Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Utilization of business intelligence
principles for energy data processing

Jakub Srna

Supervisor: Ing. Jan Sulc
May 2017

ii

Acknowledgements

The offer of this work would like to ac-
knowledged the support of PhD. Jan
Siroky and Ing. Marek Kulvejt for con-
tributing their vast experience and knowl-
edge as well as Ing. Jan Sulc supervising
this work without which this work would
have never seen the light of day.

iii

Declaration

I hereby confirm that my thesis entitled
"Utilization of business intelligence princi-
ples for energy data processing" is the re-
sult of my own work. I did not receive any
help or support from commercial consul-
tants. All sources and materials applied
are listed and specified int he thesis.
Furthermore, I confirm that this thesis
has not yet been submitted as part of
another examination process neither in
identical nor in similar form.

In Prague, 23. May 2017

Abstract

The central goal of this work will be the
development of a software tool which will
be used for data analysis by Energocen-
trum PLUS;, s. r. o., within the context
of the newly emerging field of Energy in-
telligence. Energy Intelligence describes
using big data analysis and data scraping
methods to streamline the performance of
controlled energy systems, such as heating
or air conditioning.

This work will also introduce two custom
built structures named "Modulo Carpet'
and "Scatter Plot", both were inspired are
the result of extensive research into the
field of Business Intelligence, which re-
sults and process are detailed as well.
The research was conducted in order to
obtain a greater understanding of the con-
cepts, ideas, and logic which form the
foundation of a good BI (business intelli-
gence) tool, in order to improve the func-
tionality of our custom tool.

The field of Business Intelligence was
picked due to the field’s long-term devel-
opment of data analysis tools and their
diversity. The top three tools of the var-
ious tools covered in our research were
compared to an average one in order to
enlighten the reader in regards to each
tool’s strengths, weaknesses, and general
functionality and effectivity.

Following the research is an in-depth re-
view and examination of the customized
analytical tool being developed, as well as
various tests, conducted on actual com-
pany data, in order to discover flaws,
faults, and deficiencies early, so as to have
sufficient time to fix each of them and
assure the software remains effective in
the future. The work will then be sum-
marized along with evaluated results from
field tests of the developed custom appli-
cation.

Keywords: Energy intelligence,
Business intelligence, development,
analytical tool, software architecture,

iv

software development, Big data, data
analysis

Supervisor: Ing. Jan Sulc
Oddéleni priamyslové automatizace,
Fakulta Elektrotechnicka,

Karlovo nameésti 13,

12000 Praha 2

Abstrakt

Cilem této prace je vyvoj softwaru, ktery
v budoucnosti bude slouzit pro analyzu
dat spole¢nosti Energocentrum PLUS,; s.
r. 0., v ramci noveé vznikajiciho konceptu
Energy intelligence. Tento koncept sesku-
puje analyzy energetickych dat za tcelem
zefektivnéni navrzenych fidicich systém.
Po predstaveni analytickych struktur Mo-
dulo Carpet a Scatter plot nasleduji vy-
sledky vyzkumu provedeného v oblasti
Business intelligence, ktery byl proveden
za ucelem ziskani podkladovych materi-
alt pro vyvoj vlastni aplikace. Oblast
Business intelligence byla vybrana z da-
vodu dlouhodobého vyvoje analytickych
nastroju. TTi nejlepsi z nich byly porov-
nany s jednim pramérnym za tcelem srov-
nani poskytovanych funkcionalit a jejich
implementace.

Po vyzkumu nasleduje popis vyvoje analy-
tického nastroje, ktery je v praxi prubézné
testovan na datech spolecnosti za tcelem
odhaleni nedostatkiu, které by v budoucnu
mohly zplsobit, Ze se dany software stane
nedostacujicim. V zavéru prace je umis-
téno shrnuti obsahujici ziskané vysledky
pomoci vyvinuté aplikace spolecné s jejich
zhodnocenim.

Klicova slova: Energy intelligence,
Business intelligence, vyvoj, analyticky
nastroj, Softwarova architektura, Big
data, analyza dat, vyvoj softwaru

Pteklad nazvu: Vyuziti business
intelligence principi pro zpracovani
energetickych dat

Contents

Project Specification
1 Introduction

2 Comparison of Business
Intelligence tools
2.1 Definition of term Energy

intelligence................. ...
2.2 Tableau
23Power BI
2.4 Qlik Sense
2.5 MicroStrategy
2.6 Chapter summary

3 Design of the query language
3.1 Software design and

implementation................
3.1.1 Code structure
3.2 Process calculation principles. . .
3.3 Computational nodes.........

3.4 Pre-defined structs and data

classes.........
3.4.1 Pre-defined structs
342Enums...................
3.4.3 Data classes
3.5 Unit testing
3.6 Implementation review
3.7 Possible outcome
3.8 Chapter summary

4 Conclusion
A Bibliography

B Code samples

B.1 Modulo Carpet test..........
B.2 CSV data provider

C CD content

1
3

vi

Figures

2.1 Gartner magic quadrant for

Business intelligence 2017 [7] (§
2.2 Companies analyzing energy data
2.3 Example of modulo carpet
2.4 Example of scatter plot.........
2.5 Modulo Carpet - Tableau
2.6 Scatter plot - Tableau
2.7 Modulo carpet - Microsoft

PowerBI.......................
2.8 Scatter plot - Microsoft PowerBI
2.9 Modulo carpet - Qlik Sense
2.10 Scatter plot - Qlik Sense

2.11 Modulo carpet - MicroStrategy
2.12 Scatter plot - MicroStrategy . .

3.1 Computational nodes hierarchy .
3.2 Process calculation principles

flowchart
3.3 MaComplexAggregationExpression
structure 26
3.4 Bitwise sum operation principle
3.5 CSV import principle
3.6 Pre-defined structs............ 31
3.7 Defined enums 33l
3.8 Dataclasses.................. 135
3.9 Complete BucketValueHolder for
Modulo Carpet structure
3.10 Conversion to the MaMatrix
structure L. 138
3.11 Sample input for Modulo Carpet
structure L. [41]
3.12 Sample input for Scatter plot
structure [42]

vii

Tables

UCENI
TECHNICKE

/ﬂ%,;?/g soce ZADANI BAKALARSKE PRACE

V PRAZE

I. OSOBNI A STUDIJNIi UDAJE

4 N\
PFijmeni: Srna Jméno: Jakub Osobni ¢islo: 420203
Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/Ustav: Katedra ridici techniky
Studijni program: Kybernetika a robotika
Studijni obor: Systémy a fizeni

. J

Il. UDAJE K BAKALARSKE PRACI

~N

Nazev bakalarské prace:

Vyuziti business intelligence principl pro zpracovani energetickych dat
Nazev bakalarské prace anglicky:

Utilization of business intelligence principles for energy data processing
Pokyny pro vypracovani:

1. Seznamte se s principy tzv. business intelligence nastroji (konkrétné programy Tableau, PowerBl a Qlik) a navrhnéte
moznosti vyuziti business intelligence principl pro zpracovani energetickych dat.

2. Navrhnéte architekturu aplikace typu server-klient pro vySe zminéné pouziti.

3. Navrzenou aplikaci implementujte.

4. Demonstrujte moznosti vyvinuté aplikace s vyuzitim realnych energetickych dat.
Seznam doporucené literatury:

[1] Business Intelligence, Jak vyuzit bohatstvi ve vaSich datech, David Slansky, Jan Pour a Ota Novotny

[2] Handbook of web based energy information and control systems Autor: Capehart, B. L., Middelkoop, Timothy

[3] Data science for business Autor: Provost, Foster, 1964-, Fawcett, Tom
Jméno a pracovisté vedouci(ho) bakalarské prace:

Ing. Jan Sulc, UCCEB Bustéhrad

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:

Datum zadani bakalafské prace: 17.02.2017 Termin odevzdani bakalarské prace: 26.05.2017

Platnost zadani bakalarské prace: 30.09.2018

Podpis vedouci(ho) prace Podpis vedouci(ho) ustavu/katedry Podpis dékana(ky)
J

Il. PREVZETi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalafskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramentl a jmen konzultantu je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Chapter 1

Introduction

Nowadays, many businesses around the world own and operate a variety of
tools to analyze their respective customer data and draw conclusions from
it. These conclusions grant the businesses the ability to personalize their
products and adjust their various services to each of their consumer’s specific
wants and interests and to maximize profits. The desire to personalize services
and maximize profits are common across businesses from all around the world.
However, what should a company do if it wishes to provide such a specific
service, that the support structure for it, such as analytical tools, is poorly
built or does not even exist yet?

Energocentrum Plus s.r.o. currently owns such a poorly developed tool, which
is an analytical tool which serves to analyze heating data gathered from the
many buildings to which they provide services and for which they design
intelligent heating systems.

Unfortunately, as the potential of the company continues to grow, the demands
from the current tool overwhelmed its capabilities.

This thesis describes the development of a new analytical tool, which later
on will serve as key software for data analysis, and is meant to be used by
Energocentrum Plus s.r.o. company in the future.

Therefore, in this thesis work, we will attempt to design a tool to provide
Energocentrum Plus s.r.o. employees with sufficiently robust and flexible
software, so that they may achieve better results and advance the company’s
interests in the field. In addition, the software must be structured in a user-
friendly fashion as to allow high editability in the future should the company
need to modify the tool to meet its changing needs.

The beginning of this work will introduce the various data structures and
graphs which are currently used by the company, followed by the definition
of the concept called "Energy intelligence".

The sections following the previous definitions would cover an extensive review
of the various currently available tools in the field of Business intelligence in
order to provide a deeper understanding of the requirements and capabilities
of tools similar to the one designed in this work.

After designing the general architecture of our tool, we will discuss, dissect
and explain the various parts described in chapter three in order to provide
sufficient insight and shed light on the complexities of the designed tool.

