
doc. Ing. Hana Kubátová, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague January 23, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: IO-Link Device for testing of IO-Link Masters

 Student: Bc. Ondřej Volf

 Supervisor: Ing. Miloš Fenyk

 Study Programme: Informatics

 Study Branch: Design and Programming of Embedded Systems

 Department: Department of Digital Design

 Validity: Until the end of summer semester 2017/18

Instructions

Prepare IO-Link device module allowing its configuration in full range of IO-Link communication
parameters, simulation of process data and diagnosis generation regarding IO-Link Specification.
Write requirement specification for the IO-Link Device module.
Prepare design of the module in the program Enterprise Architect based on collected and elicited
requirements.
Microcontroller shall be selected from the STM32FXXX product line and the design implementation shall
be in the C++ programming language.
All steps shall be coordinated with the Prague IO-Link Competence Center.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Digital Design

Master’s thesis

IO-Link Device for testing of IO-Link
Masters

Bc. Ondřej Volf

Supervisor: Ing. Miloš Fenyk

9th May 2017

Acknowledgements

I would like to thank to all my colleagues in Siemens Development team
for creating great environment. Special thanks goes to Lukas Hamacek for
giving me the opportunity to work on this thesis in Siemens and Milos
Fenyk for supervising this thesis and providing the best support possible.

Declaration

I hereby declare that the presented thesis is my own work and that I
have cited all sources of information in accordance with the Guideline for
adhering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as school
work under the provisions of Article 60(1) of the Act.

In Prague on 9th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Ondřej Volf. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis

Volf, Ondřej. IO-Link Device for testing of IO-Link Masters. Master’s
thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2017.

Abstrakt

Během vývoje IO-Link Master produkt̊u je třeba pr̊uběžně testovat
funkčnost pomoćı r̊uzných IO-Link devic̊u. Tato práce si klade za ćıl
vytvořit IO-Link test device, který by proces testováńı značně zjednodušil
a umožnil by testovat efektivněji.

Kĺıčová slova IO-Link, IO-Link Master, IO-Link Device, Vývoj
vestavěných zař́ızeńı

Abstract

During development of IO-Link masters there is need for proper testing
using various IO-Link devices. This thesis have a goal to create specific
IO-Link test device, that would easen up this testing and allow ways to test
more efficiently.

Keywords IO-Link, IO-Link Master, IO-Link Device, Embedded device
development

ix

Contents

Citation of this thesis . viii

1 Introduction 1

2 Basics 3
2.1 IO-Link Technology . 3

2.1.1 System topology . 4
2.1.2 Physical Layer . 5
2.1.3 Data Link Layer . 8
2.1.4 Application Layer . 13
2.1.5 IO-Link Device Description 15

3 Analysis and design 17
3.1 Introduction to problem and motivation 17
3.2 Collecting requirements . 17

3.2.1 Stakeholders . 18
3.3 Categorizing requirements 21

3.3.1 Functional Requirements 22
3.3.2 Non-functional requirements 26

3.4 Planning . 26
3.5 HW Selection . 27

3.5.1 Micro-controller selection 27
3.5.2 PHY selection . 30

4 Realisation 35
4.1 Overview . 35

4.1.1 Used components . 35
4.2 Basic Design . 36

xi

4.2.1 External parts . 37
4.3 BSP . 38

4.3.1 BSP . 39
4.3.2 MCU . 40
4.3.3 PHY . 44

4.4 Stack integration . 44
4.5 Gateway application . 46

4.5.1 Mail System . 46
4.5.2 Configuration . 48
4.5.3 Process Data . 49
4.5.4 Digital Inputs and Digital Outputs 49
4.5.5 Events . 50
4.5.6 File System . 51

4.6 RTOS integration . 53
4.6.1 Optional usage . 53

Conclusion 55

Bibliography 57

A Acronyms 61

B Contents of enclosed CD 63

xii

List of Figures

1.1 IO-Link Test Rack . 2

2.1 IO-Link Example topology . 5
2.2 IO-Link Master topology . 6
2.3 Pin layout of connectors . 7
2.4 Physical layer of IO-Link Master 8
2.5 Physical layer of IO-Link Device 8
2.6 SDCI message sequences . 9
2.7 Overview of M-sequence types 10
2.8 Data Link Layer of IO-Link Master 11
2.9 Data Link Layer of IO-Link Device 12
2.10 Successful establishment of communication 13
2.11 Communication establishment retried after no response 13
2.12 Application Layer of IO-Link Master 14
2.13 Application Layer IO-Link Device 14

3.1 IO-Link Master test partner use case 20
3.2 IO-Link Master current load test use case 22
3.3 Basic Scheme . 29

4.1 Deployment Diagram . 36
4.2 Component Overview . 38
4.3 Strategy Pattern . 41
4.4 Strategy Pattern GPIO . 42
4.5 GPIO Abstraction . 43
4.6 Integration of TMG IO-Link Stack 44
4.7 Publisher-subscriber pattern . 47
4.8 Mail Queue . 48

xiii

4.9 File System Design . 52

4.10 Test Device Board . 55

xiv

Chapter 1

Introduction

With the rapid development of industrial processes in last few hundred
years there are increasing demands for efficiency and flexibility of used
technology. The vision of Industry 4.0, which is lately quite popular trend
of automation and data exchange in manufacturing technologies, focus on
usage of ”smart”, advanced and intelligent sensors and actuators working
in intelligent networked factory.

One small part of Industry 4.0 was development of IO-Link standard
(IEC 61131-9), that enables easy optimization of used processes and
offers easy connection and communication with smart sensors and
actuators withing a production cycle, highly contributing to the success
of Industry 4.0[1].

IO-Link is technology supported and developed by world industrial
leaders (e.g. Balluff, Siemens, MaximIntegrated, Panasonic, SICK and
many more), which develops so called IO-Link Masters (gateway to
industrial ethernet) and IO-Link devices (sensors/actuators that use
IO-Link protocol). In Siemens Prague branch office of research department,
there is currently ongoing development and maintance of IO-Link Master
products. This development and maintance subject to many tests, that
guarantee bug-free and safe result. For this testing there are many various
test scenarios, using many different devices as can be seen in used test rack
in figure 1.1, to properly test every funtionality of IO-Link Master. These
tests are sometimes very time inefficient, difficult and expensive.

To counter these problems, new IO-Link test device was proposed at
the development department. Device, that would help with automatization
of testing and that would be usable for as many test scenarios as possible.
Project to create such device was therefor initiated as low priority task,
assigned to 3 students with supervision of senior developers. Task was

1

1. Introduction

Figure 1.1: IO-Link Test Rack - Rack that is used to test Siemens IO-Link
Masters. In upper part there are PLCs, IO-Link Masters and relays for
automatization and in lower part there are various IO-Link Devices.

divided into 3 sections. Complete HW development, FW development and
communication protocol with PC application.

This thesis is focused mainly on FW development, but will partly involve
other sections as well, since they are interconnected. In this thesis there will
be brief description of IO-Link protocol. Because for development of any
product, there are firstly needed detailed requirements from all interested
parties, the second chapter will focus on collecting and evaluating of these
requirements as well as some predevelopment processes (e.g. planning and
HW selection). Last part of thesis is description actual realisation of final
device.

2

Chapter 2

Basics

2.1 IO-Link Technology

With the increasing power of microprocessors and other electronic
components the industrial automation require some progress on end devices
as well. This leads to development of improved sensors, actuators or
integration of both, that don’t use standard binary inputs/outputs, but
are more sophisticated and offers way more functions than simple devices
(e.g. reporting events or configuration of devices) to fit into new standard
of Industry 4.0. [1]

For this reason communication standard with the trade name IO-Link
has been designed and standardized under the norm IEC 61131-9
under the term Single-Drop Digital Communication Interface (SDCI) for
small Sensors and Actuators [2]. This communication standard defines
electrical connections, communication protocol and many constraints and
requirements to create safe and reliable protocol. Communication is based
mostly in standard 24V UART with baudrate up to 230,4 KBaud [3].

Main advantages of IO-Link technology are for instance [4]:

• Noise immunity - IO-Link data transfer is based on a 24V signal and
is therefore extremely insensitive to external influence.

• Identification of devices - IO-Link ensures unambigous device
identification. Sensors with IO-Link capability are clearly and
uniquely identified by vendor and device ID.

• Diagnosis detection - With IO-Link transfer process and service data
takes place simultaneously. Any events on device like wire-breaks or
short-circuits are immediately detected by the IO-Link master and

3

2. Basics

reported to control unit. Diagnosis data can be accessed even during
operation.

• Easy IO-Link device replacement - Configuration of device can
be stored in IO-Link masters and automatically downloaded to
new unconfigured device. This makes device replacement during
maintanance fast and easy and prevent workers from making any
mistakes during new configuration.

• Standardized connectors - Simple and standardized connectors for
IO-Link reduces variety of interfaces.

• Integration to any system - IO-Link is an open standard so devices
can be integrated in virtually any fieldbus or automation system (e.g.
PROFIBUS, PROFINET, EtherCAT).

Together these capabilities result in overall reduced costs, increased
process efficiency and improved machine availability. The benefits of
IO-Link are especially significant in applications that are frequently
modified and are severely impacted by extended unplanned downtime.

Based mainly on the IO-Link specification [5], this chapter gives a short
insight over the basics of IO-Link technology, its topology, physical and
electrical properties and data flow as well as basics of device identification.
Information in this chapter won’t run into details and will cover only shallow
parts of this standard to understand rest of the thesis.

2.1.1 System topology

IO-Link provides up to the lowest level of an automation hierarchy. In the
past sensors and actuators were connected to industrial fieldbus through
simple remote I/O devices. In case of IO-Link this particular function
is handled by IO-Link Master module, which provides gateway between
IO-Link and used fieldbus and connects IO-Link devices via point to point
communication through simple three, respectively five, non-shielded wire
connection. IO-Link master is connected via chosen fieldbus or industrial
ethernet to PLC. Usual topology can be seen on figure 2.1.

