
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague September 30, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: ER diagrams web component II

 Student: Bc. Tomáš Fedor

 Supervisor: Ing. Jiří Hunka

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2017/18

Instructions

A tool for education support with a utility for modeling basic ER diagrams (logical database model), used
for example for testing students in a semester, is being developed for the BI-DBS course. The goal of the
thesis is to create a new, extended, and superior version of this web component.

Analyse requirements of the ER diagram creation utility for roles student, examined student, and teacher and
compare them with the current functionality.
Analyse the scope of the work done in a logical model in the BI-DBS classes during student examination
and testing.
Analyse the user interface of other existing modeling tools.
Based on the analysis design a new web component with a suitable user interface, while taking into
consideration potential future changes, extensions, and usability.
Implement the component and properly test both the functionality and the user interaction.
Analyse possible future extensions of the component, e.g., transformation from the logical to the relational
model.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

ER Diagrams Web Component II

Bc. Tomáš Fedor

Supervisor: Ing. Jiří Hunka

9th January 2017

Acknowledgements

I would like to thank my supervisor Ing. Jiří Hunka for his professional guid-
ance, organization of user testing and for not giving up on me, Oldřich Malec
and Pavel Kovář for deploying data modeler into DBS Portal, for functional-
ity testing and ideas for improvements and my family for not asking “how’s it
going?” too often.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 9th January 2017 .

Czech Technical University in Prague
Faculty of Information Technology
© 2017 Tomáš Fedor. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Fedor, Tomáš. ER Diagrams Web Component II. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2017.

Abstrakt

Táto práca rozoberá vývoj webového nástroja na tvorbu Entity-Relationship
diagramov, ktorý slúži na podporu edukačného procesu predmetu Databázové
systémy Fakulty Informačných Technológií Českého Vysokého Učení Technick-
ého. Práca sa zaoberá všetkými časťami vývojového procesu: analýzou, ktorá
slúži ako základ pre návrh a implementáciu; návrhom užívateľského prostredia
a princípmi, ktorých sa návrh držal; implementáciou s ohľadom na ďalší vývoj;
teoretickým aj praktickým testovaním výsledného nástroja.

Kľúčové slová Entity-Relationship Diagram, Logický model, Užívateľské
prostredie, Testovanie, Tvorba modelov, Webová komponenta

Abstract

This thesis discusses the development of a web component for Entity-Relationship
diagrams modeling. The purpose of this component is to support the educa-
tion process of Database Systems course at Faculty of Information Technology
of Czech Technical University. Thesis covers all parts of the development pro-
cess: analysis as a base for both design and implementation; user interface

ix

design and principles that were followed; implementation with regards to fu-
ture development; testing, including heuristic evaluation as well as empirical
testing with users of the modeler.

Keywords Entity-Relationship Diagram, Logical Model, User interface, Test-
ing, Data modeler, Web component

x

Contents

Introduction 1

1 Analysis 3
1.1 Database Systems Course . 3
1.2 Logical Data Model . 5
1.3 Barker Notation . 7
1.4 Data Modeler . 8

2 User Interface Design 25
2.1 Principles . 25
2.2 First Design . 26
2.3 Final Design . 30

3 Implementation 33
3.1 Technology . 33
3.2 Architecture . 40
3.3 Mouse Handling . 43
3.4 Context Menu . 44
3.5 Strategy for Placement of Relationships Anchors 46
3.6 Automatic Diagram Layout . 48
3.7 Import . 51
3.8 Adaptation of Messaging System for Tutorial 54
3.9 Distribution and Integration of Data Modeler 56

4 Testing 59
4.1 Heuristic Analysis . 60
4.2 Testing with Users . 64

5 Future Work 71

xi

Conclusion 75

Bibliography 77

A Acronyms 83

B Contents of enclosed CD 85

C Examples of Layout Algorithm 87

D Screenshots 93

xii

List of Figures

1.1 A visual representation of concepts of the ER Model as defined by
Chen . 6

1.2 Example of entity with attributes and two subtypes created in SQL
Developer . 7

1.3 Example of relationships with different cardinality and optional-
ity as well as example of identifiable relationship, created in SQL
Developer . 8

1.4 Sample model created in current data modeler 13
1.5 Example of automatic layout of the diagram in current version of

data modeler . 14
1.6 Sample diagram drawn in SQL Developer Data Modeler 17
1.7 Example of properties window of SQL Developer Data Modeler . . 17
1.8 User interface of Creately . 19
1.9 User interface of Vertabelo . 20
1.10 User interface of Draw.io . 21
1.11 User interface of TinyModeler . 22

2.1 First version of the user interface of new data modeler 26
2.2 Entity menu of the first version of the interface 27
2.3 Attribute setup in the first version of the interface 28
2.4 Relationship setup in the first version of the interface 28
2.5 Final version of the application demonstrating context menu of an

attribute . 31
2.6 Example of error, success and hint message from final application . 32

3.1 Model-View-Controller pattern . 41
3.2 Context menu of relationship’s control point 46
3.3 Example of automatically laid out diagram 48
3.4 Spring force ~fR . 50
3.5 Repulsion force ~fE . 50

xiii

3.6 Excerpt of JSON format used by import and export 52

4.1 Nielsen curve showing aggregate proportion of usability problems
found . 60

4.2 Reference solution of the task from user testing 64

C.1 Initial configuration of diagram 1 87
C.2 Diagram 1 after 25 iterations . 88
C.3 Diagram 1 after 100 iterations . 89
C.4 Diagram 1 after 500 iterations . 89
C.5 Initial configuration of diagram 2 90
C.6 Diagram 2 after 100 iterations . 91
C.7 Diagram 2 after 500 iterations . 92

D.1 Screenshot of diagram during creation of XOR relationship 93
D.2 Example of entity with two XOR relationship 94
D.3 Diagram in marking mode, with parts of the diagram marked as

incorrect . 95

xiv

List of Tables

1.1 Overview of requirements not implemented or not implemented
fully in current data modeler . 16

3.1 Set up of the diagram layout algorithm 51
3.2 Available options during initialization of data modeler 56

4.1 Results of question 4 of post-test survey 68

xv

Introduction

Models are a vital part of engineering and science. Software engineering is
no exception. In software development, models are being utilized during
every stage of projects life cycle. Not only do they help to properly ana-
lyse and understand the problem domain or design the product, they also
serve as a communication tool between all parties, as well as a documentation
tool. The advantage of models is that they provide different view of the same
system based on the needs of the user.

Database, a collection of large amount of real world data, is itself a model
of the real world. However, a proper understanding of the data is needed
prior to building a database. This understanding is achieved by data (logical)
models which show objects and their characteristics, relationships between
objects, and constraints found during prior analysis and needs assessment.
Data models thus provide crucial high-level understanding of that part of
the real world that is important for the project and serve as a logical view of
a database for database designers. Logical models are by their nature impartial
against the technology that will be used to build and deploy the database.

However, logical view achieved by data models is not the only view that
models could provide during database development. If relational database
management system is used, relational models show further, more technical,
details needed for final implementation, and even lower levels of view could be
provided by models showing physical workings of the database management
system if needed.

During bachelor programme at Faculty of Information Technology of Czech
Technical University in Prague, students take mandatory Database Systems
course, an introductory course to database management systems and database
design. To aid an educational process, a portal, which students use to submit
semestral projects as well as take exams is being developed. A crucial part of
this portal is a data modeler web component used for creating logical models
of a database, which, however, does currently not reach required quality.

In this thesis, we will start by assessing requirements on the modeler utility.

1

Introduction

The portal is used not only by students but also by teachers and examinators.
Different roles of users and states of the system will have to be considered
during the whole development process. Next, we will analyse current state of
the system. We will analyse how well it satisfies the assessed needs and identify
its shortcomings. The analysis chapter will end by taking a look at similar
tools for drawing diagrams and their approach to the user interface.

With analysis complete we will design new data modeler utility based on
acquired knowledge. Extra care will be given to the usability and extensibility
of this tool.

Second part of this thesis will be dedicated to implementation details where
we describe architecture of the data modeler and technologies it is built upon.
We will continue by exploring some of the more interesting implementation
details and challenges that were faced during implementation.

After the implementation, new modeler will be properly tested. In a ded-
icated chapter we will provide results of both heuristic analysis and user tests,
which were taken in real scenario. We will discuss findings of these tests
and application of the results to the data modeler utility.

In the last chapter of this thesis we will suggest possible expansions and im-
provements of the tool and discuss their viability and importance for the stu-
dents.

2

Chapter 1
Analysis

In this chapter we will analyse requirements for the resulting data modeler
utility. First, we will overview the Database Systems course of bachelor pro-
gramme at Faculty of Information Technology of Czech Technical University in
Prague. We will get a better understanding of the course’s contents and scope,
as well as what requirements are made on students taking the course to suc-
cessfully pass it.

Next, we will discuss how is the educational process supported by technical
means, specifically the education support portal (DBS Portal1), what part it
plays in the course’s run and how it helps both students and teachers during
semester and exam period.

With the acquired knowledge we will summarize both functional and non-
functional requirements of the data modeler utility used for creating logical
models. Proper understanding of needs of all roles of users during whole
course’s run is vital for proper design of the final product.

At the end of this chapter, we will assess the state of the data modeler
utility that is currently deployed at the DBS Portal to see how well it covers
the needs of its users. Additionally, we will explore user interface of Oracle
SQL Developer Data Modeler, which is used as a primary software during
Database Systems course, as well as some other, web-based, diagram modeling
tools.

1.1 Database Systems Course

Database Systems course (DBS) is an introductory course to databases, aimed
to teach students the basic concepts of database design and management.
It is a mandatory course rated with 6 ECTS credits, recommended for second
semester of bachelor programme. [1]

1Located at https://dbs.fit.cvut.cz/

3

https://dbs.fit.cvut.cz/

1. Analysis

During the course, students will get basic understanding of theory behind
databases as well as practical experience for typical user roles, both designer
and user. Although students will get an overview of the different database
models used nowadays, the course is focused on relational database model,
which is to this day still the most popular category of the database engines
[2, 3]. At the end of the course, students will be able to properly design small
databases from the ground up, starting with logical model of the real world,
through the relational schemas used to describe properties of the data specific-
ally for the target database engine with all integrity constraints and data types,
to the creating final database in the engine itself. Students will grasp the basic
rules of good database design. They will learn about normal forms and will
be able to apply them to given relational model. They will also learn ba-
sic transformation principles between logical and relational schemas. To gain
even more insight into a lower-level workings of database engines, students
are taught basic principles of physical data storage, management of parallel
access to shared resource and its problems and recovery from failure.

As users, students are required to understand Structured Query Language
(SQL) as a querying tool of relational databases, as well as understand the re-
lational algebra, the theoretical foundation of the SQL. They will be able to
use SQL to define, create, manipulate and control database data.

To successfully pass the course, students have to hand in semestral work,
pass the exam in semester and final exam during examination period. Goal
of the semestral work is to develop smaller information system and fill it with
test data. The topic of the work is not restricted, but the work itself has
to contain:

• domain description

• at least 25 example queries in natural language

• logical schema

• implementation in selected database management system (while Oracle’s
database is preferred)

• SQL script which will fill database with example data

• at least 10 queries in relational algebra

• at least 25 queries in SQL, including data manipulation queries

Exam during semester consists of subset of problems found in final exam,
while both are more focused on practical aspects of the course.

Nowadays, semestral work is submitted through dedicated web interface
of DBS Portal. Likewise, exams are no longer written on paper, but are
handled by this portal as well, which allows easier management, marking
and is more convenient for both students and examinators.

4

1.2. Logical Data Model

From the standpoint of this thesis it is important that both semestral
work and exams require students to understand and be able to create logical
schemas of given problem. Thus, in this thesis we will further focus solely on
the data modeler utility for creating logical schemas, in the form of diagrams.

1.2 Logical Data Model

Logical schema, or logical data model, is a specific view of a problem domain.
While different logical models exist, we will focus on Entity-Relationship
Model (ER Model), because this is the one that is being lectured during
the course. ER Model, created by Peter Chen, is based on set theory and
relation theory and adopts natural view of the real world which consists of en-
tities and relationships between them, and incorporates semantic information
about the real world [4].

Chen has defined his model to work on two levels of views of data: “In-
formation concerning entities and relationships which exist in our minds” and
“Information structure - organization of information in which entities and re-
lationships are represented by data”.

At first level he defines entities as distinctly identifiable “things” which
are organized in entity sets. Each entity set has a predicate, which specifies
whether entity belongs to given entity set. Relationships are defined as associ-
ation among entities and they are organized in relationship sets, while entities
may take a role in a relationship. Formally, each relationship set is defined
as a mathematical relation among n entities, while each relationship is one
tuple of entities.

Further information are conveyed via attribute-value pairs, while key real-
ization is that they not only convey information about entities but also about
relationships. Values are, again, organized in value sets, which allows different
values from two distinct value sets to be equivalent (e.g. value 0 from value
set CELSIUS is equivalent to value 32 in value set FAHRENHEIT).

At second level Chen defines how conceptual objects from the first level are
represented. We consider the main take-away to be the definition of a primary
key, which is such set of attributes, which “mapping from the entity set to
corresponding group of value sets is one-to-one”. That means that by looking
at values of attributes of primary key we can uniquely identify the entity
itself. Chen continues by defining weak entity relations, if relationships are
used to identify entities and weak relationship relation, if entities are identified
by other relationships.

Good understanding of this model and its concepts is required by students,
however, the formal definition is not. Students are required to use concepts
of this model in creation of visual diagrams.

In the following parts of this thesis, we will simplify the terminology and
refer to “Entity sets” as “Entities” and “Relationship sets” as “Relationships”.

5

1. Analysis

Figure 1.1: A visual representation of concepts of the ER Model as defined
by Chen [4]. In this figure two entities from entity sets EMPLOYEE and
PROJECT form a relationship from relationship set PROJECT-WORKER
with attribute PERCENTAGE-OF-TIME.

6

1.3. Barker Notation

1.3 Barker Notation

Although Chen has defined his own notation for drawing ER diagrams, our
data modeler will use Barker notation, developed by Richard Barker in 1990,
both because it is more commonly used in database world [5], but mainly
because it is being taught during Database Systems course. This notation is
also being used by Oracle SQL Developer, which is used as primary software
during the course. Since original proposition of the notation may differ from
commonly used practice, we will mainly refer to SQL Developer’s dialect.

Person

* id
 o name
 o surname
 * email

Male

Female

Figure 1.2: Example of entity with attributes and two subtypes created in SQL
Developer. Entity Person is identified by a primary key id and described by
optional attributes name and surname and mandatory attribute email. Male
and Female are subtypes of the Person entity.

Barker notation represents entities as rectangles with rounded corners.
If entity is a subtype of another entity, it will be drawn inside supertype’s
rectangle. Text at the center of the very top of the entity represents entity’s
name, while entity’s attributes are listed bellow. Attributes are preceded
by one or two symbols. Asterisk (*), sometimes heavy dot (•), indicates
mandatory attribute (i.e. NOT NULL), while circle (◦) indicates optional
attribute. Attributes preceded by hash symbol (#) are part of the primary key
of this entity. SQL Developer also uses letter U to indicate unique attributes
that are not part of primary key. Although this extension was not defined
in original notation proposal, we will also cover it.

Relationships are shown as lines between two entities. Relationships are
binary, meaning they strictly have source and a target, albeit source and target
may be the same entity, effectively creating recursive relationship. Relation-
ships are split in halves, which may be named. Each half of the relationship
reflects optionality and cardinality of the role in the relationship for given en-
tity. Optional relationship is drawn as dashed line, as opposed to solid line for
mandatory relationship. Cardinality is represented by crow’s foot notation,
where crow’s foot represents many and simple line represents one. Vertical bar
symbol (|) at one and of the relationship is used to reflect that the relationship

7

1. Analysis

BA

C D

Figure 1.3: Example of relationships with different cardinality and optionality
as well as example of identifiable relationship, created in SQL Developer

takes part in the identification of the entity.
Finally, an arc across relationships of one entity represents Exclusive OR

(XOR). This constraint says that if two or more relationships are in one arc,
entity may (or must) “use” only one of these relationships.

