
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague November 17, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Educational turn-based RPG

 Student: Tomáš Havlík

 Supervisor: Ing. Miroslav Balík, Ph.D.

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

Design and implement a prototype of an educational turn-based RPG for PC and tablets using Defold 2D
game engine.

The game features a battle system similar to Final Fantasy: Tactics and Dofus. When the player casts a spell,
he/she is given a query containing kanji character(s) that require him/her to type the correct pronunciation
in hiragana.

1. Analyse and explain the marketplace (including non-gaming applications) and specify requirements
for the game to have a chance of succeeding.
2. Design a combat system featuring a player fighting turn-based battles against a variable number
of enemies, explain the connection between spells and the educational element.
3. Design a pacing system (quests) to keep the player entertained for a longer time.
4. Design an economy diagram and discuss the item system and how it motivates the player.
5. Implement and provide a playable prototype featuring a small in-game area.
6. Discuss possible future add-ons.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Educational turn-based RPG

Tomáš Havlík

Supervisor: Ing. Miroslav Balík, Ph.D.

15 May 2017

Acknowledgements

I would like to extend my thanks to my supervisor, Ing. Miroslav Balík, Ph.D.,
for his support in leading this thesis, my good friend and Kanji Adventure co-
creator David Nguyen for his part in bringing the virtual environments to life,
my parents Věroslav and Lenka for supporting me during my studies and Jakub
Jirůtka for letting me use a modified version of his XƎLATEX class file. I would
also like to thank Marián Hlaváč, Anna Zderadičková and Veronika Judáková
for helping out during the testing phase. Last but not least, I would like to thank
the awesome developers at Defold for providing fast and concrete answers to
many development-related questions.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license
agreement on the utilization of this thesis as a school work under the provisions
of Article 60(1) of the Act.

In Prague on 15 May 2017 …………………

Czech Technical University in Prague

Faculty of Information Technology

© 2017 Tomáš Havlík. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
HAVLÍK, Tomáš. Educational turn-based RPG. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2017.

Abstrakt

Cílem bakalářské práce je vytvoření funkčního prototypu tahové hry na hrdiny
s výukovými prvky. Popisuje použité konvenční herní a výukové postupy
a snaží se vytvořit unikátní kombinaci mezi tahovým bojovým systémem a
dynamickým výukovým systémem, který zkouší uživatele ze čtení japonských
znaků. Znaky se vybírají na základě chybovosti.

Klíčová slova rpg, videohra, výuková, analýza, návrh, implementace

Abstract

The aim of this bachelor thesis is to create a functional prototype of an
educational role-playing game. It introduces conventional gameplay and
educational practices used and attempts to create a unique synergy between
the turn-based combat system and a dynamic learning system, which queries
the user on readings of Japanese characters. The latter is tailored to the specific
player — characters are chosen depending on past mistakes.

Keywords rpg, videogame, educational, analysis, design, implementation

Contents

Introduction 17
Japanese writing system . 17
Chapters . 19

1 Existing products 21
1.1 Non-gaming applications . 21
1.2 Gaming applications . 25
1.3 Turn-based role playing games 29
1.4 Feature selection . 31

2 Requirements 33
2.1 Functional . 33
2.2 Non-functional . 34

3 Technology used 35
3.1 Defold . 35
3.2 Tiled Map Editor . 38
3.3 Data storage . 39
3.4 Git . 40

4 Battle system 41
4.1 Introduction . 42
4.2 Architecture . 43

13

5 Exploration system 49
5.1 Introduction . 50
5.2 Architecture . 55

6 Shared elements 63
6.1 Introduction . 63
6.2 Architecture . 65

7 Tutorial 71
7.1 Steps . 72

8 Testing 75
8.1 Setting . 75
8.2 Results . 76

9 Future additions 79
9.1 Crafting system . 79
9.2 Expansions . 79
9.3 Multiplayer . 80
9.4 Other versions . 80

Conclusion 81

Sources 83

A List of abbreviations used 87

B Contents of included CD 89

14

List of Figures

1.1 Memrise user interface . 22
1.2 Duolingo user interface . 24
1.3 Wanikani user interface . 25
1.4 In-game screenshot from Fude Samurai 26
1.5 In-game screenshot from Kanji no Owari 27
1.6 In-game screenshot from Learn Japanese to Survive! Hiragana Battle 28
1.7 In-game screenshot from Fire Emblem 29
1.8 In-game screenshot from Dofus . 30

3.1 Screenshot of Defold’s integrated development environment 36
3.2 Addressing hierarchy in Defold . 37
3.3 Screenshot of Tiled Map Editor . 39

4.1 In-game screenshot of the battle portion 41
4.2 Communications diagram for the game’s battle portion 44
4.3 Simplified finite-state automaton for the first two rows of the

hiragana conversion table . 48

5.1 In-game screenshot of the exploration portion 49
5.2 Quests diagram . 51
5.3 Economy diagram . 54
5.4 Communications diagram for the game’s exploration portion 55

6.1 Illustration showcasing issue with camera movement 69

15

List of Figures

7.1 In-game screenshot of the new player experience 71

16

Introduction

Modern technologies enable students to acquire new language skills with
relative ease compared to traditional means. Many have taken up this
opportunity and released pioneering educational software, which takes
advantage of contemporary personal computers and, perhaps most
importantly, smart devices. Although a lot of these products employ features
that make them appealing to use, few come close to immersion found
in traditional videogame products, a characteristic which is of paramount
importance to user retention and in turn effectiveness of these solutions
in the long term.

The purpose of this thesis is to draw from the best game design, programming
and educational practices and to ultimately create a prototype of a full-
fledged interactive videogame experience that facilitates learning Japanese
kanji characters.

The game is a joint project between myself and my friend David Nguyen[19],
a student of Art & Design at Prague College, who is involved in the process
of creating the vast majority of graphical assets used within the game.

Japanese writing system
In this subsection we introduce the Japanese writing system. Contemporary
Japanese language makes use of the following three types of scripts in addition
to Latin characters.

17

Introduction

Kanji
Kanji are adopted logographic Chinese characters. They are the main building
blocks of Japanese language used to refer to most objects and actions.
In contrast with Chinese, which features only one way of pronunciation,
Japanese includes two distinct styles of reading — on’yomi and kun’yomi[31].
The on’yomi reading refers to a phonetic approximation of the original
Chinese pronunciation, whereas kun’yomi is the Japanese reading of kanji.
Kun’yomi are generally used when the kanji is present either in a stand-alone
manner or in combination with hiragana characters. This use case can be
observed in most verbs. On’yomi, on the other hand, are used in kanji
compounds.

Hiragana
Hiragana is one of the two syllabaries used in Japanese[31]. It is used in
forming grammatic constructs and additionally can be utilised in place of kanji
for obsolete or more difficult kanji in the form of furigana. This practice
is common with academic textbooks for younger students and non-native
speakers.

Katakana
Katakana is the other Japanese syllabary1 used exclusively for transcription
of words originated in other languages, most commonly English and
German[31]. Some words are not transcribed into katakana, but are instead
written using their original Latin form.

1A set of written characters each of which is used to represent a syllable[18].

18

Chapters

Chapters
The thesis is comprised of the following chapters.

Analysis
In this chapter we analyse examples of gaming and non-gaming software
products that aim to teach the user Japanese in one form or another.
We discuss their learning elements and game mechanics or gamification2

elements that support the educational framework. We also take a look at two
examples from the turn-based role-playing game genre and analyse their
combat mechanics. We conclude the chapter by selecting features that would
form the basis for our game.

Requirements
Includes specification of functional and non-functional requirements
for our game.

Technology
In this chapter we introduce tools that are used during development
of the game. We take a look at the game engine used and some of the reasons
behind choosing it, the external map editor and the reasoning as to why use
one, data storage formats for storing many structures included within
the game and a version control system used during development.

Battle system
Includes description of combat mechanics, the learning and the challenge
systems used in the game, a diagram detailing communication between
components and a detailed description of these components and data structures
exclusive to the battle portion of the game.

2Gamification is the process of applying game design practices into non-gaming
applications.

19

Introduction

Exploration system
Details the questing system used within our game, introduces the item
system and item economy and talks about the experience system. As with
the battle chapter, we discuss data structures and script components exclusive
to this part of the game.

Shared elements
Contains information on data structures and script components used outside
of and in both the battle and exploration parts of the game.
Details the persistence module and the used tile rendering algorithm.

Tutorial
Details the process of introducing the player to key gameplay mechanics
via a series of images that guide the player to perform specific actions.

Testing
Includes lessons learned from user testing the game on three individuals.

Future additions
This chapter details some of many possible ways of improving the game.

20

Chapter 1
Existing products

In this chapter we will introduce some of the many examples of non-gaming
educational applications as well as a couple educational videogames that we
draw expertise fromwhen designing the educational element of our videogame.
Also mentioned are examples of the role-playing game genre that include turn-
based combat. We conclude the chapter by selecting features that would form
the basis for our game.

