

Czech Technical University in Prague

Faculty of Electrical Engineering

DIPLOMA THESIS

Anne-Laure Coiffier

Analysis and design of manufacturing operations

Department of Cybernetics

Supervisor: Ing. Pavel Burget, Ph.D.

Prague, May 2017

Declaration of Authenticity

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, dated:

 Signature

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Anne-Laure Coiffier

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Analysis and design of manufacturing operations

Guidelines:

1. Perform research in the literature how the production operations are defined and planned.
2. In the layout of the manufacturing line identify the production resources and their related operations.

Define shared zones where several resources can operate simultaneously and plan the atomic
operations with respect to the zones.

3. Design a mechanism of transforming the production operations for individual products into the
framework of the production line to create and possibly generate automatically the sequences of
operations. Take into account the shared zones and respective schedules when individual product need
to be produced. Take into account the possibility to have different products in the production at the
same time.

4. Implement the production operations in the available robots and other production resources.
5. Implement interfaces into the existing control system in cooperation with another student who does the

implementation.

Bibliography/Sources:

[1] Kanthabhabhajeya Sathyamyla, Berglund Joakim, Falkman Petter, Lennartson Bengt - Interface between
SysML and Sequence Planner Language for Formal Verification – INCOSE 2013.
[2] Augustsson Svante, Gustavsson Christiernin Linn, Bolmsjö Gunnar– Human and robot interaction based on
safety zones in a shared work environment - 2014 ACM/IEEE international conference on Human-robot
interaction.
[3] Siemens Tecnomatix Process Simulate, User documentation, 2017

Diploma Thesis Supervisor: Ing. Pavel Burget, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

L.S.

prof. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
 Head of Department Dean

Prague, February 17, 2017

Abstract

Adaptability is a key factor for manufacturing companies for remaining competitive. Indeed,

the fast changing of product demand but also the new trend of mass customization urge

factories to improve their way to design production lines. Until now, production lines are

installed in such a way that it has to be completely changed when a new product has to be

produced.

In this thesis, models of both the factory line and the production plan are first developed based

on a capability description. Mapping of production resources to production plan is then

performed by a simple matching algorithm. Taking into account the material flow, production

schedule is then automatically generated with a Depth-First Search algorithm with backtracking

applied on the tree resulting of the mapping. This implementation is done using the Python

language.

The schedule is then evaluated in Process Simulate software by modelling the industrial

production line that will be later installed in CTU buildings.

Keywords: flexible production system, scheduling algorithm, virtual commissioning

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Pavel Burget,

PhD. for offering me this very interesting topic for my thesis. Indeed, this topic is closely linked

to my future work, so working on this thesis has been very instructive and has enabled me to

gain essential skills. I also thank him for his continuous guidance during all the time of research

and writing my thesis.

Beside my supervisor, I would also like to thank my teammates, Petr and Tomas, for their

cooperation on the project. They have been very helpful, reactive and patient during our

discussions.

Finally, I shall express my very profound gratitude to my parents and to my boyfriend for

providing me with unfailing support and continuous encouragement throughout my years of

study and through the process of researching and writing this thesis. This accomplishment

would not have been possible without them.

i

Table of contents

CHAPTER1 INTRODUCTION ... 1

1.1 PROBLEM DESCRIPTION .. 1

1.2 RELATED WORK... 1

1.3 STRUCTURE OF THE THESIS .. 3

CHAPTER 2 PRODUCTION SYSTEMS MODEL .. 4

2.1 PRODUCTION PLAN MODEL ... 4

2.2 FACTORY SETUP MODEL .. 5

CHAPTER 3 PRODUCTION SCHEDULE ALGORITHM .. 8

3.1 MAPPING OF FACTORY RESOURCES TO PRODUCTION PLAN .. 8

3.2 CREATION OF THE SCHEDULING TREE ... 9

3.3 SCHEDULING ALGORITHM ... 11

3.3.1 Depth-First Search algorithm with backtracking .. 11

3.3.2 Checking of material flow .. 14

CHAPTER 4 VIRTUAL COMMISSIONING .. 15

4.1 HARDWARE ARCHITECTURE ... 15

4.2 PROCESS SIMULATE IMPLEMENTATION .. 18

4.2.1 Standard mode: time-based simulation .. 18

4.2.2 Line simulation mode: event-based simulation .. 20

4.2.2.1 Event-based simulation ……………………………………………………………………………………….20

4.2.2.2 Off-line Programming (OLP) ..……………………………………………………………………………….20

4.2.2.3 Signals ..……….24

4.2.2.4 Generation of appearances: material flow …………………………………………………………….27

4.3 IMPLEMENTATION IN TIA PORTAL ... 29

CHAPTER 5 EXPERIMENTAL RESULTS ... 33

5.1 EVALUATION OF THE SCHEDULING ALGORITHM ON A SIMPLE EXAMPLE .. 33

5.2 EVALUATION OF THE SCHEDULING ALGORITHM ON THE TESTBED .. 36

5.2.1 Presentation of the testbed... 36

5.2.2 Results of the scheduling algorithm ... 39

5.3 EVALUATION OF VIRTUAL COMMISSIONING... 41

ii

5.3.1 Evaluation of Process simulate implementation .. 42

5.3.1.1 CEE simulation.. 43

5.3.1.2 PLCSIM simulation ... 44

5.3.2 Evaluation of PLC program .. 45

CONCLUSION .. 48

REFERENCES ... 50

APPENDICES ... 51

APPENDIX A: FUNCTION BLOCK OF THE BIN PICKING OPERATION .. 51

APPENDIX B: CD CONTENT .. 53

iii

Lists of figures

2.1 Metamodel of the production plan . .5

2.2 Metamodel of the factory setup . 6

3.1 Production schedule algorithm principle . .8

3.2 Schema of a scheduling tree . 10

4.1 Real hardware architecture and virtual commissioning architecture15

4.2 Configuration of OPC UA. 16

4.3 Configuration of PLCSIM Advanced for emulating PLC program in TIA portal 17

4.4 Compound operation in Process Simulate. .19

4.5 Gantt chart of time-based simulation in standard mode19

4.6 General basic organisation of a robotic program . 21

4.7 Program Inventory . .21

4.8 Paths in a robot program . .22

4.9 Robot status signals . .22

4.10 Basic relationship between robot (OLP) signals and PLC signals23

4.11 Principle of robotic program in Process Simulate . .24

4.12 Definition of signals for triggering compound operations 25

4.13 Declaration of transition condition of compound operations25

4.14 Declaration of ending signal of compound operations26

4.15 Gantt diagram of event-based simulation in line simulation mode27

4.16 Definition of product instances in operation properties panel 28

4.17 Alternative material flow links in material flow viewer29

4.18 Program blocks in the PLC program . .30

4.19 Main program (OB1) . 32

iv

5.1 Example testbed . 33

5.2 Result of the mapping for example testbed. 34

5.3 Scheduling tree for example testbed. .35

5.4 Resulting valid schedule for example testbed . .35

5.1 Testbed implemented in Process Simulate . 36

5.2 PERT diagram of the car process . .38

5.7 Console view for the demonstration scenario . 40

5.8 Result of the scheduling for the testbed scenario . 41

5.9 Setting of CEE / PLCSIM simulation . .42

5.10 Simulation panel for CEE . 43

5.11 Addressing of signals in Signal Viewer . .44

5.12 Monitoring signals from PLCSIM . .45

5.13 Watch table in online mode . 46

5.14 OB 1 in online mode 47

1

Chapter1 Introduction

1.1 Problem description

Flexible factory is nowadays critical for competitiveness of companies, as producing a high

quality product for a small price does not guarantee success anymore. All the more as mass

customisation is becoming a new reference for manufacturing industries and lifecycle of

products are decreasing gradually. Therefore, production lines must be adaptable for keeping

pace with this fast product turnover. As a result, lots of researches have been done in this field

in the past years to meet the increasing demand of new adaptable production systems.