3

1. Introduction

The description of the designed tool is followed by a summary and evaluation
of the software’s capabilities in chapter four, where the future possibilities
and direction of the developed application are discussed.

This document will then come to a close with an extensive summary of the

work.

Chapter 2

Comparison of Business Intelligence tools

For the last twenty years, companies in almost every industry invested
time and money towards improving their ability to collect data about their
customers and to exploit the collected data to gain a competitive advantage
against each other. As a result of significant progress in the field of computer
science and the growth in computational power, the volume of collected
data surpassed the capability of teams of statisticians employed to extract
information and knowledge from large datasets by manual analysis. As the
problem grew beyond the reach of human manual labor, it inspired the
development of algorithms to scan and interact with multiple databases, to
enable deeper and more thorough analysis than previously possible. These
algorithms formed the basis of several computer programs which we now call
Business Intelligence tools (or "BI tools" for short).

The concept of extracting useful information from massive datasets, often
called Data Mining, attracted many companies such as Oracle or Microsoft to
invest their time, money and human resources to develop their own BI tools,
driven by the promise of high rewards from renting out these tools. In the
first part of bachelor thesis, we will discuss four tools called Tableau, Power
BI, MicroStrategy, and Qlik. According to the Gartner diagram depicted
in figure 2.1, Tableau, Power Bl and Qlik are currently the market leaders
in BI tools in 2017 which provokes questions about what makes these tools
unique. To assure a proper comparison a basis in the form of MicroStrategy
tool is introduced. Comparison of their performance is made in six different
categories:

® Intuitiveness of control - are these programs user-friendly?

® Ability to work with large datasets - are these programs fast?

® Built-in functions - are these programs robust with many tools?

® Writing own functions - is it easy to write scripts in these programs?

® Availability of information materials and tutorials - is it easy answer
questions which rise during the development process?

® Ability to achieve the set goal - does the result meets the predefined
standarts?

2. Comparison of Business Intelligence tools

@ Tableau @ Microsoft
@ ik
Alteryx @ @sHP
@ SAS‘ IBM
Bist@ TBCOSofware OB
A Oracle @ st @ @ Salesforce
i @ @ Sisense
Board International MicroStrategy @ ClearStory Data
) .Domo ® ThoughtSpot
Information Builders @ ®)
Yellowfin @ Logi Analytics
P
=
o
wJ
&
o Pyramid Analytics @ @ Zoomdata
E Datameer, Pentzho @
-
@
<
COMPLETENESS OF VISION As of February 2017

Figure 2.1: Gartner magic quadrant for Business intelligence 2017 [7]

B 2.1 Definition of term Energy intelligence

After gaining a brief insight into what Business intelligence means, now we
proceed to define the concept of "Energy intelligence", a concept which was
formed to cover a previously undiscovered field of analysis.

Energy intelligence is nowadays used by companies aiming to design better
intelligent building systems, to cover the use of data analysis to reveal faults
or malfunctions of a smart building’s internal systems which waste energy.
To prevent such a situation, a system of sensors is put in place to measure
different parameters such as temperature, humidity, or power use of the
heat pump, store the results in a database, and later retrieve the results for
analysis. The current leaders in the field of Energy intelligence are detailed
in the following table:

2.1. Definition of term Energy intelligence

Company name Tool Headquarter
Bulding IQ Building 1Q 5i Platform USA, Australie
C3loT C3 Enterprise Energy Management Platform USA
Cimetrics Energy Kiosk and Displays, Analytika USA
Copper Tree AnalysiKaizen Kanada
Ecova Continuous Building Optimization USA
Energy Print Energy Print USA
EnerNOC Energy Intelligence Software USA
Ezenics Ezenics USA

KGS Buildings Clockworks USA
Retroficiency Retroficiency Dashboard USA
SkyFoundry Sky Spark USA
Wegowise WegoPremium USA

Figure 2.2: Companies analyzing energy data

In this work we use two main data structures to reveal patterns in measured
data. The first structure is a table called "Modulo Carpet" which axes are
formed by two different time intervals extracted from the timestamp of a
sample, such as hours and weekdays as depicted below. The sampled data is
always subjected to only one aggregation function at a time.

AVG Actual power Hour -
Weekday - 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 23
1 30868 30518 30555 30486 32599 339.17 37391 42308 47682 51846 52781 51932 50685 51097 50594 50440 49066 47390 43604 40067 37887 34201 32667 32249
317.55 31580 31446 31451 33419 34611 37897 43439 48898 5402 53095 52669 51865 497.12 479.56 44272 40360 377.30 34328 32854 32321
319.23 31600 31530 31533 33350 34653 377.04 437.98 496.40 542.28 540.23 52645 52297 51469 509.19 49506 474.65 44239 405.14 37688 34326 32827 323.09
31859 31558 31573 31558 33478 34618 37662 42830 47530 51810 52522 51394 50407 498.40 49158 48626 47490 46349 42829 39857 37926 347.17 328.89 32254
31877 31489 31384 31437 33302 34445 36951 417.78 450.66 487.40 48893 469.87 45098 43364 419.51 399.62 38674 37851 36620 357.04 34938 32805 317.16 31250
30845 30367 30281 30232 30279 30195 30383 30275 297.32 287.68 28130 277.59 27606 280.62 28519 29335 30140 31041 31231 31208 30974 30875 30691 305.68
30406 30220 29979 299.01 29897 29845 297.49 29650 29096 283.11 27579 27297 27277 27643 27951 29121 30207 309.02 31393 31434 31231 31133 31049 309.13

Nouswwn

Figure 2.3: Example of modulo carpet

The "Modulo Carpet" mentioned above illustrates a real situation in which
we average the power used by a heat pump at CTU building and present
the results for easier analysis. Thanks to the intuitiveness and simplicity of
the aforementioned structure, it is easy to gain an extensive overview of the
entirety of the examined period, and in most cases detect and prevent the
various malfunctions and issues which may rise from an extended use of the
heat pump or from wrong initial settings.

The "Modulo Carpet" structure is also capable of simplifying massive amounts
of data, for example summarizing years worth of data and categorizing it
according to the days of the week or month in which it was measured. For time
intervals which are longer than one month, the graph becomes unintelligible
and devoid of useful information. It is therefor recommended, for maximal
clarity, to use the structure to present data in one of the preset formats of
hours, days, weeks, or month. As we can see the heating system is set well
because the largest values of the power are found in days and hours during
which people are present at school.

The second data structure is named "Scatter plot", also known as a scatter
diagram. Similarly to the aforementioned Modulo Carpet, the Scatter plot
uses two variables to separate data samples - in the case of this work variables
such as average outdoor temperatures, Instantaneous power, etc. In case
that the samples are meant to be colored differently, a third variable will

7

2. Comparison of Business Intelligence tools

be included. In contrast to "Modulo Carpet", each axis can use a different
aggregation function. An example of such a scatter plot is introduced below.