Compared to Chen notation, Barker notation has two significant draw-
backs. Although Chen’s ER model (and notation) allows relationships to have
attributes, Barker notation does not. These relationships have to be decom-
posed and new, “artificial”, entity has to be created. Second drawback stems
from the fact that Barker notation is binary, and thus each relationship can
be made only between two entities, unlike in Chen notation which does not
have this restriction.

1.4 Data Modeler

In section 1.1 we have established that student is tasked with creation of
logical models for semestral work and during exams. In section 1.2 we have
discussed basic concepts of the ER model and finally in section 1.3 we have
discussed how the ER Model is represented in a form of diagram.

In this section we will use acquired knowledge to specify requirements of
the data modeler in regards to different roles of users that will be using it.
We will also cover current state of the utility deployed at DBS Portal and
analyse how other tools are handling data modeling.

8

1.4. Data Modeler

1.4.1 Functional requirements

The output of the data modeler is a visual 2D diagram. It is clear from previ-
ous analysis that data modeler has to recognize three main objects: entities,
attributes and relationships. First, we will cover the full feature-set and func-
tional requirements, after which we will discuss how does the functionality
change in different contexts. We have derived following functional require-
ments, which have been grouped together by the object they are related to:

Entity

Entity is the first object user will create. Entities have attributes and they
take part in relationships.

E.1 Entity may be created and deleted

E.2 Entity has a name, which can be edited

E.3 Entity may have attributes

E.4 Entity may take part in a relationship with other entities

E.5 Entity may be a subtype of another entity

E.6 Entity may be identifiably dependent on a relationship

E.7 Position on the canvas and visual size of the entity may be changed

E.8 Entity may be marked as incorrect

Attribute

Attributes convey additional information about entities and their properties.
Visually they are displayed as a list inside the entity.

A.1 Attribute may be created and deleted

A.2 Attribute has a name, which can be edited

A.3 Attribute is associated with one and only one entity

A.4 Attribute is either optional or mandatory

A.5 Attribute may be a part of a primary key of given entity or it may be
marked as unique

A.6 Order of attributes may be changed

A.7 Attribute may be marked as incorrect

9

1. Analysis

Relationship

Relationships in Barker notation are strictly binary and drawn as a line.

R.1 Relationship may be created between two entities – source and target.
Source entity may be the same one as target entity. Relationship has
two distinct halves, one attached to source entity, the other to the target
entity

R.2 Each half of the relationship may have a name, representing a role of
the attached entity, which can be shown or hidden

R.3 Name of the relationship half may be edited

R.4 Each half of the relationship is specified by partiality (optional/mandat-
ory) and cardinality (one/many), which may be changed

R.5 Relationships of one entity may be grouped into Exclusive OR. Rela-
tionships may be added to XOR relationships and removed from them

R.6 Control points for each half of the relationship may be created, moved
and removed. Control points specify how the relationship will be drawn.
Relationship is drawn as a straight line between each two successive
control points

R.7 Relationship half may be marked as incorrect

Diagram

Diagram requirements relate to whole diagram. These requirements are not
manipulating model directly, instead they support modeling process.

D.1 Diagram may be imported and exported

D.2 Diagram may be automatically laid out (“sorted”) in a way that would
minimize overlap of objects and maximize readability of the diagram

D.3 Diagram may be zoomed in or out

D.4 Diagram has a fullscreen mode

D.5 It is possible to turn on or off certain functionality of the diagram,
depending on the user role or context in which the modeler is being
used

Although DBS portal defines multiple user roles including student, guar-
antor, lecturer, teacher and so on, previous analysis has shown that data
modeler will be used only by student and examinator and finer definition of

10

1.4. Data Modeler

user roles is not needed. Instead, there is a need to restrict certain functional-
ity depending on the context in which the data modeler is being used. Student
will work with data modeler during his work on semestral project and during
exam, while examinator will be using data modeler to create reference solution
of the test and review diagrams made by students during exams or tests.

To simplify following discussion about available functionality in different
contexts, we will categorize functional requirements: Data type requirements
directly manipulate or change data of the underlying ER Model. Visual type
requirements only change how does the model’s diagram look like, but they
keep data untouched. Review type requirements are meant to let the student
know what part of the diagram is incorrect and, last, file type requirements
work with physical files.

Free creation mode

This mode will be applied in two contexts, for student when working on
semestral project and for examinator when creating reference solution. In this
case, data functionality of the modeler does not need to be limited and user
can use full feature-set of the modeler, along with saving the model and con-
tinuing from the previous state. The only restriction is review functionality,
which does not make sense in this context and thus it should be turned off.

Student during test or exam

In this context, student should not be able to export or import any type of
data, to prevent cheating. Saving of the resulting diagram will be handled
in the background by DBS portal. Students also can not review their own
work. To sum it up, only data and visual functionality is allowed in this
context.

Diagram review

After the test, diagrams created by students are reviewed by examinator.
Examinators can not be able to change underlying data model, they are only
allowed to mark errors. To make the reviewing process easier, they can change
the appearance of the diagram. Thus, in this context, only visual and review
functionality is allowed.

1.4.2 Non-functional requirements

We have to keep in mind that data modeler is not a standalone application,
but only a component of DBS portal. It has to be interactive, real-time and
run in web browsers. We have concluded following requirements:

N.1 Data modeler is implemented in JavaScript, HTML and CSS so the in-
tegration into DBS Portal is possible

11

1. Analysis

N.2 It is possible to display larger number (150+) of diagrams at one page.
This requirement will ensure as simple as possible review of diagrams
after exams

N.3 It is possible to use data modeler on resolutions as low as 1024x768

N.4 Data modeler is able to import logical model from Oracle SQL Developer

N.5 Data modeler is able to save the model in a textual form. Equival-
ent model will always output same textual representation. Model is
considered to be equivalent with another model if it fulfills following
conditions:

– Each entity in the first model has equivalent entity in the second
model. Entities are equivalent if names of the entities are equal and
both entities have equvivalent attributes, while order of the attrib-
utes does not matter. Attribute is equivalent with another attribute
if they have same name, optionality, uniqueness and whether they
form primary key or not

– Each relationship in the first model has equivalent relationship in
the second model. Relationships are equivalent if both relationship
halves are equivalent, however source and target distinction is not
important (e.g. source in first model may be equivalent to target in
second model). Relationship halves are equivalent if attached en-
tity is equivalent, cardinality, optionality and identifiability of both
halves are the same and both halves form Exclusive OR relationship
with equivalent relationships

N.6 Data modeler has to be able to display equivalent diagrams in exactly the
same way (i.e. with same placement of entities and relationships, same
order of attributes, same capitalization of names etc.) in same browser
session. Let’s consider two equivalent diagrams. If one is displayed in
Firefox and other in Chrome, they need not to be displayed in the same
way, however when both are displayed in the same browser during one
browser session, they have to be displayed in exactly the same way.

N.7 Data modeler has to work correctly and fully in Chrome version 55 and
Firefox version 50 and newer

1.4.3 Current State

Current version of the data modeler was developed by Jiří Slavotínek as his
bachelor’s thesis project. Since the state of the modeler did not change after
the project was completed, we will use the thesis itself [6], supervisor’s eval-
uation [7], reviewer’s report [8] as well as the component itself to review its
current state.

12

1.4. Data Modeler

Figure 1.4: Sample model created in current data modeler. Entity ZVIRE has
been selected. In this screenshot you can see main control elements – toolbar
and property window at the right side. If no object (entity or relationship) is
selected, property window is empty.

Area of the data modeler is vertically split into two distinct parts. Left side
takes about three quarters of the area and forms a canvas, where the diagram
is being created. At the top of the canvas we can find toolbar, which contains
actions for creating objects (Entity and Relation buttons) and manipulating
with diagram itself (sort, zoom and file actions). Right side of the screen is
used as object property window.

To create an entity, user clicks the Entity button in the toolbar. Place-
ment of the entity is handled by the data modeler and its size is predefined.
When selected, more options are shown in property window on the right side
of the modeler. Here, user can change entity’s name, edit attributes, create
ISA hierarchy by setting parent of the entity or remove entity.

Relationships are created in similar fashion. First, user has to click the but-
ton in the toolbar and then select two entities in the diagram by mouse click.
Once the relationship is created, it is automatically selected and its properties
may be changed in property window. More options are unveiled when mouse
is over the relationship. User is allowed to drag each end of the relationship
to another entity or delete relationship altogether.

Author in the thesis expresses his satisfaction with the result, but in
the same breath adds that due to his inexperience with JavaScript the im-

13

1. Analysis

Figure 1.5: Automatically sorted diagram from figure 1.4. Several issues can
be seen from this screenshot. Entities are resized to default size, which is too
small for names of attributes and are therefore truncated. Relationships are
overlapping and can not be distinguished from each other.

plementation is lacking. He also admits that another betterment could be
made in the user interface front.

Supervisor in his evaluation voices his concerns about the quality of the code
and possible future development of the modeler. In his opinion, the biggest
weakness of the utility is the user interface, which, however, was not part of
the assignment. The reviewer’s report has similar tone. Missing functionality
– Exclusive OR relationship – is criticized and he finds the interface hard to
work with, especially when manipulating with relationships. Another major
flaw is found in the sorting functionality, which tends to produce unexpected
states with hardly distinguishable details of the diagram.

Missing ability to create XOR relationship is not the only missing function-
ality. Data modeler in its current state further lacks reviewing functionality,
therefore the examinator is not able to mark incorrect parts of the diagram.
Attributes’ order can not be changed either, user needs to write attributes
in the correct order or rewrite the whole list of attributes. When attribute is
added, the name input field does not take focus and requires additional action
from user.

Placement of relationships in the diagram is managed by the data modeler,
which, however, often leads to creation of overlapping relationships. When edit-

14

1.4. Data Modeler

ing relationships, it is not clear which half of the relationship is source and
which target, so proper set up is often a trial and error process.

Data modeler is also lacking fullscreen support and functionality is re-
stricted by manually changing the HTML code for the toolbar. No obvious
support for multiple diagrams on a single page was found. Bugs during import
of the diagram from SQL Developer were also discovered, the modeler seemed
to have problems with correctly displaying optional attributes and attributes
of parent entity were displayed in both parent and child when entities were in
ISA hierarchy.

Subjectively, author of this thesis finds work in current implementation
of the data modeler laborious. User needs to constantly move his attention
from one side of the screen to another and there is very little control about
appearance of the diagram. Resizing of the entity is often difficult, since
the reaction area is very small. Moreover, feedback is in some cases non-
existent and user has no idea about what state the modeler is currently in,
or what action he should take next, which is most apparent during creation
of relationships.

Due to found design flaws and overall quality of the implementation we
find the best solution for further development to be to start from the ground
up and completely redesign the data modeler.

1.4.4 SQL Developer

Oracle SQL Developer is full-featured IDE for database development and
management, currently in version 4.1.5. It “offers complete end-to-end de-
velopment of your PL/SQL applications, a worksheet for running queries and
scripts, a DBA console for managing the database, a reports interface, a com-
plete data modeling solution, and a migration platform for moving your 3rd
party databases to Oracle” [9]. Although during the Database System course
students will use more of its features, in this thesis we will focus solely on
Data Modeler.

Data Modeler in SQL Developer allows creation of different models of
the database, two most important for the topic of this thesis are logical model
and relational model. Users are able to transform one to the other. Relational
model creation and transformation is one of the possible future expansions of
our data modeler utility, and therefore out of scope of this work. However,
interface and way the software works is identical or very similar for both types
of models.

By default, user interface consists of three parts. At the top is menu
and toolbar. Menu contains options related to the application itself, toolbar
contains icons with actions related to current view. Left side contains various
widgets, which the user can hide, show, move to different part of the view or
close. These can be various browsers, for e.g. database connections or objects
created in current diagram.

15

1. Analysis

Requirement Notes
E.8 Not implemented
A.6 Not implemented
A.7 Not implemented
R.5 Not implemented
R.6 Partially implemented; it is possible to create control points

but the way the relationship will be drawn is hard to predict
R.7 Not implemented
D.2 Partially implemented; it is possible to sort the diagram,

but the implementation produces many overlaps
D.4 Not implemented
D.5 Only possible by removing parts of HTML code of the tool-

bar; it is not possible to restrict editing of object’s properties
N.2 No native support has been found
N.4 Partially implemented; it is not possible to import XOR

relationships due to missing functionality
N.5 Partially implemented; import to JSON is available only

from code, download functionality is trying to mimic SQL
Developer format. Quality and comparability of these ex-
ports was not analysed

N.6 Partially implemented; relationships tend to be drawn dif-
ferently

Table 1.1: Overview of requirements not implemented or not implemented
fully in current data modeler

Entity is created by selecting action from the toolbar and then either
clicking or clicking and dragging (“drawing”) on a “canvas”, the third part
of the screen which occupies the majority of space. Drawing method allows
user to also specify the size of the entity already during its creation. To add
attributes, user needs to either double click on the entity or select “Properties”
from context menu. This will open another window, where user can completely
set up all properties of the entity, which are grouped into categories. Name
of the entity and super type (for creating ISA hierarchy) can be changed in
the first, General category. Attributes are managed in Attributes category,
where they can be also set as a part of primary key. Unlike primary key,
to set attribute as unique, unique key has to be created first in a separate
section, after which, in property window of this key, attributes can be added
to it.

Creation of the relationship is easy, user can select one of four types of
relationships (M:N, 1:N, 1:N Identifying, 1:1) from the toolbar and then click
on two entities. Upon creation of the entity, new relation properties window

16

1.4. Data Modeler

Figure 1.6: Same diagram as shown in figure 1.4 drawn in SQL Developer
Data Modeler with default setup of the user interface

Figure 1.7: Example of properties window of SQL Developer Data Modeler. In
the screenshot we can see the Attributes section of entity properties window.

17

1. Analysis

is automatically opened, from which user can further set up properties of
relationship.

To create an Exclusive OR relationship, user selects (either by clicking
and dragging with select tool selected or by holding Ctrl key and clicking on
objects in canvas) one entity and all relationships that should be part of XOR.
If the selection is valid, Arc button, which creates XOR, will be activated in
the toolbar.

SQL Developer Data Modeler is not very easy nor intuitive to use. That
is caused by the sheer number number of functions this software offers. Even
the most simple actions may take a lot of steps, often through multiple win-
dows. Sometimes the functionality is disabled and it is not clear how to enable
it, which is the case of XOR, for example. On the other hand, relationship
creation is handled quite well since user can choose what type of relationship
he wants to create and therefore no additional setup may be needed (which
is however also suppressed by the fact, that the property window is auto-
matically opened and has to be closed, even if the relationship works as is).
The robust design of SQL Developer works well for big projects but modeling
smaller diagrams of few entities that students will encounter could greatly
benefit from simpler interface. On the other hand, students are already used
to work in SQL Developer and the design of DBS Portal data modeler should
reflect that.

1.4.5 Online Data Modelers

Last part of the analysis is devoted to analysis of user interface design of online
data modelers. Four web-based modelers have been selected.

1.4.5.1 Creately

Creately [10] is an online modeler with support for all kinds of diagrams,
mind maps, trees, infographics and various charts, written in Flash. For ER
modeling it uses Chen notation for attributes but crow’s foot for relationships.
Toolbar with universal diagram actions (open, new, save, undo etc.) is located
at the top of the screen. Rest of the screen is divided into three parts. Shape
picker is located on the left side, canvas for drawing diagram is in the middle
and takes majority of the screen and an expandable bar with properties, notes,
comments and other tabs can be found on the right side.

Objects are created by dragging them from shape picker into canvas or
from overlay menu of each object – when object in the canvas is selected,
it will display menu above itself. Actions in the menu depend on the type of
the object that was selected, e.g. entity contains following actions: Edit Text
(allows editing of Entity name), Connect (starts drawing line from this entity),
Order (moves objects in the canvas to front or to back), Link to Diagram or

18

1.4. Data Modeler

Figure 1.8: User interface of Creately with example ER Diagram. Relationship
Sit is selected with visible menu above the selection.

