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Abstrakt

Tato práce má dva hlavńı ćıle — (1) paralelizovat FAKE GAME integraćı
do open source frameworku H2O, zaměřeného na strojové učeńı, a (2) hodno-
ceńı anytime vlastnost́ı algoritmů strojového učeńı a vlivu optimalizace hyper-
parametr̊u na tyto algoritmy. Tyto ćıle jsem realizoval integraćı FAKE GAME
do H2O. Za účelem vyhodnoceńı anytime vlastnost́ı jsem implementoval nový
nástroj nazvaný Benchmarker.

Vyhodnoceńı anytime vlastnost́ı ukázalo, že pro některé problémy modely
z FAKE GAME překonaj́ı modely z H2O, jak v přesnosti, tak i ve výkonu.
Na druhou stranu vyhodnoceńı vlivu optimalizace hyper-parametr̊u ukázalo
poměrně malý úspěch při optimalizaci algoritmů strojového učeńı z H2O.

Domńıvám se, že zanedbatelné zvýšeńı výkonnosti, a pro některé z op-
timalizovaných model̊u dokonce i nižš́ı výkon než u výchoźı konfigurace, je
zp̊usobeno automatickým laděńım některých hyper-parametr̊u, které se provád́ı
ve výchoźım nastaveńı H2O.

Kĺıčová slova Anytime učeńı, FAKE GAME, H2O, Optimalizace hyper-
parametr̊u, Strojové učeńı

ix



Abstract

This thesis has two main goals — (1) parallelize FAKE GAME by integration
into, an open source machine learning framework, H2O, and (2) evaluation
of anytime properties of machine learning algorithms and influence of hyper-
parameter optimization on them. To meet these objectives, I have integrated
FAKE GAME into H2O and, in order to evaluate anytime properties, I have
implemented, a new tool, called Benchmarker.

The evaluation of anytime properties shows that for some problems FAKE
GAME models outperform state-of-the-art models from H2O, in both, accur-
acy and performance. Moreover, the evaluation of hyper-parameter optimiz-
ation show little success, when optimizing H2O machine learning algorithms.

I hypothesise that the negligible performance improvement, and for some
optimized models even lower performance than with default configuration, is
caused by hyper-parameter automatic tuning, which is done by default in H2O
for some hyper-parameters.

Keywords Anytime learning, FAKE GAME, H2O, Hyper-parameter Op-
timization, Machine Learning
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Introduction

Artificial intelligence (AI) has become omnipresent in our daily lives. This
thesis focuses on one subfield of AI called machine learning — specifically su-
pervised learning. Supervised learning is a task of creating a predictive model
based upon set of observations and corresponding responses. The predictive
model should be able to generalize from the given data.

Model selection is one of the important tasks in machine learning. Auto-
mation of model selection is one of the things Fully Automated Knowledge
Extraction using Group of Adaptive Models Evolution (FAKE GAME) aims
to solve. However, Fully Automated Knowledge Extraction using Group of
Adaptive Models Evolution (FAKE GAME) is not ready for the Big Data era,
as it was created to deal with smaller amounts of data. The first task of this
thesis was to enable running FAKE GAME on bigger data. This is accom-
plished by using a parallelization technique called MapReduce [1]. In order
to make the usage easier I have integrated FAKE GAME in, an open source
framework, H2O. This enables it to use preprocessing and parallel data load
as well as many other features already implemented in H2O. One additional
benefit is that it can be used easily from R, Python, Java, and it can also be
used through H2O’s RESTful API from different languages.

Another topic of this thesis is an evaluation of anytime properties. There
isn’t one canonical definition of anytime learning. It is often studied in context
of reinforcement learning, however, in this thesis, I study anytime properties of
supervised machine learning algorithms implemented in H2O. Unfortunately,
at the time of writing this thesis, H2O was incapable of true anytime learning,
to evaluate it I emulate it. This is described in Section 3.1.

Last but not least, I have explored techniques for hyper-parameter op-
timization. Parameters of machine learning algorithms are quite important,
many of them have direct impact on the plasticity of generated predictive
models [2]. Unfortunately, machine learning algorithms are often evaluated
with their default parameter settings only. There are many ways of optimiz-
ing parameters of machine learning algorithms. The most common is a grid
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search and recently a random search. However, recent studies showed the
potential of Bayesian methods [3] outperforming both random search [4] and
grid search [5].

Related Work

Generalization of the task I was given, i.e., evaluation of anytime properties
and hyper-parameter optimization is meta-learning. Meta-learning is a field
of study that aims to automate model selection by learning how to select a
model from previous experiments.

Several major research projects have targeted meta-learning [6]. ESPRIT
Statlog [7] compared the performance of numerous classification algorithms
on several real-world datasets. Ranking of algorithms can be obtained by
fast pairwise comparisons [8] just on the most useful cross-validation tests [9].
Another project was METALA [10], an agent-based distributed data mining
system, supported by meta-learning. Again, the goal was to select from among
available data mining algorithms the one producing models with the best
generalization performance for the given data.

Individual models, ensembles and combination of ensembles in time series
forecasting can be selected adaptively [11] by meta-learning. In [12] so called
lazy meta-learning is applied to create customized ensembles on demand.

Another meta-learning approach is to use a knowledge base containing
information that might help to improve the performance of learning. One
possible approach [13] is to describe the dataset by a vector of meta-features
and based on this vector, select the best performing algorithm for the nearest
dataset from the knowledge base.

The CASH approach [14] combines selection and hyper-parameter optim-
ization [3] of classification algorithms. Similarly to my experiments, CASH
approach uses Bayesian optimization, but it adds the selection of a model to
it.

Implementation part of my thesis consist of parallelization of FAKE GAME
and creation of benchmarking environment. There are several options usable
for Big Data. The most popular open source options are Hadoop, Storm,
Spark, H2O, and Flink. Hadoop, Spark and H2O are build primarily for
batch processing, whereas Storm and Flink are primarily used for stream pro-
cessing. However, Spark can emulate stream processing by using mini-batches,
and similarly Flink is capable of batch processing. My task was to parallelize
FAKE GAME and since FAKE GAME’s model training is computationally
expensive I have chosen a batch processing as a way to go.

Hadoop, Spark, and H2O, are based on MapReduce [1]. Hadoop and Spark
are general frameworks that are widely used with Big Data, not just for model
training, but for ETL and other data intensive jobs. On the other hand, H2O
is a framework that focuses on machine learning and as such it provides more
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support for creating new models. Using H2O results in a more user-friendly
experience without much effort, e.g., automatically generated binding for R,
Python, and Java, etc. This was the main reason for choosing H2O.
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Chapter 1
Theoretical Background

1.1 FAKE GAME

Disclaimer: This whole section is strongly influenced by [2] of which I am a
co-author.

Fully Automated Knowledge Extraction using Group of Adaptive Models
Evolution (FAKE GAME) is a system introduced in [15]. FAKE GAME is a
Java based machine learning package that is focused on supervised algorithms.
It can be used to train simple models, ensembles of the models, and evolve
ensembles by the use of genetic programming.

FAKE GAME builds ensembles from fast weak learners [16]. Many of
FAKE GAME’s base models resemble neurons with different activation func-
tion. FAKE GAME can build both classification and regression ensembles. In
this thesis, I focus on classification tasks only, however regression models can
also be present in classification ensembles.

The classification task itself can be decomposed into subproblems by sep-
aration of single classes from the others. These binary problems can be solved
by regression models — by estimating continuous class probabilities. Hence,
FAKE GAME uses regression models and meta-models. The classifier con-
sisting of regression models is referred to as ClassifierModel.

1.1.1 Base Algorithms

Training regression models is fast and straightforward. FAKE GAME uses
several activation functions, namely, Sigmoid, SigmoidNorm, Sine, Poly-
nomial, Gaussian, Exponential and Linear.

To train coefficients of linear or polynomial models, the General Least
Squares method [17] is applied. For models non-linear in their coefficients, an
iterative optimization process is needed.

As an example, training of Gaussian models is shown below. The output
of the model yj for jth instance with target variable dj and input vector ~xj

5



1. Theoretical Background

can be computed as

yj = (1 + an+1)e

−
∑n
i=1 (xij − ai)2

(1 + an+2)2︸ ︷︷ ︸
ρj + a0 (1.1)

where coefficients ~a should be optimized to fit a training data and reduce the
error E =

∑m
j=1 (yj − dj)2 of the model.

The gradient of error can be computed as ∇ ~E =
(
∂ ~E
∂a0

, ∂
~E

∂a1
, · · · , ∂ ~E

∂an+2

)
,

where ∂ ~E
∂ai

=
∑m
j=1

∂ ~E
∂yj

∂yj
∂ai

and ∂ ~E
∂yj

= 2
∑m
j=1 (yj − dj). The last partial deriv-

ative ∂yj
∂ai

has to be computed for each coefficient ai.
In case of the Gaussian model from Eq. 1.1, the easiest partial derivative to

compute is the one in the direction of the a0 coefficient ∂ ~E
∂a0

= 2
∑m
j=1 (yj − dj).

For the coefficient a2n+1, the equation becomes a bit more complicated as
∂ ~E

∂an+1
= 2

∑m
j=1 (yj − dj) eρj . Remaining coefficients are in the exponen-

tial part of the transfer function. They can be computed as follows ∂ ~E
∂ai

=∑m
j=1

∂ ~E
∂yj

∂yj
∂ρj

∂ρj
∂ai

. Then the remaining components of the gradient are

∂ ~E

∂an+2
= 2

m∑
j=1

[
(yj − dj) (1 + an+1)eρj2

∑n
i=1 (aixij)2

(1 + an+2)3

]
, (1.2)

∂ ~E

∂ai
= 2

m∑
j=1

[
(yj − dj) (1 + an+1)eρj2

a2
ix

2
ij

(1 + an+2)2

]
. (1.3)

Accordingly, analytical gradients of error on training data were derived for
other models such as Sigmoid, Sine and Exponential models.

Gradients are then supplied together with errors to the quasi-Newton op-
timization method [18, 19] during the training to speed up the convergence.
More details can be found in [20] and the source code is also available [21].

The LocalPolynomial base model as well as Neural Network (NN),
Support Vector Machine (SVM), Naive Bayes classifier (NB), De-
cision Tree (DT), K-Nearest Neighbor (KNN) were adopted from the
Rapidminer environment [22].

In following section, I present mathematical formulas for most of the base
models:

Exponential

y = am+2 + am+1 exp
(
am+3

(
m−1∑
i=0

aixi + am

))
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Gauss

y = am + (1 + am+1) exp
(
−
∑m
i=0(xi − ai)2

(1 + am+2)2

)

GaussNorm

y = exp
(
−
∑m
i=0(xi − ai)2

(1 + am)2

)

GaussMulti

y = exp
(
−
∑m
i=0(xi − ai)2

2a2
m+i

)

Linear

y =
m−1∑
i=0

aixi + am

Polynomial

y =
m−1∑
k=0

ak

p∏
i=0

xekii + am

Sigmoid
y = am+2 + am+1

1 + exp
(
−
(∑m−1

i=0 aixi + am
))

SigmoidNorm

y = 1
1 + exp

(∑m−1
i=0 aixi + am

)
Sin

y = a3m +
m−1∑
i=0

a2m+i sin (aixi + am+i)

SinNorm

y = sin
(
am +

m−1∑
i=0

aixi

)

Since derivation of gradients of squared errors is straight-forward, I won’t
demonstrate any other than the one for Gaussian model shown in previous
section.
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1. Theoretical Background

1.1.2 Ensembling algorithms

The performance of models can often be further increased by combining or
ensembling [23, 24, 25, 26, 27, 28] base algorithms, particularly in cases where
base algorithms produce models with insufficient plasticity or models overfit-
ted to training data [29].

A detailed description of the large variety of ensemble algorithms can be
found in [30]. Brief description of the ensembling algorithms that are used in
my thesis is given below.

Bagging [31] is the simplest one. Bagging stands for boostrap aggregating.
It takes samples of instances randomly with repetition and trains each base
model on a corresponding sample. Prediction is done by a simple average or
voting (in case of classification) of predictions of all base models. Bagging is
one of the easiest ensembling techniques to parallelize.

Boosting [26] specializes models on instances incorrectly handled by pre-
vious models and combines them with weighted average. Boosting is an it-
erative process, which make it hard to parallelize. Further description of a
particular type of boosting called gradient boosting is given in Section 1.3.1.4.

Stacking [25] uses a meta model, which is learned from the outputs of all
base models, to combine them.

Another ensemble utilizing meta models is the Cascade Generaliza-
tion [32], where every model except the first one uses a dataset extended by
the output of all preceding models.

Delegating [33] and Cascading [34, 35] both use a similar principle: they
operate with certainty of model output. The latter model is specialized not
only in instances that are classified incorrectly by previous models, but also
in instances that are classified correctly, but previous models are not certain
in terms of their output. Cascading only modifies the probability of selecting
given instances for the learning set of the next model.

Arbitrating [36] uses a meta-model called referee for each model. The
purpose of this meta-model is to predict the probability of correct output.

In this thesis, I use selected ensemble methods implemented within the
FAKE GAME project [21].

