
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague January 5, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Summarizing Linked Open Data Datasets

 Student: Bc. Jana Čabaiová

 Supervisor: Ing. Milan Dojčinovski

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

In the recent years, many datasets have been published as a part of the Linked Open Data cloud.
Nevertheless, searching for an appropriate dataset requires significant amount of effort. The goal of this
thesis is to simplify the process of searching for datasets by providing summarized information for each
dataset.
Guidelines:
- Get familiar with the Linked Data principles and the current state of the Linked Open Data (LOD) cloud.
- Analyse the current datasets access mechanisms such as SPARQL, Linked Data Fragments, HDF, etc.
- Develop a method for dataset summarizations and implement an application that will enable users to:
 1) specify a dataset for summarization,
 2) define domains for summarization,
 3) perform macro visualization - domain coverage for a dataset, and micro visualization - completeness of
information for a given entity type, and
 4) compare datasets.
- Validate the method on real data from the LOD cloud (DBpedia, LinkedGeoData, etc).

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Summarizing Linked Open Data Datasets

Bc. Jana Čabaiová

Supervisor: Ing. Milan Dojčinovski

7th January 2017

Acknowledgements

I wish to express my sincere thanks to my thesis supervisor, Ing. Milan
Dojčinský for his time and advices throughout writing this master thesis. I am
also grateful to the Department of Faculty for the implementation of the sub-
ject MI-SWE, thanks to which I learned the semantic technologies. I would
like to express my gratitude also to my family and friends for their help,
patience and mainly support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 7th January 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Jana Čabaiová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Čabaiová, Jana. Summarizing Linked Open Data Datasets. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2017.

Abstrakt

Práce se zabývá studiem projektu Linked Open Data, jeho aktuálńıho stavu
a také shrnut́ım jednotlivých sémantických technologii, jako je RDF model,
dotazovaćı jazyk SPARQL, r̊uzné formáty dataset̊u a r̊uzné př́ıstupy k jednot-
livým dataset̊um. Součást́ı práce je také vývoj webové aplikace, který zahrnuje
analýzu, návrh, implementaci a také testováńı dané aplikace. Hlavńı metoda
této aplikace má umožňovat výpočet sumarizace LOD dataset̊u na základě
specifikovaných domén a entit, což znamená poměr zastoupeńı jednotlivých
entit v doménách v rámci konkrétńıho datasetu.

Hlavńım výsledkem této práce je vytvořená a otestováná webová aplikace
s výše zmı́něnou implementovanou metodou na reálných datesetech DBpedia
a GeoNames a také zpracováńı a porovnáńı jednotlivých výsledk̊u. Tato ap-
likace by měla být užitečná zejména pro ty, kteř́ı potřebuj́ı zjistit doménové
zaměřeńı jejich Linked Open Data datasetu nebo potřebuj́ı porovnat dva r̊uzné
datasety na doménové úrovni.

Kĺıčová slova Linked Open Data, LOD Cloud, RDF, SPARQL, HDT, DB-
pedia, GeoNames, dataset, doména, entita, predikát, sumarizácia, webová
aplikace, ontologie

ix

Abstract

The work deals with the study of the project Linked Open Data, its current
state and also with the overview of the particular semantic technologies. It
is RDF model, query language SPARQL, different formats for RDF datasets
and the different accesses to the particular datasets. Part of the work is also
the development of the web application which contains analysis, design, imple-
mentation and testing of the particular application. The main method of this
application should enable the calculation of the summarization of LOD data-
sets on the base of domain specification, which means calculation of domains
and entities proportion in particular dataset.

The main result of this work is created and tested web application with
the above mentioned implemented method on the real datasets DBpedia a Geo-
Names and also the processing and comparing of the particular results. This
application should be useful mainly for these, who need to find out domain
representation of their Linked Open Data dataset or they need to compare
domain representation of two different datasets.

Keywords Linked Open Data, LOD cloud, RDF, Sparql, HDT, DBpedia,
GeoNames, dataset, domain, entity, predicate, summarization, web applica-
tion, ontology

x

Contents

Introduction 1

Motivation . 1

Objectives . 1

Organization of the thesis . 2

1 Theoretical background 3

1.1 What is Web of Data . 3

1.2 Linked Data Principles . 6

1.3 LOD Cloud . 11

1.4 Semantic technologies . 14

2 State-of-the-art 29

3 Analysis 33

3.1 Requirements . 33

3.2 Use case diagrams . 38

3.3 Domain model . 46

4 Design 51

4.1 The choice of implementation platform 51

4.2 The Architecture . 54

4.3 Design class model . 55

4.4 Database model . 61

4.5 Wireframes of the application 66

5 Implementation 71

5.1 Creation of user interface . 71

5.2 Data validation . 72

5.3 User information about processing of the calculation in applic-
ation . 73

xi

5.4 Chart drawing . 74
5.5 Export . 75
5.6 Domain import . 76
5.7 Jersey 2 . 77
5.8 Performance optimization . 79
5.9 Conclusion . 79

6 Testing 81
6.1 Integrated automatic tests . 81
6.2 Testing among different web browsers 83
6.3 Application Use Cases and Demonstration Scenario 83

7 Experiments and results 87
7.1 Domain initialization . 87
7.2 DBpedia ontology and calculation of analysis 87
7.3 GeoNames ontology and calculation of analysis 91
7.4 Comparison of dataset DBpedia and GeoNames 97
7.5 Conclusion about testing of the application on real data 99

Conclusion 101

Bibliography 103

A Acronyms 107

B Content of enclosed CD 109

C Wireframes of the application 111

D Screenshots of the application 121

xii

List of Figures

1.1 HTTP URI for resource ”Roger Federer” and accessing RDF data
on the Web . 8

1.2 Example of basic kinds of RDF triples 9

1.3 Different types of links in RDF data model 11

1.4 Linking Open Data cloud diagram 2014 [1] 12

1.5 Percentage representation of datasets in particular categories of LOD
Cloud in year 2014 . 13

1.6 RDF example of blank node, typed literals and usage of classes . . 17

1.7 Virtuoso Sparql Query Editor . 25

1.8 Example of Javascript client querying data in Linked Data Frag-
ment format . 27

2.1 LODeX - example of visual query and Schema Summary 30

2.2 LodSight - example of the dataset summarization 31

3.1 Functional requirements . 34

3.2 Non-Functional requirements . 37

3.3 The user roles . 38

3.4 Use Case Diagram for showing list of domains and entities 40

3.5 Use Case Diagram for editing of list of domains and entities 41

3.6 Use Case Diagram for editing of dataset 43

3.7 Use Case Diagram for dataset analysis editing 44

3.8 Use Case Diagram for view of dataset analysis 46

3.9 Domain model . 47

4.1 Sequence model of processing request for view dataset analysis result 54

4.2 Class model for database objects 56

4.3 Class model for the calculation analysis of dataset 58

4.4 Class model for accessing to the database 61

4.5 Wireframe - Example of the page Domain List 68

4.6 Wireframe - Detail of dataset analysis 70

xiii

5.1 Example of the responsiveness of the application 72

5.2 Example of the form validation in the application 73

5.3 Information about successful operation of editing dataset 74

5.4 Chart of dataset analysis . 74

5.5 Domains export to the Excel file 76

6.1 Automating integration tests in Selenium IDE 82

7.1 DBpedia analysis - chart in the application showing the represent-
ation of domains and entities in DBpedia 92

7.2 Domain representation in DBpedia 93

7.3 Domain representation in GeoNames 99

C.1 Wireframe - DomainList with packed domains and with opened
button for theexport . 111

C.2 Wireframe - DomainList with unpacked one domain where the list
of entities is displayed . 112

C.3 Wireframe - DomainList with opened form for inserting new domain113

C.4 Wireframe - DomainList with opened form for importing domains
and entities . 113

C.5 Wireframe - DomainList after sending data to the server for pro-
cessing . 114

C.6 Wireframe - DomainList with opened form for inserting new entity 114

C.7 Wireframe - DomainList with opened form for deleting existing
domain . 115

C.8 Wireframe - DatasetAnalysis with opened detail of dataset analysis 116

C.9 Wireframe - DatasetAnalysis with no datasets imported 117

C.10 Wireframe - DatasetAnalysis with opened form form inserting new
dataset . 117

C.11 Wireframe - DatasetAnalysis after sending data to server for pro-
cessing . 118

C.12 Wireframe - DatasetAnalysis detail with opened form for inserting
new dataset analysis . 118

C.13 Wireframe - DatasetAnalysis detail with opened compare page . . 119

D.1 Screenshot - Form for the creation of new domain 121

D.2 Screenshot - Domain list with unpacked one domain 122

D.3 Screenshot - End of the page Domains with chart shown 123

D.4 Screenshot - Overview of domains in the mobile screen with the search-
ing view . 124

D.5 Screenshot - Form for the creation of new entity 125

D.6 Screenshot - Form for the import domains and entities 125

D.7 Screenshot - Dataset detail with packed its analysis 126

D.8 Screenshot - Form for dataset deleting. 126

xiv

D.9 Screenshot - Dataset detail with unpacked analysis - the first part
of analysis . 127

D.10 Screenshot - Dataset detail with unpacked analysis - second and
partly third part of analysis . 128

D.11 Screenshot - Form for adding new dataset with the validation and
displaying help message . 129

D.12 Screenshot - Form for editing already existed dataset 129
D.13 Screenshot - Form for adding new dataset analysis 130
D.14 Screenshot - View page ”Dataset analysis” in the mobile screen . . 131
D.15 Screenshot - Open the tab ”Compare” to compare two datasets . . 132
D.16 Screenshot - Page with contact, source and useful information

about application functions . 133
D.17 Screenshot - Landing page of the application 134

xv

List of Tables

1.1 Comparison: Web of documents vs. Web of Data providing data
in microformats, web API’s or data files 5

1.2 Comparison: Web of documents vs. Web of Data using data
in RDF Data model . 11

1.3 Comparison of categories represenation of datasets in LOD Cloud
from the year 2011 and 2014 . 14

4.1 Main methods in the class SparqlMethods 57
4.2 Attributes in the class Calculation 59
4.3 Methods in the class Calculation 59
4.4 Methods in the class Queries . 60
4.5 Attributes in class DbAccess . 62
4.6 Methods in class DbAccess . 63

5.1 Format for importing domains and entities 77

7.1 DBpedia analysis - three most occurring entities in every domain
in LOD dataset DBpedia . 91

7.2 GeoNames analysis - three most occurring entities in domains LOD
dataset GeoNames . 97

7.3 Comparison of domain representation in datatses: DBpedia vs
GeoNames . 98

xvii

Introduction

Motivation

The world is surrounded by data resources all around us, in the electronic or
press form, also structural and nonstructural. Furthermore, nowadays people
try to substitute all manual works with computer technique. To this also
belongs processing of data. For most people are websites the most often
data resource, on which are data mostly in the nonstructural form. So, they
are not machine-processable and usable to the next compute processing. Base
on this problem there was risen the idea for the creation of Linked Open Data,
what can be defined, for short as public linked structural data on the Web.
This Linked Open Data recently have began to expand. Because of that the
requirements for dataset exploration rises and it would be beneficial to know
what the dataset is about, so which domains are the most covered in it.

Objectives

The aim of this master thesis is to introduce with the area Linked Open Data
and to study particular possibilities of accesses to them. The other and also
the main aim is analysis, design and the implementation of the web applic-
ation, which could process this LOD data in the particular agreed formats.
Also, it could make the analysis about the data according to defined domains
and entities. In this case the analysis represents the calculation of the occur-
rence of data within the particular domains. Another functionality in the ap-
plication should be possibility to compare two datasets from the domain point
of view. In the conclusion it is necessary the developed application to test
on the real Linked Open Data, as DBpedia or GeoNames.

1

Introduction

Organization of the thesis

This work is divided into the following chapters:

• Theoretical background- this chapter is focused on the introduction
with the required issue and defining of the main terms as Web of Data,
Linked Open Data or RDF, which are needed for the development of this
web application. It also includes the actual state of Linked Open Data
and possibilities to access them such as SPARQL, Linked Data Fragment
or HDT.

• State of the art - this chapter includes research about existing applica-
tions and tools which are focused on the summarization of Linked Open
Data.

• Analysis - this chapter describes requests which are put on the designed
application in detail. It is the processing of the functional and non-
functional requirements, use case diagrams and domain model.

• Design - this chapter contains design models as diagram of classes and
database diagram. Also, it includes the choice of technology, architecture
and wireframes of the application.

• Implementation - this chapter contains particular parts of implementa-
tion and the comparison with the designed solution.

• Testing - this chapter contains integrating testing of the application and
testing among different web browsers. It also includes application use
cases and demonstration scenario of the application usage.

• Experiments and results - this chapter contains validation of implemen-
ted application on real LOD datasets, like DBpedia and GeoNames and
their comparison.

2

Chapter 1

Theoretical background

This chapter discusses the issue of receiving and processing structured data
from the Web. Further the reader will be introduced with the terms like
Linked Open Data, Web of documents, Web of Data, Resource Description
Framework, SPARQL and also how these terms are connected with the pub-
lishing structured Linked Data on the Web. Also this chapter describes what
LOD Cloud represents and different mechanism to access LOD data.

1.1 What is Web of Data

Data are all around us. We create them, save them, share them, publish
and work with them. One of the biggest and the most used data sources
in the form, which is primarily aimed for the human processing are websites.
Data can be found on the Web in various formats, for instance, CSV, PDF,
HTML tables, plain text, etc. Current Web is considered as the Web of doc-
uments, so it directs to the documents, which the user can search and then
refer to the other documents. Unfortunately, data in these documents can
be processed only by human, they are not machine-processable. Many users
would need to get data as autonomous entities directly from the document
on the Web in the structured format for their next compute usage.

Actual Web, that is Web of documents, is built on these elementary prin-
ciples:

• language HTML, in which documents on Web are published,

• URL like the unique global identifier of the documents,

• protocol HTTP, upon which it is possible to access to documents ac-
cording to their URL,

• hyperlinks among documents [2] .

3

1. Theoretical background

Based on principles above, it is possible to publish particular documents
in the HTML language on the Web, access to them by protocol HTTP based
on their unique URL, or through the hypertext link (anchor tag and href at-
tribute). But mostly it is not possible to receive data directly about concrete
entities, which are parts of particular documents on the classic website. For in-
stance, tennis player Serena Williams. The user is capable of finding 1000
documents on the Web, in which this player will be mentioned. One of them
would describe her personal information, the second one will write about her
current ranking, the third one would describe her tournament performance
timeline, fourth one, for instance, will reflect her actual life and so on. But
this information mostly cannot be machine-processable, because they are not
in the structured format, and they do not describe data directly about this
tennis player as about an entity. The next problem, which has place in this
section, is that data in documents are not connected. One website contains
thousands of information. Although hyperlinks exist on the Web, but these
hyperlinks refer from one document to another, but not from concrete entity
in the document to another concrete entity in the different document.

According to the mentioned issues, there was made the idea to publish
raw linked data on the Web directly, which can be further processed by ma-
chine with the aim to provide information about given entities from various
resources, and to be able to answer more complex questions.

On the current Web there exist several possibilities of publishing of raw
(structured) data:

• data files in various formats, for instance CSV, XML, XLSX, etc.,

• microformats,

• web API’s.

Certainly, the easiest way of publishing of raw data on the Web is pub-
lishing the link to downloading data files. However, these data files can be
in different formats, therefore external applications, which particular data
need to use, have to be prepared on processing several formats, not unique
one. In addition, with data, which are available from data files on the Web,
it is mostly possible to work with them only in local way, because they have
either local identifiers or they have none, so it is difficult to work with them
from the global point of view, and to connect them e.g. with the data received
from the different resource.

Next possibility of publishing of raw data on the websites is microformats.
The definition of microformats is following: Designed for humans first and ma-
chines second, microformats are a set of simple, open data formats built upon
existing and widely adopted standards [3]. Microformats hence enable to pub-
lish structured data through embedding of data in Web pages. The main de-
ficiency of microformats is the fact, that they provide narrow set of categories

4

1.1. What is Web of Data

Web of documents Web of Data

Uniform format HTML for docu-
ments publishing

Different formats for data publish-
ing, e.g. CSV, XML, XLS, JSON,
etc.

URL as unique global identification
of document

No unique global identification
for entities in data

HTTP protocol for localization and
access to documents

HTTP protocol for localization data
file or web API, but no access to en-
tities in data

Hyperlinks between documents No hyperlinks between entities
in data in those formats

Table 1.1: Comparison: Web of documents vs. Web of Data providing data
in microformats, web API’s or data files

for the description of the particular entities, and also specific set of attributes
for the description of the particular relations among entities. Categories and
attributes are not possible to define arbitrarily, so this technology can be used
only for specific data, at which it is possible to use defined categories and
attributes of microformats.

Next advanced method of getting data from websites is web API’s (Ap-
plication Programming Interfaces). These API’s provide machine-processable
data for further processing, usually in formats JSON or XML with using
HTTP protocol. Providing of data in this way has also some limitations,
namely that equivalent to HTML anchor element with the attribute href,
which could be referencing to similar data, does not exist. Furthermore,
for every data source exists autonomous API, which has its own methods and
concepts of usage, so it is very difficult to integrate these datasets, received
from many web API’s into one application.

Web of Data, as it is Web, must correspond to principles of the classic
Web. Based on above listed knowledge, it is possible to deduce, that con-
cepts, which allow access to raw data on the websites, they do not reply with
principles, on which the Web of documents was built. Therefore, they cannot
create the Web of Data. With the usage of above mentioned raw data sources
on the Web we can conclude, that compact format for publishing of data does
not exist and also unique global identifier and links for similar entities do not
exist, look at comparison in table 1.1.

Getting raw data from the web platform by links on the data sources,
or by the web API’s do not create the Web of Data, because they do not
reply with main principle of the Web. Therefore, we are getting to the term
Linked Data. Linked Data according to the definition is a method of pub-
lishing structured data so that it can be interlinked and become more useful
through semantic queries. It builds upon standard web technologies such as

5

1. Theoretical background

HTTP, RDF and URL’s, but rather than using them to server web pages
for human readers, it extends them to share information in a way that can
be read automatically by computers. This enables data from different sources
to be connected and queried. [4]. The main idea of Linked Data is to publish
and next to machine-process data about concrete entities and relations among
them on the websites. This method of publishing of data on the Web must
correspond to principles of current Web (look at the table 1.1).

What is actually Web of Data? Publishing of big amount of data with
use of principles of Linked Data leads to creation of one shared global system
of entities, hence Web of Data. Detailed description of principles of Linked
Data will be described in the next section 1.2.

1.2 Linked Data Principles

Tim Bernens-Lee who is the founder of Linked Data and Web of Data made
up 5-star score system, which defines the quality of the published open data
on the Web:

• 1 star - make your stuff available on the Web (whatever format) un-
der an open license1.

• 2 stars - make it available as structured data (e.g., Excel instead of image
scan of a table).

• 3 stars - make it available in a non-proprietary open format (e.g., CSV
as well as of Excel).

• 4 stars - use URIs to denote things, so that people can point at your
stuff.

• 5 stars - link your data to other data to provide context [5].

This system is cumulative, each next star predicts, that characteristics
described in the previous stars was fulfilled. If open data have more stars,
it means, that data are better. Linked Data represents open data, which are
categorized to the highest category, so they come under category of five stars
data.

Linked Data is set of principles and technologies for publishing and linking
machine-processable data on the Web with the usage of actual Web standards.
Term Linked Data also serves for describing of data, which match with these
principles. Because Linked Data create global Web database of data, they
allow accumulate data from many sources in one step.

Main principles of Linked Data were presented also by Tim Bernens-Lee [6]
and they are following:

• Use URIs as names for things.

6

1.2. Linked Data Principles

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using
the standards (RDF*, SPARQL).

• Include links to other URIs, so they can discover more things.

In following subchapters are mentioned several principles described in more
details.