URL, and Create Relationship. More options are hidden in under a caret icon,
from where e.g. ISA hierarchy can be created.

Overall, drawing diagrams in Creately is easy. However, major drawback
is that Creately is universal diagramming tool, and in general does not know
about objects themselves. For example, it is possible to draw a line between
two attributes. Control of the objects is good, user can move objects freely on
the canvas and resize them, it is even possible to set absolute position and size
in the properties window. That can not be said about relationships though.
Their placement on objects is very restricted, each object has defined points
where the relationship can be drawn from. In case of entity, there are four
points, so if the entity has to have five relationships they will overlap.

1.4.5.2 Vertabelo

Unlike Creately, Vertabelo [11] is specifically build to support database de-
velopment. Among its features we can find collaboration support, versioning,
SQL generation, live validation, search and more [12]. First major drawback
of Vertabelo is its support. Vertabelo only works in Google Chrome and Sa-
fari. Screen setup is familiar, with the toolbar at the top, model structure
window on the left, properties on the right and canvas in the middle. Verta-
belo builds relational models – support for logical modeling was not found at
least in preview version of the application.

Entity is created when user clicks on the canvas while “Add new table” is

19

1. Analysis

Figure 1.9: User interface of Vertabelo with example ER Diagram. Entity
product has been selected and its properties are visible on the right side of the
window.

selected from the toolbar. It is not possible to set size of the entity by holding
left mouse button clicked and moving the mouse, entity is always created with
the same default size. Upon creation, entity is automatically selected and can
be resized or its properties may be changed, including addition of attributes,
from the panel on the right. Relationship is created with, again, appropriate
tool selected and then clicking and dragging from source to target entity.

Interface is similar to current DBS portal data modeler, however, it is much
more mature, albeit it might be considered to be somewhat “claustrophobic”
due to amount of options and panels. We consider the biggest weakness to be
the need to shift focus and attention throughout whole screen when setting
up entities and relationships. Relationships do not allow creation of control
points and they are managed mostly automatically. On the other hand, model
structure which shows clearly organized all objects in groups is useful feature,
however, it is questionable whether it would be useful also for smaller models
made during Database Systems course.

1.4.5.3 Draw.io

Draw.io [13] is open-source universal diagramming tool. It supports wide
variety of shapes, however, same as Creately has no understanding of the
modeled data. Interface may be very familiar to users of Google Documents2,

2https://docs.google.com/

20

https://docs.google.com/

1.4. Data Modeler

Figure 1.10: User interface of Draw.io with context menu for Holiday entity
open.

since it is apparent Draw.io’s interface was inspired by Google. To draw
an entity, shape is dragged from the shape browser into canvas. Entity’s
content is simple text, so the user has to be wary of the correct format. No data
validation is possible due to the nature of the application.

Relationships are drawn from the center of one of the four sides of an entity.
When mouse is over the entity, little arrows and control points are displayed.
When either of them is clicked and dragged, relationship starts to be drawn.
When there is a relationship drawn from the center of the edge already, the ar-
row stays hidden, in which case the relationship has to be drawn from specific
control point. Relationship themselves are just mere lines with a lot of style
options for both line and its ending and the modeler allows also lines that do
not connect to the entity.

Interesting feature is context menu of drawn objects which is typical for
desktop software but not so much for web applications. Context menu can be
open via right click and contains easily accessible options, e.g. delete.

1.4.5.4 TinyModeler

Last tool, Tiny Modeler [14] is feature-wise the simplest one out of the com-
pared alternatives. It is not limited to database modeling and can be used
e.g. to create class diagrams. Its interface is also the most minimalistic one
out of all compared tools, there is only a toolbar at the top of the window and

21

1. Analysis

Figure 1.11: User interface of TinyModeler with small diagram and over-
head menu displayed for entity Delivery. This screenshot was taken from
TinyModeler’s website [14].

the rest is left for canvas.
To create an entity, user needs to select Add Entities from the toolbar and

click on the canvas. Entities can not be resized at all (size of the entity is
handled automatically), but can be freely moved. Relationships are created
either from toolbar or directly from entity, which has overhead menu displayed
on mouse over. This menu contains four actions represented by icons: new
relationship (called “association” by this modeler), inheritance, properties and
delete. When entity is clicked, property window is opened. From this window
user can add attributes, change entity’s name and set reflexive relationship.
Relationships have similar properties window, from which cardinality, identi-
fying relationship or a label may be set.

While the interface is very simple, it has fundamental flaws. First of all,
consistency is an issue in at least two places. First, relationships between
entities are created differently than recursive relationships. Not only creation
is the problem, but also their set up. Relationships between entities have their
own property window, while recursive relationships are set up strictly from
entity. Second consistency issue is with the menu above entities. First two
actions (new relationship, new inheritance) are meant to be dragged to target
entity, while other two actions (properties, delete) are simple buttons.

22

1.4. Data Modeler

1.4.5.5 Summary

We have explored four web based data modelers and their solution of a user in-
terface design, from the minimalistic TinyModeler to feature-rich Vertabelo.
Although all four modelers allow creation of diagrams, they solve different
problems. Creately and Draw.io are general-purpose tool that allows creation
of basically any type of diagram, but because of that they do not know any-
thing about data they model. On the other hand, TinyModeler focuses on
domain modeling not neccessarily just for database development and Verta-
belo is mature database design tool.

As well as the problem they are solving, their approach to user interface
also varies. Entities were drawn either by dragging a shape into canvas (Cre-
ately, Draw.io), or by using dedicated tool and clicking at the place where the
entity should be drawn (Vertabelo, TinyModeler).

Relationships could be drawn from menu shown above entity (Creately,
TinyModeler), from the entity’s edge (Draw.io) or by dedicated tool (all but
Draw.io). However, we did not find relationship handling to be satisfying in
any of the tools. Usual problem is restricting the manual control over how
the relationship is drawn.

All modelers offered some way to set up additional properties of the drawn
object, whether it was by popup window or by dedicated panel.

23

Chapter 2
User Interface Design

In this chapter we will focus on user interface design. We now know what work
is being done in the Database Systems course and what is required of the data
modeler. We have also analysed the interface of the current data modeler, SQL
Developer Data Modeler and other online tools, which should provide good
base for laying out familiar looking and easy to work with interface. First, we
will discuss design principles that have been attempted to be achieved, then
we will look at design itself.

2.1 Principles

In the user interface design, user comes always first. When working in a stress-
ful environment like exams often are, where users are pressed by time and have
a (maybe unfamiliar) problem to solve, it is even more important to design
an interface, that will be easy to understand and simple to use. Minimalism,
simplicity and efficiency were all the staples that were strived for.

Minimalism meant minimization of any kind of toolbars, windows or views.
Interface should be as clean as possible, non-intrusive and provide minimum
distractions, yet to still show users all they need to see. Good interface design
should draw as little attention to itself as possible.

Simplicity principle was kept in mind to prevent so called “feature creep”
or “scope creep”. Feature creep is a name for process of ongoing addition of
new features and broadening the scope of the project, which may cause losing
the focus or shifting the emphasis from what are critical parts of the software.
Only the subset of features which are necessary for either accomplishing given
tasks or those that allows users to use the software more efficiently and effect-
ively should be kept and focused on.

Inspired by Asimov’s laws of robotics, in the book The Humane Interface
[15] Jef Raskin defines two laws of user interface design. Second law3 says

3Raskin’s first law is “A computer shall not harm your work or, through inactivity, allow

25

2. User Interface Design

Figure 2.1: First version of the user interface of new data modeler

A computer shall not waste your time or require you to do more
work than is strictly necessary.

In accordance to this law, last of the main design principles is efficiency. User
should be able to achieve their goal in minimal number of steps, clicks or key
presses and all possible actions should be always easily accessible.

2.2 First Design

On the very first look, the first design did not differ from the final one in
too many ways. The whole screen of the data modeler works as canvas and
buttons are located in three of its corners.

Top left corner contains mode switching options. In the view mode user
can not make any changes, neither visual nor to underlying data model, but
can zoom or move canvas. In edit mode all editing capabilities are permitted.

Top right corner contains diagram options: sort and export. Sort runs
automatic layout of the diagram’s objects, export saves the underlying model
in a text format. Import works by dragging a file onto canvas, which was kept
in final design.

Bottom right corner contains zoom controls. Common symbols for zoom
are used – magnifying glass icons with minus and plus. In the middle, between
the icons is a percentage showing current zoom level. Click on the percentage
resets zoom level back to 100%.

your work to come to harm.”

26

2.2. First Design

Figure 2.2: Entity menu of the first version of the interface. Both menu and
resize controls are shown when the mouse is located over the entity.

Holding true to the minimalism principle we set for ourselves, we wanted
to minimize toolbars and various panels. However, user needs to be able to
interact with objects. Solution for this problem was inspired by Creately and
TinyModeler, which use object menus – menus shown above the object which
has mouse pointer over it, usually showing icons. We find the advantage of
this menu style to be its simplicity and placement, since user does not need to
travel to other parts of the screen. Moreover, user always knows what object
is being edited, since the menu is shown directly above it.

Unlike Creately and TinyModeler, we have extended object menus to all
objects: entities, attributes and relationships. This was achieved by ability to
show menu not only above the object also on the left and right, as can be seen
in figure 2.3, where editing of an attribute is being demonstrated. We can see
both entity’s menu with options to create new attribute, new relationship and
delete entity as well as attribute menus, one on the left side used for set up
of attributes properties and one on the right side containing option to delete
attribute. Backgrounds of the object menus can be color-coded.

Entities are created either by single click on the canvas, which would create
entity of the preset size, or by clicking and dragging (“drawing”). Entity’s
name is edited in-place, double click on the entity’s name shows text input
which the user can edit. New name is confirmed by Enter key. When mouse
cursor is over entity, resize control points at the borders of the entity become
visible and menu above entity is shown. To resize an entity, user clicks on
one of the control points and drags it, to change entity’s position user drags
the entity itself in similar fashion.

27

2. User Interface Design

Figure 2.3: Attribute setup in the first version of the interface

Figure 2.4: Relationship setup in the first version of the interface

28

2.2. First Design

New attributes automatically enter edit mode and the input field for at-
tribute name takes focus. Attribute names are edited in-place, same as entity
names. Attribute’s position may be changed by dragging the attribute in
the entity.

Lastly, relationships are created also from the entity’s menu. When rela-
tionship is being created, line from the source entity is being drawn until user
clicks on the canvas to cancel it or on the target entity to confirm creation.
To set up relationship, user clicks on it, which shows menu above each end of
the relationship. From this menu, user can set role (relationship name) and
change other properties (identifying, required, cardinality). The line which
represents relationship may be changed by dragging it, which automatically
creates new control point. Also, the end of the relationship may be dragged,
however, the movement is restricted to the entity and it can not be dragged
to another entity.

2.2.1 Evaluation

Some of the problems of this design were hinted by lo-fi prototype, but they
became truly apparent in hi-fi prototype. We will discuss found problems in
no particular order.

First problem was consistency. Entity menu contained only buttons, at-
tribute menus contained buttons and switches and relationship menus con-
tained only textbox for editing role of the relationship and checkboxes. Place-
ment of the menu was also an issue, since it requires inherent knowledge of
the system from users. They have to focus on what type of object they are
editing, since each object has menus at very different place. Lastly, although
not the major issue, entity and attribute menus were shown when mouse was
over an object and relationships required click, however, this could be easily
fixed by showing all menus on click.

Furthermore, it was problematic to work with objects’ menus when objects
were close to the edge of the canvas. Menus could overflow out of the canvas
and some or all options were not accessible.

When considering future extensibility, the menu system did not provide
any room for more options. It could be condensed a little bit by using icons,
however, that brings another set of problems and further requirements on
the user, where he would have to figure out what each icon means and then
remember it.

One of the strengths of this design is that maximum area of the screen
is left for diagram drawing itself. No space is taken by additional windows
or views. In-place editing of entity and attribute name is also convenient,
however, double click may be unnecessary and single click could work at least
as well, if not better. This system should be also used for relationship roles,
to ensure consistency.

29

2. User Interface Design

2.3 Final Design

To solve the problems of the first iteration, menu system has been completely
thrown out and replaced, better and more modular system has taken its place.
Canvas window was also further simplified and additional functionality which
will help new users was added.

Canvas now only have icons in upper right corner. From right to left, first
icon is new info button. This button toggles informational window contain-
ing shortcuts overview. Shortcuts are often used by power users, but there is
a problem of how to convey the information about available shortcuts. There-
fore, one encompassing and minimal view with available shortcuts was created.

Second from the right are zoom controls. Functionally unchanged from
the first iteration, there are two icons with current zoom level in between.
Only difference is that they were moved here from the bottom right corner.

Last button, which will only be available for examinators, is a switch
to marking mode, in which examinator will be able to mark incorrect parts
of the diagram. View and edit modes from first iteration were completely
abandoned, since they were not really needed, because the option to create
entity by single click was removed.

Another change from the first iteration is entity creation, which can now be
created only by click and drag. Click-to-create option was removed because
evaluation of previous prototype showed that new entities could be easily
created when user did not mean to, i.e. misclicks. Along with that, entity is
now selected on mouse click, after which control points for resize are displayed.
This change was made because in last prototype control points were often
hidden when user moved cursor a little bit too much away from the entity,
which in turn made resizing a much harder than it should have been.

The biggest change, however, is already mentioned revamp of the menu
system. Proprietary menu style was removed in favor of typical context menus,
which are shown on right click and have, compared to previous solution many
advantages:

• Context menus are typical in all current OSs and users are accustomed
to them, in some situations they even expect context menus. This may
not hold for regular users but each user that will use this data modeler
is expected to have above average computer experience. However, this
presumption will still need to be tested in proper user test.

• Addition of more options is no longer a problem. Context menus are
easily vertically as well as horizontally (via submenus) scalable.

• Menus are shown at a place where user clicks, which minimizes cursor
travel, especially in case of long relationship or large entity.

30

2.3. Final Design

Figure 2.5: Final version of the application demonstrating context menu of an
attribute

• Items may have icons without needing too much extra space. Further-
more icons help user memorize available options and access them more
quickly. They are also used to show current state directly in menu.

• Context menus are consistent across whole data modeler. User will
always know that on right click he will get same-looking menu with
appropriate options.

• Because context menus are displayed on click, they are no longer over-
lapping parts of the diagram unless user wants to use some option from
the menu.

Each object in diagram will now have its own context menu options at-
tached, including diagram itself as well as secondary objects like relationship’s
control points. Moreover, context menu is “built” top-down, meaning that
when user induces menu for an attribute they will also get options for attrib-
ute’s entity as well. The only exception is diagram’s menu, which is shown
only when directly induced. Inner workings of menu system will be discussed
in more detail in the next chapter.

Last issue to solve from previous iteration is in-place names edit, which was
not consistent for relationships roles (those were edited from object menus).
Although relationships do not show their names by default, they can be toggled

31

2. User Interface Design

Figure 2.6: Example of error, success and hint message from final application

from the menu. Once the name is shown, it can be edited by simple mouse
click, which shows text input. Name change may be confirmed by clicking in
the canvas or by pressing enter key and canceled by pressing Esc key, which
is now same system used across all editable texts in the diagram. The only
change from previous prototype is that doubleclick is no longer required, edit
is initiated by single click.

New in this iteration is also a messaging system, which is used to show
error messages, success messages and can also be used to show tips or tutorial.
These messages are shown across top of the canvas with centered text. Icon
next to text and color of the background of the message denotes what type of
message is being displayed.

32

Chapter 3
Implementation

In this chapter we will discuss the implementation of the diagramming utility
itself. We will start from the ground up, overviewing used technologies and
how were they used, including programming patterns, then we will discuss
overall architecture, after which we will delve into implementation details and
explanations of some of the algorithms and inner workings of the modeler.