1.2 Meta-learning Templates

The meta-learning template [6] is a prescription how to build hierarchical su-
pervised models. In the most complex case, it can be a collection of ensembling
algorithms, modeling and classification algorithms combined in a hierarchical
manner, where base algorithms are leaf nodes connected by ensembling nodes.
Models or classifiers deeper in the hierarchy can be more specialized in a par-
ticular subset of data samples or attributes. This scheme decomposes the
prediction problem into subproblems and combines the final solution (model)

8



1.2. Meta-learning Templates

Bagging

DT
(sm=5)

Boosting DT
(sm=10)

5NN

2NN Stacking
(SVM)

DT
(sm=2)

NN

ClassifierBagging{DecisionTree(splitmin=5),Cl
assifierBoosting{2NearestNeighborClassifier, 
ClassifierStacking(SVM){NeuralNetClassifier, 
DecisionTree(splitmin=2}}, 
5NearestNeighborClassifier, 
DecisionTree(splitmin=10)}

Bagging

Boosting

Stacking(SVM)

NN DT
sm=2

2NN

DT
sm=5

2NN DT
sm=10

a) b)

c)

Figure 1.1: An example of hierarchical combination of algorithms. Using this
meta-learning template, a classifier can be produced (see Figure 1.2). The
template can be represented by a) a tree, b) embedded boxes or c) by text [2].

from subsolutions. The procedure of problem decomposition depends on en-
sembling methods. Typically, it distributes data to member models and when
all outputs are available, they are combined to the ensemble output. Ensemble
algorithms act as inner nodes, whereas base algorithms act as leaves in the
tree representing the hierarchy.

Note that meta-learning templates are not data mining models, but al-
gorithms. Models are produced when templates are executed.

Figure 1.1 shows an example of a meta-learning template. When executed,
the full training dataset is passed to a top level bagging that generates 4 boot-
strap training datasets for members of the ensemble. The second bootstrap
training dataset is used to train a KNN classifier by boosting and samples
where this classifier demonstrates high error are more likely to be used in the
training set for the second member model of the boosting: the stacking of
NN and DT classifiers. Bottom level NN and DT are evaluated on training
data and upon their responses a SVM meta-model is trained. The stacking is
evaluated and a weight is assigned to its output in boosting. The output of
boosting is averaged with the other three top level base models and the whole
classifier is finished (see the left-hand tree in Figure 1.2).

The resulting classifier is depicted in Figure 1.2. The tree in the center
shows how the input attributes are presented to the model. The propagation
of input vector is straightforward in this example, but some ensembles (e.g.,
Cascading) involve evaluation of member models (their outputs are added to
input vectors of subsequent models). The right-hand tree shows how outputs
of base models are blended to produce the final output.

9



1. Theoretical Background

Bootstrap
sampling

DT
(sm=5)

Sequential 
weighted 
sampling

DT
(sm=10)

5NN

2NN

DT
(sm=2)

NN

Copy train set
Collect outputs

Build SVM

DT DT5NN

2NN

DTNN

Data 
propagation

Data 
propagation

Data 
propagation

DT DT5NN

2NN

DTNN

Majority
voting

Weighted 
voting

Combine 
outputs
by SVM

Propagate input vector(s) Compute output(s) of the modelBuild model from the template

Executing template on training data Using the model on new data

Figure 1.2: An ensemble classifier can be produced by the hierarchical com-
bination of algorithms depicted in Figure 1.1. Executing the template will
distribute data to leaf base models according to procedures specified by en-
sembling algorithms. Base models and ensembles are constructed until the
root ensemble (base model) is finished. Using the model involves propagating
and presenting an input vector to leaf models and combining their outputs by
ensembling procedures. [2]

Example of fully predefined template:

Figure 1.3: Nested ensembles can be represented by a template. Using wild-
cards, specific (or predefined) template can be generalized to represent set of
templates. [2]

Whereas data mining workflows are directed acyclic graphs, meta-learning
templates are hierarchical structures. Fully predefined templates are algorithm
configurations containing parameters of both ensembles and base algorithms.
Templates can be generalized using wildcards (see Figure 1.3) to represent a
subspace of the search space of topologies and parametrizations of hierarchical
ensembles.

Similarly to the Holland’s schema theorem [37], FAKE GAME can define
fitness of a template as average/maximum fitness of individual algorithms rep-
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1.3. H2O

resented by this particular template. Wildcards here are used just as place-
holders for random decisions on type of ensembles or base algorithms and their
parameters. On the contrary, in rooted tree schema theory [38] wildcards rep-
resent sub-trees.

1.2.1 Discovering templates

The meta-learning template can be designed manually using expert knowledge
(for example, bagging boosted decision trees showed good results on several
problems) so it is likely to perform well on a new dataset. This is, however,
not guaranteed.

FAKE GAME optimizes templates on data sub-samples using a genetic
programming [39]. In this way, FAKE GAME can search the space of pos-
sible architectures of hierarchical ensembles and optimize their parameters
simultaneously.

1.3 H2O

H2O is parallel machine learning package written mainly in Java. It provides
bindings via its representational state transfer application programming in-
terface (RESTful API) [40] to Java, Python, and R as well as web interface.

H2O uses in memory MapReduce [1] paradigm to distribute work. One
of its advantages is clever distribution of data chunks. When H2O imports a
file, it does so in distributed fashion, i.e., each node tries to load it in parallel.
When the data file is parsed, it gets split in to several data chunks. H2O
tries to have more data chunks than CPU cores. Since it uses MapReduce
paradigm, it is often useful to be able to look in different chunk in map phase
than the one map worker was given. H2O assumes that such look-ups are
more likely to data chunks that are near to the given chunk. And for this
reason H2O tries to keep those chunks in the same node.

Another benefit of using H2O is simplicity of deployment. H2O is capable
of exporting trained models as Java class (POJO). It also makes easy to use
all of its models from various languages. Officially supported are R, Python,
and Java. Although it is possible to use it from other languages using its
RESTful API.

H2O contains several machine learning algorithms, namely:

1. Supervised

a) Deep Learning
b) Distributed Random Forest
c) Generalized Linear Model
d) Gradient Boosting Machines
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1. Theoretical Background

e) Näıve Bayes

2. Unsupervised

a) Deep Learning (Auto Encoder)

b) GLRM

c) K-Means

d) PCA

1.3.1 Supervised algorithms in H2O

Since I have used only supervised algorithms for this thesis, I will describe
only them.

1.3.1.1 Deep Learning

Deep Learning is based on a multi-layer feed-forward artificial neural net-
work (also known as multi-layer perceptron (MLP)). In H2O, Deep Learning
is trained with stochastic gradient descent using back-propagation. The arti-
ficial neural network can contain a large number of hidden layers consisting
of neurons with tanh, rectified linear function and maxout activation func-
tions. However, since H2O Deep Learning is implemented in Java and it does
not support training on GPUs, the usual number of hidden layers is 2 to 5.
For this reason, H2O Deep Water project started, which aims to integrate
TensorFlow, Caffe, and MXNet, all of which can use GPUs to train the neural
network yielding much higher performance.

H2O’s Deep Learning has advanced features such as adaptive learning rate,
rate annealing, momentum training, dropout, L1 or L2 regularization.

Each compute node trains a copy of the global model parameters using its
local data with multi-threading (asynchronously), and contributes periodically
to the global model via model averaging across the network [41].

The basic unit in the multi-layer perceptron (MLP) is the neuron (shown in
Figure 1.4a), a biologically inspired model of the human neuron. In the MLP,
the weighted combination α =

∑
i=1wixi + b of input signals is aggregated,

and then an output signal f(α) transmitted by the connected neuron. The
function f represents the nonlinear activation function used throughout the
network, and the bias b accounts for the neuron’s activation threshold.

MLP consist of multiple layers of interconnected neuron units starting with
an input layer followed by multiple layers of non-linearity and ending with a
linear regression or classification layer to match the output space [41]. To make
easier optimization of threshold of every single neuron bias units are included
in each non-output layer of the network and threshold is then computed using
weights just as every other input into each neuron. The learning phase of MLP
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(a) A single neuron (b) Multi-layer perceptron

Figure 1.4: Ilustration of a single neuron and multi-layer feed-forward artificial
neural network [41]

consists of adapting these weights to minimize the error on labeled training
data.

Prediction of MLP is done by multiplying each input with corresponding
weight and then each neuron sums its multiplicands and then activation func-
tion is applied on this sum. This is visualized in Figure 1.4a. The result is
then propagated to the next layer (see Figure 1.4b). This is repeated until the
output layer is reached.

Universal approximation theorem states that MLP with at least one hid-
den layer with finite number of neurons with activation function that’s non-
constant, bounded, and monotonically-increasing continuous function is cap-
able of creating arbitrarily accurate approximation to a function [42].

MLP in H2O uses three activation functions — tanh, rectified linear ac-
tivation function and maxout (see Table 1.1). The tanh function is rescaled
and shifted logistic function that is symmetric around 0. The rectified linear
function has demonstrated high performance on image recognition tasks, it is
a more biologically accurate [43] and it is computationally cheaper. Maxout is
a generalization of the rectified linear activation function where each neuron
picks the larger output of k separate channels each with its own weights and
bias values. The current implementation supports only k = 2 [41]. The recti-
fied linear activation function is the special case of maxout where one channel
always outputs 0.

Function Formula Range
Tanh f(α) = eα−e−α

eα+e−α f(α) ∈ [−1, 1]
Rectified Linear f(α) = max(0, α) f(α) ∈ R+

Maxout f(α1, α2) = max(α1, α2) f(α) ∈ R

Table 1.1: Activation functions usable in H2O

The distribution function of the response variable can be specified as one
of the following: AUTO, Bernoulli, Multinomial, Poisson, Gamma, Tweedie,
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1. Theoretical Background

Laplace, Huber or Gaussian. Each distribution has a primary association
with a particular loss function. Some distributions can be used with a non-
default loss function. Bernoulli and Multinomial are primarily associated with
Cross Entropy (also known as Log-Loss). Gaussian is primarily associated
with Mean Squared Error, Laplace with Absolute loss and Huber with Huber
loss. Poisson, Gamma and Tweedie distributions requires loss to be set to
AUTO [41].

Loss Function Formula Typical use
MSE L(W,B|j) = 1

2 ||t
(j) − o(j)||22 Regression

Absolute L(W,B|j) = ||t(j) − o(j)||1 Regression

Huber L(W,B|j) =
{ 1

2 ||t
(j) − o(j)||22 for ||t(j) − o(j)||1 ≤ 1

||t(j) − o(j)||1 − 1
2 otherwise.

Regression

Cross Entropy L(W,B|j) = −
∑
y∈O

(
ln(o(j)

y )t(j)
y + ln(1− o(j)

y )(1−(j)
y )
)

Classification

Table 1.2: Loss Functions

H2O trains MLP using stochastic gradient descend, namely, with HOG-
WILD!, which is lock-free version of stochastic gradient descend [44]. Intuition
of training MLP using HOGWILD! can be given as follows [41]:

1. Initialize global model parameters W,B

2. Distribute training data T across nodes (can be disjoint or replicated)

3. Iterate until convergence criterion reached:

a) For nodes n with training subset Tn, do in parallel:
i. Obtain copy of the global model parameters Wn, Bn

ii. Select active subset Tna ⊂ Tn (user-given number of samples
per iteration)

iii. Partition Tna into Tnac by cores nc
iv. For cores nc on node n, do in parallel:

A. Get training example i ∈ Tnac
B. Update all weights wjk ∈Wn , biases bjk ∈ Bn

wjk = wjk − α
∂L(W,B|j)

∂wjk

bjk = bjk − α
∂L(W,B|j)

∂bjk

b) Set W,B = avgnWn, avgnBn
c) Optionally score the model on (potentially sampled) train/validation

scoring sets
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HOGWILD! updates asynchronously both weights W and weights for the
bias units B.

H2O Deep Learning (DL) framework supports L1 (Lasso) and L2 (Ridge)
regularizations as well as dropout. To support L1 and L2 regularizations loss
function is modified as follows:

L′(W,B|j) = L(W,B|j) + λ1R1(W,B|j) + λ2R2(W,B|j)

R1(W,B|j) represents the sum of all `1 norms of the weights and biases in
the network. R2(W,B|j) represents the sum of squares of the weights and
biases in the network. The constants λ1 and λ2 are typically very small,
e.g., 10−5. Dropout can be accomplished by using activation function with
dropout in its name such as TanhWithDropout, RectifierWithDropout or
MaxoutWithDropout.

H2O DL has several more advanced optimizations such as Momentum
Training, Rate Annealing, and Adaptive Learning. Full description of those
optimizations are beyond the scope of this thesis, so I will just briefly mention
them. More detailed description with references can be found in [41].

Momentum Training modifies back-propagation by allowing prior itera-
tions to influence the current iteration in particular a velocity vector. Mo-
mentum Training can aid in avoiding local minima, however, too much mo-
mentum can lead to instabilities. The Nesterov accelerated gradient method
is recommended improvement when using momentum updates [41].

Rate Annealing gradually reduces learning rate α in order to lower the
chance of oscillations around local optimum.

H2O DL implements adaptive learning rate algorithm ADADELTA [45]
that automatically combines the benefits of learning rate annealing and mo-
mentum training to avoid slow convergence. Adaptive learning in general
produces better results than constant learning rate which is the reason for
adaptive learning being enabled by default in H2O.

Another use of DL is auto-encoder, however, it is used for unsupervised
learning so I won’t describe it in this thesis.

1.3.1.2 Distributed Random Forest

Distributed Random Forest (DRF) can be used for classification and regres-
sion tool. DRF creates a forest of classification or regression trees rather
than a single classification or regression tree. It is similar to bagging (see
Section 1.1.2), however, it is build upon de-correlated trees [46].

More trees will reduce the variance. Both classification and regression take
the average prediction over all of their trees to make a final prediction, whether
predicting for a class or numeric value. For a categorical response column,
DRF maps factors (e.g., ’dog’, ’cat’, ’mouse’) in lexicographic order to a name
lookup array with integer indices (e.g., ’cat’→ 0, ’dog’→ 1, ’mouse’→ 2) [47].

Creation of random forest can be described as follows [46]:
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1. For b = 1→ B

a) Draw a bootstrap sample of size N from the training data
b) Grow a random-forest tree Tb to the bootstrapped data by recurs-

ively repeating following steps until minimum node size is reached:
i. select m variables at random from the p variables
ii. pick the best split-point among the m variables

iii. split the node into two daughter nodes

2. Return ensemble of trees {Ti|i ∈ {1, . . . , B}}

Apart of standard random forest algorithm (described in [48, 46]), H2O
supports extremely randomized trees [49] via histogram type="Random" para-
meter settings [47].