In order to determine the scope of the above, flexibility must be defined as it can have different

meaning: it can be the capability to increase the range of available product, it can also refer to

the ability to change from one product to the next one with very little effort and financial means

for adapting the production line, or it can simply mean the capability to adapt volumes of

production to customer demand. In the following, only the second definition of flexibility will

be considered.

Today, the way how production is planned does not allow flexibility. Production line and

production plans are often designed for producing only one product. Then, a change of

production plan involves a lot of work for adapting or modifying the mechanical system and the

information technology systems. It also requires a lot of time as usually the production has to

stop for being able to reconfigure or replace some of the production line components. In order

to address the quick changeovers goal, current approaches are focussed on adjustable

equipment with mechatronic compatibility. Existing industrial solution rely as well on the

integration of smart robots and on computer-integrated manufacturing which use computers

for controlling the entire production line.

1.2 Related work

Capability-based approaches are the new trend for production planning and scheduling.

Zah et al. propose in [1] to model the production plan and the different resources of the factory

line from the perspective of capabilities. The schedule is optimized locally on a machine level

and the production plan is stored using the Radio Frequency Identification technology which is

2

not suitable for real application in factory because of the slowness of the reading and writing

process.

N. Keddis et al. propose in [2] a very similar approach but consider the material flow for

generating the schedule automatically: operations of the production plan are assigned to the

available machines and needed transportation operations are added. The optimization is rather

done globally at the production process level. In [3], they focus on describing the workflow in

an explicit and very accurate way by listing all the required data needed for a process.

Therefore, the model of the workflow can be reused in different factories. The model is

generated with the Eclipse Modelling Framework software and saved in XML-like file (.xmi) in

order to use it directly in their scheduling application written in C++.

In a later work, Keddis and her team show how to transform the generated schedule obtained

from the capability description in action sequences that are readable by the machines and can

be automatically executed on them [4]. However, the work is limited to a simplified industrial

setup and so need to be extended to more complex situations. In [5], they also propose a

model-based plug and play approach relying on middleware communication for detecting new

stations in the production line. Thus, the factory setup model is directly established during run

time and really reflects the current setup. This allows to increase the adaptability of the

Information Technology (IT) system about the factory setup.

The approach of the thesis is mainly based on the work of N. Keddis and her team. Both

production plan and factory setup models are established off-line based on a capability

description. Required operations are mapped as well to the available machine resulting in the

creation of a tree diagram. Depth-First Search algorithm with backtracking if material flow is

not possible between two consecutive operations is then run on this tree for generating a valid

schedule for the given workflow and factory setup. The schedule is then tested by simulating

the production line with Process Simulate; and the PLC program in TIA portal by emulating the

PLC with PLCSIM Advanced.

The work of Keddis and her team is enhanced as the experimental setup is much more complex

than the one used to evaluate their approach. Moreover, industrial components and industrial

programming environment are used. Indeed, machines such as manufacturing robots which

are able to do cooperative tasks are going to be used. Right now, the cooperation task only

mean sharing their workspaces but the robots should eventually work on the same part.

Production plans are also going to have many more production steps and the required

operations are more elaborated.

3

1.3 Structure of the thesis

The thesis has the following organisation. Chapter 2 describes the two models used for

representing a production system which are the production plan model and the factory setup

model. Chapter 3 provides in a depth description of the algorithm that generates valid schedule

for a given production plan with the current factory setup; it includes the creation of a searching

tree and the use of a Depth-First Search algorithm with backtracking on it. Chapter 4 outlines

the hardware architecture. In this chapter is also described the implementation of the

production line simulation in Process Simulate and the PLC program in TIA portal. Finally,

Chapter 5 presents the results of the scheduling algorithm and the results of the simulations

performed on the virtual testbed and the PLC code.

4

Chapter 2 Production systems model

2.1 Production plan model

For increasing adaptability of manufacturing systems, the production plan must be described

independently from specific technical information or the current factory setup and should

model explicitly the workflow as proposed in [3].

Production plan have been modelled using object-oriented programming language Python. The

metamodel in Figure 2.1 illustrates the different classes that have been implemented for

modelling the production plan. The user specifies the demand of the customer, that is to say

which product has to be produced and in which quantity. Each product is represented by a

workflow which contains all the necessary production steps with their dependencies. Indeed,

for executing one step, some other steps must be done before, thus each step has a list of the

preceding steps. A production step is composed of several atomic operations that may require

some material and particular tool.

Another information data can be required to describe each operation more accurately such as

the geometry of the material or product, process relevant data as for example the exact

position where the material must be glued, screwed, etc., error tolerance and quality

requirements [3]. It is crucial to define these additional parameters because the same

operation can apply to different type or size of material, so different tools may be needed (i.e.

driving a screw of size 8mm or 10mm).

Each workflow has been designed using the Teamcenter Manufacturing software. It generates

an Excel file with the production steps and their related operations as well as a Program

Evaluation and Review Technique (PERT) diagram which describes dependencies of each step

(c.f. Appendix 2: CD contents).

5

Figure 2.1: Metamodel of the production plan

2.2 Factory setup model

In [2], the factory setup is modelled with a capability-based approach: for each machine of the

factory a list of all capabilities is established. In figure 2.2, which illustrates the implemented

classes for the factory setup model, capabilities are labelled as process.

For describing more accurately the specificity of every type of machine such as robot, conveyor,

or human, subclasses of the machine class are defined. Special parameters of each class are

not yet defined, but it will be later refined using some mechanical properties as for instance

the payload for a robot.

Each machine has a list of workspaces which it can work in. The workspaces for a machine in

the subclass conveyor is obviously any workspace that is mechanically attached to it and that

has a particular location. For a robot, it can be any position that can be reached by its end-

effector. Finally, we define the workspace of the CollaborativeRobot class as the zone shared

by both robots.

Each machine is able to perform several processes. Some examples of process for a robot might

be screw, pick and place, bin picking, … In order to more precisely describe every process

6

performed by the different machines, subclasses of the process class have to be created.

Indeed, a transportation process only need few parameters such as the initial and final location,

and the duration; whereas a manufacturing process (e.g. gluing, snapping, screwing…) requires

much more information.