IO-Link Masters are essentially the heart of IO-Link communication.
Without their gateway there wouldn’t be any way to connect devices to
fieldbus and therefore to PLC. On figure 2.2 it is shown how IO-Link Master
works. IO-Link Master has usually several ports, that work completely
independently and therefore every port can handle only one device without
any interference from others. This also means there is no addressing

4

2.1. IO-Link Technology

Figure 2.1: IO-Link Example topology - Orangle lines represent IO-Link
communication, yellow lines are industrial fieldbus and green line is usual
industrial ethernet

during communication which removes some additional header data from
data packets. Physically the Master need to have as many ports/connectors
as many devices user wants to connect. Ports of IO-Link Master can also be
configured to SIO mode, which means standard digital input/output. This
helps to integrate IO-Link to systems that are not fully IO-Link compatible.

On figure 2.2 it can be also seen that communication with Fieldbus
is handled entirely by Gateway part. This enables porting IO-Link
Masters virtually to any existing Fieldbuses. Either the standardized
mapping in fieldbuses, e.g. for PROFIBUS, PROFINET, EtherCat,
or manufacturer-specific mappings for Ethernet/IP, CANopen, Modbus,
CC-Link. Only required parts are Master side standardized by norm IEC
61131-9 and Gateway side standardized by norm IEC 61158.

2.1.2 Physical Layer

IO-Link has been designed and standardized so it works with digital
input and output interfaces according to IEC 61131-2 in a point-to-point
connection. For this reason IO-Link uses 24V level. Moreover, the usage

5

2. Basics

Figure 2.2: IO-Link Master topology - Topology of IO-Link master is
basically a star network. Center of this star network is IO-Link master
itself, which communicates separately with every IO-Link device connected.
[6]

of this voltage level makes the IO-Link protocol very robust and suitable
for industrial usage, which can produce strong electromagnetic interference,
without need of shielding. Maximum length of cables is 20 m, maximum
for overall loop resistance is 6.0 Ω and effective line capacitance has to be
less than 3.0 nF to ensure reliable connection.

Connectors used for communication with sensors/actuators are 3-wire
M5, M8 and most commonly used M12 port class A based on IEC 60947-5-2.
The pin assignment is according to the IO-Link interface specification [5]:

• Pin 1: L1+ power supply - 24V

• Pin 3: L1- ground line - 0V

• Pin 4: C/Q switching line where C is used for SDCI communication
and Q is standard input/output

These 3 Pins are standardized and are used everytime in connectors.
Moreover, there is additional coding of the M12 connectors named port
class B ilustrated in figure 2.3. Some device units do need additional

6

2.1. IO-Link Technology

input/output channel on Pin 2 shown in assignment for port class A, or
additional galvanically isolated supply voltage for components with higher
power budget via port class B. Portclass B is needed mostly for actuators
with higher power consumption, because L1+ can provide max 200mA
according to specification. [5]

Figure 2.3: Layouts of all available connectors. In case of M12 Class B
ports shall be marked to distinguish them from Class A ports, because of
risks deriving from incompatibilities.

In figure 2.4 it is shown how master can change modes on its ports.
During standard SDCI mode master periodically sends Wake-up pulses
until proper response is received and communication is initiated. Once
this happens, both master and device are set into their standard SDCI
communication mode and communication is handled by their data link
layers. During SIO mode, master acts like standard input/output device.
In this mode there is no SDCI communication at all and communication
layers are bypassed entirely to enable direct processing of input/output
signals by the application layer. Port can also be deactivated in which case
C/Q line shall be switched to high impedance and all communication shall
be stopped.

On the device side there are same operating modes except inactive mode.
In figure 2.5 we can also see, that most of the functions are in opposite
direction. This is because of nature between Master and Device where
Master controls communication and issues most commands. Device is by
default set into SIO mode and acts as digital input, which allows detection
of wake-up pulses coming from the master. Once wake-up pulse is received
device goes into startup mode and initial communication is started. After
successful initial communication the device switch to the IO-Link mode and
standard operation starts.

Lastly whole communication is based on UART frames with inverted
NRZ modulation. Therefore every logic ’1’ corresponds to a voltage

7

2. Basics

Figure 2.4: The physical layer of an IO-Link Master

Figure 2.5: The physical layer of an IO-Link Device

difference of 0V between C/Q and L- and logic ’0’ corresponds to +24V
difference between same lines. Communication is encoded into frames of 11
bits, with standard 1 bit length start and stop bits, 8 data bits and 1 even
parity bit.

2.1.3 Data Link Layer

2.1.3.1 M-Sequence telegrams

Data link layer is basically core part of IO-Link communication, because
it controls data transfer using IO-Link interface and function as interface
between application layer and physical layer. Data frames are sent through
physical layer in form of M-sequence (message sequence) telegrams. These
telegrams consists of several UART frames, consider both request and reply
part of message and differ based on type and size of data sent as can be

8

2.1. IO-Link Technology

seen on 2.6. Every M-Sequence carry information about its data type. This
helps to distinguish nature of carried data into several categories:

Figure 2.6: Every message starts with frames from master and ends with
device reply. Type of message sequence is defined in first part.

• Process data - information that is periodically carried with high
priority. Transfer begins automatically after start sequence without
manual request from application. Process data involves measured
values or control variables.

• On-request data - infortmation, that are sent only on application
request. Specifically on request of Master unit. This involves
configuration of Slave application (sensor) and data of certain events.

• Direct parameters / Diagnosis data - special on-request data, that are
transferred without confirmation on reserved channel.

• Events / Service Protocol Data Units (PDU) - on-request information,
that are transferred after receiving CHK/STAT flag bit in standard
data channel. Unlike other On-request data transfer of events can be
initiated by slave application.

All types of M-sequences are on figure 2.7. Every M-Sequence consists
of mandatory ”M-sequence Control” (MC) octet and another mandatory
”CHECK/TYPE” (CKT) octet. These can be optionally followed by either
”Process Data” (PD) and/or ”On-Request Data” (OD) octets. Response
is always ended by ”CHECK/STAT” (CKS) octet. Detailed description of
mentioned octets:

9

2. Basics

Figure 2.7: Overview of M-sequence types

• M-sequence Control - This octet initiates every Message sequence. It
specifies type of operation (read/write - 1 bit), communication channel
(PD, OD, Direct param, Events - 2 bits) and Address. Address
consists of 5 bits which indicate the octet offset of the user data on
the specified communication channel.

• CHECK/TYPE - This specifies type of M-Sequence (i.e. Type 0,
Type 1 or Type 2 - 2 bits) and 6 bit checksum of data sent.

• On-Request data and Process Data - Data octets which don’t involve
any additional information.

• CHECK/STAT - This last octet indicates by 1 bit if any active Event
is pending for Master retrieval, availability of process data by another
bit and 6 bit checksum of all replied frames.

10

2.1. IO-Link Technology

2.1.3.2 Structure of Data Link Layer

Data link layer (DL) also offers interface for application layer to exchange
of Process Data (PD) and On-request Data (OD). Another set of DL
services is available to system management (SM) for the retrieval of Device
identification parameters and the setting of state machines withing the DL.
The DL uses Physical layer services for controlling the physical layer and
for exchanging UART frames. The DL takes care of the error detection of
messages (whether internal or reported from the PL) and the appropriate
remedial measures (e.g. retry) [5]. Structure of Master DL can be seen
in figure 2.8. Device DL has quite similar structure as can be seen in 2.9.
Difference is as in PL caused by Master issuing most commands and Device
receiving them.

Figure 2.8: The Data Link Layer of an IO-Link Master.

The structure of DL is due to the nature of the data categoried
into Process Data handlers and On-request Data handlers which are in
turn using a message handler to deal with the requested transmission of
messages. TThe special modes of Master ports such as wake-up, SDCI,
and SIO (disabled communication) require a dedicated DL-mode handler
withing the Master DL. The special wake-up signal modulation requres
signal detection on the Device side and thus a DL-mode handler withing
the Device DL. Each handler comprises its own state machine.

11

2. Basics

Figure 2.9: The Data Link Layer of an IO-Link Device

2.1.3.3 Establishment of communication

In previous sections there was mentioned so called wake-up request. Master
attempts to establish communication by sending a wake-up pulse and then
executing a Type 0 read frame. Because IO-Link supports 3 various speeds
of baudrates, M-sequence is sent for every baudrate possible until response
is received. This whole process can be seen in 2.10. In mentioned figure
there are following states once wake-up request has been sent:

1. Master telegram in COM3 (optional)

2. Master telegram in COM2

3. Master telegram in COM1

4. Response from device in COM1

Depending on connected device, a valid reponse may even be received
after COM3 or COM2 in which case another steps won’t be required to run
anymore. Once valid reponse is received, startup shall commence. If no
response is received, whole procedure is repeated twice more. If even after
that there is no response, there is fallback from C/Q to SIO mode and whole
wake-up procedure continues after delay 2.11. For detailed information
about establishing communication and mentioned time constraint see [7].

12

2.1. IO-Link Technology

Figure 2.10: Successful establishment of communication. In this particular
case response was send after COM1 request. In case of another baudrate it
would be sent earlier and communication would be established faster.

Figure 2.11: Communication establishment retried after failed wake-up
sequence

2.1.4 Application Layer

Application layer (AL) of IO-Link communication provides interface
between Data link layer and main application itself. As in other layers
there is major difference in Master and Device AL. While master focus
mainly on outgoing commands as can be seen in figure 2.12, the device
focus on incoming ones 2.13.

In structure diagrams it is shown, that main application communicates
only with System Management (mostly initialization) and Application layer.
For this reason there is going to be brief description of mentioned services:

13

2. Basics

Figure 2.12: The Application layer of an IO-Link Master.

Figure 2.13: The Application layer of an IO-Link Master.

• AL Read - This service is used to read On-request Data from a Device.
Parameters define specific data record to read.

• AL Write - This service is used to write On-request Data to a Device.
Parameters specify, as in AL Read, data record to write to and also
data to be written.

• AL Abort - This service is used to abort any pending AL Read

14

2.1. IO-Link Technology

or AL Write services. Invocation of this service abandons any
preparations for response.

• AL Control - This service contains the Process Data qualifier status
information transmitted to and from the Device application. This
status information containst validity of both incoming and outgoing
Process Data.

• AL Event - This service indicates up to 6 pending status or error
messages. The Event can be triggered by a communication layer or
by an application.

• AL GetInput - This service updates the input data within the Process
Data on Master side.

• AL SetInput/AL NewInput - AL SetInput updates Process Data on
device side and triggers AL NewInput data on Master side which can
lately retrieve them with AL GetInput.