1.1 Non-gaming applications

There is currently an abundance of non-gaming applications available
on the market that utilize spaced repetition for learning purposes. The most
popular examples are Anki[11], Memrise[16], Duolingo[10] and Wanikani[32],
just to name a few. Apart from Anki, which is a lightweight application with
a do-it-yourself approach, all of these applications include a gamification
element, which gratifies the learner by providing virtual badges, leaderboards
and progress indicators. These functions are geared towards stimulating
competitiveness, a basic human trait, which in turn keeps the player coming
back for more.

21

1. Existing products

1.1.1 Memrise
1.1.1.1 Learning element

Content in Memrise is divided into languages, which are further divided
into courses made and maintained by end users. Learner can associate a course
with their account and be notified each day when it is time to practice.
This mechanism helps maintain knowledge. Users interact with the learning
system in the following ways:

• learning mode — the session consists of repeated queries on a number
of new phrases,

• review mode — player is given a set of queries on phrases that have not
been practiced lately,

• speed review — introduces stricter time constraints,

• my difficult words — the session consists of queries on phrases that
the player struggles with.

As we can see, the system includes two primary modes of repetition — one that
selects phrases depending on time passed since last review and one that selects
phrases that have been entered incorrectly a large amount of times.

Figure 1.1: Memrise user interface

22

1.1. Non-gaming applications

1.1.1.2 Gamification

Memrise places emphasis on community features. The user can browse through
profiles of other individuals, check on courses they have started, view custom-
made educational memes3 that they have created and see a tally of words they
have learned and points they have amassed.

Points are also prominently visible in leaderboards, which are displayed
on course pages. The aforementioned features introduce competitiveness
between players.

Another gamification feature used is called “Streak Clock”, which grants
the player additional points and badges for their profile for learning a specified
amount of new words every day. This motivates the player to play regularly,
which is of upmost importance in educational applications of this type.

1.1.2 Duolingo
1.1.2.1 Learning element

In contrast with Memrise, Duolingo offers a unified learning experience
for each language. Courses place a significant emphasis on grammar and are
divided into sections, which are further divided into lessons. Progress through
sections is strictly linear. In order to unlock the next section, the user has to first
complete a set number of lessons and pass a revision test.

In addition to the learning experience, there is also a reviewmode, which works
the same as in Memrise’s case.

3Meme is an idea, behavior, style, or usage that spreads from person to person within a
culture.[17]

23

1. Existing products

Figure 1.2: Duolingo user interface

1.1.2.2 Gamification

Duolingo includes most, if not all, gamification elements of Memrise.
A “Daily Goal” system is present and rewards users with “lingots”, a form
of virtual currency that unlocks additional challenges. Community features
are for most part limited to user’s friends, the system includes an activity feed
that highlights user progression and is viewable by others.

1.1.3 Wanikani

1.1.3.1 Learning element

The user interface of Wanikani is rather different from the previous two
examples. The learning experience consists of learning radicals (building
blocks of kanji characters), utilising said radicals in kanji and ultimately
combining kanji characters into vocabulary. Although the idea of building
blocks appears solid, the application feels more like an encyclopaedia rather
than a learning program and the testing functions look spartan compared
to the aforementioned examples and feel like an afterthought.

24

1.2. Gaming applications

Figure 1.3: Wanikani user interface

1.1.3.2 Gamification

As with Memrise and Duolingo, Wanikani includes a profile system, which
shows user’s progression through various stages (Apprentice, Guru, Master
and so on) and includes few other basic statistics. Compared to other learning
systems, Wanikani’s gamification elements are very basic.

1.2 Gaming applications

The realm of gaming applications that are focused on teaching Japanese
is comparatively small. It is very important to distinguish between true
gaming experiences and simple mechanics borrowed from the gaming
industry. For example, there is a number of “games”, whose sole gaming
mechanic is the concept of hit points with no further interactivity other than
selecting answers to queries. For the purpose of this thesis, we will not
classify these applications as games, but rather as non-gaming applications
with a gamification element. We have selected three examples that can be
thought of as videogames in their own rights[22][27][28].

25

1. Existing products

1.2.1 Fude Samurai

1.2.1.1 Learning element

In order to execute special attacks, the player has to draw a kanji character
with a correct stroke order. The player also encounters small mini games along
the way which include tasks such as putting kanji characters representing
numbers in correct numerical order. The queries get progressively harder
the longer the player practices the kanji in question. In the first phase, they
are guided by outlines of the character, afterwards they have to make do with
stroke order. In the final phase, the game gives them a blank slate. The training
mode which can be accessed via the main menu allows the player to practice
kanji independently from their progress in the story mode.

Figure 1.4: In-game screenshot from Fude Samurai

1.2.1.2 Game mechanics

Fude Samurai is a one button fighter designed with mobile controls in mind.
The game is relatively simple to control and rewards fast reflexes
rather than strategy.

26

1.2. Gaming applications

1.2.2 Kanji no Owari

1.2.2.1 Learning element

At set intervals throughout the level, the player is presented with a review
screen that highlights on’yomi and kun’yomi readings for a set number of kanji
characters. These kanji characters then appear in queries that the player must
answer in order to defeat incoming waves of enemies. It appears that every
level includes a predetermined set of kanji for the player to practise.

Figure 1.5: In-game screenshot from Kanji no Owari

1.2.2.2 Game mechanics

According to the developers, Kanji no Owari is a role-playing game. While it
includes certain elements typical for RPG games, such as variable
(and upgradeable) statistics, the effect on gameplay is rather insignificant.
Players amass virtual currency through play, which they can use to buy items
that help them progress through levels, for example a vial that replenishes
health. Gameplay revolves around defeating monsters by answering quickly
to queries. At the end of each level, the player faces a boss enemy, which
differs from other kinds of enemies by possessing a large amount of health
points, therefore increasing the number of queries generated.

27

1. Existing products

1.2.3 Learn Japanese To Survive! Hiragana Battle

1.2.3.1 Learning element

Unlike the rest of the games mentioned, the player is taught hiragana instead
of kanji. Players are taught new syllables in sets of five during dialogues
with NPCs. They are also shown the pronunciation, draw order, albeit in
a non-interactive fashion. Immediately afterwards, they are tested on the newly
gained knowledge via a series of queries. Hiragana characters appear in battles
as enemies. The player is required to enter correct transcription in Latin script
for each character to have a chance at inflicting damage usingweapons or spells.
The game also includes a quest system, which teaches the player a small amount
of vocabulary and factual information about Japan.

Figure 1.6: In-game screenshot from Learn Japanese to Survive! Hiragana Battle

1.2.3.2 Game mechanics

The game is similar in play style to earlier entries in the Final Fantasy series.
Players conduct turn-based battles in a traditional JRPG style. Battles take place
at random intervals throughout the exploration experience, a mechanic often
referred to in the gaming circles as a “random encounter”.

28

1.3. Turn-based role playing games

1.3 Turn-based role playing games
The following two examples have been chosen to illustrate different
approaches to a turn-based RPG, the variations of which are used in virtually
every game in the genre. The first example allows for one action per turn
(per character), while the second lets the player take multiple actions over
the course of a turn[20][1].

1.3.1 Fire Emblem
The game features a battle system that alternates between the player and
the AI. Both sides possess control over multiple characters and as such can
move and execute actions with each individual character. The routine is as
follows — player first moves the character to a new location and then has
the option to either do nothing, attack using a weapon, use a spell or utilise
an item. After performing an action, the character is deactivated for the rest
of the turn. Attacks do not feature any kind of randomness, damage value is
strictly determined by statistics of each character. These statistics are improved
when the character levels up, the stat distribution is pre-determined to the
best of our knowledge. When performing an offensive action, the target has
a chance to execute a counter-attack. This depends on the character type. Melee
characters cannot counter ranged attacks and characters that have received
a fatal blow aren’t given a chance to fight back.

Figure 1.7: In-game screenshot from Fire Emblem

29

1. Existing products

1.3.2 Dofus
This massively multiplayer online role-playing game contains a world
populated by other players. As such, many elements of the battle system are
designed to accommodate this fact. Turns have a time limit and there is
an entire category of spells used to help friendly characters. Each player has
a set amount of movement points and action points (APs) that they can utilise
on each turn. Individual spells have an AP cost and some have a cooldown,
which prevents them from being used in subsequent turns. Each individual
player controls only one character. Although some character classes are
capable of summoning friendly characters, these are controlled automatically.
The game includes an in-battle challenge system, which rewards players for
completing certain objectives, such as killing a certain enemy first or not
losing any health throughout the fight.

Figure 1.8: In-game screenshot from Dofus

30

1.4. Feature selection

1.4 Feature selection
When it comes to picking phrases, we can either place focus on time since
last revision or the number of mistakes in the last couple revisions. Due to
the fact that answering queries forms an integral part of the game, we can
ignore the time vector as the player has to answer queries in order to progress
in the game. If they stop, so does the game’s progression.