1.2.1 Principle 1

First principle is about using URI for naming of individual things. If the user
wants to work with the concrete entity, it is necessary the entity was identified
in some way. In Linked Data, entity (thing) can represents anything, material
things, like for instance, books, cars, persons etc., abstract things, for instance,
colors, event, relationships among people, evaluation etc., and each thing must
be identified by global unique URI. When it was apparent that Linked Data
are built on the principles of the classic Web, for identification of the things
was chosen URI. It is Universal Resource Identifier, which identifies any source
on the Web. URL (Universal Resource Location) is used for web documents,
which uniquely determines concrete document, but also it provides its definite
location on the Web.

1.2.2 Principle 2

The second principle is connected with the principle number 1, so with the iden-
tification of the things. It concretely specifies not to use arbitrary URI
on the identification of the things, but HTTP URI. It means, that par-
ticular data should be searched by HTTP client with usage of HTTP pro-
tocol on the Web based on their URI. Ergo, the user will be able to search
in the browser not only document as it is, but also data in the format processed
by machine, look at picture 1.1. URI then identifies real things on the one
hand, and on the other hand also documents.

1.2.3 Principle 3

Third principle is following. After the HTTP URI entry (identifier of the con-
crete entity) to the browser, the user has to be informed by providing useful
information by the usage of the standards of Semantic Web. In this case useful
information are data presented in the RDF language, about which is possible
to query with usage of SPARQL language.

If we want the idea of Web of Data as complete global storage of data was
real, it is necessary the structured data provided on the Web were represented
on the principle of in advance agreed standards. Within the Semantic Web it is

7

1. Theoretical background

Figure 1.1: HTTP URI for resource ”Roger Federer” and accessing RDF data
on the Web

technology RDF (Resource Description Framework). Simply, framework RDF
is data model, which includes the set of triples. Each triple is defines by three
parts: subject, predicate and object. As representation of these three state-
ments together is possible to imagine as a simple sentence, which describes
relation between subject and object by predicate, or it describes some feature
of the subject. In the figure 1.2 it is possible to read the first triple (called
Literal triple) like:”Roger Federer was born on 8.8.1981” and the second one
(called RDF link) we can read like:”Roger Federer comes from Switzerland”.

So, from the figure 1.2 it is visible, that the triples can be classified into two
categories based on the type of the object:

• Literal triples – object is value

• RDF links – object is link to another resource

Subject in the triple describes particular resource. It is represented
by the URI identifier of the concrete resource. In one triple, it is described
by two remained statements in that triple.

Predicate represents either the feature of the object in the case of literal
triple, for instance, the date of the birth, color, ID number, etc., or the con-
crete relation between subject and object, in the case of triple marked as
RDF links, for instance, employer, husband, place of the birth in the case,
that these things represnt another RDF source. Predicates are also repres-
ented by the URI. These URIs of the predicates are defined in the various
dictionaries, which are used for the description of the concrete type of data.
The user can define dictionaries by himself, but he has to observe some rules
for the description of the ontology and predicates. In order to data could be
easily processed by machine in the Web, there should be preferred standard-
ized and mostly used predicates before own defined predicates. To the most

8

1.2. Linked Data Principles

Figure 1.2: Example of basic kinds of RDF triples

spread dictionaries belong, for instance, Dublin Core, Good Relation, FOAF,
schema, SKOS, etc. Section 1.4.1.2 is dedicated to dictionaries.

In the case of literal triples, object in the triple represents the concrete
value represented by some literal. Therefore the triples are referred to as
literal. The literal can be shown in various data types, for instance, string,
date, number etc. Literal values are not represented by the identifier URI,
they are only ordinary values. In the case of triples marked as RDF links,
object represents not only the relation to the subject in the actual triple,
but also represents another resource, hence this type of the object has to be
identified also by the URI.

More details about technology RDF, which describes data model for Linked
Data is in the separate chapter 1.4.1.1.

RDF framework does not represent format, in which are Linked Data writ-
ten, but data model, which is used for the description of these data. By the us-
age of this data model, it is necessary to serialize the data. Various formats
exist for serializing of the data described by RDF data model. The most used
are RDF/XML, Turtle, N-Triples or JSON. Detailed description of the par-
ticular RDF formats is in the section 1.4.1.3.

The main idea of the principle 3 in Linked Data is to use standardized
technology for the description of the data, so RDF data model and these
data are necessary to serialize into particular format, in order to be processed
by the machine, and in order to provide useful information to the users.

9

1. Theoretical background

1.2.4 Principle 4

Following principle describes, that at the particular resource is appropriate
to include links to the other RDF resource for the possibility of searching
more information about the concrete resource. As the Web of documents is
aimed on publishing hyperlinks, in order to the user could move from one
document the other similar document, also it is necessary for Web of Data
to reply this principle. Then the user can from one resource get to another,
similar resource. RDF links which are used in Linked Data can be possibly
divided into three main categories:

• Relational Link – it is the case, where the object represents another
entity like is subject in triple, and from this object we can receive more
information through this link

• Identity Link – it is subset of Relational Link, the object creates the same
entity like the subject, but for instance, it contains different information
in the different datasets

• Vocabulary Link – it is the link, which refers to the definition of the fea-
ture in the concrete dictionary, which was used for the definition
of the feature in the particular triple between subject and object.

In the figure 1.3 are shown these three types of links. As we can see,
from one resource can go out more links and from object, which is another
resource can go out another links. In this example vocabulary link repres-
ents definition of the feature givenName described by the dictionary FOAF.
Relational link in this figure represents relation between the resource Ro-
ger Federer described by DBpedia and the resource Switzerland, also de-
scribed by DBpedia. Identity link in this picture says, that the resource
Roger Federer described by DBpedia represents the same entity like resource
73418278779906874903 described by data.nytimes.com. Relational or iden-
tity link can be also the vocabulary link in one time.

The end of the fourth principle is clear. If we want the data really reflect
the definition of Linked Data, it is necessary to use all types of above men-
tioned links. Users also should be able to surf through the particular entities
like as they surf through documents. In conclusion, it is important the Web
of Data really represents one global database of all resources.

1.2.5 Conclusion

After the introduction of the particular principles of Linked Data it is pos-
sible to deduce, that it is possible to realize Web of Data with the observ-
ance of principles in the way, that principles of the actual web, which is Web
of documents will be remained, look at table 1.2. Linked Data then meet all
principles of the Web: data on the Web described by the uniform data model

10

1.3. LOD Cloud

Figure 1.3: Different types of links in RDF data model

Web of documents Web of Data

Uniform format HTML for docu-
ments publishing

Uniform RDF data model for data
publishing

URL as unique global identification
of document

URL as unique global identification
of resource

HTTP protocol for localization and
access to documents

HTTP protocol for localization and
access to resource

Hyperlinks between documents Hyperlinks between resources

Table 1.2: Comparison: Web of documents vs. Web of Data using data in RDF
Data model

RDF (principle 3), particular resources have clear identification (principle 1),
it is possible to access to them by the HTTP protocol (principle 2) and they
contain links to the similar entities (principle 4).

1.3 LOD Cloud

Following section describes what LOD Cloud represents, how it was created,
developed and also how its current state is.

Linked Open Data Project is a community activity started in 2007
by the W3C’s Semantic Web Education and Outreach (SWEO) Interest Group.
The Project’s stated goal is to make data freely available to everyone [7].The
result of this project is global data space, which is called Web of Data. Web
of Data is shown in the huge graph, which consists of trillion RDF triples
from various datasets covering different areas, like, for instance, geograph-
ical data, government statistic, people, media, movies, music, medical data,

11

1. Theoretical background

Figure 1.4: Linking Open Data cloud diagram 2014 [1]

statistical data, etc. LOD cloud shows datasets that have been published
on the base of Linked Data principles, by contributors to the Linking Open
Data community project and other individuals and organisations. It is based
on metadata collected and curated by contributors to the Data Hub as well as
on metadata extracted from a crawl of the Linked Data web conducted in April
2014 [1]. LOD Cloud diagram from the year 2014 is shown in the picture 1.4.

Each dataset, which is concluded or which will be concluded in LOD Cloud
has to meet these criteria:

• Dataset must be resolvable by http:// (or https://) URIs (represents
principle 1 in the section 1.2.1 and principle 2 in the section1.2.2).

• Dataset must be represented by RDF language in, at least one from the fol-
lowing formats: RDFa, RDF/XML, Turtle, N-Triples (represents prin-
ciple 3 in the section 1.2.3).

• Dataset must contain at least 1000 triples.

• Dataset must be connected with RDF links with at least one dataset,
which is currently occurring in the LOD Cloud. There is requested
at least 50 links (represents principle 4 in the section 1.2.4).

12

1.3. LOD Cloud

Figure 1.5: Percentage representation of datasets in particular categories
of LOD Cloud in year 2014

• Dataset must be available via RDF crawling, via an RDF dump, or via
a SPARQL endpoint.

Number of datasets in LOD Cloud increases every year. LOD Cloud was
created in the 2007 with the initiative 12 datasets. In the 2009 it contained 95
datasets and in 2011 there was 295 datasets. Currently, LOD Cloud contains
1014 datasets, which follow principles of Linked Data and conditions of Linked
Open Project.

Datasets in LOD Cloud are now divided into 8 main categories. More than
half of LOD Cloud consists of datasets in the category Social Web. In the pre-
vious versions of LOD Cloud this category was not created at all, and today it
makes the biggest group. The following category is area Government with 183
datasets. The third place takes category Publications with 96 datasets, which
made the biggest group in year 2011. Actual percentage representation in par-
ticular categories in LOD Cloud from the year 2014 is shown in the chart 1.5.
Comparison of the number of datasets in the individual categories in the year
2011 and 2014 is shown in the table 1.3.

The biggest datasets in LOD cloud are DBpedia a GeoNames. DBpedia
is dataset in the category Cross-Domain. It is project, which was created
with the aim to extract structured data from Wikipedia and publish them
on the Web as Linked Data. The English version of the DBpedia knowledge
base currently describes 4.58 million things, out of which 4.22 million are clas-
sified in a consistent ontology (http://wiki.DBpedia.org/Ontology2014), in-
cluding 1,445,000 persons, 735,000 places (including 478,000 populated places),

13

1. Theoretical background

Topic Datasets in 2014 Datasets in 2011

Government 183 49

Publications 96 87

Life sciences 83 41

User-generated content 48 20

Cross-domain 41 41

Media 22 25

Geographic 21 31

Social web 520 0

Table 1.3: Comparison of categories represenation of datasets in LOD Cloud
from the year 2011 and 2014

411,000 creative works (including 123,000 music albums, 87,000 films and
19,000 video games), 241,000 organizations (including 58,000 companies and
49,000 educational institutions), 251,000 species and 6,000 diseases [8]. DB-
pedia forms the biggest dataset in the Web with the 3 trillion triples and 50
million RDF links, which connect DBpedia with other datasets. GeoNames
is dataset from the category Geographic and it contains more than 11 million
of several places. There exists the online application, in which it is possible
to search places according to the name of country, postal codes etc. Dataset
GeoNames is also described by own ontology which is free avilable in the Web
in GeoNames documentation , which is available at [9].

1.4 Semantic technologies

This chapter is describing the main semantic technologies, which are used
for the creation, description and querying Linked Data and for the creation
of Linked Data applications too. It will contain the description of RDF data
model, and also RDF formats and RDF dictionaries, which are connected
to it. Furthermore, this chapter contains description of language SPARQL,
which functions is querying Linked Data, introduction with the project Linked
Data Fragments and also with the format HDT, which is compression format
of RDF data.

1.4.1 RDF

RDF is a standard model for data interchange on the Web. RDF has fea-
tures that facilitate data merging even if the underlying schemas differ, and
it specifically supports the evolution of schemas over time without requiring
all the data consumers to be changed [10].

Since it was mentioned above, when introducing with the issue, RDF
is a framework, which main function is representation of Linked Data. It

14

1.4. Semantic technologies

describes data model, which contains the concept of triples, which consists
of subject, object and predicate and this triple describes resource and its fea-
ture.

RDF framework enables the realization of Web of Data, so it allows accom-
plish all four principles of Linked Data, which were described in the section
1.2. The first principle says, that is necessary to use URI for the description
of the particular resource. RDF allows this principle, because in RDF, only
URI is used for identification of things. The second principle tells us, that
for the identification of the things it has to be used HTTP URI to be visible
on the Web. RDF enables using of any URI, for instance FTP URI, IBAN URI,
own URI, but also it allows usage of HTTP URI, which is necessary for the ac-
complishing the second principle of Linked Data. The third principle says, that
it is necessary to provide to the user useful information. RDF accomplishes
this principle in the way that it provides information to user by human and
also by machine processed RDF format through web browser, because it al-
lows to use HTTP URI. The fourth principle reports, that in Linked Data it is
important to linking data with similar one. RDF accomplishes this principle
for example in the way that objects in triples can be link to another resources
identifiable by URI, and that predicates and subjects are defined by URI,
which refers to related information.

Unlike the other formats for publishing structured data on the Web, RDF
allows to represent Linked Data in the way, that there will be maintained all
required principles.

1.4.1.1 RDF Data Model

In this chapter the user will be introduced with the main elements of RDF
data model for the description of Linked Data. All these examples were made
after studying RDF data model in the book [11].

Blank node Piece of information about some entity in Linked Data is de-
scribed by one triple: subject, predicate, object. In the section 1.2.3 was
mentioned, that object is represented either by another resource, that is iden-
tified by HTTP URI, or by literal. One other possibility exists and that is
blank node. Blank node is basically object without URI, which is used for di-
viding one predicates to several more specific predicates, and the user does
not want to create abstract URI for the collection of objects. Ideal example
for this case is representation of address. The address is composed of, for in-
stance, street, city, country. It is possible to use blank node as object, which
represent whole address, from which will come out links on the particular
entities of addresses, look at the figure 1.6. Some database tools, which are
searching through Linked Data, for instance, SPARQL, automatically create
URI for blank node. Blank node is marked by ” ”, so instead of URI is used
mentioned mark.

15

1. Theoretical background

Typed Literals Next component in RDF is usage of typed literals. Up
to now, in the examples mentioned above, there were objects, which were
either URI of another subject, or they contained value in the version of lit-
eral. There also exists the possibility of the literal, at which is even defined
data type, for instance, string, integer, timestamp, etc. Furthermore, there is
possible to define not only the data type at literals, but, for instance, at data
type string there is possible to add also the language, in which is the partic-
ular string written. Data type in Typed Literal is written in the way, that
after the particular value of literal is written a double caret symbol followed
by URI for particular data type, as you can see on the figure 1.6. The lan-
guage of the literal is denoted in the way, that after URI of data type is written
the mark @ following by abbreviation of particular language. All data types
applicable for typed literals in RDF are described in the dictionary W3C XML
Schema Definition Language [12].

Classes and subclasses In RDF is also possible to use classes, that means
to determine, that some subject is the instance of some concrete class. RDF
concept rdf:type is used for this. This predicate can be applied also in the short
form, in the form of the char a. Classes in RDF are possible to comprehend
like classes in the object oriented programming. Members of the class (objects
assigned to the concrete class by predicate rdf:type) can be represented like
instances of particular class. The class in RDF can be created by the usage
of predicate rdfs:Class or owl:Class, look at the picture 1.6. Also it is possible
to define subclasses, for instance by the predicate rdfs:subClassOf. RDFS
(RDF Schema) [13] is the main dictionary for the description of RDF ontology.

1.4.1.2 RDF Vocabularies

Unfortunately, RDF framework does not provide general overview of do-
mains or definition of classes, which would be the reflection of the real things
in the world. It does not even define relations between particular things.
Therefore, dictionaries were made, where each dictionary deals with particular
domain or area, which it describes. RDF Vocabularies are used for the defini-
tion of predicates, which are used for connecting subject and object in the triple,
but also for the definition of the classes and ontology. In the case of creation
own dataset, it is ideal to use predicates from as many already existed dic-
tionaries as possible, so data could be easier translated and better processed,
by machine or also by human. It is also possible to create own dictionary,
which has to fulfill set of criterias for dictionaries representing Linked Data.

Currently, there exists big amount of dictionaries for the description of vari-
ous areas, for instance, for the description of conceptual models, hierarchy,
metadata, persons, geographical areas, places, consumer products etc.

16

1.4. Semantic technologies

Figure 1.6: RDF example of blank node, typed literals and usage of classes

RDF and RDFS The dictionary RDFS (RDF Schema) is the main RDF
dictionary, and it is used mainly for the defining taxonomy of classes and
predicates, for the creation of members to the particular classes, but also
for providing of more information about subject. Official definition says that
it provides a data-modelling vocabulary for RDF data and it is an extension
of the basic RDF vocabulary [13].

RDFS uses two domains, one for the description of the classes, and
the second one for the description of the predicates:

• http://www.w3.org/1999/02/22-rdf-syntax-ns# - with this domain it is
used prefix rdf, and one of the basic classes is rdf:predicate, which de-
scribes all RDF predicates.

• http://www.w3.org/2000/01/rdf-schema# - with this domain it is used
prefix rdfs, and one of the basic classes is rdfs:Class, which describes all
RDF classes.

To the most basic predicates of RDFS dictionaries belong:

17

1. Theoretical background

• rdfs:Class - defining of the concrete class.

• rdf:Property - defining of the concrete property.

• rdf:type - defining of membership to the class.

• rdfs:Resource - class of all resources. All other classes are subclasses
of this class.

• rdfs:subClassOf - defining of subclass to the concrete class.

• rdfs:subPropertyOf - defining of subpredicate to the particular predicate.

• rdfs:comment - comment readable by the users.

• rdfs:seeAlso - link to get further information about resource.

OWL Dictionary OWL (Ontology Web Language) is similar to dictionary
RDFS, because it also defines data model, so the ontology, classes and their
predicates. According to definition, OWL is a semantic markup language
for publishing and sharing ontologies on the World Wide Web and id developed
as a vocabulary extension of RDF [14]. To its elementary classes belong,
for instance, owl:Class, owl:Thing, owl:ObjectProperty or owl:Restriction. But
the most used predicate from this dictionary is owl:sameAs, which is used
to claim, that two resources are identical. Based on this predicate, the user
knows that it is one and the same resource, only described in various ways
in different datasets.

SKOS SKOS dictionary (Simple Knowledge Organization System) is a W3C
recommendation designed for representation of thesauri, classification schemes,
taxonomies, subject-heading systems, or any other type of structured con-
trolled vocabulary [15]. SKOS is hence similar to the dictionaries RDFS and
OWL, but when RDFS and OWL deal with the conceptual model of classes
and their predicates, SKOS is more concerning with conceptual hierarchy and
collections.

To the most elementary classes and predicates of this dictionary belong:

• skos:Concept - main class of SKOS dictionary which is used for the defin-
ition of the concept.

• skos:ConceptScheme - class which aggregates more classes of type skos:
Concept.

• skos:inScheme - predicate for the insertion of the concept to the scheme
of concepts.

• skos:hasTopConcept - predicate for the specification of the main concept
in the particular scheme of concepts.

18

1.4. Semantic technologies

• skos:prefLabel - predicate for the preferred concept name, for one
concept it can be only one in one language.

• skos:altLabel - predicate for the alternative concept name, for one
concept it can be more in many languages.

• skos:hiddenLabel - predicate for the hidden title because of potential
typing error during searching.

• skos:notation - string of characters for the unique identification
of the concept in the particular scheme of concepts.

DCAT,VoID and DCMI These dictionaries describe mostly datasets,
linkset and metada about them.

Dictionary DCAT (Data Catalog Vocabulary) is used mostly for the de-
scription of catalogues, datasets and themes in the particular datasets. It con-
tains classes such as dcat:Catalog for the defining of catalogue, dcat:Dataset
for the defining of dataset or dcat:Keyword for the description of the key words
in discribed dataset.

For the description of datasets and linksets there is mostly used the dic-
tionary VoID. VoID is an RDF Schema vocabulary for expressing metadata
about RDF datasets [16]. In this concept, the dataset is represented as
set of RDF triples, which are published, maintained and aggregated by one
provider. Linkset is represented as the collection of RDF triples, which de-
scribes link between two resources in two various datasets. Dictionary con-
tains classes and predicates such as void:Dataset for definition of dataset,
void:Linkset for definition of linkset, void:triples for number of triples in data-
set, void:classes for number of classes in dataset etc.