A manufacturing process has further parameters such as the location where to do the action,

some attributes of the process (e.g. size), and the material it should handle. It is also needed to

specify in which workspace the process can be executed. Indeed, the same process can be done

in most of the workspaces reached by the machine. Each process is associated to one tool.

Regarding collaborative process, robots that are collaborating on the same process have to be

defined with their specific role.

Data about the current factory setup are stored in an XML file visible on the attached CD

(Appendix 2). In this file, described the resources of the production line (machine, workspace,

tool) but also the capabilities of each machine are especially described.

Figure 2.2: Metamodel of the factory setup

7

Both previous models are established off-line and are used during run time to generate the

schedule of the desired workflow: defined classes and stored data, for example the XML factory

setup file and Excel file generated by Teamcenter Manufacturing, allows to instantiate different

objects such as machine, workspace and operation when running the production schedule

algorithm.

8

Chapter 3 Production schedule algorithm

In this chapter, I present the algorithm that generates a valid production schedule for a given

workflow with the available factory setup. The general principle of the algorithm is illustrated

in figure 3.1. Each part will be fully explained in the following sections.

Figure 3.1: Production schedule algorithm principle

3.1 Mapping of factory resources to production plan

In the previous chapter, both the factory line and production plan have been modelled. These

models are used now for mapping current factory resources to production plan: the purpose

9

of the mapping is to establish for each operation in the production plan a list of machines able

to perform it, including the workspaces in which it can be performed. It is at this stage that

importance of describing each model with the same vocabulary and in a generic way comes to

light. Indeed, for each operation the mapping function iterates over all the processes of every

machines; if the name of operation such as screw, snap, or transport is not identical in both

descriptions, no matching is possible.

Moreover, it is necessary to check the material used for each operation. Actually, as no tool is

defined right now, it has to be determined if a machine can do the same operation such as “Bin

Pick the part” or “Assemble the part” for different materials. This is simply done by verifying

that the required material of an operation of the production plan is the same as the material

that can manipulate a machine in the factory setup. This checking will have to be redefined

latter by checking the associated tool of an operation and its attributes.

During the mapping, if no matching is found for one operation, it means that the production

plan cannot be scheduled on the currently available machines of the factory line. Either the

production plan or the production line has to be modified, for example by integrating a new

machine with this capability, to solve this issue.

3.2 Creation of the scheduling tree

The result of the mapping is then represented in an ordered directed tree. For this, the

operations are first sorted according to the dependencies of their respective production steps.

Besides taking into account the dependencies, checking of cooperative or concurrent tasks is

done. Indeed, if two operations have been mapped on different machines and workspace they

can be performed at the same time. Moreover, cooperative tasks must be scheduled at the

same time; information about cooperation is contained in the Excel file generated from

Teamcenter Manufacturing.

Ordered list with parallel tasks is not used at this step, because if a given node contains

information of several operations, the checking of material flow between two nodes of the tree

is not intuitive (see following section). The schedule will be refined at the very end, after the

scheduling algorithm, in order to take into account parallel tasks.

The tree is created simply by iterating over all sequential operations. The result of the mapping

is used: the number of machines able to perform the given operation and in which workspace

determines the number of nodes to create. For example, if a given operation can be done on

machine M1 in workspace W1 and on machine M2 in workspaces W2 and W3, then there will

be 3 nodes in the scheduling tree for this operation. Each new created node is linked to every

node created with the mapping of the preceding operation.

10

The main data stored in each node are:

 Name of the production plan operation

 Name of the machine

 In which workspace (or in which workspaces if the operation is a transport operation)

 Duration

A given node also contains the list of its children and a reference to its parent. The root node,

that is to say node 0, is special as it does not contain any data. It is only defined because it is

the node at which the scheduling algorithm on the tree begins.

Figure 3.2 shows a basic example that illustrates the creation of the scheduling tree. Two

operations in the production plan are considered: the first operation has been mapped on two

machines (node 1 and node 2). The second operation has been mapped on one machine (node

3 and node 4), as shown in figure 3.2(a) or on two machines (node 3 to node 6), as shown in

figure 3.2(b).

Considering the fact that the tree is created in an exponential way and that the production plan

can contain lots of operations, subtrees must be created. Each subtree represents the mapping

of operations of several production steps of the whole production plan.

 (a) (b)

Figure 3.2: Schema of a scheduling tree. Root node is node 0

11

3.3 Scheduling algorithm

3.3.1 Depth-First Search algorithm with backtracking

Instead of using a Breadth-First Search algorithm (BFS) with backtracking as in [2], Depth-First

search algorithm (DFS) with backtracking has been used for generating valid schedule. Indeed,

as using BFS algorithm, using the DFS algorithm for searching the tree allows as well to quickly

pruned the branch in which material flow is impossible, but above all to build the schedule in

an effective way: each time the flow is possible for a given node, this node with all the

information it contains such as the machine and the workspace in which the given operation is

scheduled is added to the scheduling path. On the contrary, if backtracking is necessary due to

the fact that no material flow is possible, then nodes are removed from the path according to

how far the backtracking is necessary for finding a new branch that is still unvisited. For

instance, if no flow is possible for the current node and its parent node has all of its children

already visited, then the backtracking is needed two times which means that the current node

and its parent node are removed from the path. Therefore, the main advantage of the DFS

algorithm is that it allows to keep track of the path when going through the tree.

As the search is done on the whole tree that is to say every possible schedule has been

considered, the obtained schedule is therefore the optimal one according to the desired

criteria. Shortest schedule duration has been chosen, however other criteria such as makespan

(completion time of the last task), energy consumption, or delivery time can be used.

The solution space that is explored are the subtrees created in the previous section. The DFS

algorithm is iteratively executed on each subtree. Each obtained schedule for the given subtree

is saved and later used as an input for the next subtree. At the end, a list of all possible schedules

for the complete workflow is generated and the one with the shortest duration is chosen as the

optimal schedule.

The algorithm 1 describes the implementation of the DFS algorithm which will be run for each

subtree. It starts with the checking of whether the material required for the operation of the

current node has been used before (line 2). Indeed, by looking at the whole path and more

particularly at productLocalisation which stores the required materials of the current node and

their location, it is possible to determine if a material has been already used and its current

location. If the material has never been used before, then the checking of the flow is not

required so the current node can be directly appended to the path (line 4). Otherwise, the flow

of material must be checked (line 6) in order to determine if the material is directly at the

current workspace (line 8), or if some intermediate transport steps are needed for bringing the

material to the current desired workspace (line 10), or finally if the required material cannot be

12

transported from its position to the workspace of the current node. In the latter case

backtracking is necessary (line 14).

The checking of flow will be further explained in the following section.

If the node has been added to the path, then the algorithm can continue recursively by selecting

an unvisited child of the current node (line 19). If the current node is a leaf node (line 22), then

the algorithm managed to find a valid schedule for the workflow with the current factory

settings. This schedule is added to the subtree path list (line 24) and then we backtrack until

some node has not been visited yet in order to find another valid schedule.

