
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague March 2, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Detection of landing platform for drones

 Student: Jan Rudolf

 Supervisor: Mgr. RNDr. Petr Štěpán, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2018/19

Instructions

Study convolution neural networks for object detection in a camera image.
Design a structure of a neural network to detect landing patterns from a drone's camera.
Multi Robot System Group at the Department of Cybernetics FEE CTU has a detection algorithm based
on standard computer vision techniques.
Use this detection algorithm and manual labels to create a dataset specifying the center position of the
landing pattern in the image.
Train the neural network on the created dataset, test the effect of the neural network structure on the output
quality with respect to processing of data in real time.
Compare the neural network algorithm with the current detection algorithm and document the results.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of theoretical computer
science

Bachelor’s thesis

Detection of landing platform for
drones

Jan Rudolf

Supervisor: Mgr. RNDr. Petr Štěpán, Ph.D.

16th May 2017

Acknowledgements

In the first place, I would like to thank my supervisor Mgr. RNDr. Petr
Štěpán, Ph.D. for his guidance, friendly and helpful approach. I would
also like to thank MetaCentrum VO for providing the computing resources.
Finally, I would like to thank my family for their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as school
work under the provisions of Article 60(1) of the Act.

In Prague on 16th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Jan Rudolf. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis
Rudolf, Jan. Detection of landing platform for drones. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2017.

Abstrakt

Práce se zabývá použit́ım konvolučńıch neuronových śıt́ı pro detekci objektu
v obrazu. Od vytvořeńı datasetu na základě dat z kamery drona s využit́ım
detekčńıho algoritmu použ́ıvaj́ıćı standardńı metody poč́ıtačového viděńı,
po návrh konvolučńı neuronové śıtě trénované pro detekci přistávaćı plochy.
Práce dává úvod do strojového učeńı, neuronových śıt́ı a jejich praktického
použit́ı s programovaćım jakykem Python.

Kĺıčová slova neuronové śıtě, konvolučńı neuronové śıtě, strojové učeńı,
detekce objektu, Python

Abstract

The thesis is about using convolutional neural networks for visual object
detection. The work guides from making a dataset from a drone’s camera
using a provided detection algorithm based on standard computer vision
methods, to design the convolutional neural network capable of detecting

ix

drone’s landing platform. The thesis introduces to machine learning, neural
networks and their practical usage in Python.

Keywords neural networks, convolutional neural networks, machine learn-
ing, object detection, Python

x

Contents

Introduction 1

1 Machine learning 3
1.1 Supervised machine learning 4
1.2 Concept of learning . 4
1.3 Optimization . 5
1.4 Underfitting and overfitting 8
1.5 Summary . 10

2 Artificial neural networks 13
2.1 Basics of a biological neuron 13
2.2 Mathematical model . 15
2.3 Multilayer feed-forward neural networks 17
2.4 Convolutional neural networks 26
2.5 Prevention of overfitting . 32

3 Solution 33
3.1 Making the dataset . 33
3.2 Implementation . 34
3.3 Network architectures . 34
3.4 Measurements . 39
3.5 Discussion . 39

Conclusion 47

Bibliography 49

xi

A Acronyms 51

B Contents of enclosed USB 53

xii

List of Figures

1.1 We fit three models to this example training set. The training
data was generated synthetically, by randomly sampling values
and choosing deterministically by evaluating a quadratic func-
tion. (Left) A linear function fit to the data suffers from un-
derfitting — it cannot capture the curvature that is present in
the data. (Center) A quadratic function fit to the data general-
izes well to unseen points. It does not suffer from a significiant
amount of overfitting or underfitting. (Right) A polynomial of
degree 9 fit to the data suffers from overfitting. The solution
passes through all of the training points exactly, but we have not
been lucky enough for it to extract the correct structure. It now
has a deep valley in between two training points that does not
appear in the true underlying function. It also increases sharply
on the left side of the data, while the true function decreases in
this area [4]. 10

1.2 Typical relationship between capacity and error. Training and
test error behave differently. At the left end of the graph, train-
ing error and generalization error are both high. This is the
underfitting regime. As we increase capacity, training error de-
creases, but the gap between training and generalization error
increases. Eventually, the size of this gap outweighs the decrease
in training error, and we enter the overfitting regime, where ca-
pacity is too large, above the optimal capacity [4]. 11

2.1 An illustration of a biological neuron [6]. 14
2.2 An illustration of the simplified mathematical model of a biolo-

gical neuron [6]. 15

xiii

2.3 An example of a feed-forward neural network with 3 layers [6]. . 16
2.4 An example of a multilayer feed-forward neural network with an

input layer with nodes 1 and 2. A hidden layer with nodes 3
and 4. Finally, an output layer with units 5 and 6. 18

2.5 The Sigmoid activation function. 21
2.6 The Tanh activation function. 21
2.7 The Rectified Linear Unit (ReLU). 22
2.8 The Leaky Rectified Linear Unit (Leaky ReLU) with α = 0.2. . 22
2.9 An illustration of the standard convolutional neural network [6]. 28
2.10 Output of the filter [5]. 29
2.11 The filter convolves with a stride 1 [5]. 30
2.12 A convolutional layer has several filters [5]. 30

xiv

List of Tables

3.1 Architecture 1 measurement on the training set. 40
3.2 Architecture 1 measurement on the validation set. 40
3.3 Architecture 1 measurement on the test set. 41
3.4 Architecture 2 measurement on the training set. 41
3.5 Architecture 2 measurement on the validation set. 42
3.6 Architecture 2 measurement on the test set. 42
3.7 Architecture 3 measurement on the training set. 43
3.8 Architecture 3 measurement on the validation set. 43
3.9 Architecture 3 measurement on the test set. 44
3.10 Comparison between architecture 1 and the reference program. . 44
3.11 Comparison between architecture 2 and the reference program. . 45
3.12 Comparison between architecture 3 and the reference program. . 45

xv

Introduction

Neural networks are computational models that are among us a very long
time. They have seasons when they are very popular, and seasons when
they are not so much. They are very popular now, because of the results
that are often the state-of-the-art, thanks to quick hardware and a lot of
data. Neural networks are used for example in visual recognition or self-
driving cars.

The goal of my thesis is to study convolutional neural networks for ob-
ject detection in a camera image. Design a neural network to detect landing
patterns from a drone’s camera. Use a current detection algorithm provided
by the supervisor and video data from the camera to create a dataset for
the neural network. Train the neural network on the generated dataset.
Compare the prediction by the neural network and the current detection
algorithm and document the results.

Chapter 1 presents the basic ideas of machine learning. Chapter 2 stud-
ies multilayer and convolutional neural networks. Chapter 3 describes a cre-
ation of the dataset, proposes neural networks for the goal of detecting the
landing platform and compare the prediction with the current algorithm.

1

Chapter 1
Machine learning

According one of the leaders of machine learning, Andrew Ng, the first
self-learning program created Arthur Samuel in 1959 [8]. Samuel created
a program playing checkers capable playing againts human players with
a decent success. In order to make his program better, he let it played
thousand of times againts itself. Samuel stated, that machine learning is
a field, which gives computers the ability to learn without being explicitly
programmed.

Kevin P. Murphy in his book [10] defines machine learning as a set of
methods that can automatically detect patterns in data, and then use the
uncovered patterns to predict future data, or to perform other kinds of
decision making under uncertainty (such as planning how to collect more
data).

Tom M. Mitchell provides often mentioned definition: A computer pro-
gram is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T , as measured
by P , improves with experience E. In the context of checkers, E would be
playing for thousand of times, T the game checkers and E the probability
of winning.

This chapter is based on [11], [12], [6], [5].

3

1. Machine learning

1.1 Supervised machine learning
Supervised machine learning, often called learning with a teacher, is a
paradigm of machine learning, where we have available a dataset with input-
output pairs {(x1, y1), (x2, y2), ..., (xN , yN)} of N data, where each yi some
process or system generates with an unknown function y = f(x). We are
trying to find a function h that approximates the true function f . Each xi
and yi can be a scalar, a vector etc. The function h is called a hypothesis.
Learning is a search through the space of possible hypotheses, H, for one
that will perform well, even on new examples beyond the training set.

When the output y is one of a finite set of values (such as sunny, cloudy
or rainy), the learning problem is called classification, and is called Boolean
or binary classification if there are only two values. When y is a number
(such as tomorrow’s temperature), the learning task is called regression.