3.1 Technology

Whole data modeler utility is built on four technologies: HTML, CSS, JavaS-
cript and SVG. One of the non-functional requirements of the data modeler is
that it is to be written in JavaScript. This requirement stems from the need
to run the modeler online, in web browser and on client to ensure sufficient
interactivity. This requirement also indirectly leads to the rest of the techno-
logies. Since data modeler has to work in a browser, HTML4 and CSS5 are
used to render the data modeler utility. Lastly, SVG is used to render and
manipulate the diagram itself.

3.1.1 JavaScript

JavaScript has its roots in Netscape. It was invented by Brendan Eich, who
was supposed to “do Scheme in a browser” [16]. JavaScript was first imple-
mented in Netscape Navigator 2.0 in May 1995 under a name “Mocha” [17].
Nowadays it is an implementation of ECMAScript standard6, first edition of
which was released in 1997 and, currently, 7th edition is being developed [18].
As of writing of this thesis, all modern browsers fully support 5th edition of
ECMAScript [19].

4HyperText Markup Language
5Cascading Style Sheets
6Maintained by Ecma International – European association for standardizing informa-

tion and communication systems

33

3. Implementation

JavaScript is a prototype-based scripting language with first-class func-
tions, thanks to which it supports object-oriented, imperative and functional
programming styles [17]. It needs a host environment that provides objects
to which JavaScript may connect and gain programmatic control of [18, 20].
In a client-side implementation the host environment is usually a web browser,
giving JavaScript access to Document Object Model (DOM) and some of
the browser’s functionality. Server-side implementations also exist, one of
the most popular ones is Node.js which is built on Chrome’s V8 JavaScript
engine [21].

In this project we have used object-oriented style as it was deemed most
appropriate. We presume that further development and maintenance will be
done by students of Faculty of Information Technology who, based on current
curriculum, should have most experience with this programming style.

Further in this section we will also discuss some of the main concepts of
the object-oriented programming that were used in our JavaScript implement-
ation.

3.1.1.1 Namespacing

Oxford Dictionary defines namespace as “a class of elements (e.g. addresses,
file locations, etc.) in which each element has a name unique to that class,
although it may be shared with elements in other classes”. [22] We could
also think of namespaces as “container” which bundles together code for the
application or its part to prevent naming conflicts. We have already discussed
that data modeler will be deployed to a DBS Portal and proper namespacing
is vital for smooth deployment and prevention of conflicts with the rest of the
code base.

Namespace concept does not exist in JavaScript, namespaces are simulated
by objects instead, which is allowed by first-class functions. As a result, there
is no difference between regular objects and namespaces in Javascript [23].
Following pattern is used to define namespace:

// global namespace for whole data modeler code
var DBSDM = DBSDM || {};

// sub namespace Model
DBSDM.Model = DBSDM.Model || {};

First, the check is performed whether a DBSDM global object is already
defined. If it is not, empty object is created and assigned to DBSDM vari-
able, which will now serve as a global namespace. Similarly, sub namespace
DBSDM.Model is created. The shorthand assignment with logical OR works,
because in JavaScript logical OR returns left expression if it can be converted
to true and otherwise returns right expression.

34

3.1. Technology

3.1.1.2 Classes, Encapsulation

Like namespaces, JavaScript does not have a class keyword like many other
Object-oriented programming (OOP) languages do7 (e.g. C++ or Java).
Since JavaScript is a prototype-based language, new classes are created as
an assignment of anonymous function to the variable. This function will serve
as a constructor and will be invoked each time new instance of the class is
created.

Typically, new instance of a class is created with new operator. When new
Foo() is executed, following happens [25]:

1. New object inheriting from Foo.prototype is created

2. Constructor function with this variable bound to newly created object
is called

3. Result of the whole expression is object returned by the constructor.
If no object is returned, the created object is returned instead.

All properties of the class are defined inside constructor function. If a vari-
able is defined as a property of an object attached to this variable it will
become public property, while variables declared with var keyword will be
private and accessible only to private methods.

Methods in JavaScript are of three types: public, private and privileged.
Public methods are defined as a property of object’s prototype, while both
private and privileged are defined in constructor. Private methods are defined
as regular functions inside the constructor, have access to private variables
but are not accessible to public methods. The bridge between public and
private methods is created by privileged methods, which have access to private
methods and properties and are accessible to outside and public methods.
They are defined as property of the instance. [26] These concepts are demon-
strated in code snippet in listing 1.

Although this approach works, there is a problem with performance and
memory footprint. Unlike public methods which are defined on object’s pro-
totype and thus are created only once for all instances of the class, for each
private and privileged method new object and closure needs to be created every
time Foo is instantiated. Since one of the requirements of the data modeler is
the ability to display large number of diagrams at one page, (true) private and
privileged methods were not used in this form. Instead, to gain some ability
to restrict access, a variation on module pattern and naming conventions were
used.

7Syntactic sugar for creating classes, along with class keyword for class definition and
extend for inheritance has been added in ECMAScript 6 [24], bringing whole syntax closer
to other OOP languages

35

3. Implementation

var DBSDM = DBSDM || {};

DBSDM.Foo = function() {
this.publicProperty = "World";
var privateProperty = "Hello";

// private property used to make public members accessible
// to private and privileged methods
var that = this;

function privateMethod() {
return privateProperty;

}

this.privilegedMethod = function() {
return privateMethod() + " " + that.publicProperty;

}
}

DBSDM.Foo.prototype.publicMethod = function() {
return this.privilegedMethod();

}

var foo = new DBSDM.Foo();
console.log(foo.publicMethod()) // prints "Hello World"

Listing 1: Code snippet demonstrating basic class definition and encapsulation
in JavaScript

3.1.1.3 Module Pattern, Prototypal Pattern and Naming
Conventions

Since its creation in 2003, module pattern has been popularized by Douglas
Crockford in his lectures [27]. It is being widely used and its usefulness and
variability has been proven by the wide adoption in many popular JavaScript
libraries and frameworks, including e.g. YUI [28] or jQuery [29]. Private mem-
bers are achieved via closures and Immediately-invoked function expressions
(IIFE) [27].

The simplest form of this pattern can be seen in listing 2. In this code
snippet, new module called Module was created by defining and immediately
invoking anonymous function. Inside this function, private members which are
not accessible from outside are defined as standard JavaScript variables and
functions. The function returns an object (using object literal notation in this
case), which defines public API to the module. Public methods may access

36

3.1. Technology

var Module = (function(){
var privateVariable = 0;

function privateMethod() {
return privateVariable++;

}

// anonymous function returns an object
// which defines public interface
return {

publicVariable: "Hello",
publicMethod: function() {

console.log(this.publicVariable);
return privateMethod();

}
}

})(); // immediately execute anonymouse function
// and assign the result to Module variable

Listing 2: The basic form of module pattern in JavaScript

other public members via this keyword as well as all private members, while
private methods may access only other private members8. Thanks to closures,
all private functions are created only once, but the pattern in this form does
not allow instantiating of the created objects since its missing constructor,
so in OOP terms we could say it simulates static class.

When module pattern is combined with class definition covered in previ-
ous section, proper ability to create classes with private members and ability
to instantiate object could be achieved to some degree. Although private
members are possible, private variables declared in a module pattern fashion
would only work as private class variables, instead of private instance vari-
ables. This problem is demostrated in codes snippet in listing 3.

As you can see, when calling getName method on first object, we will get
unexpected output Second instead of First. This is caused by the fact that
both f1 and f2 share the same closure in which privateName is defined, thus
both instances of the Foo class reference same variable.

Due to the nature of JavaScript it is not an easy task to achieve proper
access restrictions. It could be argued whether this is even something that
should be tried to simulate. One of the main disadvantages of private members

8It would be possible for private method to access object properties, if it were in-
voked by call method, which assigns object given as first argument to this keyword:
privateMethod.call(this). This is often used to e.g. chain constructors.

37

3. Implementation

var Foo = (function(){
var privateName;

function Foo() {} // constructor function

Foo.prototype.setName = function(name) {
privateName = name;

}

Foo.prototype.getName = function() {
return privateName;

}

return Foo;
})();

var f1 = new Foo();
var f2 = new Foo();

f1.setName("First");
console.log(f1.getName()); // prints "First"

f2.setName("Second");
console.log(f2.getName()); // prints "Second"

console.log(f1.getName()); // prints "Second"

Listing 3: Demostration of private class variables in module pattern.

in JavaScript is that they suppress dynamic nature of the language. One of
the effects of this is that they restrict patching without need to change the
original (3rd party) code [27, 30]. They also create further complexity, because
they are being called differently (private methods directly, public as a property
of this), which could become a problem when one decides to change access
restrictions of the member.

One of the ways that private members are simulated in dynamic languages
that do not have native access restrictions is naming convention. One of the
examples is Python, which, by convention, prefixes private members with an
underscore [31]. This, naturally, does not create “true” private members, since
they are still accessible from the outside of the class, but they let programmers
know that certain members should be treated as private (or protected).

In our implementation of the data modeler it was decided to use module
pattern for all data modeler classes. Static classes are used for helper ob-

38

3.1. Technology

jects, private class variables in regular classes are often used as shorthands to
namespaces or as constants. The naming convention inspired by Python is be-
ing used for instance private members, where each private member is prefixed
by single underscore character. Decision to use primarily naming conventions
to manage access was done in regards to future development. Since there is
no “best” solution for having instance private variables similar to other OOP
languages in JavaScript and prefixing is one of the most viable options, pre-
fixing method names as well will keep consistency and good code readability.
This will also eliminate other issues with scope and visibility of other class
members and it should be easily understandable to future code maintainers.

3.1.2 SVG

HTML5 introduced two methods for drawing graphics in a web page, raster-
based and vector-based one. The canvas element provides ability to draw
bitmap images. With its low-level API scripts are able to draw basic shapes
and even create simple animations [32]. It can be also used by WebGL to
draw hardware-accelerated 3D graphics [33].

SVG [34], while older standard than HTML59, was in HTML5 allowed to
be drawn inline via svg element. SVG stands for Scalable Vector Graphics,
from which it is apparent that this technology is vector-based. Graphics are
described in XML, which creates full scene graph (Document Object Model),
which can be fully accessed and manipulated via scripting languages (in our
case JavaScript). Similarities with HTML do not end there, SVG elements
are stylable and they may have events attached, which makes them great for
creating interactive graphical applications.

It should be clear from this description itself why the SVG was chosen
as the technology used to draw diagrams. Data modeler is interactive, which
means that user will have to manipulate objects in some way. That is suppor-
ted by both Document Object Model and ability to attach events (mousedown,
mouseup etc.). Moreover, stylability allows, in addition to visually format
elements via CSS, to also hide certain elements when they are not needed,
without the need to expensively create or destroy them.

Although a lot of JavaScript libraries for SVG manipulation exists, ini-
tial research showed that they are not suitable for this project, due to their
abstraction from SVG DOM and focus on features that are not key for data
modeler, like animations. It was decided to not use any library and instead
manipulate SVG DOM directly. As an additional advantage, future develop-
ment will not rely on 3rd party libraries.

9Current revision of SVG standard, 1.1, was released in August 2011 [35], while HTML5
standard was released three years later, in October 2014 [36]

39

3. Implementation

svg element

svg element is used to create a new SVG canvas (SVG document fragment)
inside a HTML document. In this canvas, other SVG elements may be created
and the resulting graphics would be rendered. Canvas is infinite in both dir-
ections, but rendering occurs relative to finite region, which is called viewport
and basically defines what the user will see [37]. Each viewport also defines
coordinate system in relation to which all child objects are positioned. svg
elements may be descendants of another svg element, thus creating new SVG
document fragment with its own viewport and coordinate system.

g element

g element is used for grouping of other SVG elements. Some of the attributes
may be used to manipulate whole group at once, e.g. transform attribute
used to translate, scale or rotate SVG elements. Unlike svg element, which
essentially groups objects as well, g element does not create new viewport and
all grouped elements are still being transformed relative to the closest svg
element in hierarchy.

defs and use elements

These elements form a part of the mechanism for content reuse. defs is similar
to g element with the exception that all elements in former are not directly
rendered and they may be later referenced by other elements. Elements may
be referenced from other properties by their ids, e.g. gradient defined in defs
may be referenced from fill property.

The use element is used to reference entire objects. This template object
indicates that another object will be rendered at that place of the document.

Referenced objects do not need to be defined in same SVG document
fragment. This means that we may define “shared” objects once and use them
in multiple data modelers, if they were to be displayed at once in one page.
This technique was exploited in our implementation as well, shared elements
are created during the initialization of the diagram and are later referenced
from individual canvases.

3.2 Architecture
The most important part of the data modeler is, naturally, diagram handling.
Creation of underlying model, user interaction and rendering of the diagram
as a whole is the main purpose of whole application, and thus the good im-
plementation is vital. An effort was made to produce code with possibility of
future extension, which would be also easy to maintain. In this section we will
describe the basics of how the code is structured, although it is not meant as
a complete documentation.

40

3.2. Architecture

DBSDM.Diagram.init();
(new DBSDM.Canvas()).create();

Listing 4: Minimal usage example. This code will initiate data modeler with
default settings and create one empty canvas for modeling.

Figure 3.1: Model-View-Controller pattern

Before any canvas can be drawn, modeler has to be initiated. That is
the responsibility of DBSDM.Diagram, which also maintains shared objects and
keeps track of created canvases. Each canvas is in this case one model, one dia-
gram. Once the data modeler has been set up, new canvas may be created by
instantiating a DBSDM.Canvas class and calling create method on this object.
This will create new svg element that will serve as container for other SVG
objects.

Once the canvas is created, user may start drawing their logical model.
At this point we are implementing an application with graphical user interface
(GUI). One of the most popular patterns for this implementation, especially
for web based applications, is Model-View-Controller (MVC) pattern10, which
was originally created by Trygve Reenskaug for Smalltalk [27]. This pattern
solves the problem of separation of concerns between data, their representation
and user input handling and decouples objects of the application into three
layers: model, view, controller.

Model is a top-most layer. Objects on this layer do not know anything
about how the data will be presented to the user or how the user will be able

10Other popular patterns are e.g. Model-View-Presenter or Model-View-ViewModel

41

3. Implementation

to interact with them. The responsibility of this layer is implementation of
the data structures and business logic of the problem domain of the applica-
tion. Objects on this layer may create one to one or one to many relationships.

View is responsible for visually presenting data to the user.

Controller is the intermediary between model and view layer. Controller
objects are responsible for handling user interaction and may be also allowed
to govern objects on other layers.

Several interpretations and implementations of the MVC pattern exist
[38, 39, 40, 27]. While all agree with the basic separation and responsibil-
ities of each layer, they may have different opinion about how these layers
communicate with each other. There is no doubt that model is a separate
layer, that must not rely on other layers. However, if the model in the applic-
ation may change without the user prompting it (e.g. by periodical network
update), model may implement Observer pattern to notify rest of the applic-
ation about the changes. Another question is whether view should be able to
directly make requests to the model, or whether all queries should be handled
via controller layer and, similarly, whether events should be defined in view or
in the controller (however, handling of the events is strictly done in control-
ler). If the application needs to implement persistency of the data, the point
of contention may also be whether that is the responsibility of the model layer
or the controller.

In our implementation, the model does not implement observer pattern.
Data in the model may change only by two ways – directly by the user,
where the updates would be handled by controller, or via import, which is
handled by DBSDM.Canvas class. After import, all objects are created anew,
and thus notifications from model are not needed. Furthermore, view can dir-
ectly query model and only persistency option is export, which is also handled
by DBSDM.Canvas class

The decoupling and separation of the application into three layers allows
for better flexibility, reuse and expansion. For example, Barker notation is
used in current implementation of data modeler. However, that is just the one
of the possible presentations of the underlying data – model. Same diagram in
another notation would have exactly the same underlying model, so if we would
decide that we want to have the ability to draw diagram in, say, Chen’s nota-
tion, all that would be needed to do is to change the current implementation
of the view layer. Similarly, the model layer could be extended to keep track
of more data, for example data types of the attributes. This addition would
not affect other layers of the application, but another view could be created
to display e.g. relational model. Therefore, two very different presentations
of the same data would be possible.