The resulting schedule with the shortest duration time is selected and saved in an XML file. This

file will be sent to the Programmable Logic Controller (PLC); it will be further explained in the

following chapters.

13

Algorithm 1: PseudoCode of the DFS algorithm with backtracking

Input: subtree, root node, path, production line

1 if current node is not root node then

2 v = checkProduct (current node, path)

3 if v == 1 then
4 path.append ([currentNode, productLocalisation])

5 else
6 flow, transportStep = checkFlow (current node, production line, path)

7 if flow == 1 then

8 if transportStep == [] then
9 path.append ([currentNode, productLocalisation])

10 else
11 path.append (transportStep)
12 path.append ([currentNode, productLocalisation])

13 else
14 backtrackingNeeded = 1

15 if backtrackingNeeded == 1 then

16 newNode = backtracking(current node, path)
17 DFS(subtree, newNode, path, production line)

18 else

19 if current node is not a leaf node then

20 foreach child of the current node not yet visited do
21 DFS(subtree, child, path, production line)

22 else
23 compute total time of the path
24 subtree.listPath.append ([path, total time])
25 newNode = backtracking(current node, path)
26 DFS(subtree, newNode, path, production line)

14

3.3.2 Checking of material flow

In this section, I explain how the material flow checking is performed. Indeed, it is necessary to

do it because a given operation can be scheduled on a different machine or in a different

workspace than the ones of the previous operation, therefore the material must be transported

between each workspace or machine.

The checking is done with the function checkFlow (line 6 in algorithm 1) in 3 consecutive steps.

First, we verify that the localisation of the required material is in the workspace of the current

node. If this is the case, the checking is finished otherwise we do the second step.

For each material which is not in the current workspace, we check if a direct flow is possible, in

other words if a single machine can transport this material from its location to the workspace.

This is done by verifying if one of the machines of the production line has a transport process

with these workspaces as attributes. If more than one machine can do the transport, then the

one with the shortest time is chosen. The intermediate transport step and the current node is

added to the path in that order.

If the previous step is still unsuccessful we do the last step, which is the checking of indirect

flow. Two lists are created: the first one contains the machines that have the initial workspace

(where the required material is) in their workspace list; the second one contains the machines

that have the current workspace in their workspace list. By iterating over the two lists, it is

possible to find an intermediate workspace which belongs to both machines in the two lists. If

there is such a workspace, we check that the transport process can be done between the initial

and intermediate workspace but also between the intermediate workspace and final

workspace.

If the flow is possible, the function is exited and all intermediate transport steps with the

current node is added to the path. On the contrary, we run recursively for all workspaces of

machines in the first list, the checkIndirectFlow algorithm until all machines have been visited.

As some operation involved machines such as robot, virtual workspaces must be defined in

order to model the system in a global way. Indeed, it can be possible that after an operation,

the material is not in a specific workspace but still in the gripper of some robot. Introducing

virtual workspace is also crucial for checking the flow, as it is needed to know after each

operation where are the different materials.

15

Chapter 4 Virtual commissioning

In this chapter, I present the future hardware architecture of the system and the work carried

out regarding the virtual commissioning. Particularly, I will describe the implementation of the

simulation in Process Simulate and the creation of the function blocks in TIA portal.

4.1 Hardware architecture

As the testbed is not installed yet in the university buildings, the hardware architecture will only

be generally described in this section. I will lay the emphasis on the architecture used for the

virtual commissioning. Figure 4.1 illustrates concepts that will be discussed here and in sections

that follow.

Figure 4.1: Real hardware architecture (left) and virtual commissioning architecture (right)

At this stage, the schedule is computed on the PC level by the Python program. In the previous
chapter, I described the output file, containing the name of the machine and the program
number for each step, that should be send to the PLC.

In order to do that and for abstracting from different platforms, Open Platform
Communications Unified Architecture (OPC UA), which is a machine to machine communication
protocol, is used for handling the data exchange between the PC and the PLC. This is an

16

interoperable, secure and reliable communication protocol, therefore it is considered as a
standard in industrial automation [6]. As such, it makes the approach more general. Besides,
using a protocol-independent interface is effective as only one interface needs to be installed
for numerous applications.

As shown in figure 4.2, the PC will be used as a client for the application (sends production
schedule) and the PLC will be used as a server (waits for the incoming data which is the
schedule).

Figure 4.2: Configuration of OPC UA (source: [6])

The production line contains several robots and a conveyor which are respectively controlled

by robot controller (RC) and another PLC. Exchange of inputs and outputs between the PLC and

these different components of the production line will be done with PROFINET which is a

standard for data communication in industrial systems. The PLC sends to corresponding

machines the program number and the start signal for realising the operation (output signal)

and gets back input signals about the status of the task that have been done by the different

machines: done, error, etc.

Regarding the virtual commissioning architecture (cf. figure 4.1), a virtual PC is used for

simulating the production line. It contains the following software:

 TIA portal in which the configuration of the PLC device (CPU 1516-3 PN/DP V2.0) is done

and the program blocks are implemented.

 PLCSIM Advanced which is used for emulating the S7-1500 station. It allows
comprehensive simulations without the need of physical connection to a real PLC. The
configuration of this software is illustrated in figure 4.3 by creating a virtual PLC instance
named “test” with some specific address.

 Process Simulate for simulating the complete behaviour of the production line.

Resources of the production line (machines, tools, material) and operations (e.g.

material flow and robotic operation) are modelled.

17

The PLC program (TIA portal) will be connected to Process Simulate via PLCSIM or OPC.

Figure 4.3: Configuration of PLCSIM Advanced for emulating PLC program in TIA portal

18

4.2 Process simulate implementation

4.2.1 Standard mode: time-based simulation

The time-based simulation is determined by the definition of the resources (machines, tools,

…), products and operations. The simulation is limited by the duration of operation and defines

only one scenario since the logic is based on a Gantt chart diagram which is unique and

describes a particular sequence of operation. As event- based simulation is quite difficult, time-

based simulation is usually the first step to do for modelling the production line for checking its

behaviour.

In time-based simulation, the execution of operation is determined by the sequence of

operation: the evaluation of the transition criteria, which is the end criteria for the previous

operation, is used for controlling the start of an operation.

From my colleague, I got the study with all the resources, products and operations already

defined. Two types of operations were used:

 Object Flow operation for handling the behaviour of the conveyor. Indeed, this type of

operations allows to move an object from one location to another. Thus, it is possible

to model the transportation of the different parts involved in the workflow from one

machine to another.

 General Robotic Operation for describing each path of robots. This operation is defined

such as it contains all the points of the path that the robot should go.

As a given operation in the production plan can involve several operations defined in Process

Simulate, it is needed to describe several operations as only one. As an example, the bin picking

operation requires to transport a shuttle in the workspace where the robot put down the part

on the conveyor. To do that, the compound type of operation is used. It is a node which

contains operations, either object flow or robotic operation, or other compound operation.