In extremely randomized trees (also known as Extra-Trees), instead of
looking for the best split, thresholds (for the split) are drawn at random for
each candidate feature and the best is picked as the splitting rule.

An empirical validation of Extra-Trees conducted by a bias/variance ana-
lysis of the Extra-Trees algorithm has shown that Extra-Trees work by de-
creasing variance, while at the same time increasing bias. Once properly
adjusted, the variance almost vanishes, while bias only slightly increases with
respect to standard trees [49].

DRF builds its trees layer by layer. This is the same way that is used in
H2O’s Gradient Boosting Machines. It starts by having all data in one node
then optimal split point is determined. In the next step, rows are rearranged
according to the split-point in the parent node. Then on each node a local
histogram is created. In a subsequent step, local histograms are merged into
one histogram, which is then used for finding a next split-point. This process
of creating layers goes until stopping criteria are met, e.g., exceeding maximal
depth, having less than a particular number of data points in the leaf, etc.

Two most influencing parameters, both performance and computational
complexity, are tree depth and a number of trees in the forest. The former
defaults to 20 opposed to Gradient Boosting Machines (GBM) which uses only
5 by default. The latter is set to 50 in default setting [47].

1.3.1.3 Generalized Linear Model

Generalized Linear Model (GLM) are an extension of traditional linear models.
By traditional linear model, I mean linear regression with normally distributed
error.

y = Xβ + ε ε ∼ N (0, σ2)

In this model, β are the parameters to be estimated. Under assumption of
identically and independently normally distributed error, this can be solved
analytically using ordinary least squares (OLS). It can be easily shown that
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maximum likelihood estimate (MLE) yields the same estimate as minimizing
mean squared error (MSE). This estimate has the following form:

β̂ = (XTX)−1XTy

However, this assumes that the response y is normally distributed y ∼
N (Xβ, σ2). Since this can be too restrictive, GLM relaxes those assumptions
by allowing the variance to vary as a function of the mean, non-normal errors
and a non-linear relation between the response and covariates [50]. The re-
sponse distribution is assumed to belong to the exponential family. Exponen-
tial family includes Gaussian, Poisson, binomial, multinomial and gamma [50].
The components of a GLM are:

• the random component f for the dependent variable y — f(y; θ, φ) has
a probability distribution from the exponential family parametrized by
θ and φ.

• the systematic component η = Xβ

• the link function g: E(y) = µ = g−1(η) which relates the expected value
of the response µ to the linear component η.

In other words, it removes the restriction on the distribution of error and
allows non-homogeneity of the variance with respect to the mean vector and
also it relaxes the constrains on the additivity of covariates and it allows the
response to belong to a restricted range of values depending on the chosen
transformation g [50]. One well known special case is logistic regression, a
model that’s commonly used for binary classification in medical applications.

In general, estimate of β̂ can be obtained using MLE.

β̂ = arg max
β

(Log-Likelihood of the model(β))

Linear regression with any other distribution of error implemented in H2O
can’t be solved analytically [50].

GLM usually uses some kind of regularization. Common options are L1, L2
and elastic net regularization penalty that combines both L1 and L2 penalty.
Regularizations are applied to β without the intercept β0.

β̂ = arg max
β

(Log-Likelihood of the model(β0, β)−Regularization Penalty(β))

Elastic net regularization penalty is the weighted sum of the `1 and `2 norms
of the coefficients vector.

Regularization Penalty(β) = λ

(
α||β||1 + 1

2(1− α)||β||22
)
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Regularization leads to sparsity and shrinks the coefficients. These regulariza-
tions yields model with less variance in the predictions and the sparsity makes
easier interpretation of the model.

The elastic net parameter α ∈ [0, 1] controls the penalty distribution
between L1 (least absolute shrinkage and selection operator (lasso)) and L2
(ridge). When α = 0 the L1 penalty is not used and when α = 1 the L2
penalty is not used. The second argument of the elastic net λ influences the
strength of the regularization.

Similar to [51], H2O can compute the full regularization path starting from
the null-model (evaluated at the smallest λ penalty for which all coefficients are
set to zero) down to a minimally penalized model [50]. To improve efficiency of
this search, H2O employs the strong rules described in [52]. In addition, cross-
validation can be used for the full regularization path to determine optimal λ.

As mentioned earlier, GLM with Gaussian error has analytical solution.
This also applies with L2 regularization. However, with L1 regularization there
is no analytical solution, therefore iterative method like iteratively reweighted
least squares (IRLSM), limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm (L-BFGS) or gradient descend is used.

Amongst other measures, H2O’s GLM returns the logarithm of the ratio
of likelihoods, called deviance, and Akaike information criterion (AIC). AIC is
based on Kullback-Leibler divergence of the model likelihood [53]. It’s worth
mentioning that AIC should be used for model comparison only. If all models
are performing bad AIC won’t indicate it. However, it is useful as it takes
into account possible overfitting of the model [50]. In H2O, AIC is available
only for GLM.

Linear regression with Gaussian family uses identity as its link function g
and normal distribution as the error distribution. The model has the following
form:

ŷ = xTβ + β0

The model is fitted by minimizing the least squares yielding a model equivalent
to MLE and the regularization part:

arg min
β,β0

1
2N

N∑
i=1

(xTi β + β0 − yi)2 + λ

(
α||β||1 + 1

2(1− α)||β||22
)

Linear regression with binomial family is also known as logistic regres-
sion and it is used for binary classification. The canonical link for the bi-
nomial family is the logit function (also known as log odds). Its inverse is
the logistic function, which projects any real number to interval [0, 1]. It
models a probability of an observation belonging to an output category given
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data P(y = 1|x) [50]. The model has the following form:

ŷ = P(y = 1|x) = exp(xTβ + β0)
1 + exp(xTβ + β0)

This can be alternatively written as:

log
(

ŷ

1− ŷ

)
= log

(P(y = 1|x)
P(y = 0|x)

)
= xTβ + β0

The model is fitted by maximizing the regularized likelihood:

arg max
β,β0

1
N

N∑
i=1

(
yi(xTi β + β0)− log(1 + ex

T
i β+β0)

)
−λ

(
α||β||1 + 1

2(1− α)||β||22
)

Linear regression with multinomial family is generalization of the lo-
gistic regression used for multi-class response variables. The model represents
the conditional probability of a given class given the data P(y = c|x). The
model has the following form:

ŷc = P(y = c|x) = exp(xTβc + βc,0)∑K
k=1(exp(xTβk + βk,0))

where βc is a vector of coefficients for class c and ŷc is probability of class c.
The model is fitted by as described in following formula:

arg max
β,β0

1
N

N∑
i=1

(
K∑
k=1

(yi,k(xTi βk + βk,0))− log
(

K∑
k=1

exp(xTi βk + βk,0)
))

−λ

α P∑
j=1
||βj ||1 + 1− α

2

P∑
j=1
||βj ||22



Linear regression with Poisson family also known as Poisson regression
is typically used for datasets, where the response represents counts and the
errors are assumed to have a Poisson distribution [50]. It can be applied to
any data where the response is non-negative. The model has the following
form:

ŷ = exp(xTβ + β0)

The model is fitted by maximizing the following formula:

arg max
β,β0

1
N

N∑
i=1

(
yi(xiTβ + β0)− exp(xTi β + β0)

)
− λ

(
α||β||1 + 1− α

2 ||β||22
)
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Linear regression with gamma family is useful for modeling a positive
continuous response variable, where the conditional variance of the response
grows with its mean, but the coefficient of variation of the response σ2(yi)/Eyi
is constant. It is usually used with the inverse link g(Ey) = (Ey)−1 or log link.

ŷ = 1
xTβ + β0

The model is fitted by maximizing the following expression:

arg max
β,β0

− 1
N

N∑
i=1

(
yi

xTi β + β0
+ log(xTi β + β0)

)
− λ

(
α||β||1 + 1− α

2 ||β||22
)

Linear regression with Tweedie family is especially useful for modeling
positive continuous variables with exact zeros [50]. Tweedie distributions are
a family of distributions which include gamma, normal, Poisson and their
combination. The Tweedie distribution is parametrized by variance power p.
The variance of the Tweedie distribution is proportional to the p-th power of
the mean. It is defined for all p values except in the (0, 1) interval. It has
following special cases [50]:

• p = 0: normal

• p = 1: Poisson

• p ∈ (1, 2): compound Poisson, non-negative with mass at zero

• p = 2: gamma

• p = 3: inverse-gamma

For more information about GLM refer to [54] and in context with H2O
refer to [50].

1.3.1.4 Gradient Boosting Machines

A GBM is an ensemble of classification or regression trees.
Boosting, described in Section 1.1.2, is an iterative procedure that helps

to improve the accuracy of trees [55]. Boosting uses weak learners and iterat-
ively creates an ensemble by gradually adding weight to misclassified training
samples.

The modified dataset is used for training a new tree. Subsequently, using
an ensemble that includes the new tree, boosting adds more weight to currently
misclassified training samples. This goes on until some stopping conditions
are met.

Therefore, boosting can’t be easily parallelized. H2O builds its trees using
the same parallelized tree creation as DRF does.
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Generic gradient tree-boosting can be summarized as follows [46]:
f0(x) = arg minγ

∑N
i=1 L(yi, γ) ;

for m = 1→M do
for i = 1→ N do

rim = −
[
∂L(yi,f(xi))
∂f(xi)

]
f=fm−1

end
fit a regression tree to the targets rim giving terminal regions Rjm
for j = 1, 2, . . . Jm ;

for j = 1→ Jm do
γjm = arg minγ

∑
xi∈Rjm L(yi, fm−1(xi) + γ)

end
Update fm = fm−1(x) +

∑Jm
j=1 γjmI(x ∈ Rjm)

end
return f̂(x) = fM (x)

The first line initializes optimal constant model, which is just a single ter-
minal node. On the second line, generalized residuals r are computed. Those
residuals are components of gradient.

For classification, the for-cycle on the second line is repeated K-times,
whereK is the number of categories. The output for classification task consists
of k different (coupled) tree expansions fkM (x) k = 1 . . .K [46].

Two basic tuning parameters are the number of iterations M and sizes of
each constituent trees Jm.

Implementation of GBM in H2O uses distributed trees. Each node creates,
in parallel, a local histogram using only node-local data. Then histograms are
merged into one and a split column is selected to make the decision. The rows
are reassigned to nodes and the whole procedure is repeated [55].

Initially, all rows start on node 0. In the next step, rows are reorganized
according to a split in the root node. Each consequent step creates a new
level in a similar fashion — rows are grouped according to their position in
the tree. A tree with depth n needs n MapReduce passes.

GBM creates histogram using predefined number of bins, which defaults to
1024. This number should be at least as large as the number of factors (nom-
inal variables).

1.3.1.5 Näıve Bayes

Näıve Bayes (NB) is a classification algorithm that has assumption of inde-
pendence between covariates. It is based on Bayes’ theorem and it is useful
in task with highly dimensional predictor space [46].

Näıve Bayes outputs a list of a-priori and conditional probabilities of each
class of the response variable. The a-priori probability is the estimated prob-
ability of a particular class before observing any of the predictors. Each condi-
tional probability corresponds to a particular predictor column. Näıve Bayes
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assumes that each numerical predictor is sampled from a Gaussian distribution
given the class of the response [56].

I will demonstrate NB for simplified binomial case presented on H2O’s web
site [56].

Näıve Bayes assumes independence of predictors hence the joint likelihood
of the data can be expressed as:

L(φ(y), φi|y=1, φi|y=0) =
m∏
i=1

p(X(i), y(i))

where φi|y=0 = p(xi = 1|y = 0) and φi|y=1 = p(xi = 1|y = 1), i.e., φi|y=0 can
be thought of as a fraction of the observed instances, where feature xi = 1 the
outcome is y = 0 similarly for φi|y=1.

Maximal likelihood estimates of φ are:

φj|y=1 =
∑m
i I(x(i)

j = 1
⋂
y(i) = 1)∑m

i=1 I(y(i) = 1)

φj|y=0 is defined in similar fashion and φ(y) = I(y(i)=1)
m .

Prediction is then carried using Bayes’ rule as follows:

p(y = 1|x) =
∏
p(xi|y = 1)p(y = 1)∏

p(xi|y = 1)p(y = 1) +
∏
p(xi|y = 0)p(y = 0)

p(y = 0|x) =
∏
p(xi|y = 0)p(y = 0)∏

p(xi|y = 1)p(y = 1) +
∏
p(xi|y = 0)p(y = 0)

and then the class with the highest probability is chosen as the prediction.
In a case, when the training dataset does not contain particular category or

some particular category is rare, Laplace smoothing can be used. Otherwise,
the prediction could have probability of 0. It is a form of regularization of
NB.

Laplace smoothing is done by adding some fixed α to the numerator and
αk to the denominator of both conditional probabilities φ, where k is number
of categories. The most commonly used value of α is one. In this case, the
term add-one smoothing is often used.

1.4 H2O Ensemble

H2O Ensemble is based upon the Super Learner algorithm, which is general-
ization of the stacking algorithm. The ”Super Learner” name was introduced
due to the theoretical oracle property and its consequences [57].

Super Learner ensemble is asymptotically equivalent to the oracle. Under
most conditions, the Super Learner should be at least as good as the best
individual base learner. Hence, if model performance is the primary objective,
the Super Learner is a good candidate for a model to use.
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Stacking (also known as stacked generalization) is a procedure for ensemble
learning. Stacking uses two layers, in the first layer there are base learners
and the second layer consists of a so-called metalearner, which uses output of
base learners as its input. The output from base learners is also called level-
one data and the original training data are called level-zero data. The Super
Learner (SL) theory requires cross-validation to generate level-one data [57].