• AL GetOuput - This service updates the output data within the
Process Data on Device side.

• AL SetOutput/AL NewOutput - AL SetOutput updates Process
Data on Master side and triggers AL NewInput data on Device side
which can lately retrieve them with AL GetOutput.

• AL PDCycle - This service indicates the end of a Process Data cycle.
The Device application can use this service to transmit new input
data to the application via AL SetInput.

2.1.5 IO-Link Device Description

Every IO-Link Device made must have so called IODD (IO Device
Description). This IODD is set of files that formally describes a device. The
IODD is created by the device vendor and should be sufficient for IO-Link
Tools to properly identify, parametrize, diagnose and communicate with the
device.

The set of files consist of the maind IODD file, optional language files
and optional picture files. Because this file is mandatory for every device,
there is specification that describe detailed structure of IODD [8] and helps
IO-Link Vendors create these files [9].

Main parts of IODD are:

15

2. Basics

• Device’s identity - Unique identification of device. This involves
Vendor ID (given to Vendors by IO-Link Consortium), Device ID
and Product ID. If devices have same Device ID, there shouldn’t be
any differences in communication.

• Parameters of Device - Some Devices or actuators have parameters,
which influence functionality. Every parameter and its functionality
is described in this part.

• Diagnostic and process properties - Every possible event and detailed
process data meanings must be described here.

• Communication properties - Communication details of Device (e.g.
BaudRate, Process Data size, minimal cycle length, ...)

• Description of the Device - Basic description of device. (i.e.
functionality, usage and/or contraints)

• Illustration of device - Optional icon picture, device picture and
connection picture.

• Manufacturer details - Optional details about manufacturer and its
logo.

• Another language options - Optional versions of IODD for multiple
languages.

Main file of IODD is structured in standard XML format with ”UTF-8”
encoding. Names of these files are strictly given based on Device they are
describing. Before issuing IODD it has to be verified by IODD Checker
software. If no errors are found, the IODD Checker writes a checksum over
the file content and Stamps it for further verification. This prevents any
interventions to IODD.

16

Chapter 3

Analysis and design

3.1 Introduction to problem and

motivation

During development of IO-Link Masters there are many situations, which
require connected device and communication running. For FW developers
it is immediate testing of their newly implemented features or bug fixes,
HW developers sometimes require full operability for certain HW tests
and testers required robust, stable and configurable device, which can be
automatized and provides functionality to fully test all features of IO-Link
Master.

There was clearly need for single device, which would fulfill needs of all
mentioned parties. Device that provides feedback from device side to more
easily find any potential errors on Master. Device that is robust enough to
not being affected by unstable environment and that can be used during
HW tests such as EMC (Electro Magnetic Compliance) or temperature
tests. And device, that can be easily configured to change its parameters
via some kind of communication protocol.

For this reason project was started, which aimed to create such device.
Part of this project was collect every possible requirement from all interested
parties to create device that can work as testing partner for every situation.

3.2 Collecting requirements

One of key phases on every project is correct collection of requirements
from all stakeholders. Any vital requirement missed can bring a lot of
problems in development. In case of HW development it can be need for

17

3. Analysis and design

new prototype. In case of FW development it can be huge setback and
sometimes even need for complete redesign of architecture. These problems
can be completelly prevented by collecting all requirements, picking the
ones that are going to be implemented in first versions and preparing for
possible future integrations of those, that are left.

Whole requirements process was splitted up into several steps:

1. Identifying stakeholders

2. Collecting their requirements

3. Categorizing requirements into categories (e.g. functional and
non-functional)

4. Setting priorities to tasks

5. Finalizing requirements

3.2.1 Stakeholders

Most stakeholder were already mentioned in previous sections, but this
chapter will offer more detailed insight into their current situation and also
their main issues linked to devices, which should be somehow diminished
or get rid off entirely by this project. This covers only main 3 stakeholders,
which are FW developers, HW developers and Testers. There are of course
more stakeholder (e.g. management), but in this case requirements from
their side are mostly generic and involves requirements, that apply to every
other group as well.

3.2.1.1 Firmware Developers

Getting feedback during FW development of IO-Link Masters can be
sometimes very complicated. Debugging communication errors with
multiple devices connected and therefor thousands of interrupts per second
is in some situations close to impossible and finding of bugs via different
methods (e.g. using osciloscope) is not always ideal either. Also most
devices, that are used for debugging are from different vendors and
debugging from their side is therefor impossible.

Majority of available devices don’t offer any insight into running
communication and don’t help at all with this issue and there are only few
of the devices, that supports whole range of optional services that IO-Link
offers. Also devices by specification don’t have some communication
specifics dynamic, so when developer wants to test some functionality, he

18

3.2. Collecting requirements

has to look for exact device, that supports this functionality. This also
involves supporting of legacy protocol, that is not used in new devices,
however io-link masters still have to be able to support it.

From these informations we can create several basic requirements for
FW developers:

• Feedback from device side - This means either some form of logging
of communication or online access to device to monitor status of
incoming and outgoing data.

• Dynamic configuration - Some usually static properties (e.g. length
of process data, baudrate) shall be changeable during runtime (brief
interrupt of communication is expected)

• Support of legacy protocol - Old version of IO-Link protocol is not
used in new devices and masters, however Masters still have to be
able to maintain backward compatibility.

• Possibility of usage device as IO-Link communication logger - As it has
been said there is not many ways to monitor communication between
master and device. Test device should be able to be connected
between master and desired device to monitor communication.

3.2.1.2 Testers

During IO-Link Master testing, there is always goal to test as many
scenarios as possible, because to test all of them is impossible. To do this,
tester would need to have all IO-Link Devices ever made, because every
one of them is somehow different and offers different set of communication
parameters and inside technology. Also IO-Link specification is sometimes
not exactly specific on every possible feature, so different devices can behave
differently during same operation.

To swap between all of those devices it is required for them to physically
go and manually disconnect old device and reconnect new desired device and
this prevents testers from some sophisticated automatization. Although this
can be theoretically automatized, effort to do so is way too high. Testing on
multiple devices will be always required, to ensure compatibility between
most masters and devices, but for some form of tests (e.g. integration tests,
regression tests) there is need for some automatized way.

There are currently not many ways to perform any robustness tests, since
devices behave according to specification. Any defect has to be manually
simulated on communication line and that is not always ideal and reliable.

Main requirements from testers are therefor:

19

3. Analysis and design

• Dynamic configuration - Although this requirement was already from
FW developers, its one of main requirements here as well. Device
could be configured to substitute any possible configuration available.

• Easy control - Since testers are going to change configuration most
frequently, there should be a way to do this as easily as possible.
Probably with some form of online connection to device.

• Automatization - To integrate this into automatized tests there has
to be a way to automatize changes of configuration as well. This can
be done either via online connection, IO-Link service parameters or
some different automatization.

• Simulation of communication errors - Device should be able to
simulate errors in communication (e.g. wrong checksum, dropping
frames, sending invalid data) to test robustness of IO-Link Master.

From FW developers and Testers perspective we can already make some
basic use case design shown on figure 3.1. This involves standard usage and
connection.

Figure 3.1: IO-Link Master test partner use case - standard use case for
testing

20

3.3. Categorizing requirements

3.2.1.3 Hardware Developers

Last of the 3 main groups are hardware developers. There are several
tests (e.g. Electromagnetic compatibility tests), performed by Hardware
developers, which need stable and robust device partner. Devices have to
be able to maintain standard operability in unstable environment, which
is quite usual in industrial surrounding. Hence there is major focus on
robustness of such partner devices.

Another example of mentioned test is test for current load and
ovearheating. This is usually done by connecting external current load
to C/Q, L1+ and L2+ lines, because devices load usually can’t be modified
during runtime. This is not ideal way and could be done way easier by
integrating modifiable current load into device.

From running HW tests there are several requirements:

• Robustness - Although this requirement should be mandatory by
default in every device, it is not always the case in some devices.
Therefore it is heavily stressed out in this test device.

• Current Load - Configurable current load on all used lines. Example
can be seen on figure 3.2

• Power supply options - Device electronic shall be powered either from
the L1+ power supply or from an external source (24V DC) with
priority from external power supply.

3.3 Categorizing requirements

Requirements from previous chapter don’t involve any generic requirements
for device and don’t go much into details. This chapter’s goal is to
properly categorize mentioned requirements and form them into technical
requirements, that can be used as source for future development, list all
generic requirements that haven’t been mentioned yet and assign priorities
for everything, so planning for release versions can be made.

Requirements are categorized into 2 main categories of functional and
non-functional requirements. Funtional requirements specifies what the
system should do. Any particular functionality shall be described here.
After project is finished, it should be relatively easy to say if requirement is
met or not. Non-functional requirements are requirements, that specify any
performance, quality, usability or design subjects. Evaluating if requirement
is met or not is not always straightforward like in functional requirements.

21

3. Analysis and design

Figure 3.2: IO-Link Master current load test use case - standard use case
for current load temperature test

Because there are more functional requirements, there are used
additional subcategories. These will distinguish functional requirements
based on their scopes and make chapter easier to take in. Subcategories are
Basic functionality, HW requirements and User Interface.

Every requirment shall have its priority in future project. Most
requirements are going to be implemented in first release, but there are
several requirements, that are too difficult to integrate to first release and
therefor shall be postponed to future versions and their implementation
won’t be part of this thesis.

3.3.1 Functional Requirements

3.3.1.1 Basic functionality

• Protocol version - The device shall be configurable as both V1.0
(legacy protocol) and V1.1 IO-Link device. This involves every
functionality for both protocols specified by IO-Link specification [5].

• Frame support - The device shall support all frame types as defined

22

3.3. Categorizing requirements

by the IO-Link specification [5]. This involves different frames for
both versions of IO-Link protocol (current and legacy).

• Configuration - There are several requirements regarding
configuration of the device:

– From PC application - The device shall provide an USB
configuration interface. The interface shall support configuration
of the device as well as reading of status information and traces
from the device.

– User application - A PC GUI application for configuration
shall be created. It will allow the user to easily enter and perform
any service commands to read/write from/to the device.