One thing that we would like to borrow from Wanikani is the encyclopaedic
feel. The game should include an interface that lists kanji that the player has
unlocked and phrases associated with said kanji.

All three non-gaming applications place great deal of attention to gamification
elements which stimulate the player. We would like to introduce online profiles
in one of the expansions to the game.

When it comes to gaming applications mentioned, we cannot draw from their
game design as they come from different videogame genres. We can however
take note of mechanics they use to introduce new kanji to the player. Fude
Samurai’s story mode introduces new kanji gradually by guiding the player
through stroke order. As the game places emphasis on teaching the player
how to draw kanji characters, it does not need to explain pronunciation
in much detail. If the player gets lost, they can practice in the training
mode.

31

1. Existing products

Kanji no Owari seems to be lacking in the learning department. The whole
experience seems to be geared towards players familiar with kanji who only
need a quick revision. Hiragana Battle seems to include the best learning
experience out of the three games mentioned. Thanks to the link with NPCs
and story, the learning progression is gradual and does not feel forced.

Lastly, we need to choose between the two approaches to turn-based role-
playing games. As we only control one character, the mechanics used in Dofus
seem to be a better fit for our game. The query mechanism needs to be linked
to a frequently used gameplay mechanic. The most frequently used action
in Dofus seems to be spell casting. Thanks to the ability to cast multiple spells
per turn, the frequency of queries is higher than it would be if we opted to use
Fire Emblem’s approach.

Two other mechanics in Dofus that we would like to use are the in-battle
challenge system and idols, which are items used to modify battle conditions
to make themmore challenging for seasoned players in exchange for additional
rewards. We would like to utilise this feature in our equipment system.

32

Chapter 2
Requirements

This chapter includes specification of functional and non-functional
requirements for our game.

2.1 Functional

2.1.1 Educational system
The game needs to be able to effectively transfer knowledge of Japanese kanji
onto the player.

2.1.2 Battle system
The battle system needs to facilitate frequent use of the educational
element.

2.1.3 Immersion
Thegame needs tomotivate the player in a way that does not involve improving
their proficiency in Japanese, such as with well-paced quest arcs.

2.1.4 Pick up and play
Due to its semi-casual nature, the game needs to be able to support short
gameplay sessions.

33

2. Reqirements

2.1.5 Reward system
The game should include an item system that gives the player
a sense of progression.

2.2 Non-functional

2.2.1 Accessibility
The game should be accessible to casual players and therefore abstain from
using overly complex mechanics. It should communicate its mechanics
in a clear visual form and provide a quick interactive tutorial for
newcomers.

2.2.2 Supportability
Due to its aforementioned educational requirements, the game should be
readily available to the player at any time. Targeted platforms include tablets
and personal computers.

34

Chapter 3
Technology used

This chapter includes tools utilised during development of the game and
discusses motivations behind choosing individual parts of the development
stack.

3.1 Defold
Going into development, we had three basic requirements for the programming
tool used in the process. First, it has to support all major desktop and mobile
platforms in order to satisfy the supportability requirements.

The other two requirements have been set in order to attempt to hasten
the development process as creating a fully functioning prototype of
an educational RPG by one programmer in approximately four months of time
is a rather idealistic goal, especially for someone with no prior game
programming experience. These are choosing a tool that includes an intuitive
IDE with a fast learning curve as opposed to a bare bones library, and one that
is geared specifically towards creating 2D games in order to reduce the need
for performance optimization.

35

3. Technology used

Figure 3.1: Screenshot of Defold’s integrated development environment

Engine License Cost Targets Focus Language
Construct 2[26] Proprietary $129.99 ($429.99) Mobile, (PC, web, Wii U) 2D N/Aa (JavaScript)
Defold[2] Proprietary free PC, mobile, web 2D Lua
Superpowers[30] ISCb free PC, mobile, web 2D, 3D TypeScript
Unity[33] Proprietary $0–$125/mo. PC, mobile, web, consoles 2D, 3D C#, UnityScript, Boo

Table 3.1: Comparison of game engines
aDevelopment in Construct 2 is done primarily using a visual event-driven design system.

JavaScript is provided as an option.
bCompatible with GNU GPL[12].

We have chosen Defold as the development platform as it allows for targeting
all required operating systems — Windows, macOS, Linux, iOS and Android,
features a message-driven architecture that is very easy to comprehend and
build around, has an active community and as of early 2017, a brand new
IDE. Although console platforms are not officially supported, some console
manufacturers include support for HTML5 games via a web applications
wrapper, NintendoWeb Framework[21] is one of the examples. It is also geared
towards 2D development, although including 3D assets is possible through
slight tweaking of the render script. Defold uses Lua, a lightweight dynamically
typed programming language, often used in game development. Defold is also
free to use and carries with it no publishing or royalty fees.

36

3.1. Defold

The basic building block used in Defold is called a game object. Game objects
can include scripts that control their behaviour, sprites controlling their visual
appearance, factories that can be configured to create other game objects and
a variety of other components[8].

Game objects are grouped inside collections, which typically correspond
to scenes used within the game (e.g. main menu, battle, exploration).
Communication between objects is handled through a built-in message
passing system. Thanks to this system, the programmer seldom has
to use the update loop.

Figure 3.2: Addressing hierarchy in Defold

37

3. Technology used

The following is an excerpt from code showcasing the messaging system
in action. The target of our message is the ‘map controller’ game object located
inside the ‘battle’ collection. The portion behind the hash character names
the component we want to address, in this case a script. The message title is
given as the second argument, the third optional argument contains a Lua table
that includes variables passed as a part of the message[7].
msg .pos t (” b a t t l e : / map_ con t r o l l e r # s c r i p t ” , ” a t tack_enemy ” ,

{ enemy_number = enemy_num , d i r e c t i o n = d i r e c t i o n })

On the receiving end, all we have to do is to add a construct inside the provided
on_message function that resolves the message.
f unc t i on on_message (s e l f , message_id , m, s ende r)

i f message_ id == hash (” a t tack_enemy ”) then
i f m . d i r e c t i o n == ”N” then

msg .pos t (s e l f . e n em i e s [m.enemy_number] ,
” p l ay_an ima t i on ” , { i d = hash (” b a c k_ a t t a c k ”) })

. . .

3.2 Tiled Map Editor
As of May 2017 Defold does not include native support for non-orthogonal
tilemaps. Fortunately, there is a number of platform-agnostic map editors
available including Tiled[15], an open-source offering in active development
since 2008. It is by far the most popular choice with 2D game creators.
We have chosen this software because it enables creation of isometric tilemaps,
a deliberate design choice for our game.

The output file includes tile definitions (pairings of image file and its size with
a unique tile id) which are grouped in tilesets, each containing information
about offsets and the draw sizes of tiles contained within.

The second part of the output structure includes layer definitions. Each layer
has a size, offset from origin and a serialized array which contains placed
tiles.

Please keep in mind that the aforementioned contents are in no way
an exhaustive listing of data included in the output file.

38

3.3. Data storage

Figure 3.3: Screenshot of Tiled Map Editor

3.3 Data storage

There are two commonly used ways to work with external data sources
in Defold, one is to use a Lua table and the other is to utilise the built-in JSON
library[6]. The developer is free to implement support for other file types using
a Lua library or the C++-based native extension system[9]. As of May 2017
there is no native support for any database engine. One possible workaround
could be to run a server-side database with an API endpoint and use Defold’s
HTTP library[5], though this process is highly impractical.

3.3.1 JSON

We have chosen JSON as the format of choice for storing most of our data
structures due to its easy readability, standardization and built-in support
in Defold. The size of data we store is not as large as to warrant using
a database. Defold supports deserialization of JSON files into Lua tables,
however the reverse process is not possible.

39

3. Technology used

3.3.2 Lua table
The engine allows for serialization and deserialization of tables, a basic Lua
data structure. Lua tables are not as human-readable as JSON, therefore we
only use them with map files generated by Tiled, which includes Lua support,
and save files containing player statistics. In contrast with JSON, Lua tables can
be serialized and saved to an external file using built-in library functions.

3.4 Git
Git has been chosen as the version control system for this project due to its
integration into Defold IDE’s user interface and author’s general familiarity
with the tool, though it is hardly practical for larger projects.

One issue game developersmight encounter while using Git are impracticalities
stemming from versioning a large number of sizable binary files that make
up the game’s assets. The internal ‘.git’ folder can reach large sizes and
fetching changes from remote locations can take longer than necessary. Public
hosting sites such as GitHub, GitLab and Bitbucket also enforce a size limit on
repositories hosted on their sites.

There are two solutions to this problem. One is to use a different VCS such
as Subversion, which is better suited to dealing with binary files. The other
is to utilise what’s known as Git Large File Storage[13], an open-source tool
which replaces large files with pointers to a remote location.

40

Chapter 4
Battle system

Figure 4.1: In-game screenshot of the battle portion

This chapter includes description of combat mechanics, the learning and
the challenge systems used in the game, a diagram detailing communication
between components and a detailed description of these components and data
structures exclusive to the battle portion of the game.