Main function of dictionary DCMI (Dublin Core Metadata Information)
is description of metadata, for instance, about datasets, linksets, concepts etc.
To the most basic predicates belong dct:titul for the description of the name
of dataset, linkset, concept, etc, dct:language for the description of language,
in which specific concept is written or dct:publisher for defining the user, who
publishes concrete dataset.

1.4.1.3 RDF Formats

In the beginning, it is necessary to realize that RDF is not data format but
a framework which defines data model for the description of data in the format
of triples: subject, predicate, object. With the aim to save data to the file or
on the Website and process them by machine, it is necessary to serialize RDF
data model into one of RDF formats. All allowed RDF formats represents
RDF data model, and data serialized in various formats can be connected
to one RDF graph. This flexibility enables to use format on serialization

19

1. Theoretical background

of data, which is the most suitable for developer, for instance, for Web ap-
plications is the most used format JSON, because Javascript provides many
suitable libraries supporting JSON. Applications, which are based on XML
rather use format RDF/XML etc. In the next subchapters will be described
the most used RDF formats with the examples and advantages/disadvantages
of their usage.

RDF/XML Format RDF/XML is original format for the serialization
of RDF data model, which is standardized by organization W3C. This format,
however, is not completely simply readable by the user hence it is not used very
often. This format, of course, contains XML tags, and particular components
of triple, that means subject, predicate, object can be divided to XML tags,
XML attributes and XML content. Abbreviations for namespaces are defined
by XML attribute in XML tag rdf:RDF, look at example in the listing 1.1.

<?xml ve r s i on =”1.0” encoding=”utf −8” ?>

<rd f :RDF xmlns : rd f=”http ://www. w3 . org /1999/02/22− rdf−
syntax−ns#”

xmlns : r d f s=”http ://www. w3 . org /2000/01/ rdf−
schema#”

xmlns : ns0=”http :// dbpedia . org / onto logy/”>

<rd f : De s c r ip t i on rd f : about=”http :// dbpedia . org /
r e sou r c e / Roger Federer”>

<rd f : type rd f : r e s ou r c e=”http :// dbpedia . org / onto logy /
Agent”/>

<rd f : type rd f : r e s ou r c e=”http :// dbpedia . org / onto logy /
Person”/>

<r d f s : l a b e l xml : lang=”es”>Roger Federer </r d f s : l abe l >

<ns0 : r e s i d e n c e rd f : r e s ou r c e=”http :// dbpedia . org /
r e sou r c e / Switzer land”/>

</rd f : Descr ipt ion >

</rd f :RDF>

Listing 1.1: RDF/XML format for representation of RDF Data

RDFa RDFa is the format which is also standardized by organization W3C.
It is the format, which embeds RDF data directly on HTML websites, not
by HTML comment, but normally by HTML DOM elements. It means that
to arbitrary existing HTML website is possible to add structured data with
the usage of RDFa, and HTML website will become not only ordinary Web-
site with the unstructured content, but also with structured data suitable
for the processing by machine. It works easily, it is necessary to change DOC-
TYPE in HTML document to support RDFa format, and based on this change,

20

1.4. Semantic technologies

web browser by processing of HTML just ignores elements with attributes
which it does not know.

Turtle Turtle is format, which can be in the most unique way converted
on RDF data model, because it is the most intuitive and the easiest for under-
standing by the user. Turtle is derived from the Terse RDF Triple Language
and is the most often used for serialization of RDF data model by the user.
It provides support for the prefixes, which are mostly defined in the initial
part of the serialization, therefore particular components of triple do not have
so long names, ergo the file is more transparent and easier for understand-
ing. Besides, it is not always necessary to write the whole triples. At triples,
which share mutual subject and predicate are particular objects separated
by comma. Triples which share only the subject are divided by semi-colon,
look at the example shown in the listing 1.2.

@pre f ix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#> .
@pre f ix ns0 : <http :// dbpedia . org / onto logy/> .

<http :// dbpedia . org / r e s ou r c e / Roger Federer>

a˜<http :// dbpedia . org / onto logy /Agent>, <http :// dbpedia
. org / onto logy /Person> ;

r d f s : l a b e l ”Roger Federer ”@es ;
ns0 : r e s i d e n c e <http :// dbpedia . org / r e s ou r c e / Switzer land

> .

Listing 1.2: Turtle format for representation of RDF Data

N-Triples Format N-Triples is subset of format Turtle minus prefixes and
abbreviations. It is basically more primitive format, because it describes every
triple apart and without prefixes, so with the whole URI, which causes high
redundancy. Therefore files in format N-Ttriples have much bigger size like
files, for instance, in format Turtle. In spite of this redundancy this format is
processed by machine in the best way, as it has no optimalization and every
triple is written separately, see example in the listing 1.3.

<http :// dbpedia . org / r e s ou r c e / Roger Federer> <http ://www.
w3 . org /1999/02/22− rdf−syntax−ns#type> <http :// dbpedia
. org / onto logy /Agent> .

<http :// dbpedia . org / r e s ou r c e / Roger Federer> <http ://www.
w3 . org /1999/02/22− rdf−syntax−ns#type> <http :// dbpedia
. org / onto logy /Person> .

<http :// dbpedia . org / r e s ou r c e / Roger Federer> <http ://www.
w3 . org /2000/01/ rdf−schema#labe l > ”Roger Federer ”@es .

21

1. Theoretical background

<http :// dbpedia . org / r e s ou r c e / Roger Federer> <http ://
dbpedia . org / onto logy / re s idence > <http :// dbpedia . org /
r e sou r c e / Switzer land> .

Listing 1.3: N-Triples format for RDF Data

1.4.2 SPARQL

As well as there exists query language SQL for data saved in relation database,
also exists query language for Linked Data serialized to some RDF formats,
and that is SPARQL language. SPARQL is based on standards of SQL and
is defined by organization W3C. Whole SPARQL specification is available
in [17].

1.4.2.1 SPARQL components

Structure of SPARQL query is very similar to SQL query, but it is assim-
ilated to RDF data model. It contains, for example, components PREFIX,
which in SQL is not defined. Furthermore, WHERE clausule is not written
in the form of condition like in SQL, but in the form of triple patterns, based
on which the result will be evaluated.

Individual components in order of SPARQL query are following:

• PREFIX ...

• SELECT — DESCRIBE — ASK — CONSTRUCT ...

• FROM ...

• WHERE ...

• ORDER BY ... LIMIT ... OFFSET

PREFIX is used for defining namespaces, which are used in SPARQL
request. The main advantage is, that the user or machine does not have
to write the whole titles in defining triple patterns, but it uses only abbrevi-
ations defined in this clausula. On the Web is available the good application
for searching of namespaces, which the user needs to use in SPARQL query,
or in the creation of datasets. It is available on the website [18].

There exist more types of SPARQL queries, which are classified according
to the result. The most known is SELECT, which returns the set of re-
quired variables corresponding to triple pattern defined in WHERE clausula.
It can be represented as classic SELECT, which is known from SQL language.
The other possibility is the usage of DESCRIBE, which answers on the ques-
tion: “What all do we know about particular resource?” DESCRIBE query can
contain only URI, where the result will be the RDF graph describing the whole

22

1.4. Semantic technologies

resource. It can also contain clausula WHERE, in which the user defines sub-
set of dataset, which he needs to display, look at the example in the listing
1.4.

DESCRIBE <http :// dbpedia . org>

DESCRIBE ? s

FROM <http :// dbpedia . org>

WHERE { ? s a˜<http :// dbpedia . org / onto logy /Agent>}

Listing 1.4: Example of DESCRIBE query for whole dataset and for subset
of dataset

The next type of SPARQL query is ASK, which answers on the question:
“Exists at least one triple quering to particular triple pattern in this dataset?”
The result is either true or false.

The last type is CONSTRUCT, which on the base on defined scheme
(exactly in the clausula CONSTRUCT) creates corresponding RDF graph.
In the example listing 1.5 are firstly shown triples, which correspond to triple
pattern in WHERE clausula, and the result is transferred to the form of triple
defined in CONSTRUCT.

CONSTRUCT { ? s my: name concat (? gn , ” ” , ? sn) }

FROM <http :// dbpedia . org>

WHERE { ? s f o a f : givenName ?gn ; f o a f : surname ? sn .}

Listing 1.5: Example of CONSTRUCT query

SELECT chooses the result, which corresponds to conjunction of all triple
patterns in WHERE component. SPARQL also provides the possibility
to define patterns, which are OPTIONAL, so in the case of equality they will
get to the result, and in the case of discrepancy, the original result is not
changed. Furthermore, same as language SQL, SPARQL allows function like
UNION for the unity of more resources or MINUS for the finding contrasts
between graphs.

For result limitation, it is also possible to use component FILTER, which
filtrates the results according to assignment. It contains operators and func-
tions and it is applying on the whole result according to pattern in WHERE
component. For the limitation of results there works also classic functions
like DISTINCT, OFFSET, LIMIT, etc. Also there are available aggregation
functions as COUNT, SUM, AVG, MIN, MAX, etc., logical functions as IF,
functions for the handling text and numeric values. All available functions are
defined in SPARQL specification.

23

1. Theoretical background

In SPARQL also exists federated queries, which are used for receiving
additional data from other dataset. For this type of query is used SERVICE
component.

As well as SQL, SPARQL is not used only for querying data, but also
on the creation and editing of data. To main functions of data update belong:

• INSERT DATA - it uses no patterns, no variables, there are directly
entered concrete data which user wants to insert.

• DELETE DATA - it uses no patterns, no variables, user directly entered
concrete data to be removed.

• INSERT - it is used for inserting data from some dataset which corres-
ponds to pattern in WHERE component.

• DELETE - it is used for deleting data from particular dataset which
correspond to patterns in WHERE component.

• LOAD - it is used for the loading data from file to graph.

• CLEAR - it is used for deleting of all triples in graph.

1.4.2.2 Querying Data

Linked Data, about which the user needs to query, are available either
on the Web, or locally in the file. Many datasets available on the Web
provide SPARQL endpoint, which is web-accessible query service, which ac-
cepts SPARQL language. Specific HTTP GET mostly shown website with
HTML form for typing the query, plus some additional possibilities, for in-
stance, format of result, execution timeout, etc. In the figure 1.7 there is
displayed SPARQL endpoint for DBpedia available on the address:
http://dbpedia.org/sparql.

In the case, that the user needs to use SPARQL language for locally stored
data, it is necessary to use some tool for querying RDF data or to use Triple
Store with the support SPARQL, which is used for backup and querying RDF
data. To the most known tools for querying Linked Data belong:

• OpenLink Virtuoso [19] - it provides HTTP server involving SPARQL
Endpoint. There exists commercial version, but also open source single
server.

• OpenRDF Sesame [20] - open source framework for RDF and Linked
Data, which allows store RDF data and querying them.

• Apache Jena [21] - open source JAVA framework for the creation of se-
mantic Web and Linked Data, it enables to store data also to create and
querying data. It provides also the tool for the single querying, which is
ARQ SPARQL 1.1 – compliant engine.

24

1.4. Semantic technologies

Figure 1.7: Virtuoso Sparql Query Editor

1.4.3 Linked data fragments

According to the definiton, Linked Data Fragments is a conceptual framework
that provides a uniform view on all possible interfaces to RDF, by observing
that each interface partitions a dataset into its own specific kind of fragments.
A Linked Data Fragment (LDF) is characterized by a specific selector (sub-
ject URI, SPARQL query, . . .), metadata (variable names, counts, . . .), and
controls (links or URIs to other fragments) [22].

The main idea of the project Linked Data Fragments is to unify all re-
sources of Linked Data, and to provide to the user the possibility to querying
about data in the most effective way, and even balance the load pressure
between client and server part.

Linked Data fragments currently distinguish three resources of Linked
Data, about which it is possible to querying:

• data dump - all triples included in the particular dataset

• subject page - it contains triples about specific subject in dataset shown
on the webpage

• SPARQL result - it contains triples, which are result of SPARQL query

But every Linked Data interface, which was mentioned above, make full
use of either client or server part. SPARQL result is for the client, of course,
the easiest, but on the other hand, the server part has to make so much effort

25

1. Theoretical background

in order to maintained high accessibility of data. If the user does not want
to rely on this SPARQL endpoint, he can download data to local directory,
and he processed them independently, which, on the other hand, extremely
makes full use of client part. Therefore the new resource of Linked Data was
invented, and that is Tripple Pattern Fragment, which requires minimal server
effort and it provides effective client data querying. It is made from these
parts:

• data - all triples corresponding to entered query,

• metadata - approximate number of triples,

• controls - queries linking to other fragments of particular dataset.

Linked Data fragments provide currently 23 datasets, about which it is
possible to query by the usage of fragments. Preview of all datasets is available
on [22].

Linked Data Fragments provides open source software. It offers client pro-
grams, which can execute queries about datasets, for which there exist Triple
Patterns Fragments. It provides client application in languages Javascript,
Java, Perl and Python. The example of online client developed by Linked data
Fragments is shown in the figure 1.8. Also there are available server parts,
in the languages Javascript, Java, Perl, Ruby, Python, Java and Netkernel.
Unfortunately, in the time of implementation of our web application, Java
client was broken and we could not use it.

1.4.4 HDT

According to the definition, HDT (Header, Dictionary, Triples) is a compact
data structure and binary serialization format for RDF that keeps big datasets
compressed to save space while maintaining search and browse operations
without prior decompression. This makes it an ideal format for storing and
sharing RDF datasets on the Web [23].

HDT is then compression binary format for RDF Data. It occupies a lot
less place like any RDF format, it is used on sharing of data on the Web, it
is suitable for various analyses and visualization of data. For the comparison,
dataset DBpedia from the year 2015 contains more like 800 million triples,
and it has 4,7 GB, what is almost three times less than the whole DBpedia
in the format turtle.

HDT provides globally 20 datasets, together more than 7 trillion triples
in data size less than 50 GB, which would in format N-Triples occupies more
than 1 TB. List of all datasets available in HDT format is placed in [23].

HDT provides GUI tool, which is called HDT-it and it enables to load
RDF Data in HDT format, also to browse them and querying them. As well, it
provides graphical view on data and some metadata about particular dataset.

26

1.4. Semantic technologies

Figure 1.8: Example of Javascript client querying data in Linked Data Frag-
ment format

27

1. Theoretical background

It is capable of exporting HDT data to some no compress RDF format too.
This application is available on the platform of Windows, Linux and Mac OS.
Besides, it is possible to download HDT libraries which facilitate to work with
the format HDT. Libraries are freely available either in the language C++ or
Java, and it is possible to use them for the development of own applications.

28

Chapter 2

State-of-the-art

Because of the fact that Linked Open Data and LOD cloud are spreading
more and more every year, a need for the summarization and various stat-
istics of already existing datasets arose. A necessity to know which data are
contained in particular dataset came into being. There is many various tools
for exploring of LOD data. Several tools provides various statistic informa-
tion about dataset content, next tools are focused on user friendlier possibil-
ities of dataset querying and there exist also tools, which provide information
to which domain particular dataset belongs, which means what type of in-
formation dataset contains.

To the statistical tools belong for instance tools as RDFStats [24], LOD-
Stats [25] or proLOD++ [26], which provide metadata specification about data-
set. RDFStats generates RDF file with the statistical data about dataset
by the running of the default SPARQL queries. Then the results is URI
histogram over URI subjects or number of blank nodes. LODStat provides
statistical information as the number of triples, subjects, predicates, objects,
used links, blank nodes etc. Furthermore it offers also the most occuring
vocabularies, data types or languages in datasets. ProLOD++ provides sim-
ilar statistical information as LODStat, but it displays them also graphically.

One of the available tool providing visual querying of LOD datasets and
providing various informations of the particular dataset is called LODeX. LO-
DeX supports visual querying of a LOD source on the basis of the Schema
Summary. The main functionalities are a new interface that allows to compose
a visual query browsing the Schema Summary of a source; a SPARQL com-
piler automatically produces and submits the corresponding SPARQL query
to the SPARQL endpoint and the result is shown in a tabular view and a
refinement panel that allows to refine the visual query by adding or remov-
ing attributes, by defining some filter and ordering conditions [27]. Example
of visual query by LODex is shown in the figure 2.1. The main idea of this
project is that it is not simple to query dataset of unknown structure. Be-
cause of that this tool processing SPARQL endpoint input and producing a

29

2. State-of-the-art

Figure 2.1: LODeX - example of visual query and Schema Summary

set of default queries for creation of Schema Summary over it. The tool shares
the idea of our goal which is exploring of datasets we do not know but from the
different point of view. Our goal is to determine which domains are repres-
ented by dataset while LODeX provides calculated statistic data and is more
focused to optimization and answering of queries.

The other tool determined for the sumarization of LOD dataset is for in-
stance LODSight. LODSight is a tool that shows a summary of an RDF
dataset as a visualization of a graph formed from classes, datatypes and pre-
dicates used in the dataset. The visualization should allow to quickly and
easily find out what kind of data the dataset contains and its structure. It
also shows how vocabularies are used in the dataset [28]. On the base of this
graph it is possible to guess, which data contains the particular dataset. It
is on the base of its classes and predicates. However, the tool also does not

30

Figure 2.2: LodSight - example of the dataset summarization

provide domain representation of the dataset. Example of the summarization
of dataset is shown in the figure 2.2.

The tool, which closes in to our aim which is the sumarization of LOD
datasets on the domain level, is the tool developed by Lalithsena with the
usage of dataset Freebase and its available API. Their approach provides a
technique to automatically identify the main topics of LOD datasets by util-
izing Freebase as both background knowledge and to provide the vocabulary
for the topic tags [29]. It sends labels of their classes to Freebase API and it
returns Freebase domain type. The results are merged to create a category
hierarchy where only hierarchies with the most common root are kept and the
hierarchy with the most frequency is defined as the main domain of dataset.
However, our aim is not automatic definition of one of the most frequent do-
main by the help of Freebase API, but determination of the domain proportion
by the manual definition of the domains and classes, which creates particular
domain. Then on the base of the existence of the given entities will be defined
domain classification with the percentage coverage of the particular domains.

The other tool, which aims on the identification of the content and the
domain classification of LOD datasets is implemented by Andrejs Abele. Their
main goal is providing of the detail description of the dataset (classification

31

2. State-of-the-art

to the domains) and also the providing of metadata which publisher wants
to publish and suggestions for possible datasets that the dataset could be
linked to. The main domain categories are represented by DBpedia categories,
because they cover big amount of domains. Categorization of the dataset
to the particular domain is defined according to particular literals, on which
is used statistical method TF-IDF and then on the base of the calculated
ranking are determined top results.These top result are subsequently send
to DBpediaSpotlight. The whole way of classification of the dataset to the
domain is available on [30].

As the result of this research we found out that many tools for LOD data-
sets sumarization exist. There are tools providing mainly statistical inform-
ation about datasets but also tools providing automatical domain identifica-
tion of datasets mostly by using some statistical methods. We found no tool
providing domain representation based on a count of occurrences of particular
classes in datasets which creates the particular domain.

32

Chapter 3

Analysis

Analysis is considered as one of the initial phase of software development pro-
cess. It is necessary to process it in detail and in a good-quality, so it can
ensure elimination of mistakes, which could occur in the next stages of devel-
oping. Correction of the mistakes in the phase of design or implementation
is much more expensive and difficult in comparison to this analytical phase.
Furthermore, analysis is also the tool for primary familiarize customers with
the developing application. Just on the basis of analysis, the customer can
imagine the application like a unit and he is realizing, what is really neces-
sary for him. He becomes aware, which originally requests he can pass or
otherwise, which requests in the assignment were missing and they are ne-
cessary to fulfill to the analysis and to process them. It is often happening,
that after early processed analysis, some mistakes are eliminated, which were
caused by the inaccurate comprehension of the customer and the provider
of software.