42

3.3. Mouse Handling

3.3 Mouse Handling

Primary control method of the data modeler is the mouse, which is made
possible by HTML and SVG events. The main, most frequently used events
in the application are mousedown, mousemove and mouseup. Once the view
creates an SVG elements, appropriate event listeners may be added to them.
User input is thus made possible by events created in view and handled by
controller objects. However, not all user inputs are handled directly.

In essence, events are fired when a mouse cursor is located over an ele-
ment, which has appropriate listeners attached. Let’s consider entity drag.
When user wants to drag an entity, following happens from the user’s point
of view:

1. User moves mouse cursor over an entity and presses down the left mouse
button

2. With the left mouse button still pressed, user moves the mouse, which
will translate entity’s position

3. User depresses the button, making the entity’s position final

In ideal case, this could be handled directly by mouse events. The svg
element that forms the container of the entity would have all three mouse
events attached, and when fired they would be handled by entity’s controller
object.

Now, consider the user makes a rapid mouse movement. If the movement
is fast enough, browser might not have a chance to execute whole update loop
in time and the user might see the entity dragging behind cursor so much,
that the cursor would no longer be over entity. If the user would not wait
for the entity to “catch up” and depresses the mouse button, mouseup event
would not fire for the entity but for whatever object that might be located at
cursor’s position.

To solve this problem we have created the DBSDM.Mouse class, which serves
as a layer handling all mouse events. The basic idea is that mousemove and
mouseup events are only attached to the canvas itself, while mousedown event
is fired on target element as usual. Let’s consider entity drag again, now with
an added explanation of how are these events handled:

1. User moves mouse cursor over an entity and presses down the left mouse
button. mousedown event is fired on an svg element forming the container
of the entity. The event is handled by down method of the DBSDM.Mouse
object, which will receive reference to the controller object of the entity
as an argument. Controller object reference is saved.

43

3. Implementation

2. With the left mouse button still pressed, user moves the mouse, which
will translate entity’s position. Thanks to event bubbling11, mousemove
event is propagated to the canvas and fired. The event is handled
by move method of the DBSDM.Mouse object, from which a handler for
mousemove events on the controller object is invoked.

3. User depresses the button, making the entity’s position final. mouseup
event is fired on the canvas. The up method of the DBSDM.Mouse object
handles the event. Proper handler is then called on entity controller
object, after which the reference to this object is nullified.

With this approach even if the user makes rapid movement, events are
always handled by right objects.

This added layer has several other advantages. Since each canvas on
the page has its own instance of the DBSDM.Mouse class, it is possible to
transform document coordinates into canvas’ viewport coordinates, further
simplifying event handling. It adds versatility, because objects may be at-
tached programmatically instead of through the mousedown event. Finally,
it saves memory and improves performance, because overall number of event
listeners is cut down by only requiring attachment of mousedown listener on
target objects, while still allowing these objects to handle mousemove and
mouseup events.

3.4 Context Menu
Context menus are the main method of providing options for the user. Des-
pite each object offering different options, there is only one context menu for
the whole page, which is managed by a static class DBSDM.MenuController
that handles menu creation, display and invocations of appropriate handlers
on diagram objects.

Menu is defined by a JavaScript object. Each property of this object defines
one section of the menu – options for one type of the object on the diagram.
Options themselves are required to have name and id, while icon and per-
missions (user for enabling or disabling menu options) are optional. When
diagram is initialized, the definition of the menu is used to create its HTML
representation.

The menu is set up in a way to allow showing multiple sections at once.
That means that when user gets menu for e.g. attribute, they will also see
options for the entity itself. The only exception are canvas options, which are
displayed only when menu for canvas is directly invoked.

Display of the menu is handled by listening to contextmenu events on
elements of the diagram. When the event is fired, controller object, section

11When fired, event propagates from the element on which it was fired up the DOM tree
and fires for all ancestors

44

3.4. Context Menu

{
/* ... */
entity: [// definition of menu options for entity

// Add Attribute option, with id ``attr'', icon
// ``list'' and requiring permission ``allowEdit''
["Add Attribute", "attr", "list", "allowEdit"],
[

// definition of Add Relation item
// which creates submenu
"Add Relation",
[

// definition of submenu items
["N:M", "rel-nm"],
["N:1", "rel-n1"],
["1:N", "rel-1n"],
["1:1", "rel-11"]

],
"link", "allowEdit"

],
["Is a...", "isa", null, "allowEdit"],
// icon and permission are optional
["Fit to contents", "fit"],
["Delete Entity", "delete", "ban", "allowEdit"]

],
/* ... */

}

Listing 5: An excerpt from menu definition

name and optionally parameters for setting the state of the menu item, are
sent to DBSDM.MenuController.attach to attach controller object to given
section, essentially marking it for display. By bubbling through the DOM,
multiple sections may be attached. Once the event reaches canvas, the menu
is displayed by positioning it at the coordinates of the mouse click.

The user actions are handled by listening to click events on the menu’s
container. Once the user clicks the item, DBSDM.MenuController figures out
in which section the item resides and calles handleMenu for attached object
of that section.

45

3. Implementation

Figure 3.2: Context menu of relationship’s control point, demonstrating the
hierarchical system. Menu has three sections, first for control point itself,
second for relationship half, third for whole relationship.

3.5 Strategy for Placement of Relationships
Anchors

When creating new relationships, the application has to decide where should
the relationships attach to the entities. We will refer to the point, where
the relationships attach as an anchor. In fact, we will consider an anchor to
be whole “crow’s foot” from the Barker notation. The problem that needs to
be solved therefore is, how to find an appropriate location for new anchor.

There are two main requirements we have to consider: anchors should
not overlap and relationships, drawn as a straight line, should be as short
as possible. First requirements stems up from the diagram readability. En-
forcing second requirement should produce more visually pleasing diagrams.
Without it, relationships would be allowed to be drawn in a way, that the line
would be crossing the entity it is attached to.

Our algorithm works in a following way:

1. Given source and target entity, find the edges that could be considered
for the anchor placement. Let’s consider source entity to be placed to
the upper left of the target entity. In this case, bottom and right edge
of the source entity and upper and left edge of the target entity should
be considered. However, relative position of the entities is not enough,
instead, edges themselves have to be tested in order to take into account
various possible sizes of the entities. Hence, opposite edges of the entities
are tested to determine entities position. Left and right edges of these

46

3.5. Strategy for Placement of Relationships Anchors

entities are selected if the left edge of one entity is located to the right
of the right edge of the other entity. Top and bottom edges are tested
analogically.

In special cases when entities overlap or form ISA hierarchy and no edges
were selected, all edges of both entities will be used to find the best
position of the anchors.

2. Find one possible location for each new anchor on each selected edge.
In a trivial situation when no anchor is yet created on the edge, use
middle of the edge.

In other cases, selecting one point is not as straightforward. If we were
strictly trying to satisfy no-overlap requirement, we could place each
point at a specified minimum distance from already created anchors.
This strategy would, however, fail, if the edge gets saturated. True,
anchors would not be overlapping, but also no new relationships would
be possible to make, until the entity is resized. Moreover, diagrams tend
to be more readable and “nice to look at” when the anchors are evenly
space, although this is matter of personal opinion and taste.

The strategy we have ended up using consists of interval halving and
works as follows: split the edge into intervals by current anchors; the new
point is at the middle of the largest interval. Notice that this algorithm
can not produce anchors at the very end of the edge12. This may not be
a problem for larger entities, but could lead to overlapping anchors more
quickly than necessary on smaller ones. Because of that, when the new
point’s distance from the closest anchor falls below certain threshold,
edge’s ends are also considered as possibility. Out of these three loc-
ations, the one that is most distant from other anchors is selected as
a new point.

3. Out of the all possible combinations of points, select the closest two, one
from each entity. This ensures that the relationship will be as short as
possible.

Same algorithm is used when entities move and relationships have to be
recomputed13. The only difference is that the new point is not being computed
for the edge on which the anchor currently exists. Instead, anchor’s current
location is used for that edge.

12When placing anchors, some offset from the end of the edge is always considered to
prevent visual overflow of the anchors outside the entity

13Relationships that the user manually manipulated (changed their position or moved
their control points) are the exception and their positions are not changed when entities
move until user straightens them.

47

3. Implementation

Figure 3.3: Example of automatically laid out diagram

3.6 Automatic Diagram Layout

Automatic diagram layout (“sort”) is one of the functional requirements, stem-
ming up from the examinator role. Examinators usually have to mark tens of
tests, which may include one or more diagrams. Although automatic compar-
ison of answers with reference solution is possible by comparing the textual
representation of the model, it is still required to manually check how major
the mistake the student made was. To aid in this process, diagrams need to be
visually laid out for easier comparison with reference solution. The functional
requirement says, that it has to be possible to display equivalent diagrams in
the exactly the same way, when displayed in one browser session14.

Same display in itself would not be very useful though. Diagram with all
entities at the same place would pass this requirement. The layout has to
be readable – all elements have to be discernible. Additionally, relationships
should be drawn in a way that they would be minimally crossing other rela-
tionships and entities should be evenly spaced. In addition to these obvious
rules, more criteria for drawing aesthetic diagram could be created, however
further research and study, which is beyond the scope of this thesis, would

14Diagram layout may differ between various browsers, browser versions, operating sys-
tems etc. due to minor differences in floating point arithmetic.

48

3.6. Automatic Diagram Layout

have to be performed to support them.
To be able to lay out the diagram, we need to consider entities and rela-

tionships. We may think of a diagram as a graph, where each entity of the dia-
gram is a node, while relationships between entities are edges. Direction of
the relationships is not important, the graph is undirected. Loops in graph
are created by recursive relationships, multiple edges between same nodes are
not prohibited. Although user may add control points and change the line
that is created between two entities, we may force straight lines during sort.
One more thing to consider is that although we are thinking of the diagram
as of graph, we are not transforming it. The graph drawing algorithm has to
be possible to use directly on diagrams themselves, which, unlike graphs, have
nodes (entities) of various sizes.

Various approaches have been proposed for sorting small undirected graphs
[41, 42]. In our implementation we have chosen to use one of the force-direct
methods, which is a class of algorithms that tends to satisfy the rules we have
laid out for drawing visually pleasing diagrams. Methods of this class tend to
not scale well for large graphs and other techniques and refinements have to be
used for graphs with more than a few hundreds of nodes [42]. Since diagrams
made via the data modeler will never reach this scale, classic force-directed
algorithms are more than sufficient.

The core of the layout algorithm is implementation of the Fruchterman and
Reingold’s method proposed in 1991. It extends the spring-based algorithm
of Eades by repulsive forces to achieve even distribution of graph’s nodes.
The basic idea of this spring-electrical model is to consider each edge of the
graph to be a spring and each node to behave like atomic particle, that exerts
repulsive forces on other particles (entities) [41, 42].

Springs are, in our case, relationships between entities. Springs are trying
to keep the predefined, optimal, length – when entities are too close, springs
will repel them, when they are too far apart springs will attract them. In ad-
dition to proposed model we are also adding additional force to try to put
entities on a grid. That is because entities are rounded rectangles and we
consider it to be more visually pleasing, when the relationships form angles
as close as possible to 90 degrees with the edge of the entity.

Algorithm 1 Diagram Layout Algorithm
fit() . Resize all entities to fit their contents
for i← 1, iterations do

computeSpringForces()
computeEntitiesRepulsions()
applyForces()

end for
moveToOrigin() . Move all entities to the origin of the canvas’ viewport

49

3. Implementation

length = |~r.x|+ |~r.y| (3.1)
~a = ~r · attractionScale · (length− optimal) (3.2)

~v =
{

~r.x |~r.x| < |~r.y|
~r.y otherwise

(3.3)

~s = ~v · straightenScale · (|~v.x|+ |~v.y| − optimal) (3.4)

~fR = ~a− ~s

2 · length
(3.5)

Figure 3.4: Spring force ~fR. ~r is a vector representing relationship, com-
puted from positions of its anchors, ~a is attraction vector of the spring
and ~s is straightening vector trying to keep entities in a grid. Final force
vector is halved, since the same force of opposite orientation is being applied
to both source and target entity at once.

~v = (CB − CA) (3.6)

length =
√

~v.x2 + ~v.y2 (3.7)

~fE =
{

0 length > optimal · repulsionDistanceScale
~v · repulsionScale·optimal

length2 otherwise
(3.8)

Figure 3.5: Repulsion force ~fE . CA and CB are the centers of entities.

Repulsion forces are computed for all entities that are in certain radius
of the entity. Fruchterman and Reingold proposed ignoring repulsion from
distant entities to reduce the complexity of the algorithm, but the other reason
we are ignoring them is to prevent the “float-away” of disconnected entities.

The algorithm is iterative. In each step, the forces exerted on each node
via springs and repulsions are calculated. Once the calculations are complete,
the forces are applied and entities move. The number of iterations influences
the quality of the layout, a trade-off between higher quality of the layout and
performance, which is one of the limiting factors of the algorithm. In each
iteration, repulsive forces for each relationship and each pair of entities must
be computed, which makes the per-iteration cost of the algorithm O(|V |2),
where |V | is number of entities.

The other problem of not only this algorithm but whole class is that they
are prone to getting stuck in local minimums. Improvements could be made

50

3.7. Import

by using better initial configuration15, simulated annealing or other techniques
which could move whole parts of the graph [41, 42]. These options were
not deeply explored, since they are out of the scope of this thesis and basic
algorithm is providing sufficient results. It is, however, one of the fields that
could be improved in future work.

Constant name Value
iterations 100
attractionScale 0.25
straightenScale 0.1
optimal 100
repulsionScale 25
repulsionDistanceScale 25

Table 3.1: Set up of the diagram layout algorithm

Figure 3.3 shows the result of the sorted diagram with settings listed in
table 3.1. This diagram can be also seen in figure 1.5, which shows the result of
the sort by the current implementation. More results of the layout algorithm
can be found in Appendix C.

3.7 Import

Currently, there are two ways to import diagrams. One is to use JSON, which
was previously exported from the data modeler, the other is to import Data
Modeler Design from SQL Developer.

3.7.1 JSON

JSON is a lightweight, data-interchange, text format built on collections of ob-
jects (name-value pairs) and arrays [43]. Since it is based on the JavaS-
cript object notation, it can be easily generated and parsed by JavaScript
(and other programming languages), and is readable by humans, it was selec-
ted as a format for storing data models created in our data modeler.

To export data, data modeler creates one object with two properties: entit-
ies and relations. Entities property is an array of objects, where each object
represents one entity storing its name, name of its parent in ISA hierarchy
and list of attributes. Relations property is array of arrays describing all rela-
tionships that exist in the model. Each relationship is stored as an array of two
objects, each object representing one half of the relationship. When model was

15Currently, the layout algorithm is automatically called after each import, which places
entities alphabetically in a rectangle on the canvas, which becomes initial configuration for
the layout algorithm

51

3. Implementation

{
"entities": [

/* ... */
{

"name": "Object",
"parent": null,
"attr": [

{
"name": "object_id",
"primary": true,
"unique": false,
"nullable": false

}
]

},
/* ... */

],
"relations": [

/* ... */
[

{
"entity": "Object",
"identifying": false,
"optional": true,
"cardinality": 0,
"xor": null

},
{

"entity": "Animal",
"identifying": false,
"optional": false,
"cardinality": 1,
"xor": "17e7eb61cc2d7d7a9fbde5bed789a80f"

}
],
/* ... */

]
}

Figure 3.6: Excerpt of JSON format used by import and export

52

3.7. Import

Algorithm 2 Generation of XOR Relationship Hash
hash← Array

for all relationshipHalf in XOR do
relationship← GetRelationship(relationshipHalf)
push(hash, GetHash(relationship))

end for

sortedHash← sort(hash)
return join(sortedHash)

marked by the examinator, incorrect objects will be exported with additional
incorrect property.