41

4. Battle system

4.1 Introduction
The following section details choices made regarding key design elements
included within the battle system and the motivations behind these
choices.

4.1.1 Battle flow
In the chapter concerning existing products, we have detailed two common
approaches used within the turn-based RPG genre. In Fire Emblem and similar
JRPGs, during each turn the player moves a character and then performs
a single action, be it using an item, casting a spell or staying still. This approach
seems to work best in games that introduce player control over multiple
characters. In games with a single controllable character, this approach feels
too simplistic and furthermore limits the potential of the game’s learning
element.

The other mainstream approach is to allow the player to move and cast spells
freely during each turn. Utilising this design choice, each spell in the game is
given a mana cost that depends on power of the spell. A mana pool of certain
size is refilled at the beginning of each turn and allows the player to cast
multiple spells. Correspondingly the player is allocated a certain number
of movement points that they can utilise during each turn.

4.1.2 Learning element
Each spell has a kanji difficulty setting associated with it that controls which
set of phrases is chosen. More powerful spells trigger a choice between more
complex kanji phrases.

During the process of choosing phrases for the game, we have decided to divide
them into two sets. The first contains kun’yomi readings of characters and
therefore includes mostly verbs. The second contains on’yomi readings, which
are typically present in kanji compounds. The choice of kanji depends on player
character’s level and their previous actions. The system prioritizes kanji with
high error rates.

42

4.2. Architecture

After casting a spell, the player is presented with a query containing a kanji
character and they are required to type a correct kana transcription. Each
spell has a set base damage, which decreases depending on the time it takes
to answer the query. We originally planned on introducing an element
of randomness to the amount of damage given, but doing so would negate
the effects of the educational element[25].

4.1.3 Challenge system

The challenge system introduces a set of voluntary battle-specific goals that
are meant to incentivise certain styles of play in order to alleviate repetition.
In contrast with quests, these goals deal exclusively with battle mechanics.
Certain challenges are easier than others in order to accommodate skill levels
of all players. The implemented examples are as following:

• Kill an enemy before switching targets.

• Use a spell at most once a turn.

• Finish in 10 turns.

• Finish without taking any damage.

• Do not fail a single query.

• Do not move during entire fight.

Each challenge is assigned modifiers, which increase the amount
of experience and currency gained on conclusion of the fight should
the challenge be successfully completed.

4.2 Architecture

4.2.1 Data structures

The following section includes details on structures of files used throughout
the battle part of the game. All files are in human-readable JSON format.

43

4. Battle system

Figure 4.2: Communications diagram for the game’s battle portion

4.2.1.1 Dictionary

The file includes two arrays. The first array is used for less powerful spells and
includes individual characters, which exclusively use kun’yomi readings,
the second includes more complex composite characters used for more
powerful spells, typically using on’yomi readings. Each entry includes a kanji
character or conjugation thereof, its kana transcription and an English
translation.

[
[

{ ” k a n j i ” : ”⽇ ” , ” kana ” : ”ひ ” , ” meaning ” : ” day ” } ,
{ ” k a n j i ” : ”本 ” , ” kana ” : ”ほん ” , ” meaning ” : ” book ” } ,
{ ” k a n j i ” : ”⼈ ” , ” kana ” : ”ひと ” , ” meaning ” : ” person ” } ,
. . .

] ,

[
{ ” k a n j i ” : ”⽇本 ” , ” kana ” : ”にほん ” ,
” meaning ” : ” Japan ” } ,

{ ” k a n j i ” : ”⽇本⼈ ” , ” kana ” : ”にほんじん ” ,
” meaning ” : ” J apane s e person ” } ,
. . .

]
]

44

4.2. Architecture

4.2.1.2 Spellbook

The file includes an array of spells used in the game. Each spell has a name,
mana cost and a difficulty which corresponds to each of the arrays in dictionary
and accepts values of either 1 or 2. Spells have a base damage, which decreases
with time used up by player to answer the query, and minimal and maximal
ranges indicating distance from player character in number of cells.

Damage range can either be set to 1 which inflicts damage only
on the selected cell or a larger integer, which also affects a corresponding
number of surrounding cells — an effect often referred to in video game
design as an Area of Effect (AoE) spell. The Linear AoE attribute can be set
to 1 to make the spell affect targets behind the selected cell
(from player character’s point of view), 2 to inflict damage to targets
in-between the player character and selected cell or 0 to use the more
traditional planar AoE.
[

{
” name ” : ” Whirl ” ,
” c o s t ” : 2 ,
” k a n j i _ d i f f i c u l t y ” : 1 ,
” base_damage ” : 4 5 ,
” min_range ” : 1 ,
” max_range ” : 1 ,
” damage_range ” : 1 ,
” l i n e a r _ a o e ” : 0

} ,
. . .

]

45

4. Battle system

4.2.2 Script entities
The following section contains information about script entities used
in the battle part of the game.

4.2.2.1 Battle logic

Controls the flow of a battle. Structures included within control movement,
actions and statistics of both the player character and any enemies present
on the map. A* search algorithm[23] is used to find the shortest paths for both
the enemies and the player to follow. Validity of cells in regards to movement
and casting is determined by the map’s logic layer.

4.2.2.2 Battle GUI

Updates information present on the game’s user interface. The script also
manages all keyboard and mouse/touch input from the player when a battle
is ongoing.

4.2.2.3 Dictionary

This script is utilized during the process of casting a spell. It chooses a kanji
with the lowest success rate from the dictionary data structure to use during
a query. After completion of the query, it saves the result to a save file.

4.2.2.4 Challenge

Picks two random entries from the list of available challenges and afterwards
keeps track of their status (in progress, successfully completed, failed). Due
to the need to incorporate hooks into other scripts, the challenge list
is hard coded and therefore doesn’t depend on an external data
structure.

4.2.2.5 Spell

Determines valid targets during the spell casting process based on information
present in the spellbook data structure and logic layer of the current map. Also
calculates damage based on time taken by the player to answer a query and
base damage of the selected spell.

46

4.2. Architecture

4.2.2.6 Kana parser

Works in conjunction with battle GUI to translate Latin characters written
by the player into hiragana. The parser adheres to rules defined by Hepburn
romanization system, the most widely used transcription method. The solution
for more complex cases, such as the insertion of small ‘sokuon’ characters is
inspired by the behaviour of Microsoft Input Method Editor for Japanese.

a i u e o ya yu yo
ー あ い う え お や ゆ よ
k か き く け こ きゃ きゅ きょ
s さ ー す せ そ ー ー ー
t た ー ー て と ー ー ー
n な に ぬ ね の にゃ にゅ にょ
h は ひ ー へ ほ ひゃ ひゅ ひょ
m ま み む め も みゃ みゅ みょ
y や ー ゆ ー よ ー ー ー
r ら り る れ ろ りゃ りゅ りょ
w わ ー ー ー を ー ー ー
g が ぎ ぐ げ ご ぎゃ ぎゅ ぎょ
z ざ ー ず ぜ ぞ ー ー ー
d だ ー ー で ど ー ー ー
b ば び ぶ べ ぼ びゃ びゅ びょ
p ぱ ぴ ぷ ぺ ぽ ぴゃ ぴゅ ぴょ

Table 4.1: Hiragana conversion table

Romaji Kana Romaji Kana Romaji Kana
n ん fu ふ shi し
sha しゃ shu しゅ sho しょ
chi ち tsu つ  cha ちゃ
chu ちゅ cho ちょ  ji じ
ja じゃ ju じゅ  jo じょ

Table 4.2: Special cases of hiragana conversion

47

4. Battle system

Figure 4.3: Simplified finite-state automaton for the first two rows of the hiragana
conversion table

48

Chapter 5
Exploration system

Figure 5.1: In-game screenshot of the exploration portion

This chapter details the questing system used within our game, introduces
the item system and item economy and talks about the experience system.
As with the battle chapter, we discuss data structures and script components
exclusive to this part of the game.

49

5. Exploration system

5.1 Introduction
The following section details choices made regarding key design elements
included within the exploration system and the motivations behind these
choices.

5.1.1 Questing system

The quest system is an important plot device that motivates the player and helps
alleviate the negative effects of grind mechanics on player retention. While
researching the possible quest archetypes, we wanted to focus on three aspects
— repeatability, quests as means of motivating the player to move between
game areas and variability.

5.1.1.1 Repeatability

Thefirst aspect concerns quests that aremeant to be experiencedmultiple times.
Repeatable quests entice the player to return to previous areas and usually
provide rewards that are exclusive to the particular region of the map they take
place in.

5.1.1.2 Exploration quests

These quests are generally one-time-only opportunities that are designed
to move the player from one area to another in a smooth and believable
fashion. These types of quests are utilised in World of Warcraft, where they
are colloquially referred to as breadcrumb quests. We will work with branching
quest arcs, however, for the sake of simplicity, no two quests can be mutually
exclusive.

