgomery base and then compute modular multiplication efficiently. To transform number to Montgomery base we need to compute $\bar{a}=a r(\bmod n)$ where r is the next greater power of 2 than n. For example if $2^{63}<n<2^{64}$ then desired r will be 2^{64}. The multiplication in Montgomery base is done by:

$$
\bar{u}=\bar{a} \bar{b} r^{-1} \quad(\bmod n)
$$

where $r-1$ is modular inversion of r.

As we can see \bar{u} is in Montgomery base of the corresponding $u=a b(\bmod n)$ since

$$
\begin{align*}
\bar{u} & =\bar{a} \bar{b} r^{-1} \quad(\bmod n) \\
& =(a r)(b r) r^{-1} \quad(\bmod n) \tag{2.1}\\
& =(a b) r \quad(\bmod n)
\end{align*}
$$

Montgomery reduction which gives us \bar{u} is implemented this way:

```
Algorithm 1 Montgomery Reduction
    function \(\operatorname{MON} \_\operatorname{Red}(\bar{a}, \bar{b}, N)\)
        \(t \leftarrow \bar{a} * \bar{b}\)
        \(m \leftarrow N^{-1} * t(\bmod r)\)
        \(\bar{u} \leftarrow(t+m N) / r\)
        if \(\bar{u}>N\) then
            \(\bar{u} \leftarrow \bar{u}-N\)
        end if
        return \(\bar{u}\)
    end function
```

Its main advance is that it never performs division by the modulus n but we still need to find out u and precompute n^{-1} using the extended Euclidean algorithm. It is done by this algorithm:[3]

```
Algorithm 2 Montgomery Multiplication
    function Mon_Mult \((a, b, n)\)
        \(r \leftarrow 2^{\operatorname{BitLen}(n)}\)
        Compute \(n^{-1}\) using the extended Euclidean algorithm
        \(\bar{a} \leftarrow a * r(\bmod n)\)
        \(\bar{b} \leftarrow b * r(\bmod n)\)
        \(\bar{u} \leftarrow \operatorname{Mon}_{R} e d(\bar{a}, \bar{b})\)
        \(u \leftarrow \operatorname{Mon}_{R} e d(\bar{u}, 1)\)
        return \(u\)
    end function
```


2.2.3 Square and Multiply

This optimization uses bitwise representation of the exponent. The algorithm picks all byte from left (MSB) to right and despite their value, it determines which operation will be performed for each bit. For bits equal to 1
we perform squaring preset value c then we multiply it with the base of exponentiation m. For bits equal to 0 we just perform squaring part. Therefore we get data dependent operation, which will be used in our attack. For even faster implementation we use Montgomery multiplication instead of normal one. In some theses this Square and Multiply algorithm is called Montgomery exponentiation

```
Algorithm 3 Square \& Multiply algorithm
    function SQuare_And_Multiply \((m, e, n)\)
        \(c \leftarrow 1\)
        \(k \leftarrow \operatorname{BitLen}(e)\)
        for \(i \leftarrow k-1,0\) do
            \(c \leftarrow M o n_{M} u l t(c, c)\)
            if \(e[i]==1\) then \(\quad \triangleright i\) th bit of exponent \(e\)
                    \(c \leftarrow \operatorname{Mon}_{M} \operatorname{ult}(c, m)\)
            end if
        end for
        return \(c\)
    end function
```


Chapter

Attacks

The basic idea of timing attacks was presented by Kocher in 1996. He specified theoretical attacks not only on RSA.

Both variant of attack are based on similar principle. They divide messages from set M to several subsets M_{i} due to response of some Oracle O. Then by measuring time of decrypting or signing and guessing bits of secret exponent by comparing times of each set.

3.1 Attack on multiply

First Kochers idea was to exploit multiply operation in Square and Multiply algorithm. Kocher mean to measure time of decryption (or signing) messages using the private key d and focus on conditional multiply step. We are attacking each bit of d with knowledge of $i-1$ bits we can guess the i th bit. Let $d=d_{1}, d_{2}, \ldots, d_{k}$ where k is bit length of d and d_{1} is MSB. We can assume that $d_{1}=1$ so we can attack bit d_{2}.