150000

~~~~~~

=
E
g c
.

0 % .
> Y
0 omo . Ceesed e .
2 20l vl '% o o .

. 4 °
AP ST
T . “ HYe t pte
@ g : o’

.

£ ote ..f 's 3 o, . Y oo .
— o &e - -
= M I R o4 :}.‘.;"- IR O :
> . - ) .
2 . o £ N

.

.....

Avg (Avg. outdoor temperature)

Figure 2.4: Example of scatter plot

After introducing these two key components necessary for the analysis
of the field of Energy intelligence, we will proceed to survey the Business
intelligence tools mentioned at the beginning of this chapter and compare
their performance. It is important to note that many of the currently available
tools are programmed and optimized for different types of analysis, so there is
no simple way to compare and contrast them. All tools together are examined
in very specific field of analysis.

At the end of each review of the separate Business tools, a Modulo Carpet
and a Scatter plot are shown to illustrate the capabilities of that particular
tool and provide a screenshot of the whole program environment.

. 2.2 Tableau

Tableau was established in January 2013 in the US by three Standford
university professors: Pat Hanrahan, Christian Chabot, and Chris Stolte.
The current version of Tableau, version 10.1, offers the option to import data
from a variety of file types, such as CSV, JSON, Statistical file or even an
excel sheet. Also, there is no need to download vast datasets from a database,
because Tableau enables a direct connection to, and manipulation of, the
database itself.

B User friendliness

Since the start of its development process, the Tableau team shared a common
vision of making data understandable to ordinary people.

8



2.2. Tableau

This, in turn, resulted in Tableau itself being very intuitive and user-friendly.
One of the many advantages of this tool is the common use of the "drag and
drop" approach used throughout the program. For example, importing data
from files from one of the formats mentioned above can be done by simply
dragging and dropping the file into the program window. Nowadays such
functionality may be considered elementary and even expected, but no other
software included in this research had this feature at the time of revision.

Is Tableau ready for 4K displays? Extensive examination assures us that it is.
All menus and graphs were perfectly readable, despite minor scaling problems
such as missing bottoms of letters in the various dialog windows.

B Large datasets

Tableau’s ability to analyze vast amounts of data in reasonable time makes it
a powerful tool and the current market leader in its field.

In 2003 Tableau made a breakthrough with the invention of a query language
called VizQL. According to the official company web page, VizQL "...is a
patented query language that translates your actions into a database query
and then expresses the response graphically." The fundamental innovation of
Tableau was its "...ability to do an ad-hoc analysis of millions of rows of data
in seconds with Tableau’s Data Engine". As the number of samples increase,
the speed difference between Tableau and the other tools grows rapidly.

B Built-in functions

A wide range of built-in functions, such as "WEEKDAY", save a lot of time
for the average user. Moreover, these functionalities are easy to use and
easy to access by two clicks at most. With the exception of Power BI, all
tools contain built-in functions to complement work with dates, such as the
aforementioned "WEEKDAY" function, or "MONTH", which extracts the
required information from a timestamp. The difference is that Tableau’s
built-in functions are easily accessed trough a drop down menu while other
tools usually store the definition of a function as a variable, which needlessly
fills and clutters the workspace, impairs workflow, and wastes time, or has a
just small list of basic functions with the rest being created by the user.



2. Comparison of Business Intelligence tools

B User-defined functions

Tableau’s "Calculated fields", or user-defined functions, are conducive for
filtering displayed data, providing new insights to the Dashboard, and provide
almost limitless possibilities to explore the data stored in the Dashboard.
All functions can be divided into seven elementary groups according to their
use:

® Logical Functions

® Numerical Functions
® Date Functions

® String Functions

® Type Conversion

8 Aggregate Functions

® User Functions

B Materials

In addition to its main support, Tableau provides a free series of tutorial
videos on their company’s web page, which is also easily accessible by links
from Tableau’s start window. In case the tutorial videos are not sufficiently
helpful and more insight into how to use the software is required, the company
publishes many articles on their web page to provide as robust and diverse
a support as possible. Moreover, Tableau has an enormous user community
which expands on the tutorials made by the company through homemade
videos posted on youtube or by opening new topics on the company’s official
discussion forum.

B Test result

From both figures below we can see that the results obtained thanks to
Tableau software are very similar to the exemplary figures in section 2.1.

Weekday .. 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 23

pondali 52 3056 . 5278 5193 5069 5110 5059 5044 4907 4739

atery 3145 ), X 5449 5309 5339 526,7 5187 4971 4796
stieda 3153 542, 54 ¥ 5265 5230 5147 509,2 4951 4747
Etvrtek 3157 ., 3, 504,1 4984 4916 4863 4749 4635 X

nedéle 2998 298 2965 27 2795 2912 3021 3090 3139 3143

Figure 2.5: Modulo Carpet - Tableau

10



2.3. Power Bl

o
o o ©0° °
50K ° o 050
00 o P 0 % 0
of )
40K OO &3@00000 Goé>8? °
00 0030%)% @539 8% 080 000 0, ©
0 04450 @§(§ §8m°9° o oo
A 130k @@ "o o A oOo@ ® 6% o
Q - o) (o] & @D o oo ©F,
o ® 5098 o & o Qoo o
= ® ol ® g P 65 TP OF © % ©
O Lok o o ®® ogo0d, oo & ® @, ° o
a © o %9 0® o o o
[e1) © o0 o o oo
0 @ o ®oo o8 ® o 00@%%% N il
3 0c ° 0600 00 B, oG o O 0@0%%0 oo
o ° o 00 " 0%p ¥ B 6 0 ®
0, o }
8 o 009 §®§O®%§ % <§ o 8 o
N o o
_S 100K g 3 @o %goo y‘%o c?) § o
oo o o ° o
c 20 ° g o ® o ° o © 0% 5
5 ke °Te t%)%%%sgo @@ MOcm © 0o oS &
e o @ o 06 oy ®>O? @ O&)OO ooogoo o q ° 5
£ oo e g°0°°0008380% o S8R, %00 & 00 °
° 0% oo o
o® 5 %% 8
70K © o o

[e]

Avg. Avg. outdoor temperature

Figure 2.6: Scatter plot - Tableau

B Conclusion

Tableau was really pleasant to work with and it definitely is the current leader
among the business intelligence tools thanks to its user-friendliness, its use
of its personal query language or the wide range of built-in functions which
reduce the time needed to achieve the set goal.

In comparison to the other software tools presented in this research, the only
competitive disadvantage is that Tableau is the only one which does not
provide its basic version for free.

. 2.3 Power Bl

Power BI is a business analytics tools developed by Microsoft in 2013. Func-
tions Data from online services promises to be a rich source of information
because many other online services are currently being developed with similar
data capacities, such as GitHub or Azure Enterprise.

B User friendliness

The Power BI tool is pretty similar visually to other software developed
by Microsoft such as Word, Excel or PowerPoint, allowing an effortless
transition from other software and a comfortable learning experience. Also,
tool placement in the program window is familiar and convenient, which
results in an intuitive experience without any unnecessary searching.

When it comes to visual adaptation to 4k screens, Power BI is the most
compatible BI tool included in this research. There were no scaling issues,
and everything was perfectly readable. Even letters in dialogue windows were

11



2. Comparison of Business Intelligence tools

complete without any trimming.

However, the developers would be wise to consider improving the scaling
of graphs or charts to fit into the program window in next version of the
program. For example, When analyzing large tables, there is the possibility
of missing a part of the graph due to it being hidden behind the side menu.
Such issues can be solved manually by changing letter sizes, but even after
these changes, the graph may still be covered and not fully available.

B Large datasets

During research, no special query language used by Microsoft PowerBI was
found. Regardless, data was processed quickly even in the case of large
datasets. When compared to Tableau, it achieved almost the same data
processing time. On the other hand, when compared to MicroStrategy or Qlik
Sense, the difference in time required to process data was quite noticeable.

B Built-in functions

Power BI’s main disadvantage, compared to the other examined tools, is that
it lacks implemented functions such as WEEKDAY or HOUR in the basic,
unmodified program. Functions such as HOUR, MINUTE and SECOND can
be computed quite easily in the same way as in Excel - however, WEEKDAY
takes quite some time when written in name form rather than in numbers
form due to Power BI not differentiating WEEK from its usual tendency to
organize lists alphabetically. To summarize, working with Power BI is not as
easy as working with Tableau, but thanks to Power BI’s internal scripting
engine, once one learns to write one’s owns scripts Power BI offers the same
flexibility as Tableau does.

B Writing own scripts

Writing one’s own scripts is painless and effortless in Power BI thanks to its
similarity to Excel. Most of Excel’s native functions are present in Power BI
as well. The only drawback is that due to the lack of built-in functions there
are plenty of new, unofficially designed functions in the workspace, making it
a slightly confusing

B Materials

In the matter of tutorial and study material availability, Power BI is on a
level of its own. Everything that users need can be found on the Power BI
web page for free in the form of video guides, articles, discussion forums,
and webinars. Each of these provides new insights into this tool which is
considered as the second best BI tool available on the market.

12



2.3. Power Bl

Test result

Microsoft’s Power BI passed our tests marvelously, producing a result analo-
gous to that of Tableau.

160K

140K

120K

100K

Instantaneous power

@
S
=

60K

Figure 2.7: Modulo carpet - Microsoft PowerBI

-10 -5 [} 5 10 15 20 25 30 35

Average of Avg. outdoor temperature

Figure 2.8: Scatter plot - Microsoft PowerBI

Conclusion

To summarize, Microsoft’s Power Bl is a useful and powerful tool for analyzing
data in reasonable time. Unlike Tableau it does not have its own query
language, and some of its features are not quite as elegant, but Power BI
provides its software version for free. Moreover, Power BI has an equivalent
mobile version which is free as well and is very useful in case of limited access

to a

computer.

13



2. Comparison of Business Intelligence tools

. 2.4 Qlik Sense

Inspiration, Imagination, and Innovation are the three main drivers of the
company behind "QlikView", a product for data viewing, and "Qlik Sense",
which allows full manipulation of data - both of which are business intelligence
tools created by Qlik. Qlik, the company behind the development of Qlik
Sense, was established in 1993 in Sweden, from where they expanded to their
current company headquarters which is now in Pennsylvania, USA.

B User friendliness

Upon startup, Qlik Sense seems very intuitive and user-friendly. The first
problem to present itself is the lack of support for 4k displays - everything in
the program window seems to be oversized or too small, which did not help
orientation around the program. Several components which could normally
be accessed by clicking on them would occasionally disappear, and some were
hidden for a time, or that by chance that specific part of the screen was
flashing for no apparent reason.

As in Power BI described in section 2.3, fitting a whole table into the program
window was troublesome. In Qlik Sense there is no option to change the size