1.2 Concept of learning
Assume, that our hypothesis space H is a set of all polynomials with real
coefficients and the max degree of two:

H = {θ2x
2
2 + θ1x1 + θ0|θ2, θ1, θ0 ∈ R} (1.1)

The hypothesis function h with inputs x2, x1 and parameters θ2, θ1 and
θ0 is:

hθ2,θ1,θ0(x2, x1) = θ2x
2
2 + θ1x1 + θ0 (1.2)

The usual notation is xT = (x2, x1) vector for inputs and θT = (θ2, θ1, θ0)vector
for parameters, therefore hθ(x):

hθ(x) = θ2x
2
2 + θ1x1 + θ0 (1.3)

Suppose, we choose values for coefficients θ2, θ1 and θ0. We would like
to know, for each (xi,yi) from our dataset {(x1,y1), (x2,y2), ..., (xN,yN)},
how good our hypothesis is and measure the error between output from
the dataset yi and the prediction made by our hypothesis hθ(x). For this
purpose, we define a loss function L (or sometimes also referred to as the
cost function or the objective):

L : Rm × Rm 7→ R (1.4)

4

1.3. Optimization

where m ∈ N is a dimension of the output vector. The most common
and convenient is squared loss:

L(yi, hθ(xi)) = (yi − hθ(xi))2 (1.5)

We seek for the hypothesis hθ with parameters θ in the hypothesis space
H, that minimize the expected loss over our dataset:

hθ = arg min
θ

E(L(y, hθ(x))) (1.6)

It turns out, for choice of the squared loss function (MSE - mean squared
error), learning is an optimization problem of minimization the avereage
squared error:

hθ = arg min
θ

1
N

N∑
i=1

(yi − hθ(xi))2 (1.7)

We choose different types of functions instead of polynomials here. For
example K-Nearest Neighbor, Support Vector Machines or Neural Net-
works.

1.3 Optimization
Mathematical optimization (also called mathematical optimisation, math-
ematical programming) concers about finding the minimum (or the max-
imum) of real-valued function f : X 7→ R on some set X.

There are three main categories:

• If the set X is finite, we talk about combinatorial optimization.

• If the set X is composed of real vectors, we talk about continous
optimization.

• If the set X contains real functions, we talk about calculus of vari-
ations.

In the previous chapter, we discovered, that learning is a process of find-
ing the right real-valued parameters (or real-valued vector of parameters)
for the hypothesis, that minimize the loss function over our dataset. Be-
cause the hypothesis is often a complex non-linear function, we use iterative
optimization algorithms for finding these parameters.

5

1. Machine learning

1.3.1 Gradient descent

Algorithm 1 Gradient descent
Require: α ∈ R (stepsize)
Require: θ0 ∈ Rn (initial parameters vector)
k ← 0
repeat
k ← k + 1
θ(k) = θ(k−1) + α∆θ(k−1)

until stopping criterion is satisfied
return θ(k) (resulting parameters vector)

Let’s have a random real-valued parameters vector θ0 ∈ Rn. The loss
function represents a n + 1 dimensional surface. As we would intuitively
do in 3 dimensional space, to find the lowest point, we follow the steepest
descent path, we can get in every step. We iteratively compute, from the
initial parameters vector θ0, vector θ1, θ2, ..., until some θ∗ ∈ Rn, for which
is the evaulation of the loss function sufficiently small or we stop by any
other stopping criterion.

We follow this recurrent procedure to generete a sequence θ(k), k =
0, 1, 2, ...:

θ(k+1) = θ(k) + α(k)∆θ(k) (1.8)

where α(k) ∈ R is called stepsize and ∆θ(k) = −∇L(θ(k)) ∈ Rn is the
gradient of the loss function evaulated in θ(k). Step size can be a constant
or change gradually. The gradient is a multi-variable generalization of the
derivative:

∇L(θ) = (∂L(θ)
∂θ1

,
∂L(θ)
∂θ2

, ...,
∂L(θ)
∂θn

) (1.9)

whose components are n partial derivative of the loss function. The loss
function has to be differentiable with respect to parameters θ. The gradi-
ent points in the direction of the greatest rate of increase of the function,
therefore we use the minus to get the opposite direction.

Let’s use the hypotheses from the previous chapter to demonstrate a
concrete application. Let be the learning rate α ∈ R constant and θ =

6

1.3. Optimization

(θ2, θ1, θ0) ∈ R3 random parameters vector. The partial derivatives are
with respect to every parameter:

∂L(θ)
∂θ2

= 1
N

N∑
i=1

(yi − hθ(xi))x2
2 (1.10)

∂L(θ)
∂θ1

= 1
N

N∑
i=1

(yi − hθ(xi))x1 (1.11)

∂L(θ)
∂θ0

= 1
N

N∑
i=1

(yi − hθ(xi)) (1.12)

The rewritten procedure 1.8:

θ
(k+1)
2 = θk2 + (−α)∂L(θ)

∂θ2

θ
(k+1)
1 = θk1 + (−α)∂L(θ)

∂θ1

θ
(k+1)
0 = θk0 + (−α)∂L(θ)

∂θ0

The gradient descent algorithm is also called a batch gradient descent
algoritm by machine learning researchers, because the algorithm has to
process the whole dataset until the next iteration occurs.

1.3.2 Stochastic gradient descent

Algorithm 2 Stochastic gradient descent
Require: α ∈ R (stepsize)
Require: θ0 ∈ Rn (initial parameters vector)
k ← 0
randomly shuffle dataset
repeat

for m← 1, 2, ..., N do
k ← k + 1
θ(k) = θ(k−1) + α∆θ(k−1)

end for
until stopping criterion is satisfied
return θ(k) (resulting parameters vector)

7

1. Machine learning

Stochastic gradient descent or SGD is an extension of the gradient des-
cent algorithm. We saw in equations 1.10, 1.11 and 1.12 that the gradient
descent algorithm have to go through the whole dataset to compute ∆θ(k−1).
This can be computationally expensive for datasets with N = 3 ∗ 108 ele-
ments.

The main difference is the loss function, for which we compute a gradi-
ent, is that it does not sum over the whole dataset:

L(yi, hθ(xi)) = (yi − hθ(xi))2 (1.13)
and the partial derivatives end up looking:

∂L(yi, hθi
(xi))

∂θi
= 2(yi − hθ(xi))xi (1.14)

We are making progress more quickly, looking on just one input-output
pair from the dataset.

1.4 Underfitting and overfitting
The central challenge in machine learning is that we must perform well on
new, previously unseen inputs — not just those on which our model was
trained. The ability to perform well on previously unobserved inputs is
called generalization.

Typically, when training a machine learning model, we have access to
a training set, we can compute some error measure on the training set
called the training error, and we reduce this training error. So far, what
we have described is simply an optimization problem. What separates ma-
chine learning from optimization is that we want the generalization error,
also called the test error, to be low as well.

The generalization error is defined as the expected value of the error on
a new input. Here the expectation is taken across different possible inputs,
drawn from the distribution of inputs we expect the system to encounter in
practice.

We typically estimate the generalization error of a machine learning
model by measuring its performance on a test set of examples that were
collected separately from the training set.

8

1.4. Underfitting and overfitting

The factors determining how well a machine learning algorithm will
perform are its ability to:

• Make the training error small

• Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine
learning: underfitting and overfitting. Underfitting occurs when the model
is not able to obtain a sufficiently low error value on the training set. Over-
fitting occurs when the gap between the training error and test error is too
large.

We can control whether a model is more likely to overfit or underfit by
altering its capacity. Informally, a model’s capacity is its ability to fit a
wide variety of functions. Models with low capacity may struggle to fit the
training set. Models with high capacity can overfit by memorizing proper-
ties of the training set that do not serve them well on the test set.

1.4.1 Hyperparameters and validation sets
Most machine learning algorithms have several settings that we can use to
control the behavior of the learning algorithm. These settings are called
hyperparameters. The values of hyperparameters are not adapted by the
learning algorithm itself.

The setting must be a hyperparameter because it is not appropriate to
learn that hyperparameter on the training set. This applies to all hyper-
parameters that control model capacity. If learned on the training set, such
hyperparameters would always choose the maximum possible model capa-
city, resulting in overfitting. For example, we can always fit the training set
better with a higher degree polynomial than we could with a lower degree
polynomial.

To solve this problem, we need a validation set of examples that the
training algorithm does not observe. The subset of data used to guide the
selection of hyperparameters is called the validation set. Typically, one
uses about 80% of the training data for training and 20% for validation.
Since the validation set is used to train the hyperparameters, the validation
set error will underestimate the generalization error, though typically by a

9

1. Machine learning

Figure 1.1: We fit three models to this example training set. The training
data was generated synthetically, by randomly sampling values and choos-
ing deterministically by evaluating a quadratic function. (Left) A linear
function fit to the data suffers from underfitting — it cannot capture the
curvature that is present in the data. (Center) A quadratic function fit to
the data generalizes well to unseen points. It does not suffer from a signifi-
ciant amount of overfitting or underfitting. (Right) A polynomial of degree
9 fit to the data suffers from overfitting. The solution passes through all
of the training points exactly, but we have not been lucky enough for it
to extract the correct structure. It now has a deep valley in between two
training points that does not appear in the true underlying function. It
also increases sharply on the left side of the data, while the true function
decreases in this area [4].

smaller amount than the training error. After all hyperparameter optimiz-
ation is complete, the generalization error may be estimated using the test
set.