Figure 4.4 shows the compound operation “Bin Pick chassis” which involves the robotic

operation bin picking executed by the Iiwa robot but also transportation of one shuttle

(vozik_2_op_1) and opening and closing of the 2 clamps situated on the shuttle.

19

Figure 4.4: Compound operation in Process Simulate

The resulting Gantt diagram used for the time-based simulation is illustrated in figure 4.5. In

this diagram, operations are linked such that it is the sequence of operations that determines

the order of executed operation. For example, the compound operation “Bin Pick small battery”

requires the operation “Assemble upper desk” and “Big battery assembly” to be finished for

being enable to start. The end of “Assemble upper desk” operation is needed because the bin

picking and assemble upper desk operation use the same resources which is one of the shuttle

of the conveyor. We can notice that some operations can be executed at the same time (e.g.

“Small Battery assembly” and “Bin Pick ball holder) as it does not involve the same machine and

the same workspace.

Figure 4.5: Gantt chart of time-based simulation in standard mode

The video of the time-based simulation can be seen in the CD attached to this thesis (see

appendix B).

20

4.2.2 Line simulation mode: event-based simulation

4.2.2.1 Event-based simulation

The time-based simulation of the standard mode does not allow to simulate the production line

properly with all the resources (robots, conveyor, control devices) in full synchronisation. As

opposed to the time-based simulation which uses the predefined sequence of operations for

simulating the line, the connections in Gantt chart do not determine anymore the executing

orders of the operation in event-based simulation of the line simulation (LS) mode. This is

actually the logic of the process and the events that occur which drives the simulation.

Therefore, each simulation in event-based simulation are unique as it depends on events that

can vary.

Switching from standard to LS mode demands some effort as it implies to use transition

conditions and signals for handling the process sequence. It also implies creating robot

programs instead of operation, and material flow for generating appearances. These 3 parts

will be detailed in the rest of the section.

4.2.2.2 Off-line Programming (OLP)

Firstly, I will describe in this section how to create robot programs by using operations defined

in the standard mode. As illustrated in figure 4.6, a robot has to execute two types of task which

are organised in a robot program: motion task and logic instructions (non kinematics program

modules). Robot program are listed in the program Inventory as shown in figure 4.7. In this

panel, it is possible to edit a program as well as to create or delete one. Programs can also be

downloaded to a shop-floor robot or uploaded from a shop-floor robot to Process Simulate. I

only used the first three possibilities.

For using the robot program with its robot controller, programs have to be set as default (bold

labelling). In this way, a given program can be executed directly by their path number during

simulation.

21

INIT routines

Path #1

Path #2

Path #n

LOOP
Switch 1

Switch 2

Switch n

Non kinematics
program modules

Figure 4.6.: General basic organisation of a robotic program

Figure 4.7: Program inventory

After creating an empty robot program, each path that the robot should execute is added to

this program with a path number. This number is also called ProgramNumber in the status

signal. As a robot can have several motion task, each path has a number in order to distinguish

them. In order to execute a given motion task, the PLC should therefore send the corresponding

ProgramNumber.

22

The figure 4.8 shows all the path saved in the program of the Iiwa robot which consist mainly

in pick-and-place motion. A robot program has been created for each robot of the production

line.

Figure 4.8: Paths in a robot program

To assure that the path number correspond to the number send by the PLC, some mechanisms

relying on signal exchange are used. Some of these status signals also prevent the robot from

starting at the wrong time.

The figure 4.9 shows the default signal for a robot called here Kr60ha_7axes.

Figure 4.9: Robot status signals

23

Signals are controlling event-based simulations. Based on them, it is possible to trigger

operations or events. Robot signals might be of the different following type:

 Default Input Signal; it is an input signal from the point of view of a Programmable Logic

Controller (PLC). For instance, if the robot finished a path or if some errors occurred

during this task, input signals indicating these type of events will be send to the PLC.

 Default Output Signal; it is an output signal from a viewpoint of a PLC. For example, if a

task has to be executed by the robot during the simulation an output signal will be send

by the PLC indicating the start of the operation.

 Memory Signal. It has been not used in the thesis.

The relationship between the robotic status signals and PLC signals are illustrated in figure 4.10.

These status signals are continuously evaluated by the robot controller, as for example some

input emergency stop signal or the input home position signal indicating that the robot is at its

home position.

PLC
ROBOT

Interface
ROBOT

Execution

Output signal

Input signal

Input signal

Output signal

Figure 4.10: Basic relationship between robot (OLP) signals and PLC signals

These signals are illustrated in figure 4.11, which shows the principle of a robotic program. The

signals are described from the PLC view. When the robot is mechanically and electrically ready,

it sets the “robotReady” signal to TRUE. Then, the PLC sends a path number to the robot, this

number is checked to assure that this number exists and is correct. This is done by mirroring

the number received by the robot. If this number coincides with one in the robot program, the

procedure can continue otherwise the signal “errorProgramNumber” is send to the PLC. Finally,

the PLC sends the “startProgram” signal. On the rising edge of this signal, the robot starts its

action. When the path is finished, the robot sets to TRUE the “programEnded” signal.

24

Get READY
information from
the robot (after

robot INIT
procedure)

Send Program
Number to robot

Get reconfirmation
(mirror) on Program
Number from robot

Send « START »
information to

robot

Start the
Synchronization
Signal Exchange

Get the End Signal
from the robot

Figure 4.11: Principle of robotic program in Process Simulate (source [7])

4.2.2.3 Signal

In event-based simulation, the operations are not starting anymore by using the end condition

of the previous operation and links. Instead operation starts when their start-operation signal

is triggered. These signals are independent of robotic operation which run using the robot

programs and robot status signal. Therefore, it is required to create a start signal for every

compound operation that we want to run and trigger it from the PLC. The principle of the

signals is exactly the same as robotic signals: input signals are received by the PLC and output

signals are send by the PLC.

25

2 new signals have been defined in the signal viewer (see figure 4.12). The first one is

Process_ProgramNumber; this integer is an output signal from the viewpoint of the PLC and

indicates which compound operation to execute. As illustrated in figure 4.13, every compound

operation is triggered when this integer is equal to a particular value which is send by the PLC.

The second signal is the Boolean Process_end which becomes TRUE when a compound

operation ends. Its definition is illustrated in figure 4.14 for the box process. This is obviously

an input signal as it is send to the PLC once the operation finishes.

Figure 4.12: Definition of signals for triggering compound operations

Figure 4.13: Declaration of transition condition of compound operations

26

Figure 4.14: Declaration of ending signal of compound operations

A Non-Sim Operation called StartingSwitch is also defined. This is an empty operation that is

added as the first operation under testbed. It is only used for logic purposes. Every compound

operation is linked to this non-sim operation and it is set as common condition as precondition

of transition for all operations as already shown in figure 4.13.

The finally obtained Gantt diagram for event-based simulation is illustrated in figure 4.15.