Notable is also a storage of XOR relationships. During lifetime of the dia-
gram, XOR relationships are tracked as an array of object references by the en-
tity they are attached to. Simple solutions, like storing list of relationship’s
role can not be used, since there is no guarantee that the role will be set,
nor that if set it would be unique. A solution that would not only allow cor-
rect import of XORs but also textual comparison was achieved by creating
hash of the whole XOR relationship, which is used as an identifier during im-
port. This hash consists of hashes of all relationships that take part in XOR
– it is important to use hash of relationship instead of just relationship half
attached to the entity, since there may be multiple equivalent halves forming
different relationships.

Export may be initiated by user from the context menu of the canvas,
or programmatically from the outside of the data modeler. It is also possible
to export JSON string into variable instead of prompting download of a file,
which may be used to store model in a database or to compare it with another
model. Textual comparability is achieved by normalizing data16 and sorting
object’s properties before its string representation is created. Similarly, JSON
can be imported by user by dragging the JSON file onto canvas, or program-
matically. Programmatic export and import is handled by import and export
method of the DBSDM.Canvas.

3.7.2 SQL Developer DataModeler

SQL Developer offers multiple ways to save or export created designs. One of
the possible options is the export to Data Modeler Design, which creates
a folder structure containing XML documents. We were not able to find
any official, public or private, description of this format, but exploring files of
several exported models provided sufficient knowledge to be able to parse and
recreate the model in data modeler of DBS Portal.

16In fact, normalization of user input is done during modeling

53

3. Implementation

Logical model description is located in folder logical. In this folder, arc,
entity and relation folders may be found, containing XML files describing
XOR relationships, entities and relationships respectively. Each of these files
contains description of one object that is assigned unique identifier and may
reference other objects by their identifiers. In order to import Data Modeler
Design, the zip file of this folder structure17 is uploaded by dragging it onto
the modeler’s canvas. The zip file is then extracted via JSZip library [44] to
allow parsing of XML object files themselves. In order to import the model,
the “import” object described in previous section and in figure 3.6, is created
and imported in the same way as if it was created from uploaded JSON file.

The creation of the import object has two phases, since we can not ensure
that objects will be parsed in such a way, that all referenced objects are already
known.

In the first phase all XML object files are parsed and saved in a map.
Following maps/objects are needed:

entityMap A collection of entities in an identical format as they are stored
in the import object. Both name and attributes are already set, parent
property is yet null

parentMap An array of pairs, where the first item in pair is ID of the child
entity in the ISA hierarchy and second item is ID of the parent entity

relationsMap An array storing relationships identically with their storage
in the import object. In the map, entity names are entity IDs, since it
is not guaranteed that the referenced entity was already parsed. xor
is null, because information about XOR relationships are stored in arc
files.

relationsRef A collection mapping IDs of relationships to their index in
the relationsMap

arcMap Map of XOR relationships – arcs in the terminology of SQL De-
veloper. Each XOR is an array of entity ID and relationship ID pair.

In second phase, all objects are already known and thus the references
may be resolved. Maps created in the first phase are used to build a resulting
import object.

3.8 Adaptation of Messaging System for Tutorial
Feedback is one of the principles of good interface design [45, 46]. One of
the mechanisms implemented to provide feedback is messaging system, which

17It does not matter where in the archived folder hierarchy the folder logical is located.
User may decide to upload Data Modeler Design in its entirety or only the folder logical
– no objects outside this folder are used during import

54

3.8. Adaptation of Messaging System for Tutorial

can show three types of messages: success, error and hint. Each message
has different icon and color of the background, helping user more easily eval-
uate the importance of the message at the first glance. While success and
error messages are handling mainly status of the import, hint messages have
been adapted to use in a tutorial, created to teach new users about basics of
the modeler.

The basic idea of the tutorial is to tell the user what to do and how
to achieve it. Currently, four steps of the tutorial are defined:

1. Start by drawing an entity or dragging an exported JSON or SQL De-
veloper zip file into canvas

2. Click on Entity to select it

3. Right click on any element of the canvas to get more options

4. Click and drag middle mouse button to move the layout

Each step of the tutorial teaches user something new. In the first step
user learns that he can either create an entity (and how) or import diagram.
He also learns what import formats are supported. In second step user learns
that to manipulate with objects he should use left mouse button and that
some objects may be selected. In third step of the tutorial context menu
is introduced and via menu user gains knowledge of more actions he can take.
By telling the user that menu can be initiated on any element, he is lead to
explore the modeler by himself. In last step of the tutorial the user learns
that the area for drawing diagram is not limited by the size of the window.
These four steps should give users enough information to comfortably use and
create even complex diagrams.

We believe that users should not be punished by knowing more than is
expected of them. User’s first action may be to try right click, even if tutorial
tells him to draw entity or import diagram. In this case he would already
learn that context menus exist and he does not need to be shown the third
item of the tutorial.

Implementation of tutorial system is handled by DBSDM.UI class. Tutorial
messages are properties of the private tutorial object; property names are
used as their identifiers to reference them from the rest of the code. Messages
left to be shown and their order are defined as an array of property names
of the tutorial object. Tutorial is initiated by a call to advanceTutorial
method, which will show the first tutorial message. Once the user completes
the task set by tutorial, acceptTutorialAction method will remove it from
the list of unfinished tasks. If the completed action was currently the displayed
one, tutorial is advanced to new task, if there is any task left.

55

3. Implementation

Option Default Description
allowEdit true Allow changes to the diagram. If false,

only actions that do not change the under-
lying data model will be allowed, e.g. visual
transformation of entities

allowFile true Allow import and export actions. If false,
import and export may be initiated only
programmatically

allowCorrectMode false Allow switching to marking mode, in which
examinators are able to mark incorrect
parts of the diagram

showTutorial true Determines whether tutorial should be
shown or not

confirmLeave false When true, user will be asked to confirm
they want to leave, if the diagram was
not exported after last edit; if user de-
cides to stay, error message will be shown
in the canvas with unsaved changes

Table 3.2: Available options during initialization of data modeler

3.9 Distribution and Integration of Data Modeler
Source code of the data modeler is formed by multiple files across different
folders, majority of which are JavaScript files defining all application logic.
It would be very impractical, error-prone, not to mention inefficient18 and not
easily update-able, to require programmers to manually point to each source
file from the HTML. The application is therefore distributed in single merged
JavaScript file, which needs to be loaded along with stylesheet of the data
modeler and other libraries19 that are used by the data modeler.

In listing 4 of section 3.2 of this chapter we have already provided minimal
example of canvas creation. Listing 6 provides more realistic usage example of
the integration into another project, while table 3.2 shows available settings.
In this example, data modeler is initialized with non-default settings, which
will apply to all canvases created in a document. Two canvases are created,
a model defined by JSON string is parsed into JavaScript object and imported
into second canvas. After import, the model is exported and non-prettified
JSON string is printed into console.

18Possibly only until HTTP/2 is widely implemented
19Font Awesome v4.6.3 and above[47] for icons, JSZip v3.1.3[44] for extracting zip files,

saveSvgAsPng[48] library for saving diagram as an PNG image

56

3.9. Distribution and Integration of Data Modeler

/**
* Initialize Diagram
*/

DBSDM.Diagram.init({
allowEdit: true,
allowFile: true,
allowCorrectMode: true,
confirmLeave: true,
showTutorial: true

});

/**
* Create empty canvas
*/

var canvas1 = new DBSDM.Canvas();
canvas1.create();

/**
* Create canvas and programmatically import diagram
* Note that JSON string is truncated
*/

var json = JSON.parse('{"entities": [...],"relations": [...]}');
var canvas2 = new DBSDM.Canvas();
canvas2.create();
canvas2.import(json);

/**
* Export contents of second diagram
* and print JSON string into console
*/

var promptDownload = false;
var prettify = false;
console.log(canvas2.export(promptDownload, prettify));

Listing 6: More complete example of integration of data modeler, showing
initialization with non-default settings, programmatic import and export

57

Chapter 4
Testing

Although the data modeler has been designed and developed with the best of
intentions, in accordance with findings in initial analysis and evaluations of
prototypes, it is still unknown how usable the application is. Proper evaluation
and testing of the user interface is needed to discover any usability issues.

One of the methods of user interface design evaluation is heuristic analysis.
Evaluators, usually experts in user interface design, are presented the interface
(either a prototype or fully functional application) and asked to comment
on it to express the opinion about how good or bad they consider it to be.
Evaluation is usually done according to certain rules – heuristics. Heuristic
evaluation is often used because it is cheap and can be used in early stages
of the development, but it will probably not generate breakthrough design
suggestions.

In 1990, Nielsen and Molich conducted a study on heuristic evaluations
[49] in which they discovered that although even non-expert evaluators20 may
identify problems experts miss. Overall individual performance ranged only
between 20% and 51%. They conclude that aggregated results of at least
three to five people should be used to provide good evaluation and additional
resources to be spent on alternative evaluation methods.

The most obvious method for testing the user interface, however, is em-
pirical testing with real users of the application. Testing with real users may
have various forms. We may observe users in the environment the software
will be used, in specialized lab or even remotely. Each of this forms has its
own advantages and disadvantages. For example, testing in real environment
will be more realistic, but users may be more distracted by other people and
we do not have full control over the conditions in the environment, so tests
may be hard to repeat [50].

Typically, users are asked to complete a scenario – realistic list of tasks –
during which they are being watched by evaluators, who are trying to identify

20Evaluators were groups of students and readers of Computerworld magazine, mostly
industrial computer professionals

59

4. Testing

Figure 4.1: Nielsen curve showing aggregate proportion of usability problems
found during four original experiments [45]

obstacles or parts of the software which do not support the task comple-
tion. After all scenarios are complete, user may be interviewed or asked to fill
a questionnaire to get an insight into what he thinks of the interface.

4.1 Heuristic Analysis
Data modeler was heuristically evaluated by the author of the thesis in ac-
cordance with ten principles for interaction design defined by Nielsen [45].
These heuristics were based on nine original heuristics Nielsen developed with
Molich in [51]. We will go through each rule, list its original definition and
discuss how it was handled by our design. Since the evaluator is the same
person as the interface designer, we are not expecting to find any major is-
sues. However, the evaluation may still be useful to ensure that no rule was
neglected during design.

Visibility of system status

The system should always keep users informed about what is going
on, through appropriate feedback within reasonable time.

Data modeler may end up in several states, each as a result of some ac-
tion taken by the user. Provided feedback depends on the context. Some of
the examples are:

60

4.1. Heuristic Analysis

• entity changes color when it is selected during creation of ISA hierarchy

• relationship halves are highlighted during creation of XOR relationship

• rectangle with control points is drawn around selected entity

• background color of the canvas changes when switched to marking mode

• icons in context menu may change for items that have on/off state

• success or error message is displayed after import

• menu items may be disabled if user does not have appropriate rights

We have identified only one action that may take longer time to finish
– import in some configurations of layout algorithm. However, any feed-
back we could provide in these cases would be diminished by the fact that
the browser or browser tab usually becomes unresponsive each time the per-
formance heavy JavaScript is being run.

Match between system and the real world

The system should speak the users’ language, with words, phrases
and concepts familiar to the user, rather than system-oriented
terms. Follow real-world conventions, making information appear
in a natural and logical order.

Data modeler has very little text, which can be found mostly in context
menus. Menu options use terminology that should be understandable to all
users of the modeler and most of the menu options also have icons which should
aid in understanding the option. We have tried to match icons to as many
options as possible and we believe that selected icons are good representation
of the item.

User control and freedom

Users often choose system functions by mistake and will need
a clearly marked “emergency exit” to leave the unwanted state
without having to go through an extended dialogue. Support undo
and redo.

Although unwanted states (selecting entity, initiation of XOR or ISA cre-
ation, text edit etc.) can user easily leave by clicking on the canvas or pressing
Esc key, there is no support for undo and redo. This functionality was con-
sidered, but it was left for possible future extension.

61

4. Testing

Consistency and standards

Users should not have to wonder whether different words, situ-
ations, or actions mean the same thing. Follow platform conven-
tions.

Data modeler is minimal web component. Although the usage of context
menu is non-standard in classic web pages, it is not unheard of in more complex
web applications. Morever, it is a common functionality in all major operating
systems with graphical user interface. We consider both design and behaviour
of the context menu to be consistent with context menus across various systems
and their applications.

Error prevention

Even better than good error messages is a careful design which
prevents a problem from occurring in the first place. Either elim-
inate error-prone conditions or check for them and present users
with a confirmation option before they commit to the action.

We have tried to design the modeler in a way that would prevent any need
to show error messages to the user. Following list explains situation in which
the error messages were necessary and also provides examples of situations
which requires confirmation from the user:

• Import can fail out of several reasons beyond our control – uploading
is turned off, user tries to upload file of wrong file type etc. These cases
are handled by showing error message informing user about the cause
of the error.

• During creation of XOR relationship, user may try to select relationship
half that could not be part of the XOR. The attempt to prevent this
is made by changing colors around relationship half: yellow is currently
selected entity, red entities can not form XOR and green can form XOR.
If user select incorrect relationship half anyway (or relationship half
attached to different entity), error message is shown.

• User may try to leave the page, close the browser tab or browser itself,
without exporting the diagram. To prevent the loss of the work, user is
prompted whether he really wants to leave21.

• Canvas may be cleared by user via context menu of the canvas. To
ensure that the user does not accidentally delete all his work due to
misclick, a prompt is shown to confirm the action.

21This behavior may be turned off. See table 3.2

62

4.1. Heuristic Analysis

Recognition rather than recall

Minimize the user’s memory load by making objects, actions, and
options visible. The user should not have to remember information
from one part of the dialogue to another. Instructions for use of the
system should be visible or easily retrievable whenever appropriate.

All possible actions are always easily obtainable via context menu dis-
played by right click. Since there are no multi page dialogs and everything
happens in one window, we argue that user does not need to remember any-
thing for regular usage of the modeler. To obtain more information about
advanced features – e.g. shortcuts, simple info view can be always displayed
via icon in the upper right corner of the canvas and via F1 key.

Flexibility and efficiency of use

Accelerators – unseen by the novice user – may often speed up the
interaction for the expert user such that the system can cater to
both inexperienced and experienced users. Allow users to tailor
frequent actions.

Some shortcuts were created to improve efficiency of advanced users. Most
notable is cycling through attributes with TAB key, which allows both quick
rename as well as creation of new attribute, or deletion of attribute by clearing
its name. This area could be probably improved in the future based on how
users will want to use the modeler.

Aesthetic and minimalist design

Dialogues should not contain information which is irrelevant or rarely
needed. Every extra unit of information in a dialogue competes
with the relevant units of information and diminishes their relative
visibility.

Decision to create minimalistic design was made even before the designing
process started. All focus is directed to the diagram itself and irrelevant
information is never displayed.

Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes),
precisely indicate the problem, and constructively suggest a solu-
tion.

Due to the inherent knowledge of the system we are not able to judge
how well the error messages are interpreted by users with no or little prior

63

4. Testing

Figure 4.2: Reference solution of the task from user testing

experience with the modeler. However, all error messages are written in plain
language and try to explain the cause of the problem. When possible, they
also try to suggest a solution.

Help and documentation

Even though it is better if the system can be used without doc-
umentation, it may be necessary to provide help and document-
ation. Any such information should be easy to search, focused
on the user’s task, list concrete steps to be carried out, and not be
too large.

Tutorial, implemented to teach users how to use data modeler, was dis-
cussed in greater detail in section 3.8.

4.2 Testing with Users

Although theoretical evaluation of user interface may uncover issues of the in-
terface and hint whether the design is good or bad, the software itself will
not be used by experts in user interface design, who may have significantly
different skillset, knowledge, requirements and point of view of real users of
the application. Testing with real users may provide invaluable insight and
show actual weaknesses and strengths of the interface.