The following diagram illustrates the relationships between quests. Black
exclamation marks symbolise main quests, while light gray marks symbolise
side quests. Main quests are dependent on one another, while side quests
are optional. Many main quests are of the breadcrumb type, as discussed
in the previous paragraph, though this is not always the case.

50

5.1. Introduction

Figure 5.2: Quests diagram

5.1.1.3 Variability

One issue a lot of modern role-playing games face is the lack of variability
when it comes to quests. The player is generally asked to kill a certain number
of enemies or to collect certain items. To help combat this fact, we have listed
below some examples that can be used within our game:

• character hunting quest (triggering conversations with different NPCs),

• scavenger hunt (locating certain cues hidden within the environment),

• enemy killing quest (killing a number of enemies of a specific type),

• gathering quest (collecting a number of resources from enemies
or crafting nodes),

• achievement quest (meeting a condition, such as achieving consistent
success in regards to the learning element or completing
a number of challenges).

51

5. Exploration system

5.1.2 Item system

The game has three categories of items. Equipment, which the player can
wear to change the behaviour of certain parts of the game, consumables that
they can use in battle to increase health and potentially cause other effects,
and resources, which are used for completing quests or can be further refined
via crafting.

5.1.2.1 Equipment

Equipment in most modern role-playing games is designed to increase player
statistics. As a player, I feel this approach is rather artificial and lacking.
Besides, in an educational game, focus should be given on the educational
element. The proficiency of the player should be the main factor in determining
their potency.

Therefore, we have designed the equipment to alter game mechanics in ways
that both benefit and punish the player in certain areas, a mechanic similar
to the idol system in Dofus. For example, certain players might prefer to have
more time when answering queries. They can wear an item that increases
available time, but decreases damage that the spell causes. Other players could
prefer the opposite, so another item will exist which decreases available time
and increases damage caused, thus rewarding players with fastermemory recall
skills.

5.1.2.2 Consumables

Consumable items are meant to be used within the game’s battle mode.
They generally provide additional health points to the player and can be
essential for more difficult fights. They can also provide supplementary
effects such as temporary stuns, increase available movement points and
more. No consumables should provide damage dealing capabilities as doing so
would interfere with spells and the associated learning element. When using
a consumable, the player does not have to answer a query.

52

5.1. Introduction

5.1.2.3 Resources

The resources category contains items that can be used to create consumables,
used in gathering quests, or do not perform any function other than generating
profit for the player via the mechanic of selling the item to the vendor
NPC.

5.1.3 Economy
Activities that bring items into economy are called item fountains (or faucets,
depending on literature), activities that remove items from the game’s economy
are called item sinks. Balancing the two is a vital part of role-playing game
design.

Designing item fountains is a fairly straightforward process. In our game, there
are presently two such examples — winning an item in combat and acquiring
it as a quest reward.

Creating item sinks is a comparatively more difficult process. Examples of item
sinks used in RPGs today include maintenance fee, where an item will lose its
effect unless some amount of currency is paid periodically, limited inventory
space (and to a lesser degree aweight system), where the player needs to discard
an old item in order to acquire a new one, or a crafting system, which lets
players exchange a combination of items for a new item[14].

In our game we have designed three item sinks. Consumable items can
be used during battle to heal the player and perform additional effects. Certain
resource items are utilised in quests. Last but not least, items can be traded
to a vendor NPC in exchange for currency (not pictured in the diagram
for the sake of visual clarity).

Future implementation of a crafting system will introduce an additional
item fountain — the gathering node. Additionally, the process of crafting itself
is both an item fountain and an item sink.

53

5. Exploration system

Figure 5.3: Economy diagram

5.1.4 Learning progression
As hinted in previous chapters, the game includes an experience system. Most
role-playing games use this system to lock players out of content that is meant
to be experienced in later stages of the game. They do this by introducing
statistics, which increase with level or by specifying level requirements for
equipment. When designing the game, we wanted to stay away as much as
possible from arbitrary numbers that influence the might of player’s character
and instead let the strategy andmost importantly knowledge of kanji characters
determine player’s success.

On the other hand, we needed a system that adds new kanji characters
to the pool of phrases that are used in the battle system. The solution is simple
— when the player gains a new level, they unlock a new kanji character.

54

5.2. Architecture

5.2 Architecture

Figure 5.4: Communications diagram for the game’s exploration portion

5.2.1 Data structures
The following section includes details on structures of files used throughout
the exploration part of the game. All files are in human-readable JSON
format.

5.2.1.1 Item

This structure holds data on all items within the game. Each item entry
contains an identifier, a name, filename for its inventory icon, value when sold
to the vendor NPC, the category definition and effects of the item when used
by the player, which are applicable for items from equipment and consumable
categories. Equipable items include information about slot that they occupy
on the player character. Additionally, a description is provided that displays
inside GUI tooltips when hovering over the item in question.
[

{
” i d ” : 1 5 ,
” name ” : ” Ring o f l i f e ” ,
” i c on ” : ” l i f e _ r i n g ” ,
” d e s c r i p t i o n ” : ”A r i n g with an i n t e g r a t e d d e f i b r i l a t i o n

un i t . \ n+15 h e a l t h p o i n t s \ n−20% damage g iven ” ,
” v a l u e ” : 0 ,

55

5. Exploration system

” c a t e go ry ” : ” equipment ” ,
” s l o t ” : ” a c c e s s o r y ” ,
” e f f e c t s ” : {

” h e a l t h ” : 1 5 ,
” damage_given ” : −0.2

}
} ,
. . .

]

5.2.1.2 Droprate

This structure is used when determining spoils of battle. Each entry represents
an enemy. In addition to the enemy identifier, it contains a nested array
of items obtainable from winning a battle against that enemy. Each entry
in this nested array contains an item identifier and a probability value, which
is a positive number that determines the probability of dropping the item
in decimal fractions. The currency value determines the maximum amount
of in-game currency attainable by defeating a single enemy. The resulting
amount ranges from 60 to 100 percent.

[

{
” enemy_id ” : 1 ,
” cu r r ency ” : 5 ,
” i t ems ” : [

{
” i t em_ i d ” : 1 ,
” p r o b a b i l i t y ” : 0 . 3

} ,
{

” i t em_ i d ” : 3 ,
” p r o b a b i l i t y ” : 0 . 7

}
]

} ,
. . .

]

56

5.2. Architecture

5.2.1.3 NPC

The structures includes information on non-playable characters. Each entry
includes an identifier, a name of the character which is displayed in dialogues,
name of the animation that represents the character, position within the game
world specified by the map area and position coordinates, a flag which specifies
whether the NPC functions as a vendor and an initial dialogue that is added
to a new save file at the start of the game.

[

{
” i d ” : 1 ,
” name ” : ” Old Guy ” ,
” s p r i t e ” : ” npc_man ” ,
” map_area ” : 1 ,
” p o s i t i o n ” : [1 2 , 2 4] ,
” vendor ” : f a l s e ,
” s t a r t i n g _ d i a l o g u e ” : 25

}
. . .

]

5.2.1.4 Dialogue

Dialogues in the game are ordered in a linear fashion. There are no instances
of branching dialogues. Each dialogue entry contains an identifier, the dialogue
text itself and an identifier of the follow-up dialogue, if applicable.

[

{
” i d ” : 2 ,
” t e x t ” : ” He l l o t h e r e s t r ange r , I haven ’ t seen a f r e s h

s ou l as o f l a t e . You seem to be new around t h e s e
pa r t s , am I r i g h t ? Well then . . . * ahem * l e t me
i n t r o du c e you to . . . ” ,

” n e x t _ d i a l o gu e ” : 3
} ,
. . .

]

57

5. Exploration system

5.2.1.5 Quest

This structure contains information on quests. Each entry contains an identifier,
identifiers of both the NPC that gives the quest to the player and the one that
gives the reward for a finished quest, the dialogues that are triggered when
the quest is available and completed respectively, flags that hold information
on whether the quest is repeatable and whether it is a quest from the main
storyline (these are displayed in the GUI with a different icon), the title
of the quest and description visible in the quest GUI, a prerequisites array that
holds identifiers of quests that need to be completed before the quest in question
becomes available, triggers that specify player actions required to complete
the quest (as with challenges these are hard coded) and information about
rewards in experience, currency and items.
[

{
” i d ” : 1 ,
” s t a r t _ n p c ” : 1 ,
” end_npc ” : 1 ,
” r e p e a t a b l e ” : f a l s e ,
” s t o r y ” : t rue ,
” t i t l e ” : ” I n t o the f r a y ” ,
” d e s c r i p t i o n ” : ” The o ld man wants you to d e f e a t a

r a b b i t t o prove your worth . You aren ’ t go ing to l e t
him down , a r e you ? ” ,

” p r e r e q u i s i t e s ” : [] ,
” t r i g g e r s ” : [[” KILL_ENEMY ” , 1 , 1]] ,
” exp_reward ” : 5 00 ,
” cur rency_reward ” : 6 0 ,
” i t em_reward ” : [1 , 1 , 5] ,
” s t a r t _ n p c _ d i a l o g u e ” : 2 ,
” end_npc_d i a l ogue ” : 6

}
. . .