1.5 Summary
The dataset is usually divided into three distinct subsets:

• A training set serves for learning of the parameters θ described above.
This part is called training.

• A validation set is used for determining the best hyperparameters
of the hypothesis, these are fixed during training, but can affect the

10

1.5. Summary

Figure 1.2: Typical relationship between capacity and error. Training and
test error behave differently. At the left end of the graph, training error
and generalization error are both high. This is the underfitting regime. As
we increase capacity, training error decreases, but the gap between training
and generalization error increases. Eventually, the size of this gap outweighs
the decrease in training error, and we enter the overfitting regime, where
capacity is too large, above the optimal capacity [4].

final performance, and depends on the hypothesis (for example size
of neural network). This part is called tunning.

• The third is a test set. The test set measures a generalization of the
hypothesis, how good the hypothesis performs with unseen data.

We can see also dataset divided only to the training and test set. Typ-
ical size of the validation and the test set is 20% of the dataset.

The overview concept in summary:

• The dataset contains input-output vector pairs. We divide the dataset
into the training set, the validation set and the test set.

• Form a hypothesis, that could describe the relationship between the
inputs and the outputs from the dataset.

• Find parameters, that minimize the hypothesis’s mean squared error
on the training set.

• Tune hyperparameters on the validation set for the best parameters
from the previous step. Find such hyperparameters, that minimize
the hypothesis’s mean squared error on the validation set.

11

1. Machine learning

• Test the generalization of the hypothesis on the test set.

12

Chapter 2
Artificial neural networks

Artificial neural networks are computational models used in computer sci-
ence trying to model biological neural networks and the central nervous
system. They are part of artificial intelligence called statistical machine
learning. Other names for artificial neural network include connectionism,
parallel distributed processing, neural computations, adaptive networks or
collective computation.

From a computational viewpoint, it is a method of representing func-
tions using networks of simple arithmetic computing elements, and methods
for learning such representations from examples. These networks represent
functions in much the same way that circuits consisting of simple logic gates
represent Boolean functions [2].

From a biological viewpoint, it’s a mathematical model for the operation
of the brain. The simple arithmetic computing elements correspond to
neurons - the cells that perform information processing in the brain - and the
network as a whole corresponds to a collection of interconnected neurons.
For this reason, the networks are called neural networks [2].

2.1 Basics of a biological neuron
The neuron, or nerve cell, is the fundamental functional unit of all nervous
system tissue, including the brain, whose principal function is the collection,
processing, and dissemination of electrical signals. Each neuron cosists of a
cell body, or soma, that contains a cell nucleus. Branching out from the cell
body are a number of fibers called dendrites and a single long fiber called
the axon. Dendrites branch into a bushy network around the cell, whereas

13

2. Artificial neural networks

the axon stretches out for a long distance - usually about a centimeter, and
as far as a meter in extreme cases. Eventually, the axon also branches into
strands and substrands that connect to the dendrites and cell bodies of an-
other neurons. The connecting junction is called a synapse. Each neuron
forms synapses with anywhere from a dozen to a hundred thousand other
neurons [2].

Signals are propagated from neuron to neuron by an electrochemical
reaction. Chemical transmitter substances are released from the synapses
and enter the dendrite, raising or lowering the electrical potential of the
cell body. When the potential reaches a threshold, an electrical potential
or action potential is sent down the axon. The pulse spreads out along the
branches of the axon, eventually reaching synapses and releasing transmit-
ters into the bodies of other cells. Synapses that increase the potential are
called excitatory, and those that decrease it are called inhibitory. Connec-
tions exhibit plasticity - long-term changes in the strenght of connections
in response to the pattern of stimulation. Neurons also form new connec-
tions with other neurons, and sometimes entire collections of neurons can
migrate from one place to another. These mechanisms are thought to form
the basis for learning in the brain [2].

Figure 2.1 depicts an illustration of a biological neuron. Much more
detailed and realistic models have been developed, both for neurons and for
larger systems in the brain, leading to the modern field of computational
neuroscience [3].

Figure 2.1: An illustration of a biological neuron [6].

14

2.2. Mathematical model

Figure 2.2: An illustration of the simplified mathematical model of a bio-
logical neuron [6].

2.2 Mathematical model
Figure 2.2 shows an illustration of the mathematical model of a neuron.
Each neuron, also called a node or a unit, receives an input signal from its
dendrites and computes a new activation level that it sends along each of
its output links. Each input link represents a variable x1, x2, ..., xn. Each
input link has associated a real-valued weight w1, w2, ..., wn. The threshold
represents the variable b, another name used for the threshold is a bias,
therefore the variable b. The computation is split into two components.
First is a linear component ini, called the input function, that computes
the weighted sum of the unit’s input values:

ini =
n∑
j=1

wjxi + bi (2.1)

Second is a nonlinear component f , called the activation function, that
transforms the weighted sum into the final values that serves as the unit’s
activation (output) value ai:

ai = f(ini) = f(
n∑
j=1

wjxi + bi) (2.2)

Different models are obtained by using different mathematical functions
for f . Commonly used activation functions are sigmoid, tanh, ReLU, Leaky

15

2. Artificial neural networks

Figure 2.3: An example of a feed-forward neural network with 3 layers [6].

ReLU etc. [6].

The idea is that the synaptic strengths (the weights wi) are learnable
and control the strength of influence, excitory (positive weight) or inhibitory
(negative weight), of one neuron on another.

2.2.1 Neural network structures
The most common network structure is acyclic or feed-forward network [2].
It’s a directed acyclic graph, where nodes are structured into layers. Each
node is linked only to units in the next layer. There are no links between
units in the same layer, no links backwards to a previous layer.

Typical network consits of an input layer, an ouput layer and zero or
more hidden layers. The name for networks with more than one hidden
layer is a multilayer network or now very popular term deep network. The
input/output layers can have one or more nodes, therefore the input and
the output of the network can be a real-valued vector. Activations of the
input layer are input data without aplications of the activation function.

Figure 2.8 shows an example of a feed-forward network with the input
layer, 2 hidden layers and the output layer. Total number of layers of this
network is 3.

With a fixed structure and fixed activation functions f , the functions
representable by a feed-forward network are restricted to have a specific

16

2.3. Multilayer feed-forward neural networks

parameterized structure. A feed-forward network has no internal state other
then the weights themselves [2]. Because the activation functions f are non-
linear, the whole network represents a complex nonlinear function [1].

If you think of the weights as parameters or coefficients of this function,
then learning just becomes a process of tuning the parameters to fit the
data in the training set [1]. Another used structures are cyclic or recurrent
networks, where are the connections backward and between nodes in the
same layer allowed.

2.3 Multilayer feed-forward neural
networks

Multilayer feed-forward neural networks, also called feed-forward neural
networks or deep feed-forward networks are neural networks with one or
more than one hidden layers. The goal of a feed-forward network is to ap-
proximate some non-linear function. The non-linearity arises from a choice
of a non-linear activation function g. A feed-forward network defines a
mapping ŷ = h(x; W) and learns the value of the parameters W , called
weights, that result in the best function approximation [4].

The advantage of adding layers is that it enlarges the space of hypo-
theses that the network can represent [Norvig]. For example, we might
have a three function f (1), f (2), and f (3) connected in a chain, to form
h(x) = f (3)(f (2)(f (1))(x)) hypotheses. These chain structures are the most
commonly used structures of neural networks. In this case, f (1) is called
the first layer of the network, f (2) is called the second layer, and so on.
The overall lenght of the chain gives the depth of the model. From this
terminology arises the modern term deep learning.

17

2. Artificial neural networks

Figure 2.4: An example of a multilayer feed-forward neural network with
an input layer with nodes 1 and 2. A hidden layer with nodes 3 and 4.
Finally, an output layer with units 5 and 6.

For example consider a simple network in Figure 2.4, given an input
vector x = (x1, x2)T , the activations of the input units are set to:

a1 = x1 (2.3)

a2 = x2 (2.4)
The hidden units 3 and 4 are given by equations:

a3 = f(w1,3a1 + w2,3a2)
= f(w1,3x1 + w2,3x2)

(2.5)

a4 = f(w1,4a1 + w2,4a2)
= f(w1,4x1 + w2,4x2)

(2.6)

The output units 5 and 6 are given by:

a5 = f(w3,5a3 + w4,5a4) =
= f(w3,5f(w1,3a1 + w2,3a2) + w4,5f(w1,4a1 + w2,4a2)) =
= f(w3,5f(w1,3x1 + w2,3x2) + w4,5f(w1,4x1 + w2,4x2))

(2.7)

a6 = f(w3,6a3 + w4,6a4) =
= f(w3,6f(w1,3a1 + w2,3a2) + w4,6f(w1,4a1 + w2,4a2)) =
= f(w3,5f(w1,3x1 + w2,3x2) + w4,5f(w1,4x1 + w2,4x2))

(2.8)

18

2.3. Multilayer feed-forward neural networks

We can rewrite the equations above in a vector notation. The activation
function f has to be a vector function applied elementwise on each member
of a vector.