Software analysis usually contains some default analytical models. It in-
cludes for example functional and non-functional requirements about applic-
ation, use case diagrams, data models and diagram of activities describing
current running processes at customer in the comparison with the processes,
which can be created by the usage of the requested software. As the de-
veloped application does not improve any established process at customer,
diagram of the activities describing current processes will be missing in this
paper.

3.1 Requirements

This section contains the list of all requirements, which are important within
the developing of the application. Requirements are usually divided on func-
tional and non-functional. Functional requirements describe requests about par-
ticular functions of application. On the other hand, non-functional require-
ments describe technical requests. Particular functional and

33

3. Analysis

Figure 3.1: Functional requirements

non-functional requirements for this application are described in the sub-
sections below, in the section 3.1.1 and 3.1.2.

3.1.1 Functional requirements

The figure 3.1 represents the summary of functional requirements. In the next
sub-sections are presented particular requirements in more details.

F1 Show list of domains and its entities

User can view through list of particular domains. Domain represents some
scope, for instance sport, art, technology, architecture etc., based on which
the particular entities will be located to it. Entity represents some class
in dataset ontology. Resource of this entity is usually RDF triple which
contains specific predicate rdf:typeOf and object in this triple is this entity.
User will be able to show/hide the list of entities in the database belongs
to the particular domain by unpacking/packing this domain. Only one do-
main in the time can be unpacked. Below the domain list, there will be a pie
chart, which will show representation of particular domains, which means how
many entities every domain contains.

34

3.1. Requirements

F2 Import domains and entities in N-Triples

User can import domains and entities from the local file in format N-Triples
(prefix .nt or .NT). In the import file user can define new domain, create new
entity under existed domain and define link between entities, which can be
useful in case of processing different datasets.

F3 Export domains and entities to N-Triples, CSV or Excel

User will be able to look at domains and entities directly in the application
(functional requirement F1), but also he will have the opportunity to export
this overview into local file, to format N-Triples, CSV or to format compat-
ible with the program MS Office Excel (version 2007 and newer). File in N-
Triples will be in the same structure like file for import domains and entities.
Others formats will represent overview in the structure: domain path, entity
group (links between entities), entity path. In addition Excel file will contain
the chart expressing representation of particular domains.

F4 Add, edit or remove domain

User will have the opportunity to add new domain by the usage of form.
For the addition of new domain, it is enough to fill the name of it, and path will
be prefilled automatically. User will also have the right to remove the existing
domain (with all entities in it) and to edit its name or path.

F5 Add, edit or remove entity

User will have the chance to add the entity to the particular domain by the us-
age of the form, where it is enough to fill only the path of the entity. In this
case, the new entity group within the domain will be created. Entity group is
used for grouping same entities but differently described in different datasets
(it represents the predicate owl:SameAs. If the user will choose the existing
entity group, new entity group will not be created and the entity will be as-
signed to the selected entity group. Beside the addition of the new entity,
the user will be able to remove or edit the existing entity. Within the editing,
he will be able to change the path.

F6 Show dataset and its analysis detail

User will be able to display detail of calculated dataset analysis within
the chosen dataset. After choosing dataset, in the first place, the user will
notice meta-data about dataset, which contains name, description, path
to the HDT file / SPARQL endpoint for the future calculation, type of dataset
(SPARQL endpoint or HDT file) and ontology predicate. Ontology predicate
represents the predicate which is used in the particular ontology for entity
specification. After that, there will be list of dataset analysis. User can

35

3. Analysis

show/hide detail of one dataset analysis in time, so the information will be
more transparent for him. Detail of dataset analysis will contain meta-data
about it, like name, description, number of domains used for the calculation,
number of calculated triples and type of the calculation (short or long one
with the calculation of predicates to the entity). The hierarchical pie chart
will be following. First level will show proportion of domains and second
level proportion of entities. In the end of dataset analysis detail, there will be
shown the table with whole calculation. That means participation of domains,
participation of entities and also the list of predicates (name and count) which
are used with the particular entity.

F7 Add, edit or remove dataset

Also, there will be the possibility to import new dataset to the applica-
tion, on which the user will be able to initiate particular analyses on base
of defined domains and entities. The addition of the dataset will be possible
through the form. The user will have to add the name, path to dataset, on-
tology predicate of dataset, optional description of dataset. Available formats
for dataset import are SPARQL endpoint or HDT file. Import of dataset will
contain also default calculation of analysis based on all domains. Therefore
the user will have the option of short or long calculation in this form too.
Inserting new dataset will be asynchronous operation (because of plenty time
needed) and user will be informed about processing and finally finishing cal-
culation. Beside the addition of the new dataset, the user can delete dataset
(with deleting of dataset there will be deleted all dataset analysis too) or edit
its name, description or ontology predicate.

F8 Add, edit or remove dataset analysis

User will be able to create his own dataset analysis according to his needs.
This function can be used for instance, if the user will be need calculated
information only through particular domains. Creation of the new analysis
will be possible by usage of form, in which the user can choose domains,
for which the analysis will be calculated. Also he will have to specify the title
and type of calculation. The description of the analysis will be optional. Also
he can erase the analysis or edit it, concretely the title and description.

F9 Export dataset analysis to N-Triples, Excel or CSV

User will be able to export the analysis to the format CSV, to the format com-
patible with the program MS Office Excel (version 2007 and newer), and also
to the N-Triples format. Formats CSV and Excel will display data in the same
structure, that is in the structure shown in the third part of the analysis
(in the table), directly in the application. Moreover, Excel file will contains
graph with domain partition. Export of dataset analysis in N-Triples format

36

3.1. Requirements

Figure 3.2: Non-Functional requirements

will contain triples with the number representation of domains and entities
by the usage of predicate void:triples.

F10 Compare two datasets

User will have the possibility to compare two analyses of two different datasets
in one application window. He will choose datasets and the analyses, which
he wants to compare by usage of combo-boxes. After filled all mandatory
fields, there will be displayed table with domains and entities, and their rep-
resentation in particular datasets. Entities with the same entity group will be
displayed in one row for better comparison.

3.1.2 Non-functional requirements

In the figure 3.2 there is shown the overview of the non-functional require-
ments. In the following subchapters, there are described particular require-
ments in more details.

N1 Web application

Created web application will be available through web interface with the sup-
port of the Internet browser Google Chrome, Mozilla Firefox, Microsoft Edge,
Opera and Safari and their newest versions.

N2 Intuitive controlling

Application will have intuitive controlling and it will be user-friendly also
for inexperienced users. Arrangement of the components will correspond

37

3. Analysis

to the standards of web application, no misguided or confusing features in-
cluded. Graphical interface will be transparent and it will contain no useless
elements or advertisements, which could bother the user attention.

N3 Data validation

Form of data needed for instance for the import of dataset, addition of the do-
main, entity or analysis will be controlled during filled of particular fields, not
after the confirmation of the form. In the case of wrong form, the applica-
tion reminds the user to edit the form to be right. It will be proceeded with
the notification, in what place the mistake has occurred at. After the right
fulfilled of form, the application allows to the user to confirm it.

N4 Responsive design

Application will be available and transparent within all devices, so it will
be accessible through Internet browser in the mobile phone, tablet or desktop
computer. Design for all the types of the devices will be customized to the con-
crete device and its standard display size.

N5 Language

Entire web application will be in English language.

3.2 Use case diagrams

Figure 3.3: The user roles

Use Case Diagram describes func-
tions, which the particular system
has to do. That is, from the point
of view of the user. It comes
from the collection of the functional
requirements (section 3.1.1)), which
are described in more details here.
This part of analysis also concerns
with the description of the particular
types of users, who will use develop-
ing system.

3.2.1 Users

This sub-chapter describes roles
of the users, who will use the system. From our point of view, the users
can be divided into two categories, look at the figure 3.3. Of course, one user
can represent both roles.

38

3.2. Use case diagrams

3.2.1.1 Domain Expert

This user role is mostly interested in the administration of the overview
of the domains and particular entities, which belong to given domains. Fur-
thermore, it administrates links between particular entities, so it defines, which
entities describe the same objects in the different datasets.

3.2.1.2 Dataset analyst

User role Dataset analyst represents ordinary user, who needs, for instance,
to process the analysis of his own dataset (to find out percentage representa-
tion in the particular domains), to view the analysis of already existing dataset
according to the default or his own setting. He may, also need to compare two
datasets.

3.2.2 Show list of domain and entities

This use case diagram contains the ways of the displaying of the domains
and entities. The user can view through all particular domains and entities
in the database or he can also use searching tool on the page for the quick
finding the domain or entity. The user can download and shown the whole list
of domains, entity groups and entities in the format N-Triples, CSV or Excel.
This diagram is shown in the figure 3.4 and it contains functional requirements
F1 and F3.

The main scenario:

1. Scenario of this use case starts, when the user needs to know, which
domains and entities can be used for the calculation of the analysis
of datasets.

2. After the click on the page “Domain list”, the list of domain will be
shown. Each domain in the list contains default hidden list of entities,
which are in the domain.

3. After finding of the searched domain, the user will unpack it and he will
see the list of the entities, which are in the domain.

4. After searching of the particular entities, the user can hide this domain
(but he does not have to) and he can continue in searching for the other
domain (item number 3).

5. In the case, that the user needs to search the concrete domain or entity,
he can use the searching tool. In the case of agreement, matched domains
and matched entities and its domains will be shown to the user.

39

3. Analysis

Figure 3.4: Use Case Diagram for showing list of domains and entities

6. The user also does not need to search domains one by one, but he can
export this whole list to the CSV, Excel or N-Triples format.

7. This use case ends, if the user had found all the needed information
about entities or domains.

3.2.3 Editing of the domains and entities

This use case diagram contains possibilities, by which the user can edit current
list of domains and entities. Within the domain, the user can add the new
domain, to edit the title an path of the existing domain, and also to remove
the domain. However, the user has to pay attention, because when he removes
the domain, he also removes the groups of entities and the particular entities
in the chosen domain.

40

3.2. Use case diagrams

Figure 3.5: Use Case Diagram for editing of list of domains and entities

Within the entities, the user can also add the new entity. Within the addi-
tion of the entity, the user will pick either already existing group of entities, or
he creates the new one (by fill nothing to entity group), which the particular
entity will be inserted to. Also it is possible to edit the path of the entity.
In the case of removal the entity, if it is the last entity in the group of entities,
the whole group of entities will be also removed.

Furthermore, the user can import own list of domains and entities in format
N-Triples in one time. From this file, firstly will be created domains, secondly
entities and finally links between entities.

Use cases for the editing or removal of the entity or domain is simple,
therefore there is no need to create for them the scenario. The main scenario
for the addition of the entity to the system is described below. This use case
diagram is shown in the figure 3.5 and it involves functional requirements F2,
F4 and F5.

The main scenario:

41

3. Analysis

1. The scenario of the use case starts, when the user needs to add one or
more new entities to the system.

2. User can add domain or entity solo, through particular buttons
on the page, or he can import list of domains or entities together.

3. In the case of importing domains and entities, the scenario ends after
processing the import and getting response with failed domains or entit-
ies from the file. In the case of solo adding particular entries, the scenario
continues in item 4.

4. User can add one entity in a time to already existing domain and he
continues with the item number 6. However, the user can also create
new domain first.

5. In the case, that the user needs to create new domain, he creates it
by the usage of form for the inserting of the domain.

6. User continues with the creation of the new entity into chosen domain.
He has two options: the creation of the entity when he does not choose
the group of entity – together with the creating entity the new group
of entities will be created, or he chooses from already existing groups
of entities.

7. This use case ends with the successful insert of the new entity to the sys-
tem.

3.2.4 Editing of datasets

This use case diagram describes the possibilities, by which the user can man-
age the current list of datasets in the system. There are possibilities like
the addition of new dataset, editing of existed dataset, especially the title,
the description or the ontology predicate or the removal of dataset. This
diagram of the usage is shown in the figure 3.6 and it involves functional
requirement F7. Functions as editing or removal of dataset are too simple,
so we are not going to write the user scenario. Within the removal of data-
set, also the particular analyses of datasets will be removed. The scenario
for the addition of dataset to the system is described below.

The main scenario:

1. Scenario of this use case starts, when the user needs to add new dataset
to the system and to generate the analysis for it.

2. User can open the form for the addition of the dataset, through the but-
ton ”New dataset”.

42

3.2. Use case diagrams

Figure 3.6: Use Case Diagram for editing of dataset

3. In the form, he has to fill-out the title of the dataset, ontology predic-
ate, which is used in concrete dataset for specifying its ontology and
path to dataset. This path can be SPARQL endpoint or file from local
storage in format HDT. Optional parameter is text box for description
of imported dataset. Also, he can choose the type of default calculation,
short without calculation of predicates or the long one.

4. After successful submitting of the form, there will be running default
dataset calculation for entire list of domain and the user will see noti-
fication about it. This will be asynchronous operation, so user won’t be
blocked.

5. This use case ends after finishing of calculation of new imported dataset.

43

3. Analysis

Figure 3.7: Use Case Diagram for dataset analysis editing

3.2.5 Editing list of dataset analysis

This use case diagram describes the possibilities, by which the user can edit
the analyses of the particular datasets in the system in some way. They
are, concretely, the addition of new analysis, editing of the analysis, espe-
cially the title and the description of the analyses or removal of the analysis.
The addition of the new analysis can be done in two ways: either by insertion
of the new dataset with the calculation of the default analysis or by cre-
ation of the new analysis on existing dataset. This use case diagram is shown
in the figure 3.7 and it involves functional requirement F8. Functions as edit-
ing or removal of analysis are too simple, so we are not going to write the user
scenario. The scenario for the addition of analysis of the dataset to the system
is described below.

The main scenario:

44

3.2. Use case diagrams

1. The scenario of this use case starts, when the user needs to calculate
new analysis for already existing dataset.

2. User can open the form for the addition of the analysis of the dataset
through the button ”Add analysis” after conrete dataset was chosen.

3. In the form, he is obligated to fill-out the title of the dataset analysis and
specify list of domains, which will be used for the particular calculation.
As an optional parameter is to fill-out description of new dataset analysis
and the type of calculation, with or without predicates.

4. After successful submitting of the form, there will be running dataset cal-
culation of filled specification and the user will see notification about it.
This will be asynchronous operation, so user won’t be blocked and he
can for instance look at another dataset or analysis.

5. This use case ends after finishing of calculation of the user specified
dataset analysis.

3.2.6 Show dataset and its analysis

This use case diagram describes the possibilities, which the user has for dis-
playing dataset and its particular dataset analysis. After the choosing
of the particular dataset, user can see list of available dataset analysis de-
scribed by its name. After the choosing of the particular dataset analysis, user
will see calculated result from the database. The result contains: metadata
about dataset analysis, graph expressing percentage representation of domains
and entitis in the chosen dataset, and detailed participation of the particular
entities (number of triples) with the number of participation of the predicates.
The result of the analysis can be exported to the format CSV, Excel or N-
Triples. The user can also display the analysis of the dataset with the other
analysis of the other dataset within the comparative mode. The main scenario
for the displaying the analysis of the dataset is described below. This use case
diagram is shown in the figure 3.8 and it involves functional requests F6, F9
and F10.

The main scenario:

1. The scenario of this use case starts, when the user needs to display
calculated analysis of particular dataset.

2. The user will choose the concrete dataset from the dataset list, for which
he want to display calculated analysis.

3. From the offer of the analyses he chooses the concrete analysis, which
he wants to overlook. After the unpacking of the analysis, user can look

45

3. Analysis

Figure 3.8: Use Case Diagram for view of dataset analysis

at the result. The result involves meta-data about dataset analysis,
graph with the percentage division of defined domains and its entities,
and the detailed participation of the entities and its predicates (only
in case of the long calculation).

4. User can search particular entity or preditaces in entity detail with using
search tool.

5. After the finishing of the overview of the result in the application,
the user can export the result into the format CSV, to format com-
patible with MS Excel or to the RDF format N-Triples.

6. The scenario ends after the successful completion of the overview
of the dataset analysis result by the user.

3.3 Domain model

The another part of the analysis of the information system or application is
also the domain model, in the case, that the developing application is attached

46

3.3. Domain model

Figure 3.9: Domain model

to the database. This model describes particular classes of the system and
it determines, which objects and information will be saved in the application
database. It is necessary to realize, that domain model of the classes describes
only classes related to the domain areas of the system, that it does not de-
scribe classes necessary for the run of the software, for instance system classes.
Hence, domain model describes domain classes, relations between them, their
multiplicity and also the attributes at particular classes, but only the domain
ones, not system (for instance, attribute id or foreign keys in the domain
model are not described). Domain model does not include system classes and
attributes, not even the concrete implementation methods. Also it does not
involve data types of attributes.

Domain model creates first displaying system as unit for the user ima-
gination. Based on the domain model, the database model will be created
in design part of software development. Domain model for this application is
shown in the picture 3.9. Description of the particular classes is below in sub-
chapters.

47

3. Analysis

3.3.1 Domain

The class represents the domain, which contains entities from some part of life,
and it is possible to use it for the calculation of the analysis of the dataset.
Attributes of the class Domain are following:

• name - name of domain,

• path - RDF representation of domain, e.g.
http://mydomains.com/domains/SportAndRecration.

3.3.2 Entity

This class represents the entity, which illustrates some class in particular
dataset ontology. It is usually the object in RDF triple, where predicate
in this triple is rdf:type. Entities are used for the calculation of the analysis
of the dataset. Attributes of the class Entity are following:

• name - name of entity,

• path - path to entity in RDF format, e.g.
http://dbpedia.org/ontology/Athlete.

3.3.3 EntityGroup

This class represents the group of entities, which are semantically the same,
but they are described differently in the different datasets ontology. Entity-
Group is like over-class of the entity. Attributes of the class EntityGroup are
following:

• name - name of entityGroup, the title is created by the names of the par-
ticular entities in entityGroup divided by comma, e.g. Athlete,Athletic.

3.3.4 Dataset

The class represents the dataset, which the user inserts into the system. Then
he can calculate the analysis above it. Attributes of the class Dataset are
following:

• name - name of dataset,

• description - description of dataset,

• path - path to dataset, can be URL to SPARQL endpoint, or file in HDT
format,

• ontology predicate - RDF predicate which determines specification of en-
tity in dataset ontology,

48

3.3. Domain model

• isHDT - checkbox, that determines if a given dataset is in format HDT,

• isSPARQL - checkbox, that determines if a given dataset is entered
in the form SPARQL Endpoint.

3.3.5 DatasetAnalysis

This class represents calculated analysis for the particular dataset. Attributes
of the class DatasetAnalysis are following:

• name - name of dataset analysis,

• description - description of dataset analysis,

• domain list - defined domains for the particular calculation ,

• domainCountSum - it represents count of domains, which were used
for the analysis,

• entityCountSum - it defines the participation of all entities defined within
the analysis for the concrete dataset (number of triples),

• shortCalculation - represent type of the calculation, short one without
predicates or long one with predicates participation.

3.3.6 DomainInDataset

The class represents the information about domain, which was used for the cal-
culation of the concrete analysis of the concrete dataset. It is helped do-
main and it contains calculated information about particular domain, which
is linked directly to the dataset. Attributes of the class DomainInDataset are
following:

• domainCount - it determines the participation of one domain within
the dataset, it is calculated from the participation of the particular en-
tities within the domain for the given dataset.

3.3.7 EntityInDataset

The class represents the information about entity, which was used for the cal-
culation of the concrete analysis of the concrete dataset. It contains calculated
information, which is connected directly to the dataset. Attributes of the class
EntityInDataset are following:

• entityCount - it defines the participation of one entity within the dataset.

49

3. Analysis

3.3.8 Predicate

The class represents the predicate, which is connected to the entity in con-
crete dataset. It involves all predicates of subject, which refer to the type
of the given entity. Attributes of the class Predicate are following:

• name - name of predicate,

• predicateCount - the number of presence of the particular predicate
in triples with the subject which is linked to the entity by ontology
predicate.