We need oracle O which predict whether final Montgomery reduction happened during multiply step:

$$
O(m)= \begin{cases}1 & \text { if } m^{2} * m \text { is done with final reduction } \\ 0 & \text { if } m^{2} * m \text { is done without final reduction }\end{cases}
$$

where m is message from set M. We can now divide messages to 2 subsets:

$$
\begin{aligned}
& M_{1}=\{m \in M: O(m)=1\} \\
& M_{2}=\{m \in M: O(m)=0\}
\end{aligned}
$$

We can now measure time of these two subsets. We are expecting same times for doing square part, but in multiply part will be messages from M_{1} higher, due to final Montgomery Reduction. We compare means of sets M_{1} and M_{2}. If time of M_{1} is significantly bigger then the final reduction was done therefore bit d_{2} is 1 . If the times of M_{1} and M_{2} are equal then bit d_{2} is 0 . .

Problem: We cannot be sure what is significant difference between time means. So our guesses cannot be precise.

3.2 Attack on square

Focusing on squaring operation will give us better results. The procedure is similar but we generate two oracles and four sets of messages. We similarly iterate through the bits of secret key d as in multiply attack. When we know $i-1$ bits and we are guessing i th bit we compute $m_{\text {tem } p}$ which has value before unknown possible multiplication step.[4]

We first presume that bit d_{i} is 1 . If the presumption is right then the following steps will be executed. $m_{\text {temp }}$ will be multiplied by m, then the result of multiplication will be squared. We will execute the multiplication step and then we will check if in the square step is done with or without reduction. By this criterion we divide messages to subsets M_{1} if the reduction was computed or M_{2} if not. The oracle will be:[5]

$$
O_{1}(m)= \begin{cases}1 & \text { if }\left(m_{\text {temp }} * m\right)^{2} \text { is done with final reduction } \\ 0 & \text { if }\left(m_{\text {temp }} * m\right)^{2} \text { is done without final reduction }\end{cases}
$$

Secondly, we presume that bit d_{i} is 0 . In that case only the square phase $m_{\text {temp }}^{2}$ will be executed so we similarly divide messages to subsets M_{3} with reduction and M_{4} without reduction. Oracle O_{2} :

$$
O_{2}(m)=\left\{\begin{array}{ll}
1 & \text { if } m_{t e m p}^{2} \\
0 & \text { if } m_{\text {temp }}^{2}
\end{array}\right. \text { is done with final reduction }
$$

We now get 4 subsets of M :

$$
\begin{aligned}
& M_{1}=\left\{m \in M: O_{1}(m)=1\right\} \\
& M_{2}=\left\{m \in M: O_{1}(m)=0\right\} \\
& M_{3}=\left\{m \in M: O_{2}(m)=1\right\} \\
& M_{4}=\left\{m \in M: O_{2}(m)=0\right\}
\end{aligned}
$$

Let $T_{i}\left(M_{i}\right)$ be the mean time of computing messages from M_{i}.

Certainly, only one of oracles is giving us the right results. We can compare time difference between O_{1} and O_{2}. That means if $T_{1}-T_{2}$ is greater than $T_{3}-T_{4}$ then we can be sure that bit d_{i} is 1 , otherwise $d-i$ is 0 . The problem from multiply attack is no more actual because one of the differences have to be higher than other.

Chapter

Defense

4.1 Additional reduction

The most obvious defense is to add dummy subtraction to Montgomery reduction algorithm which does not change any value but consume the same amount of time as if the real subtraction was performed. This should not significantly slow the computation but it totally eliminate this type of timing attack by making Montgomery reduction constant time function.

4.2 Masking

We can mask the ciphertext before computation of $c^{d}(\bmod n)$ so the attacker will not know which cipher text is decrypted. It is done simply by generating pair of masks before each exponentiation. We generate random mask m. Then we compute m^{\prime} :

$$
m^{\prime}=\left(m^{-1}\right)^{e} \quad(\bmod n)
$$

where e is public exponent.