We have conducted a usability test with 21 students of Database Systems
course during one of the tests in semester. Data modeler was deployed into
DBS Portal and one of several tasks was to create a logical model for simple
problem. To create correct solution, students would need to create several

64

4.2. Testing with Users

entities, attributes and relationships. They would also need to set entities
names and change properties of attributes and relationships. Correct solution
did not contain XOR relationship nor entity participating in ISA hierarchy.
Reference solution may be seen in figure 4.2. Students did not have practical
experience with new data modeler prior to the test, but some of them may
have seen it during seminar.

Students were observed while working on a modeling task without any
interaction with them, unless they got stuck and could not find the solution
to their problem by themselves. It is important to note here that data modeler
has been deployed with tutorial turned off. Once students were finished with
the test, they were asked to complete a fifteen question survey.

4.2.1 Observation of Users

All students seemed to grasp overall design philosophy even with tutorial
turned off and no prior explanation on how to use the application. They seemed
to have no problem with using context menu even in web environment and all
users learned that context menu exists by themselves.

The biggest usability issue we have found is that out of 21 students, three
were not able to figure out how to create entity. One of them eventually did
figure it out, but other two had to be told to “draw” the entity by clicking
and dragging the mouse on the canvas. Even though they were not able
to figure out the drawing mechanism, they successfully found context menu
and information window, which currently contains list of available keyboard
shortcuts. An interesting side note is that most of the other users, those
that had no problem with starting to work on a diagram, were not observed
to notice an icon toggling information window22. To solve this issue we will
add an option for creating entity of default size to canvas’ context menu.
We will also add information about click and drag creation to the information
window.

Another user was trying to create an attribute by double clicking the en-
tity, which is probably a behaviour of some other data modeler. However,
once he saw that this approach does not work, he had no problem adding
attribute through context menu. However, this approach seems like a good
shorthand and alternative to other methods of creating attributes and thus
it will be implemented.

One user was observed to have a difficulty with changing position of the re-
lationship anchor. Instead of dragging anchor itself he tried to drag the entire
relationship, which instead creates control points. This probably stems from
the learned behavior of SQL Developer Data Modeler, where sometimes drag-
ging control point also changes the position of the anchor itself. However, we
find that solution not to be very good, since it is not predictable. We be-

22Located in upper right corner of the canvas

65

4. Testing

lieve that our solution provides better control over the relationship drawing.
In current implementation, when user moves mouse cursor over the anchor,
the cursor changes to signify that anchor can be dragged. We consider this
solution to be adequate.

On the edge between usability issue and bug is the activation of text edit
after creation of relationships. Creation of new relationship is finished by
clicking on target entity. If user clicks on an editable text (name of the entity
or the attribute), the relationship is created and text is selected for edit.
Same thing may also happen during ISA hierarchy creation. This behavior is
unexpected and may confuse or annoy users and will be fixed.

Once the student was done with the test, teacher offered to take a quick
look at his answers. This allowed us to make a small observations of the ex-
aminator role as well. Teacher was using mostly a mobile device – tablet –
to take a quick look at the diagram and compare it with reference solution.
If the two did not match, he tried to find what was the major difference.
We were able to see that the layout algorithm works well enough, but in some
cases it generated overlapping anchors, which could not have been moved by
touch controls. For future work we suggest either adding support for touch
controls or creating specialized interface for mobile devices.

Overall, the observations of users during their work with data modeler did
not show any fundamental flaws in the design of the user interface. All users
were able to use the modeler to create a diagram without any major help and
minor issues that were found will be fixed.

4.2.2 Post-test Survey

Post-test survey was meant to provide better understanding of the users’
experience with data modeler they just used. In fifteen questions we first
tried to establish what experience the user had with other data modelers,
then we tried to find out what was their experience with our implementation
and in what areas it could be improved.

Question 1: What data modelers do you have experience with?
What strengths and weaknesses they have in your opinion?

This question aimed to understand what prior experience with data model-
ing tools students had. As expected, all users that answered this question
listed Oracle SQL Developer Data Modeler, while four users also listed En-
terprise Architect, which they probably used in software engineering classes.
Only eight students provided any opinion on these tools, generally found them
to be counterintuitive and hard to working with, thus confirming that our fo-
cus on simplicity and minimalism was correct.

66

4.2. Testing with Users

Question 2: What take you the most of the time during model
creation? (e.g. creation of entities, addition of attributes,
relationship setup, ...)

This question was meant to serve two purposes. First is to figure out what
operations should we focus on in further development to help users more easily
and more quickly achieve their task, while second purpose is give some insight
to the user’s opinion on how usable the system is in following questions.

Twenty users in total answered. 13 spend most time with setup of relation-
ships, 4 with attributes and 1 spends equal amount of time on relationships
and attributes.

From these answers it is clear the we should pay very close attention to rela-
tionship handling in further evaluation of the questionnaire results. Moreover,
it looks like prioritizing improvements to relationship handling should be con-
sidered to improve user experience of most users.

Question 3: Have you found all functionality where you expected
it? If no, what functionality was it?

Only two students answered this question negatively. First student expected
to create an entity by single click. Although implementation of this feature
is possible, we have found during early tests and development that this could
easily lead to creation of entities by accident and worsening the overall user
experience. Creation of entity via click can work in a software which offers
tools that the user may select and use. An example of this implementation
can be found in SQL Developer, which has a New Entity tool and Select tool.
User may switch between these tools in a toolbar and thus the accidental
creation of entity is unlikely. However, as we have already discussed, the ob-
servations showed that creation of entity could be an issue. As a compromise
we will add – along with changes discussed in previous section – an option to
create entity of standard size by double click.

Second student expected an option to rename attribute in context menu.
Since in current implementation the attribute can be easily renamed by click-
ing on its name, we do not think that addition of unnecessary item to the menu
would be good idea and it would go against minimalism and simplicity as a
principles we set for our design.

Question 4: Rate following operations based on how easy to use
you have found them to be, where 1 means very simple to use and
5 means very complicated to use

Answers to this question should reveal what parts of the application students
found most difficult to use. Results have been aggregated in table 4.1. Opera-
tions were divided into three sections (entity, attribute, relationship), based on

67

4. Testing

Ratings count
Operation 1 2 3 4 5 Average rating
Creation of entity 18 2 . . . 1.10
Entity name edit 19 1.00
Change of entity’s position 17 3 . . . 1.15
Entity resize 21 1.00
Average rating for entity operations 1.06
Creation of new attribute 13 7 1 . . 1.43
Attribute name edit 15 . 1 . . 1.13
Attribute setup 14 4 . . . 1.22
Average rating for attribute operations 1.26
Creation of new relationship 7 10 4 . . 1.86
Relationship setup 8 7 3 . . 1.72
Average rating for relationship operations 1.79

Table 4.1: Results of question 4 of post-test survey. Zeros were replaced with
dot symbol for better readability

the object they relate to. To be able to compare results more easily, we have
computed average rating for each option as well as for each section.

Overall we can see that users did not find any operation to be downright
difficult to use. Problems with entity creation were already discussed and
with the proposed changes we believe that the average rating 1.06 will further
improve.

We notice two outliers in ratings for attribute operations, but it turns out
that we have already discussed these in previous question. Student which gave
a rating of 3 for creation of new attribute operation expected the attribute
to be added by double click on the entity and user who had problems with
rename was looking for rename option in context menu.

Creation and setup of relationships are the most complex operations users
had to use to solve the task. Ratings of these operations were significantly
worse compared to operations on entities and attributes, showing that there
is a room for improvement, but they were still positive or neutral.

Question 5 & 6: Did you use any keyboard shortcuts? Why not?
Did you expect any keyboard shortcuts? Which ones?

These questions aimed to find out more about how users use data modeler.
Vast majority of users did not use any keyboard shortcuts. The reason they
stated was that they did not know about them, on the other hand they had
not listed any shortcuts they were missing. The fact that they were working
in the data modeler for the first time, on a small model and in a stressful

68

4.2. Testing with Users

environment may have also contributed to the fact that they were not even
trying to use shortcuts.

However, two users stated that they tried to delete entity with Del key
which did not work. This answer was surprising, because this shortcut was
supposed to be supported. Further investigation showed that there is a bug
in implementation and the keyboard shortcut was not properly working in
Chrome browser.

Questions 7 through 10

These four questions focused on students’ overall experience with data modeler.
We have asked students how simple to use they consider the modeler to be and
whether they could imagine using the modeler outside the Database Systems
course. Question 9 asked students whether data modeler provided sufficient
feedback.

Students have agreed that the data modeler is easy to use – 16 students
stated they found it very easy to use, 5 students somewhat easy to use.
Only two students were not sure whether they would or would not use data
modeler on other projects, while rest was positive. No user complained about
insufficient feedback.

The most useful, however, was the question 10. Users were asked about any
unexpected behavior they may have encountered. Thanks to their answers we
have realised that the default partiality of the relationship halves was swapped
– the identifying half should be required while the other one optional.

Questions 11 through 15

The end of the survey was dedicated to comparison with other data modeling
tools. We wanted to know what do they consider to be the biggest strengths
and weaknesses and asked them to compare our data modeler to other model-
ers. We also wanted to know what one thing would they change primarily.
Last question was left for any additional comments they might have had.

Since students had not have too much experience with other modelers
we did not see any detailed comparisons, although some students stated they
found our data modeler easier to use than Oracle Data Modeler. No weak-
nesses were mentioned, while intuitiveness and simplicity were listed by many
students as strengths, which is exactly what the design was striving for.

4.2.3 Summary

Testing with real users of the modeler has proven to be incredibly useful.
Despite the fact that we were not able to cover all of the functionality of the
data modeler, being able to see how real users interact with the application
has allowed us to verify our design, discover some usability issues and figure
out new ways for improving the overall user experience.

69

4. Testing

We are satisfied with the results. All users successfully finished their task
without the need for tutorial, user guide or explanation of how to work with
the modeler. Post-test survey allowed users to provide their own opinion,
which was overwhelmingly positive, although there certainly is room for im-
provement.

As a result of this test, following changes have been made:

• Entity can now also be created from canvas’ context menu or by double
click on the canvas

• Instructions for entity creation were added to the info window

• Editing of text is no longer initiated immediately after new relationship
or ISA hierarchy is created

• Attribute may be added by double click on the entity

• Default partialitz of the relationship has been swapped to better match
users’ expectations

• Bug where entity would not be deleted by Del key in Chrome was fixed

70

Chapter 5
Future Work

Although data modeler has been successfully released and deployed to a DBS
Portal, there is still a room for future development. Source code of the modeler
was made available at the faculty’s GitLab repository 23, making it possible to
continue development by others. We will also release data modeler publicly on
the authors GitHub repository24. It is possible that future development will
branch, since faculty’s needs may be different than those of general public.

We believe the right decisions that would ensure future development is
possible were made, e.g. using MVC architecture or manipulating SVG DOM
directly from JavaScript without any intermediary library, which removes
the unnecessary dependency. In this section we would like to suggest a few
directions for possible future development that we think might be worthwhile,
in no particular order.

The data modeler was finished towards the end of the semester and stu-
dents were able to use it during final tests and exams, where saving the state
of semifinished work is not a common use case. To better support work on
larger projects and tasks, e.g. semestral project, an option to save full state of
the diagram could be implemented. That means not only storing the under-
lying model but also visual information. This would have to be implemented
in addition to current export, because model needs to be automatically com-
parable (by comparing string representation of the model). It might also be
possible to implement auto save feature.

To improve the usability of the modeling itself, multi select and undo/redo
functionality could be considered. Both of these options significantly improve
user experience. Multi select would be most valuable to save time when work-
ing on larger diagrams since it would allow users to select multiple entities
at once and move them to better position. Undo and redo are significant en-
hancements that lowers the severity of mistakes that user makes, since they
can easily get back to previous state.

23https://gitlab.fit.cvut.cz/malecold/DBSDM
24https://github.com/tfedor/datamodeler

71

https://gitlab.fit.cvut.cz/malecold/DBSDM
https://github.com/tfedor/datamodeler

5. Future Work

During the user testing we have learned that examinators may want to
mark diagrams from mobile devices. Currently it is possible to view dia-
grams, but manipulation is tricky to say the least, because user interface of
the modeler was built around mouse. To support work from mobile devices,
either the support for touch must be added, or entirely new user interface
must be created as a different view. The biggest issue would be the handling
of mouse movement. Common behaviour of mobile browsers is that short tap
works as mouse click, while long tap usually works as right click, which in
our case shows context menu. Implementation of drag, however, is not that
straightforward. While it would be possible to simulate it via touch events, it
may not be desirable, because it would hinder browser’s native functionality
– page scrolling and zooming, to be more specific. Possible implementation
would be to simulate drag by two taps: first tap selects object, second tap
sets the target position.

In this thesis we have made some assumptions about the performance,
however, the techniques we have used to improve performance were not prop-
erly tested and it is not clear whether they helped or not. For future work
we suggest measuring the impact of defs and use elements and whether it is
better to use shared elements for, e.g. background of entities or not. However,
we have tried to display hundreds of canvas elements with imported models on
one page and the only observed performance issue was during import, when
we tried to import all models at once.

Furthermore, we suggest improvements to both anchor placement and lay-
out algorithms. It might be possible to improve anchor placement algorithm
to reduce both overlapping and crossing relationships by taking into consid-
eration the placement of the other entity, or by resizing the entity itself. Lay-
out algorithm might try to force grid-like placing of entities more thoroughly,
however this stems from personal preferences, and not from proper analysis
of what makes diagram visually pleasurable.

Regarding the user interface, we were not able to test all functionality of
the data modeler. More tests should be conducted to cover more advanced
functionality. More tests on new users should be done as well, to discover
the real need for the tutorial, since as we have discussed in chapter 4, students
were able to comfortably use data modeler even without it.

Relational models are a vital part of database development and design.
Logical models currently supported by data modeler are preceding them in
the database design process and some tools are able to convert between them.
In section 3.2 we have already explained how the flexibility of the MVC archi-
tecture allows the expansion of the modeler to support other type of models,
which might be a good long term goal for future development. With good
support of relational modeling and conversion between logical and relational
model, students of Database Systems course might be able to work on their
semestral project fully in the DBS Portal, without external software.

It might also be interesting to explore the possibility to use data modeler as

72

standalone application. Since data modeler is fully client based, it is already
possible to work offline, but from the browser. It might be possible to use
solutions like Electron25 or AppJS26 to create standalone application relatively
easily, which would provide new possibilities for entire modeler. Due to access
to file system, it might be possible to add support for whole projects consisting
of multiple models, for example.

25http://electron.atom.io/
26http://appjs.com/

73

http://electron.atom.io/
http://appjs.com/

Conclusion

This thesis has discussed the development of web component for drawing ER
diagrams – data modeler. The main purpose of the modeler is to support
the education process of the Database Systems course at Faculty of Informa-
tion Technology of Czech Technical University. During this mandatory course,
students are among other things tasked with creation of logical models of smal-
ler databases, both for their semestral project as well as during tests, which
check their comprehension of the subject. Data modeler will thus be used
in different contexts mainly by two distinct groups of users: students and
examinators.

Currently, students work mostly in Oracle SQL Developer Data Modeler,
a full-featured database IDE to finish their semestral work. It is possible
that data modeler, as part of a web portal for education support of this
course (DBS Portal) will replace this software in the future. When work-
ing on the project, students would be allowed to use almost all features of
the modeler. On the other hand, the functionality is restricted during tests or
exams (e.g. students may not export or import models), where the modeler
currently brings the biggest value.

In the context of tests and exams we must also consider a second group
of users, examinators. Examinators create reference solution of a given task
and check students’ solutions after. The data modeler supports their role by
various means. Some of them are: allowing multiple diagrams to be displayed
on a single page, automatic comparison of saved models as well as providing
marking mode, in which examinators may mark incorrect parts of students’
solution.

The development of data modeler started by the analysis, during which
we have assessed requirements of the data modeler. Analysis of the current
state of data modeler of the DBS portal followed, we have found out that
the current state is unfit in regards of functionality, user interface and future
extensibility. The decision was made to develop data modeler anew.