50

Chapter 4

Design

Design of web application is next step within the developing of any software.
It follows the previous phase in the life cycle of software, which is the analysis,
mainly particular functional and non-functional requirements, which describe
expected output from the application. Mostly, this phase consists of the class
model, database model, architecture design and wireframes of the application.
Besides of these particular design model, in this part there is also the possib-
ility of the choice of implementation platform. Concrete details of implement-
ation will be described in the chapter 5.

4.1 The choice of implementation platform

Based on the defined non-functional requirements in the analysis, designed
application has to be available through the web interface. Also, it should have
responsive design, and also, it has to be transparent and easy-to-use. These
are the main points, based on which it is necessary to choose implementation
platform for front-end. For the back-end, there are no specified non-functional
requirements, so it is important to take a think, what is necessary to implement
from the logical point of view, and which libraries needed for this application
are available in which programming language.

4.1.1 Front-End

Because it is supposed to be a web application, as the main technology
of front-end we use markup language HTML and cascade styles CSS. Because
of the manipulation with the particular elements in the websites and the com-
munication with the server, we decided to use script programme language
Javascript and its very wide-spread library jQuery. As a base of the graphic
style, we use expanded and very easy-to-use framework Bootstrap. We de-
cided, that we do not use framework intended for the developing of front-end,

51

4. Design

because it is more useful in the implementation of bigger and more complex
projects and we have no skills with any.

4.1.1.1 Javascript and jQuery

Javascript is multiplatform, object-oriented script language, which runs
on the side of the client and it react on the events in the browser. We use
Javascript, because we used to work with it in the past, it is simple and it
supports the technology of AJAX, which we are going to use for the communic-
ation of client and server. Javascript is currently the most used object-oriented
language, which runs on the side of the client. In this time it is used in 94,2
% of all Internet websites [31].

As our future application is expected to be dynamic and interactive, we
also decided to use Javascript library jQuery. jQuery is fast, small and easy-to-
use library, which enables easy manipulation with HTML elements, animated
effects, managing of events etc. Currently it is the most used JavaScript
library, concretely in 71,4 % off all websites, from which 96,3 % create all
websites, which use some Javascript library [32].

4.1.1.2 Bootstrap

Bootstrap is one of the most popular front-end framework determined for faster
and simple developing of design of front-end of web applications. As accord-
ing to non-functional requirements in analysis, graphic interface of our web
application has to be transparent and responsive, we decided to use Bootstrap
as the base of graphic design. Also, we have some experience with it from pre-
vious projects. Bootstrap provides many default styles for HTML elements,
for instance tables, forms, buttons etc. As well, it offers various components
(for example navigation panel, modal windows, progress bars, paging, tabs
etc.) and also many own jQuery plugins (carousels, dropdowns, tooltips etc.).
Bootstrap contains main elements for the arrangement of website and for re-
sponsive design. It has large documentation, thanks to which it is easy-to-use.

4.1.2 Back-end

As the basis of back-end part of our application, we made the decision to use
object-oriented programming language Java. For the implementation
of the REST application, it will be used framework Jersey. For the database,
we will use the technology Sqlite and as ORM technology it will be ORMLite.

4.1.2.1 Java

We use Java as the main programming language of our application, because we
have many experience with it from the previous school projects, and also, be-
cause there are many libraries written for Java which we need. One of the lib-

52

4.1. The choice of implementation platform

raries, which we necessarily need to use for the accomplish of the functional
requirements of this application, is the library for the processing of hdt files,
which is available only for the language Java and C++ [23]. So, Java has
to be chosen, because we did not want to write the application in C++ or
implement own library. Furthermore, for this application there is need to use
framework Apache Jena, which supports developing of the semantic applic-
ations with use Linked Data. So it enables to create RDF graphs, querying
about the data with the usage of SPARQL language and also parsing files
to RDF formats. This framework is also written in Java language.

4.1.2.2 Jersey

We need the front-end part to communicate in some way with Java back-end,
therefore, our application has to create web services in some way. Program-
ming language will be Java and we decided for the restful architecture, so we
have to use JAX-RS (Java API for RESTful Web Services). It is, actually
API programmed in Java, which supports creation of web services on the base
of REST architecture. However, we use Jersey framework, which expands
JAX-RS API with additional features and utilities to further simplify REST-
ful service and client development [33].

Within the usage of rest web services we will need to return objects, so we
decided to use Jackson library written also in Java, which supports transmis-
sion of objects to JSON formats and in a reverse order.

4.1.3 SQLite

As database technology, we chose SQLite. SQLite is an in-process library,
that implements a self-contained, serverless, zero-configuration, transactional
SQL database engine. The code for SQLite is in the public domain and is
thus free for use for any purpose, commercial or private. SQLite is the most
widely deployed database in the world with more applications than we can
count, including several high-profile projects. [34]

Because our application belongs to the simpler ones, speaking about sav-
ing data to database, it will have simple database model with approximately
10 tables. It will be useless to apply big database solutions like, for instance,
Oracle. SQLite is simple database and it is easy accesible from Java. More
important is, that ER model is useless for the implementation. Besides, lib-
rary ORMLite is also available in Java, which maps object to the relational
database SQLite, therefore there is no need to create particular tables by hand.

4.1.4 Maven

For building the project, we will use the tool Apache Maven. Based
on the concept of a project object model (POM), Maven can manage a pro-
ject’s build, reporting and documentation from a central piece of informa-

53

4. Design

Figure 4.1: Sequence model of processing request for view dataset analysis
result

tion [35]. We decided to use Maven, because it enables to download JAR
libraries and the other dependencies from central repository. Then, the de-
veloper does not need to download and import all needed libraries for his
project by himself.

4.2 The Architecture

We decided to use architectonic style REST (representational state transfer)
for our web application. It works on the principle of architecture client –
server. Client, by the help of protocol HTTP sends the request to the server
to the uniquely defined source (e.g. /dataset/) with the HTTP method (GET,
POST, PUT or DELETE), which has to be used on the particular resource.
Then, the answer will return to it, either in the form of some serialized format
of given resource (e.g. JSON, XML etc.), or in the form of type HTTP Re-
sponse or in another forms. In the figure below, there is shown sequential
diagram of one from the main user processes in the application, so the dis-
playing of the analysis of dataset 4.1.

We picked REST architecture, because of simple use, it is easy expandable
of other resources, because one object represents one resource and it supports
standards as URL, HTTP, JSON, XML, AJAX etc. Also, we have some
experience from school with it.

Architecture of our web application is divided into two layers. Presentation
layer will be web browser, so web technologies as HTML, CSS, Javascript,
JQuery etc. It will contain no classes. The second layer will present data layer,
which will include logic of application and, also database access. Designing
model of classes will be created only for this second layer.

54

4.3. Design class model

4.3 Design class model

Class model is build on the base of classes designed in domain model in the ana-
lysis, but it should be more precise and detailed, so the programmer will be
able to implement the application. Compared to the classes in domain model,
furthermore, it contains data types of attributes, identification of private, pub-
lic or protected attributes/methods, particular methods with parameter and
and returns values. Besides of classes of domain model, this model contains
also other helpful and configuration classes, which are not defined in domain
model.

In our designing class model, we skip classic methods get() and set(), that
the model will not be too disarranged. Basic classes can be divided into some
packages, according to their functions. First package will contain classes,
which relate to database objects. The second package will include classes
for the logic functionality of application, so for the calculation of analysis
of dataset. The third package consists of classes, which contain database
connection and getting and inserting data to it. Application will probably
include also other helpful classes, which will be needed during implementation
itself.

4.3.1 Classes as database objects

This package will contain all classes, from which database entities will be
created by the deinition of particular annotation by the usage of particular
technology ORM. Each class involves attributes shown in the picture, meth-
ods get, methods set, empty constructor (needed for the particular ORM)
and the constructor with all attributes. Detailed description of particular
attributes is described within domain model in the section 3.3.

Among classes Entity - EntityGroup, Entity - Domain, DatasetAnalysis
- Dataset, Predicate - EntityInDataset we used connection of composition,
because this connection expresses dependency of one class to another. It
means that one class cannot exist without the other one.

In this model, there are illustrated also id value and foreign keys within
the particular tables against the domain model. Classes with attributes are
shown in the class model in the figure 4.2.

4.3.2 Classes for the calculation of analysis of dataset

This package includes classes with methods, which ensures logic of the ap-
plication, so the calculation of analysis of particular datasets, which SPARQL
queries are part of it. Class model of this package is shown in the figure 4.3.

55

4. Design

Figure 4.2: Class model for database objects

4.3.2.1 SparqlMethods

This class assures SPARQL communication, to which belongs creation of RDF
models in the case of SPARQL endpoint, creation of HDT model in the case
of import file in the format HDT, running of queries and the processing
of the result. The class will be abstract and it will contain implemented
classes SPARQLEndpoint and SparqlHDT that will have overwrite method
executeQuery which will be build on the base of given format. Class will have
no attributes and it will include methods described in the table 4.1.

4.3.2.2 Calculation

This class will be dealing with the calculation of the analysis of the par-
ticular dataset on the base of either SPARQL endpoint, or imported HDT
file. Class will be abstract and it will contain implemented class Calculation-
HDT for the calculation of analysis of dataset in HDT format and the class
CalculationSparql for the calculation of the analysis of the dataset defined
by SPARQL endpoint. Class will include attributes described in the table 4.2

56

4.3. Design class model

Table 4.1: Main methods in the class SparqlMethods

Method name Description Parame-
ters

Return
value

executeQuery() Abstract method, which
creates execution of se-
lected query on the par-
ticular model. It is spe-
cific for sparql endpoint
and for HDT file

String
query,
Data-
setAnalysis
data-
setAnalysis,
Model
model

ResultSet
- set with
results
of query

getResultAsOne
Number()

Method, which trans-
form result in ResultSet
to number. It will be
used in case of queries
which returns count of
triples.

ResultSet
resultset

Integer

getResultAsMap
StringInteger()

Method, which trans-
form result in Result-
Set to Map<String, In-
teger >. It will be used
in case of queries, which
returns string value and
number value.

ResultSet
resultset

Map<String,
Integer>

getResultAsMap
StringString()

Method, which trans-
form result in Result-
Set to Map <String,
String>. It will be used
in case of queries, which
returns two string val-
ues.

ResultSet
resultset

Map<String,
String>

57

4. Design

Figure 4.3: Class model for the calculation analysis of dataset

and the methods described in the table 4.3.

.

4.3.2.3 Queries

This class will be static and it will contain only the definition of particular
queries. For our application, five basic SPARQL queries are needed, which
will be evaluated. Of course, queries within the implementation can increases.
Class will minimally include methods described in the table 4.4.

4.3.3 Classes for the manipulation of data in database

This package will contain classes, which will be receiving or editing of data
in the database and it will create connection to the database, individual data-
base table, etc. Particular classes of this package are shown in the figure
4.4.

58

4.3. Design class model

Table 4.2: Attributes in the class Calculation

Attribute
name

Description Datatype

model Attribute for persist HDT model. It will
be defined only in case of class Calcula-
tionHDT

Model

sparq-
Methods

Attribute for SparqlMethod. In case
of calling class CalculationSparql, it will
be set to class SparqlEndpoint(). In case
of calling class CalculationHdt, it will be
set to class SparqlHdt().

Sparql-
Method

Table 4.3: Methods in the class Calculation

Method Description Parameters Return
value

calculate Entity-
Count()

Method, which
calculates count
of entities in par-
ticular dataset
and return that
count.

EntityIn- Dataset
entityInDataset

Integer

createPredicates() Method, which
creates predic-
ates which are
conneted to par-
ticular entity
in dataset.

EntityIn- Dataset
entityInDataset

Boolean

calculateTotal
CountInDataset
Analysis()

Method, which
calculates total
count of entitis
and domains
in dataset, and
update particular
dataset analysis

Dataset- Analysis
datasetAnalysis

Boolean

createDbObjecst() Method, which
creates objects
addicted to data-
set analysis, like
DatasetAnalysis,
EntityInDataset,
DomainInData-
set,Predicate.

Dataset- Analysis
datasetAnalysis,
Dataset dataset,
List<Domain
>domainList

Boolean

59

4. Design

Table 4.4: Methods in the class Queries

Method name Description Parameters Return
value

getQueryForCount-
OfEntities()

Static method for get-
ting query for get count
of entities in particular
dataset according to en-
tity path.

Entity
entity

String

getQueryForCrea-
tionOfPredic-
ates()

Static method for get-
ting query for get name
and count of predicates
in particular dataset ac-
cording to entity path.

Entity
entity

String

getQueryForIni-
tiateDomains()

Static method for get-
ting query for get do-
mains from import file.

- String

getQueryForIni-
tiateEntities()

Static method for get-
ting query for get entit-
ies from import file.

- String

getQueryFor-
Linking()

Static method for get-
ting query for get links
betwen entities from im-
port file.

- String

4.3.3.1 DbAccess

This class will help with the creation of database and with the whole com-
munication with it, so it includes classes for receiving, editing, creation or
deleting of data. Class will contain attributes described in the table 4.5.
All attributes will set in the constructor of the particular class. Main meth-
ods of the class for the opening of the connection are described in the table
4.6. Class will be consist of four heritable classes, in which each class will
concern with one database edit. It will be either delete, create, update, or
get. Methods of the particular heritable classes are clear. They are methods
for the access to the particular data in the database. They will be added
according to the current needs on the base of implementation. Basic methods
are shown in the figure 4.4.

4.3.3.2 DB

This package will, furthermore, include class DB, which will be static and
it will initiate class DbAccess. It will be responsible for opening and closing
of database lock too. Class is shown on the model of classes of the whole

60

4.4. Database model

Figure 4.4: Class model for accessing to the database

package, look at the figure 4.4.

4.4 Database model

Because for the application will be used relation database, database model
in this case will represent relation data model. We decided to use object-
relation mapping for our application, so we are not going to create particular
tables, but they will be created according to defined objects with the usage
of the technology ORMLite. Database model contains classes, which are in-
volved in the data model in analysis and also in the class model of database
objects. Because of it, content of the particular classes and relations among
them are not necessary to describe in more details. On the other hand, there is
need to define primary keys, foreign keys and database properties of the partic-
ular columns. This features are described below. We did not draw a database
model, because it is very similar to the domain model 3.9 or to the class model
of database objects 4.2.

61

4. Design

Table 4.5: Attributes in class DbAccess

Attribute name Description DataType

URL Path to database String

connectionSource Created connec-
tion to database

ConnectionSource

domainDao Object for hand-
ling database ob-
ject Domain

Dao<Domain, Integer
>

entityDao Object for hand-
ling database ob-
ject Entity

Dao<Entity, Integer >

entityGroupsDao Object for hand-
ling database ob-
ject EntityGroup

Dao<EntityGroup, In-
teger >

datasetDao Object for hand-
ling database ob-
ject Dataset

Dao<Dataset, Integer
>

datasetAnalysisDao Object for hand-
ling database ob-
ject DatasetAna-
lysis

Dao<DatasetAnalysis,
Integer >

entityInDatasetDao Object for hand-
ling database
object Entity-
InDataset

Dao<EntityInDataset,
Integer >

domainInDatasetDao Object for hand-
ling database
object Domain-
InDataset

Dao<DomainInDataset,
Integer >

predicateDao Object for hand-
ling database ob-
ject Predicate

Dao<Predicate, Integer
>

62

4.4. Database model

Table 4.6: Methods in class DbAccess

Method name Descrtiption Parameters Return
value

createDatabase() Method, which cre-
ates database if does
not exist. It will be
called with inititate
DbAccess()

- void

createTables() Method, which creates
tables if does not exists.
It will be called with ini-
titate DbAccess()

- void

createConnection() Method, which creates
connection to database.
It will be called with ini-
titate DbAccess()

- void

4.4.1 Domain

Table domain will keep particular saved domains in database. The user can
define the domain independently one by one or by the help of imported file.
Path and the name of the domain have to be unique to not to confuse the user
and also, the database should not contain duplicated information. Individual
columns and their properties are following:

• id - primary key, integer, automatically generated, not null, unique,

• name - varchar, not null,

• path - varchar, not null, unique.

4.4.2 EntityGroup

Table entityGroup will keep particular saved groups of entities. It is not
possible to create it by user and the user will not see it in the system. It is
creating by the creation of the entity. Particular columns and their properties
are following:

• id - primary key, integer, automatically generated, not null, unique,

• name - varchar, not null, unique.

4.4.3 Entity

Table entity will keep particular saved entities. Each entity has to belong
to one domain and to one entity group. Entity can be defined by the user

63

4. Design

individually one by one or by the help of imported file. Path of the entity
should be unique, so the database does not contain the same information
several times. Individual columns and their database properties are following:

• id - primary key, integer, automatically generated, not null, unique,

• path - varchar, not null, unique,

• entityGroup id - foreign key, integer, not null,

• domain id - foreign key, integer, not null.

4.4.4 Dataset

Table dataset will keep particular saved datasets. It is the main table of the ap-
plication. Dataset can be defined by the user and its name has to be unique.
Also, there should be unique path to the SPARQL endpoint or HDT file. Not
null has to be name, filename and ontology predicate on which base it will
be calculated analysis. Particular columns and their database properties are
following:

• id - primary key, integer, automatically generated, not null, unique,

• name - varchar, not null, unique,

• description - varchar,

• fileName - varchar, not null, unique,

• ontologyPredicate - varchar, not null,

• isSparqlEndpoint - boolean,

• isHDT - boolean.

4.4.5 DatasetAnalysis

Table datasetAnalysis will keep particular saved analyses of dataset. Analysis
of dataset can be defined by the user, but default analysis is created together
with the creation of dataset. Each analysis of dataset belongs to one data-
set and it cannot exist without it. Particular columns and their database
properties are following:

• id - primary key, integer, automatically generated, not null, unique,

• name - varchar, not null, unique,

• description - varchar,

64

4.4. Database model

• domainList - varchar,

• domainCount - integer, default value is 0,

• entityCount - integer, default value is 0,

• dataset id - foreign key, integer,

• shortCalculation - boolean.

4.4.6 DomainInDataset

Table domainInDataset is helpful and it keeps calculations of domains within
the particular analysis. Calculations have to be saved for the reason of slow
calculation of the whole analysis, to be enough to calculate particular analysis
once. Each domainInDataset belongs to the one datasetAnalysis and to one
domain. Particular columns and their database properties are following:

• id - primary key, integer, automatically generated, not null, unique,

• domain id - foreign key, integer,

• datasetAnalysis id - foreign key, integer,

• countDomain - integer, default value is 0.

4.4.7 EntityInDataset

Table entityInDataset is helpful and it keeps the calculation of entities within
the domain in the analysis. Calculations have to be saved for the reason of slow
counting of the whole analysis, to be enough to calculate particular analysis
once. Each entityInDataset belongs to the one entity and to one datasetAna-
lysis. Particular columns and their database properties are following:

• id - primary key, integer, automatically generated, not null, unique,

• entity id - foreign key, integer,

• datasetAnalysis id - foreign key, integer,

• countEntities - integer, default value is 0.

4.4.8 Predicate

Table predicate is helpful and it keeps calculations of predicates within the en-
tity in the particular analysis. Calculations have to be saved in the reason
of slow calculation of the whole analysis, to be enough to calculate particu-
lar analysis once. Each predicate belongs to one entityInDataset. Particular
columns and their database properties are following:

65

4. Design

• id - primary key, integer, automatically generated, not null, unique,

• name - varchar,

• entityIndataset id - foreign key, integer,

• count - integer, default value is 0.

4.5 Wireframes of the application

With the creation of web application it is necessary to design the composition
of the particular elements in the right way, because the application should
has a clear design. Also it should provide asked functionality. On the base
of design is then possible to identify, which elements are really important
for the user, which are, on the other hand, not important and it is possible
to remove them or to move them to the background. Design of the user in-
terface is possible to divide on lo-fi, that is wireframe, which displays, in fact,
only the composition of the particular element, without color, without interac-
tion and without any other functions. On the base of wireframe, there is next
created wi-fi design, which displays also the graphics. It is concrete front-end,
for instance, with the validation of data, but without computing logic. In this
part of paper, we concentrate only on the lo-fi design, because wi-fi design will
be already the part of the implementation.