]

58

5.2. Architecture

5.2.1.6 Map area

This structure includes the name of each area, map file used, list of items
sold by vendors in the area and their costs and information about enemy
mobs. Every mob has a position associated with it, the enemies respawn
at the specified location on map load and then proceed to wander about.
The level designer has an option to specify the number of enemies and
their type for each mob in the ‘enemies’ array. This information is not
required, if it is not provided, the map loading routine will generate a random
assortment of enemies that can be controlled using the ‘enemy_types’ array
and the ‘max_mob_size’ field. The former contains nested arrays, which specify
enemy id and spawn probability. The sum of probabilities can be any positive
number. The ‘max_mob_size’ field allows for choosing the maximum mob size
as generated mobs differ in number of enemies.

[

{
” i d ” : 1 ,
” name ” : ” R abb i t I s l a n d ” ,
” map_ f i l e ” : ” k a _ r a b b i t ” ,
” enemy_types ” : [[1 , 0 . 2] , [2 , 0 . 1]] ,
” max_mob_size ” : 4 ,
” enemy_mobs ” : [

{
” enemies ” : [1] ,
” p o s i t i o n ” : [3 0 , 66]

} ,
{

” enemies ” : [3 , 2 , 2 , 1] ,
” p o s i t i o n ” : [6 6 , 22]

} ,
{

” p o s i t i o n ” : [3 8 , 27]
} ,

{
” p o s i t i o n ” : [3 6 , 19]

} ,
. . .

] ,
” vendor_ i t ems ” : [

59

5. Exploration system

{
” i t em ” : 4 ,
” c o s t ” : 400

} ,
. . .

]
}
. . .

]

5.2.2 Script entities
The following section contains information about script entities used within
the exploration part of the game.

5.2.2.1 Explore logic

Controls the flow of the out-of-battle mechanics. Structures included within
control movement and actions of the player character and both enemies and
NPCs present on the map. A* search algorithm is used to find the shortest paths
for the player to follow, enemies move randomly to unoccupied neighboring
tiles. Validity of cells in regards to movement is determined based on the map’s
logic layer.

5.2.2.2 Explore GUI

Updates information present on the game’s user interface. The script also
manages all keyboard and mouse/touch input from the player when
out of battle. Due to complicated UI elements, the GUI is divided between four
files — inventory, encyclopaedia and quest GUIs and the explore GUI file,
which includes links to the remaining three files via built-in template
functionality. Unfortunately, Defold does not allow the developer to add
separate GUI scripts to linked GUI files[4].

60

5.2. Architecture

5.2.2.3 Quest

The script handles operations concerning quests. Receives updates on triggers
and propagates them into the persistence module. Checks on quest status
and passes on information about quest markers that display atop NPCs
to the map script, and general quest information to the explore GUI script
to be displayed in relevant GUI elements. As with the challenge script
in the battle portion, triggers are hard coded due to the need to incorporate
hooks into other scripts.

There are 5 states a quest can be in. By default, it is inactive and therefore
unavailable to the player. After prerequisites are met, the quest enters
the available state and is available for the player to accept. The quest-giving
NPC displays an exclamation mark on top of their sprite. Once the quest
is accepted by the player, it enters the ongoing state. The quest script then
looks for triggers associated with the quest. Once conditions of all triggers
in the quest have been met, the quest enters the turn-in state. In this state,
the quest-ending NPC displays a question mark on top of their sprite and
the player is able to turn in their quest and claim their reward, after which
the quest enters the completed state, unless it is a repeatable quest, in which
case we return the quest to its available state.

The following list includes all triggers that are currently implemented:

• Defeat a certain number of enemies.

• Complete a certain number of challenges.

• Obtain a certain number of items.

• Collect a certain number of kanji tablets4.

• Collect a certain number of trinkets5.

4Kanji tablets are a metaphor used to represent levels.
5Trinkets are items with a physical representation on the game map.

61

Chapter 6
Shared elements

This chapter contains information on data structures and script components
used outside of and in both the battle and exploration parts of the game.
Additionally, it details the persistence module and the used tile rendering
algorithm.

6.1 Introduction

6.1.1 Persistence module
The persistence module stores all non-static information and changes
dynamically depending on player’s actions. It also handles initialisation
in the case of player starting a new game. Changes are saved often as to meet
our functional requirement concerning short gameplay sessions.

6.1.2 Tile rendering
As we do not use Defold’s built-in tile editor, we had to write our own
routine for rendering tiles. Due to the large size of maps used within the
exploration mode, rendering all the tiles at once would use up a significant
amount of system resources.

63

6. Shared elements

For example, a map with a size of 100 by 100 tiles would require the engine
to store 30,000 sprites (each tile collection includes three game objects and
in turn sprites associated with it — the terrain, object and a selection image).
To optimise the performance, we have to render only tiles that are visible within
the current camera view.

There are two programmatic approaches we can use to implement dynamic tile
rendering. One is to remove game object instances that are no longer visible
and add new instances. The other is to keep the existing game objects and move
them from their original position to the new position. The practice of reusing
intialised objects is called object pooling. It is used to mitigate performance
issues when dealing with objects whose initialisation and destruction routines
are resource intensive. Defold already has object pooling implemented on an
engine level and the documentation specifically advises developers to use the
earlier approach[3].

The developer can also decide on whether to complete the entire operation
at once or whether to divide the process into steps that line up with character
movement.

While trying both approaches, we have come across a large difference
in performance, although on further inspection we found out it was due to
lack of optimisation on our part. We used to unnecessarily iterate through
structural metadata about tilesets while preparing every single tile.
We managed to solve this issue by creating a Lua table that stores tileset data
about every tile style used.

64

6.2. Architecture

6.2 Architecture

6.2.1 Data structures
The following section includes details on structures of files used throughout
the entirety of the game. Both the map files and the persistence module are
stored inside files containing Lua tables. The level and enemy data structures
are stored in JSON files.

6.2.1.1 Persistence module

The persistence module acts as a save file. It contains data on player’s success
rate for each kanji phrase, entries on active and completed quests, current
NPC dialogues, items located in player’s inventory and equipped on their
character, balance of in-game currency, their level and experience points, which
determine the size of the kanji selection pool.

6.2.1.2 Map

Maps are stored in a Lua script file. Tiled export formats also include JSON and
CSV. For a brief summary of contents, please refer to the Technology section
of this thesis. As of version 0.17 Tiled also supports Defold’s native tile format,
however the current implementation only allows for orthogonal maps and is
therefore unsuitable for our game.

The game uses four map layers to store data:

1. large_object — contains sprites spanning multiple tiles (e.g. trees),

2. object — contains smaller obstacles such as rocks or tile decorations,

3. logic — used by the battle logic script to determine whether a cell
is accessible,

4. terrain — contains base tiles.

6.2.1.3 Enemy

The file includes information about all enemies in the game. Each enemy
entry contains a type definition used internally within the game, name

65

6. Shared elements

displayed as part of battle GUI, initial health value, number of moves,
base damage, attack range and number of experience points awarded
to the player for a successful kill.
[

{
” i d ” : 1 ,
” type ” : ” white_bunny ” ,
” name ” : ”White Bunny ” ,
” h e a l t h ” : 6 0 ,
” movement_pool ” : 3 ,
” a t t a c k ” : 6 ,
” range ” : 1 ,
” e x p e r i e n c e ” : 30

} ,
. . .
]

66

6.2. Architecture

6.2.1.4 Level

Thefile contains information on player levels and query phrases associatedwith
them. Levels have an experience value associated with them. When a player
gains a specified amount of experience, they reach a new level and unlock a new
kanji character. This process widens the number of possible queries by adding
phrases that contain the character. The ‘basic’ and ‘complex’ fields indicate
the position of the last phrase that can be shown to the player of that particular
level. They correspond to the first and second arrays of the dictionary data
structure. Information on kun’yomi and on’yomi readings are also included
for the encyclopedia GUI to make use of.
[

{
” k a n j i ” : ”⽇ ” ,
” kun ” : ”ひ ” ,
” on ” : ”にち ” ,
” b a s i c ” : 1 ,
” complex ” : 0 ,
” e x p e r i e n c e ” : 100

} ,
. . .

]

67

6. Shared elements

6.2.2 Script entities
The following section contains information about script entities used in both
the battle and exploration parts of the game.

6.2.2.1 Save file

Retrieves data from and saves data to player’s save file. Handles initialisation
of new save files with default values.

6.2.2.2 Proxy

Collection proxies in Defold handle loading and unloading collections,
structures that contain game objects and can be often thought of as scenes
of the game. The proxy script handles switching between the menu, battle and
exploration parts of the game, allocating system resources as needed.

6.2.2.3 Menu GUI

Includes input handling for buttons in the game menu.

6.2.2.4 Tutorial GUI

Controls display of tutorial images.