Equations 2.5 and 2.6 in the vector notation:

f

((
w1,3 w2,3
w1,4 w2,4

)(
a1
a2

))
=
(
f(w1,3a1 + w2,3a2)
f(w1,4a1 + w2,4a2)

)
=
(
a3
a4

)
(2.9)

Equations 2.7 and 2.8 in the vector notation:

f

((
w3,5 w4,5
w3,6 w4,6

)(
a3
a4

))
=
(
f(w3,5a3 + w4,5a4)
f(w3,6a3 + w4,6a4)

)
=
(
a5
a6

)
(2.10)

Denote W2 a matrix of weights from the layer 1 to the layer 2, W3 a
matrix of weights from the layer 2 to the layer 3 and x a vector of input
features:

W2 =
(
w3,5 w4,5
w3,6 w4,6

)
(2.11)

W1 =
(
w1,3 w2,3
w1,4 w2,4

)
(2.12)

x =
(
x1
x2

)
(2.13)

Finally, we can express a hypotheses from this neural network in the
compact form:

h(x; W 2,W 1) = f(W 2f(W 1x)) (2.14)

We have the output expressed as a function of the inputs and the
weights. As long as we can calculate the derivatives of such expression with
respect to the weights, we can use the gradient descent loss-minimalization
method to train the network.

2.3.1 Activation functions
Every activation function takes a single number and performs a certain
mathematical function.

19

2. Artificial neural networks

Sigmoid activation function is defined as:

f(x) = 1
1 + e−x

(2.15)

It takes a real-valued number x and returns a number between 0 and 1.
Very large negative numbers become 0 and large positive numbers become
1. The sigmoid function has seen frequent use historically since it has a
nice interpretation as the firing rate of a neuron. In practice, the sigmoid
non-linearity has recently fallen out of favor and it is rarely ever used.

The tanh non-linearity is shown on the image above on the right, the
tanh activation function is defined as:

tanh(x) = 2
1 + e−2x − 1 (2.16)

It squashes a real-valued number to the range -1 and 1. Like the sigmoid
neuron, its activations saturate, but unlike the sigmoid neuron its output is
zero-centered. Therefore, in practice the tanh non-linearity is always pre-
ferred to the sigmoid nonlinearity.

The Rectified Linear Unit (ReLU) has become very popular in the last
few years. It computes the function:

f(x) = max(0, x) (2.17)
There are several pros and cons to using the ReLUs:

• It was found to greatly accelerate the convergence of stochastic gradi-
ent descent compared to the sigmoid/tanh functions. It is argued that
this is due to its linear, non-saturating form [6].

• Compared to tanh/sigmoid neurons that involve expensive opera-
tions (exponentials, etc.), the ReLU can be implemented by simply
thresholding a matrix of activations at zero [6].

• Unfortunately, ReLU units can be fragile during training and can
“die”. For example, a large gradient flowing through a ReLU neuron
could cause the weights to update in such a way that the neuron
will never activate on any datapoint again. If this happens, then the
gradient flowing through the unit will forever be zero from that point
on [6].

In summary, ReLU is now the most recommended activation function.

20

2.3. Multilayer feed-forward neural networks

Figure 2.5: The Sigmoid activation function.

Figure 2.6: The Tanh activation function.

21

2. Artificial neural networks

Figure 2.7: The Rectified Linear Unit (ReLU).

Figure 2.8: The Leaky Rectified Linear Unit (Leaky ReLU) with α = 0.2.

22

2.3. Multilayer feed-forward neural networks

2.3.2 The learning algorithm - Backpropagation
The backward propagation of errors, or backpropagation, is a standard
method of training artificial neural networks and used in conjunction with
an optimization method such as gradient descent [Wiki Backpropagation].

The algorithm works in two stages:

• Given an input vector x, compute an output of a network h. This
stage is also called forward propagation.

• Compare an output from forward propagation with a desired target.
Compute an error by a loss function and propagate the error back
through a network to update weights.

The major complication comes from the addition of hidden layers to
the network. Whereas the error y − h at the output layer is clear, the
error at the hidden layers seems mysterious because the training data do
not say what value the hidden nodes should have. It turns out that we can
back-propagate the error from the output layer to the hidden layers. The
back-propagation process emerges directly from a derivation of the overall
error gradient.

At the output layer, we have multiple output units, so let Errk be the
k-th component of the error vector y − h and ∆k = Errk × f ′(ink) be the
modified error, so that the update rule becomes:

wj,k ← wj,k + α× aj ×∆k (2.18)

To update the connections between the input units and the hidden units,
we need to define a quantity analogous to the error term for output nodes.
Here is where we do the error back-propagation. The idea is that hidden
node j is responsible for some fraction of the error ∆k in each of the output
nodes to which it connects. Thus, the ∆k values are divided according
to the strength of the connection between the hidden node and the output
node and are propagated back to provide the ∆j values for the hidden layer.
The propagation rule for the ∆ values is the following:

∆j = f ′(inj)
∑
k

wj,k∆k (2.19)

23

2. Artificial neural networks

Now the weight-update rule for the weights between the inputs and the
hidden layer is essentially identical to the update rule for the output layer:

wi,j ← wi,j + α× ai ×∆j (2.20)

The back-propagation process can be summarized as follows:

• Compute the ∆ values for the output units, using the observed error.

• Starting with output layer, repeat the following for each layer in the
network, until the earliest hidden layer is reached:

– Propagate the ∆ values back to the previous layer.
– Update the weights between the two layers.

The squared loss function on a single example is defined as

L = 1
2(yi − ai)2 (2.21)

where the sum is over the nodes in the output layer. To obtain the
gradient with respect to a specific weight wj,i in the output layer, we need
only expand out the activation ai as all other terms in the summation are
unaffected by wj,i:

∂L
∂wj,i

= ∂

∂wj,i

1
2(yi − ai)2

= −(yi − ai)
∂ai
∂wj,i

= −(yi − ai)
∂f(ini)
∂wj,i

= −(yi − ai)f ′(ini)
∂ini
∂wj,i

= −(yi − ai)f ′(ini)
∂

∂wj,i

∑
j

wj,iaj


= −(yi − ai)f ′(ini)aj = −aj∆i

(2.22)

To obtain the gradient with respect to the wk,j weights connecting the
input layer to the hidden layer, we have to keep th entire summation over

24

2.3. Multilayer feed-forward neural networks

i because each output value ai may be affected by changes in wk,j. We also
have to expand out the activations aj:

∂L
∂wk,j

= −
∑
i

(yi − ai)
∂ai
∂wk,j

= −
∑

(yi − ai)
∂f(ini)
∂wk,j

= −
∑

(yi − ai)f ′(ini)
∂ini
∂wk,j

= −
∑

∆i
∂

∂wk,j

∑
j

wj,iaj


= −

∑
∆iwj,i

∂aj
∂wk,j

= −
∑

∆iwj,i
∂f(inj)
∂wk,j

= −
∑

∆iwj,if
′(inj)

∂inj
∂wk,j

= −
∑

∆iwj,if
′(inj)

∂

∂wk,j

∑
j

wk,jak


= −

∑
∆iwj,if

′(inj)ak = −ak∆j

(2.23)

where ∆j is defined as before. The process can be continued for net-
works with more than one hidden layer.

The detailed pseudocode of the algorithm is shown in Algorithm 3.