The fastest way to create wireframe is usage of pencil and paper. Fur-
thermore, there exist many tools, also interactive, which we can possible use
for this design. We decided to use the tool called Balsamiq 1. Every section
of our web application will be divided into three main parts, the header, body
of the page and the footer.

4.5.1 Header

Header of the page will contain the logo with the name of the application
on the left side, which will be simultaneously the reference to the landing page.
On the right side, there will be located navigation of the page (horizontal),
which will include three items: Dataset Analysis, Domain List and About.

4.5.2 Footer

Footer will content information about author’s laws and it will be places
in the bottom of the page.

1Available from the: https://balsamiq.com/download/

66

4.5. Wireframes of the application

4.5.3 Body

Body will be different in each section, therefore we will describe every page
separately. However, all pages will have the same type of displaying the forms
for the editing of the data. They will be displayed by the help of pop-up
modal windows, which will have buttons Close and Save.

4.5.3.1 Domain List

The first element of the page of Domain List will be a title element, which
will create the heading of the page on the left side and control buttons with
the import, adding of domain and export domains on the right side. Heading
will, actually, create every page besides the Landing page.

The main element for Domain List will be drop-down panel list, which will
be in the form of accordion, so after user clicks on one element, the previous
displayed one will pack up. We chose form of accordion, in order to display
only current searching information. Also, the user should not be too con-
fused by the big amount of data. Particular panels will display particular
domains, which, on the right side will contain control buttons for the edit-
ing, deleting or addition of entity to the given domain. Entities will be shown
in the form of table and on the right side, they will include also control buttons
for the editing of concrete entities, eventually deleting.

In the end of the page, there will be shown a pie chart, which will represent
percentage representation of particular domain, so how many entities each
domain contains. One of the wireframe of this page is shown in the figure 4.5.
The other wireframes of this page are included in the addition C.

4.5.3.2 Dataset Analysis

This page is the main page of our application. Page will be divided into two
tabs - dataset analysis and comparison. Both tabs will be on the page located
in the top left corner.

First tab, that is dataset analysis, will contain in the left part vertical
menu, which will include the list of saved datasets in the particular applica-
tion. As the first element of this vertical menu will be the button with the ad-
dition of the new dataset. The rest content of the page will create dataset
detail. In the above, there will be the heading of chosen dataset or Overview
(in the case of chosen no dataset) with the control buttons on the right side.
Every displaying of the dataset will be composed of the table with the main
information about dataset and also, it will contain the list of analysis. Ana-
lyses of the dataset can be more and probably will contain lot of information,
so analyses will be shown by the form of panel of accordion type, so after
the displaying of one analysis, the other one will pack up, previously unpacked
analysis. Analysis of dataset will consist of three more elements. First one will
show main information about analysis in the form of table, the second part

67

4. Design

Figure 4.5: Wireframe - Example of the page Domain List

will contain the chart with the domain and entities representation in the par-
ticular dataset and the third part will include detailed table with occurrence
of particular entities divided between domains. All control buttons of the page
will be located on the right side.

The second tab will present comparative mode. In the beginning
of the page, there will be, of course, the title of the page. After that, there will
be three columns in the form of table. In the head of table, the first column
will be empty. The second one will contain combobox for the choice of dataset
number 1 and combobox for the choice of the analysis of dataset number 1.
The third one will include also comboxes for the choice of the second dataset
and the second analysis. Individual lines of the table will create domains
and entities, and their representation in the first and second dataset. After

68

4.5. Wireframes of the application

the clicking on the domain, belonging entities will unpack.
One of the wireframe of this page is shown in the figure 4.6. The other

wireframes of this page are included in the addition C.

4.5.3.3 Landing page

Landing page, against to other pages, will contain bigger logo and bigger
navigation menu without navigation to the contact and helpful information.
It is because this information will be included directly on the Landing page,
together with the welcome text, with picture and the instruction for use.
From Landing Page, the user can get directly to the analyses of datasets or
to domain list. Wireframe is not necessary, because Landing Page will contain
the same navigation menu and only text elements.

4.5.3.4 About

This page will include contact information, on which the user can apply to,
in the case of problems or in the case of idea on improvement. This page will
aslo contains source of the application and some helpful information about us-
ing the application. For this page, the wireframe is not necessary, because it
contains the same navigation menu as the other pages, and it includes only
static text information.

69

4. Design

Figure 4.6: Wireframe - Detail of dataset analysis

70

Chapter 5

Implementation

After the introduction with the issue, processing the analytical requirements
and inventing the design, it is necessary to move to the almost last part
in the life time of application and that is implementation. During the imple-
mentation, we were trying to accomplish in order that the result application
fulfills all functional and non-functional requirements. Also, it was very im-
portant that the application follows designed model of classes, database model
and designed architecture.

In this chapter, we will pay attention mainly on the concrete particular
functions of the application. We mention only the most interesting ones.
Screenshots of the application are shown in the addition D.

5.1 Creation of user interface

We decided already in the design part, that for the creation of the user
interface we will use mostly front-end framework Bootstrap. As according
to the requirements in the analysis that application should be responsive and
easy-to-use, Bootstrap really helped us with these conditions. It is because
of its design, which is simple and clear and it contains many useful consist-
ent components. We used mainly its responsive grid system, which scales
12 columns according to the current width of the window. For the respons-
iveness, besides of this grid system, we also used jQuery function resize()
for the adjusting of the design depending on the changing width of the win-
dow, for instance, editing of the scale of the graph, font, buttons, etc. or
function width() for the receiving of the current width of the window.

For the simple and intuitive controlling of elements, we used Javascript
library jQuery, which we use mainly on the hiding/showing of the particular
HTML elements, handling of the HTML elements, setting of attributes and
processing of the event.

In the case of the implementation of the responsiveness, we did not have
wireframes designed on smaller screens because the application is mainly

71

5. Implementation

Figure 5.1: Example of the responsiveness of the application

determined for the Internet browser, primarily in the computer. We kept
the main standards, for instance packing the title menu to the button (which
is spread among mobile application) or removal of the big amount of the but-
tons. Instead of them we created one buttons with the drop-down list, etc.
Example of responsiveness is shown in the figure 5.1.

5.2 Data validation

Within the implementation, we decided to validate entered data from the user
mainly in the front-end, before the sending of data to the server. It means,
that the button which is responsible for the sending and processing of data,
firstly check the correctness of all data and after the fulfillment of the con-
dition, data will be sent to the server for processing. In the case of failure,
the user is informed, what is necessary to fulfill first. Validation of inserted
data is running not only on the button, but already during the fulfilling of
validated field. In the moment of correctly entered data, the background color
of the filed will make green, in the reverse case, it will be red color. The user is
informed with the obligatory input fields by the displaying of the used symbol
“*”. Every field contains help note which will be displayed by click on the small
button with the symbol ”?”. Form validation is shown in the figure 5.2.

72

5.3. User information about processing of the calculation in application

Figure 5.2: Example of the form valid-
ation in the application

For the validation on the client
side, we used the library Pars-
ley, version 2.6.0 2. Parsley is
the open source Javascript library
for form validation. It is easy
to build it to already existing forms,
and for the graphic interface, so
e.g. for the emphasizing correctly
and incorrectly entered inputs and
for the displaying of the alert mes-
sages it is used also framework Boot-
strap. Library contains big amount
of implemented validations, which
the user is able to parameterize,
e.g. obligation of the input, max-
imum/minimal length, email valid-
ation, URL validation etc. Be-
sides the default validation, we had
to use own validators, so, for in-
stance, to the uniqueness of the do-
main path, dataset name etc. Im-
plementation of the own validator in-
cluded the definition of the condition for the evaluation of the validation and
the error message. Library supports yet English and French language, what
was enough for our application.

We had to make decision, what library to choose, Parsley,
jQuery-FormValidator 3, or jQueryValidationPlugin 4. We had problem with
the jQueryFormValidator with running validation of form on button out
of the form and also with interactive validation and requirements fields. About
the library jQueryValidationPlugin, we did not like mainly design, and it
has weaker documentation with the examples in the comparison to the rest
of the other libraries.

5.3 User information about processing

of the calculation in application

In the moment of the correct/wrong processing of data or in the case of the pro-
cessing of asynchronous long request, is the user informed by alert in the form
of the colorful element dev, which is places in the beginning of the page.
Because we send the data to the server via AJAX, and after the successful in-

2http://parsleyjs.org/#
3http://www.formvalidator.net/
4https://jqueryvalidation.org/

73

5. Implementation

Figure 5.3: Information about successful operation of editing dataset

sertion, editing or deleting of data is necessary to refresh the page, information
about processing of data we saving to local.storage, which is called immediately
after running the script. After using this information (displaying to user), we
remove it. Example of successfully processing form is shown in the figure 5.3.

At big operations, as, for instance, processing the analysis or importing
of dataset, the user is notified also in modal after the confirmation of the form.

5.4 Chart drawing

For chart drawing we decided to use library D3.js 5. It is the Javascript library
oriented to data visualization by usage of language HTML, SVG and CSS. This
library is available on Github and it containts large amount of examples, simple
ones like column chart, donut chart, pie chart, etc., but also difficult profes-
sional charts of the real data visualization in existed projects. It is enough
to choose any chart and adjust it to concrete data and needed visualization.

Figure 5.4: Chart of dataset analysis

There is a large amount of Javas-
cript or jQuery libraries for drawing
nice and interactive charts, for in-
stance Google Chart 6 or Charts.js
7. Furthermore,in both of these lib-
raries is build responsiveness which
could be very useful. The main prob-
lem was, that these libraries con-
tains only simple charts, not suitable
for our application, when ve wanted
to use hierarchical pie chart. So, be-

5https://d3js.org/
6https://developers.google.com/chart/
7http://www.chartjs.org/docs/

74

5.5. Export

cause of this issues, we decided to use
library d3.js, which that type of chart offers.

For visualization of dataset analysis, we decided to use hierarchical zoomed
pie chart. It means that chart has two levels. The first level displaying pro-
portion of domains in the particular dataset. If user click on some domain,
there will be displayed the second level which represents proportion of entities
in the chosen domain. In the beginning of chart is also displayed actual path,
which shows the domain and the entity, on which user stay. Example of this
hierarchical pie chart is displayed in the picture 5.4.

For visualization of domains and entities in page Domain List, we decided
to use simple pie chart, which displays proportion of domains in database
on the base of entity count in each domain. For this chart we could use
another simpler library, but we decided to honor the same design.

These charts are not responsive, so we has to make own responsibility
by usage of Javascript function windows.width().

5.5 Export

We made the decision to add new unplanned functionality into functional re-
quirements because of large volume of data our application works with. This
new functionality is export of domains and mainly dataset analysis to the ex-
ternal files. It makes data more readable and it is possible to use that for fur-
ther processing.

We decided to implement functionality that user will be able to export
dataset analysis and overview of domains and entities to Excel, CSV or also
to RDF format, specifically N-Triples.

Every particular exported file is saved on the server with unique name with
the help of java function File.createTempFile() which adds random number
sequence to the end of filename. Files are deleted from the server after a certain
time. We created new special objects containing export attributes in order
to make data output easier. These objects are used for nothing but data
export.

Export of domains contains list of domains, entity groups and entities.
Furthermore, in the excel file there is pie chart based on exported data. In N-
Triples format file are domains displayed in the same way as in the case of do-
main import.

In case of export of the dataset analysis detail, there is detailed list of do-
mains, entities, predicates and their representation in the particular dataset
in CSV and Excel format. In Excel is also a pie chart with the domain
representation on the first sheet. Exported file in format N-Triples do not
contain predicates, it contains triples with domain and entity representation
with the usage of the predicate void:triples.

75

5. Implementation

Figure 5.5: Domains export to the Excel file

In the case of export to CSV file we used classic way of writing into the file
with the help of class Writer and method writeLine which writes data line
by line with the specified column separator. In the case of export to excel file
we decided to use XSSFWorkbook java library which provides possibility to cre-
ate Workbook and particular Sheets and finally provides writing into concrete
cells. Because of the using of this library we had to use also OPCPackage
library and its method open() we used for opening already existing workbook
stored on server. So we have two templates stored on the server – one tem-
plate for domain export and one template for analysis export. In templates are
defined titles, graphs, text formatting, etc. In the case of export to N-Triples
format we used classic way of writing data into file with the help of class
PrintWriter and method println(). Example of the exported file to Excel is
shown in the picture 5.5.

5.6 Domain import

For domain import we used basic processing of the file in Java. We had
to exactly specify the format of particular RDF triple for different using,
for instance inserting new domain, adding entity to existing domain or specify
link between entities. For user, this format is described in the form for import
domains and also in the page About. Validation of triples is running during im-
port and after finishing, user will be informed about failed ones. Format with
concrete examples for particular operations available in import is described
below.

Examples of particular operations according to table 5.1:

• Inserting of new domain

76

5.7. Jersey 2

Table 5.1: Format for importing domains and entities

Operation Subject Predicate Object

create new do-
main

domain name
in URI format

rdfs:label value, e.g ”Sport”

add new entity
to domain

entity path
in URI format

purl:subject domain object

define link
between entities

entity path
in URI format

owl:sameAs entity path
in URI format

<http :// mydomains . com/domains/ SportAndRecreation> <

http ://www. w3 . org /2000/01/ rdf−schema#labe l > ”
Sport and r e c r e a t i o n ” .

• Add new entity to domain

<http :// dbpedia . org / onto logy / SportsSeason> <http ://
pur l . org /dc/ terms / subjec t > <http :// mydomains . com
/domains/ SportAndRecreation> .

• Link between entities

<<http :// dbpedia . org / onto logy / SportsEvent> <http ://
www. w3 . org /2002/07/ owl#sameAs> <http :// dbpedia .
org / onto logy / SportsSeason> .

The same format of RDF triples is used in case of exporting domains
to N-Triples.

5.7 Jersey 2

We already decided in the design part, that this application will be build
on REST architecture, so the way of communication between server and cli-
ent is providing with JAX-RS technology. Already in design part we made
the decision to use framework Jersey to provide this kind of architecture,
which improving this technology and also it is easier to use. By the help
of Jersey, in every web service there will be specified several issues by concrete
annotation, like:

• HTTP method (@GET,@PUT,@POST, @DELETE),

• path to server (@Path),

• format of data, which web service consumes (@Consumes),

• format of data, which web service produces (@Produce),

77

5. Implementation

• parameter filled in the path (@PathParam), for instance id of dataset.

After some research, at the beginning of the implementation, we were us-
ing technology Jersey 1, because we supposed, that will be more stable as
its the newest version Jersey 2 and that Jersey 2 does not extend Jersey 1.
The most of data forms we serialize to JSON format and send it to web ser-
vice through AJAX. In case of the form with one input, we send directly
this one value in string format. So we are using this types of annotation
for specifying consuming data: MediaType.APPLICATION JSON or Media-
Type.PLAIN TEXT. In case that web service producing data we are using
for annotation of data MediaType.APPLICATION JSON. In case that web
service does not return any data, we are using MediaType.PLAIN TEXT an-
notation and web service returns instance of the class Response.

One problem with using Jersey 1 showed up when we need to send file
from client to server, for instance in case of domain or dataset import. We
discovered that Javascript is safe enough, that in case processing file from cli-
ent is path to file in the form //fakepath/domains.nt. In Jersey 1 we could
process file only in one way, which is getting binary data from the file and
send it to the server, where data would be processed by the help of class
InputStream.

Another problem in Jersey 1 was, that we were not able to handle asyn-
chronous operation, which was needed in case dataset importing or dataset
analysing calculation, which can be time consuming.

Finally we decided to use Jersey 2 instead of Jersey 1, which is able
to handle of mentioned issues. Jersey 2 supports class FormData, which can
process entire form including file and send it to server. In this web service
in annotation @Consumes has to be used format of data
MediaType.MULTIPART FORM DATA. Instead of annotation (@PathParam),
there has to be used annotation @FormDataParam, according to which server
recognizes, which parameter are from the form. In case that the form in-
cludes also the file, this annotation could be used more than once for the same
parameter. For instance, we used it ones for getting input stream from file,
and second one for getting of detailed information about the file by usage
of class FormDataContentDisposition. This class provides useful information
about file, for instance name of file, size of file or format.

Next advantage of using Jersey 2 is, that it can handle and process asyn-
chronous operation in simple way by using of annotation @Suspended with
AsyncResponse param in this method. It provides receiving of information
about processed request after finishing it, but user is not blocked, he just can
not refresh the page and he has to stay on it. For providing of the notification
about data processing, the user will see displayed div with this information
with blue color.

We are very satisfying with the switch from Jersey 1 to Jersey 2, because it
includes lot of great functionality, it is not unstable and it supports everything

78

5.8. Performance optimization

we need for the implementation of this application.

5.8 Performance optimization

Because it takes a lot of time for processing of huge amount of data, we
tried to improve it in some way. The first speed improvement is that we
used threads in Java by usage of the method Executors.newFixedThreadPool().
This method helps to create particular threads. Another class we had to use
for it is the heritable class Callable(), which contains method call(), where
is implemented logic, which will be running in threads. We used threads
only in two sections of calculation, which could run parallel, so independently
of each other. These sections are: calculation of entity proportion in dataset
and calculation of predicates(which belong to the particular entity) propor-
tion in dataset. Obviously, we had to use database lock with implementa-
tion of threads in application. This database lock is provided by Java class
ReentrantLock, specifically by implementation of static class with static meth-
ods getDbLock(), lock() a unlock().

In the case of reading HDT file, there could be another speed improvement,
by the usage of method HDTManager.mapHDT(). Instead of the method
HDTManager.loadHDT(), this method does not load everything
into the memory. The main advantage is faster loading and processing data
from the file. Disadvantage is slower searching, but only the first time. Any-
way, we could not use the method HDTManager.loadHDT() because of pro-
cessing huge amount of data like DBpedia or Geonames, which caused lack
of memory.

With displaying data to the user, data of the specific dataset are loading
after first click on it. It means, that initial loading page is faster, and first
loading of the specific dataset is slower.

5.9 Conclusion

During the implementation we tried to follow design and designed class model
which was almost fulfilled. Finally we didn’t divide class DbAccess to several
subclasses and all database operations are involved in one class. Obviously,
by the implementation of specific parts of the application, there shows up some
issues, for which we had to create new classes, for instance class for logging
exceptions, classes for testing rest client with method Get or method Post,
etc. The biggest problems during implementation were in size of the data and
lack of memory, where we had to increase Java memory.

Source of the application is stored in CD and also in Github in the address
https://github.com/jcabaiova/RDFDataAnalyser.

79

Chapter 6

Testing

Testing is the last phase in the life time cycle of the software application. We
decided to write automatic integrate test as the base of the testing. These tests
are focused to test the basic user functionalities. This chapter also includes
described application use cases and demonstration scenarios of the application
usage.

6.1 Integrated automatic tests

The best way for creation of integrated tests for testing simple basic function-
ality of the application is to create these test automated. Because our applic-
ation is in the web, we decided to use program Selenium IDE 8 for creation
of automated tests. Selenium IDE is the plugin for the web browser Mozila
Firefox. Its primary goal is creation of the integrated automatic tests for front-
end testing. It supports simple recording of particular commands, but these
command can be also written by hand. It contains lot of testing methods,
for instance assert commands, verify commands, etc. For the selection of par-
ticular elements on the web page, it is possible to use id’s of elements, css
selectors or javascript selectors. This application supports creation of test
suites which contains test cases. Furthermore, it is very simple for debugging
of particular test case.

For our application, we decided to create only one test suite, which contains
specific test cases for the page Dataset Analysis and also for the page Domain
List. In these test cases we mainly focused on the form validation, showing
or hiding particular elements and on verification of server response for our
particular request. In case of these tests we do not check concrete update
of data in the database, but the database should not contain the incorrect
data based on the good quality of front-end validation.