The process of constructing the level-one data involves generating an n×L
matrix of k-fold cross-validated predicted values, where n is the number of rows
and L is the number of base learners. The metalearner is used to find optimal
combination of base learners [57].

At the time of writing this thesis, H2O Ensemble is implemented only in
R, however, there are plans to port it to H2O core to make it easily usable
from Python, Java (and JVM based languages) and R.

1.5 Hyper-Parameter Optimization

Hyper-parameter optimization can have a great impact on performance of
machine learning algorithms. It often affects both time used for learning and
its ability to predict (measured by accuracy, AUC, F-measure, etc.).

In the next few sections, I will describe several approaches to hyper-
parameter optimization. To make things clearer, I will use the term cost
function instead of accuracy, AUC, etc., of trained machine learning model,
since the next sections are not dependent on selected performance measure.

1.5.1 Manual Hyper-Parameter Search

Manual hyper-parameter search is the simplest and also the most costly. It
requires a human expert interaction in each step of the hyper-parameter tun-
ing. Moreover, a good hyper-parameters are often data dependent, so manual
hyper-parameter search can’t be much effective. Due to its simplicity, manual
hyper-parameter search is still widely used.

1.5.2 Grid Search

Grid search is systematic approach to finding good hyper-parameters. Hu-
man expert selects which hyper-parameters to optimize if not all. Then reg-
ular n-dimensional grid is created, where n is the number of selected hyper-
parameters. The next step is to test every point of the grid cross-section. This
makes it computationally intensive with increasing number of selected hyper-
parameters, because the number of cross-sections increases exponentially as
the number of selected hyper-parameters.

Another issue is that the cost function is usually very sensitive to changes
in some subset of hyper-parameters, while for some other hyper-parameters it
acts as rather insensitive. This can be seen in Figure 1.5.
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Figure 1.5: Grid and random search of nine trials for optimizing a function
f(x, y) = g(x) + h(y) ≈ g(x) with low effective dimensionality. Above each
square g(x) is shown in green, and left of each square h(y) is shown in yellow.
With grid search, nine trials only test g(x) in three distinct places. With
random search, all nine trials explore distinct values of g. This failure of grid
search is a rule rather than an exception in high dimensional hyper-parameter
optimization [58].

The latter is one of the reasons why random search performs usually bet-
ter [58].

1.5.3 Random Search

Random Search is another kind of systematical hyper-parameter optimization.
It samples i.i.d. the hyper-parameter space; therefore, it can find even those
optima that would be hidden for grid search in the same amount of time.

Grid search and random search are both uninformed, since they don’t
modify the set of hyper-parameters to be evaluated during the hyper-parameter
optimization.

1.5.4 Bayesian Optimization

Bayesian optimization is another kind of optimization that selects the hyper-
parameters to be evaluated according to previously seen hyper-parameters and
corresponding values of cost function.

Sequential Model-based Bayesian Optimization (SMBO) is general ap-
proach to Bayesian optimization. This approach can be described as follows
in Algorithm 1.

There are 3 important steps in SMBO. In Algorithm 1, those are denoted
as fitModel, selectConfiguration, and evaluate.

In fitModel, SMBO uses some probabilistic model. An usual choice is
Gaussian process (GP), but at least one noteworthy SMBO uses Random
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Result: set of hyper-parameters and resulting cost function
configurations[0] ← sampleHyperParameters();
costs[0] ← evaluate(configurations[0]);
while ¬ stoppingCondition do

model ← fitModel(configurations, costs);
config ← selectConfiguration(model);
cost ← evaluate(config);
append(configurations, config);
append(costs, cost);

end
Algorithm 1: Description of Sequential Model-based Bayesian Optimiza-
tion. It is important to realize that the model is a model used for predicting
new hyper-parameters not the model for which the hyper-parameters are
optimized.

Forest (RF) as its probabilistic model. The latter SMBO is called Sequential
Model-based Algorithm Configuration (SMAC) and will be described later.

Next step is selectConfiguration. In this step, SMBO select config-
uration using so-called acquisition function. There are three majorly used
acquisition functions Probability of Improvement (POI), Expected Improve-
ment (EI), Upper Bound Confidence (UBC). General form of these acquisition
functions is given below.

POI(x) = P (f(x) ≥ f(x+) + ξ) (1.4)
EI(x) = E(max{0, ft+1(x)− f(x+)}) (1.5)

UBC(x) = µ(x) + κσ(x) (1.6)

UBC is usually used with GP, so µ, σ are mean and standard deviation
respectively. Acquisition functions are one of the reasons why this kind of
optimization is called Bayesian. Bayesian statistics often uses whole distri-
bution as opposed to frequentist approach, where a point estimate is more
common. Acquisition functions are used to create a value from a distribution.
In layman’s terms, they often combine expected value of prediction with the
uncertainty of the prediction, i.e., predicted variance. Then using some optim-
ization algorithm, SMBO optimizes the acquisition function whose evaluation
(and evaluation of the underlying probabilistic model) is much cheaper than
the evaluation of the machine learning algorithm whose hyper-parameters are
optimized.

The last step of SMBO is evaluation of the selected hyper-parameters and
insertion of the hyper-parameter configuration and its cost to the respective
sets used for the training of the probabilistic model.
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1. Theoretical Background

This section described general outline of Sequential Model-based Bayesian
Optimization. The next section will describe basic SMBO with Gaussian
processes.

1.5.4.1 Sequential Model-based Bayesian Optimization with
Gaussian Processes

With GP, it becomes clearer why SMBO is called Bayesian. There are two
common approaches in statistics frequentist and Bayesian. The main dif-
ference lies within the concept of probability. The former approach takes
probability as number of positive outcomes divided by total number of occur-
rences, whereas in Bayesian approach probability is more like belief updated
with data. Since in the latter approach I can use assumptions about problem
and formulate it as a prior distribution, Bayesian approach often uses whole
distributions opposed to frequentist approach, where point estimates are used
more commonly.

In following sections, I will show how SMBO uses whole distribution (using
acquisition functions) as opposed to point estimate such as mean or median.
Since it can be most easily described using GP, I will use GP to introduce the
basic idea of SMBO.

Gaussian Process is an infinite dimensional generalization of multivariate
Gaussian distribution. Gaussian process is random process, which can be
parametrized by a mean function and (co)variance1 function. Mean function
can be any function, but the usual choice is constant 0. Covariance function
has to be positive-definitive function. This class of functions is also known
as kernel functions. Covariance functions influence mainly smoothness and
periodicity of Gaussian process.

The most important information for the following section is that a sample
from random process can be viewed as a function since it is defined on whole
continuum. Due to the properties formulated in last two sentences, GP can be
viewed as prior random distribution for functions with some properties that
depend on selected covariance function [59].

Gaussian process is a random process, so it is possible to use Bayes’ rule
and perform so called Bayesian updating. Fortunately, there is an analytical
solution, so no iterative method needs to be used.

There are two basic views on deriving GP — weight-space view and function-
space view. I like the function-space view better, since it is easier to grasp.

A prior Gaussian process is updated by data resulting in a posterior Gaus-
sian process.

The main idea used for using GP for regression, in the function-space
view, stems from unique property of multivariate Gaussian distributions called

1naming differs in different sources. I will refer to this as covariance or kernel function.

26



1.5. Hyper-Parameter Optimization

consistency. In layman’s terms, consistency can be described by the following
statement: ”Marginal distribution of a multivariate Gaussian distribution is
also a Gaussian distribution”.

This property can be demonstrated as follows. Let X is N-dimensional
normal random variable.

X ∼ N (µ,V )

And B is N-dimensional matrix that consists of M-dimensional identity matrix
where M < N . And the rest of matrix B are zeros.

B =



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0

0 0 . . . 0 0 . . . 0
0 0 . . . 1 0 . . . 0
0 0 . . . 0 0 . . . 0

0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0


Then one M-dimensional marginal distribution of X can be written as BX.

Y = BX ∼ N (Bµ,BV BT )

Other marginal distribution can be found by permuting N elements on the
diagonal of matrix B.

Gaussian process regression uses this property to get rid of infinite di-
mensions and deal with only finitely dimensional Gaussian distribution. Spe-
cifically, with N+1 dimensional Gaussian distribution, where N is number of
observations.

Even though, I did not use SMBO with GP they are useful for explanation
and visualisation of acquisition functions.

For this reason, I will briefly demonstrate how to use GP for regression.
Detailed explanation is out of the scope of this thesis and there are nice pub-
lications suitable for this purpose [59, 60],

Let’s assume I have n observations and, for simplicity, I will use prior
Gaussian process with mean constantly zero. To predict a point (x∗, y∗), I
need to calculate (n+ 1)× (n+ 1)-dimensional covariance matrix. To do this,
I use covariance function k. I will use parts of this covariance matrix, so I
denote (n × n)-dimensional upper-left matrix as K. The rest is assigned in
following equation.

Σ =


k(x1, x1) k(x1, x2) . . . k(x1, xn) k(x1, x

∗)
k(x2, x1) k(x2, x2) . . . k(x2, xn) k(x2, x

∗)
...

... . . . ...
...

k(xn, x1) k(xn, x2) . . . k(xn, xn) k(xn, x∗)
k(x∗, x1) k(x∗, x2) . . . k(x∗, xn) k(x∗, x∗)

 =
(
K K∗T

K∗ K∗∗

)

27



1. Theoretical Background

Then the marginal normal distribution is as follows.(
y
y∗

)
= N

(
0,
(
K K∗T

K∗ K∗∗

))
Using the marginal distribution, I can predict y∗ using following formula.

y∗|y ∼ N (K∗K−1y,K∗∗ −K∗K−1K∗T )

The most important parameter for GP is covariance or kernel function.
Typical choice is squared-exponential, which yields Gaussian process as prior
for smooth functions, i.e., infinitely derivable. Another popular choice is
Matérn kernel with ν = 5/2 or ν = 3/2. With given ν Gaussian process
is dν − 1e-times derivable[59]. It can be shown that as ν → ∞ Matérn ker-
nel converges to squared-exponential kernel. Another kernel that’s not widely
used, but is worth mentioning is dot-product kernel. With this kernel function
the mean of the posterior Gaussian process is equivalent to ridge regression.

Hutter et al.[3] have given a definition of mixed kernel, i.e., kernel defined
for numerical and categorical parameters. They use weighted squared-exponential
and weighted hamming distance combined together. It is noteworthy that this
kernel wasn’t used in any major Bayesian optimization method.

Formulas for mentioned kernels follows:

• squared-exponential

k(xi, xj) = σ2 exp
(
−||xi − xj ||2

2l2

)
+ σ2

nδ(xi, xj)

• Matérn2

k(xi, xj) = σ2 1
Γ(ν)2ν−1

(
γ
√

2ν ||xi − xj ||
l

)
)ν
Kν

(
γ
√

2ν ||xi − xj ||
l

)

• dot product
k(xi, xj) = σ2

0 + xi · xj

• mixed

k(xi, xj) = exp

 ∑
l∈Pcont

−λl(x
(l)
i − x

(l)
j )2 +

∑
l∈Pcat

−λl(1− δ(x
(l)
i , x

(l)
j ))


Some kernel functions contain parameters that can be optimized, e.g., by

optimizing maximal likelihood of marginal distribution of the GP over the
observations.

Usage of Gaussian process for regression requires O(n3) computational
steps. To overcome this as a potential bottleneck, an approximation called
Projected Processes can be used [59, 3].
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Figure 1.6: Visualization of acquisition functions used for maximizing cost
function. Black line with ribbon is posterior Gaussian process with ±1σ re-
gion. Black dashed line is the cost function (ground truth). And the blue line
represents respective acquisition function(normalized to -1 – +1).

Acquisition Functions for Gaussian Processes All three mentioned ac-
quisition functions have closed form for GP, i.e., can be computed analytic-
ally [61].

Let xbest denote best observed hyper-parameters so far, µ mean of the
posterior GP, σ standard deviation of the posterior GP, Φ cummulative dis-
tribution function (cdf) of standard normal distribution and φ probability
density function (pdf) of standard normal distribution.

Then let γ(x) be z-score normalized maximal observed value.

γ(x) = f(xbest)− µ(x)
σ(x)

Then acquisition functions, defined in previous section, have the following
form.

• Probability of Improvement

POI(x) = Φ(γ(x))

• Expected Improvement

EI(x) = σ(x)(γ(x)Φ(γ(x)) + φ(γ(x))

• Upper Bound Confidence

UBC(x) = µ(x)− κσ(x)
2Kν is the modified Bessel function of the second kind
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Selection of acquisition function depends on the problem, however, the
most commonly used is the Expected Improvement. Other acquisition func-
tions are not very common. If one of the previously mentioned acquisition
functions is not used it is very probable that some combination of them is
used.

1.5.4.2 Tree-structured Parzen Estimator

Tree-structured Parzen Estimator (TPE) is another approach to Sequential
Model-based Bayesian Optimization. Whereas GP are discriminative model
TPE is generative, i.e., GP models p(y|x), TPE models p(x|y) and p(y) [4].

TPE makes the following replacements — uniform → truncated Gaussian
mixture, log-uniform → exponentiated truncated Gaussian mixture, categor-
ical → re-weighted categorical.

TPE models p(y) and p(x|y). The latter is modelled by two densities
separated by some threshold y∗.

p(x|y) =
{
l(x), if y < y∗

g(x), if y ≥ y∗

y∗ is usually chosen as γ-quantile3 of observed costs [14]. Intuitively, this
creates a probabilistic density estimator l(·) for hyper-parameters that appear
to do ’well’, and a different density estimator g(·) for hyper-parameters that
appear ’poor’ with respect to the threshold [14].