27

Figure 4.15: Gantt diagram of event-based simulation in line simulation mode

4.2.2.4 Generation of appearances: material flow

The Appearance option in Process Simulate is the only way in line simulation mode for

visualising product data. Indeed, when a study is opened in line simulation mode for the first

time, the products associated to the operations are not shown. Appearances allows as well to

view a product at different locations at the same time, which is needed if different products

have to be produced simultaneously on the same production line or if the simulation is

repeated several times (several products are consecutively produced by the production lines).

When a simulation is running, part appearance is automatically generated when an operation

uses a part. This part will remain “alive” until the part is no longer needed. When the simulation

is reset, all appearances of the parts are completely removed.

For generating a part appearance automatically, the classic method is to define the product

instances in the operation properties panel. Figure 4.16 illustrates the definition of the product

28

newChassis in the product instance of the robotic operation “Bin Picking chassis” executed by

the Iiwa robot.

Figure 4.16: Definition of product instances in operation properties panel

Once the product instances of each operation has been defined, the material flow diagram is

automatically generated thanks to the links in Gantt chart. Indeed, as explained earlier, the links

in the Gantt chart does not determine anymore the order of executing of the operations.

However, these links are used for controlling how an appearance is passed from one operation

to another.

 The whole material flow viewer can be seen in the CD attached to the thesis (see appendix B).

As the material flow viewer can not contain compound operation, it contains all the operations

and all material flow links. Dashed line between two operations in the material flow viewer

represents an alternative material flow as illustrated in more detail in the figure 4.17. It allows

parts to be passed in an exclusive way to different successors. Here parts that are situated in

the box after the R1_pick_box process, can be passed to one of the bin picking operation and

then to the transport process, called here vozik, according to which transition condition is

currently true.

29

Figure 4.17: Alternative material flow links in material flow viewer

4.3 Implementation in TIA portal

Function blocks corresponding to each operation of the production plan are implemented in

the PLC program blocks as shown in figure 4.18. Since some of these operations have the same

logic, as for example “Bin Pick the part” in Chassis assembly and Motor assembly production

step, I decided to use the same function block for controlling their execution. Therefore, the

PLC controls and monitors the “Bin Pick the part” operation with the function block “Operation

BP Iiwa” (FB1).

All the following blocks have been implemented using the Ladder logic, which is a programming

language for PLCs.

30

Figure 4.18: Program blocks in the PLC program

The main program is implemented in the organisation block OB 1 as illustrated in figure 4.19.

In STEP 7, OB1 is processed cyclically by the CPU. The CPU reads line by line and executes the

program commands. The general principle of the implementation is as follow:

 Network 1: When the read_schedule Boolean is TRUE; the CPU reads the value of the

current programNumber which is in the schedule file sent via OPC to the PLC (see

section 5.2.2). This number indicates to the PLC which function block corresponding to

operations in the production plan to run. The Integer programNumber is passed on as

block parameters from the organization block OB 1 to the function block. As the OPC

connection between the PC and PLC is not established yet, the function block FB 2

executing this task is actually empty. The read_schedule Boolean is firstly initialised to

TRUE in the Startup organisation block (OB100).

 Network 2 and 3: Depending on the integer programNumber, the function block is

executed. The checking of this integer is done with a IN_RANGE block which sets to true

the Boolean operation_start if programNumber has the specified value. When the

previous Boolean is TRUE, the function block can be run. Network 2 and 3 illustrate the

principle of the program for the bin picking operation.

 network 24 and 25: When the function block execution is finished, the verification of

the status of the execution is done. If the function block has the output done, then the

Boolean read_schedule is set to TRUE and a new cycle can be run with a new

programNumber. Otherwise, if the output is error, then a human operator has to be

called to check where the error comes from.

31

32

Figure 4.19: Main program (OB1)

All function blocks have almost the same implementation. The integer programNumber is

defined in the variable declaration table as input and the Booleans error and done as output

(declaration “in” and “out”).

The general implementation of a function block controlling a robotic program is illustrated in

appendix A with the bin picking operation executed by the Iiwa robot. The logic is exactly the

same as the logic used in Process Simulate (figure 4.11). programNumber is firstly sent to the

robot when it is mechanically ready and in its home position. Then, the number mirrored by

the robot is checked by the PLC in order to ensure that the path can be executed safely. If this

is correct, the robot starts the program. At the end of the execution, the status of the operation

is determined (either done or error).

Function blocks controlling an operation defined as compound operation of Object Flow in

Process Simulate are slightly different. This mainly concerns the conveyor operations. The

function block only sends the Process_ProgramNumber which triggers the first operation of the

compound operation. It also checks the end of the operation.

Each tag (Integer, Input, Output, Memory…) has some address. For example, an output of data

type Boolean will have the address Q0.0 and an input of data type Boolean will have I0.0. The

PLC tags can be seen in the Excel file PLCTags in the attached CD. This Excel file has been

generated directly by TIA portal.

33

Chapter 5 Experimental results

In this chapter, I present and analyse the results of the experiments that were carried out for

testing the scheduling algorithm. First, the scheduling algorithm has been tested on a simple

example for evaluating the Depth-First Search algorithm, then the experimental setup has been

used for validating the flexibility of the approach. Finally, results of the simulation performed

on the production line model in Process Simulate and the PLC program in TIA portal are

presented.

5.1 Evaluation of the scheduling algorithm on a simple example

I first evaluated the scheduling algorithm on a very simple example for testing if the flow

checking of material was correct. Therefore, I considered the following scenario which involves

the addition of transportation steps between two consecutive steps.

The example testbed is illustrated in figure 5.3 and is composed of two robots R1 and R2 and a

conveyor. There are 5 workspaces:

 Robot R1 can work in workspaces 1, 2, 3, and 4

 Robot R2 can work in workspaces 4 and 5

 The conveyor can transport material between the workspaces 2, 3, and 4

Figure 5.1: Example testbed

34

The machines have the following capabilities: robot R1 can screw in workspace 1 and get

product from store in workspaces 2 and 3. Robot R2 can also screw in workspace 4 and executes

mounting process in workspace 5. Finally, robot R2 can also transport an object from workspace

4 to workspace 5.

The considered production plan is really simple:

1- Get product 1

2- Screw product 2 in product 1

3- Get product 3

4- Mount the product 3 on the product 1-2

Results for the example testbed are illustrated in figures 5.4, 5.5, and 5.6 which represent

respectively the result of the mapping between production plan operation to machines, the

created scheduling tree and finally the obtained valid schedule.

Figure 5.2: Result of the mapping for example testbed (screenshot)

35

Figure 5.3: Scheduling tree for example testbed (screenshot)

Figure 5.4: Resulting valid schedule for example testbed (screenshot)

36

This scenario validates the part of the algorithm related to the checking of flow: if no possible

direct flow between two workspaces is possible, transportation steps are scheduled on the

intermediate machines. These transportation steps in the case of indirect material flow

checking are not always optimal considering the process duration. Indeed, some machines can

have been chosen for providing the transportation capability whereas others also have this

capability but with a smaller process duration.

5.2 Evaluation of the scheduling algorithm on the testbed

5.2.1 Presentation of the testbed

In order to evaluate the approach, I performed simulations on the testbed that will be installed

in CTU buildings soon. The testbed is shown in Figure 5.1. Up to now, this setup is used for the

production of a small car, but eventually it should produce a wide range of different products.