8http://www.seleniumhq.org/projects/ide/

81

6. Testing

Figure 6.1: Automating integration tests in Selenium IDE

We made the special instance of the database for the running these tests,
which contains several prepared domains, entities and datasets. Because
of that, we are capable of testing not only adding new items, but also editing
already existing items, deleting items and also validation of the unique names.
This test database is the part of source code.

There are examples of questions which should answer to individual test
cases:

• Was the form validation correct in case of incorrect input? Did applic-
ation refuse to send request to the server?

• Was the form validation correct in case of correct input? Did application
allow to send request to server?

• Did the application show right information about update data in data-
base?

• Did the application show right title of the element after updating data
in database?

• Did the application show or hide right HTML element after clicking
on the particular part of the application?

We tried to write these tests continuously during the creation of applica-
tion. We always tried to run it after the implementation of the bigger change.
Tests together with source code of the application are stored in CD, which is
the part of the paper.

82

6.2. Testing among different web browsers

6.2 Testing among different web browsers

We made manually testing of individual functionalities in the most used web
browsers according to research from November 2016 from the portal w3school
[36]. According to this portal, the most used web browsers are:

1. Chrome - 73,8 %,

2. Mozila Firefox - 15,3 %,

3. Internet Explorer, resp. Edge - 5,2 %,

4. Safari - 3,5 %,

5. Opera - 1,1 %.

Testing among different web browsers was simple, without any bigger dif-
ferences. So the application is tested on these versions of the particular web
browsers:

• Chrome - from the version 55.0.2883.75,

• Mozila Firefox - from the version 50.0.2,

• Microsoft Edge - from the version 38.14393,

• Safari - from the version 5.1.7,

• Opera - from the version 41.0.2353.69.

6.3 Application Use Cases and Demonstration

Scenario

This application can be used in different cases. The most used case is, that
user has some dataset, and he needs to know, what this dataset contains
in sense of the representation in particular domains. Another case can be
comparison of two already existing datasets. Particular application use cases
are described in the next sections.

6.3.1 How can be defined a domain

The user has some RDF dataset, and if he wants the analysis, he has to define
domains and entities first, if they do not already exist. He has to get ontology
classes of the concrete dataset, create entities from them and added them
manually to domains. If an expected domain doesn’t exist, he has to create it
too.

One domain in this application is represented by a triple, in which subject
is RDF link to domain, predicate is rdfs:label and object is a literal with the

83

6. Testing

name of the domain. One entity in this application is represented by a triple,
in which subject is RDF link to entity, predicate is purl:subject and object
is the RDF link to domain. Entity or domain can be defined in two ways:
importing of RDF file in N-Triples format with triples represented domains or
entities, or inserting one entity or one domain by using the applicable form.

6.3.2 How can be used a domain to analyse a dataset

In the application are defined domains and entities about the particular data-
set and dataset is already imported in the application. Then the user can run
a new analysis over the dataset, where he defines domains (from existed ones)
which will be used for the calculation of analysis. The analysis is calculated
on the base of number of instances of the particular entities belongs to chosen
domains in the dataset.

6.3.3 How a dataset can be imported

If the user has a dataset, which it is not imported in the application, he can
import a new one, where he has to fill-out name of dataset, SPARQL endpoint
to dataset or path to HDT file, ontology predicate, which is the predicate used
in the particular dataset ontology and chose between short or long calculation.
With the importing of new dataset, the default dataset analysis over all actual
domains is calculating too.

6.3.4 How datasets can be compared

User can compare two dataset analysis over two different datasets. He chose
first dataset, first dataset analysis, second dataset, second dataset analysis
and comparison table will show. This table shows the summary representation
of the domains and also the representation of the particular entities. In case
of the entities in different dataset are linked with the predicate owl:sameAs
(defining by chosing the same entityGroup during creation of entity), they are
shown in one row for the better comparison.

6.3.5 Demonstration Scenario

Here is the demonstration scenario of the application usage. The user has
RDF dataset in HDT format or link to its SPARQL endpoint (for instance
DBpedia) and he needs to see insights. Any domains or entities are not created
yet, so it is an empty database.

1. The user needs to define domains.

2. The user needs to define entities according to dataset ontology.

84

6.3. Application Use Cases and Demonstration Scenario

3. The user can import particular dataset and wait for the default calcu-
lation over all domains in database.

4. When the calculation is over, the user can view the result.

5. If he thinks, that for the calculation of the analysis were used too many
domains, he can run another calculation with the specification of do-
mains which to use. Or, he can also edit list of domains and entities.

6. Next, the user has another dataset, for instance GeoNames, and he wants
to compare this one with the already imported dataset DBpedia.

7. So, he has to define entities from the GeoNames ontology, and also
specify links between entities in DBpedia and GeoNames.

8. After that, he can import another dataset and wait for the result

9. Finally, the user goes to the compare mode, chose these two dataset
and view the comparison table with the representation of domains and
entites in these two datasets.

85

Chapter 7

Experiments and results

According to the work assignment, we need to test this application on real big
Linked Open Data datasets, like DBpedia or GeoNames.

7.1 Domain initialization

In the first place, we needed to create initiate list of domains. Particular
domain should represents some life area, for instance sport, medicine, culture,
etc. There exist some domain classification systems which we could use. One
of them is for instance WordNet Domains [37]. WordNet Domains represents
a language-independent resource composed of 164, hierarchically organized,
domain labels (e.g. Architecture, Sport, Medicine). It could be used in our
application as initiative domains, but for the testing it contains a lot domains.

For initialization of domain we decided to use domain according to Wiki-
pedia:Featured Articles 9. Featured articles are considered to be the best art-
icles Wikipedia has to offer and these articles are divided to thirty main areas,
which we used as the base of our domain list.

7.2 DBpedia ontology and calculation of analysis

We processed DBpedia ontology mostly manually. This process contains iden-
tification of particular entities and theirs adding to concrete domain. At first,
we create different program in Java, which get every entities from the onto-
logy, so triples with the subject owl:Class. These entities we used for manually
adding to the particular domain. Because of the big amount of entities, we
tried to simplify a little this allocation, so the external program return not only
entities, but also subclasses of entities, defined by predicate rdfs:subClassOf.
In straightforward cases we allocated every entity belonged to particular sub-
class to the one domain. In numbers, we processed 586 different entities

9Available from: https://en.wikipedia.org/wiki/Wikipedia:Featured articles

87

7. Experiments and results

in DBpedia. Ontology of DBpedia is described in RDF format RDF/XML.
Example of the one entity in this ontology is shown in listing 7.1.

<ow l :C la s s rd f : about=” ht tp : // dbpedia . org / onto logy /
Basketbal lLeague ”>
< r d f s : l a b e l xml:lang=”de”>Basketba l l −Liga</

r d f s : l a b e l>
< r d f s : l a b e l xml:lang=” f r ”> l i g u e de b a s k e t b a l l</

r d f s : l a b e l>
< r d f s : l a b e l xml:lang=”en”>b a s k e t b a l l l eague</

r d f s : l a b e l>
< r d f s : l a b e l xml:lang=” nl ”>basketba l compet i t i e</

r d f s : l a b e l>
< r d f s : l a b e l xml:lang=” e l ”>Ομο&#

x3C3;πονδία ;
Καλαθοσ
;φαίριση
;ς ;</ r d f s : l a b e l>

< r d f s : l a b e l xml:lang=” ja ”>バスケ&#
x30C3;トボールリ&#
x30FC;グ ;</ r d f s : l a b e l>

< r d f s : l a b e l xml:lang=” i t ”>l e ga d i p a l l a c a n e s t r o</
r d f s : l a b e l>

<rdfs:comment xml:lang=”en”>a group o f ˜ spo r t s teams
that compete aga in s t each other in ˜ Baske tba l l</
rdfs:comment>

<rd f s : subC la s sO f r d f : r e s o u r c e=” ht tp : // dbpedia . org /
onto logy / SportsLeague ”/>

<prov:wasDerivedFrom r d f : r e s o u r c e=” ht tp : //mappings .
dbpedia . org / index . php/
Onto logyClass :Basketba l lLeague ”/>

</ owl :C la s s>

Listing 7.1: One class in file DBpedia Ontology (in our application it represents
one entity)

We tried to find another already existing allocation of entities to domains.
We found project Umbel 10 (Upper Mapping and Binding Exchange Layer),
in which entities from DBpedia (and from other datasets too) were mapped
to their own ontology. Unfortunately, this Umbel ontology was described
in more details than we needed fo allocation to our only 30 defined domains.

After successful import of domains and entities (the imported file is added
in CD) we imported dataset DBpedia in format SPARQL endpoint for testing
this possibility of importing the big data. Example of chart from DBpedia

10Available from: https://github.com/structureddynamics/UMBEL

88

7.2. DBpedia ontology and calculation of analysis

analysis is shown in the figure 7.1. Finally, the analysis shows, that the biggest
representation is created by domain Media with 31,9 %, followed by the do-
main Geography and places with 15,2% and the third place belongs to domain
Sport and recreation with 14 %. The most three represented entities in partic-
ular domains are shown in the table 7.1. Representation of domains in dataset
DBpedia is shown in chart 7.2.

Domain / Entity name Count

Media 2913106

http://dbpedia.org/ontology/Image 2753948

http://dbpedia.org/ontology/TelevisionShow 36979

http://dbpedia.org/ontology/Broadcaster 29256

Geography and places 1388140

http://dbpedia.org/ontology/PopulatedPlace 505557

http://dbpedia.org/ontology/Settlement 472250

http://dbpedia.org/ontology/Village 166959

Sport and recreation 1289395

http://dbpedia.org/ontology/Athlete 331680

http://dbpedia.org/ontology/SportsTeamMember 323111

http://dbpedia.org/ontology/SoccerPlayer 110947

Biology 840137

http://dbpedia.org/ontology/Eukaryote 294585

http://dbpedia.org/ontology/Animal 226263

http://dbpedia.org/ontology/Insect 131244

Music 524083

http://dbpedia.org/ontology/MusicalWork 199640

http://dbpedia.org/ontology/Album 135329

http://dbpedia.org/ontology/MusicalArtist 50978

Literature and theatre 443572

http://dbpedia.org/ontology/Film 106613

http://dbpedia.org/ontology/Artist 79353

http://dbpedia.org/ontology/WrittenWork 64259

Culture and society 377645

http://dbpedia.org/ontology/OrganisationMember 323111

http://dbpedia.org/ontology/SocietalEvent 51298

http://dbpedia.org/ontology/Museum 5341

Art,architecture, and archaeology 373429

http://dbpedia.org/ontology/ArchitecturalStructure 188490

http://dbpedia.org/ontology/Infrastructure 87966

http://dbpedia.org/ontology/Building 78246

Transport 137492

http://dbpedia.org/ontology/Ship 29485

http://dbpedia.org/ontology/RouteOfTransportation 28999

89

7. Experiments and results

Domain / Entity name Count
http://dbpedia.org/ontology/Road 20384

Business, economics, and finance 137123

http://dbpedia.org/ontology/Company 67544

http://dbpedia.org/ontology/OfficeHolder 63693

http://dbpedia.org/ontology/Convention 2104

Politics and government 109817

http://dbpedia.org/ontology/Politician 40260

http://dbpedia.org/ontology/AdministrativeRegion 24409

http://dbpedia.org/ontology/Election 9315

Education 107657

http://dbpedia.org/ontology/EducationalInstitution 53584

http://dbpedia.org/ontology/School 32186

http://dbpedia.org/ontology/University 19777

Engineering and technology 93151

http://dbpedia.org/ontology/Software 32334

http://dbpedia.org/ontology/AutomobileEngine 27699

http://dbpedia.org/ontology/Scientist 23373

Warfare 70324

http://dbpedia.org/ontology/MilitaryPerson 29007

http://dbpedia.org/ontology/MilitaryUnit 17591

http://dbpedia.org/ontology/MilitaryConflict 13660

Heraldry, honors, and vexillology 66894

http://dbpedia.org/ontology/WorldHeritageSite 968

http://dbpedia.org/ontology/Monument 564

Geology and geophysics 65791

http://dbpedia.org/ontology/BodyOfWater 42274

http://dbpedia.org/ontology/Mountain 16752

http://dbpedia.org/ontology/MountainRange 2493

Religion, mysticism and mythology 41444

http://dbpedia.org/ontology/Cleric 15485

http://dbpedia.org/ontology/ChristianBishop 7715

http://dbpedia.org/ontology/ReligiousBuilding 4349

History 36714

http://dbpedia.org/ontology/HistoricPlace 22194

http://dbpedia.org/ontology/HistoricBuilding 8413

http://dbpedia.org/ontology/Historian 766

Video gaming 20149

http://dbpedia.org/ontology/VideoGame 20419

Royalty and nobility 20296

http://dbpedia.org/ontology/Royalty 11000

http://dbpedia.org/ontology/Noble 5244

90

7.3. GeoNames ontology and calculation of analysis

Domain / Entity name Count
http://dbpedia.org/ontology/Monarch 2454

Physics and astronomy 11349

http://dbpedia.org/ontology/Planet 3690

http://dbpedia.org/ontology/Star 2869

http://dbpedia.org/ontology/Asteroid 1962

Chemistry and mineralogy 11294

http://dbpedia.org/ontology/ChemicalCompound 10026

http://dbpedia.org/ontology/Mineral 1268

Law 8867

http://dbpedia.org/ontology/Judge 2915

http://dbpedia.org/ontology/SupremeCourt Of-
TheUnitedStatesCase

2724

http://dbpedia.org/ontology/LegalCase 2724

Food and drink 3920

http://dbpedia.org/ontology/Restaurant 1158

http://dbpedia.org/ontology/Beverage 911

http://dbpedia.org/ontology/Chef 564

Health and medicine 3449

http://dbpedia.org/ontology/Hospital 3019

http://dbpedia.org/ontology/Medician 430

Philosophy and psychology 1768

http://dbpedia.org/ontology/Philosopher 1768

Mathematics 0

Computing 0

Language and linguistics 0

Meteorology 0

Table 7.1: DBpedia analysis - three most occurring entities
in every domain in LOD dataset DBpedia

7.3 GeoNames ontology and calculation of analysis

In the processing of GeoNames ontology we used two kinds of files from source
GeoNames 11. The first one was the ontology in RDF/XML format. The main
problem with processing this ontology was in naming of the entities. It was not
understandable by human, because the name consist of only some shortcut.
So, we decided to map Umbel ontology to GeoNames ontology for the recog-
nition and insertion to right domain, because umbel ontology adds to every
entity human understandable name. Another way for this we could follow
predicate prefLabel. We processed this file in different program and manually

11http://www.geonames.org/ontology/documentation.html

91

7. Experiments and results

Figure 7.1: DBpedia analysis - chart in the application showing the repres-
entation of domains and entities in DBpedia

92

7.3. GeoNames ontology and calculation of analysis

Figure 7.2: Domain representation in DBpedia

inserted it to concrete domains. Example of one entity in GeoNames ontology
is shown in listing 7.2.

<gn:Code rd f : about=”#S .VETF”
s k o s : n o t a t i o n=”S .VETF”>

<s k o s : d e f i n i t i o n xml:lang=”en”>a bu i l d ing or camp at
˜which v e t e r i n a ry s e r v i c e s are a v a i l a b l e</
s k o s : d e f i n i t i o n>

<skos : inScheme r d f : r e s o u r c e=”#S”/>

<s k o s : p r e f L a b e l xml:lang=”en”>v e t e r i n a r y f a c i l i t y</
s k o s : p r e f L a b e l>

</gn:Code>

Listing 7.2: One class in the file GeoNames Ontology

Another file we used from source GeoNames was mapping. This file is also
in format RDF/XML and it contains some mapping between GeoNames and
DBpedia or between GeoNames and LinkedGeoData. One mapping example
in this file is shown in the listing 7.3. We used every mapping from this file
to our application, not only between dataset DBpedia and Geonemas.

<ow l :C la s s rd f : about=” ht tp : // dbpedia . org / onto logy /
Theatre ”>

< r d f s : l a b e l xml:lang=”en”>Theatre</ r d f s : l a b e l>
<o w l : e q u i v a l e n t C l a s s r d f : r e s o u r c e=” ht tp : //

l inkedgeodata . org / onto logy / Theatre ”/>

93

7. Experiments and results

<o w l : e q u i v a l e n t C l a s s>
<o w l : R e s t r i c t i o n>

<owl :onProperty r d f : r e s o u r c e=” ht tp : //www
. geonames . org / onto logy#featureCode ”/>

<owl :hasValue r d f : r e s o u r c e=” ht tp : //www.
geonames . org / onto logy#S .THTR”/>

</ o w l : R e s t r i c t i o n>

</ o w l : e q u i v a l e n t C l a s s>
<rd f s : subC la s sO f r d f : r e s o u r c e=” ht tp : //www.

geonames . org / onto logy#Feature ”/>

</ owl :C la s s>

Listing 7.3: One class in the GeoNames mapping file

After successful import of entities and linking between entities (the im-
ported file is added in CD) we imported dataset GeoNames in format HDT
for testing also this possibility for the big data. Finally, the analysis shows,
that the biggest representation is created by domain Geography and places
with 61,9 %, followed by the domain Geology and Geophysics with 17 % and
the third place belongs to domain Religion, mysticism and mythology with
5,34 %. The most three represented entities in particular domains are shown
in the table 7.2. Representation of domains in dataset GeoNames is shown
in the chart 7.3.