– Configuration files (Prio 2) - The PC application should
allow to store the complete device parametrization into a file
and reopen it later by application to store configuration is case
of any issues. The file can also be stored to SD card and used
for configuration from that card. These configuration files shall
be in plain text format. (XML)

– Communication protocol - A simple communication protocol
between the device and the user PC application will be defined.
The protocol will be based on read and write services with limited
maximum message length. The maximum message length must
be easily reconfigurable so that it can be adaptet to various
interfaces (USB, data records, IOL-Calls). In case of big data
transfer, the protocol must ensure fragmentation of the messages.

– Via IO-Link (Prio 2) - The configuration protocol shall work
also via the IO-Link interface - ISDU service. A special index
in the device shall be created and used as an access point for
the protocol messages. The device shall be able to communicate
using both USB and IO-Link. This way of parametrization will
be used in case of automatization from the PLC. The PLC can
send the parametrization using a sequence of IOL-Calls.

– From SD card (Prio 2) - The device shall be equipped by an
SD card socket. If the card is plugged and contain new firmware
or configuration file, the device will be updated/configure itself
based on these files at the power up. The device shall also store
its trace messages at the SD card.

23

3. Analysis and design

In first release version there is priority at least on some basic way to
communicate with device. Most usable is USB and therefor there is
low priority on other ways of communication.

• IO-Link sniffer (Prio 2) - The device shall have the functionality
to be used as IO-Link sniffer and monitor communication between
IO-Link master and different device when connected inbetween.

• Traces (Prio 2) - The device shall store the trace message according
to the configured trace level at the SD card. The traces can be
displayed in the PC application. It can be uploaded to the application
either directly from the SD card plugged into the PC reader or using
the configuration interface from the test device.

3.3.1.2 HW Requirements

• IO-Link connectors - The device shall have two IO-Link M12
A-coded connectors - one female, one male. They will be
interconnected with each other. This setup allows implementation
of the IO-Link sniffer in the future.

• Galvanic isolation - The complete galvanic isolation of the
IO-Link connector (5-wires) shall be provided for usability for EMC
measurements. The 2L+ potential shall be galvanically isolated from
the 1L+ potential and the device elctronic.

• Automatic Load

– 1L+ Load - The 1L+ signal can be loaded in range ¡0; 1 A¿
with voltage range up to 30V. The load current will be controlled
by the MCU. The maximum current should be designed for 4 A,
in case of external cooling.

– 2L+ Load - The 2L+ signal can be loaded in range ¡0; 4 A¿
with voltage range up to 30V. The load current will be controlled
by the MCU. The maximum current should be designed for 8 A,
in case of external cooling.

– C/Q Load - The C/Q signal can be loaded in range ¡0; 1 A¿
with voltage range up to 30V. The load current will be controlled
by the MCU. The load circuit can be completely disconnected
from the C/Q signal to avoid disturbances in normal use.

24

3.3. Categorizing requirements

• Power supply options - The device electronic will be powered either
from the 1L+ power supply or from an external source (24 V DC). The
device electronic must be able to automatically adapt on the current
power supply source. If the external power supply is available, it
shall be used with higher priority than the 1L+ sensor supply from
the master.

• Master - slave communication (Prio 2) - Master-slave
communication channel between more devices shall be defined as
a back plane bus. Master device should have access to the PC
application by the USB connection and spread incoming requests to
other devices on the bus.

• Digital input and output ports - The device shall have several
input and output ports. Both these parts shall be galvanically
isolated from internal electronic. Digital inputs/outputs can be used
for synchronization the test run with other equipment like PLC or
oscilloscope.

• Module UID (Prio 2) - Every module shall have unique
identification number for case of serialization of the modules. This
shall be realised via 4 bit switches that can be set to desired value.

3.3.1.3 User Interface

• Connector interfaces - The device shall have microUSB port, SD
card (Prio 2) socket and 2 M12 A-coded connectors (one female and
one male). The device shall also have a connector for external 24 V
power supply.

• Port LEDs - The device shall have the standard red and green LEDs
at the port as described in IO-Link specification. Further the device
shall have two green LEDs to monitor the availability of 1L+ and 2L+
power supply. Additional green LED will monitor the availability of
the external power supply.

• Display - The device shall have a simple 2 or 4 row LCD display,
which will be used for displaying user information. It can be used
for example to display the configuration setup, status information or
traces..

• Control buttons - The device shall have 4 buttons to navigate
through display and to control various functions.

25

3. Analysis and design

3.3.2 Non-functional requirements

3.3.2.1 Performance

• Cycle time - The device shall support all allowed cycle time values
with some minimum limit given by the implementation constraints.
The limit should not be more than 1 ms. current should be designed
for 4 A, in case of external cooling.

• Cooling - The device shall have sufficient cooling to prevent from
overheating when current loads are used. Cooling has to be solved by
with passive techniques.

• Startup - The device initialization and startup shall be withing 300
ms to be useful during power restarts tests.

3.3.2.2 Quality

• Reusability - The device shall be developed with techniques,
that allow reusability of code for different projects and preserving
know-how. This involves detailed documentation of development
process.

• Maintanability - The device shall be developed with techniques,
that allow easy maintanability and integration of new funtionalities.
This involves usage of internal guidelines for development and usage
of various design patterns for programming.

3.4 Planning

With specified requirements we can divide project into 3 main parts:

• Hardware design - Although development of firmware and
communication can start without funtional prototype, it’s only
temporary solution. Therefor delivering funtional prototype is highest
priority.

• Communication protocol and PC application - This part
includes developing communication protocol, PC application and
creating communication drivers, that could be easily integrated into
firmware.

26

3.5. HW Selection

• Firmware development - This includes application core, that
handles communication with IO-Link Master and internal behavior.
It is also linked to both hardware design and communication protocol.

It was mentioned before this project is mainly done by students
under supervision of senior developers. This diploma thesis is mainly
focused on Firmware development part, both Hardware design and
Communication protocol and PC application is made by another students,
where Communication protocol and PC application is different diploma
thesis [10].

Because Firmware development is tightly linked to other 2 parts, in
future chapters there is going to be brief description about cooperation
from firmware side.

3.5 HW Selection

There are two pieces of hardware important for Firmware developers of
IO-Link Device. It is mainly controller, which needs to be powerful enough
to run everything fast enough to fullfil Time Cycle requirement, and IO-Link
Transceiver (PHY), that is used to convert 3.3 V UART signal to 24 V on
C/Q line and to help with detection of Wake-up signals. Only difference for
HW designers is different size of packages and different layout and number
of pins. Selection is therefor mainly task for Firmware developers.

3.5.1 Micro-controller selection

The selection of micro-controller for IO-Link Test Device was quite difficult
process. There wasn’t many requirements to fullfil, but large number of
usable hardware solutions on the market made the choice quite complicated.
It was required to find a controller, that can make all requirements
mentioned in previous chapter possible for best price and while consuming
least space on board.

3.5.1.1 Requirements for MCU

Even if project is successful in future, there probably won’t ever be any mass
production. For that reason price is not among highest priority requirement,
although it is still best to choose MCU as cheap as possible.

Requirements for MCU, that ensue from global requirements for device
are therefore:

27

3. Analysis and design

• ARM Cortex architecture - Because of most know-how and
experience with this architecture this is one of the requirement.

• At least 2 SPIs - For communication with external Flash memory,
current load controllers, display and backplane bus in future there is
need for SPI peripherals. This include extra GPIO pins for chip select
pins as well.

• Enough GPIO pins - MCU shall have enough GPIO pins for any
funtionality described in global requirements for the device. It is neede
for control of LEDs, Digital inputs, Digital outputs, UID, buttons and
any possible diagnostic pins from used peripherals. Hence minimum
of 32 GPIO pins is required.

• UART - Although UART is quite common in almost every available
MCU, it is required for it to support everything that is used for
IO-Link communication. (e.g. even parity, 9b length,...)

• USB support - Among peripherals USB is one of the most difficult
ones and not many MCUs are supporting it. For basic funtionality it
is needed the support of full speed USB device mode.

• SD card support - Although SD card has priority 2 in development,
everything needs to be prepared for it. Therefor MCU shall support
SD card functionality as well.

• External crystal support - For least number of communication
errors on UART, external crystal with frequency of 11.026 MHz is
used. MCU has to be able to use this crystal as system clock.

• Sufficient RAM and internal FLASH size - Because of many
funtionalities on the test device there is needed sufficient internal
FLASH size to store the source code and sufficient RAM size to
actually run it and keep track of information like traces. Minimum of
256 Kb of Flash and 128 Kb of RAM is needed.

• Sufficient power performance - To maintain IO-Link
communication on highest speed COM 3 and simultaneously
maintain functionality of other services there is low bound for
performance. The MCU shall be able to support at least 48 MHz.

• JTAG or SWD interface - For debugging there shall be support of
at least JTAG or SWD debugging interfaces.

28

3.5. HW Selection

Figure 3.3: Basic Scheme - Possible scheme of all parts and their connections
to MCU. Also basic estimation for required number of pins on MCU.

Possible layout of board is shown in figure 3.3. MCU has to be able to
support every mentioned function.

3.5.1.2 Viable candidates

As it has been mentioned there are several manufacturers, that make
MCUs. Their products comes usually in form of product lines, with same
architecture and similar features. Particular products in product lines then
varies only with things like package size and layout or memory size or extra
peripherals.

There are many viable candidates where we can choose from so the
search was reduced to manufacturers that are known to Siemens and that
could guarantee trouble-free partnership. Among reduced manufacturers
there are these product lines:

1. STM32L1 - Product series based on ARM Cortex-M3 architecture
with ST’s proprietary ultra-low-leakage process technology focused on
low power consumption [11].

2. STM32F1 - Standar series of mainstream MCUs with ARM
Cortex-M3 architecture. This series covers basically everything in
standard design and can be used for large variety of applications [12].

29

3. Analysis and design

3. STM32F4 - High-performance MCUs with ARM Cortex-M4
architecture. This series offers not only highest operating frequency,
but also highest RAM and FLASH sizes [13].

4. Freescale KL1x - General purpose ultra-low-power MCU family
based on ARM Cortex-M4. As all ultra-low-power MCUs doesn’t
provide much RAM, since it’s most power hungry part of MCU.