of letters, which means that viewing a whole table is not at all possible. On
the other hand, such a problem can be solved by the vertical and horizontal
slider.

B Large datasets

Qlik Sense is far behind Tableau and Power BI when tackling large datasets.
In the case of the Scatter plot described in section 2.1, it took almost 15
seconds to get the results from the dataset containing about 220,000 samples
compared to Tableau’s runtime of fewer than 0.5 seconds.

B Built-in functions

There are not enough built-in functions which can be easily found on the
menu. Nearly the only functions which are available are SUM, COUNT, AVG,
MIN and MAX - all the other functions have to be written by the user.

B Writing own functions

Writing your own functions in Qlik Sense is very intuitive and user-friendly.
Most of the functions are actually written in the same format as in Excel,
which is very helpful. The main advantage of Qlik when compared to Power
BI is its function "WEEKDAY". This function has to be written by the user
as a script, but it has the letter-based format at the correct order of days
in the week, unlike Power BI’s alphabetical order. Writing new functions in
Qlik is very simple and intuitive - a click of a button brings up a new window
where a whole function may be written. Another button applies that function

14



2.4. Qlik Sense

to your command window. Qlik Sense lacks the ability to store the definition
of functions - which on the one hand is good, due to limited space in the
program window, but on the other hand, especially when one definition of
the function is meant to be used in more than one place, copying it over and
over again is quite unpleasant.

B Materials

There are three main sources of information about how to use Qlik Sense.
The first is directly from the company’s web page, where a lot of information
is offered in the form of videos, virtual instructor-led training or a so called
"Continuous Classroom". The second is to attend Instructor-Led Training
which can be held publicly in public classrooms or privately in a company
facility.

Last is the Qlik official youtube channel where Qlik updates information and
tutorials about new features presented in the latest version of software.

B Test results

When attempting to determine whether or not Qlik Sense achieves its goal, the
conditional formatting for Modulo Carpet is glaringly missing - a substantial
drawback in this research.

Scatter Plot leaves more room for optimism as it looks the same as it should.

Hour(Date) v

WeekDay v 0 1 2 3 4 5 6 7 8 9 10

po 414866 410158 410665 409738 438134 455838 502540 568617 640841 696815 709378
at 422976 420648 418855 418928 445143 461015 504788 578608 651323 719615 735642
st 425209 420913 419980 420022 444220 461574 502219 583388 661204 722311 736066
ét 427867 424143 424335 424134 449947 465272 506174 575633 638803 696328 705893
pa 428432 423212 421800 422516 447578 462941 496619 561495 617783 655065 657125
so 414556 408131 406971 406323 406948 405819 408350 406891 399592 386640 378061

ne 408656 406157 402915 401875 401810 401118 399826 398498 391055 380497 370665

Figure 2.9: Modulo carpet - Qlik Sense

15



2. Comparison of Business Intelligence tools

168k

148k

©81.80.2015

128k

188k

Sum ([Instantaneous power])

50k 11.87.2815

-1a -5 -] 5 16 15 28 25 30 35

Avg ([Avg. outdoor temperature])

Figure 2.10: Scatter plot - Qlik Sense

B Conclusion

To conclude, Qlik Sense is a very intuitive program with not too many built-
in functions, placing it at a slight disadvantage when compared to Power
BI or Tableau. Despite the rather negative overtones of the review, Qlik
has several notable advantages, such as the ability of the user to earn an
official "certificate of knowledge" of using the programs developed by Qlik, or
provision of Qlik’s basic version for free.

B 25 MicroStrategy

MicroStrategy desktop is an analytics platform developed by the American
company Microstrategy which was established on November 1989.

As a business intelligence software, it supports a wide range of file formats,
from files such as JSON, Excel, CSV, and Text, to even SAS. Similarly to
every other BI software presented in this research, MicroStrategy enables the
user to import data from a wide range of supported database formats such
as SQL or IBM. Like Microsoft’s Power BI, Microstrategy stands out due to
its ability to extract data from a variety of different sources such as online
services like Facebook and Dropbox, as well as its support for other BI tools
formats such as SAP or BO.

16



2.5. MicroStrategy

B User friendliness

The program itself looks bland and unadorned, without any special visual
effects or a particularly pleasing design. This becomes particularly obvious
when a user with a high-resolution 4k display uses the program - MicroStrategy
is not even remotely optimized for these screens. Everything, including menus,
variables, pushbuttons is so painfully small that working with such a program
is often very unpleasant.

B Large datasets

MicroStrategy’s main issue is easily discernible from the way that it works
with large datasets. When tackling large datasets, a dialog window appears
with a warning message that dataset is too big and will be processed slowly.
Such a warning did not appear in any other software included in this research.

B Built-in functions

The level of built-in functions of Microstrategy lies between Tableau and
other tools presented in this research. The currently available tool stores its
functions in the form of variables called "Attributes". These attributes include
functions for maintaining and supplementing work with dates. On the other
hand, MicroStrategy desktop suffers from a lack of built-in functions to work
and adjust the appearance of objects such as tables. Qlik Sense described in
section 2.3 displays a similar problem.

B Writing own scripts

Writing one’s own functions in MicroStrategy is quite the same as in Qlik
Sense, with the exception of Microstrategy’s attribute-centric approach. Every
used function has to have a pointer reference to the data it works with, which
translates into a lot more attributes than desired stored in the workspace.
The author found working in such an environment unpleasant.

B Materials

Unlike most companies in the field, Microstrategy provides an in depth
personal instruction in specialized training centers.

In case the customer is not able to visit company training center, said
customer still has the possibility to watch numerous training videos on the
official Youtube channel of the company.

B Test results

MicroStrategy desktop exhibits the same issues as Qlik Sense does. There is
no conditional formatting available for pivot tables which form the Modulo
Carpet structure.

Furthermore, when the graph set is shrunk to a smaller size, the axes captions

17



2. Comparison of Business Intelligence tools

stay in the same position they occupied previous to the decrease in size. This
is the reason why the only Scatter plot presented in this research without any
captions is the one generated by Microstrategy.

140K

120K

100K

80K

Sum (Instantaneous power)

60K

0,00
50,00
100,00
150,00
200,00
250,00
300,00

=)
8
o
e

Bl Conclusion

Avg (Avg. outdoor temperature)

Figure 2.12: Scatter plot - MicroStrategy

MicroStrategy displays a host of issues, and generally disappoint. It’s scaling
issues make the program unusable on 4k displays, and while a number the
built-in functions is bigger than in Power BI or Qlik sense, the binding of every
function to one group of data makes the workspace slightly overpopulated.
Another downside of the program is the rapid decrease of computational
speed when large datasets are introduced. No other BI software examined in
this research exhibited such issues.

Microstrategy provides its basic desktop version for free and also has other
versions available such as a mobile or a server one.

B 26 Chapter summary

In this chapter, we introduced the newly-minted concept of Energy intelli-
gence. The term Energy intelligence is used to tie together several different

18



2.6. Chapter summary

methodologies in order to create a model or framework of thought used to
detect and analyze patterns in energy systems, thus enabling improvement of
existing systems by detecting and eliminating malfunctions or bad settings of
the examined systems.

In order to improve and modify the existing systems, it is essential to have
proper insight into the gathered data. The chapter provides a full introduction
into the "Modulo Carpet" and "Scatter Plot" structures currently used as key
instruments by Energocentrum PLUS, s. r. o., to gather the necessary data
and comprehensively analyze it.

The rest of the chapter covers the extensive research conducted in the field of
Business Intelligence tools, which analyze business data and provide insight
into possible solutions and methods to improve productivity and effectivity of
the company’s services. This research was conducted in order to gather the
information and inspiration necessary to design a better tool, which would
provide in the future superior Energy Intelligence analysis. The aforemen-
tioned tool would be presently incorporated into the framework of tools and
systems currently used by Energocentrum PLUS; s. r. o.

19



20



Chapter 3
Design of the query language

Based on our review of the various BI tools currently available in the market,
which we have covered in the previous chapter, we may now proceed and
attempt to implement our own application. Such software will be later
converted into an API in order for Energocentrum PLUS, s. r. o., to make
full use of it, based on the experience and knowledge gathered during our
aforementioned research and analysis.

The main inspiration for building a new tool from scratch was to provide better-
tailored service for Energocentrum PLUS, s. r. o., and equip the company
with the necessary tools to better implement their existing methodologies to
the newly developing field of Energy intelligence. Since Energy intelligence is
a relatively new and yet-to-be fully explored field, companies intending to
make full use of its capabilities in this field would need to develop its own
tools and software to provide satisfactory service based on a specific analysis.
In order to fit said company needs and provide optimal, practical service
in real-world situations, such an application would need to meet four main
requirements:

® The capability of extracting information from a Sample Timestamp (Day
of the week, Hour), where "Sample" may be defined as a pair consisting
of a timestamp and its respective value.

® The possibility of obtaining data from a wide range of data sources -
such as, for example, CSV, Excel, or database files.

® Implementation of variety of mathematical operations such as Average,
Sum, or Median

® The ability to process user-defined mathematical operations, such as
thresholding or data filtering.

The software which was developed for this work was designed with these
four main requirements in mind, and if at some point during the development
process some of these requirements were violated or not optimally met, the
development process was stopped and reformed in order to provide a better
solution that would meet the aforementioned requirements and satisfy them.
Another consideration made while writing the application, which is not

21



3. Design of the query language

mentioned in the four requirements and yet is common for all commercial-
collaborative applications, was to maintain the code structure, transparency,
and editability. Since the tool written for this article was supposed to be used
by an actual company on a variety of real-world cases, it was of paramount
concern, even if not officially stated.

In the following section, we will discuss how the tool was built and imple-
mented. Furthermore, we will review the structure of the program itself, and
compare its capabilities with those of Tableu, which was chosen thanks to its
various capabilities as an inspirational for the development of the tool.

B 3.1 Software design and implementation

B 3.1.1 Code structure

The entirety of the aforementioned program is separated into specific nodes,
each of which has its own unique functionality.

The code has been segmented into nodes in order to allow for greater trans-
parency of its structure, as well as allow for increased expandability - optionally
expand the application to handle additional sources of data or new mathemat-
ical operations, such as integrals, for example. The code’s general structure
is detailed in the next page.

In the two following sections, each of the main classes, structs, and enums
would be explained and discussed in detail, accompanied by examples and
snippets of the real code in order to provide sufficient understanding of each
part.

The section named "Functional nodes" describes the purpose of each of the
classes included in the computational tree structure of the whole program
depicted in the figure on the next page.

In the section titled "Structs and data classes", we will discuss the way that
data is stored and structured across the application, and introduce at the
beginning of each subsection a figure with the names of the newly introduced
structures - classes, structs, enums, etc.

22



3.1. Software design and implementation

WMaExpression

MaValueResullExpression
MalMatrixResultExpression

4

MaConstExpression

MasSingleChildMatrixResultExpression
MaValueResultWithValuelnputExpression

MaComplexAggregationExpression
MaBinaryComparisenExpression

MaDataSourceexpression

MaExtractDatelnterval Expression

MaCSVDataSourceExpression

MaDatabaseataSourceExpression

ManultiChildMatrixResultExpression

f

MaBitwise Operation Expression

Legend

T l I Abstract classes

MaBitwiseSumOperationExpression
| l Functional classes

MaBitwiseDivOperationExpression
MaBitwiseMulOperationExpression
MaBitwiseSubOperationExpression

Figure 3.1: Computational nodes hierarchy

23



3. Design of the query language

B 3.2 Process calculation principles

This section will introduce the main principles and logic behind the operational
process which manages the computational nodes, which are elaborated in
the next section. As the basic process of all calculations is similar, it can be
explained in general with no need for a specific example from each of the
processes.

Ma Expression|

¢ Call of leaf node Evaluate

' Public <~ function
abstract Access of parent
. class J Evaluate function
Access of inheritor Evaluate
Public < function
class

Figure 3.2: Process calculation principles flowchart

Each and every calculation process starts by calling the function "Evaluate'
of the leaf node in a tree. This function call, depicted in the figure above,
is shown as a black arrow connecting the "Public class" block, which can
express any leaf node in our structured tree. When we recall the structure of
the whole node tree depicted in figure 3.1, we may see that each of the leaf
nodes implements a specific function which is a combination of conditions
and parameters imposed by the previously activated parent classes.

Once the "Evaluate' function call is made, the same function call is made
in each of the parent classes as well, leading to a chain of "Evaluate" calls
all the way up to the closest available node to the root of the tree called
"MakExpression". In figure 3.2 in this section, this chain of events is expressed
by a series of red arrows, each of which connects a pair of child-parent classes.
The reason for this regressive chain of function calls is to ascertain the
existence and fulfilling of each of the initial conditions stated by each parent
class.

Once all the function calls acting on the parent classes are done, the process
reorients itself and proceeds down to the child classes, depicted in the above
figure as a set of blue arrows.

Once the lowest class in the structure is accessed, and the "Evaluate" procedure
chain is finished, the entire calculation is finished, and the required data is
prepared for another process, such as saving said data to a file.

24



3.3. Computational nodes

B 33 Computational nodes

In this section, we will discuss the issue of the computational tree structure.
The goal of this section is to propose such a structure that would satisfy the
various different requirements on function nesting. As an example, we would
use the data providers output, data provider being a class which retrieves
data from a CSV file, and use said output as an input for the resampler
node. Each of following subsubsections describe one of the nodes in the
computational tree hierarchy. For clarity, at each headline, the type of the
class, which represents the computational node, is presented.

Next, we will define the following three terms:

® "Expression" - a general term for any computational node in this work
which accepts, transforms and prepares data for the other computational
nodes or for the applications’ output.

® "Parent" - A class that is used as the basis for inheritance is called a
superclass or base class. [13]

® "Child" - A class that inherits from a superclass is called a subclass or
derived class. The terms parent class and child class are also acceptable
terms to use respectively. A child inherits visible properties and methods
from its parent while adding additional properties and methods of its
own. [13]

B MaExpression (abstract class)

"MaExpression" is an abstract class at the root of the application’s object
tree. The main reasons for placing MaExpression at the root of the tree are
the high combinational requirements resulting from the various demands of
real usage and extensive requirements on a variability.

MaExpression serves as a framework for all other classes.

This class introduces an abstract procedure named "Evaluate", which is
common for all inheriting classes, with each of them redefining it according
to the need of its specific usage and purpose. As an input parameter to this
function, we utilize an object of class "EvaluationContext" which is discussed
later in this work.

MaExpression has two descendants, both would be discussed shortly.

B MaMatrixResultExpression (abstract class)

Similarly to the MaExpression class, the class named "MaMatrixResultFEx-
pression" is defined as an abstract class. Unlike MaExpression, this class
contains a parameter in which the succeeding classes stores the result of their
calculations in form of a MaMatrix object.

As we recall the previous discussion about the calculation principle, MaMa-
trixResultExpression is the top class which all its succeeding classes access.

25



3. Design of the query language

Once its "Evaluate" function is finished, the process of evaluation starts
accessing and calculating the chain of child classes "Evaluate" functions on
the way to the leaf expression.

B MaSingleChildMatrixResultExpression (abstract class)

"MaSingleChildMatrixResultExpression" is an abstract class which adds new
requirements to the input data in the form of a single matrix, which is
processed later by its child.

B MaComplexAggregationExpression (regular class)

Forms a very complex tool to create queries for data and their processing.
This class was inspired by the Tableau way of data processing, which we
observed in the research we introduced in this work. We designed this part
of our program similarly to Tableaus in order to assure that our application
would be capable of manipulating the same range of functions with a single
matrix of data as Tableau does.

As this class is considered to be a key junction in this work, we would proceed
to a more detailed description of it.

Input paramefers

Source data

Time

Y

[Josseudxguowﬁamﬁvxadl.uogeu]

aggregations Output query
Timestamp Complete query
column for data

Value columns

Mathematical
functions

Figure 3.3: MaComplexAggregationExpression structure

There are five input parameters that together form all the information we
need to obtain data results which are similar to Tableaus software. These
input parameters are:

1. Data source
Object of class MaMatrixResultExpression which, in this context, is con-
sidered as a data source for operations and aggregations. It is important
to remember that the MaMatrixResultExpression class is an abstract class,
meaning that it can represent any of the data providing classes, such as CSV
or database.

26



3.3. Computational nodes

2. Time aggregations
Time aggregations we require to be applied on data in a single array. Each
of these time aggregations can be of a discrete or continuous type, both of
which are described in detail later in this work.

3. Timestamp column
Column of input data where timestamps are stored. Thanks to this parameter,
after calling the "Evaluate" function of this class, we know where to look for
the timestamps of input data which we want to aggregate in a way defined
by the second parameter.

4. Value columns
Provides information about which columns of source data contains actual
sample values and which columns we would like to use as input for mathe-
matical operations such as average or sum.

5. Mathematical functions
Array of mathematical operations we would like to use.
To uniquely determine on what data we would like to perform which given
mathematical operation, we need to specify it by the number of the column
in the source data and by the identifier of the function itself.

B MaMultiChildMatrixResultExpression (abstract class)

In the two previous subsections, we sufficiently covered the part of the
analysis where we used only one matrix as an input and only a single column
for one mathematical operation. Unfortunately, the wide range of analysis
where we need to use more than just one data column is still uncovered. To
satisfy our requirements in this field of multi-column analysis we introduce
"MaMultiChildMatrixResultExpression”.
"MaMultiChildMatrixResultExpression" is an abstract class designed for
working with more than just one column of data (or datasets), on which
we would like to perform mathematical operations such as bitwise sum or
subtraction.

B MaBitwiseOperationExpression (abstract class)

"MaBitwiseOperationExpression" may be considered as an interface between
certain parts of the application and a set of bitwise mathematical operations.
Our current requirements from each bitwise function, such as sum or multi-
plication, is that it will be calculated on a single matrix, but only on certain
rows in it. The principle of bitwise operations is depicted in the following
figure with the bitwise sum operation as an example.

27



3. Design of the query language

Source data Source data

b X Xm,1
0
a
E | — c
@ @ @
-
7| 3 =
= (] (]
=
\ y \_ tn X1.n an

Output data

t; Y4

m
— V; = Zx;“' i € (1,..,?1} —>
k=1

tn Yn
~ 1/

Figure 3.4: Bitwise sum operation principle

The "sum" operation is implemented as an example. Implementation of
other operations is just matter of coding.

B MaBitwiseSumOperationExpression (regular class)

MaBitwiseSumOperationExpression is an example of how the bitwise opera-
tions are coded.

As can be seen in the previous figure (3.4), we can expect to obtain an output
matrix which would have the same number of rows as the source matrix
and two columns - the first of which stores the timestamps and the second
contains the calculated values.

In order to greater flexibility of the tool we had created only the function
Sum, to allow future users of the tool to build and customize it as they see
fit.

B MaDataSourceExpression (abstract class)

"MaDataSourceExpression" is a generic data source abstraction which repre-
sents a node that retrieves data from external sources such as CSV, XLSX,
Mervis DB, SQL and more.

28



3.3. Computational nodes

MaDataSourceExpression, being an abstract class, stores the starting and