6.2.2.5 Render script

The game includes an implementation of a render script that maintains fixed
aspect ratio made by Defold developer Björn Ritzl[24].

6.2.2.6 Map

Renders terrain tiles, objects and characters in a correct order based
on information included within the map data structure as well as parameters
passed from outside scripts.

68

6.2. Architecture

The script also handles conversion between input coordinates and the game’s
coordinate system. Map coordinates are calculated using the following
transformation matrix:

1

2wh

 h w −fxh− fyw

−h w fxh− fyw

0 0 2wh


In this matrix, w and h refer to width and height of a tile in pixels respectively
and fx and fy refer to offsets of origin in both dimensions[29].

6.2.2.7 Camera

Moves the camera game object in a smooth fashion using linear interpolation
with variable speed. We have decided on keeping the camera permanently
locked on the location of the player character. Originally, the camera moved
to the target location in a straight line, but doing so presents a problem
in specific environments, such as the one pictured below. If player were tomove
between the two points pictured, the player character would move off-screen,
stay invisible for a couple seconds and then re-appear, which could potentially
confuse the player.

Figure 6.1: Illustration showcasing issue with camera movement

69

Chapter 7
Tutorial

This chapter details the process of introducing the player to key gameplay
mechanics via a series of images that guide the player to perform specific
actions. This approach was chosen for its ability to immerse the player
into the game. We wanted to avoid using complex pop-up dialogues as they
detract from the experience. The comparatively small window on top right
can be easily ignored if wanted to.

Figure 7.1: In-game screenshot of the new player experience

71

7. Tutorial

7.1 Steps

7.1.1 Exploration mode (first part)
The tutorial begins immediately after starting a new game.

1. The first picture shows the player how to open the kanji encyclopedia
GUI.

2. After opening the panel they are presented with their first kanji character
and told they have to remember the furigana as it will be used in their
first battle.

3. On closing the dialogue, the player receives a hint on how to move
in the exploration mode.

4. When the player moves to another tile, they are told to talk to a nearby
NPC who will offer them their first quest.

5. After accepting the quest the player is then guided to open up
the quest GUI.

6. A brief explanation of quest types and objectives follows.

7. After closing the dialogue, the player is told to attack their first enemy,
which is incidentally an objective of their first quest.

72

7.1. Steps

7.1.2 Battle mode

8. Upon entering the battle mode, the player is given instructions
on movement.

9. After moving one or more tiles, the player is told about spells and core
battle mechanics (movement and action points). They are then told
to activate a spell.

10. After clicking on a spell icon, the player is instructed to choose a target.

11. Afterwards a query interface appears and the player is given
an explanation about query-specific GUI elements.

12. Upon answering the query, the player is told to end their turn.

13. After clicking on the end turn button, the player is instructed to finish
the battle by defeating all enemies.

7.1.3 Exploration mode (second part)

14. After the player emerges victorious in their first battle, they are given
instructions on how to finish their quest.

15. Once they turn in the quest, they are given an explanation
of quest rewards after which they are told to open up the inventory GUI.

16. Afterwards the differences between item types is explained and
the player is told to use their reward item, which is
a piece of equipment.

17. After equipping the article of clothing, they are told about a follow-up
quest, which concerns battle challenges.

18. An explanation of the challenges system follows.

Upon completion of a single challenge, the tutorial ends.

73

Chapter 8
Testing

Three individuals were selected to test an unfinished prototype featuring
the first two quests. The focus of our play testing sessions was primarily
on usability and accessibility. As the graphical part of the user interface hadn’t
been finished at that time, we wanted to use this opportunity to analyse which
elements were often overlooked in order to pass the resulting information
onto David, our graphics designer. Secondly, we were looking for both minor
and game-breaking bugs.

8.1 Setting
All three individuals had previously mastered basics of Japanese, including
knowledge of hiragana. Two individuals had prior experiences with an earlier
build of the game, which contained some, but not all battle mechanics.
One individual did not have any prior experience with the game and
for the rest of the testing group, this was their first experience with
the exploration portion of the game.

75

8. Testing

Testing was conducted on two different machines running the following
operating systems:

• elementaryOS 0.4 “Loki”

• macOS 10.12 “Sierra”

In addition to the three testing sessions, we have briefly tested the game
on three additional operating systems:

• Windows 7

• Windows 8.1

• Windows 10

8.2 Results
Sessions were each 15 to 20 minutes in length with testers reacting positively
to the overall gameplay experience. We have divided this section into four
subsections. The first two sections include technical issues encountered,
the third talks about game design issues that need to be resolved and the fourth
relates to issues regarding user experience.

8.2.1 Critical bugs
The game has issues with display scaling in Windows 10. When scaling
is enabled, the game window either does not fully display or displays partially
on a secondary display. This practically limits the use on HiDPI machines
running the OS. We did not encounter the issue on machines running macOS,
Linux or earlier versions of Windows operating system. We have notified
the developers about this behaviour.

Another critical issue regarding the game engine used is the inability
to dynamically set a resolution on runtime. The game is currently hard coded
to run at a resolution of 1920 by 1080 pixels. If a user attempts to launch
the game on a system with a lower resolution, it causes the game to crash
on startup. There are two possible ways to solve this issue.

76

8.2. Results

One is to create a launcher application which would allow the user to select
an appropriate resolution prior to launching the game, an approach used
heavily by videogames built using the Unity game engine. The other is to wait
for an official roll-out of the Native Extensions system, which should allow
for writing code that utilises OS-specific APIs in order to obtain a supported
resolution.

8.2.2 Minor bugs

• When an enemy moves, it can sometime pass the player without
attacking them.

• The camera moves abruptly, which can distract the player.

• To interact with enemies and NPCs, the player has to click on the tile
the character is located on.

• The player automatically initiates unwanted conversations with NPCs
that are located en-route to target.

8.2.3 Game design issues

• The game would benefit from having AoE spells with diagonal targets.
In the current state, the player sometimes has no choice but
to end the turn without attacking.

• The damage output of more expensive spells should be increased in order
to motivate the player to use them more often.

77

8. Testing

8.2.4 User experience

• The tutorial should limit possible movement during the first battle. It is
possible for the player to reach a tile diagonal to the enemy, which leaves
the player with no option but to end the turn, thus breaking the tutorial’s
flow.

• Players often do not pay enough attention to NPC dialogues, which can
create confusing experiences for the player if an NPC instructs them
to visit another NPC in order to continue the quest chain.

• Two testers have made repeated mistakes while answering queries
related to parsing a trailing ‘n’ character. The parser should be modified
to convert a trailing ‘n’ character to the corresponding hiragana character
(ん).

• One tester thought the game wanted them to enter on’yomi
or kun’yomi readings of individual characters rather than readings
of kanji compounds. The interface has been redesigned to accommodate
this issue by including on’yomi and kun’yomi readings on the back
of a rotating tablet element as these readings are complementary
to the gameplay experience.

• One tester had issues navigating the map. The use of isometric
perspective means that the player has two possible ways to interpret
a cardinal direction. This issue will be partially solved by implementing
a map interface in the future version of the game.

78

Chapter 9
Future additions

This chapter details some of many possible ways of improving the game.

9.1 Crafting system
Crafting system will play a large role in the game’s economy. It will introduce
the ability to combine resources into consumables and equipment. The crafting
update will also introduce resource nodes, which provide additional means
of generating resources, in addition to quests and spoils of battle. The process
of gathering from a resource node will involve answering a query similar
to the one used in battle. This provides the player with an option to practice
without significant consequences for failure.

9.2 Expansions
Expansions will typically introduce new sets of kanji characters into the game,
new gameplay areas and quests. We believe the expansions should be offered
as a stand-alone product so that players with intermediate knowledge
of Japanese can skip the learning process for kanji they have already
memorized. However, we think the expansions should introduce a gameplay
mechanic for practising kanji from previous expansions and the base game.
Although they can be played through in any order, the persistence module
will keep track of progress across all expansions.

79

9. Future additions

9.3 Multiplayer
One interesting functionality an expansion can bring is the addition
of a multiplayer element. There are two possible approaches. The first is
to introduce player profiles, which would contain achievements and statistical
data such as the list of most challenging kanji for that particular player.
The second is to allow for player vs. player combat, cooperative play and other
complex functionality.

9.4 Other versions
As the game’s design is modular, it would be very easy to create a Chinese
version of the game that uses Pinyin romanization instead of hiragana. We also
have plans for a demo, which would teach the player hiragana characters, thus
making the game more accessible to complete beginners in Japanese.

80

Conclusion

The purpose of this thesis was to analyse existing educational products from
both gaming and non-gaming backgrounds and draw from their expertise
whilst creating an educational turn-based RPG of our own. We took inspiration
from a number of different educational products as well as two existing
videogames from the chosen genre, and specified requirements for our game.
In subsequent chapters, we have discussed the design choices behind the game’s
exploration and battle systems. We have discussed in detail various types
of quests that can be implemented in the game and the need to include
variability in the quest system, as well as item types present in the game and
their place within the game economy.

As part of the thesis, we have built a prototype of the game featuring one in-
game area using Defold game engine and Tiled map editor. We subsequently
created a tutorial system to help the player take their first steps within the game
world and tested the prototype on three individuals. The testing phase helped
in revealing many bugs, game design and user experience issues, which have
been detailed in the corresponding section. Lastly, we shared a number of ways
on how to improve the game.

Overall, I am pleased with the result, although the game still has a long way
to go in terms of both level design and game mechanics. I am working with
the team behind Defold game engine in fixing the critical bugs. The research
has given me valuable insight in processes involved in game design as well as
software architecture in general.

81

Sources

1. ANKAMA. Dofus, the strategic MMORPG [online] [visited on 2017-05-15].
Available from: http://dofus.com/.

2. DEFOLD. Defold: Free 2D Game Engine for Cross-Platform Publishing [online]
[visited on 2017-05-15]. Available from: http://defold.com/.

3. DEFOLD. Factory component manual [online] [visited on 2017-05-15]. Available
from: http://defold.com/manuals/factory/.

4. DEFOLD. GUI templates manual [online] [visited on 2017-05-15]. Available
from: http://defold.com/manuals/gui-templates/.

5. DEFOLD. HTTP API documentation [online] [visited on 2017-05-15]. Available
from: http://defold.com/ref/http/.

6. DEFOLD. JSON API documentation [online] [visited on 2017-05-15]. Available
from: http://defold.com/ref/json/.

7. DEFOLD. Message passing in Defold [online] [visited on 2017-05-15]. Available
from: http://defold.com/manuals/message-passing/.

8. DEFOLD. The building blocks of Defold [online] [visited on 2017-05-15].
Available from: http://defold.com/manuals/building-blocks/.

9. DEFOLD. Writing native extensions for Defold [online] [visited on 2017-05-15].
Available from: http://defold.com/manuals/extensions/.

10. DUOLINGO. Duolingo: Learn Spanish, French and other languages for free
[online] [visited on 2017-05-15]. Available from: https://apps.ankiweb.
net/.

83

http://dofus.com/
http://defold.com/
http://defold.com/manuals/factory/
http://defold.com/manuals/gui-templates/
http://defold.com/ref/http/
http://defold.com/ref/json/
http://defold.com/manuals/message-passing/
http://defold.com/manuals/building-blocks/
http://defold.com/manuals/extensions/
https://apps.ankiweb.net/
https://apps.ankiweb.net/

Sources

11. ELMES, Damien. Anki ̶powerful, intelligent flashcards [online] [visited on
2017-05-15]. Available from: https://apps.ankiweb.net/.

12. FREE SOFTWARE FOUNDATION. Various Licenses and Comments about Them
[online] [visited on 2017-05-15]. Available from: https : / / gnu . org /
licenses/license-list.html.

13. GITHUB INC. Git Large File Storage [online] [visited on 2017-05-15]. Available
from: https://git-lfs.github.com/.

14. LEHDONVIRTA, Vili; CASTRONOVA, Edward. Virtual Economies: Design and
Analysis. The MIT Press, 2014. ISBN 978-0262027250.

15. LINDEIJER, Thorbjørn. Tiled Map Editor [online] [visited on 2017-05-15].
Available from: http://mapeditor.org/.

16. MEMRISE INC. Learning, made joyful ̶Memrise [online] [visited on 2017-05-
15]. Available from: https://memrise.com/.

17. MERRIAM-WEBSTER, INCORPORATED. Meme | Definition of Meme by
Merriam-Webster [online] [visited on 2017-05-15]. Available from:
https://merriam-webster.com/dictionary/meme.

18. MERRIAM-WEBSTER, INCORPORATED. Syllabary | Definition of Syllabary by
Merriam-Webster [online] [visited on 2017-05-15]. Available from: https:
//merriam-webster.com/dictionary/syllabary.

19. NGUYEN, David. David Nguyen̶personal website [online] [visited on 2017-05-
15]. Available from: http://3dnguyen.com/.

20. NINTENDO. Official Site ̶Fire Emblem Awakening for Nintendo 3DS [online]
[visited on 2017-05-15]. Available from: http://fireemblem.nintendo.
com/.

21. NINTENDO. Tools / Middleware ̶Nintendo Developer Portal [online] [visited
on 2017-05-15]. Available from: https://developer.nintendo.com/tools.

22. OSOM VIDEO GAMES. Fude Samurai [online] [visited on 2017-05-15].
Available from: http://fudesamurai.com/.

23. PATEL, Amit. Amit’s A* Pages [online] [visited on 2017-05-15]. Available from:
http://theory.stanford.edu/~amitp/GameProgramming/index.html.

84

https://apps.ankiweb.net/
https://gnu.org/licenses/license-list.html
https://gnu.org/licenses/license-list.html
https://git-lfs.github.com/
http://mapeditor.org/
https://memrise.com/
https://merriam-webster.com/dictionary/meme
https://merriam-webster.com/dictionary/syllabary
https://merriam-webster.com/dictionary/syllabary
http://3dnguyen.com/
http://fireemblem.nintendo.com/
http://fireemblem.nintendo.com/
https://developer.nintendo.com/tools
http://fudesamurai.com/
http://theory.stanford.edu/~amitp/GameProgramming/index.html

Sources

24. RITZL, Björn. Fixed aspect ratio [online] [visited on 2017-05-15]. Available from:
https://github.com/britzl/publicexamples/tree/master/examples/
fixed_aspect_ratio.

25. SCHELL, Jesse. The Art of Game Design: A Book of Lenses. 1st ed. CRC Press,
2008. ISBN 978-0123694966.

26. SCIRRA LTD. Make Your Own 2d Games With Construct 2 [online] [visited on
2017-05-15]. Available from: https://scirra.com/construct2.

27. SEKAI PROJECT. Kanji no Owari ̶Learn Japanese! [online] [visited on 2017-
05-15]. Available from: https://play.google.com/store/apps/details?
id=com.SekaiProject.OwariNoKanji.

28. SLEEPY DUCK. Learn Japanese to Survive! [online] [visited on 2017-05-15].
Available from: http://study-japanese.net/.

29. SOJKA, Martin. How to convert mouse coordinates to isometric indexes? [online]
[visited on 2017-05-15]. Available from: https://gamedev.stackexchange.
com/a/34791.

30. SPARKLIN LABS. Superpowers̶Free 2D+3D game maker, open source [online]
[visited on 2017-05-15]. Available from: http://superpowers-html5.com/.

31. TAYLOR, Insup; TAYLOR, M. Martin. Writing and Literacy in Chinese, Korean
and Japanese: Revised edition. 2nd ed. John Benjamins Publishing Company,
2014. ISBN 978-9027218100.

32. TOFUGU LLC. WaniKani, a kanji learning application by Tofugu [online]
[visited on 2017-05-15]. Available from: https://apps.ankiweb.net/.

33. UNITY TECHNOLOGIES. Unity ̶Game Engine [online] [visited on 2017-05-
15]. Available from: https://unity3d.com/.

85

https://github.com/britzl/publicexamples/tree/master/examples/fixed_aspect_ratio
https://github.com/britzl/publicexamples/tree/master/examples/fixed_aspect_ratio
https://scirra.com/construct2
https://play.google.com/store/apps/details?id=com.SekaiProject.OwariNoKanji
https://play.google.com/store/apps/details?id=com.SekaiProject.OwariNoKanji
http://study-japanese.net/
https://gamedev.stackexchange.com/a/34791
https://gamedev.stackexchange.com/a/34791
http://superpowers-html5.com/
https://apps.ankiweb.net/
https://unity3d.com/

Appendix A
List of abbreviations used

AI Artificial intelligence

AP Action points

API Application Programming Interface

AoE Area of effect

CSV Comma-separated values

(G)UI (Graphical) user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HiDPI High Dots Per Inch

IDE Integrated Development Environment

(J)RPG (Japanese) role-playing game

JSON JavaScript Object Notation

NPC Non-playable character

OS Operating system

VCS Version control system

87

Appendix B
Contents of included CD

readme.md.......................................brief overview of CD contents
bin..................................directory containing binaries of the game
cheatsheet.pdf.....information for users with no knowledge of Japanese
struct................directory containing data structures used in the game
thesis......................................source of the thesis in LATEX format
thesis.pdf...thesis in PDF format

89

	Introduction
	Japanese writing system
	Chapters

	Existing products
	Non-gaming applications
	Gaming applications
	Turn-based role playing games
	Feature selection

	Requirements
	Functional
	Non-functional

	Technology used
	Defold
	Tiled Map Editor
	Data storage
	Git

	Battle system
	Introduction
	Architecture

	Exploration system
	Introduction
	Architecture

	Shared elements
	Introduction
	Architecture

	Tutorial
	Steps

	Testing
	Setting
	Results

	Future additions
	Crafting system
	Expansions
	Multiplayer
	Other versions

	Conclusion
	Sources
	List of abbreviations used
	Contents of included CD