3.5.1.3 Chosen MCU

Although there have been few more MCU’s manufacturers and product
series to choose from, there was from beggining high preference for MCU
from ST. This is mainly because ST provides very well support for their
products, there was large know-how regarding ST’s MCUs and also there
was largest supply to choose from. Only reason to look for different
manufacturers was to possibly find something, that would surpassed ST’s
advatages and that didn’t happen.

The only decision making in the end was therefor between STM32F1
and STM32F4 series. Because there was never plan to make this project
into mass produced device there was focus to focus on quality rather than
quantity. For that reason STM32F4 series was chosen. Particularly MCU
STM32F407VGT [14].

Final properties of STM32F407VGT are:

• 1 MB of Flash memory

• 192 KB of SRAM

• Up-to 168 MHz core frequency

• Both JTAG and SWD debug interfaces

• 100-pin package

• 4 USARTs, 3 SPIs, USB 2.0 with full-speed device with on-chip PHY

• Up to 100 I/O ports with interrupt capability

3.5.2 PHY selection

Another important part of HW, that was influencing future FW
development was IO-Link Phy. Although every available products support
in some way basic IO-Link communication, wake-up detection and whole
series of diagnostics, there are minor differences, that set particular products
apart (e.g. way of configuration).

30

3.5. HW Selection

3.5.2.1 Requirements for PHY

As has been said in previous paragraph, every available product fullfil basic
requirements for PHY. For clarification all requirement will be recapitulated
anyway:

• Support of COM1/2/3 modes - This is mandatory requirement
for basic IO-Link functionality, where transceiver has to be able to
communicate in all defined baudrates.

• Output stage modes - Output stage shall be configurable as
high-side, low-side or push-pull. This is mandatory for several HW
tests.

• Wake-up detection - PHY has to be able to properly identify
wake-up pulse and signal it to MCU via defined signal.

• Small package - Package shouldn’t be larger than 5x5x1 mm.

• Basic protection - Protection from reverse polarity,
overtemperature or undervoltage/overvoltage is a must. PHY
also has to be able to detect these events and signal them to MCU.

3.5.2.2 Viable candidates

As in MCU selection, there are multiple vendors, that offer IO-Link
device PHYs, although there is by far not that large variety of products.
Considering PHYs are meant to do the same thing, which is convert 3.3
V or 5 V UART signal to 24 V IO-Link signal, there are not many major
differences in particular products. Minor differences are usually in a way of
configuration, operating temperature range, protection or package size and
layout. Suitable candidates are these:

1. MAX14820/14821/14826 - These 3 PHYs from Maxim integrated
differ only in current load/sink on C/Q line, where least is on
MAX14821 with only 140 mA and most is on MAX14820 with
375 mA. Everyone of these PHYs is in 4x4 mm, 24-pin TQFN
package. Configuration and monitoring is done via SPI. Alarms are
signalised through interrup outputs. Standard protection involves
reverse-polarity, short-circuit and thermal protection. Also all lines
are monitored for undervoltage conditions.[15]

2. ST L6362A - With size only 3x3 mm and 12 pins this PHY is smallest
one of all. Also as only one of candidates offers surge protection.

31

3. Analysis and design

With standard protection like reverse polarity, overtemperature,
overvoltage and overvoltage protections this is major advantage.
Although small size is advantageous as well, due to small number of
pins there is no SPI configuration feature. Very minimal design offers
only few control pins, that can set operating modes and 1 output pin,
that signal diagnosis on PHY. There is also internal 5 V or 3.3 V, 10
mA selectable linear regulator, for power supply of PHY as well as a
local controller and additional circuits. [16]

3. TI SN65HVD101/102 - Standard PHY with basic features and
protections in 4x3.5 mm 20 pin QFN package. As in ST PHY, there is
no real configuration done, since everything can be real-time controled
via control pins. SN65HVD101 has internal linear regulator, that
generates either 3.3 V or 5 V from IO-Link L+ voltage.[17]

As in case of MCUs, there are more IO-Link PHY vendors, but the
choice was made from vendors, which are known to us and which products
are already being used in known Siemens products.

3.5.2.3 Evaluation process

Because in our development team there was at the time no know-how
about devlopment of IO-Link device and know-how about IO-Link Masters,
although was helpful, couldn’t be used on everything, most of the work had
to be done from a scratch. Selection of desired candidate for PHY was
therefor done by testing every single one manually and evaluating usability,
advantages and disadvantages directly.

We had available development boards for MAX14826, ST L6362A and
TI SN65HVD101 PHYs and ST32F4DISCOVERY kit with STM32F407VG
MCU. With these and basic firmware, that managed initiating
communication and maintained exchange of process data, the basic
evaluation had been done. During evaluation there was focus on evaluating
difficulty of configurating PHY into operating mode, simplicity of detection
of wake-up pulses and reading of diagnosis.

3.5.2.3.1 MAX14826 Because this PHY was only with configuration
done via SPI, there was additional effort from the beggining. Number of
required pins for complete funtionality is high compared to other PHYs.
This is rewarded by most sophisticated diagnosis service among these 3
PHYs. There are several registers to control/monitor PHY funtionalities
- Status, CQConfig, DIOConfig and Mode. Wake-up detection is signaled
via dedicated pin and bit in Status register.

32

3.5. HW Selection

3.5.2.3.2 ST L6362A This minimalistic PHY was easiest to make
work. Its design requires only 5 dedicated pins from MCU to fully operate.
Contrary to MAX Phy, when any diagnosis is detected, the dedicated pin
is asserted, but there is no additional info about what exact diagnosis was
detected, only that there is one.

3.5.2.3.3 TI SN65HVD101 This PHY is mixture of previous 2
designs. There is no SPI configuration as well, but diagnosis are more
detailed than in STs case. Compared to ST, there is not 1, but 3 pins, that
signalise diagnosis status. This can distinguish events between temperature,
current and power ones.

3.5.2.4 Chosen PHY

In the end, there were several factors that influenced result of selection
process. Because there is already selected MCU from ST, there was
advantage from having PHY from same vendor as well. Minimalistic
design, most simple usage and extra surge protection of PHY were major
advantages as well. For that reason ST L6362A was selected. It’s main
properties are:

• 5 V or 3.3 V, 10 mA selectable linear regulator

• Fully protected - Reverse polarity, Overload with cut-off function,
Overtemperature, Undervoltage and overvoltage, GND and VCC
open wire

• -40 to +125 C operating ambient temperature

• Selectable output stages: high-side, low-side, push-pull

• Wake-up detection supported

• Miniaturized VFDFPN 12L (3x3x0.90 mm) package

33

Chapter 4

Realisation

4.1 Overview

Before there can be any FW development process, there has to be general
idea about structure of desired application, what are the main parts of it and
how exactly are they going to be linked. Without this, there are potentional
problems during development, where some features may be difficult to add
in later stages and it could cause beggining of unmaintainable code, which
can sometimes be reffered to as ”spaghetti code”.

On the other hand, analysis should not be overrated and should not be
done to details, because doing so is time inefficient and some details cannot
be thought during analysis. There should be therefor certain balance of
analysing structure and details of this project.

Basic deployment overview can be seen in figure 4.1. In this picture it is
shown how every connected parties communicate during standard operating
mode.

4.1.1 Used components

During the development, several software applications, programs and
hardware components were used. The firmware is written mainly in C++
with minor use of C. This supports usage of advanced functionalities, that
C++ provides (e.g. inlining, overloading, templates) and design patterns,
that help with keeping source code clean and structured. Eclipse Mars [18]
was used as text editor and Siemens internally configured IAR compiler [19]
for embedded device programming for compiling the source code.

Before HW prototype was done, STM32F4Discovery board with
STM32F407VG MCU was used for FW development along with ST

35

4. Realisation

Figure 4.1: Deployment Diagram - Diagram shows basic structure of all
main components during standard operation mode of IO-Link Device.

L6362A PHY development board. This could’ve been used only on early
development and basic funtionalities, because most of the advanced one
services required HW presented on final board.

All kinds of architecture diagrams were created with the visual modeling
and design platform Enterprise Architect from SparxSystems, which is usign
UML2.0 for modeling [20].

Everything was also backed up and changes were recorded via Version
Control System (VCS) named ClearCase by IBM [21]. This software allows
creating multiple development branches, where more developers can work
at the same time. Upcoming merging changes is mostly automatic with
only few needed interference from user.

4.2 Basic Design

Whole structure will be assembled out of several main parts. Parts that
are structured around functionality into separated and isolated pieces, that

36

4.2. Basic Design

communicate with each other only by dedicated interfaces. From lowest to
highest level of application the main parts are:

1. Low level drivers - Lowest level of drivers, that directly access to
registers of MCU and control all kinds of peripherals and internal
MCU settings. These drivers are generally provided by MCU vendor,
but can be made based on MCU datasheets. In this project, the
drivers provided by ST are used.

2. Board support package (BSP) - A board support package is an
interface between lowest level drivers and higher level application. In
this case it shall be designed in a way that it provides abstract layer.
This way if MCU is changed and different drivers are used, whole
application remains intact and only BSP part has to be modified.

3. IO-Link Stack - IO-Link stack is heart of IO-Link communication.
It controls everything from reading incoming packets and assembling
them into frames or managing events and process data, to assembling
replies and keeping all constraints of IO-Link specification. In this
project there is used external IO-Link stack from TMG.

4. Gateway application - Core application, that manages every
funtionality. Internal communication between classes in gateway
application have to be designed in a way, that it can’t result in chain
command, that takes too much time, that could interrupt IO-Link
communication.

5. RTOS - Real time operating system could be implemented to help
with time management of both internal and external communication.
There are multiple constraints from IO-Link specification, that
commands certain time windows for reply and RTOS could help to
solve them. However everything needs to be implemented in a way
that it could work without active RTOS to be more versatile for future
development, where RTOS couldn’t be used for some reason.

Whole possible design can be seen in figure 4.2. In picture there are
shown basic dependencies between particular parts as well as main classes
(and parts in case of C written drivers) of whole structure.

4.2.1 External parts

As has been said in previous section, parts of this projects are already
done or will be done by different authors. This include mainly Low Level

37

4. Realisation

Figure 4.2: Component Overview - Distribution of funtionalities into
particular parts.

Drivers, IO-Link Stack and RTOS. Also USB part of BSP will be made by
different master’s thesis done by another student [10]. This however still
leaves integration of these parts into working unit, so in future chapters this
will be explained into detail.

4.3 BSP

ST provides currently two types of drivers. HAL drivers, that offers basic
abstraction and basically works as BSP, and then low-level drivers, that

38

4.3. BSP

are just basic functions for writing and reading registers. However if one
of these were used in whole application, there could be major problem in
case of reusing these components in future with completely different MCU.
Everything would have to be completely rewritten.

For this reason BSP component was designed in a way, so any changes of
MCU could be done without necessary changes to whole code. Only small
behaviour parts of BSP components need to be changed to reflect changes
to MCU.

As shown before in figure 4.2 the BSP component is assembled from
several classes. These classes are divided into 3 main categories:

• BSP - This involves 2 classes. CBsp and CBspPinout. CBsp
encapsulates basic operations required for basic functionality of
communication. This involves initialization of all behavior
components and peripherals and access to basic functions, that
are required for proper funtionality of IO-Link Stack (e.g. Timer
handling, UART handling, interrupt disable/enable). CBspPinout
contains configuration of all used GPIOs and peripherals and provides
getters to access them.

• MCU - This includes all peripheral components and also CMcu class,
that encapsulates behavior settings of peripherals and provides access
to peripheral functions. Main used peripheries are GPIO, UART, SPI
and Timers, but can be easily expanded with any currently unused
peripheries (e.g. I2C)

• PHY - This includes class CPhy that provides abstract interface and
define strategy for currently used PHY. This is used for configuration
and change of operation modes of PHY.

4.3.1 BSP

4.3.1.1 CBsp

CBsp class was designed to encapsulate functions for IO-Link stack
component. IO-Link Stack need for proper funtion access to UART, Timers
and Interrupts and CBsp provides interface to access it. Specifically it is:

1. Start UART - Because UART is not active by default, IO-Link Stack
need to have way to activate it once wake-up pulse is received. After
that UART is activated with proper baudrate.

39

4. Realisation

2. UART Send - Sending data is through UART is only way to
communicate with Master. For this there is function SetTx, that
is repeatedly called and send 1 byte of data through UART.

3. Enable/Disable PushPull - This functions are to control modes of
PHY. By default PHY is prepared for receiving Wake-up pulses and
has active either high-side or low-side switch. For communication
there has to be disabled PushPull mode and switch PHY to high
impedance state for receiving data from Master.

4. Enable/Disable Interrupts - In some communication situations
IO-Link Stack must not be interrupted. To prevent any interrupts
from triggering, there need to be way to momentarily turn them off.

5. Timer start/stop - IO-Link Stack is using various timers for keeping
track of time constraints of responses and fallback situations. For this
timer is needed. Timer functions start and stop are therefor provided.

6. Stack Fallback - In case of interruption of communication or
fallback command, there is provided Stack Fallback function, that
immeadiately deactivate UART, activate wake-up detection and reset
status of device to initial state.

4.3.1.2 CBspPinout

Second main class of BSP category is CBspPinout. This class encapsulate
any specific information about pinout of Mcu and configuration of all
used peripheries. Also stores behavioral settings for mentioned peripherals.
Reason for this is to keep every product specific configuration in one place.

4.3.2 MCU

MCU category in BSP component is focused on handling all available
peripherals. It is divided into several classes. Main class is CMcu, which
provides interface to every available operation and handles behavioral
settings, which will be described in upcoming sections of this chapter. Then
there is class for every peripheral.

General method of implementation is going to be presented on CGpio
class. CGpio class is used for complete configuration and control of all
GPIO pins. There are several other classes for other peripherals (e.g. CSpi,
CUart, CTimers...), which will not be described into details in this, because
their implementation is very similar to CGpio class.

40

4.3. BSP

4.3.2.1 Usage of Strategy Pattern

Every MCU family has usually different registers and therefor using different
drivers, there needs to be some kind of behavioral settings to specify used
approach. For this reason strategy pattern is used.

Strategy pattern defines a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets the algorithm vary
independently from the clients that use it. It also capture the abstraction in
an interface and bury implementation details in derived classes [22]. Design
of such strategy pattern can be seen in figure 4.3.

Figure 4.3: Strategy Pattern - Basic design of strategy pattern - Abstraction
class, that provides interface to client (application) can change its behavior
based on assigned strategy. This assignment must be done before first use
and can be changed during runtime.

In this case strategy is used for encapsulating behaviours for every usable
MCU and PHY. During initialization the right behavior is selected and its
functions are afterwards used to control low level drivers. Although strategy
pattern is usually designed in a way, that behaviors can be changed during
runtime, in this case there is no such use and behavior stays same after
initialization (since user can hardly change MCU/PHY as well).

As has been said, examples are going to be shown on CGpio class. In
figure 4.4 it is shown how strategy pattern works in case of CGpio class.
Main interface function provides interface to the application while behavior

41

4. Realisation

funtions override those funtions and using private funtions transform
abstraction into data usable by particular MCU.

Figure 4.4: Strategy Pattern of GPIO - Implementation of strategy pattern
on GPIO example. Interface class offers interface for rest of application,
while behavior classes inheriting and overriding those funtions in a way to
properly use low level drivers for particular MCU.

4.3.2.2 Abstract used for MCU peripherals

In abstract part of BSP, there have to be stored all possible configuration
parameters of particular peripheral. These abstract parameters are then
transformed in behavior part into data, that are understandable by low level
drivers. Example of such abstraction can be seen in figure 4.5. CGpioPort,
CGpioConfig and CGpioPin are designed to support every possible feature
GPIO can have. Even if there would be feature not yet support in future, it
can be easily added into these classes and there won’t be any influence on
application at all, because application is accessing only interface functions
from IGpioBehavior class.

There are several other packages, that covers all used peripherals.
Main packages are for GPIO, UART, SPI, Timer and USB. These main
peripherals helps to control every feature currently available on device. If

42

4.3. BSP

Figure 4.5: GPIO Abstraction - class design for GPIO abstraction.
CGpioPin class provides interface for behavior class to access every needed
information about GPIO pin and port it is located on. With these
informations and informations about GPIO mode and possible interrupts
behavior class can configure GPIO pin.

there is need to use peripheral, that is currently not implemented, the design
is made in a way that there is easy extension and adding another peripheral
class is therefor very simple.

4.3.2.3 CMcu class

Although there has been described how particular peripheral parts of BSP
works, there hasn’t been described yet the way how application can access
these functions and how the behavior is actually set during initialization.
For this reason MCU singleton1 class was designed. This class encapsulates
behavior settings and offers interface to access them.

During initialization, every peripheral interface classes in MCU class
have to be initialized with specific behaviors for used MCU. After this
initialization, MCU offers interface funtions to these behavior classes and
serves as main access point for any peripheral manipulation.

1Singleton is basic design pattern, that ensure a class has only one instance, and
provide a global point of access to it. Initialization is done automatically on first use.
[23]

43

4. Realisation

4.3.3 PHY

Last part of BSP is CPhy class. This class is designed to operate product
specific PHY. For this there is used same strategy pattern as in case of
peripherals. Change of PHYs therefor doesn’t influence rest of application.

Because ST L6362A was used as PHY, there currently aren’t many
functions defined in CPhy class, since ST L6362A has very minimalistic
design and don’t need any difficult configuration or handling. CPhy is
therefor controlling only disabling/enabling Push Pull mode on PHY.

4.4 Stack integration

IO-Link Stack is basically Application Layer of IO-Link, described in 2.1.4.
In this device Stack from TMG company has been used, because developing
completely new stack would be redundant, since TMG IO-Link Stack was
available [24]. Desired integration of TMG IO-Link Stack can be seen in
figure 4.6

Figure 4.6: Integration of TMG IO-Link Stack - As can be seen there are 2
neede interfaces. BSP interface has been already described in 4.3.1.1.

Because only BSP Interface is needed for communication with IO-Link
master, integration of IO-Link Stack has been done before actual
development of Application core. Although absence of Application part
made any communication pointless, because there weren’t any process
data, events nor any responses on possible requests from IO-Link Master,
basic communication could’ve been initiated and that created working
background to build upon.

Basic requirements on BSP from IO-Link Stack are:

44

4.4. Stack integration

1. Interrupt for wake-up detection - Once PHY detect wake-up
pulse, there is short pulse on dedicated pin, that needs to be
intercepted. For this interrupt routine is used and interrupt starts
wake-up procedure, that activate UART peripheral.

2. UART Rx Interrupt - Once UART has been activated, IO-Link
Device listen on UART channel for startup sequence, which consists
out of several reads of parameterization. Every received byte from
UART therefor raise UART Rx Interrupt, that invoke receive routine
from IO-Link Stack.

3. Timer with interrupt - After every response from IO-Link device,
there is timeframe for another byte from Master. This timeframe
must be measured somehow. For this, configurable timer is used and
periodically started/stopped based on specific timer values.

4. UART Tx - To send any reply, UART Tx is needed as well. Because
of nature of PHY, where there is one channel used for both incoming
and outgoing frames, sending automatically raise Rx Interrupts as
well. This is expected behavior though, and Stack is using these
interrupts to monitor correctness of sent data.

Last part of TMG IO-Link Stack integration was proper configuration.
For this, TMG IO-Link Stack provides dedicated configuration file, in which
every configurable variable can be set. Things, that has been configured
are:

• Static/Dynamic parameterization - Because based on
specification, parameterization is unique for every device and
must not be changed, by default there was static parameterization
set. TMG IO-Link Stack provides funtionality to set these
parameters during initialization, without any possibility to change
it afterwards. However one of requirements for this device is
possibility of changing this parameterization during run-time. For
this Dynamic parameterization was chosen with extra modification,
which automatically interrupt communication with master in case
of changed parameterization during run-time. Communication than
has to be reestablished and new parameterization is used.

• Timer settings - To properly set timers, there was need to exactly
define frequency of used timer and its configuration mode.

45

4. Realisation

• Timer constraints - There is possibility change timer constraints
for communication. This can be set in range defined by IO-Link
specification.

4.5 Gateway application

Gateway component is core of the test device. It is responsible for majority
of FW functions. This involves:

• Mail system - Communication between all classes inside Gateway
must be designed in a way that messages don’t create chain events,
that could cause interruption of communication. This is solved by
usage of Mail system.

• Configuration - Maintain configuration settings and invoke
communication reset in case of configuration change to manifest this
change to IO-Link communication.

• Process Data - Contain both incoming and outgoing process data,
which can be used for various test functions (e.g. virtual loopback,
physical loopback via DI/DQ).

• DI/DQ - This funtionality provides interface to control 4 Digital
Input and 4 Digital Output pins. This can be interconnected with
Process Data components to create physical process data loop.

• Events - Gateway administer events manipulation. This involves
keeping track of all active events and managing their reporting to
IO-Link Master.

• File System - File System mainly stores all non-volatile data to
on-board flash. At the time this involves mostly configuration
settings.

• LEDs - This functionality is designed to control all present LEDs.
Without much effor it is possible to set LED on or off or create any
kinds of blinking.

4.5.1 Mail System

Internal communication between particular classes can be quite difficult
in real-time environment. If classes would directly access other classes

46

4.5. Gateway application

interfaces to immediatelly make their requests, this could lead to chain event
of requests, that would take too long to accomplish and could jeopard time
sensitive communication, that needs to be active periodically.

For this reason some communication system had to be designed.
The goal of this system was to prevent communication threatening
chain requests between classes from happening. Design pattern
Publisher-subscriber was chosen for this task.

4.5.1.1 Publisher-Subscriber pattern

Core of publisher-subscriber pattern consists from publishers and
subscribers how name suggests. Its main feature is sending mails (messages)
only to components, that are interested in such mails. This is caused by
filtering mails based on their source and contents. [25]

During initialization all components, that wants to receive certain mails,
register to main publisher class CMailPublisher. During registration it is
specified what kind of mails are they interested in. When CMailPublisher
class publishes mail, it goes through all subscribed classes and either send
mail to them or not, based on their mail filter settings. Infrastructure of
publisher-subscriber pattern can be seen in figure 4.7.

Figure 4.7: Publisher-Subscriber pattern - Subscriptions to topics control
the mail types that reach each subscriber.

47

4. Realisation

4.5.1.2 Mail Queue

Usage of publisher-subscriber pattern would not be enough by itself. It
needed to be combined with proper batching management, that would
not flood system with multiple mails at once. Without such management,
publisher-subscriber pattern could just keep publishing any incoming mails
and there wouldn’t be any difference compared to direct approach of classes.

For this situation CMailManager class combined with standard FIFO
queue system was designed as can be seen in figure 4.8. CMailManager is
periodically called from main loop or designed RTOS task to publish one
or few mails. This approach prevents mails from flooding the system. Only
thing that needs to be cared for is frequency of publishing mails. In case of
low frequency message queue could overflow and mails could be lost in the
process.

Figure 4.8: Mail Queue - All incoming mails are stored in Mail Queue.
MailManager class takes every publish iteration 1 mail and sends it to
subscribed classes based on their filters.

4.5.2 Configuration

Configuration functionality is provided by class CConfiguration, which
stores whole parameterization of IO-Link device. Stored parameters are:

• Vendor ID - ID of Vendor. Every IO-Link vendor has assigned static
Vendor ID to its products.

• Device ID - ID of device. Every IO-Link device has assigned unique
Device ID to for identification of device.

48

4.5. Gateway application

• Length of input/output process data - Sets length of process
data. Length can be set up to 32 bytes.

• Revision ID - Revision ID distinguish between legacy and standard
IO-Link protocol. Legacy protocol has Revision ID 1.0 while standard
has 1.1.

• Device Capabilities - In this single byte variable there are encoded
used M-Sequence frame types for both operate and preoperate modes.

• MinCycleTime - MinCycleTime sets minimum cycle time supported
by IO-Link device. Real cycle time, assigned during initialization with
master, can’t be lower than this value.

When new configuration is received, CConfiguration initiates fallback
and restart of communication to project changes into IO-Link Master as
well.

4.5.3 Process Data

Process data funtionality is handled by 2 classes - CProcessDataIn and
CProcessDataOut. While both serve for handling of incoming and outgoing
process data, details of their funtionality are little different.

CProcessDataOut are directly set from Application Layer by
incoming process data from Master. Once Process Data are changed,
CProcessDataOut send Mail to all interested classes about change of process
data. This can result in responses from other parts of device (e.g. Digital
Outputs are set).

CProcessDataIn on the other hand changes based on information from
rest of application (e.g. Digital Inputs) via incoming mail and reports
changes directly to Application Layer.

4.5.4 Digital Inputs and Digital Outputs

Digital Input and Digital Output classes are generally quite similar to
Process Data classes. Only difference is they control only 4 bits of data each
(because there are only 4 digital inputs and outputs). Another difference is
that there is no communication with Application Layer at all. Instead all
communication runs through mail system.

49

4. Realisation

4.5.5 Events

While handling events, there is need to track which events are active and
which are waiting for activation (TMG IO-Link Stack allows sending of
only 1 event at a time). For this reason there is need to have at least 2
queues/lists. One for active events and one for event request queue.

Event funtionality is provided by 3 classes. CEvent, which is
representing single event, CEventManager, that provides interface for
Enqueing events, and CEventQueue, that is storing active events and events
waiting for activation.

In CEven class certain informations has to be stored:

• Event Type - Types of events are:

– Error - Serious even on device, that usually block some
funtionalities

– Warning - Warning about some active threat, that could result
in error if not cared for

– Message - Simple information message without any threats.

• Event Mode - Modes of events are:

– Coming - Event is going to appear in industrial ethernet upon
activation

– Going - Event is going to disappear in industrial ethernet upon
activation

– Single - Single information pulse to PLC

• Instance - Clarifies Event based on source of occurence. It can be
Unknown, PL, DL, AL or APPL.

• Code - Unique identification of event.

Another class is CEventManager. When Event is created, it is handled
by CEventManager class, that puts this Event into waiting queue. Event
flag is then set on communication channel with master. Once Master asks
for this event and successfully accepts it, it is processed and based on Event
Mode goes into active events queue or tries to delete event in the same
queue. In case of Single shot does nothing and only disappear from waiting
queue.

50

4.5. Gateway application

4.5.6 File System

Final part of Gateway component is FileSystem. This parts handles
every read/write operation to any available FileSystem. Because larger
write/read operations can have high time complexity on certain FileSystem
technology, there had to be designed a way to support these operations.

File System funtionality is most complex in Gateway. This is caused
by attempt, to create design, that could be used universally in wide
area of products. Because every product uses different set of FileSystem
components, there was need to create design, that could change its layout
based on initial configuration and operate all FileSystem components
without much effort during assimilation.

In figure 4.9 it is shown how basic design of FileSystem is designed.
There are several main components, that are going to be described here:

1. CFSRequest - Class, that represent single read/write request to
part of available memory. It contains detailed information about
destination of request, pointer to buffer to read/write to/from
and pointer to Callback class to notify submitter once request is
completed.

2. ICallback - Contains callback functions to announce successful
completion of request or errors during execution.

3. IMemoryLayout - Class, that represent virtual layout of available
memories in used product. Virtual layout is based on physical layout,
with addition of possibility to divide physical memory into more than
one virtual memories. This allows easier manipulation and more
arranged approach.

4. IFSRegion - Memory Layouts are assembled out of several Regions.
Each Region represent one kind of memory and offers interface to
drivers to execute read/write requests.

5. Drivers - Lowest layer of component handling lowest level of
communication with File System component, using BSP peripherals
usually.

6. CFileSystem - CFileSystem class offers main interface to whole
FileSystem component. It allows creating read/write requests. Once
request is received, class CFSRequest is created and inserted into
CFSRequestQueue. Queue system is created to prevent FileSystem
from blocking rest of application for too long, since operations can be

51

4. Realisation

Figure 4.9: File System Design - Basic File System layout. Class
IMemoryLayout allows variety FileSystem settings based on particular
product.

very time demanding and several operations at once could block the
application.

7. CFSManager - CFSManager encapsulates some basic operations to
FileSystem used by rest of application. For example backup or restore
of configuration is encapsulated in 2 functions, which makes usage of
FS component fast and clear.

4.5.6.1 Batching of requests

As has been said in previous section, CFileSystem uses queue to handle
multiple requests at once. This however doesn’t solve problem of large
FileSystem request. Therefor batch system was designed with objective to
solve large request problem.

52

4.6. RTOS integration

In class CFSRequest there is additional variable, that specify size of the
batch. For every iteration of FileSystem cycle, there is executed only this
small part of request. Once all parts are executed, Callback is called and
request is completed.

4.6 RTOS integration

Last part of development was to integrate RTOS. Because IO-Link device
is quite small device and didn’t need any sophisticated solution for RTOS
funtionality, there was selected FreeRTOS solution. FreeRTOS provided
everything, that was expected from such OS and already preprepared demos
from FreeRTOS developers for ST MCUs made integration quite easy [26].

4.6.1 Optional usage

From beggining the design was made with thought of RTOS being only
optional. For this reason the whole application does work even without
RTOS. Behavior is slightly different, because time specific constraints
created by tasks can’t be replaced by single loop, but IO-Link specification
is kept

53

Conclusion

Within the scope of this thesis, a funtional firmware for IO-Link Test
device has been developed. This was achieved by integrating already
working TMG IO-Link Device Stack and FreeRTOS both written in C,
into newly developed core application and peripheral controllers written in
C++. Furthermore during development there were successfully collected
requirements for both FW, HW and Configuration needs. Working device
can be seen in figure 4.10.

Figure 4.10: Test device board - final prototype design of IO-Link Test
device board.

55

Conclusion

During development there were found multiple HW bugs, as is not
uncommon with first prototype, but they all have been fixed quite easily and
development didn’t had to be stopped with wait time for another release.

Development of Firmware was done with abiding Siemens internal
coding guidelines and from funtional point of view fully abides IO-Link
specification. Every new funtionality was immeadiatelly tested with self
made unit tests and after that with real funtional IO-Link Masters. By
this approach any possible bugs were found quite early and didn’t cause
problems in later stages.

Cooperation with fellow colleagues during development was quite
successful and integration of USB part worked immediately without any
problems.

At the moment of finalization of this thesis, device is sent for evaluation
to Hungary, where local test team experiments with possibilities it offers.
Result of this testing unfortunatelly won’t be part of this thesis.

There is still lot of development in future, before this test device is going
to be fully completed and no further improvements will be neccessary. But
at the current stage, the device is already used for several test cases and is
not just another work, that ends up in a drawer.

56

Bibliography

[1] Co se skryva pod vyrazy Industry 4.0 / Prumysl 4.0. [cit. 2016-3-19].
Available from: http://automatizace.hw.cz/mimochodem/co-je-
se-skryva-pod-vyrazy-industry-40-prumysl-40.html/

[2] IEC 61131-9:2013 - Programmable controllers - Part 9: Single-drop
digital communication interface for small sensors and actuators. [cit.
2013-9-11]. Available from: https://webstore.iec.ch/publication/
4558

[3] IO-Link Overview. Available from: http://io-link.com/en/
Technology/what is IO-Link.php?thisID=76

[4] IO-Link - What it Is and 5 Key Advantages. [cit. 2017-5-03]. Available
from: https://www.bannerengineering.com/us/en/company/
expert-insights/io-link.html

[5] IO-Link Interface and System specification. [cit. 2013-7-01]. Available
from: http://io-link.com/share/Downloads/Spec-Interface/
IOL-Interface-Spec 10002 V112 Jul13.pdf

[6] IO-Link popis digitalni komunikace pro senzory. [cit. 2010-2-21].
Available from: http://automatizace.hw.cz/iolink-popis-
digitalni-komunikace-pro-senzory

[7] IO-Link System Description. [cit. 2016-2-01]. Available from:
http://io-link.com/share/Downloads/At-a-glance/IO-
Link Systembeschreibung engl 2016.pdf

57

http://automatizace.hw.cz/mimochodem/co-je-se-skryva-pod-vyrazy-industry-40-prumysl-40.html/
http://automatizace.hw.cz/mimochodem/co-je-se-skryva-pod-vyrazy-industry-40-prumysl-40.html/
https://webstore.iec.ch/publication/4558
https://webstore.iec.ch/publication/4558
http://io-link.com/en/Technology/what_is_IO-Link.php?thisID=76
http://io-link.com/en/Technology/what_is_IO-Link.php?thisID=76
https://www.bannerengineering.com/us/en/company/expert-insights/io-link.html
https://www.bannerengineering.com/us/en/company/expert-insights/io-link.html
http://io-link.com/share/Downloads/Spec-Interface/IOL-Interface-Spec_10002_V112_Jul13.pdf
http://io-link.com/share/Downloads/Spec-Interface/IOL-Interface-Spec_10002_V112_Jul13.pdf
http://automatizace.hw.cz/iolink-popis-digitalni-komunikace-pro-senzory
http://automatizace.hw.cz/iolink-popis-digitalni-komunikace-pro-senzory
http://io-link.com/share/Downloads/At-a-glance/IO-Link_Systembeschreibung_engl_2016.pdf
http://io-link.com/share/Downloads/At-a-glance/IO-Link_Systembeschreibung_engl_2016.pdf

Bibliography

[8] IO Device Description V1.1 Specification. [cit. 2011-8-01].
Available from: http://io-link.com/share/Downloads/Spec-
IODD/IO Device Description V1.1 Specification.zip

[9] IO Device Description V1.1 Guideline. [cit. 2013-7-01]. Available from:
http://io-link.com/share/Downloads/Guide-IODD/IO-Device-
Desc-Guideline 10022 V11.zip

[10] Schneider, A. Development of a Human Machine Interface
and Communication System with a future IO-Link Master
Test Device. Master’s thesis, CTU FEL, 2016. Available from:
https://support.dce.felk.cvut.cz/mediawiki/images/b/b2/
Dp 2016 schneider alexander.pdf

[11] STM32 L1 series of ultra-low-power MCUs. Available
from: http://www.st.com/en/microcontrollers/stm32l1-
series.html?querycriteria=productId=SS1295

[12] STM32 F1 series of mainstream MCUs. Available
from: http://www.st.com/en/microcontrollers/stm32f1-
series.html?querycriteria=productId=SS1031

[13] STM32F4 series of high-performance MCUs. Available
from: http://www.st.com/en/microcontrollers/stm32f4-
series.html?querycriteria=productId=SS1577

[14] STM32F407VG, Datasheet - production data. Available from:
http://www.st.com/content/ccc/resource/technical/document/
datasheet/ef/92/76/6d/bb/c2/4f/f7/DM00037051.pdf/files/
DM00037051.pdf/jcr:content/translations/en.DM00037051.pdf

[15] IO-Link Device Transceiver - MAX14826. Available from:
https://www.maximintegrated.com/en/products/analog/
sensors-and-sensor-interface/MAX14826.html

[16] IO-Link communication transceiver device IC. Available from: http:

//www.st.com/en/power-management/l6362a.html

[17] SN65HVD101 IO-LINK PHY for Device Nodes. Available from: http:
//www.ti.com/product/SN65HVD101

[18] Eclipse Mars. Available from: https://eclipse.org/mars/

[19] IAR. Available from: https://www.iar.com/iar-embedded-
workbench/

58

http://io-link.com/share/Downloads/Spec-IODD/IO_Device_Description_V1.1_Specification.zip
http://io-link.com/share/Downloads/Spec-IODD/IO_Device_Description_V1.1_Specification.zip
http://io-link.com/share/Downloads/Guide-IODD/IO-Device-Desc-Guideline_10022_V11.zip
http://io-link.com/share/Downloads/Guide-IODD/IO-Device-Desc-Guideline_10022_V11.zip
https://support.dce.felk.cvut.cz/mediawiki/images/b/b2/Dp_2016_schneider_alexander.pdf
https://support.dce.felk.cvut.cz/mediawiki/images/b/b2/Dp_2016_schneider_alexander.pdf
http://www.st.com/en/microcontrollers/stm32l1-series.html?querycriteria=productId=SS1295
http://www.st.com/en/microcontrollers/stm32l1-series.html?querycriteria=productId=SS1295
http://www.st.com/en/microcontrollers/stm32f1-series.html?querycriteria=productId=SS1031
http://www.st.com/en/microcontrollers/stm32f1-series.html?querycriteria=productId=SS1031
http://www.st.com/en/microcontrollers/stm32f4-series.html?querycriteria=productId=SS1577
http://www.st.com/en/microcontrollers/stm32f4-series.html?querycriteria=productId=SS1577
http://www.st.com/content/ccc/resource/technical/document/datasheet/ef/92/76/6d/bb/c2/4f/f7/DM00037051.pdf/files/DM00037051.pdf/jcr:content/translations/en.DM00037051.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/ef/92/76/6d/bb/c2/4f/f7/DM00037051.pdf/files/DM00037051.pdf/jcr:content/translations/en.DM00037051.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/ef/92/76/6d/bb/c2/4f/f7/DM00037051.pdf/files/DM00037051.pdf/jcr:content/translations/en.DM00037051.pdf
https://www.maximintegrated.com/en/products/analog/sensors-and-sensor-interface/MAX14826.html
https://www.maximintegrated.com/en/products/analog/sensors-and-sensor-interface/MAX14826.html
http://www.st.com/en/power-management/l6362a.html
http://www.st.com/en/power-management/l6362a.html
http://www.ti.com/product/SN65HVD101
http://www.ti.com/product/SN65HVD101
https://eclipse.org/mars/
https://www.iar.com/iar-embedded-workbench/
https://www.iar.com/iar-embedded-workbench/

Bibliography

[20] Enterprise Architect. Available from: http://www.sparxsystems.com/
products/ea/

[21] Rational ClearCase. Available from: http://www-03.ibm.com/
software/products/en/clearcase

[22] Strategy Design Pattern. Available from: https://

sourcemaking.com/design patterns/strategy

[23] Singleton Design Pattern. Available from: https://

sourcemaking.com/design patterns/singleton

[24] IO-Link Protocol Software for Device - TMG. Available
from: https://www.tmgte.de/en/IO-Link-component/io-link-
protokoll-stack-device.html

[25] Publish/Subscribe pattern. Available from: https://

msdn.microsoft.com/en-us/library/ff649664.aspx

[26] FreeRTOS. Available from: http://www.freertos.org

59

http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/
http://www-03.ibm.com/software/products/en/clearcase
http://www-03.ibm.com/software/products/en/clearcase
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/singleton
https://sourcemaking.com/design_patterns/singleton
https://www.tmgte.de/en/IO-Link-component/io-link-protokoll-stack-device.html
https://www.tmgte.de/en/IO-Link-component/io-link-protokoll-stack-device.html
https://msdn.microsoft.com/en-us/library/ff649664.aspx
https://msdn.microsoft.com/en-us/library/ff649664.aspx
http://www.freertos.org

Appendix A

Acronyms

HW Hardware

FW Firmware

SDCI Single-Drop Digital Communication Interface

UART Universal Asynchronous receiver/transmiter

SPI Serial Peripheral Interface

SIO Standard Input and Output

IEC International Electrotechnical Commission

PD Process Data

OD On-Request Data

PL Physical Layer

DL Data Link Layer

AL Application Layer

IODD IO-Link Device Description

XML eXtensible Markup Language

EMC Electro Magnetic Compliance

DC Direct Current

USB Universal Serial Bus

61

A. Acronyms

SD Secure Digital

GUI Graphical user interface

LED Light-Emitting Diode

RAM Random Access Memory

JTAG Joint Test Action Group

ARM Advanced RISC Machine

MCU Microcontroller Unit

BSP Board Support Package

RTOS Real-Time Operating System

DI Digital Input

DO/DQ Digital Output

62

Appendix B

Contents of enclosed CD

readme.txt.....................the file with CD contents description
src the directory of source codes

thesis the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf........................ the thesis text in PDF format

63

	Citation of this thesis
	Introduction
	Basics
	IO-Link Technology
	System topology
	Physical Layer
	Data Link Layer
	Application Layer
	IO-Link Device Description

	Analysis and design
	Introduction to problem and motivation
	Collecting requirements
	Stakeholders

	Categorizing requirements
	Functional Requirements
	Non-functional requirements

	Planning
	HW Selection
	Micro-controller selection
	PHY selection

	Realisation
	Overview
	Used components

	Basic Design
	External parts

	BSP
	BSP
	MCU
	PHY

	Stack integration
	Gateway application
	Mail System
	Configuration
	Process Data
	Digital Inputs and Digital Outputs
	Events
	File System

	RTOS integration
	Optional usage

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