25

2. Artificial neural networks

Algorithm 3 Backpropagation algorithm with gradient descent
Require: network
Require: examples

repeat
for all weight wi,j in network do
wi,j ← a small random number

end for
for all example (x,y) in examples do

/* propagate the inputs forward to compute the outputs */
for all node i in the input layer do
ai ← xi

end for
for l← 2 to L do

for all node j in layer l do
inj ←

∑
iwi,jai

aj ← g(inj)
end for

end for
/* propagate deltas backward from output layer to input layer */
for all node j in the output layer do

∆[j]← g′(inj)(yj − aj)
end for
for l← L− 1 to 1 do

for all node i in layer l do
∆[i]← g′(ini)

∑
j wi,j∆[j]

end for
end for
/* update every weight in network using deltas */
for all weight wi,j in network do
wi,j ← wi,j + αai∆[j]

end for
end for

until stopping criterion is satisfied
return network

2.4 Convolutional neural networks
Convolutional neural networks (CNNs) are inspired by the work of Kunihiko
Fukushima from 1979, the neural network Neocognitron, the first neural
network being able to recognize written text. Fukushima implemented an

26

2.4. Convolutional neural networks

observation made by neurophysiologists David H. Hubel and Torsten Wiesel
in 1959 on the experiments with cats, where they were making research on
visual sensory recognition processing. Hubel and Wiesel inserted a micro-
electrode into the primary visual cortex (the part of the brain responsible
for visual processing) of an anesthetized cat and examined, how neurons
react, while they were showing the cat different geometric objects and pat-
terns. They discovered that exist neurons, which activate on a pattern with
lines under a particular angle and place on the screen. Other neurons react
on the similar object under a different angle and other on the same pattern
no matter the location of the object on the screen. They found out that
the visual cortex is hierarchical and visual information is at first detects
simple patterns like edges etc. and then are recognized more complicated
and abstract patterns by the combination of the simple ones.

Yann LeCun created the modern convolutional neural networks in 90’s,
using Backpropagation algorithm with Gradient descent for training. CNNs
are becoming very popular around 2012 by the win in the ImageNet com-
petition by the Geoffrey Hinton’s team. They won by a big gap between
the standard computer vision approaches and their CNN. They called their
network Deep Convolutional Neural Networks because of using a lot of lay-
ers with 60 million parameters, and the modern term deep learning is now a
synonym for neural networks with a big number of layers. Carefully chosen
and trained CNNs are often state-of-the-art and used for image classifica-
tion (what object is in a picture), localization (where is a location of the
object), detection (detecting types and positions of multiple objects in the
picture), and segmentation (classifying every pixel in the image). Complex
systems using CNNs are self-driving cars or Google Deepmind’s program
playing Atari games.

In the following subsections, I describe a standard structure of CNNs
and the function of convolutional and polling layers. They are based on [5],
[6].

2.4.1 The structure of convolutional neural networks
CNNs are also feed-forward networks (there is no cycle) and represent a
differentiable function. The difference is that they are assuming an im-
age or grid-like topology as an input. For example, an RGB picture can
be imagined as three matrices (one matrice for each color canal) with the
number of columns and rows corresponding to the width and the height of

27

2. Artificial neural networks

Figure 2.9: An illustration of the standard convolutional neural network
[6].

the picture.

A CNN contains:

• a convolutional layer

• an activation layer (the most used is ReLU)

• a pooling layer

• a fully-connected layer (is in the context of CNNs a typical multilayer
feed-forward neural network)

Figure 2.9 depicts a standard structure of CNNs. A pooling layer follows
a convolutional layer, then follow an activation layer, or more convolutional
and pooling layers can follow a couple of times. A fully-connected follows
at the end.

The reason is:

• the convolutional layers closer to the input detects simple patterns

• the following convolutional layers identifies more complicated patterns

• the fully-connected layer is a function approximation between found
patterns (features) to labels (for classification) or coordinates (for
regression or localization)

28

2.4. Convolutional neural networks

Figure 2.10: Output of the filter [5].

Because a fully-connected layer is a multilayer feed-forward neural net-
work and an activation layer is an element-wise application of an activation
function, that I have already described, the next two subsections describe
convolutional and pooling layers.

2.4.2 Convolutional layers
Each convolutional layer has K filters (kernels) with a square size F. Figure
2.10 shows, how is a filter applied to the input and outputs a real number,
according to:

f(b+
F−1∑
l=0

F−1∑
m=0

wl,maj+l,k+m) (2.24)

A filter contains weights and a bias similar to neurons, the number of
weights is equal to the size F. Every filter convolves through the input
matrice and creates an output matrice (Figure ??). The output of a filter
is called a feature map because every filter detects some feature. Another
hyperparameter is a stride S of the convolution. The stride affects the size
of the output matrice. A convolutional layer generally outputs a feature
map tensor.

The last hyperparameter is zero-padding P. It pads the input volume
with zeros around the border. It allows us to spatial control the output.

29

2. Artificial neural networks

Figure 2.11: The filter convolves with a stride 1 [5].

Figure 2.12: A convolutional layer has several filters [5].

For example, we would like the output to have the same size as the input.

In summary, the convolutional layer:

• accepts a volume of size W1 ×H1 ×D1

• requires four hyperparameters:

– number of filters K
– their spatial extent F
– the stride S

30

2.4. Convolutional neural networks

– the amount of zero padding P

• produce a volume of size W2 ×H2 ×D2 where:

– W2 = (W1 − F + 2P)/S + 1

– H2 = (H1 − F + 2P)/S + 1

– D2 = K

• 2FD1 weights per filter, for a total of (2FD1)K weights and K biases.

• in the output volume, the d-th depth slice (of size W2 × H2) is the
result of performing a valid convolution of the d-th filter over the
input volume with a stride of S, and then offset by d-th bias.

2.4.3 Pooling layers
Pooling layers typically follow after convolutional layers. They reduce the
spatial size to decrease the number of parameters and therefore prevent or
control the overfitting. Pooling operation slide across the entire input grid
in the same fashion as the convolutional layer, the typical size of the filter
is 2 × 2 or 3 × 3. The most used operation is taking maximum from the
filter at each position. So the max-pooling filter with size 2× 2 takes four
numbers and outputs the maximum.

The pooling layer:

• Accepts a volume W1 ×H1 ×D1.

• Requires two hyperparameters:

– their spatial extent F

– the stride S

• Introduces zero parameters since it computes a fixed function of the
input.

The pooling layer hasn’t any parameters to train. Zero-padding is not
used here. The standard settings are F = 3, S = 2 (also called overlapping
pooling), and more commonly F = 2, S = 2.

31

2. Artificial neural networks

2.5 Prevention of overfitting
I introduce here several the most used techniques for the prevention of
overfitting. Namely L2 regularization, Dropout, Early stopping and Dataset
augmentation.

2.5.1 L2 regularization
The most used prevention of overfitting is the L2 regularization. For every
weight wi, we add the term 1/2λw2

i to loss function. λ ∈ R is a hyper-
parameter specifying the regularization strength. The constant 1/2 is used,
because the derivative during the computation of the gradient, has the form
λwi. The L2 regularization has the intuitive interpretation of heavily pen-
alizing peaky weight vectors and preferring diffuse weight vectors.

2.5.2 Dropout
Dropout is a technique that assigns probability p to every neuron. The
probability specifies how likely is going to be a neuron excluded from train-
ing in one pass. The p is another hyperparameter. Dropout is very often
used since its introduction in 2012.

2.5.3 Early stopping
Early stopping prevents overfitting by stopping the training after some num-
ber of epochs without any progression, that means the loss function is no
longer progressing towards the minimum. It’s often used stopping criterion
for optimization algorithms. Early stopping introduces a hyperparameter
specifying a patience - the number of epochs, that we tolerate, not making
any progression.

2.5.4 Dataset augmentation
The idea is to expand a dataset in the way, that we apply some transform-
ations to an existing dataset. The goal is to get better generalisation. In
the case of images, transformations could be for example rotation, making
images darker or lighter etc.

32

Chapter 3
Solution

This chapter presents how I created a dataset. A proposal of several con-
volutional neural networks, their results of training, a comparison with the
reference program provided by my supervisor and discussion.

3.1 Making the dataset
I used the reference program (the current detection algorithm) and video
data from real flights to create the dataset. The reference program is writ-
ten as a node for Robot Operating System (ROS), which is a framework
or a platform for the development of robotic systems. ROS’s software is
made of several nodes communicating between each other with so called
messages, that can be saved into Bag files. One can use Bag files to simu-
late a flight or any other simulation without the actual physical device. My
superviser provided me Bag files containing the video data from a camera
used to detect the landing platform.

The reference program’s detection algorithm takes an image from a Bag
file and returns (x, y) coordinates of the middle of the landing platform.
I slightly altered the program to extract images from Bag files and their
coordinates. I extracted 10 805 images that I stored as black and white
images with 150px width and 95px height in the JPG format and the co-
ordinates in the JSON format an array of couples. The detection algorithm
sometimes missed the middle, so I hand-corrected the dataset. There are
also images without the landing platform or corrupted images, I didn’t de-
lete them, but I added a sign to every coordinate - a zero if it is a bad image
or a one for a good picture. I classified 9272 images as good and the rest as

33

3. Solution

not. Finally, I augmented the dataset from good pictures by making every
image slightly lighter and darker - this resulted in 120 548 images.

3.2 Implementation
I chose the Python programming language for implementation, because
of the Keras framework for neural networks. Keras is a popular neural
networks framework using Theano or Tensorflow as a backend. It supports
GPU training, that saves a lot of time. I used Cesnet’s Metacentrum servers
to train my models on GPUs.