Figure 5.1: Testbed implemented in Process Simulate

37

The factory setup is composed of 3 robots. There are two KUKA KR60 robots, of which one is

mounted on a 7th axis for allowing an additional translation movement. These two robots can

cooperate together in the assembly area. Furthermore, there is a KUKA IIWA robot, which is a

lightweight robot. It can cooperate with a human at the table. The production line has also a

conveyor of the brand MONTRAC used for transportation of the different materials from one

workspace to another. Transportation is done with self-propelled shuttles moving on

monorails. The main capabilities of each machine are summarized in Table 1.

Machine Capability 1 Capability 2

KUKA KR60 + 7th axis Pick box in the store Assemble parts

KUKA KR60 Screw Assemble parts

KUKA IIWA Bin Picking Pick car from MONTRAC

MONTRAC Parts delivery

Table 1: Capabilities of each machine used for the demonstration scenario

The workflow of the car process is really straightforward: the KUKA KR60 on the 7th axis picks a

box in the store and puts it on the table. Then, the IIWA robot will successively bin pick the

material required for the production step and put it on a shuttle. There are 2 shuttles: one of

them contains a couple of clamps that maintains the chassis during the assembly operation of

other parts and that will be fixed in the assembly area. The material will be transported by the

other shuttle to the unload area where one of the two KUKA robots will successively proceed

to take the part and proceed to the assembly operation (e.g. screw, snap …). When all parts

have been assembled, the car is transported back to the table.

The PERT diagram generated by Teamcenter showing the production steps of the car process

and their dependencies for the car process is illustrated in Figure 5.2.

38

Figure 5.2: PERT diagram of the car process

39

5.2.2 Results of the scheduling algorithm

The capabilities of the machines saved in the factory setup XML file are exactly the ones

implemented in Process Simulate.

As there are many more operations and steps in this scenario, instead of printing the result in

the console of PyCharm; results of the different steps of the scheduling algorithm have been

printed in external text files for a better reading as shown in figure 5.7. These files can be seen

in the CD attached to this thesis (c.f. Appendix 2). Besides the mapping file, the tree file and

the resulting schedule text file, one more output file is generated: OPCschedule. This file

contains for each step of the production schedule the name of the machine on which the

operation is scheduled and the number of the program that the PLC should run. The general

structure of this XML file is shown below. A step can contain several operations to be executed

at the same time (cf. 2 operations for task 2). This file containing the whole production schedule

will be sent via OPC to the PLC.

Structure of the XML file sent via OPC to PLC

- <Schedule>

 - <Task> task 1

 - <Operation>

 - <Machine> name of the machine <\Machine>

 - <programNumber> number <\programNumber>

 - <\Operation>

 - <\Task>

 - <Task> task 2

 - <Operation>

 - <Machine> name of the machine <\Machine>

 - <programNumber> number <\programNumber>

 - <\Operation>

 - <Operation>

 - <Machine> name of the machine <\Machine>

 - <programNumber> number <\programNumber>

 - <\Operation>

 - <\Task>

- <\Schedule>

40

With the demonstration scenario, 4 scheduling trees have been created and a valid schedule

with a duration of 629 seconds has been found within less than 0.4 seconds.

Figure 5.7: Console view for the demonstration scenario (screenshot)

The results obtained for the testbed setup are illustrated in the Gantt diagram in figure 5.8.

Only the first steps of the production plan are represented: Pick the box process, Chassis

assembly, and Motor assembly. Operation along with the machine on which it is scheduled is

indicated on the vertical axis. Its corresponding execution time is represented on the horizontal

axis.

41

Figure 5.8: Result of the scheduling for the testbed scenario

As only one capability for each operation has been implemented in Process Simulate, the

computation of the schedule with the Python program is really straightforward. Nevertheless,

it also works fine for more capabilities, as for example two robots being able to do the same

operation. The only difference is that the algorithm takes more time (i.e. several minutes) since

the created tree is exponential. However, even if the computation time of the algorithm is in

minutes, it is still interesting to use it as long as the production plan does not change too often.

With the testbed setup, I showed that a valid production schedule can be generated without

configuring manually the factory setup. The same algorithm can be applied for different

production plans, but also for different factory setups. If the production line is modified, only

the XML file containing the factory setup must be updated by adding for example new machines

or new capabilities. Therefore, flexibility of the production line has been increased.

5.3 Evaluation of virtual commissioning

As I did not manage to establish the connection between TIA portal and Process Simulate, I

evaluated both parts separately. I simulated the TIA portal program by forcing manually

variables coming from the production line (i.e. Process Simulate), and similarly I run the Process

Simulate simulation by forcing variables as if they were controlled by the PLC.

42

5.3.1 Evaluation of Process simulate implementation

In Line Simulation mode of process simulate, two types of simulation can be performed:

 Cyclic Event Evaluation (CEE) which uses the internal PLC of Process Simulate for

controlling the event-based simulation.

 PLCSIM emulation: Event-based simulation is driven from actual programmable logic

controller (PLC) code.

The setting of both simulation types is done in PLC section of the Options panel (see figure 5.8).

Figure 5.9: Setting of CEE / PLCSIM simulation

43

5.3.1.1 CEE simulation

The event-based simulation has been firstly tested with the CEE mode. I used the Simulation

Panel for monitoring the signals chosen from Signal Viewer manually. The simulation panel with

the signals used for supervising the simulation is illustrated in figure 5.9. By forcing the value of

Process_ProgramNumber to some given number, it is possible to trigger the compound

operation which has the same transition condition. For triggering a robot program, the program

number has to be forced to a chosen number and the start signal has to be forced to TRUE. As

the robot is starting its program on a rising edge of startProgram signal, the box must be

deselected after that, otherwise the robot does not move.

When running the simulation, all the inputs signals from the viewpoint of the PLC were acting

correctly. For example, after the end of a compound operation, the Boolean Process_end is set

to TRUE. Similarly, robots were mirroring the right number and set programEnded to TRUE after

the execution of their program.

Figure 5.10: Simulation panel for CEE

44

The video of event-based simulation in CEE is attached in the CD of the thesis (see appendix B).

The video only records the first steps of the production plan: Pick the box process, Chassis

assembly, and Motor assembly.

However, during the CEE simulation the Part Appearances feature was not working properly.

Indeed, parts were not following the right material flow as defined earlier. Therefore, parts

have not been generated during the video recording.

5.3.1.2 PLCSIM simulation

The second simulation has been performed by emulating the PLC behaviour with PLCSIM.

Address of signals must be defined in order to monitor them from the PLCSIM software. Figure

5.10 shows the addressing for signals and robot status signals. The address of signals must be

the same as the ones defined in TIA portal (see PLCTags Excel file) to be able to monitor them

directly from the PLC.