Before each exponentiation we multiply the ciphertext c with mask m^{\prime} so we get masked x_{m} :

$$
\begin{align*}
x_{m} & =\left(c * m^{\prime}\right)^{d} \quad(\bmod n) \\
& =\left(c *\left(m^{-1}\right)^{e}\right)^{d} \quad(\bmod n) \tag{4.1}\\
& =c^{d} * m^{-1} \quad(\bmod n)
\end{align*}
$$

from where we can see that c^{d} is our desired message masked by m^{-1}. Then we simply recover x by multiplying by $m[6]$:

$$
\begin{align*}
x & =x_{m} * m \quad(\bmod n) \\
& =x * m^{-1} * m \quad(\bmod n) \tag{4.2}\\
& =x \quad(\bmod n)
\end{align*}
$$

To avoid situation when even generating of mask could become target of timing attack, there is simple workaround. To generate new mask, just square the mask pair:[6]

$$
\begin{aligned}
m & =m^{2} \quad(\bmod n) \\
m^{\prime} & =m^{\prime 2} \quad(\bmod n)
\end{aligned}
$$

Realisation

5.1 RSA implementation

For our purposes we cannot use existing RSA implementation because they commonly have this vulnerability fixed. So it was needed to write own unsecure implementation of RSA cryptosystem. It is still possible use key generation algorithm from OpenSSL because it is not target of our attack. Python 3.6.1 was used and module Crypto for working with keys.

5.1.1 Montgomery

The main part of RSA is mechanism for modular exponentiation. As was told before we are using Montgomery multiplication for speed up computation. It is based on pseudocode in section 2.2.2.

```
def montgomery_product(a, b, n, r, n_inv):
    t = (a * b)
    m}=((t&(r-1)) * n_inv) & (r - 1)
    u = (t + m * n) >> (r.bit_length() - 1)
    if u > n:
        return u - n
    return u
```

Some optimization was done to let reduction have greater time impact. Instead of modulo r is used bitwise AND with $r-1$ and instead of division by r is used bitwise shift to right r.bit_length ()-1.

5.1.2 Square and Multiply

Due to computation in Montgomery base we also need to little edit the square and multiply algorithm to transform arguments to Montgomery base and at the end back to normal base. We also need precompute r and n^{-1}.

```
def square_and_multiply(ot, n, e):
    r = 2 ** (n.bit_length())
    g, n_inv, r_inv = egcd(n, r)
    if (r * r_inv + n * n_inv) = 1:
        n_inv = -n_inv % r
    else:
            raise Exception("bad_GCD")
    ot =(ot * r) % n
    st = (1 * r) % n
    for i in "{0:b}".format(int(e)):
        st = montgomery_product(st, st, n, r, n_inv)
        if i= '1':
            st = montgomery_product(st, ot, n, r, n_inv)
    return montgomery_product(st, 1, n, r, n_inv)
```


5.1.3 Encryption and decryption

Encryption and decryption are done just by loading keys from .pem file, then passing them to square_and_multiply function

5.2 Attack implementation

5.2.1 Generating and sorting messages

For both types of attack we are starting with set of randomly generated messages. We give them to oracle which tell us which subset message belongs to. Python module timeit is used for time measurements. This chunk of code assign times to messages:
import timeit

```
message_times = dict()
message_range = 50000
for i in range(0, message_range):
    tmp = random.randint (0, n)
    t = timeit.Timer('decrypt.decrypt(int(m1))',
            setup='importьdecrypt; &m1 = `%i' % tmp)
        r = t.timeit(1)
        message_times [tmp] = r
```


5.2.1.1 Multiply

In this version we are attacking multiply operation. We use oracle which is very similar to RSA square_and_multiply function only with one difference. When the final reduction is processed, function return not only result of exponentiation but also bit which tell us that the reduction has been done.

```
if u>n:
    return u - n, 1
return u, 0
```

Based on this bit we decide in which subset the message is. The subsets are distinct. Experimentally, we can say that about one quarter of messages belongs to subset with reduction computed.

5.2.1.2 Square

Square attack is similar but we have two oracles which are telling us about reduction on squaring phase. Every time we give the oracle even exponent so multiplication phase will never be the last operation. Each of these oracles divide set of messages to two subsets which are distinct to each other. Each message belongs to one of M_{1} or M_{2} and to one of M_{3} or M_{4}.