Domain / Entity name Count Umbel label

Geography and places 5110941

http://www.geonames.org/ontology#P.PPL 2853189 PopulatedPlace

http://www.geonames.org/ontology#H.STM 763142 Watercourse

http://www.geonames.org/ontology#H.LK 249677 Lake

Geology and geophysics 1407207

http://www.geonames.org/ontology#T.MT 316148 Mountain

http://www.geonames.org/ontology#T.HLL 174753 Hill

http://www.geonames.org/ontology#H.STMI 120878 Watercourse

Religion, mysticism and mythology 440764

http://www.geonames.org/ontology#S.CH 237203 Church-
Building

http://www.geonames.org/ontology#S.CMTY 136377 Graveyard

http://www.geonames.org/ontology#S.MSTY 25126 Monastery-
Residence

Art,architecture, and archaeology 299843

http://www.geonames.org/ontology#S.BLDG 118192 Building

http://www.geonames.org/ontology#H.WLL 78496 Well

http://www.geonames.org/ontology#P.PPLQ 32078 Abandoned
Construction
Artifact

94

7.3. GeoNames ontology and calculation of analysis

Domain / Entity name Count Umbel label
Politics and government 286760

http://www.geonames.org/ontology#A.ADM4 93067 FourthOrder
Administrative
Division

http://www.geonames.org/ontology#A.ADMD 64132 Administrative
District

http://www.geonames.org/ontology#A.ADM3 56375 Third Order
Administrative
Division

Education 265184

http://www.geonames.org/ontology#S.SCH 250662 School Build-
ing

http://www.geonames.org/ontology#S.LIBR 11620 Library Space

http://www.geonames.org/ontology#S.SCHC 1915 School Campus

Transport 218604

http://www.geonames.org/ontology#S.RSTN 52844 Railway

http://www.geonames.org/ontology#S.PO 42417 Post Office
Building

http://www.geonames.org/ontology#S.AIRP 23263 Airport Phys-
ical

Engineering and technology 73190

http://www.geonames.org/ontology#P.PPLA4 23965 Fourth Order
Seat

http://www.geonames.org/ontology#H.RSVT 20277 Water Tank

http://www.geonames.org/ontology#S.AIRF 7954 Airfield

Biology 34537

http://www.geonames.org/ontology#V.FRST 20605 Forest

http://www.geonames.org/ontology#H.MRSH 6212 Marsh

http://www.geonames.org/ontology#L.RESF 4334 Forest Reserve

Sport and recreation 34140

http://www.geonames.org/ontology#S.CMP 23659 Campsite

http://www.geonames.org/ontology#S.RECG 7246 GolfCourse

http://www.geonames.org/ontology#S.STDM 905 Stadium

Health and medicine 27281

http://www.geonames.org/ontology#S.HSP 18686 Hospital Build-
ing

http://www.geonames.org/ontology#S.HSPD 5317 Medical Care
Facility

http://www.geonames.org/ontology#S.HSPC 2750 Medical Care
Facility

Business, economics, and finance 23840

95

7. Experiments and results

Domain / Entity name Count Umbel label
http://www.geonames.org/ontology#S.EST 16646 Estate-Legal

Entity

http://www.geonames.org/ontology#S.MKT 2195 Marketplace
Object

http://www.geonames.org/ontology#S.ESTX 1743 Estate-Legal
Entity

History 10710

http://www.geonames.org/ontology#S.MUS 5050 Museum Struc-
ture

http://www.geonames.org/ontology#S.ANS 2561 Ancient Site

http://www.geonames.org/ontology#S.HSTS 1339 Historical Site

Culture and society 8380

http://www.geonames.org/ontology#L.TRB 6176 Tribal Region

http://www.geonames.org/ontology#L.AGRC 1645 Colony

http://www.geonames.org/ontology#S.COMC 316 Communications
Facility

Warfare 6592

http://www.geonames.org/ontology#S.INSM 2701 Military Facil-
ity

http://www.geonames.org/ontology#S.FT 2698 Military Base
Grounds

http://www.geonames.org/ontology#S.PSTP 633 Military Post

Food and drink 3707

http://www.geonames.org/ontology#V.OCH 1543 Orchard

http://www.geonames.org/ontology#S.REST 1343 Restaurant
Space

http://www.geonames.org/ontology#S.MLSG 192 SugafMill Man-
ufacturing Fa-
cility

Meteorology 1587

http://www.geonames.org/ontology#S.STNM 1587 Weather Sta-
tion

Heraldry, honors, and vexillology 796

http://www.geonames.org/ontology#S.MNMT 796 Monument

Law 714

http://www.geonames.org/ontology#L.DEVH 437 Subdivision
RealEstate

http://www.geonames.org/ontology#S.CTHSE 187 Courthouse

http://www.geonames.org/ontology#S.STNI 49 Inspection Fa-
cility

Physics and astronomy 392

96

7.4. Comparison of dataset DBpedia and GeoNames

Domain / Entity name Count Umbel label
http://www.geonames.org/ontology#S.ASTR 208 Astronomical

Station

http://www.geonames.org/ontology#S.OBPT 124 Observation
Point

http://www.geonames.org/ontology#S.OBS 41 Astronomical
Observatory

Literature and theatre 299

http://www.geonames.org/ontology#S.THTR 299 Theater Space

Computing 142

http://www.geonames.org/ontology#S.ITTR 142 Research Insti-
tute

Media 139

http://www.geonames.org/ontology#S.STNR 139 RadioStation

Chemistry and mineralogy 15

http://www.geonames.org/ontology#S.MLM 8 Mineral Ore
Refinery

http://www.geonames.org/ontology#S.MFGLM 4 LimKiln

http://www.geonames.org/ontology#S.MFGCU 3 Copper Re-
finery

Mathematics 0

Music 0

Royalty and nobility 0

Philosophy and psychology 0

Language and linguistics 0

Video gaming 0

Table 7.2: GeoNames analysis - three most occurring entities
in domains LOD dataset GeoNames

7.4 Comparison of dataset DBpedia and

GeoNames

We made the comparison table 7.3 with domain representation in dataset
DBpedia and GeoNames. From this table it is obvious, that entities which
make the biggest difference are Geography and places, Geology and geophysics,
which have bigger representation in dataset GeoNames. The most different
domains which have bigger representation in DBpedia are Media, Sport and
recreation and Biology. This result proves that dataset GeoNames is focused
on geographic places, while dataset DBpedia is cross-domain dataset.

97

7. Experiments and results

Table 7.3: Comparison of domain representation in datatses: DBpedia vs
GeoNames

Domain name DBpedia Geonames

Physics and astronomy 11349 392

Art,architecture, and archaeology 373429 299843

Meteorology 0 1587

Education 107657 265184

Engineering and technology 93151 73190

Geography and places 1388140 5110941

Video gaming 20437 0

Mathematics 0 0

Culture and society 377645 8380

Heraldry, honors, and vexillology 75429 796

Music 524083 0

Media 2913106 139

Politics and government 109817 286760

Royalty and nobility 20296 0

Religion, mysticism and mythology 41444 440764

Warfare 70324 6592

Computing 0 142

History 36714 10710

Health and medicine 3449 27281

Law 8867 714

Chemistry and mineralogy 11294 15

Philosophy and psychology 1768 0

Transport 137492 218604

Business, economics, and finance 137123 23840

Sport and recreation 1289395 34140

Biology 840137 34537

Language and linguistics 0 0

Geology and geophysics 65791 1407207

Literature and theatre 443572 299

Food and drink 3920 3707

98

7.5. Conclusion about testing of the application on real data

Figure 7.3: Domain representation in GeoNames

7.5 Conclusion about testing of the application

on real data

During the testing of this application we found out, that not every dataset
has human understandable name of entities, so we definitely could inserted
not only path to entity, but also some human understandable name of entity,
for instance use value in pref:label in ontology for it.

Within the this testing, the main problem was dataset size and a slow
calculation. There occurs main problem with the entity
http://www.geonames.org/ontology#P.PPL in dataset GeoNames, which is
represented by 2,853,189 triples, and every subject in this triple has a lot
of predicates. This entity causes fall of the application during the calculation
of predicates (a long calculation) because of the lack of memory. We tried
to fix it in several ways, for instance by dividing a query for predicates calcu-
lation to several smaller queries, but it did not help. Because this application
is only a school work, we decided to remove this entity from the calculation
of predicates. Anyway we hope we will find solution for this bug in the future.

99

Conclusion

The aim of this thesis was to introduce with the Linked Open Data and their
particular principles. Simultaneously, it was necessary to explore the cur-
rent state of LOD cloud. This aim was accomplished, so the work contains
transparent definition and explanation of the particular terms together with
the exploration of the current status of LOD and comparison with the previous
date.

Besides the main principles of Linked Open Data, it was necessary to study
the particular semantic technologies which are the base of Linked Open Data.
They are mostly technologies RDF and SPARQL and also different accesses
to these datasets by the help of SPARQL endpoint, Linked Data Fragments
or HDT. The work explains the main elements of RDF data model, formats
of RDF datasets and also the demonstrational possibilities for the creation
of SPARQL queries. Also, it deals with the presentation of Linked Data
Fragment or HDT format of LOD datasets.

The paper also contains research about existing technologies and tools
which are focused on the summarization of LOD datasets in some way.

The other important aim of this work was to create analysis and based
on it to design and to implement web application for the summarizing and
comparison of Linked Open Data datasets.

Analytical part of the application was fulfilled by writing up the functional
and non-functional requirements of the proposed application. Moreover, we
processed particular use case diagrams with the concrete scripts, and also
the domain model. Design part of the application was completed by the pro-
cessing of the design models, concretely model of classes and database model.
Individual analytical and design models are processed graphically by the help
of the program Enterprise Architect. Part of the design was also the choice
of the architecture and implementation platform which we accomplished
by the summarizing of the particular technologies, which we decided to use
for the creation of the proposed application. The other part of the design
was the user interface design, which was fulfilled by the drawing wireframes

101

Conclusion

by the help of programme Balsamiq.
Implementation part was made by programming of the web application,

which comes from the above mentioned design. Source code is saved in the CD,
which is also the part of the paper. The most important parts of the im-
plementation are also described in the work together with the screenshots
in the appendix. Application is also available in the Github.

Test part was fulfilled by the programming of the automatic integrating
tests for the testing basic functions of the application and also testing of ap-
plication within the particular web browsers. The aim of the work was also
to validate the application on the real datasets as DBpedia and GeoNames.
This was also successfully accomplished and individual results are described
in the work in more details.

102

Bibliography

[1] Cyganiak, R.; Jentzsch, A. The Linking Open Data cloud diagram. Avail-
able from: http://lod-cloud.net/

[2] Jakub Kĺımek, M. N. Introduction to Linked Data. Available
from: https://edux.fit.cvut.cz/courses/MI-SWE/_media/lectures/

mi-swe-p01-intro-en.pdf

[3] community, M. About microformats. Available from: http://

microformats.org/wiki/about

[4] Wikipedia. Linked data. Available from: https://en.wikipedia.org/

wiki/Linked_data

[5] Hausenblas, M. 5 star OPEN DATA. Available from: http://

5stardata.info/en/

[6] Berners-Lee, T. Linked data. Available from: https://www.w3.org/

DesignIssues/LinkedData.html

[7] Heath, T.; Bizer, C. Linked Data: Evolving the Web into a Global Data
Space. Morgan & Claypool, first edition, 2011, ISBN 9781608454303.
Available from: http://linkeddatabook.com/

[8] DBpedia. About. Available from: http://wiki.dbpedia.org/about

[9] Wick, M. GeoNames Ontology. Available from: http://

www.geonames.org/ontology/documentation.html

[10] W3C. Resource Description Framework (RDF). Available from: http:

//wiki.dbpedia.org/about

[11] Wood, D.; Zaidman, M.; et al. Linked Data Structured data on the web.
Manning, 2014.

103

http://lod-cloud.net/
https://edux.fit.cvut.cz/courses/MI-SWE/_media/lectures/mi-swe-p01-intro-en.pdf
https://edux.fit.cvut.cz/courses/MI-SWE/_media/lectures/mi-swe-p01-intro-en.pdf
http://microformats.org/wiki/about
http://microformats.org/wiki/about
https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/Linked_data
http://5stardata.info/en/
http://5stardata.info/en/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://linkeddatabook.com/
http://wiki.dbpedia.org/about
http://www.geonames.org/ontology/documentation.html
http://www.geonames.org/ontology/documentation.html
http://wiki.dbpedia.org/about
http://wiki.dbpedia.org/about

Bibliography

[12] W3C. W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes. Available from: https://www.w3.org/TR/xmlschema11-2/

#string-derived-types

[13] W3C. RDF Schema 1.1. Available from: https://www.w3.org/TR/rdf-

schema/

[14] W3C. OWL Web Ontology Language Reference. Available from: https:

//www.w3.org/TR/owl-ref/

[15] Wikipedia. Simple Knowledge Organization System. Available from:
https://en.wikipedia.org/wiki/Simple_Knowledge_Organization_

System

[16] W3C. Describing Linked Datasets with the VoID Vocabulary. Available
from: https://www.w3.org/TR/void/

[17] W3C. SPARQL Query Language for RDF. Available from: https://

www.w3.org/TR/rdf-sparql-query/

[18] Institute, D. E. R. Namespace lookup for RDF developers. Available from:
https://prefix.cc/

[19] OpenLinkSoftware. Virtuoso server. Available from: https:

//virtuoso.openlinksw.com/

[20] RDF4J, E. The Eclipse RDF4J framework. Available from: http://

rdf4j.org/

[21] Jena, A. The Apache Software Foundation. Available from: https://

jena.apache.org/

[22] Multimedia Lab, G. U. Linked Data Fragments. Available from: http:

//linkeddatafragments.org/

[23] DataWeb. Download. Available from: http://www.rdfhdt.org/

[24] Langegger, A. RDFStats Manual for v2.0-beta. Available from: http:

//rdfstats.sourceforge.net/

[25] Demter, J.; Auer, S.; et al. LODStats—An Extensible Framework for
High-performance Dataset Analytics. In Proceedings of the EKAW 2012,
Lecture Notes in Computer Science (LNCS) 7603, Springer, 2012, p. 10,
29% acceptance rate. Available from: http://svn.aksw.org/papers/

2011/RDFStats/public.pdf

[26] Ziawasch Abedjan, A. J. F. N., Toni Gruetze. Profiling and Mining RDF
Data with ProLOD++. In Proceedings of the IEEE International Con-
ference on Data Engineering (ICDE), Demo, Chicago, IL, 0 2014, p. 4.

104

https://www.w3.org/TR/xmlschema11-2/#string-derived-types
https://www.w3.org/TR/xmlschema11-2/#string-derived-types
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://en.wikipedia.org/wiki/Simple_Knowledge_Organization_System
https://en.wikipedia.org/wiki/Simple_Knowledge_Organization_System
https://www.w3.org/TR/void/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://prefix.cc/
https://virtuoso.openlinksw.com/
https://virtuoso.openlinksw.com/
http://rdf4j.org/
http://rdf4j.org/
https://jena.apache.org/
https://jena.apache.org/
http://linkeddatafragments.org/
http://linkeddatafragments.org/
http://www.rdfhdt.org/
http://rdfstats.sourceforge.net/
http://rdfstats.sourceforge.net/
http://svn.aksw.org/papers/2011/RDFStats/public.pdf
http://svn.aksw.org/papers/2011/RDFStats/public.pdf

Bibliography

[27] Fabio Benedetti, L. P., Sonia Bergamaschi. LODeX: A tool for Visual
Querying Linked Open Data. In LODeX: A tool for Visual Querying
Linked Open Data, 2015, p. 4.

[28] Dudas, M. LodSight - An RDF dataset summarization too. Available
from: http://lod2-dev.vse.cz/lodsight-v2/index.html

[29] Lalithsena, S.; Jain, P.; et al. (editors). Automatic Domain Identification
for Linked Open Data, Atlanta, GA: ACM, 2013.

[30] Abele, A. Linked Data Profiling: Identifying the Domain of Datasets
Based on Data Content and Metadata. In Proceedings of the 25th In-
ternational Conference Companion on World Wide Web, WWW ’16
Companion, Republic and Canton of Geneva, Switzerland: International
World Wide Web Conferences Steering Committee, 2016, ISBN 978-1-
4503-4144-8, pp. 287–291, doi:10.1145/2872518.2888603. Available from:
http://dx.doi.org/10.1145/2872518.2888603

[31] W3Techs. Usage of client-side programming languages for websites. Avail-
able from: https://w3techs.com/technologies/overview/client_

side_language/all

[32] W3Techs. Usage of JavaScript libraries for websites. Available
from: https://w3techs.com/technologies/overview/javascript_

library/all

[33] Oracle. Jersey - RESTful Web Services in Java. Available from: https:

//jersey.java.net/

[34] SQLite. About SQLite. Available from: https://sqlite.org/

about.html

[35] Foundation, T. A. S. Welcome to Apache Maven. Available from: https:

//maven.apache.org/

[36] W3C. Browser Statistics. Available from: http://www.w3schools.com/

browsers/

[37] Bentivogli, L.; Forner, P.; et al. Revising the Wordnet Domains Hierarchy:
Semantics, Coverage and Balancing. In Proceedings of the Workshop on
Multilingual Linguistic Ressources, MLR ’04, Stroudsburg, PA, USA: As-
sociation for Computational Linguistics, 2004, pp. 101–108. Available
from: http://dl.acm.org/citation.cfm?id=1706238.1706254

105

http://lod2-dev.vse.cz/lodsight-v2/index.html
http://dx.doi.org/10.1145/2872518.2888603
https://w3techs.com/technologies/overview/client_side_language/all
https://w3techs.com/technologies/overview/client_side_language/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://jersey.java.net/
https://jersey.java.net/
https://sqlite.org/about.html
https://sqlite.org/about.html
https://maven.apache.org/
https://maven.apache.org/
http://www.w3schools.com/browsers/
http://www.w3schools.com/browsers/
http://dl.acm.org/citation.cfm?id=1706238.1706254

Appendix A

Acronyms

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CSV Comma Separated Values

DCAT Data Catalog Vocabulary

DCMI Dublin Core Metadata Initiative

FTP File Transfer Protocol

GUI Graphical User Interface

HDT Header, Dictionary, Triples

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBAN International Bank Account Number

JAX-RS Java API for RESTful Web Services

JSON JavaScript Object Notation

LOD Linked Open Data

OWL Web Ontology Language

PDF Portable Document Format

RDF Resource Description Framework

REST REpresentational State Transfer

SKOS Simple Knowledge Organization System

107

A. Acronyms

URI Uniform Resource Identifier

URL Uniform Resource Language

XML Extensible Markup Language

VoID Vocabulary of Interlinked Datasets

108

Appendix B

Content of enclosed CD

readme.txt.........................short description of the CD content
src

impl....................source codes of the implemented application
thesis...........................source codes ot the paper in LATEX

text...text content of the paper
thesis.pdf text content of the paper in PDF format

109

Appendix C

Wireframes of the application

Figure C.1: Wireframe - DomainList with packed domains and with opened
button for theexport

111

C. Wireframes of the application

Figure C.2: Wireframe - DomainList with unpacked one domain where the list
of entities is displayed

112

Figure C.3: Wireframe - DomainList with opened form for inserting new
domain

Figure C.4: Wireframe - DomainList with opened form for importing domains
and entities

113

C. Wireframes of the application

Figure C.5: Wireframe - DomainList after sending data to the server for pro-
cessing

Figure C.6: Wireframe - DomainList with opened form for inserting new entity

114

Figure C.7: Wireframe - DomainList with opened form for deleting existing
domain

115

C. Wireframes of the application

Figure C.8: Wireframe - DatasetAnalysis with opened detail of dataset ana-
lysis

116

Figure C.9: Wireframe - DatasetAnalysis with no datasets imported

Figure C.10: Wireframe - DatasetAnalysis with opened form form inserting
new dataset

117

C. Wireframes of the application

Figure C.11: Wireframe - DatasetAnalysis after sending data to server for pro-
cessing

Figure C.12: Wireframe - DatasetAnalysis detail with opened form for insert-
ing new dataset analysis

118

Figure C.13: Wireframe - DatasetAnalysis detail with opened compare page

119

Appendix D

Screenshots of the application

Figure D.1: Screenshot - Form for the creation of new domain

121

D. Screenshots of the application

Figure D.2: Screenshot - Domain list with unpacked one domain

122

Figure D.3: Screenshot - End of the page Domains with chart shown

123

D. Screenshots of the application

Figure D.4: Screenshot - Overview of domains in the mobile screen with
the searching view

124

Figure D.5: Screenshot - Form for the creation of new entity

Figure D.6: Screenshot - Form for the import domains and entities

125

D. Screenshots of the application

Figure D.7: Screenshot - Dataset detail with packed its analysis

Figure D.8: Screenshot - Form for dataset deleting.

126

Figure D.9: Screenshot - Dataset detail with unpacked analysis - the first part
of analysis

127

D. Screenshots of the application

Figure D.10: Screenshot - Dataset detail with unpacked analysis - second and
partly third part of analysis

128

Figure D.11: Screenshot - Form for adding new dataset with the validation
and displaying help message

Figure D.12: Screenshot - Form for editing already existed dataset

129

D. Screenshots of the application

Figure D.13: Screenshot - Form for adding new dataset analysis

130

Figure D.14: Screenshot - View page ”Dataset analysis” in the mobile screen

131

D. Screenshots of the application

Figure D.15: Screenshot - Open the tab ”Compare” to compare two datasets

132

Figure D.16: Screenshot - Page with contact, source and useful information
about application functions

133

D. Screenshots of the application

Figure D.17: Screenshot - Landing page of the application

134

	Introduction
	Motivation
	Objectives
	Organization of the thesis

	Theoretical background
	What is Web of Data
	Linked Data Principles
	LOD Cloud
	Semantic technologies

	State-of-the-art
	Analysis
	Requirements
	Use case diagrams
	Domain model

	Design
	The choice of implementation platform
	The Architecture
	Design class model
	Database model
	Wireframes of the application

	Implementation
	Creation of user interface
	Data validation
	User information about processing of the calculation in application
	Chart drawing
	Export
	Domain import
	Jersey 2
	Performance optimization
	Conclusion

	Testing
	Integrated automatic tests
	Testing among different web browsers
	Application Use Cases and Demonstration Scenario

	Experiments and results
	Domain initialization
	DBpedia ontology and calculation of analysis
	GeoNames ontology and calculation of analysis
	Comparison of dataset DBpedia and GeoNames
	Conclusion about testing of the application on real data

	Conclusion
	Bibliography
	Acronyms
	Content of enclosed CD
	Wireframes of the application
	Screenshots of the application