Figure 5.11: Addressing of signals in Signal Viewer

Figure 5.11 lays the emphasis on how to monitor and control the signals from PLCSIM and the

effect in Process Simulate: the robot signal Iiwa_startProgram is triggered from PLCSIM by

clicking the box Q0.0. PLCSIM also allows to watch input signals, as for example Iiwa_at_HOME

and kr60ha7axes_at_HOME signals are TRUE (box corresponding to signals with address I0.4

and I0.6 are ticked) and Iiwa_programEnded is FALSE (box with address I0.0 is not marked).

Once the connection is established, it leads to the same previous simulation.

45

Figure 5.12: Monitoring signals from PLCSIM

5.3.2 Evaluation of PLC program

Finally, PLC program has been evaluated. As PLCSIM advanced emulates the PLC, CPU program

can be download to the virtual device, and then it can be simulated with the online mode.

A watch table enables to monitor and control the desired signal. In Figure 5.12, the signals used

for simulating the bin picking operation in online mode are represented. In order to simulate

the real robot behaviour with real communication between the PLC and robot controller, all

robotic input signals have been forced to TRUE (e.g. iiwa_at_HOME or Iiwa_at_HOME).

Moreover, for simulating the fact that the schedule is sent from OPC UA, programNumber is

forced to the number corresponding to one of the bin picking operations: in this case, the

number 3 was chosen corresponding to the operation “bin pick the upper desk”.

46

Figure 5.13: Watch table in online mode

The simulation is running correctly as output values (e.g. Iiwa_startProgram or

Process_ProgramNumber) are set to the correct value. In figure 5.13, OB 1 in online mode is

highlighted: with the previous variable forced in the watch table, the output operation_done of

the bin picking function block is set to TRUE.

47

Figure 5.14: OB 1 in online mode

48

Conclusion

In order to increase the flexibility of production systems, I have implemented a Python

algorithm that generates a valid schedule based on a distinct capability-based description of

the production plan and the current factory setup. Available resources are firstly mapped to

the different operations of the production plan and then a scheduling tree is created. A depth-

first search algorithm with backtracking goes through this tree for finding a schedule optimized

according to the shortest schedule duration criteria. The contribution of the thesis is that

material flow is checked between each node of the tree: location of the required material for

execution of operation of a given node is found, and the algorithm determines if some

intermediate transport steps are needed for transporting the material from their respective

locations to the current workspace.

Some enhancements regarding the mapping need to be done as capability of a machine to

execute some operation is only described by the process name and the material it should

handle for now. Tools with their attributes have to be defined in both the production plan and

factory setup. It is also possible to improve the DFS algorithm since it sometime does not return

the most optimal valid schedule.

Then, the generated schedule should be sent via OPC UA to the PLC which controls and

monitors the whole production line according to the schedule. The OPC UA communication has

not been implemented yet.

Virtual commissioning of the production line has also been performed. Model of the production

line has been used to create an event-based simulation in the Process Simulate software. This

simulation is based on logic and signal events, and can be driven from actual PLC code.

Therefore, the complete behaviour of the production line can be emulated. Two simulations

have been performed: the first one uses the internal PLC of Process Simulate for controlling the

event-based simulation (CEE) and the second one uses the PLCSIM software for emulating the

PLC behaviour. Both simulations validated the implementation of the production operations in

the available production resources.

PLC program has also been implemented. Function block for each operation of the production

plan has been designed according to the machine involved in the given operation. By using

PLCSIM Advanced software, it was possible to emulate the CPU S7-1500 and thus to run the

program in online mode. Once again, this simulation allowed the validation of the control

system and more particularly the implemented function blocks by triggering with the watch

table the input signals such as robot status or the operation status, but also by forcing their

starting condition (i.e. the number of the program in the schedule file to run transmitted via

OPC UA).

49

The OPC communication between Process Simulate and the PLC (TIA portal) has not been

established yet. Therefore, the whole virtual commissioning has not been validated yet since

this interface is missing.

50

References

[1] M.-F. Zah, M. Beetz, K. Shea, G. Reinhart, O. Stursberg, M. Ostgathe, C. Lau, C. Ertelt, D.
Pangercic, T. Ruhr et al., “An Integrated Approach to Realize the Cognitive Machine Shop,” in
Proceedings of the 1st International Workshop on Cognition for Technical Systems, 2008, pp.
6–8.

[2] Keddis, N., Kainz, G., and Zoitl, A. (2014). Capability based Planning and Scheduling for
Adaptable Manufacturing Systems. In IEEE International Conference on Emerging Technologies
& Factory Automation (ETFA).

[3] Keddis, N., Kainz, G., Zoitl, A., Knoll A. (2015). Modelling Production Workflows in a Mass

Customization Era. In IEEE International Conference on Industrial Technology (ICIT).

[4] Zoitl, A., Kainz, G., and Keddis, N. (2013). Production Plan-Driven Flexible Assembly
Automation Architecture. In Industrial Applications of Holonic and Multi-Agent Systems, 49-58.
Springer.

[5] Keddis, N., Kainz, G., Buckl, C., and Knoll, A. (2013). Towards Adaptable Manufacturing
Systems. In IEEE Int. Conf. on Industrial Technology (ICIT), 2013, 1410-1415. IEEE.

[6] Documentation OPC UA .NET Client for the SIMATIC S7-1500 OPC UA Server
https://support.industry.siemens.com/cs/ww/en/view/109737901

[7] Siemens Tecnomatix Process Simulate, User documentation, 2017

[8] Simatic S7 documentation
 https://cache.industry.siemens.com/dl/files/056/18652056/att_70829/v1/S7prv54_e.pdf

[9] Programming Guideline for S7-1200/1500 STEP 7 (TIA Portal)
https://www.industry.siemens.nl/automation/nl/nl/industriele-automatisering/industrial-
automation/simatic-controller/modulaire-controllers/simatic-s7-
1500/Documents/81318674_Programming_guideline_DOKU_v12_en.pdf

https://support.industry.siemens.com/cs/ww/en/view/109737901

51

Appendices

Appendix A: Function block of the bin picking operation

52

53

Appendix B: CD content

Thesis.docx ..……………………………………………………………………Diploma thesis report in Word format

Thesis.pdf ………………………………………………………………………….Diploma thesis report in PDF format

Folder 1: Production Schedule Algorithm

Folder 1.1: Src

Python source files

 Folder 1.1.1: ProductionPlan ……… Excel and PERT file generated by TeamCenter

 factorySetup.xml …………………………………………….XML file describing factory setup

Folder 1.2: Output_files …………………………………………. Files generated by Python program

Folder 2: TIA portal

coiffann.ap14 ……………………………………………………………………..…………….. TIA portal project

PLCTags.xlsx ……………………………………………… Excel file containing PLC tags defined in CPU

Folder 3: Process Simulate

Original_study.psz …………………………………………………………………….…………Original PS study

Final_study.psz ……………………………………………………………………………………….. Final PS study

Time-based_simulation.mp4 ………………………………………..Video of time-based simulation

CEE_simulation.mp4 ………………………………………………………………. Video of CEE simulation

Material_Flow.jpg ………………………Material Flow Viewer exported from Process Simulate