3.3 Network architectures
I was inspired by popular architectures as the Oxford’s VGG or the Im-
ageNet network by G. Hinton and recommendations from literature. These
neural networks are very good for classification of thousand of objects. The
problem is, they were not created with an embedded device application in
mind, that doesn’t have modern GPUs. These networks have a lot of layers
and millions of parameters - G. Hinton’s network has 60 million paramet-
ers. I try to offer rather shallow convolutional neural networks with less
learnable parameters than a third of the dataset’s volume.

These neural networks are trying to find a mapping between an image
and a coordinate, therefore they inputs an image and return two numbers.
We adress this problem as regression with two output units. The recom-
mended loss function for regression is the mean squared function, I also
measure the mean absolute error. I used Adam optimization algorithm,
that is also recommended and according to the research paper [7] has bet-
ter results than Stochastic gradient descent.

One has to choose a lot of hyperparameters before training. It’s not
really possible to try all choices. I offer three different architectures that
have a lot of hyperparameters chosen based on recommendations from
sources [6] and these hyperparametes that I vary for every architecture:

• Dropout D = 0.3, 0.5, 0.7

• L2 regularization’s λ = 0.01, 1, 100

• The number of FC layer neurons FCN = 50, 100

34

3.3. Network architectures

This results in different 54 models.

3.3.1 Architecture 1
1. convolutional

• number of filters: 16
• filter size: 6
• stride: 3
• L2 regularization: λ
• activation: ReLU

2. max-pooling

• pool size: 3
• stride: 2

3. convolutional

• number of filters: 16
• filter size: 3
• stride: 2
• L2 regularization: λ
• activation: ReLU

4. convolutional

• number of filters: 16
• filter size: 3
• stride: 1
• L2 regularization: λ
• activation: ReLU

5. max-pooling

• pool size: 3
• stride: 2

6. dropout

35

3. Solution

• probability: D

7. fully-connected

• number of neurons: FCN
• L2 regularization: λ

8. dropout

• probability: D

9. fully-connected

• number of neurons: FCN
• L2 regularization: λ

10. dropout

• probability: D

11. fully-connected

• number of neurons: 2

With 12286 parameters for FCN = 50 and 23186 parameters for FCN =
100.

3.3.2 Architecture 2
1. convolutional

• number of filters: 16
• filter size: 6
• stride: 3
• L2 regularization: λ
• activation: ReLU

2. max-pooling

• pool size: 3
• stride: 2

3. convolutional

36

3.3. Network architectures

• number of filters: 16
• filter size: 6
• stride: 2
• L2 regularization: λ
• activation: ReLU

4. max-pooling

• pool size: 3
• stride: 2

5. dropout

• probability: D

6. fully-connected

• number of neurons: FCN
• L2 regularization: λ

7. dropout

• probability: D

8. fully-connected

• number of neurons: FCN
• L2 regularization: λ

9. dropout

• probability: D

10. fully-connected

• number of neurons: 2

With 14766 parameters for FCN = 50 and 30466 parameters for FCN =
100.

37

3. Solution

3.3.3 Architecture 3
1. convolutional

• number of filters: 16
• filter size: 6
• stride: 3
• L2 regularization: λ
• activation: ReLU

2. max-pooling

• pool size: 3
• stride: 2

3. convolutional

• number of filters: 16
• filter size: 6
• stride: 2
• L2 regularization: λ
• activation: ReLU

4. max-pooling

• pool size: 3
• stride: 2

5. dropout

• probability: D

6. fully-connected

• number of neurons: FCN
• L2 regularization: λ

7. dropout

• probability: D

8. fully-connected

38

3.4. Measurements

• number of neurons: 2

With 12216 parameters for FCN = 50 and 20366 parameters for FCN =
100.

3.4 Measurements
Following tables contain measured loss (mean squared error + L2 regular-
ization), mean squared error (MSE) and mean absolute error (MAE) on
the train set, the validation set and the test set. Measurements were made
when the weights were saved for the last time before early stopping, these
weights are then used for prediction.

Tables 3.1, 3.2 and 3.3 show measurements made on architecture 1.
Tables 3.4, 3.5 and 3.6 show measurements made on architecture 2 and
tables 3.7, 3.8 and 3.9 show measurements made on architecture 3.

3.4.1 Comparison with the reference program
I used, for the comparison between trained models and the reference pro-
gram, the dataset before augmentation. I have predictions for coordinations
made by the reference program and the hand-corrected coordinations. So,
I can compare MSE and MAE between the reference program and trained
models.

Tables 3.10, 3.11 and 3.12 show the result of the comparison.

3.5 Discussion
Differences between errors of convolutional networks looks very similar, one
tends to think that the generalization of a network is good. It’s not really
clear for unexperieced people if it is really the case. It looks like that 50 or
100 in fully-connected layer doesn’t make a big difference. We can see worse
results on models with big L2 regularization. However, we can see that a lot
of models are doing better than the reference program. Having overfitting
in mind, I would choose the model with the lowest number of parameters
and best result for example Architecture 3 (D = 0.3, λ = 0.01, FCN = 50)
or Architecture 1 (D = 0.3, λ = 0.01, FCN = 50).

39

3. Solution

Model Train set loss Train set MSE Train set MAE
D = 0.3, λ = 0.01, FCN = 100 44.9 40.15 4.49
D = 0.3, λ = 0.01, FCN = 50 51.4 46.8 4.86
D = 0.3, λ = 100, FCN = 100 231.4 169.3 9.1
D = 0.3, λ = 100, FCN = 50 220.64 161.86 8.80
D = 0.3, λ = 1, FCN = 100 81.5 58.9 5.3
D = 0.3, λ = 1, FCN = 50 83.18 62.02 5.48
D = 0.5, λ = 0.01, FCN = 100 71.3 65.9 5.9
D = 0.5, λ = 0.01, FCN = 50 65.48 60.9 5.4
D = 0.5, λ = 100, FCN = 100 250.02 184.34 9.54
D = 0.5, λ = 100, FCN = 50 471.25 375.45 14.97
D = 0.5, λ = 1, FCN = 100 118.19 91.94 6.88
D = 0.5, λ = 1, FCN = 50 117.20 93.45 6.83
D = 0.7, λ = 0.01, FCN = 100 91.40 86.07 6.56
D = 0.7, λ = 0.01, FCN = 50 99.99 95.04 6.81
D = 0.7, λ = 100, FCN = 100 290.23 240.97 11.13
D = 0.7, λ = 100, FCN = 50 497.39 410.63 15.80
D = 0.7, λ = 1, FCN = 100 152.78 124.97 8.07
D = 0.7, λ = 1, FCN = 50 186.51 159.39 9.23

Table 3.1: Architecture 1 measurement on the training set.

Model Valid set MSE Valid set MAE
D = 0.3, λ = 0.01, FCN = 100 15.6 2.45
D = 0.3, λ = 0.01, FCN = 50 15.6 2.37
D = 0.3, λ = 100, FCN = 100 157.6 8.27
D = 0.3, λ = 100, FCN = 50 149.93 8.24
D = 0.3, λ = 1, FCN = 100 26 3.02
D = 0.3, λ = 1, FCN = 50 27.9 3.05
D = 0.5, λ = 0.01, FCN = 100 23.6 3.06
D = 0.5, λ = 0.01, FCN = 50 21.8 2.84
D = 0.5, λ = 100, FCN = 100 173.03 8.97
D = 0.5, λ = 100, FCN = 50 325.22 13.6
D = 0.5, λ = 1, FCN = 100 42.82 4.14
D = 0.5, λ = 1, FCN = 50 41.72 3.95
D = 0.7, λ = 0.01, FCN = 100 33.44 3.74
D = 0.7, λ = 0.01, FCN = 50 38.56 4.3
D = 0.7, λ = 100, FCN = 100 247.94 11.21
D = 0.7, λ = 100, FCN = 50 327.30 13.88
D = 0.7, λ = 1, FCN = 100 56.07 4.83
D = 0.7, λ = 1, FCN = 50 81.39 6.26

Table 3.2: Architecture 1 measurement on the validation set.

40

3.5. Discussion

Model Test set MSE Test set MAE
D = 0.3, λ = 0.01, FCN = 100 14.3 2.45
D = 0.3, λ = 0.01, FCN = 50 14.1 2.40
D = 0.3, λ = 100, FCN = 100 156.2 8.34
D = 0.3, λ = 100, FCN = 50 148.93 8.3
D = 0.3, λ = 1, FCN = 100 23.97 3.01
D = 0.3, λ = 1, FCN = 50 25.96 3.1
D = 0.5, λ = 0.01, FCN = 100 21.58 3.06
D = 0.5, λ = 0.01, FCN = 50 20.26 2.88
D = 0.5, λ = 100, FCN = 100 172.64 9.08
D = 0.5, λ = 100, FCN = 50 327.83 14.06
D = 0.5, λ = 1, FCN = 100 36.74 3.83
D = 0.5, λ = 1, FCN = 50 39.01 3.96
D = 0.7, λ = 0.01, FCN = 100 31.20 3.77
D = 0.7, λ = 0.01, FCN = 50 36.81 4.33
D = 0.7, λ = 100, FCN = 100 251.84 11.47
D = 0.7, λ = 100, FCN = 50 330.31 14.1
D = 0.7, λ = 1, FCN = 100 53.90 4.88
D = 0.7, λ = 1, FCN = 50 81.39 6.40

Table 3.3: Architecture 1 measurement on the test set.