ending timestamps between which all inherited data processing classes oper-

ate.

B MaCSVDataSourceExpression (regular class)

"MaCSVDataSourceExpression" is a specific data providing class, implement-
ing sourcing data from CSV files. The process’s data retrieval principle is

depicted in the following figure.

Initial state

where data are loaded from
CSV file by lines

h

!

Yes

!

LColumn.Count > 1J

i

Yes

No

Exception state

No Exception state

Yes Last line 7 >«

No

Final state
Data are structured and
ready to reorder into
MalMatrix

Line.length ==0

or
Line.length = 2

Failure state
Data are not
imported

No

<+— Yes +——

e

Exception state

—

Figure 3.5: CSV import principle

29

Store data in list

A

Yes



3. Design of the query language

In order to provider greater clarity and understanding of the issues at hand,
appendix , which contains an example class, has been attached to this
work.

B MaValueResultExpression (abstract class)

As the name would prompt, all classes on the right-hand part of the com-
putational tree are working with a single value, from which information is
extracted and stored as a "MaValue", which discussed in detail in section
"Pre-defined structs and data classes". In the following subsubsections, we will
describe two main functions which operate on single values. These functions
are the binary comparison of two operands, where the output is binary one or
zero representing a true or false state, and the extraction of a specific interval
from a DateTime stamp. These two classes are described in details in the
following subsubsections.

B MaValueResultWithValuelnputExpression (abstract class)

This class adds additional parameters for computation to the previous class,
which stands above it in the computational tree. This means that it adds
additional parameters, such as input value from the previous "MaValueResult",
to its child functions to which other values are compared. This class is the
next step in the specification of the parameters with which the following
classes are intended to work with.

B MaExtractDatelntervalExpression (regular class)

This class covers work done in the field of analysis where we are required to
extract and work with a specific interval, such as the hour or day of the week
from the timestamp of the given sample. These values are usually used to
group the data according to a given value and later on work as a timestamp
for newly calculated time intervals. It is important to say that currently, it
is not possible to get smaller interval than what the actual sample time is.
As an example, it is not possible to get seconds from data sets which are
sampled in hours.

Currently, the supported operations are:

® Year
® Month
® Day of week

® Hour

Minute

Second

30



3.4. Pre-defined structs and data classes

B MaBinaryComparisonExpression (regular class)

The MaBinaryComparisonExpression class was created due to requirements
which rose regarding data filtering, such as when we want to obtain the subset
of values from the whole data set which satisfies a given condition. Such form
of the function gives us an option to actually generate our own mathematical
functions in the current tool, which means there is a wider range of possible
analytical operations which can be created.

Currently, the operations supported by the application are:

® Less than
® More than

8 [sEqual

. 3.4 Pre-defined structs and data classes

In this section, we will discuss pre-defined classes, structs, and enums, which
are used as parameters and properties in the computational nodes presented
in section (3.3), and in which data is stored. The section is divided into three
central parts describing pre-defined structs, enums, and classes in that order.
In case that one element contains another and a description of the inner
element is not yet presented, a brief outline is introduced to provide sufficient
insight into the subject.

B 3.4.1 Pre-defined structs

ColumnValue MaDateTime MaValue

Figure 3.6: Pre-defined structs

B MaValue

"MaValue" is the essential element in which data is stored and from which
data is retrieved. MaValue data is stored later on in more complex structures,
such as MaMatrix.

Currently, supported data types which MaValue supports are:

8 Null - Element in datasheet is missing
® Double - Actual value is an element of double’ type

® MaDateTime - Actual value is a timestamp in form of struct described
in subsection 3.4.2.

31



3. Design of the query language

Each element can represent only one of the value types listed above. The
value type which is stored in MaValue is uniquely determined by an overloaded
constructor which can obtain only one value from the aforementioned set
of Null, Double, and MaDateTime. Once the appropriate constructor is
chosen according to the input argument, the value of the pre-defined enum
MaValueType is set. We will discuss the reason for introducing this enum
and further details in subsection 3.4.2.

B MaDateTime

"MaDateTime’ is a struct which is defined in this work to enable working with
the data values timestamps. This struct is in effect a superstructure to the
built-in struct 'DateTime’ which is working with date and time data, designed
to extend the built-in struct’s capabilities and to satisfy our additional
requirements which are discussed in greater detail below.

Each instance of MaDateTime is composed of four main attributes which
together form a very powerful tool to manage work with timestamps. These
attributes are:

8 MaDatelnterval
Pre-defined enum allowing work with time aggregations.

8 MaDateKind
Pre-defined enum indicating if time aggregation stored in current Ma-
DateTime is continuous or discrete.

8 DateTimestruct
This struct comes as a built in part of C# and enables work with date
and time. When a new instance of MaDateTime is created, DateTime
parameter and a parameter named MaCalendar are set, creating a sample
timestamp to be manipulated and worked upon.

8 MaCalendarclassinstance
This instance extends the built-in capabilities of C'# by choosing the
first day of the week.

Most of these attributes are discussed in greater detail in other sections of
this work.

B ColumnValue

"ColumnValue" is a struct defined to store data in an output format, formed
by two separate parameters:

B "MaDateTime", which we discussed earlier in this section, which in this
case serves to store timestamp information in any form which combination
of its inner parameters MaDateKind and MaDatelnterval allows.

32



3.4. Pre-defined structs and data classes

® "MaValue", which can hold either a value or a timestamp. Such a
combination of these two parameters can give us plenty of information
about a given sample thanks to its indexability given by the MaDateTime

property.

B 342 Enums

| AggragationType |

| MaDateKind |

| ComparisonCperation |

| MavalueType |

| MaDatelnterval |

Figure 3.7: Defined enums

B MaValueType

As mentioned previously in this section, MaValue Type is set during the
initialization of a new instance of struct MaValue. According to an overloaded
constructor, MaValueType obtains its value from the set of values Null,
Double or MaDateTime. MaValueType is introduced due to the control
of data consistency in MaMatrix (more about it in subsection 3.4.3) and
also prevent of exception states due to access and usage of not initialized
properties of the MaValue struct.

B AggregationType

Is important as an indicator in class MaComplexAggregationExpression
where defines which mathematical operations from set Sum, Average, Min
and Max are applied to the data. It also serves as a switch argument in
class MatrixColumnAggregationDefinition where the functions themselves
are defined.

B ComparisonOperation
is a user defined structure to cover filtering input data according to the

specific threshold given by a user. Currently, specified thresholding functions
are: Less than

33



3. Design of the query language

B MaDateKind

MaDateKind is the key junction in an extraction of data from the timestamps.
Set of values which this enum contain is just two-element set (Continuous,
Discrete) and each of them works with data in the very different way.
Discrete MaDateKind works with data in a way that DateTime class does.
Except for the specified information, everything else is thrown away. So in
the case of an interval such as year or month, a just particular time interval
is retrieved and stored from the process of calculation. In contradiction
continues MaDateKind extracts all information till set time interval. In the
case of choosing as an example the month, all values which will be retrieved
from the process of calculation will contain a year and month of the particular
timestamp. It is important to realize, that in the case of functions week of
the year, the day of the year, the day of month and day of the week there is
no continuous distribution of the values. In these special cases, we obtain the
same information from continuous and discrete distribution type.

Il MaDatelnterval

MaDatelnterval is an enum introduced to store the value of time aggregation
of the timestamp. In the case of this work, it is useful as the indicator of
which value is stored in actual MaDateTime. MaDatelnterval is defined for
following intervals:

B Year

® Quarter

® Month

8 Week of year
® Day of year

® Day of month
® Day of week

8 Hour

® Minute

® Second

B Exact timestamp

In the case of need to extract just particular discrete information such
as a year from the timestamp, we would not need to create own apparatus
to achieve it due to it is already part of the DateTime struct. Our need
stem from the creation of semi-continuous time intervals described by the
parameter MaDateKind.

34



3.4. Pre-defined structs and data classes

B 3.4.3 Data classes

AggregationBucket BucketValueHolder MaCalendar
LEvaIuationContextJ LMaBinaerxpresisionJ Malatrix

LCnlumnBasedMaValueSetJ

Figure 3.8: Data classes

B MaMatrix

The MaMatrix class represents a table like structure where MaValues are
stored. A specific data type (Null, Double, MaDateTime) is stored in each
column. In case that this law is violated the whole program ends, a halt which
is handled by a proper exception status. The main features of MaMatrix are:

® 'Get’ column counted
B 'Get’ rows counted
B 'Get’ and ’Set’” MaValue on a specific position

8 Compare two MaMatrixes

B MacCalendar

The MaCalendar class extends the possibilities of working with and manip-
ulating functions such as day of the week. In this class, DateTime it is
impossible to set the first day of the week to different day. By default, it is
set to Sunday which is inconvenient for the European way of thinking.
MacCalendar is used to return day of the week on whichever day is predefined
as the first day of it.

B EvaluationContext

EvaluationContext is currently a placeholder for the MaCalender, meant to
be extended and built upon in the future.

B BucketValueHolder

BucketValueHolder is an internal class working with the data used during the
calculation process. Its primary goal is to create buckets (a.k.a containers) in
which the data is stored in an order based on a predefined condition.

35



3. Design of the query language

Hour 1 ColumnBasedMaValueSet
Hour 2 ColumnBasedMaValueSet
Monday ™ Hour 3 ColumnBasedMaValueSet

—b[ Hour 24 ]—)[ColumnBasedMaValueSet

Figure 3.9: Complete BucketValueHolder for Modulo Carpet structure

As can be seen in the figure above, each so-called bucket may hold another
bucket or values, not both.
When the current bucket is not in the lowest level of the structure, the bucket
holds other objects of the BucketValueHolder class. When it is in the lowest
level of the structure, it holds values.
To provide sufficient insight into the issue we introduce the example depicted
above. We would use one of the main structures which we aim to eventually
create - a structure called 'Modulo carpet’, which is explained in greater
detail in section 2.1.
In this structure, we split the data according to two parameters which are
the hour of the timestamp and day of week extracted from it. The first level
of the BucketValueHolders would be consisting of buckets, each representing
one day of the week. Each of these buckets contains sub-buckets in form of
hours. This method of combining all the elements in additional sets is called
"Cartesian sum", which is defined as:
The Cartesian product of two sets A and B (also called the product set, set
direct product, or cross product) is defined to be the set of all points (a,b)
where a in A and b in B. It is denoted A x B, and is called the Cartesian
product since it originated in Descartes’ formulation of analytic geometry. [1]
As was said before it serves to create all possible combinations of elements of
multiple lists.

36



3.4. Pre-defined structs and data classes

Once the basic structure is done, a simple iteration of source data is made and
according to the parameters extracted from the timestamp of each sample
which is then affiliated to the proper group.

B ColumnBasedMaValueSet

"ColumnBasedMaValueSet" is meant to store all the values for the various
aggregation functions. As the name would prompt, all the data is stored in
the form of lists, where every list represents one data column. When the
aggregations are primed, each data column is accessible through its column
index.

If we recall the figure 3.9 Column BasedMaValueSets represents the lowest
level of the structure where that data is stored in appropriate buckets.

B AggregationBucket

Represents the whole structure depicted in figure 3.9, as it holds all the
buckets and appropriate data points. Once the process of sorting the data
into the appropriate categories is done, AggregationBucket class will contain a
function to create an output matrix, where the buckets would create different
categories in the output Matrix, and the output of the used function produces
will be a calculated result for a given category. Such a situation is depicted
in the figure on the following page.

37



3. Design of the query language

Hour 1 ColumnBasedMaValueSet

Hour 2 ColumnBasedMaValueSet
Monday ™ Hour 3 ColumnBasedMaValueSet
Tuesday

Hour 24 ColumnBasedMaValueSet
Sunday

n

Sum(ColumnBasedValueSet) = ZCru’umnﬂ‘ah‘e'di’alueSer(i}; ColumnBasedValueSet(i) € R

=0

Monday Hour 1 Sum(ColumnBasedMaValueSet)
Monday Hour 2 Sum(ColumnBasedMaValueSet)
Monday Hour 3 Sum(ColumnBasedMaValueSet)
Monday Hour 4 Sum(ColumnBasedMaValueSet)
Sunday Hour 24 Sum(ColumnBasedMaValueSet)

Figure 3.10: Conversion to the MaMatrix structure

38



3.5. Unit testing

B 35 unit testing

Unit testing is closely associated with software development of all kinds and
is meant to assure that software works without failure under predefined rules,
which prevents unintentional or unexpected behavior. There are generally
two categories of tests which can be performed:

8 Subjective tests

8 Objective tests

Subjective tests are performed usually by the operator (designer, developer),
who evaluates the results of the test based on their senses, preferences, and
opinions. As an example, we would test the GUI of the application. It is
evident that scaling problem or wrong color range used in the program can
be detected simply by vision. The problem with subjective testing is that
there is no straight right or wrong.

Thanks to the fact that this application is in the long-term development, GUI
was not created yet and therefore there is no need for subjective tests.

The second group of tests is called objective tests. Objective tests are simple
to evaluate because the result is a binary right or wrong, and no another
result can exist. Simply put, this group of tests works with facts. As an
example of such testing, we can introduce a test where we already know the
output value which we want to obtain and compare it to the actual output of
our script.

In the case of this work, we aimed at a group of objective tests due to the fact
that in the future it will form the API for energy intelligence of the analytical
tool. This means that there can be no miscalculations, as even the smallest
miscalculation would return very wrong results.

We applied our set of objective tests to the following fields:

® Mathematical operations
B Time aggregation
® Import of data

® Storing the data in data structures

In the case of mathematical operations and time aggregations performed
on data, the testing functions are relatively simple.
The right results were precalculated in a different analytical software to get
a baseline result. After the process of calculation ends, the retrieved data
was compared to data precalculated by Tableau. In case that both results,
the retrieved and precalculated data, are equal, we may say that the tests
succeeded. In all other cases, the result of the test is considered to be the
failure.
In the case of the two other fields of testing, Import and storing of data, no

39



3. Design of the query language

additional software is required.

To check whether data is correctly imported just a few samples of the whole
dataset, which contains 220,000 samples, are used. The main reasons to do
S0 are:

B Even a small dataset may reveal mistakes in the code and in the process
of import

® Imported data is compared to testing data which has to be hard coded
in a test function. Hard coding of the whole data set would be time and
memory consuming and such an effort would not be efficient.

In the mathematical operations and time aggregation tests, we require the
retrieved and testing data to be the same.
The last test is checking the data to be correctly stored in a structure
MaMatrix described in section 3.4.3.
After the data importing test ends successfully we can safely assume that the
correct data is provided as input to the transformation function. Similarly to
the previous test we have to hard code the testing structure, which at the
end of the test would be compared to the retrieved one.
The application is considered to be working properly when all the tests pass
successfully.

B 36 Implementation review

To wrap up our lengthy exploration of the various BI tools currently available
in the market, we introduced in section (2.1) two structures designed for En-
ergy Intelligence data analysis - Modulo Carpet and Scatter plot. Since both
of these structures are essential for the developed software to be applicable in
the field, additional functions were introduced to the software in order to test
the possibility of retrieving data which will enable forming these structures,
as well as the software’s functionality in the range of possible settings such
as different time intervals or functions.

Since both structures were tested thoroughly and the data output was repeat-
edly found to be correct, the software can be considered applicable. As these
data structures contain 128 and 782 rows respectively, describing them in full
and their equivalent hard coded unit test classes is unreasonable. Therefore,
a summary of the tests in the form of partial key analytical data parts is
described in the following tables:

40



3.6. Implementation review

Avg (Instantaneous
[~ | power) [~ |
308.68
305.177
305.554
304.865
325.993
339.165
373.914
423.078
476.816
518.464
527.811
519.322
506.855
510.973
505.942
504.405
490.658
473.902
436.038
400.674
378.866
342.008
326.666
322.487

Day of week

O 0~ AW N E O

N NNNRRPRPRRRBRRIRERIPRER
W NP O WOWwSNOOLRAWDNDE O

312.309
311.331
310.491
309.132

Figure 3.11: Sample input for Modulo Carpet structure

In order to provider greater clarity and understanding of how data for
Modulo Carpet is being verified, a testing method is appendixed in appendix

B.1l

41



3. Design of the query language

Avg (Avg. outdoor Sum (Instantaneous
temperature) [~ power) ~

1/1/2015 88036
1/2/2015 97857
1/3/2015 91498
1/4/2015 90442
1/5/2015 139337
1/6/2015 140789
1/7/2015 142939
1/8/2015 138129
1/9/2015 126007
1/10/2015 91600
1/11/2015 92926
1/12/2015 141817
1/13/2015 131593
1/14/2015 141484
1/15/2015 142363
1/16/2015 124968
1/17/2015 96581
1/18/2015 94900
1/19/2015 136475
1/20/2015 130981
1/21/2015 135065
1/22/2015 138351
1/23/2015 127885
1/24/2015 95683

Day of year

2/17/2017 110926
2/18/2017 88220
2/19/2017 89729
2/20/2017 85185

Figure 3.12: Sample input for Scatter plot structure

Should some analytical function be found missing or in need of an update,
the code’s high editability, as well as its massive extendability factor, allow
for such a function to be easily and swiftly incorporated into the designed
application.

42



3.7. Possible outcome

. 3.7 Possible outcome

As previously mentioned, this work is part of the long-term development of
an analytical tool which would serve as a key instrument in data analysis.
The data gathered by this analytical tool would be mined and processed to
verify proper setting of heating systems developed by the company. The tool
may also be used to identify malfunctions and bad configurations, as well as
bugs and human error, allowing the company to correct such issues and make
their systems far more effective.

As the application is at a stage where it is possible for it to be transformed
from an application into an API (application programming interface) to be
used for Energy intelligence, we may easily imagine two possible ways to
use it in real-world scenarios. Both options would succeed the current tool,
which analytical capabilities are limited by the complexities of graph analysis,
meaning they do not satisfy the requirements necessary for a wider range of
analytical tests.

The first possible options would be to develop a GUI similarly to Tableau,
which would allow the tool to be integrated in the future as a part of the
company’s current complex tool named Mervis. The advantages of this
solution are that it is easy to design and implement, and provides greater
control and an extended range of possibilities, which together result in an
extremely robust analytical tool.

The main drawback, however, is that not all employees of the company are
familiar with using Tableau-like analytical tools, which may lead to less than
meaningful testing.

The second option for modifying the existing API will be to implement the
tags system. A tag is defined as a name/value pair applied to an entity. A
tag defines fact or attributes about an entity.

This options main advantage is that dividing and cataloging the data with
tags into predefined groups can later be used in conjunction with a GUI to
specify which graphs are available and meaningful for current data group.
The main disadvantage is that almost no employee currently working in the
company possesses the knowledge required to properly tag and retrieve the
tagged data.

As is evident, both solutions are not very promising and are far from optimal,
due to the fact that only a minority of company employees would be able to
use it. As a result, a third option was proposed - combine both solutions.
Such a solution combines the wide range of possibilities of the first solution,
which was the Tableau-like GUI, and limits its disadvantage by utilizing
additional information gained trough the second solution - the tag system.
A practical output of such an interconnected solution would be the pruning
of the useless predefined graphs in the available sets, leaving the meaningful
ones available and easier to notice.

43



3. Design of the query language

N 38 Chapter summary

Similarly to chapter 2, we dove deeper into the wide variety of available
business tools. However, in this chapter, we introduced the structure of our
newly developed application which was inspired by knowledge gathered by
our previous research conducted in chapter 2. The chapter is divided into
three primary sections, corresponding to the structure of the code.

First, we defined the development goals - what would the application be
able to do, and which results should it provide in the field. In addition,
we incorporated one of the basic yet crucial principles of proper software
architecture, which is the principle of future extendability.

We then defined and discussed the practical executory part of the program
and its division into a set of specific nodes, each of which correlates in a
uniquely supplemental way to the tool as a whole. This division into nodes
was implemented with the goal of allowing for maximum transparency and
future extendability of the software. In further service to this goal, each node
is described in its unique subsection.

The third part introduced structs, enums, and classes which serve as storage
devices, storing crucial operational data generated by the executory segments
of the code.

An introductory figure which depicts the workflow of the various objects
described in the subsection is presented at the beginning of each subsection.

44



Chapter 4

Conclusion

The principal goal of this work was the creation, implementation, and deploy-
ment of an analytical tool meant to be used by the company "Energocentrum
PLUS, s. r. 0.". The tool was meant to be used by the company to enhance
its analysis capabilities in the field of Energy Intelligence - a burgeoning and
still developing of using data analysis tools on data gathered from intelligent
building systems in order to check for their deployed systems integrity and
effectivity. At the start of this work we defined two essential data structures
called "Modulo Carpet" and "Scatter plot" which are, among other graphs
and tools, currently used to extract information from collected data.

After we have laid down the key structures necessary for our analysis, we
sought inspiration about how to design a better tool - how should it be
structured in order to be user-friendly, fast, and efficient. In order to choose
the correct approach to the way the data was processed and handled, we
have conducted an extensive research into the current market of Business
Intelligence tools.

After concluding the aforementioned research and inferring several ideas, we
have answered the original question on how to structure the tool, and have
detailed several crucial parts of said structure to provide the reader with
insight into its inner workings.

Since iteration testing of the software was deemed a crucial part of the de-
velopment process, the final parts of this work will discuss the results of the
implemented unit tests. Those unit tests verified the accuracy and precision
of several of the key function’s outputs to assure that the too is indeed ready
for deployment and to be utilized for real analysis.

In conclusion, the Energy Intelligence application which was designed for this
work was inspired by the best tools available today, designed in accordance
with Gartner’s Magic Quadrant[7] requirements, and was tested by iterative
unit tests.

Therefore, we may conclude that this tool is ready for deployment and use in
real-world case analysis.

45



46



Appendix A
Bibliography

[1] Weisstein, Eric W. "Cartesian Product." From MathWorld—A Wolfram
Web Resource. http://mathworld.wolfram.com/CartesianProduct!
html]

[2] Tableau software support, Tableau desktop help, https://onlinehelp,
[tableau.com/v10.2/offline/en-us/tableau_desktop_10.2.pdfl
edited 2017, accessed 12 April 2017

[3] David Iseminger, Power BI Documentation, https://powerbi,
microsoft.com/en-us/documentation/powerbi-landing-page/,
1 March 2017, accessed on 5 March 2017

[4] Qlik Sense support, Loading and Modeling Data - Qlik Sense,
http://help.qlik.com/en-US/sense/1.1/pdf/Loading$’,$20and$’
[$20Modeling$%$20Data . pdf], accessed on 6 March 2017

[5] Microstrategy Incorporated, MicroStrategy Desktop User Guide,
http://www2.microstrategy.com/producthelp/10/manuals/en/ |
AnalyticsDesktopUserGuide.pdf]
created 2015, accessed on 7 March 2017

[6] Project haystack documentation, http://project-haystack.org/doc/
accessed on 24. April 2017.

[7] Jen Underwood, EXPLORING 2017 GARTNER BI MAGIC QUAD-
RANT  RESULTS, http://www.jenunderwood.com/2017/02/22/
|2017-gartner-bi-magic-quadrant-results/, 22. February 2017,
accessed on 21 May 2017.

[8] Ralph Kimball, Margy Ross, The Data Warehouse Toolkit: The Definitive
Guide to Dimensional Modeling, 3rd Edition, July 2013

9] O’Reilly Media, Data Science for Business: What You Need to Know
about Data Mining and Data-Analytic Thinking, July 2013

[10] David Slansky, Jan Pour a Ota Novotny, Business Intelligence, Jak
vyuzit bohatstvi ve vasich datech | 2. 12. 2004

47


http://mathworld.wolfram.com/CartesianProduct.html
http://mathworld.wolfram.com/CartesianProduct.html
https://onlinehelp.tableau.com/v10.2/offline/en-us/tableau_desktop_10.2.pdf
https://onlinehelp.tableau.com/v10.2/offline/en-us/tableau_desktop_10.2.pdf
https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/
https://powerbi.microsoft.com/en-us/documentation/powerbi-landing-page/
http://help.qlik.com/en-US/sense/1.1/pdf/Loading$%$20and$%$20Modeling$%$20Data.pdf
http://help.qlik.com/en-US/sense/1.1/pdf/Loading$%$20and$%$20Modeling$%$20Data.pdf
http://www2.microstrategy.com/producthelp/10/manuals/en/AnalyticsDesktopUserGuide.pdf
http://www2.microstrategy.com/producthelp/10/manuals/en/AnalyticsDesktopUserGuide.pdf
http://project-haystack.org/doc/TagModel
http://project-haystack.org/doc/TagModel
http://www.jenunderwood.com/2017/02/22/2017-gartner-bi-magic-quadrant-results/
http://www.jenunderwood.com/2017/02/22/2017-gartner-bi-magic-quadrant-results/

A. Bibliography

[11] Barney L. Capehart, Timothy Middelkoop, Handbook of web based energy
information and control systems,1st Edition, 26 July 2011

[12] Roberto Melli, Present application of artificial intelligence to energy
systems.

[13] Michelle Yaiser, Object-oriented programming concepts:  Inher-
itance, http://www.adobe.com/devnet/actionscript/learning/|
loop-concepts/inheritance.html] 6 February 2012, accessed on 21 May
2017.

[14] Cesar de la Torre and David Carmona, .NET Technology Guide for
Business Applications, November, 2013

[15] Andrew Troelsen, C# 6.0 and the .NET 4.6 Framework, 8 November
2015

[16] Deborah j. Rumsey HOW TO INTERPRET A SCATTER
PLOT, http://www.dummies.com/education/math/statistics/|
how-to-interpret-a-scatterplot/} accessed on 23 May 2017

48


http://www.adobe.com/devnet/actionscript/learning/oop-concepts/inheritance.html
http://www.adobe.com/devnet/actionscript/learning/oop-concepts/inheritance.html
http://www.dummies.com/education/math/statistics/how-to-interpret-a-scatterplot/
http://www.dummies.com/education/math/statistics/how-to-interpret-a-scatterplot/

Appendix B

Code samples

B B.1 Modulo Carpet test

[Test]
public void ScatterPlotTest ()
{
// Source files where input, output and data to
compare are stored
string sourcePath =
".\\TestData\\sample_mc_sp.csv";
string resultPath = ".\\TestData\\scatter.csv";
string outputPath =
" \N\TestData\\RESULT\\SP_result.csv";

// Load of the data from the data source file

MaCsvDataSourceExpression sourceData = new
MaCsvDataSourceExpression (sourcePath,
DateTime.MinValue, DateTime.MaxValue);

// Cration of the query for the data
transformation

// Parameters are in a row data source, time
agragations, timestamp column index, data
column indexes, mathematical operations

MaComplexAggregationExpression complexExpr = new
MaComplexAggregationExpression (

sourceData,

new BucketDefinition[] { new
MaValueInputFromMatrixColumnBucketDefinition (O,
new
MaExtractDateIntervalExpression(MaDateInterval.DayOfYear,
MaDateKind.Continuous)) I},

0,

new int([] { 1,3 },

new AggregationDefinition[] { new
MatrixColumnAggregationDefinition (1,
AggregationType.Avg),

new MatrixColumnAggregationDefinition (3,
AggregationType.Sum)}) ;

49



B. Code samples

// Call of the function Evaluate in class
MaComplexAggregationExpression with Monday
set as the first day of week

complexExpr.Evaluate (new
EvaluationContext (DayOfWeek.Monday,
CalendarWeekRule.FirstFourDayWeek)) ;

complexExpr.Matrix.RoundDoubles (3);

complexExpr.Matrix.DebugPrint (Console.0Out) ;

// Safe data to the file defined by path
outputPath

SaveData (outputPath, complexExpr);

// Test conducted to check if data are same.

Assert.AreEqual(false, IsDifferent(resultPath,
outputPath));

B B2 CSV data provider

using System;

using System.I0;

using System.Ling;

using System.Globalization;

using System.Collections.Generic;

namespace ESG.Mervis.Analytics.Expressions

{

/// <summary>

/// Reads a CSV data source with many rows. Each row
must contain the same number of columns and each
column must always

/// contain the same data types. First column is a
continuous date time, other columns are "values".

/// </summary>

public class MaCsvDataSourceExpression
MaDataSourceExpression

{

private static readonly char[] m_SplitChars = new
char[1 { ;7 };

private const string InvalidFormatExcText = "Invalid
format";

private string m_FileName;

public MaCsvDataSourceExpression(string fileName,
DateTime from, DateTime to)

50



B.2. CSV data provider

// Call of parent class constructor

: base(from, to)

{
m_FileName = fileName;

}

public override void Evaluate(EvaluationContext
context)

{

CultureInfo MyCultureInfo = new CultureInfo("de-DE");

List<Tuple<DateTime, double[]>> values = new
List<Tuple<DateTime, double[]>>();

// Import of data from csv file
// According to first line we set amount of data

columns (total - time)
var lines = File.ReadAllLines(m_FileName).Select (a
=> a.Split(new char([] { ’;’ },
StringSplitOptions.RemoveEmptyEntries)).ToList ();
if (lines.Count() == 0) { throw new Exception("No

data found in file"); %}
if (lines [0].Length < 2) { throw new Exception("No
valid data"); }

// Remove names of the columns in the CSV
lines.RemoveAt (0) ;
DateTime dt = DateTime.Now;

// Parsing data from the file to Date and array of
double values
foreach (var line in lines)
if (line == null || line.Length < 2) { break; }
try { dt = DateTime.Parse(line[0],MyCulturelInfo); }
catch { throw new FormatException("Invalid Data

format"); 7}

if (dt.CompareTo(m_From) < 0) { continue; }
if (dt.CompareTo(m_To) > 0) { break; }

double[] data = new double[line.Length - 1];

for (int sample = 1; sample < line.Length; sample++)
double.TryParse(line [sample], out datal[sample -
110

values.Add (new Tuple<DateTime,
double []>(DateTime.SpecifyKind (dt,
DateTimeKind.Utc), data));
}

// Transform into MaMatrix structure

o1



B. Code samples

FillMatrix (context, values);

3

private void FillMatrix (EvaluationContext context,
List<Tuple<DateTime, double[]>> values)

{
if (values == null || values.Count == 0) { return; }
int rowCount = values.Count;
int colCount = 1 + values[0].Item2.Length; //
Amount of columns - time column + amount of
values.
m_Matrix = new MaMatrix(rowCount, colCount);

// Storage of data to the predefined MaMatrix where
first column is always filled with timestamps.

for (int row = 0; row < rowCount; row++)
{

// Date Time

m_Matrix[row, 0] = new MaValue (new

MaDateTime (context.Calendar,
MaDateInterval.ExactTimestamp,
values [row].Iteml));

for (int col = 0; col < values[row].Item2.Length;
col++)
{
// Values
m_Matrix[row, 1 + col]l = new
MaValue (values [row].Item2[col]);
}
}

52



Appendix C
CD content

8 PDF version of the thesis
® Code of the developed analytical tool

8 Tex files with necessary content such as pictures

53



	Project Specification
	Introduction
	Comparison of Business Intelligence tools
	Definition of term Energy intelligence
	Tableau
	Power BI
	Qlik Sense
	MicroStrategy
	Chapter summary

	Design of the query language
	Software design and implementation
	Code structure

	Process calculation principles
	Computational nodes
	Pre-defined structs and data classes
	Pre-defined structs
	Enums
	Data classes

	Unit testing
	Implementation review
	Possible outcome
	Chapter summary

	Conclusion
	Bibliography
	Code samples
	Modulo Carpet test
	CSV data provider

	CD content