5.2.2 Deciding the bit

5.2.2.1 Multiply

We will compare mean times of the subsets of messages. If M_{1} is significantly greater then we set guessed bit to 1 and if they differ slightly we set the bit to 0 . There is problem with telling what is significant difference because there is lot of noise. The noise is caused by other reductions done by other bits of secret key.

5.2.2.2 Square

We will compare differences between oracles. If oracle predicting multiply has greater difference between subsets we set the bit to 1 , otherwise we set it to 0 .

I tested two different implementation of square attack. The difference is between oracles. One implementation has naive oracle which simply do whole square and multiply algorithm for each message. The second approach is to safe values of particular powers so the oracle does not need to compute whole square and multiply algorithm in each iteration. It just need one square and optional multiplication in each step.

On the other hand, the naive implementation gives better results but is slightly slower.

5.2.3 Assembling secret exponent

After every guessed bit, it is added to variable d which is used by the oracles. After concatenation the new guessed exponent is tested if it is correct exponent. The the test is:

- Pick some message from set
- encrypt that message
- power encrypted message on guessed private exponent d

During attack on square we are one cycle ahead so we have no option how to decide LSB so we just try concatenate both values of last bit.

Conclusion

In my environment it was impossible to make any attack sufficient. The main problem was setting the border when the times differs. Even with sufficient coefficient and 10000 samples there was no more than 50% success on guessing first unknown bit. I cannot reliably guess first unknown bit so it is not possible to guess another bits. I have even tried to do some dummy steps in reduction phase of Montgomery multiplication due to increasing time of this phase, but it does not helped in this case.

Attacking square was far more interesting. On 50000 samples algorithm occasionally fails guessing less than 3 bits, but there were more cases when algorithm correctly guess more than 40 bits of key. But it is due to enormous artificial delay in reduction step.

I believe that when enough time would be given to run this algorithm, it could find the secret key, but I failed in my time management because I had stuck for two weeks not able to sort messages using oracle.

Because attacks do not work entirely there was no need of implementing defenses in RSA implementation.

Bibliography

[1] http://www.networkworld.com/. Encryption. 2008, [Online; accessed May 14, 2017]. Available from: http://www.networkworld.com/article/ 2268575/lan-wan/chapter-2--ssl-vpn-technology.html
[2] DI Management:. Using the CRT with RSA. December 2013, [online], [cit. 2017-05-15]. Available from: http://www.di-mgt.com.au/crt_rsa.html
[3] KoÃğ, Ã. K. Montgomery Multiplication. Istanbul Sehir University and University of California Santa Barbara, 2017, [online], [cit. 2017-05-15]. Available from: http://colinandmargaret.co.uk/Research/Mont_Mult_ 2ndEd_v4.pdf
[4] Dhem, J.-F. Guide to Practical Implementation of the Timing Attack. June 1998, [online], [cit. 2017-05-15]. Available from: http://www.cs.jhu.edu/ \sim fabian/courses/CS600.624/Timing-full.pdf
[5] BUCEK, J. Utoky postrannimi kanaly. 2013, (lecture), [cit. 2017-03-27], [online]. Available from: https://edux.fit.cvut.cz/courses/MI-KRY/ _media/lectures/07/side1.pdf
[6] Kocher, P. C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, ISBN 978-3-540-68697-2, pp. 104-113, doi:10.1007/3-540-68697-5_9. Available from: http://dx.doi.org/10.1007/3-540-68697-5_9

Appendix A

Acronyms

RSA Rivest, Shamir, Adleman
MSB Most significant bit
LSB Least significant bit
CRT Chinese remainder theorem

Contents of enclosed CD

[^0]
[^0]: readme.txt the file with CD contents description exe the directory with executables
 src . the directory of source codes

 wbdcm implementation sources thesis............... . . the directory of $\mathrm{AAT}_{\mathrm{E}} \mathrm{C}$ source codes of the thesis text the thesis text directory
 \qquad thesis.pdf the thesis text in PDF format keys............................ . set of private and public key in PEM format