Model Train set loss Train set MSE Train set MAE
D = 0.3, λ = 0.01, FCN = 100 55.2 50.6 5.2
D = 0.3, λ = 0.01, FCN = 50 55.2 50.58 5.5
D = 0.3, λ = 100, FCN = 100 428.89 325.25 13.7
D = 0.3, λ = 100, FCN = 50 381.8 314.99 13.47
D = 0.3, λ = 1, FCN = 100 97.38 62.16 5.5
D = 0.3, λ = 1, FCN = 50 87.3 60.7 5.5
D = 0.5, λ = 0.01, FCN = 100 80.9 74.5 6.3
D = 0.5, λ = 0.01, FCN = 50 100.4 95.1 7.2
D = 0.5, λ = 100, FCN = 100 605.35 400.5 15.5
D = 0.5, λ = 100, FCN = 50 423.1 340.6 14.1
D = 0.5, λ = 1, FCN = 100 138.7 97.2 7.2
D = 0.5, λ = 1, FCN = 50 152.6 117.6 7.9
D = 0.7, λ = 0.01, FCN = 100 105.3 98.7 7.2
D = 0.7, λ = 0.01, FCN = 50 148.96 143.9 8.8
D = 0.7, λ = 100, FCN = 100 455.3 353.2 14.5
D = 0.7, λ = 100, FCN = 50 349 336 14
D = 0.7, λ = 1, FCN = 100 171.7 133.9 8.5
D = 0.7, λ = 1, FCN = 50 355.1 329.97 14.3

Table 3.4: Architecture 2 measurement on the training set.

41

3. Solution

Model Valid set MSE Valid set MAE
D = 0.3, λ = 0.01, FCN = 100 11.65 1.94
D = 0.3, λ = 0.01, FCN = 50 11.65 1.94
D = 0.3, λ = 100, FCN = 100 322.3 13.7
D = 0.3, λ = 100, FCN = 50 321.4 12.74
D = 0.3, λ = 1, FCN = 100 28.98 3.2
D = 0.3, λ = 1, FCN = 50 21.9 2.7
D = 0.5, λ = 0.01, FCN = 100 19 2.59
D = 0.5, λ = 0.01, FCN = 50 21.8 2.95
D = 0.5, λ = 100, FCN = 100 326.98 13.93
D = 0.5, λ = 100, FCN = 50 327.6 13.9
D = 0.5, λ = 1, FCN = 100 36.4 3.8
D = 0.5, λ = 1, FCN = 50 46.8 4.4
D = 0.7, λ = 0.01, FCN = 100 34.7 3.8
D = 0.7, λ = 0.01, FCN = 50 58.37 5.27
D = 0.7, λ = 100, FCN = 100 323.8 13.8
D = 0.7, λ = 100, FCN = 50 331.6 14
D = 0.7, λ = 1, FCN = 100 58.4 5.12
D = 0.7, λ = 1, FCN = 50 246.4 11.92

Table 3.5: Architecture 2 measurement on the validation set.

Model Test set MSE Test set MAE
D = 0.3, λ = 0.01, FCN = 100 9.95 1.93
D = 0.3, λ = 0.01, FCN = 50 9.97 1.94
D = 0.3, λ = 100, FCN = 100 324 13.94
D = 0.3, λ = 100, FCN = 50 323.3 13.94
D = 0.3, λ = 1, FCN = 100 26.7 3.2
D = 0.3, λ = 1, FCN = 50 20 2.74
D = 0.5, λ = 0.01, FCN = 100 16.6 2.57
D = 0.5, λ = 0.01, FCN = 50 19.7 2.96
D = 0.5, λ = 100, FCN = 100 329.3 14.1
D = 0.5, λ = 100, FCN = 50 330.2 14.1
D = 0.5, λ = 1, FCN = 100 34.2 3.8
D = 0.5, λ = 1, FCN = 50 44.7 4.5
D = 0.7, λ = 0.01, FCN = 100 32.6 3.8
D = 0.7, λ = 0.01, FCN = 50 56.43 5.3
D = 0.7, λ = 100, FCN = 100 326 14
D = 0.7, λ = 100, FCN = 50 334 14.2
D = 0.7, λ = 1, FCN = 100 56.9 5.2
D = 0.7, λ = 1, FCN = 50 245.7 11.99

Table 3.6: Architecture 2 measurement on the test set.

42

3.5. Discussion

Model Train set loss Train set MSE Train set MAE
D = 0.3, λ = 0.01, FCN = 100 40.08 35.65 4.25
D = 0.3, λ = 0.01, FCN = 50 53.39 49.06 5.07
D = 0.3, λ = 100, FCN = 100 565.04 363.16 14.68
D = 0.3, λ = 100, FCN = 50 609.06 382.89 15.15
D = 0.3, λ = 1, FCN = 100 79.06 49.93 4.93
D = 0.3, λ = 1, FCN = 50 84.85 57.97 5.35
D = 0.5, λ = 0.01, FCN = 100 60.21 55.35 5.36
D = 0.5, λ = 0.01, FCN = 50 100.76 95.94 7.20
D = 0.5, λ = 100, FCN = 100 385.09 327.87 13.83
D = 0.5, λ = 100, FCN = 50 384.90 327.76 13.84
D = 0.5, λ = 1, FCN = 100 119.46 85.45 6.70
D = 0.5, λ = 1, FCN = 50 119.96 89.68 6.76
D = 0.7, λ = 0.01, FCN = 100 125.86 119.74 8.08
D = 0.7, λ = 0.01, FCN = 50 152.24 147.46 8.98
D = 0.7, λ = 100, FCN = 100 368.01 339.34 14.14
D = 0.7, λ = 100, FCN = 50 331.55 325.39 13.78
D = 0.7, λ = 1, FCN = 100 158.45 123.03 8.14
D = 0.7, λ = 1, FCN = 50 176.05 145.31 8.68

Table 3.7: Architecture 3 measurement on the training set.

Model Valid set MSE Valid set MAE
D = 0.3, λ = 0.01, FCN = 100 9.3 1.7
D = 0.3, λ = 0.01, FCN = 50 16.85 2.69
D = 0.3, λ = 100, FCN = 100 327.07 13.99
D = 0.3, λ = 100, FCN = 50 333.00 14.17
D = 0.3, λ = 1, FCN = 100 21.69 2.76
D = 0.3, λ = 1, FCN = 50 20.69 2.60
D = 0.5, λ = 0.01, FCN = 100 17.94 2.60
D = 0.5, λ = 0.01, FCN = 50 25.49 3.37
D = 0.5, λ = 100, FCN = 100 329.56 14.00
D = 0.5, λ = 100, FCN = 50 327.83 13.96
D = 0.5, λ = 1, FCN = 100 26.97 26.98
D = 0.5, λ = 1, FCN = 50 36.82 3.86
D = 0.7, λ = 0.01, FCN = 100 35.93 3.97
D = 0.7, λ = 0.01, FCN = 50 56.61 5.22
D = 0.7, λ = 100, FCN = 100 329.17 13.99
D = 0.7, λ = 100, FCN = 50 328.14 13.97
D = 0.7, λ = 1, FCN = 100 53.42 4.88
D = 0.7, λ = 1, FCN = 50 75.61 5.84

Table 3.8: Architecture 3 measurement on the validation set.

43

3. Solution

Model Test set MSE Test set MAE
D = 0.3, λ = 0.01, FCN = 100 7.74 1.69
D = 0.3, λ = 0.01, FCN = 50 15.05 2.68
D = 0.3, λ = 100, FCN = 100 329.10 14.19
D = 0.3, λ = 100, FCN = 50 335.00 14.36
D = 0.3, λ = 1, FCN = 100 19.72 2.75
D = 0.3, λ = 1, FCN = 50 18.22 2.59
D = 0.5, λ = 0.01, FCN = 100 16.36 2.60
D = 0.5, λ = 0.01, FCN = 50 23.50 3.38
D = 0.5, λ = 100, FCN = 100 331.45 14.19
D = 0.5, λ = 100, FCN = 50 329.96 14.16
D = 0.5, λ = 1, FCN = 100 24.70 3.25
D = 0.5, λ = 1, FCN = 50 35.18 3.92
D = 0.7, λ = 0.01, FCN = 100 33.94 3.99
D = 0.7, λ = 0.01, FCN = 50 54.75 5.28
D = 0.7, λ = 100, FCN = 100 331.32 14.18
D = 0.7, λ = 100, FCN = 50 330.48 14.17
D = 0.7, λ = 1, FCN = 100 52.30 4.95
D = 0.7, λ = 1, FCN = 50 75.02 5.92

Table 3.9: Architecture 3 measurement on the test set.