To be able to design good user interface we have analysed SQL Developer

75

Conclusion

Data Modeler, as a primary software used during the course, and other web-
based modelers, both universal diagramming tools and specific solutions for
database modeling. The final user interface was designed according to min-
imalism, simplicity and efficiency principles.

The data modeler was developed in JavaScript and built on HTML, CSS
and SVG. In the Implementation chapter we have explained how the con-
cepts of Object-oriented programming, namespacing, classes and encapsula-
tion, were achieved in prototype-based scripting language. Further, we have
discussed Model-View-Controller architecture and how it should provide good
basis for future development. At last, this chapter went into further imple-
mentation details and solutions to some of the encountered issues.

After implementation, the data modeler was deployed to DBS Portal where
it replaced old, unfit implementation. The interface was heuristically evalu-
ated to verify it does not contain major issues, after which proper user test was
conducted. Twenty one students worked in the new version of data modeler
during the test at the end of the semester. Their observation and post-test
survey discovered some of the usability issues, most of which were fixed since,
but none of them were major. Students were able to use data modeler without
any prior explanation and their feedback was overwhelmingly positive.

Although the goals set were accomplished and new data modeler, which is
now also publicly available, is helping students and teachers during the Data-
base Systems course, there is still room for improvement. This thesis finishes
by outlining several possible extensions, that we believe would further improve
the usability and utility of the modeler.

In conclusion, we have developed a new data modeler, which was de-
ployed to the education support portal of the Database Systems course and
is currently being used during exams. The user interface design as well as
the modeler’s functionality was verified by user test with students of this
course. Based on the results of this test we may conclude that the new modeler
is easy to use and does not have any major usability issues or missing func-
tionality.

76

Bibliography

[1] Course description - BI-DBS. [cit. 2016-12-20]. Available from:
http://bk.fit.cvut.cz/en/predmety/00/00/00/00/00/00/01/12/
24/p1122406.html

[2] DB-Engines Ranking. [cit. 2016-12-20]. Available from: http://db-
engines.com/en/ranking

[3] DB-Engines Ranking per database model category. [cit. 2016-12-20].
Available from: http://db-engines.com/en/ranking_categories

[4] Chen, P. P.-S. The Entity-relationship Model–Toward a Unified View of
Data. ACM Trans. Database Syst., volume 1, no. 1, Mar. 1976: pp. 9–
36, ISSN 0362-5915, doi:10.1145/320434.320440. Available from: http:
//doi.acm.org/10.1145/320434.320440

[5] Halpin, T. Entity Relationshop modelling from an ORM perspective:
Part 1. Journal of Conceptual Modeling, , no. 11, 1999, [cit. 2016-12-19].
Available from: http://www.orm.net/pdf/JCM11.pdf

[6] Slavotínek, J. Webová komponenta na kreslení ER diagramů. Bachelor’s
thesis, Faculty of Information Technology of Czech Technical University
in Prague, 2016.

[7] Hunka, J. Hodnocení vedoucího závěrečné práce, supervisor’s evaluation
of Jiří Slavotinek’s bachelor’s thesis “Webová komponenta na kreslení ER
diagramu”.

[8] Halaška, I. Posudek oponenta závěrečné práce, reviewer’s report of Jiří
Slavotinek’s bachelor’s thesis “Webová komponenta na kreslení ER dia-
gramu”.

[9] Oracle SQL Developer Overview. [cit. 2016-12-23]. Available from:
http://www.oracle.com/technetwork/developer-tools/sql-
developer/overview/index-097090.html

77

http://bk.fit.cvut.cz/en/predmety/00/00/00/00/00/00/01/12/24/p1122406.html
http://bk.fit.cvut.cz/en/predmety/00/00/00/00/00/00/01/12/24/p1122406.html
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking_categories
http://doi.acm.org/10.1145/320434.320440
http://doi.acm.org/10.1145/320434.320440
http://www.orm.net/pdf/JCM11.pdf
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index-097090.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index-097090.html

Bibliography

[10] Creately. [accessed 2016-12-24]. Available from: https://creately.com/

[11] Vertabelo. [accessed 2016-12-24. Available from: http://
www.vertabelo.com

[12] Vertabelo Features. [accessed 2016-12-24. Available from: http://
www.vertabelo.com/features

[13] Draw.io. [accessed 2016-12-24]. Available from: https://www.draw.io/

[14] TinyModeler. [accessed 2016-12-24]. Available from: http:
//tinymodeler.com/

[15] Raskin, J. The Humane Interface: New Directions for Designing In-
teractive Systems. ACM Press Series, Addison-Wesley, 2000, ISBN
9780201379372. Available from: https://books.google.sk/books?id=
D39vjmLfO3kC

[16] Saternos, C. Client-Server Web Apps with JavaScript and Java:
Rich, Scalable, and RESTful. O’Reilly Media, Inc., 3 2014, ISBN
9781449369293.

[17] Rajan, S. Introduction to Functional JavaScript. [accessed 2016-12-
29]. Available from: https://medium.com/functional-javascript/
introduction-to-functional-javascript-45a9dca6c64a

[18] Ecma International. ECMAScript® 2016 Language Specification. [ac-
cessed 2016-12-28]. Available from: https://tc39.github.io/ecma262/

[19] ECMAScript 5 compatibility table. [accessed 2016-12-28]. Available from:
http://kangax.github.io/compat-table/es5/

[20] Mozilla Developer Network. Javascript Guide – Introduction. [accessed
2016-12-28]. Available from: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide/Introduction

[21] Node.js. [accessed 2016-12-28]. Available from: https://nodejs.org/en/

[22] Definition of namespace in English – Oxford Dictionary. [accessed
2016-12-29]. Available from: https://en.oxforddictionaries.com/
definition/namespace

[23] Mozilla Developer Network. Introduction to Object-Oriented
JavaScript. [accessed 2016-12-29]. Available from: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_
to_Object-Oriented_JavaScript

78

https://creately.com/
http://www.vertabelo.com
http://www.vertabelo.com
http://www.vertabelo.com/features
http://www.vertabelo.com/features
https://www.draw.io/
http://tinymodeler.com/
http://tinymodeler.com/
https://books.google.sk/books?id=D39vjmLfO3kC
https://books.google.sk/books?id=D39vjmLfO3kC
https://medium.com/functional-javascript/introduction-to-functional-javascript-45a9dca6c64a
https://medium.com/functional-javascript/introduction-to-functional-javascript-45a9dca6c64a
https://tc39.github.io/ecma262/
http://kangax.github.io/compat-table/es5/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://nodejs.org/en/
https://en.oxforddictionaries.com/definition/namespace
https://en.oxforddictionaries.com/definition/namespace
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

Bibliography

[24] Rauschmayer, A. Exploring ES6 – Upgrade to the next version of JavaS-
cript. [accessed 2016-12-29]. Available from: http://exploringjs.com/
es6/

[25] Mozilla Developer Network. JavaScript Reference – new operator. [ac-
cessed 2016-12-29]. Available from: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Operators/new

[26] Crockford, D. Private Members in JavaScript. [accessed 2016-12-29].
Available from: http://www.crockford.com/javascript/private.html

[27] Osmani, A. Learning JavaScript Design Patterns: A JavaScript
and jQuery Developer’s Guide. O’Reilly Media, July 2012, ISBN
9781449331818. Available from: https://addyosmani.com/resources/
essentialjsdesignpatterns/book/

[28] Miraglia, E. A JavaScript Module Pattern. [accessed 2016-12-29]. Avail-
able from: http://yuiblog.com/blog/2007/06/12/module-pattern/

[29] jQuery Learning Center – Code Organization Techniques. [ac-
cessed 2016-12-29]. Available from: https://learn.jquery.com/code-
organization/concepts/

[30] Spencer, E. JavaScript Module pattern – overused, dangerous
and bloody annoying. 2009, [accessed 2016-12-29]. Available from:
https://edspencer.net/2009/10/05/javascript-module-pattern-
overused-dangerous-and-bloody-annoying/

[31] 9. Classes – Python 3.6.0 documentation. [accessed 2016-12-29]. Available
from: https://docs.python.org/3/tutorial/classes.html

[32] World Wide Web Consortium. HTML5 Specification – The canvas ele-
ment. [accessed 2016-12-29]. Available from: https://www.w3.org/TR/
2014/REC-html5-20141028/scripting-1.html#the-canvas-element

[33] Mozilla Developer Network. Canvas API. [accessed 2016-12-29]. Avail-
able from: https://developer.mozilla.org/en-US/docs/Web/API/
Canvas_API

[34] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1
(Second Edition). [accessed 2016-12-29]. Available from: https://
www.w3.org/TR/SVG11/Overview.html

[35] World Wide Web Consortium. SVG Current Status. [accessed 2016-12-
29]. Available from: https://www.w3.org/standards/techs/svg#w3c_
all

79

http://exploringjs.com/es6/
http://exploringjs.com/es6/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new
http://www.crockford.com/javascript/private.html
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
https://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://yuiblog.com/blog/2007/06/12/module-pattern/
https://learn.jquery.com/code-organization/concepts/
https://learn.jquery.com/code-organization/concepts/
https://edspencer.net/2009/10/05/javascript-module-pattern-overused-dangerous-and-bloody-annoying/
https://edspencer.net/2009/10/05/javascript-module-pattern-overused-dangerous-and-bloody-annoying/
https://docs.python.org/3/tutorial/classes.html
https://www.w3.org/TR/2014/REC-html5-20141028/scripting-1.html#the-canvas-element
https://www.w3.org/TR/2014/REC-html5-20141028/scripting-1.html#the-canvas-element
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://www.w3.org/TR/SVG11/Overview.html
https://www.w3.org/TR/SVG11/Overview.html
https://www.w3.org/standards/techs/svg#w3c_all
https://www.w3.org/standards/techs/svg#w3c_all

Bibliography

[36] World Wide Web Consortium. HTML Current Status. [accessed 2016-12-
29]. Available from: https://www.w3.org/standards/techs/html#w3c_
all

[37] World Wide Web Consortium. Coordinate Systems, Trans-
formations and Units – SVG 1.1 (Second Edition). [accessed
2016-12-30]. Available from: https://www.w3.org/TR/SVG11/
coords.html#EstablishingANewViewport

[38] Apple Inc. Model-View-Controller. [accessed 2016-12-30]. Available from:
https://developer.apple.com/library/content/documentation/
General/Conceptual/DevPedia-CocoaCore/MVC.html

[39] Microsoft Corporation. Model-View-Controller. [accessed 2016-12-
30]. Available from: https://msdn.microsoft.com/en-us/library/
ff649643.aspx

[40] Google.MVC Architecture – Google Chrome. [accessed 2016-12-30]. Avail-
able from: https://developer.chrome.com/apps/app_frameworks

[41] Hu, Y. Efficient and High Quality Force-Directed Graph Drawing. The
Mathematical Journal, volume 10, 2006: pp. 37–71.

[42] Kobourov, S. Force-Directed Drawing Algorithms. In Handbook of Graph
Drawing and Visualization, edited by R. Tamassia, chapter 12, CRC
Press, 2013.

[43] Introducing JSON. [accessed 2017-01-01]. Available from: http://
www.json.org/

[44] JSZip. [accessed 2017-01-01]. Available from: https://stuk.github.io/
jszip/

[45] Nielsen, J. 10 Usability Heuristics for User Interface Design. Nielsen
Norman Group, 1 1995. Available from: https://www.nngroup.com/
articles/ten-usability-heuristics/

[46] Shneiderman, B. The Eight Golden Rules of Interface Design. 5 2016,
[accessed 2017-01-02]. Available from: https://www.cs.umd.edu/users/
ben/goldenrules.html

[47] Font Awesome. [accessed 2017-01-02]. Available from: http://
fontawesome.io/

[48] saveSvgAsPng. [accessed 2017-01-02]. Available from: https://
github.com/exupero/saveSvgAsPng

80

https://www.w3.org/standards/techs/html#w3c_all
https://www.w3.org/standards/techs/html#w3c_all
https://www.w3.org/TR/SVG11/coords.html#EstablishingANewViewport
https://www.w3.org/TR/SVG11/coords.html#EstablishingANewViewport
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://msdn.microsoft.com/en-us/library/ff649643.aspx
https://msdn.microsoft.com/en-us/library/ff649643.aspx
https://developer.chrome.com/apps/app_frameworks
http://www.json.org/
http://www.json.org/
https://stuk.github.io/jszip/
https://stuk.github.io/jszip/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.cs.umd.edu/users/ben/goldenrules.html
https://www.cs.umd.edu/users/ben/goldenrules.html
http://fontawesome.io/
http://fontawesome.io/
https://github.com/exupero/saveSvgAsPng
https://github.com/exupero/saveSvgAsPng

Bibliography

[49] Nielsen, J.; Molich, R. Heuristic Evaluation of User Interfaces. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’90, New York, NY, USA: ACM, 1990, ISBN 0-201-
50932-6, pp. 249–256, doi:10.1145/97243.97281. Available from: http:
//doi.acm.org/10.1145/97243.97281

[50] Žikovský, P. Usability. Special Testing. Personas, unpublished Lecture in
User Interface Design.

[51] Molich, R.; Nielsen, J. Improving a Human-computer Dialogue. Com-
mun. ACM, volume 33, no. 3, Mar. 1990: pp. 338–348, ISSN 0001-0782,
doi:10.1145/77481.77486. Available from: http://doi.acm.org/10.1145/
77481.77486

81

http://doi.acm.org/10.1145/97243.97281
http://doi.acm.org/10.1145/97243.97281
http://doi.acm.org/10.1145/77481.77486
http://doi.acm.org/10.1145/77481.77486

Appendix A
Acronyms

CSS Cascading Style Sheets.

DOM Document Object Model.

ER Model Entity-Relationship Model.

HTML HyperText Markup Language.

IDE Integrated development environment.

IIFE Immediately-invoked function expressions.

JSON JavaScript Object Notation.

MVC Model-View-Controller.

OOP Object-oriented programming.

SQL Structured Query Language.

SVG Scalable Vector Graphics.

XML Extensible Markup Language.

XOR Exclusive OR.

83

Appendix B
Contents of enclosed CD

readme.txt........................the file with CD contents description
DP_Fedor_Tomas_2017.pdf...............the thesis text in PDF format
impl the directory of data modeler source

dist................the directory of JavaScript codes for distribution
libs................... the directory of 3rd party libraries and codes
src......................... the directory of JavaScript source codes
styles....................................the directory of CSS files

text.................the directory of thesis source code in LATEX format
imgs......................................images used in this thesis

85

Appendix C
Examples of Layout Algorithm

Figure C.1: Initial configuration of diagram 1

87

C. Examples of Layout Algorithm

Figure C.2: Diagram 1 after 25 iterations

88

Figure C.3: Diagram 1 after 100 iterations

Figure C.4: Diagram 1 after 500 iterations

89

C. Examples of Layout Algorithm

Figure C.5: Initial configuration of diagram 2

90

Figure C.6: Diagram 2 after 100 iterations

91

C. Examples of Layout Algorithm

Figure C.7: Diagram 2 after 500 iterations

92

Appendix D
Screenshots

Figure D.1: Screenshot of diagram during creation of XOR relationship. User
has initiated XOR creation on yellow relationship half. Green relationship
half may be added to XOR, while red relationship half can not, because it is
already included in it.

93

D. Screenshots

Figure D.2: Example of entity with two XOR relationship

94

Figure D.3: Diagram in marking mode, with parts of the diagram marked as
incorrect

95

	Introduction
	Analysis
	Database Systems Course
	Logical Data Model
	Barker Notation
	Data Modeler

	User Interface Design
	Principles
	First Design
	Final Design

	Implementation
	Technology
	Architecture
	Mouse Handling
	Context Menu
	Strategy for Placement of Relationships Anchors
	Automatic Diagram Layout
	Import
	Adaptation of Messaging System for Tutorial
	Distribution and Integration of Data Modeler

	Testing
	Heuristic Analysis
	Testing with Users

	Future Work
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Examples of Layout Algorithm
	Screenshots