Bergstra et al. [4] showed that EI for TPE is proportional to
(
γ + g(x)

l(x) (1− γ)
)−1

.
In other words, to maximize expected improvement select points x with

high probability under l(x) and low probability under g(x). The tree-structured
form of l and g makes it easy to draw many candidates according to l and
evaluate them according to g(x)

l(x) . On each iteration, the algorithm returns the
candidate x∗ with the greatest EI.

1.5.4.3 Randomized Online Aggresive Racing

Randomized Online Aggresive Racing is unusual SMBO, since it uses uniform
model as its model, or, in other words, Randomized Online Aggresive Racing
(ROAR) is model-free. However, ROAR is important to mention, because it
uses evaluation4 procedure that is used in next SMBO.

ROAR was developed for optimization in stochastic settings. In this set-
ting, it is unsure whether a configuration that performed well, will perform
well in the future; therefore each hyper-parameter configuration is tested sev-
eral times before it can be accepted as best configuration.

3default setting γ = 0.15 for minimization
4in the original paper it is called intensification procedure [3]
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1.5. Hyper-Parameter Optimization

Data: χ hyper-parameters to evaluate, xbest best (incumbent) hyper-parameters,
M model, R sequence of target algorithm runs, tintensify time bound,
Π instance set, ĉ cost metric

Result: xbest best (incumbent) hyper-parameters,
R sequence of target algorithm runs

for i := 1, . . . , length(χ) do
xnew ← χ[i];
if R contains less than maxR runs with configuration xbest then

Π′ ← {π′ ∈ Π | R contains less than or equal number of runs
using xbest and π′ than using xbest and any other π′′ ∈ Π};
π ← instance sampled uniformly at random from Π′;
s← seed, drawn uniformly at random;
R← ExecuteRun(R, xbest, π, s);

end
N ← 1;
while True do

Smissing ←(instance, seed) pairs for which xbest was run before,
but not xnew;
Storun ←random subset of Smissing of size min(N, |Smissing|);
foreach (π, s) ∈ Storun do

R← ExecuteRun(R, xnew, π, s);
end
Smissing ← Smissing\Storun;
Πcommon ← instances for which we previously ran both xbest and xnew;
if ĉ(xnew,Πcommon) > ĉ(xbest,Πcommon) then

break;
else if Smissing = ∅ then

xbest ← xnew;
else

N ← 2N ;
end

end
if time spent in this call to this procedure exceeds tintensify and i ≥ 2 then

break;
end

end
return (R, xbest)

Algorithm 2: Evaluation step in ROAR also known as intensification

ROAR can be defined as SMBO with uniform model and intensification
procedure (Algorithm 2) as evaluation.

1.5.4.4 Sequential Model-based Algorithm Configuration

Sequential Model-based Algorithm Configuration comes with several enhance-
ments, when compared to previous GP-based approach.
Main enhancements are:

1. evaluation scheme

2. use multiple observation to reduce the noise
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3. user-defined cost metric and its transformation

4. sampling of the acquisition function

Evaluation scheme is the same as in ROAR. Which alone is outperforming
random search, at least in stochastic settings, i.e., one configuration can be
good for one evaluation and bad for another.

Another enhancement is ability to use multiple observations for single con-
figuration. Classic SMBO with GP approach is also able to use multiple obser-
vations, however, it is not, in general, used. That is probably because there is
not an obvious way, how to determine uncertainty of observation other than
retesting the same configuration for GP. On the other hand, it is straight-
forward with random forests, where you can use variance of prediction of the
configuration in question.

Next enhancement is important when you have decision problem such as
Boolean Satisfiability Problem (SAT) — in such a case you generally don’t care
how good the solution is because in this settings it doesn’t make much sense,
however, you often care about how long did the computation took. It has
been demonstrated that log-transformation applied to a temporal cost metric
often performs better than just using untransformed cost metric [62, 63].

However, transformation of cost metric can complicate some situations [3].
Such as having multiple observations for one configuration, e.g., while using
log-tranformed cost metric GP would use geometric mean instead of arithmetic
mean [3]. Mainly for this reason, SMAC uses Random Forest as its probab-
ilistic model as working with transformations becomes trivial — in the leaf
nodes untransform the values, apply user-defined cost metric and transform
the results.

The last enhancement worth mentioning, in this thesis, is the optimization
of the acquisition function. The usual approach for SMBO was to take 10000
random samples of the acquisition function and pick the best [63, 64, 65].
Nonetheless, this is not very effective when considering highly dimensional
configuration spaces. SMAC computes EI for every previously evaluated con-
figuration. Then pick ten best according to EI and then initialize a local search
at each of them. To seamlessly handle mixed categorical/numerical paramet-
ers SMAC uses randomized one-exchange neighborhood, i.e., including the set
of all configuration that differ in the value of exactly one discrete parameter
as well as four random neighbours for each numerical parameter [3]. More
concretely, SMAC normalizes range of each numerical parameter to [0, 1] and
the random neighbor is sampled from Gaussian distribution with mean at the
current observation and standard deviation 0.2. Since batch model prediction
is cheaper than separate predictions (and with that the evaluation of EI) Se-
quential Model-based Algorithm Configuration uses best improvement search,
evaluating EI for all neighbours at once [3]. The local search is stopped when
none of the neighbours has larger EI.
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Since computing EI is cheap SMAC takes additional 10,000 uniform samples
over the parameter space and then sorts the 10,010 configurations5 according
to their EI [3]. Finally, SMAC interleaves those sorted configurations with an-
other randomly sampled configurations in order to provide unbiased training
data for future models [3].

1.5.5 Hyperband

Hyperband is a new hyper-parameter optimization algorithm that tries to per-
form better evaluation [66]. It does so by assuming that rank of performances
on a subproblem will be similar to rank of performances on whole problem.

Hyperband defines budget B of computational resources. Each evaluation
of a subproblem takes some of the computational resources, which can be time
(e.g., number of iterations of gradient descend, wall time), dataset subsamples,
or feature subsamples [66].

Hyperband extends successive halving algorithm proposed by [67, 68]. The
main idea of successive halving is described in the following paragraph.

Uniformly allocate a budget to a set of hyper-parameter configurations,
evaluate the performance of all configurations, throw out the worst half, and
repeat until only one configuration remains. The algorithm allocates expo-
nentially more resources to more promising configuration [66].

Hyperband requires two inputs — the maximum amount of resource that
can be allocated to a single configuration (R) and a value that controls the
proportion of configurations discarded each round of successive halving (η).

Input: R, η (default η = 3)
Initialization: smax = blogη(R)c, B = (smax + 1)/R
for s ∈ {smax, smax−1, . . . , 0} do

n = d Bη
s

R(s+1)e, r = Rη−s ;
T =get-hyperparameter-configuration(n) ;
// SuccessiveHalving {
for i ∈ {0, . . . , s} do

ni = bnη−ic ;
ri = rηi ;
L = {run-then-return-validation-loss(t, ri)|t ∈ T} ;
T = top-k(T, L, bni/ηc) ;

end
// }

end
Result: Configuration with the smallest intermediate loss seen so far

Algorithm 3: General outline of Hyperband algorithm

510 are from the local search
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• get-hyperparameter-configuration(n) returns n i.i.d. random samples
of hyper-parameter space

• run-then-return-validation-loss(t, ri) runs configuration t with al-
located resources ri and returns validation loss

• top-k(configs, losses, k) returns top-k performing configurations

Since H2O did not support suspending and resuming training after some
given time and various machine learning algorithms take various time, I did
not evaluate this hyper-parameter optimization method. Another reason is
that it would not seem fair to compare this hyper-parameter optimization
method that highly specialized on problems that can be transformed to similar
subproblems, i.e., training on subset of the data takes less time and generally
yields a similar model.
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Chapter 2
Analysis and design

H2O is build upon MapReduce paradigm introduced in [1]. This concept
originates in functional programming languages, such as Lisp. Unlike pure
old Map and Reduce, which operates on simple lists, MapReduce has the
following type signatures:

Map :: Keya,Valuea → Keyb,Valueb
Reduce :: Keyb,Valueb → Valuec

In the Map-phase, a function with type signature written above is applied
on each key-value pair independently returning the same number of key-value
pairs. Then resulting key, value pairs are shuffled so that key-value pairs with
the same key are close, ideally on the same node.

This explicit shuffling is in the original paper omitted, instead they use file-
system as a key-value storage, so the shuffling is just reading a file, however,
persisting data and reading it causes this approach to be slower than it can
be. This is one of the reasons why is Spark faster than Hadoop. Both are
implementations of the same MapReduce paradigm, but Spark uses keeps its
data in memory (RAM) and so does H2O.

In the Reduce-phase, a function with type signature written above is
applied on each key-value pair and it produces one aggregated value per key.
Such aggregation can be sum, mean, or any other user-defined function.

All models in H2O are written using in memory MapReduce, however,
there are usually more than one MapReduce passes. It also enables you to
write only Map or Reduce phase.

2.1 Integration of FAKE GAME into H2O

As part of my thesis, I have integrated FAKE GAME into H2O as a model.
FAKE GAME is therefore usable through H2O Flow (H2O’s web interface),
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R, Python, Java, and H2O’s RESTful API.
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Figure 2.1: Training of FAKE GAME model in H2O uses distributed data.
Each node trains its FAKE GAME models. Since classification in FAKE
GAME is done by regression on each class, you can see three colored boxes
one for each hypothetical class. Reduce phase consists of simple collection
of trained models. Dashed box represents instance of FAKE GAME. During
prediction, one class is predicted by each instance (one prediction for each
color). Resulting class is determined by voting.

H2O FAKE GAME model, which I have implemented, takes a model config
parameter, which is a template specification for FAKE GAME. Each Map
job trains a FAKE GAME model specified by the template given in the
model config parameter. It does so completely independently on the other
Map jobs only with its local data. It is similar to bagging (bootstrap ag-
gregating), however, it does not use bootstrapped data. The main reason for
the parallelization of FAKE GAME is to be able to create models on bigger
data in reasonable amount of time so bootstrap sampling would be just a
computational overhead since it shouldn’t make a significant difference [69].

In the Map job, the first step consists of converting H2O’s local data in
to FAKE GAME’s internal data structure. H2O uses distributed key-value
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2.1. Integration of FAKE GAME into H2O

storage. At the beginning, each Map job gets a chunk of data. It can be
part of a single column (for each mapper different) or a block of subset of
rows with all columns depending on its type signature. In the FAKE GAME
model, I use the latter and transform it to a matrix-like data structure for use
in FAKE GAME.

Next step in Map job consists of training FAKE GAME models. Each
model uses the same template, however, the resulting models can be quite
different. One of the models in FAKE GAME is a model that uses genetic
programming to evolve ensembles on a given data, which often results in
different models. Another important thing to mention is that the classification
model in FAKE GAME creates one regression model for each class. This is
shown in Figure 2.1.

In the Reduce-phase, the models are collected from different Map jobs.
Prediction is done by either voting or averaging depending on task. Voting

is used for classification tasks and averaging is used for regression tasks.
Since templates are essential for usage of H2O’s FAKE GAME model, I

will briefly describe one template that was used to produce one of the best
performing models on Airlines dataset. FAKE GAME uses XML files as its
templates.

On line 7, number of classifiers used in the resulting model (from each
Map job) is specified. Models are selected from the list beginning with
line 9. On line 8, method of selection of resulting models is specified, however,
in this case there is only one model to choose from, i.e., the Boosting{5x
ClassifierModel{<outputs>x SigmoidNorm}} ensemble. On lines 10–38,
you can see, how it is possible to embed one ensemble to another one. On line 17,
ClassifierModel is used to wrap regression models (SigmoidNorm). This is
done by creating as many regressions models as response categories (one for
each class).

1 <configuration.classifiers.ensemble.ClassifierCascadeGenProbConfig>
2 <classRef>game.classifiers.ensemble.ClassifierCascadeGenProb</classRef>
3 <description>CascadeGenProb{5x Boosting{5x
4 ClassifierModel{<outputs>x SigmoidNorm}}}</description>
5 <maxLearningVectors>-1</maxLearningVectors>
6 <maxInputsNumber>-1</maxInputsNumber>
7 <classifiersNumber>5</classifiersNumber>
8 <baseClassifiersDef>RANDOM</baseClassifiersDef>
9 <baseClassifiersCfgs>

10 <configuration.classifiers.ensemble.ClassifierBoostingConfig>
11 <classRef>game.classifiers.ensemble.ClassifierBoosting</classRef>
12 <maxLearningVectors>-1</maxLearningVectors>
13 <maxInputsNumber>-1</maxInputsNumber>
14 <classifiersNumber>5</classifiersNumber>
15 <baseClassifiersDef>RANDOM</baseClassifiersDef>
16 <baseClassifiersCfgs>
17 <configuration.classifiers.single.ClassifierModelConfig>
18 <classRef>game.classifiers.single.ClassifierModel</classRef>
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19 <description>SigmoidNorm classifier</description>
20 <maxLearningVectors>-1</maxLearningVectors>
21 <maxInputsNumber>-1</maxInputsNumber>
22 <baseModelsDef>UNIFORM</baseModelsDef>
23 <baseModelCfgs>
24 <configuration.models.single.SigmoidNormModelConfig>
25 <classRef>game.models.single.SigmoidNormModel</classRef>
26 <maxLearningVectors>-1</maxLearningVectors>
27 <maxInputsNumber>-1</maxInputsNumber>
28 <trainerClassName>QuasiNewtonTrainer</trainerClassName>
29 <trainerCfg class="configuration.game.trainers.QuasiNewtonConfig">
30 <rec>10</rec>
31 <draw>10</draw>
32 <forceAnalyticHessian>false</forceAnalyticHessian>
33 </trainerCfg>
34 <validationPercent>30</validationPercent>
35 <validationEnabled>true</validationEnabled>
36 </configuration.models.single.SigmoidNormModelConfig>
37 </baseModelCfgs>
38 </configuration.classifiers.single.ClassifierModelConfig>
39 </baseClassifiersCfgs>
40 </configuration.classifiers.ensemble.ClassifierBoostingConfig>
41 </baseClassifiersCfgs>
42 </configuration.classifiers.ensemble.ClassifierCascadeGenProbConfig>

2.2 Benchmarker

Second part of my assignment was to evaluate anytime performance of models
implemented in H2O and FAKE GAME and significance of hyper-parameter
optimization.

In order to do that, I have created a simple benchmarking environment in
Python. From now on, I will call it as the Benchmarker.

Benchmarker has the ability to benchmark any supervised machine learn-
ing algorithm in H2O. In addition, it can also run H2O Ensemble, which is,
at the time of writing this thesis, implemented in R only.

Benchmarker was created in order to test anytime properties, however, at
the time of implementation H2O did not support pausing and resuming the
training, nor did it support setting a time constraint as a stopping criterion
for training. The former might appear in future versions of H2O.

H2O is incapable of anytime learning, but it can be to some degree emu-
lated by using variously sized subsets of a dataset and through that regulate
the duration of training. More on that in chapter 3 describing methodology.

Benchmarker is capable of benchmarking anytime properties, meta-optimization
which will be mentioned later, and producing plots. The most significant part
of Benchmarker is the part used for benchmarking anytime properties. First
of all, a dataset is randomly divided into 3 subsets. This is done by creating
a vector of length same as the number of rows in the whole dataset. The

38



2.2. Benchmarker

vector contains samples from uniform distribution between [0, 1]. Then the
training set contains all rows that correspond to the values of the vector that
are lower than train ratio, which is defined in the experiment (either an
instance of a Python class or YAML file). The validation set corresponds to
rows that had their corresponding values in the vector between train ratio
and validation ratio. The remaining rows are used for test set. To be clear,
let’s assume I have m rows of dataset D then training set, validation set and
test set are defined as follows:

R ∈ Um(0, 1)
training set = {Di|i ∈ {1, . . . ,m} : Ri < train ratio}

validation set = {Di|i ∈ {1, . . . ,m} : Ri ≥ train ratio∧
Ri < validation ratio}

test set = {Di|i ∈ {1, . . . ,m} : Ri ≥ validation ratio}

Since each supervised machine learning algorithm in H2O including the
FAKE GAME model requires some parameters, I use the same format for
multiple parameters as scikit [70, 71] does in both representations of the ex-
periment. That’s the reason, why on the lines 8, 15, 21 and 26, in the following
example, I use square brackets around strings. String can be iterated through
and the experiment without those brackets would create multiple parameter
configurations, each with one letter from the string.

As mentioned before, an experiment can be defined either programmat-
ically in Python or by defining a YAML file. Definition of an experiment in
YAML follows:

1 !<Experiment>
2 name: HIGGS-100k
3 filename: ../data/HIGGS_100k.csv
4 models:
5 ens: !<SLModelConfig>
6 name: H2O Ensemble
7 params_grid:
8 family: [binomial]
9 learner: [[h2o.glm.wrapper, h2o.randomForest.1, h2o.gbm.1, h2o.deeplearning.1]]

10 cvControl: [V: 10]
11 deeplearning: !<ModelConfig>
12 base_model: !!python/name:h2o.estimators.deeplearning.H2ODeepLearningEstimator ’’
13 name: Deep Learning
14 params_grid:
15 distribution: [bernoulli]
16 gbm: !<ModelConfig>
17 base_model: !!python/name:h2o.estimators.gbm.H2OGradientBoostingEstimator ’’
18 name: Gradient Boosting
19 params_grid:
20 ntrees: [50]
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21 distribution: [bernoulli]
22 glm: !<ModelConfig>
23 base_model: !!python/name:h2o.estimators.glm.H2OGeneralizedLinearEstimator ’’
24 name: Generalized Linear Model
25 params_grid:
26 family: [binomial]
27 drf: !<ModelConfig>
28 base_model: !!python/name:h2o.estimators.random_forest.H2ORandomForestEstimator ’’
29 name: Distributed Random Forest
30 params_grid:
31 ntrees: [50]
32 subsets:
33 min_fraction_denom: 1
34 max_fraction_denom: 1000
35 number_of_samples: 20
36 train_ratio: 0.5
37 validation_ratio: 0.75
38 x: ["lepton pT", "lepton eta", "lepton phi", "missing energy magnitude",
39 "missing energy phi", "jet 1 pt", "jet 1 eta", "jet 1 phi", "jet 1 b-tag",
40 "jet 2 pt", "jet 2 eta", "jet 2 phi", "jet 2 b-tag", "jet 3 pt",
41 "jet 3 eta", "jet 3 phi", "jet 3 b-tag", "jet 4 pt", "jet 4 eta",
42 "jet 4 phi", "jet 4 b-tag", "m_jj", "m_jjj", "m_lv", "m_jlv", "m_bb",
43 "m_wbb", "m_wwbb"]
44 y: "class"

The name parameter is used only to differentiate different experiments,
since multiple experiments can be saved to the same file. The filename
parameter is a file name of the dataset.

The models contains a dictionary of models to be benchmarked. Key is
used only internally, in YAML file it doesn’t have any significant meaning,
however, it can be used in Python to manipulate those models at run-time.
In models dictionary, only model configurations are specified, currently only
two classes are used for model configuration ModelConfig and SLModelConfig
class. The former is used for all models implemented in H2O and the latter
is used only for H2O Ensemble, which is based on Super Learner [72] R pack-
age, hence the name. Both ModelConfig and SLModelConfig classes require
name attribute that is used to differentiate different models in results and
for plotting. Next attribute used by both classes is the params grid attrib-
ute, mentioned earlier. In addition, ModelConfig class requires base model
attribute that is a qualified name of a H2O model to use.

The next dictionary is the subsets dictionary. It is used to specify how
many subsets are evaluated and the minimal and maximal denominator of
subset fraction. The example above will create 20 differently sized subsets,
the smallest has 1/1000th of training and validation set. The biggest contains
whole training and validation sets as it training and validation sets respect-
ively. And the remaining subsets are evenly (linearly) sized from 1/1000th to
1. It is important to note that test set has always the same size. This is to
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ensure that the estimation of generalization error is with low variance, i.e.,
the smaller fractions could have bigger variance, if I would scale it too.

Parameters train ratio and validation ratio were explained earlier.
Parameters x and y are used to indicate which columns should be used

for training. They can be either specified by the names of the columns or by
their indices.

Since Python code used to run an experiment is more verbose, I will
demonstrate only a fraction of the equivalent code to the YAML configur-
ation shown above.

1 import h2o
2 import Benchmarker.experiment as e
3 import Benchmarker.model_config as m
4
5 h2o.init("127.0.0.1", 54321)
6
7 x = ["lepton pT", "lepton eta", "lepton phi", "missing energy magnitude",
8 "missing energy phi", "jet 1 pt", "jet 1 eta", "jet 1 phi", "jet 1 b-tag",
9 "jet 2 pt", "jet 2 eta", "jet 2 phi", "jet 2 b-tag", "jet 3 pt",

10 "jet 3 eta", "jet 3 phi", "jet 3 b-tag", "jet 4 pt", "jet 4 eta",
11 "jet 4 phi", "jet 4 b-tag", "m_jj", "m_jjj", "m_lv", "m_jlv", "m_bb",
12
13 exp = e.Experiment("HIGGS-100k",filename="../data/HIGGS_100k.csv",
14 x=x, y=’class’, train_ratio=0.5, validation_ratio=0.75,
15 subsets= {
16 "min_fraction_denom":1,
17 "max_fraction_denom": 1000,
18 "number_of_samples": 20
19 })
20
21 mod = m.ModelConfig("deeplearning",h2o.H2ODeepLearningEstimator,
22 {"distribution":["bernoulli"]})
23 exp.add("deeplearning", mod)
24
25 mod2 = m.ModelConfig("gbm", h2o.H2OGradientBoostingEstimator,
26 {"ntrees":[50],
27 "distribution":["bernoulli"]})
28 exp.add("gbm",mod2)
29
30 ...
31
32 try: # Needed in case something goes wrong so h2o can clean it up
33 results = exp.execute()
34 results.to_csv("{}-data.csv".format(exp.name)) # save measured data in csv
35 except e:
36 print(e)

The biggest caveat in implementing Benchmarker was the need to bench-
mark H2O Ensemble, which is implemented in R only. Since all models use
the same subsample, I needed to be able to manipulate R using Python. In
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order to do this, I use rpy2 package, which converts R data structures to Py-
thon’s and vice versa. Most of the time working with rpy2 is straight-forward,
however, it doesn’t enable you to use polymorphism with ’$’ operator, which
complicated some things with H2O, since it uses RESTful API and parses
resulting JSON on the fly. This made harder to introspect the data in R.

Benchmarker outputs data in three distinct ways. The first is CSV file,
which is created after the whole benchmarking is completed. However, it
can happen that the whole experiment won’t finish, e.g., the computer runs
out of memory etc. To alleviate the risk, Benchmarker creates two so-called
journal files6. Each measurement is added to the journal files just after the
measurement. One of the journal files is plain text file, to which rows are
appended in Python representation. The second file is SQLite database file,
which is then used for plotting.

During the development of Benchmarker, a new feature request arose.
It should be able to benchmark meta-optimization (also known as hyper-
parameter optimization) algorithms. Since in H2O isn’t implemented any
sophisticated meta-optimization apart of grid and random search, bench-
marking meta-optimization isn’t configurable through YAML files. The meta-
optimization part of Benchmarker is implemented and configured in a single
Python file. It uses the same structure of output files as the rest of Bench-
marker. Benchmarker meta-optimization doesn’t use multiple subsamples of
data; this is due to a computational complexity of meta-optimization, e.g.,
one bigger subsamle took almost a week to optimize (300 steps).

Since the results are not easy to comprehend just by looking at the data,
Benchmarker has basic plotting support. For each experiment I create a ”plot
set” file such as below:

1 !<PlotSet>
2 name: Higgs-subsets
3 plots:
4 - $accuracyTest_x_trainTime
5 - $accuracyTest_x_subset
6 - $accuracyTest_x_subset_bars
7 - $accuracyTest_x_trainTime_log
8 - $trainTime_x_subset
9 - $totalTime_x_subset

10 query: SELECT * FROM results ORDER BY model

In the ”plot set”, there can specified either some predefined plots prefixed
with ’$’ or definitions of plots can be written inline. Each ”plot set” file has to
have a query and a name parameter. The name parameter is used for naming
the output directory. The query parameter is SQLite query, which is used to
select results which should be plotted.

6the name journal is borrowed from file-systems, such as ext3, since it has a similar
purpose
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Predefined plots are placed in Benchmarker/plot config/ and they are
just YAML files. An example is given below.

1 !<Lines>
2 name: Accuracy test vs train time
3 group_by: [model, params, cluster_name, nthreads]
4 legend_labels: !!python/name:Benchmarker.utils.legend_label_fg ’’
5 style: o-
6 log_x: true
7 title: Accuracy on Test Data Set vs Training Time
8 x_col: trainTime
9 xlab: Training time [log(s)]

10 y_col: accuracy_test
11 ylab: Accuracy

Inline definition of a plot is in the same format as are those predefined.
The only difference is that they are indented accordingly.
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Chapter 3
Methodology

As mentioned in previous chapter, I have conducted 2 distinct types of exper-
iments — evaluating anytime properties of machine learning algorithms and
evaluating hyper-parameter optimization.

3.1 Evaluating Anytime Properties

Since H2O doesn’t support anytime learning, I had to emulate it by sub-
sampling datasets. In order to do that I have implemented Benchmarker,
which is described in previous chapter. It automates the subsampling process
and provides an easy way to create new experiment. Due to the overwhelming
amount of data, I do not use cross-validation to estimate the generalization
properties of the models, but I do use a big test datasets, which make a good
estimate of generalization error and, since predicting is in H2O significantly
faster than training, it takes a lot less time.

In previous chapter, I have shown, how does Benchmarker split the data.
Now, I will describe it little more using an example, where train ratio} is 0.4
and validation ratio is 0.5 and the dataset has 1, 000 rows. Let’s assume
I have m rows of dataset D then training set, validation set and test set are
defined as follows:

R ∈ U1000(0, 1)
training set = {Di|i ∈ {1, . . . , 1000} : Ri < 0.4

validation set = {Di|i ∈ {1, . . . , 1000} : Ri ≥ 0.4 ∧Ri < 0.5}
test set = {Di|i ∈ {1, . . . , 1000} : Ri ≥ 0.5}

It is reasonable to assume that the training set will have approximately 400
rows, the validation set ∼ 100 rows and the test set ∼ 500 rows. Now, let’s say
number of samples = 10, min fraction denom = 1 and max fraction denom =
10, then Benchmarker will benchmark following subsets written as a triplet
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(#training rows, #validation rows, #test rows)7: (40, 10, 500), (80, 20, 500),
(120, 30, 500), (160, 40, 500), . . . , (400, 100, 500).

The test set is the same throughout whole benchmarking process. The
training subsets are subsets of the training set and each bigger subset will
contain the rows in the smaller one. The same applies to validation set. This
is mainly to eliminate variance in models trained on small amount of data, e.g.,
model trained on less data performing better than model trained on more data
thanks to the luck of the former model on having better representing training
set.

Proportions in previous example are used for all of my anytime experi-
ments, however, number of rows is significantly higher.

3.2 Evaluating Hyper-parameter Optimization

Hyper-parameter optimization was evaluated on subsample with fixed number
of rows. Since H2O supports just grid and random search, I implemented
simple wrapper that uses PySMAC, which is a simple Python wrapper to
SMAC [3], which is implemented in Java. PySMAC requires description of
optimized parameters, which are given at appendix B. The same parameter
ranges and enumerations are used by random search, which I also had to
implement in Benchmarker in order to be able to gain all the results I needed,
in other words, to have proper control over the optimization process.

I have benchmarked hyper-parameter optimization on several machine
learning algorithms. Benchmarked hyper-parameter optimization methods
were random search and SMAC. In order to have comparison, I ran those al-
gorithms several times with default settings, which yielded good results with
low variance.

3.3 Datasets

I’ve conducted all of my experiments on two datasets. The next two sections
will describe both datasets.

Both of the datasets are used for binomial classification. This is mainly be-
cause H2O Ensemble, which at the time of writing this thesis, did not support
multinomial classification. Due to computational requirements, I have ran-
domly sampled 1, 000, 000 rows from each dataset. And all of my experiments
use such subset.

3.3.1 Higgs Dataset

Higgs dataset [73] is used for binomial classification. The original problem was
to assess whether the measurements are from signal process, which produces

7the counts are approximate due to the method used for splitting the data
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Higgs bosons, or a background process, which does not.
The data were produced using Monte Carlo simulations. The first 21

features are kinematic properties measured by particle detectors in the accel-
erator. The next 7 are functions of the 21 first features. These are high-level
features derived by physicists to help discriminate between the two classes.

Original paper involving this dataset was a benchmark of Bayesian De-
cision Trees and 5-layer neural network.

3.3.2 Airline Dataset

This dataset contains data about delays of U.S. domestic flights operated by
large air carriers.

Original dataset comes from the U.S. Department of Transportation’s
(DOT) Bureau of Transportation Statistics (BTS), however, I have used data-
set, which comes with H2O [74]. It can be easily downloaded by using
./gradlew syncBigdataLaptop in H2O’s source folder, but beware, it will
download several GB of data.

It contains 31 columns, though some column are highly correlated with the
target column. After elimination of those columns, I have 13 features. Three
of those are categorical and the rest is numerical.

It worth noting that different papers use different columns, so it can be
troublesome to blindly compare the results with another paper that uses the
same dataset.

In this thesis, I did test two different sets of attribute columns and two dif-
ferent response columns. As response columns, I used IsDepDelayed and Is-
ArrDelayed, both of which are binomial. The difference in attribute columns
used for training lies in containing DepTime column, which can be compared
with CRSDepTime and, by using a simple comparison, I am able to get quite
good prediction about whether the plane will be delayed either on departure
(it isn’t 100 %, but close to it) or on arrival. When I include DepTime
column, I use 13 features, without it only 12.

It may seem like an unreasonable thing to do, include the DepTime
column, but to my surprise a simple model from FAKE GAME beat state-of-
the-art models from H2O.

47





Chapter 4
Results

I have conducted experiments to get insight into the scalability of several
machine learning algorithms from H2O as well as FAKE GAME’s parallel
training of FAKE GAME’s templates.

I have chosen two public datasets — Airline Delays, which is available
through H2O [74], and Higgs [73]. Those datasets are used for binomial clas-
sification of selected output attributes.

I have benchmarked FAKE GAME’s parallelized templates to models avail-
able in H2O implemented using the MapReduce approach. Models originating
from FAKE GAME are prefixed in results with ENS. Generalized Linear
Model [75] is using logistic regression to deal with classification problems.
Naive Bayes classifier assumes independence of input attributes and clas-
sifies based on conditional probabilities obtained from training data. Deep
learning [41] is a feedforward neural network with various activation func-
tions in neurons. Distributed Random Forest and Gradient Boosted
Machine [55] are ensembles based on CART decision trees. H2O Ensemble
is an ensemble classifier called Super Learner by [76].

In all my results, I will present only test accuracy, however, Benchmarker
saves also training and validation accuracy. In addition to that, it saves several
more performance measures including AUC, MSE, AIC (where appropriate),
and more.

4.1 Anytime Learning

Following experiments use 1,000,000 randomly selected rows from each data-
set. Then 50 % rows is randomly selected as test set and the rest is then
sampled to subsets of growing size to examine scalability of algorithms. This
sampled data are randomly split to training set (80 %) and validation set (20 %).
For more details see chapter 3.

Some algorithms are much faster than the others, which is the reason, why
I will show most of my plots with logarithm of time instead of time. Such plots
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have x axis labelled with [log(s)].

4.1.1 Higgs

At first, I have examined scalability of algorithms on the Higgs dataset. Fig-
ure 4.1 shows logarithm of learning time and performance of individual al-
gorithms executed on subsets of growing size. The best performance was
achieved by Deep Learning, which was also reasonably fast. Gradient Boost-
ing is faster, but it does not have capacity to improve with bigger data subsets.
Distributed Random Forest is also reasonably accurate and fast, but it is dom-
inated by Deep Learning. Ensembles produced from templates are not very
competitive on this dataset. Only complex hierarchical ensemble of decision
trees is approaching the performance of Distributed Random Forest, but it is
much slower.

2 0 2 4 6 8 10
Training time [log(s)]
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Deep Learning
Distributed Random Forest
ENS - ClassifierBagging{5x DTForestClassifier(trees=10)}
ENS - ClassifierBoosting{20x ClassifierBoosting{30x DecisionTree}}
ENS - Sigmoid Norm classifier

Generalized Linear Model
Gradient Boosting
H2O Ensemble
NaiveBayes

Figure 4.1: Comparison of several machine learning algorithms in H2O trained
on samples with various sizes from Higgs dataset [73]

It can be seen that selected templates from FAKE GAME in H2O do not
generally perform very well on Higgs dataset, when compared with H2O’s ori-
ginal machine learning algorithms. To get more complete picture look at Fig-
ure 4.2, where all tested machine learning algorithms are shown.
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4. Results

4.1.2 Airline

As mentioned in chapter 3, there are 4 different scenarios which I evaluated.
These scenarios differ in columns used for training and predicting. It is possible
to predict either IsDepDelayed or IsArrDelayed. The difference in training
columns is the inclusion or exclusion of DepTime column. However, scenarios
without DepTime column resulted very similarly, for this reason I will present
only one of them — the one predicting IsArrDelayed.

To summarize, in the next 3 sections, I will show results for predicting
IsDepDelayed with DepTime, and predicting IsArrDelayed with and
without DepTime.

4.1.2.1 Predicting IsDepDelayed with DepTime
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Figure 4.3: Predicting IsDepDelayed on Airline dataset: comparison of al-
gorithms in H2O trained on subsamples of increasing size.

Looking at the Figure 4.3, where arrival delay is predicted on the Airlines
dataset, results are completely different. FAKE GAME ensembles are both
more accurate and faster. The difference is so big that I decided to analyze
these results further (see Section 5.1).
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Figure 4.4: Predicting IsDepDelayed on Airline dataset with DepTime: com-
parison of algorithms in H2O trained on subsamples of increasing size.

The prediction problem in this scenario is quite trivial, because you can
obtain the target8 (is departure delayed?) by comparing DepTime and
CRSDepTime attribute. Unsurprisingly, this was the most successful scen-
ario of all 4.

It is quite surprising that most of the classifiers are mislead by other at-
tributes and fail to discover this simple relationship. Figures 4.4, 4.3 show
that FAKE GAME’s simple ensembles based on Sigmoidal model are able to
learn fast and solve the problem even on small subsets. H2O Ensemble and
Deep Learning discovered the relationship on 250 thousand instances and their
learning time was significantly higher.

As with Higgs dataset, I will also show plots with all tested algorithms (Fig-
ure 4.5). In Figure 4.5 it can be seen that on the full dataset, machine learning
algorithms either produce a model that can find this simple decision line (com-
parison of DepTime and CRSDepTime attribute), which results in two
clusters — high performing models and low performing models. Those two
clusters are divided by a large gap in accuracy.

8you can get ∼ 99 % accuracy using the comparison
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4.1. Anytime Learning

4.1.2.2 Predicting IsArrDelayed with DepTime
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Figure 4.6: Predicting IsArrDelayed on Airline dataset: comparison of al-
gorithms in H2O trained on subsamples of increasing size.

This scenario was significantly harder, which resulted in maximal accuracy
around 75 %. Unlike previous scenario, no algorithm from H2O outperformed
FAKE GAME’s ensemble, though there was only a small gap in accuracies.
Another observation is that differences across accuracies of models are not as
significant as in the previous scenario.

On the other hand, similarly to the previous scenario, the two best FAKE
GAME’s models are significantly faster than any other model that yields sim-
ilar accuracy. Deep Learning and H2O Ensemble are only two models
from H2O that have accuracies greater than 70 %, however, H2O Ensemble
performed rather inconsistently yielding a model on full dataset that per-
formed lower than 70 %. And in all of the evaluated machine learning al-
gorithms, it was the second slowest machine learning algorithm. The only
slower machine learning algorithm is FAKE GAME’s template Classifier-
Boosting{20× ClassifierBoosting{30× DecisionTree}}.
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4.1. Anytime Learning

4.1.3 Predicting IsArrDelayed without DepTime
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Figure 4.8: Predicting IsArrDelayed on Airline dataset: comparison of al-
gorithms in H2O trained on subsamples of increasing size.

This scenario resulted in the worst performance, which is expected, given
that the previous scenarios could compare DepTime and CRSDepTime
attribute.

Surprisingly, H2O Ensemble, which is based on Super Learner, is among
the worst performing machine learning algorithms. It is surprising, because it
should asymptotically perform at least as good as the best model in it, which
in this case is a Deep Learning model.

In this scenario, all FAKE GAME’s models performed similarly badly.
Difference between the bad performing models is negligible.

It can be seen on Figure 4.9 that models on the full dataset tend to create
two clusters, similarly to previous scenarios. However, in this case, in the
good performing cluster is not a single model from FAKE GAME. It contains
only Deep Learning, Gradient Boosting Machine, and Distributed
Random Forest. This could suggest that those algorithms found a similar
decision boundary.
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4.2. Hyper-parameter optimization

4.2 Hyper-parameter optimization

Hyper-parameter optimization is another task, I have dealt with in this thesis.
Unfortunately, hyper-parameter optimization is slow, due to the need of run-
ning machine learning algorithms with multiple configuration. This could be
mitigated if I could evaluate machine learning algorithms sooner than they
finish training, the same way as Hyperband (see section 1.5.5).

To speed up the hyper-parameter optimization, I have taken a smaller
sample of data — 100k rows, to be precise. Then I used half of this sample as
a training set, and 25 % and 25 % as a validation, and a test set, respectively.
Those subsets were created by sampling without replacement.

Even with such modification, hyper-parameter optimization for one data-
set took almost a week. And since some machine learning algorithms have
hyper-parameter that influences memory usage, namely, Distributed Random
Forest, Gradient Boosting Machines, it took a lot of time to figure out, what
should be maximal acceptable values of several hyper-parameters, to be able to
finish the hyper-parameter optimization, i.e., to not get killed by OOM killer.
Those are the reasons, why I have optimized only two out of four scenarios —
Higgs dataset and Airline dataset with DepTime predicting IsDepDelayed.

4.2.1 Higgs dataset
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Figure 4.10: Hyper-parameter optimization of several machine learning al-
gorithms using Random Search and SMAC on Higgs dataset. All configura-
tions are plotted in order to gain some insight into hyper-parameter × test
accuracy landscape.

59



4. Results

2 0 2 4 6 8 10 12 14
Optimization Time [log(s)]

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

Deep Learning -  Default Settings
Deep Learning -  Random Search
Deep Learning -  SMAC
Distributed Random Forest -  Default Settings
Distributed Random Forest -  Random Search
Distributed Random Forest -  SMAC
Fakegame - Cascade Correlation -  Default Settings
Fakegame - Cascade Correlation -  Random Search

Fakegame - Cascade Correlation -  SMAC
Generalized Linear Model -  Default Settings
Generalized Linear Model -  Random Search
Generalized Linear Model -  SMAC
Gradient Boosting -  Default Settings
Gradient Boosting -  Random Search
Gradient Boosting -  SMAC

Figure 4.11: Hyper-parameter optimization of several machine learning al-
gorithms using Random Search and SMAC on Higgs dataset. In this figure, I
present best test accuracy for each time point.
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4.2.2 Airline dataset
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Figure 4.12: Hyper-parameter optimization of several machine learning al-
gorithms using Random Search and SMAC on Airline dataset. All configur-
ations are plotted in order to gain some insight into hyper-parameter × test
accuracy landscape.

Both scenarios resulted very similarly. Hyper-parameter optimization didn’t
work better than default settings in some cases. In other cases, SMAC behaved
better than random search, but the difference wasn’t significant.

A hypothesis, why are default settings often better than hyper-parameter
optimized versions is given in the following chapter.
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Figure 4.13: Hyper-parameter optimization of several machine learning al-
gorithms using Random Search and SMAC on Airline dataset. In this figure,
I present best test accuracy for each time point.
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Chapter 5
Discussion

In the previous chapter, I have presented results, some of which deserves a
further discussion. Those are the unreasonable effectiveness of sigmoid-based
ensembles and hyper-parameter optimization. In this chapter, I will discuss
both of them.

5.1 Airline Dataset and Sigmoid-based Ensembles

SigmoidNorm model y =
(
1 + exp

(∑m−1
i=0 aixi + am

))−1
, which is in all

successful ensembles in scenarios with included DepTime attribute, is too
simple to overfit even on smaller data, which is one of the reasons, why it is
successful straight from the start.

H2O FAKE GAME SigmoidNorm model is trained in parallel fashion,
which is more closely described in Section 2.1. When the data are loaded,
H2O distributes them on its nodes. Then the data are split into chunks on
each node. Subsequently, a single FAKE GAME SigmoidNorm classifier
is trained for each chunk, in parallel. Since it is a classifier, it creates two
SigmoidNorm regression models, one for each class. Prediction is done by
voting, i.e., each classifier predicts a class and the class, which was predicted
most frequently, i.e., has the most votes, is the resulting one.

One of the questions I will try to answer in this section is, why does
other machine learning algorithms perform so badly, given the simplicity of
comparing two attributes, namely, DepTime and CRSDepTime.

Using a simple comparison, i.e., when DepTime > CRSDepTime then
predict IsDepDelayed to be True, I got accuracy 0.98706 on a randomly
selected set of 1,000,000 observations. A slight modification of not using a
strict inequality, i.e., DepTime ≥ CRSDepTime yielded prediction with
accuracy 0.777506 on the same set.

This suggests that the decision boundary is close to be linear and that it
can be very sensitive to minuscule shifts. The next step is to inspect decision
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5. Discussion

boundaries of some generally successful machine learning algorithms as well
as SigmoidNorm. This is visualized in Figure 5.1.

Plots of class probabilities and decision boundaries helped me to reveal
the reason of poor performance of decision tree based ensembles. Figure 5.1
shows that successful classifiers (ensemble of SigmoidNorm models, Deep
Learning) were able to identify simple relation of two input attributes to
departure delay prediction. The relationship (decision boundary) is hard for
decision trees to model with their orthogonal decisions. It is also impossible to
solve for Näıve Bayes classifier assuming independence of input attributes.

Evidently, FAKE GAME was able to discover very efficient template for
this trivial problem. It can be also seen that unlike Deep Learning FAKE
GAME’s SigmoidNorm is much closer to the simple comparison.

Logically, it is obvious that when a plane is delayed one unit of time or
ten, it is still delayed, however, looking at Figure 5.1, I can see that Deep
Learning predicts the delay only in a small stripe. For this reason, I would say
that SigmoidNorm generalizes better on this problem than Deep Learning.
Although, there are some outliers, which can be learnt by Deep Learning
and not by SigmoidNorm.

5.2 Hyper-parameter Optimization

Hyper-parameter optimization performed worse than I anticipated. I believe
that the reason for this lies in the automatic tuning of hyper-parameters dur-
ing the training, which is on by default in most of the algorithms in H2O.
Since I optimized even those, automatically-tunable, parameters, I effectively
discarded the information, which could be discovered during the training. The
list of all parameters that were optimized and their ranges are available in ap-
pendix B.

Figure 4.12 shows that most of the H2O algorithms are very sensitive to
improper parameter settings. Deep Learning has the most automatically-
tunable parameters, which in turn corresponds to worse performance with the
optimized parameters.

However, Figure 4.12 shows that SMAC consistently tests mostly better
configurations than random search does. Similarly, negative impact was ob-
served for Generalized Linear Model.

For Gradient Boosting and Distributed Random Forest, optimiza-
tion discovered better performing configurations, however, the difference was
not significant. One of the problems, with hyper-parameter optimization of
ensembles of trees, is that with more trees the accuracy usually gets higher,
which yields models that are slow to train and predict. This could be mitig-
ated by using similar approach to TB-SPO [65], which takes into account, in
addition to the model performance (accuracy), the duration of model evalu-
ation.
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5.2. Hyper-parameter Optimization
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Figure 5.1: Decision boundaries of algorithms on problem of predicting aircraft
departure delay. Simple ensemble of sigmoid classifiers was able to generalize
the relationship well, whereas decision tree based ensembles overfitted the
data. Deep Learning discovered the relationship only on large data samples.
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5. Discussion

I also tried to optimize number of models in FAKE GAME’s hierarchical
ensembles, but apparently it had almost no effect on accuracy, but it usually
chosen the configuration with more base models than the default configuration,
making it run slower.
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Conclusion

In this thesis, I explored machine learning algorithms as well as hyper-parameter
optimization of those algorithms. To evaluate generalization abilities of those
machine learning algorithms, I have designed and implemented a tool called
Benchmarker. Using this tool, I have evaluated anytime properties of super-
vised machine learning algorithms implemented in H2O, as well as, newly
implemented H2O FAKE GAME model. In addition, I used parts of Bench-
marker to create simple script to evaluate hyper-parameter optimization. This
script is included in Benchmarker package.

I have compared all supervised machine learning algorithms from H2O,
namely, Deep Learning, Distributed Random Forest, Gradient Boost-
ing Machines, Näıve Bayes, and several templates from FAKE GAME.

In some cases, the newly implemented H2O FAKE GAME model was
significantly faster and the test accuracy was, in cases with less data, much
higher than the one from the state-of-the-art algorithms from H2O. In cases
with full dataset, the test accuracies were comparable, however, the newly
implemented H2O FAKE GAME model was significantly faster than any
other from H2O with comparable test accuracy.

In addition, I evaluated a state-of-the-art hyper-parameter optimization
method called SMAC and a commonly used one — random search. The res-
ults were in favor to SMAC, however, when compared with default settings, it
pales in comparison. I think, this is caused by automatic tuning of parameters,
which is enabled by default in H2O. And thus, using hyper-parameter optimiz-
ation effectively discards any run-time information that could be used by auto-
matic tuning. Although for Deep Learning, hyper-parameter optimization
did not find any better configuration than default one, for tree based models,
i.e., Distributed Random Forest, Gradient Boosting Machines, hyper-
parameter optimization found better configurations, some of which didn’t use
more base learners than the default configuration.

I have submitted those results, i.e., evaluation of both anytime properties
and hyper-parameter optimization, as a co-author, to the Machine Learning,
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Conclusion

impacted journal of Springer Publishing [2].
Using more base learners, i.e., trees, was often not the best strategy. Often

it seems that optimizing other hyper-parameters yields similarly good or even
better test accuracies, which lead me to propose using a similar approach to
TB-SPO [65], i.e., penalizing configurations by the time they took to evaluate.
However, this is beyond the scope of this thesis.
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Appendix A
Acronyms

AIC Akaike information criterion.

cdf cummulative distribution function.

DL Deep Learning.

DRF Distributed Random Forest.

EI Expected Improvement.

FAKE GAME Fully Automated Knowledge Extraction using Group of Ad-
aptive Models Evolution.

GBM Gradient Boosting Machines.

GLM Generalized Linear Model.

GP Gaussian process.

IRLSM iteratively reweighted least squares.

L-BFGS limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm.

lasso least absolute shrinkage and selection operator.

MLE maximum likelihood estimate.

MLP multi-layer perceptron.

MSE mean squared error.

NB Näıve Bayes.
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Acronyms

OLS ordinary least squares.

pdf probability density function.

POI Probability of Improvement.

RESTful API representational state transfer application programming in-
terface.

RF Random Forest.

ROAR Randomized Online Aggresive Racing.

SAT Boolean Satisfiability Problem.

SL Super Learner.

SMAC Sequential Model-based Algorithm Configuration.

SMBO Sequential Model-based Bayesian Optimization.

TPE Tree-structured Parzen Estimator.

UBC Upper Bound Confidence.

78



Appendix B
Parameter Ranges for

Hyper-parameter Optimization

Table B.1: Deep Learning

Name Type Possible Values Default Value
hidden l2 integer [10, 1000] 200
rate annealing real [1e-15, 0.2] 1e-06
l1 real [0, 1] 0
quantile alpha real [0, 1] 0.5
balance classes categorical [True, False] False
momentum ramp real [100, 100000000] 1000000
loss categorical [’Automatic’, ’CrossEntropy’, ’Quad-

ratic’, ’Huber’, ’Absolute’]
Automatic

input dropout
ratio

real [0, 0.5] 0

momentum start real [0, 1.0] 0.0
max after
balance size

real [0.1, 10] 5.0

epochs real [2, 100] 10
initial weight
distribution

categorical [’UniformAdaptive’, ’Uniform’, ’Nor-
mal’]

UniformAdaptive

rate real [1e-08, 0.1] 0.005
rate decay real [0.8, 1.2] 1
nesterov
accelerated
gradient

categorical [True, False] True

sparse categorical [True, False] False
hidden l1 integer [10, 1000] 200
stopping rounds integer [0, 10] 5
adaptive rate categorical [True] True
stopping metric categorical [’AUTO’, ’logloss’, ’MSE’, ’lift top

group’, ’r2’, ’misclassification’, ’mean
per class error’]

AUTO

epsilon real [1e-15, 0.2] 1e-08
overwrite with
best model

categorical [True, False] True

stopping
tolerance

real [0, 0.5] 0

activation categorical [’Tanh’, ’TanhWithDropout’, ’Recti-
fier’, ’RectifierWithDropout’, ’Maxout’,
’MaxoutWithDropout’]

Rectifier
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B. Parameter Ranges for Hyper-parameter Optimization

Table B.1 – continued from previous page
Name Type Possible Values Default Value
elastic
averaging
moving rate

real [0.5, 1] 0.9

standardize categorical [True, False] True
elastic
averaging
regularization

real [1e-08, 0.1] 0.001

rho real [0.5, 1.0] 0.99
shuffle
training data

categorical [True, False] False

use all factor
levels

categorical [True, False] True

tweedie power real [1, 1.9999999999999] 1.5
mini batch size integer [1, 100] 1
l2 real [0, 1] 0
momentum stable real [0, 1] 0.0
initial weight
scale

real [0.1, 10] 1.0

fast mode categorical [True, False] True

Table B.2: Distributed Random Forest

Name Type Possible Values Default Value
nbins cats integer [4, 2048] 1024
nbins integer [2, 100] 20
stopping rounds integer [0, 10] 0
balance classes categorical [True, False] False
nbins top level integer [200, 2048] 1024
max depth integer [2, 40] 20
histogram type categorical [’AUTO’, ’UniformAdaptive’, ’Ran-

dom’, ’QuantilesGlobal’, ’RoundRobin’]
AUTO

min rows real [1, 100] 1
max after
balance size

real [0.1, 10] 5

r2 stopping real [0.95, 0.9999999999] 0.999999
col sample
rate change
per level

real [0, 2] 1

binomial
double trees

categorical [True, False] False

sample rate real [0, 1.0] 0.632000029087
stopping
tolerance

real [1e-09, 0.1] 0.001

ntrees integer [10, 200] 50
col sample
rate per tree

real [0, 1] 1.0

stopping metric categorical [’AUTO’, ’logloss’, ’MSE’, ’AUC’, ’lift
top group’, ’r2’, ’misclassification’,
’mean per class error’]

AUTO

min split
improvement

real [1e-08, 0.1] 1e-05
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Table B.3: Gradient Boosting Machine

Name Type Possible Values Default Value
nbins integer [2, 200] 20
stopping rounds integer [0, 10] 0
quantile alpha real [0, 1] 0.5
balance classes categorical [True, False] False
histogram type categorical [’AUTO’, ’UniformAdaptive’, ’Ran-

dom’, ’QuantilesGlobal’, ’RoundRobin’]
AUTO

max after
balance size

real [0.1, 10] 5

stopping
tolerance

real [1e-09, 0.1] 0.001

ntrees integer [10, 500] 50
learn rate
annealing

real [0.95, 1.0] 1

stopping metric categorical [’AUTO’, ’logloss’, ’MSE’, ’AUC’, ’lift
top group’, ’r2’, ’misclassification’,
’mean per class error’]

AUTO

col sample rate real [1e-10, 1] 1
nbins cats integer [4, 8192] 1024
nbins top level integer [200, 8192] 1024
max depth integer [1, 50] 5
min rows real [1, 100] 10
col sample
rate per tree

real [1e-10, 1] 1.0

r2 stopping real [0.95, 0.9999999999] 0.999999
col sample
rate change
per level

real [0, 2] 1

sample rate real [1e-10, 1] 1
tweedie power real [1, 1.999999999] 1.5
learn rate real [1e-10, 1] 0.1
min split
improvement

real [1e-12, 0.1] 1e-05

Table B.4: Generalized Linear Model

Name Type Possible Values Default Value
family categorical [’binomial’] binomial
prior real [1e-10, 0.9999999999999] -1
alpha real [0, 1] 0.5
lambda search categorical [True, False] False
lambda min
ratio

real [-1, 1] -1

nlambdas integer [1, 10] -1
beta epsilon real [1e-10, 0.1] 0.0001
standardize categorical [True, False] True
tweedie link
power

real [0, 5] 1

max after
balance size

real [0.1, 10] 5

lambda real [0, 10] 0
max active
predictors

integer [1, 100] -1

non negative categorical [True, False] False
early stopping categorical [True, False] True
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B. Parameter Ranges for Hyper-parameter Optimization

Table B.4 – continued from previous page
Name Type Possible Values Default Value
solver categorical [’AUTO’, ’IRLSM’, ’COORDINATE

DESCENT NAIVE’, ’COORDINATE
DESCENT’]

AUTO

tweedie
variance power

real [0, 5] 0

balance classes categorical [True, False] False
max iterations integer [1, 1000] -1

Table B.5: ClassifierBagging{m× ClassifierBoosting{n× DecisionTree}}

Name Type Possible Values Default Value
m integer [1, 80] 5
n integer [1, 80] 5

Table B.6: CascadeGenProb{m× Boosting{n× ClassifierModel{<outputs>
× SigmoidNorm}}}

Name Type Possible Values Default Value
m integer [1, 80] 5
n integer [1, 80] 5
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Appendix C
Contents of enclosed DVD

/
data...........Shuffled subsamples of the datasets used in the thesis
experiments ..................... Experiment files used in the thesis
readme.txt..................The file with DVD contents description
src...................................The directory of source codes

h2o-benchmarker .......................... Benchmarker sources
h2o-fakegame.....................H2O with integrated fakegame
fakegame ........................ Modified FAKE GAME sources

text ............... The directory of LATEX source codes of the thesis
thesis.pdf..........................The thesis text in PDF format
thesis.ps.............................The thesis text in PS format
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