Model MSE MAE
Current detection algorithm 612.89 9.97
D = 0.3, λ = 0.01, FCN = 100 8.3 1.6
D = 0.3, λ = 0.01, FCN = 50 10.8 1.86
D = 0.3, λ = 100, FCN = 100 317.46 13.67
D = 0.3, λ = 100, FCN = 50 317.69 13.64
D = 0.3, λ = 1, FCN = 100 18.35 2.37
D = 0.3, λ = 1, FCN = 50 20.81 2.53
D = 0.5, λ = 0.01, FCN = 100 14.52 2.27
D = 0.5, λ = 0.01, FCN = 50 22.57 2.99
D = 0.5, λ = 100, FCN = 100 316.57 13.57
D = 0.5, λ = 100, FCN = 50 315.82 13.57
D = 0.5, λ = 1, FCN = 100 26.07 3.08
D = 0.5, λ = 1, FCN = 50 34.70 3.50
D = 0.7, λ = 0.01, FCN = 100 34.49 3.83
D = 0.7, λ = 0.01, FCN = 50 55.06 5.03
D = 0.7, λ = 100, FCN = 100 316.47 13.57
D = 0.7, λ = 100, FCN = 50 313.82 13.57
D = 0.7, λ = 1, FCN = 100 51.65 4.7
D = 0.7, λ = 1, FCN = 50 75.6 5.7

Table 3.10: Comparison between architecture 1 and the reference program.

44

3.5. Discussion

Model MSE MAE
Current detection algorithm 612.89 9.97
D = 0.3, λ = 0.01, FCN = 100 8.61 1.66
D = 0.3, λ = 0.01, FCN = 50 11.39 1.92
D = 0.3, λ = 100, FCN = 100 309.56 12.32
D = 0.3, λ = 100, FCN = 50 309.84 13.37
D = 0.3, λ = 1, FCN = 100 24.32 2.83
D = 0.3, λ = 1, FCN = 50 21.8 2.67
D = 0.5, λ = 0.01, FCN = 100 17.23 2.61
D = 0.5, λ = 0.01, FCN = 50 20.96 2.82
D = 0.5, λ = 100, FCN = 100 313.54 13.46
D = 0.5, λ = 100, FCN = 50 313.61 13.46
D = 0.5, λ = 1, FCN = 100 34.86 3.55
D = 0.5, λ = 1, FCN = 50 36.35 3.65
D = 0.7, λ = 0.01, FCN = 100 34.01 3.72
D = 0.7, λ = 0.01, FCN = 50 56.53 5.13
D = 0.7, λ = 100, FCN = 100 311.56 13.41
D = 0.7, λ = 100, FCN = 50 316.27 13.57
D = 0.7, λ = 1, FCN = 100 56.62 4.91
D = 0.7, λ = 1, FCN = 50 233.27 11.53

Table 3.11: Comparison between architecture 2 and the reference program.

Model MSE MAE
Current detection algorithm 612.89 9.97
D = 0.3, λ = 0.01, FCN = 100 11.86 2.09
D = 0.3, λ = 0.01, FCN = 50 14.99 2.33
D = 0.3, λ = 100, FCN = 100 148.09 8.00
D = 0.3, λ = 100, FCN = 50 143.33 8.08
D = 0.3, λ = 1, FCN = 100 26.44 2.99
D = 0.3, λ = 1, FCN = 50 28.64 3.03
D = 0.5, λ = 0.01, FCN = 100 18.51 2.62
D = 0.5, λ = 0.01, FCN = 50 20.47 2.73
D = 0.5, λ = 100, FCN = 100 165.2 8.75
D = 0.5, λ = 100, FCN = 50 312.77 13.44
D = 0.5, λ = 1, FCN = 100 37.94 3.66
D = 0.5, λ = 1, FCN = 50 31.92 3.53
D = 0.7, λ = 0.01, FCN = 100 43.72 4.01
D = 0.7, λ = 0.01, FCN = 50 37.72 4.17
D = 0.7, λ = 100, FCN = 100 228.35 10.39
D = 0.7, λ = 100, FCN = 50 314.31 13.46
D = 0.7, λ = 1, FCN = 100 57.76 4.82
D = 0.7, λ = 1, FCN = 50 77.91 5.95

Table 3.12: Comparison between architecture 3 and the reference program.

45

Conclusion

I introduced some basic concepts from machine learning. I explained mul-
tilayer and convolutional neural networks. I created a dataset from drone’s
camera using the current detection algorithm from my supervisor. I suc-
cessfully designed convolution neural network that has better results than
the current detection algorithm on the dataset.

Future work could be to understand neural networks better. Try to use
these systems on a real drone to better verify its current capability.

47

Bibliography

[1] RUSSELL, Stuart J. and NORVIG, Peter. Artificial Intelligence: A
Modern Approach. 1st ed. Prentice Hall, c1995. ISBN 0-13-103805-2.

[2] RUSSELL, Stuart J. and NORVIG, Peter. Artificial Intelligence: A
Modern Approach. 2nd ed. Prentice Hall, c2002. ISBN 978-0137903955.

[3] RUSSELL, Stuart J. and NORVIG, Peter. Artificial Intelligence: A
Modern Approach. 3rd ed. Pearson, c2009. ISBN 978-0136042594.

[4] GOODFELLOW, Ian et al. Deep Learning. MIT Press, c2016. ISBN
978-0262035613. URL: <http://www.deeplearningbook.com/>.

[5] NIELSEN, Michael A. Neural Networks and Deep Learning [online].
URL: <http://www.neuralnetworksanddeeplearning.com/>.

[6] KARPATHY, Andrej et al. Convolutional Neural Networks for Visual
Recognition [online]. URL: <http://www.cs231n.stanford.edu/>.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. CoRR. abs/1412.6980. 2014. URL: <http://arxiv.org/
abs/1412.6980>

[8] NG, Andrew. Machine Learning by Stanford on iTunes [online].
Available in: <https://itunes.apple.com/us/course/machine-
learning/id495053006>.

[9] KRIESEL, David. A brief introduction to Neural Networks [on-
line]. Available in: <http://www.dkriesel.com/_media/science/
neuronalenetze-en-zeta2-2col-dkrieselcom.pdf>.

49

<http://www.deeplearningbook.com/>
<http://www.neuralnetworksanddeeplearning.com/>
<http://www.cs231n.stanford.edu/>
<http://arxiv.org/abs/1412.6980>
<http://arxiv.org/abs/1412.6980>
<https://itunes.apple.com/us/course/machine-learning/id495053006>
<https://itunes.apple.com/us/course/machine-learning/id495053006>
<http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf>
<http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf>

Bibliography

[10] Murphy, Kevin P. Machine Learning: A Probabilistic Perspective (Ad-
aptive Computation and Machine Learning series). The MIT Press,
24.8.2012. 1104 s. ISBN-10 0262018020.

[11] HASTIE, Trevor, Robert TIBSHIRANI a J. H. FRIEDMAN. The ele-
ments of statistical learning: data mining, inference, and prediction.
2nd ed. New York: Springer, c2009. Springer series in statistics. ISBN
03-878-4857-6.

[12] WERNER, Tomáš. Optimalizace [online] URL: https:
//cw.fel.cvut.cz/wiki/_media/courses/a4b33opt/opt.pdf

50

https://cw.fel.cvut.cz/wiki/_media/courses/a4b33opt/opt.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/a4b33opt/opt.pdf

Appendix A
Acronyms

ANN Artificial neural network

CNN Convolutional neural network

ROS Robot operating system

MSE Mean squared error

MAE Mean absolute error

FC Fully-connected layer

51

Appendix B
Contents of enclosed USB

readme.txt....................the file with USB contents description
datasets the directory with datasets
trained models...........the directory with trained neural networks
src the directory of source codes

script................the directory with Python and Bash scripts
thesis the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf........................ the thesis text in PDF format

53

	Introduction
	Machine learning
	Supervised machine learning
	Concept of learning
	Optimization
	Underfitting and overfitting
	Summary

	Artificial neural networks
	Basics of a biological neuron
	Mathematical model
	Multilayer feed-forward neural networks
	Convolutional neural networks
	Prevention of overfitting

	Solution
	Making the dataset
	Implementation
	Network architectures
	Measurements
	Discussion

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB

