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Abstract

Study of proteins is a major area of molecular biology research. Since the structure

and function of proteins are tightly bound, obtaining information about their spatial

con�guration is one of the main goals of their research. In the past, a large number

of di�erent protein structures has been obtained and free access to this information

o�ers a great potential for calculations in structural bioinformatics. One of the most

interesting areas is the detection of tunnels in protein structures.

Development of reliable algorithms, which detect tunnels in protein structures, and

simulation of the passage of chemicals through these tunnels can greatly accelerate

research in the �eld of molecular biology and so, many research groups are devoted to

these methods all around the world.

Motion planning is a well�known area of cybernetics and robotics, where it is used

to design robot paths in state space. If the state space is formed by the structure of

protein and instead of the robot we use a probe of a de�ned size, we can transfer the

motion planning algorithms from the robotic to the biological domain.

Within this diploma thesis, algorithms known from the motion planning of robots

were modi�ed for the task of tunnel detection in both static and dynamic protein

structures. Furthermore, a method for geometrical analysis of the passage of molecules

through tunnels was proposed and implemented.

Key words : detection of protein tunnels; motion planning; dynamic protein struc-

tures; geometrical analysis of the passage of molecules





Abstrakt

Studium protein· je hlavní oblastí výzkumu molekulární biologie. Jelikoº je struk-

tura a funkce protein· t¥sn¥ svázaná, získání informací o jejich prostorové kon�guraci

pat°í mezi hlavní cíle jejich zkoumání. V minulosti se jiº poda°ilo získat velké mnoºství

struktur r·zných protein· a volný p°ístup k t¥mto informacím nabízí velký potenciál

pro teoretické výpo£ty strukturní bioinformatiky. Jednou z velmi zajímavých oblastí

je i hledání tunel· ve strukturách protein·.

Vytvo°ení spolehlivých algoritm· detekce tunel· ve strukturách protein· a simulace

pr·chodu chemických látek t¥mito tunely m·ºe zna£n¥ urychlit a zefektivnit výzkum

v oblasti molekulární biologie, a proto se t¥mto metodám v¥nuje mnoho výzkumných

skupin po celém sv¥t¥.

Plánování cest pat°í mezi dob°e prozkoumané oblasti kybernetiky a robotiky, kde se

pouºívá k návrhu moºných cest robot· ve stavovém prostoru. Pokud stavový prostor

tvo°í struktura proteinu a místo robota pouºijeme sondu de�nované velikosti, m·ºeme

algoritmy plánování cest p°evést z robotické do biologické domény.

V rámci této diplomové práce byly implementovány algoritmy známé z plánování

cest robot· tak, aby nalezly tunely ve statických i dynamických proteinových struk-

turách. Dále pak byla navrºena a implementována metoda pro simulaci pr·chodu

molekul nalezenými tunely.

Klí£ová slova: detekce proteinových tunel·; plánování cest; dynamické proteinové

struktury; geometrická analýza pr·chodu molekul
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Chapter 1

Introduction

Proteins are biomolecules that perform many essential functions in every living

organism. They consist of twenty a�amino acids that create long sequences. Enzymes

are proteins that catalyze biochemical reactions, which occur at the enzyme's active

site that can be deeply burried in the protein structure. Individual protein sequences

are composed from tens up to several thousands amino acids [1]. Given so many

possibilities how di�erent amino acids can be connected, the 3D structures of distinct

proteins signi�cantly vary. For the illustration of protein structure and comparison

with DNA, the structure of nucleosome complex is shown in Figure 1.1.

Figure 1.1: The structure of nucleosome complex of a protein (in center) and a DNA
fragment (encircling protein), created by software tool PyMOL (pdb �le 1AOI) [2].

17



18 CHAPTER 1. INTRODUCTION

1.1 Structure determining methods

During the research of proteins in 20th century, scientists discovered that protein

function is directly determined by its structure. Not only because of this discovery, huge

e�ort was made in development of protein structure determining methods. Nowadays,

there are two main methods: X�ray crystallography and Nuclear magnetic resonance

spectroscopy (NMR). Thanks to great improvements in the quality of resolution, also

cryo�electron microscopy is used not only for determination of highly complex struc-

tures (e.g., ribosome), but also for individual proteins [3, 4].

Although there are methods based on electron microscopy, the majority of struc-

tures are still determined by X�ray crystallography, which produces static XYZ coor-

dinates of each atom in the studied protein molecule. All protein structures that were

published in scienti�c journals are freely available in Protein Data Bank [5] and protein

structures from this database were used in this thesis.

1.2 Protein tunnels

Since a lot of structures have been already determined and a substantial part of them

are easily accessible, there are many possible research areas in structural bioinformatics

that can be studied. One of the interesting topics is detection of tunnels in the protein

structure that lead to enzyme's active site. The active site is a location usually formed

by several amino acid residues, where incoming substrates are chemically converted to

products and this site can be deeply burried within the core of enzyme [6].

Generally, the task of tunnel detection is to �nd a collision�free path that leads

from the functional site of protein to its surface. The tunnel detection methods utilize

the three�dimensional structure usually from Protein Data Bank as the input and the

detected tunnels are the output. After the tunnels are detected, a computer�based

simulation with various chemical compounds can be performed in order to predict, if

the compounds are able to get to the active site. This approach can �nd promising

substances for further examination and experiments in real world. Demonstration of

protein structure with tunnels and tunnel �nding process is shown in Figure 1.2 on

the next page. The tunnel �nding process is thoroughly described in the upcoming

chapters.

Development of methods that would reliably �nd tunnels in protein structures is

therefore essential. Provided with such techniques, scientists in both basic and applied
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a) b)

Figure 1.2: A tunnel in protein structure. a) Simpli�ed illustration of the protein (in
light blue) with various paths within its structure and highlighted active site, formed
by three amino acid residues (in magenta). b) The result of tunnel �nding process,
where paths in the structures were scanned with a circular probe. A successfully found
tunnel is depicted in green. Paths that were unable to reach the surface of protein are
shown in red.

research can signi�cantly increase the e�ciency of their work. For example, these

methods can be very useful in pharmacology, where it would be possible to simulate

passage of various chemicals through the found tunnels well before any experiment in a

laboratory takes place. This way it would be possible to identify potential candidates

for further testing, while the compounds that were not able to pass in the simulation

would not be used for the laboratory experiments.

Widely used tools for tunnel detection in protein structures are usually based on

Voronoi diagrams, which allow the development of fast performing implementations. A

disadvantage is that three�dimensional non�spherical probes cannot be employed and

other methods need to be used in such case, for example motion planning algorithms.

1.3 Motion planning

Motion planning is a widely studied area in cybernetics and robotics. Sampling�

based methods o�er an e�cient solution to what is otherwise a very challenging problem

in path planning by sampling the con�guration space [7]. Apart from its standard

application in the robotic domain, motion planning can be also employed in structural

bioinformatics, since the spatial coordinates of a protein from Protein Data Bank can
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be used analogously to a robot path planning in buildings.

One of the sampling�based algorithms is Rapidly�exploring Random Tree (RRT).

This probabilistic algorithm e�ciently searches high�dimensional con�guration spaces

by randomly building a space �lling tree by addition of nodes to collision�free locations.

It intentionally grows towards areas of the con�guration space that were not visited

before and this method can easily handle obstacles. This is a great advantage when

compared with the complete geometric methods, which focus on exact representation

of geometry or topology of the con�guration space, thereby ensuring completeness, but

these solutions also have great computational demands in high�dimensional assign-

ments [8].

Figure 1.3 shows an exemplary result of RRT in two dimensions. In this �gure,

RRT was run for a total of 5000 iterations. It can be seen that the created tree has

successfully explored the con�guration space, while avoiding circular obstacles (shown

in blue color). Similar solutions can be implemented not only in two dimensions,

but also high�dimensional con�guration spaces, for example a 6D space with three

spatial dimensions and three rotation dimensions, which is suitable for molecule motion

planning.

Figure 1.3: Rapidly�exploring Random Tree (RRT) in two dimensions. Blue circles
represent obstacles.
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1.4 Overview of the thesis

In this diploma thesis, the objective was to modify and apply RRT algorithms for

tunnel detection in protein structures and geometrical analysis of passage of chemical

compounds through these tunnels. Chapters 2 and 3 provide theoretical background

of proteins, tunnel detection and state of the art in this research area. Chapter 4

introduces solution outline that was proposed for all assigned tasks.

In this thesis, we have designed and developed novel modi�cations of RRT for the

purpose of tunnel detection in both static and dynamic protein structures. The ideas of

static tunnel detection is based on previous work [9]. This thesis also introduces a new

method for tunnel detection in dynamic protein structures. Contrary to already devel-

oped method for dynamic tunnel detection [10], which used a continuous pruning of a

single con�guration tree, we designed a more straightforward method that computes

the tunnels separately in each frame.

We also propose a novel method for geometrical analysis of tunnel traversability

of non�spherical rigid probes in static tunnels. Chapters 5 and 6 present results and

discussion of results. Chapter 7 provides the overall summary of this diploma thesis.
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Chapter 2

Foundations of protein biochemistry

During the long history of the Earth, life has evolved into incredibly complex forms.

From single�celled microorganisms to multicellular animals and plants, di�erent living

creatures have adapted both to extreme arctic and tropic climates, being able to live

on the ground, underwater and in the air. What amazes maybe even more is the fact

that on the molecular level, individual organisms are quite similar, because they utilize

same types of biomolecules and often use identical metabolic pathways.

2.1 Biomolecules

There are four main types of biomolecules � carbohydrates, lipids, proteins and

nucleic acids. All of these large macromolecules have fundamental roles in every living

organism and this section will shortly introduce them. Carbohydrates mainly serve as

structural components and also storage of energy. The complex carbohydrates are usu-

ally composed only of carbon, oxygen and hydrogen and they typically form hexagonal

monomers, which are connected into large polymers [11].

Lipids are a chemically diverse group of biomolecules, whose common and de�ning

feature is their insolubility in water. They are the major structural elements in bio-

logical membranes and also the principal longer term storage of energy. Nucleic acids

(DNA and RNA) are the molecular repositories of genetic information. The structure

of all proteins, and basically of every biomolecule or other cellular component, is a

product of information programmed into the DNA sequence [12]. Proteins mediate

virtually every process that takes place in a cell and as the main interest area of this

thesis, the following sections describe proteins in detail.

23



24 CHAPTER 2. FOUNDATIONS OF PROTEIN BIOCHEMISTRY

2.2 Proteins

Proteins are large biomolecules that are composed of a�amino acid residues, which

form one or more chains. The general structure of an a�amino acid is shown in Fig-

ure 2.1. Each a�amino acid contains amine (−NH+
3 ) and carboxyl (−COO−) func-

tional groups and also a side chain that is speci�c for every residue. Given the physic-

ochemical properties of amine and carboxyl functional groups, two α�amino acids can

undergo condensation reaction, during which both residues are joined. This process

can be repeated many times and so, large macromolecules can be formed. There are

twenty standard α�amino acids that compose proteins and with this great variability,

individual proteins di�er in sequence length, function and structure [13].

O

O
-NH3

+

R

 

amine
group

carboxyl
group

Figure 2.1: The general structure of an a�amino acid in ionized form. The alpha carbon
is labeled. R represents the side chain.

2.2.1 Protein functions

Although all four main types of biomolecules play miscellaneous roles in living

organisms and none of them has only one purpose, proteins have the most diverse

functions and control the majority of all biochemical processes. They are encoded

by genes, which are nucleic acid sequences that serve as a blueprint for each protein

[14]. Based on the biological function, proteins can be classi�ed into several groups

� enzymes (e.g., pyruvate dehydrogenase), transport proteins (hemoglobin), storage

proteins (ferritin), mechanical support proteins (collagen), receptors (insulin receptor),

antibodies (immunoglobulin G) and hormones (thyroid�stimulating hormone).

The most prominent class are enzymes, which are proteins (or in few rare cases RNA

molecules � ribozymes) that catalyze biochemical reactions, during which substrates

are converted to products in the active site of enzymes. Almost all metabolic pro-

cesses in living organisms require these biocatalyzators in order to make reaction rates

fast enough to sustain life [15]. Enzymes are uniquely speci�c to particular chemical

substances, which is a feature arising from their three�dimensional structure.
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In order to explain the speci�city of enzymes, scientists have proposed already

in late 19th century that both enzyme and substrate possess precise complementary

geometric shapes that �t exactly into each other [16]. This �lock and key� model

successfully explains the speci�city factor, but fails to interpret the great increase of

the reaction rate. Therefore in 1958, a modi�cation to the �lock and key� model was

suggested. Since enzymes are �exible protein structures, the active site is continuously

reshaped by interactions with the substrate as it approaches the enzyme's active site

and this mechanism is often called the �induced �t� model [17]. By this adjustment to

the original theory, the binding of the substrate is not seen as a simple attachment to

the rigid active site, but as a precise recon�guration that enables the enzyme to perform

its catalytic function. The �induced �t� model is schematically shown in Figure 2.2.

substrate

enzyme

active site

products

enzyme–substrate
 complex

Figure 2.2: Enzyme reaction scheme (induced �t model). Note that the active site in
the enzyme�substrate complex slightly changes.

2.2.2 Protein structure

Individual amino acid residues are connected via peptide bonds into long chains.

Peptide bonds are formed by the amine and carboxyl groups that are bound to the

alpha carbon. For this reason, the whole protein sequence is linked by a repeating motif

(amine group � alpha carbon � carboxyl group), which is called a protein backbone.

The only di�erence in the monomers is mediated by the side chains. An exemplary

polypeptide chain is shown in Figure 2.3 on the next page.

To make this research area a little clearer, protein structure is categorized into

four levels. The primary structure is simply the linear sequence of individual amino

acids in the protein chain. The secondary structure refers to a short segment of a

polypeptide chain and describes the local spatial arrangement of its main�chain atoms
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O

NH

NH3

+

R1 O

NH

R2 O

NH

R3 O

O
-

R4

Figure 2.3: A short polypeptide chain, which is formed by four amino acids (separated
by dashed lines). Peptide bonds connect amino acids and only side chains of individual
residues are di�erent.

(backbone), without regard to the conformation of its side chains or its relationship

to other segments [12]. The most common secondary structures are a�helix and b�

sheet. Other types of the secondary structures are 310 helix, p�helix, polyproline helix

or α�sheet, but these types are rare in native protein structures. An illustration of

α�helix and b�sheet is shown in Figure 2.4.

a) b)

Figure 2.4: Protein secondary structure: a) a�helix and b) b�sheet. While a�helix
is an independent structure motif, b�sheet is composed of few b�strands (three in
this particular example). The images were created from pdb �les 5GHR (a�helix, 18
residues) and 1INY (b�sheet, 34 residues), by computer program PyMOL.

The tertiary structure is the complete three�dimensional structure of a polypeptide

chain. There are two main classes of proteins based on their tertiary structure: globular

and �brous. Some proteins are composed by two (or more) separate polypeptide chains,

which may be identical or di�erent. The quaternary structure is arrangement of these

protein subunits into three�dimensional complexes [12]. Figure 2.5 on the next page

shows the three basic types of tertiary structure representation that are usually used.

Even small organic molecules like glucose can have di�erent spatial conformations,
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therefore its structure is dynamic and individual atoms from the glucose molecule

change positions relative to each other. For that reason, it is no surprise that large

macromolecules like proteins also have a dynamic structure. X�ray crystallography

can only provide static snapshots of conformational substates, but NMR methods can

reveal the rates of interconversion between the substates, giving a little insight into the

dynamic nature of the protein structure [18].

a) b) c)

Figure 2.5: Common representations of protein tertiary structure. a) The cartoon
representation shows the secondary structure of protein and provides general protein
appearance. b) The sphere representation depicts all atoms as spheres. This illustration
is useful for the tunnel detection task, because spheres are the basis of state space used
in three�dimensional motion planning. c) The surface representation shows protein
surface that would be traced out by the molecules of water in contact with the protein.
Images were created from pdb �le 1LV8 by computer program PyMOL.

2.2.3 Protein tunnels

Active sites in enzymes, or other functional sites in di�erent proteins, are often

located in the core of these macromolecules. In order to be functional, the active

sites must be accessible to substrate and other molecules that undergo the biochemical

reaction. Accessibility is enabled by paths that connect the active site with the protein

surface and also its surroundings. These paths are ordinarily called tunnels, pores or

channels, although channels are more frequently perceived as paths that go completely

through the protein, thus having two entrances and no active site is involved [19].

Protein tunnels have certain physicochemical properties that decide which molecules

can access the functional site and make a physiological e�ect. Obtaining the properties

is fundamental for analysis of structure�function relationship and also for the design

of new molecules in various biotechnological applications. Figure 2.6 on the following

page shows a tunnel which leads from the active site to the protein's exterior.
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a) b)

Figure 2.6: A tunnel in protein structure. a) Illustration of the tunnel with the surface
representation. In this case, surface is transparent, which enables us to see both ends
of the tunnel. b) The same tunnel, but depicted with so�called mesh representation.
This representation shows the web�like surface projection, which gives better insight
into the protein structure near the found tunnel. The images were created by computer
program PyMOL (from pdb �le 1CQW). The tunnel was detected by RRT algorithm
that is described in chapter 4.1.

2.3 Motivation for the thesis

The function of proteins is given by their three�dimensional structure. Proteins

realize their functions by interacting with other molecules and these interactions take

place at the active site. Active sites are accessible through so�called tunnels. Since it is

not easy to determine if a speci�c active site can be reached by a molecule of interest,

there is high demand for computational methods that can detect tunnels in 3D models

of protein structures. Acquiring knowledge about tunnels and their traversability is

valuable due to the potential to reduce the costs of laboratory experiments.

Tunnel detection has proved to be useful in many applications, because it can pro-

vide an unique perspective into the roles of particular tunnels for reaction mechanism

of diverse enzymes. Apart from the clari�cation of biochemical processes, information

derived by di�erent software tools was also used in drug development or design of pro-

teins with novel functional properties [20]. General approaches to the tunnel detection

and also description of selected software tools are summarized in the following chapter.

After the protein structure is determined, numerous computations in the �eld of

structural bioinformatics can be performed. Major research topics include protein

folding and dynamics, molecular recognition, drug discovery, protein engineering or

tunnel detection [21]. With these theoretical approaches, valuable information about
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molecular functions of di�erent proteins can be obtained.

Although the behavior of molecules is determined mainly by electrostatic interac-

tions, many researchers believe that suitable trajectories of the ligand (a molecule that

forms a complex with a biomolecule) in protein structures can be detected solely on

the geometrical properties of the protein. For this reason, many approaches for tunnel

detection have been developed in last two decades. The next chapter describes selected

state of the art methods for tunnel detection.
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Chapter 3

Computations of protein tunnels

There are many di�erent areas of interest in structural bioinformatics. With the

increasing amount of data, which is generated about structures of various biomolecules

every year, computational approaches can provide scientists with powerful tools that

could improve the research process in many study �elds of molecular biology. In this

thesis, the main focus is directed towards tunnel detection in protein structures and

passage simulation of small rigid molecules through the found tunnels.

3.1 Tunnel detection in proteins

In the last twenty years, several distinct geometry�based tunnel detection tools

have been developed. These methods can be categorized into several groups, based on

di�erent solving principles � grids, Voronoi diagrams, sampling methods and surface�

based algorithms. Individual techniques have di�erent advantages and disadvantages

that will be discussed in this chapter.

3.1.1 Grid�based methods

This group of tunnel detection algorithms is based on rasterization of 3D space

using a uniformly distributed grid. Protein atoms, represented by hard spheres with

appropriate van der Waals radii, are modeled on the discrete grid and all grid nodes are

subsequently clustered into two classes, either located in the protein atoms or outside

the atoms. The van der Waals radius of an atom is the radius of an imaginary hard

sphere that represents the smallest distance, in which another atom can approach.

The nodes that are not in protein atoms can be in cavities, tunnels or any external

31



32 CHAPTER 3. COMPUTATIONS OF PROTEIN TUNNELS

environment of protein. Tunnels are then detected via graph�traversing algorithms.

One of the grid�based tools is CAVER 1.0 [22]. After protein atoms are modeled

on the grid, the attention is paid to nodes that are on the boundary of the protein

hull, because these nodes are at possible tunnel entrance positions. A weighted graph

is constructed and then, modi�ed Dijkstra's algorithm is used to �nd shortest low�cost

path. Other software tools are POCKET [23], HOLLOW [24] or 3V [25].

Grid�based methods are relatively easy to implement and they can compute optimal

solutions. But for a speci�c resolution, the size of memory that is used to store the grid,

and also time to search the grid, grows exponentially with the number of dimensions of

the space. These properties limit grid�based tools only to low�dimensional problems,

usually to 3D. Another problem rises when a di�erent resolution of grid is used, because

with varying grid settings, computed tunnels can have diverse shape or volume [8].

3.1.2 Methods based on Voronoi diagrams

The next group of methods employs Voronoi diagrams to solve the tunnel detection

task. The main conception of this approach is the division of state space to a diagram

in a such fashion that each edge of the diagram has the same distance to its nearest

points. Furthermore, the points from the state space can have di�erent signi�cance and

the result of division of such point set is a weighted Voronoi diagram. This modi�cation

is useful for atoms, because they have di�erent radii that can be used as weights. Both

elementary and weighted Voronoi diagrams are presented in Figure 3.1.

a) b) c)

Figure 3.1: Voronoi diagrams. a) Two�dimensional state space with a set of points.
b) Elementary Voronoi diagram of given points, where all points are equivalent. c)
Weighted Voronoi diagram of the same point set, but with weight assigned to each
point. Larger area of circles means higher weight, resulting in curvature of some edges.
Images were reproduced from [26].



3.1. TUNNEL DETECTION IN PROTEINS 33

There are many employed applications of Voronoi diagrams in chemistry and molec-

ular biology. Several tools have been developed also for tunnel detection, including

CAVER 3.0 [27], MOLE 1.2 [28] and MolAxis 1.4 [29]. These software tools approxi-

mate the weighted Voronoi diagrams by substitution of protein atoms with a collection

of smaller spheres that have the same radius. More precise and also more numeri-

cally stable solutions are achieved with this approximation, but it also requires more

computer memory. There are also implementations that directly use weighted Voronoi

diagrams [30]. Even though the approximation of weighted Voronoi diagrams requires

more memory than the regular Voronoi diagram, it is still less than the memory re-

quirements of grid�based tools.

A great feature of CAVER 3.0 is also the possibility of dynamic protein structure

analysis. To detect tunnels in a sequence of snapshots of molecular dynamics, the

ordinary Voronoi diagram is computed in each frame. In molecular dynamics, the

positions of the atoms change in each frame and their Voronoi diagrams as well, so the

correspondences of Voronoi diagrams from the consecutive frames have to be found in

order to detect a path through the sequence [27]. Among disadvantages are inaccuracy

because of the approximation of weighted diagram and inability to use other than

spherical probes.

3.1.3 Sampling�based methods

The computation of tunnels in the grid�based and Voronoi�based methods requires

an explicit description of the boundary of void space. This is represented as the surface

of spheres representing the individual atoms. Such an explicit representation allows

us to analytically compute the distance to the boundary, which is necessary for the

construction of Voronoi diagrams. However, this explicit representation can be used

only in the case of spherical probes.

If a tunnel has to be found for a non�spherical probe, e.g., a small molecule, the

above mentioned methods cannot be used. To detect tunnels for a non�spherical

molecule, it is necessary to consider its shape, and consequently, it is also necessary

to consider additional degrees of freedom describing rotation of the molecule. Motion

planning methods known from robotics can be used to solve this problem.

The complex problem of motion planning is one of the most studied �elds in

robotics [8]. There are several approaches, how scientists and engineers tackle this

problematics that can be generally divided into two groups. First, the complete meth-



34 CHAPTER 3. COMPUTATIONS OF PROTEIN TUNNELS

ods that focus on exact representation of the con�guration space. This solution ensure

completeness, but unfortunately these methods are mathematically and computation-

ally prohibitive to derive for high�dimensional problems. Since there is a high demand

for algorithms that can handle high�dimensional real world problems, there is a great

interest in second group, the sampling�based methods.

The main idea of sampling�based methods is the separation of the motion planning

task into several steps. Firstly, a random or deterministic function chooses a sample

from the con�guration space. Then, another function determines the nearest previous

free�space sample. After that, it is checked if the sample is in a free con�guration (i.e.,

with no collision with obstacles) and �nally both of these points are connected. The

whole process repeats and a graph, or tree, is gradually being built. Rapidly�exploring

Random Tree (RRT) is an exemplary sampling�based method [31]. The RRT algorithm

is schematically shown in Figure 3.2.

a) b) c)

Figure 3.2: Individual steps of the RRT algorithm in two dimensions. a) Rapidly�
exploring Random Tree after several iterations. Blue circles represent obstacles, black
dot is the root of the tree. b) A random sample is generated (red dot), the nearest
node from the tree is determined and also free con�guration is checked. c) Since there
is no collision, new node is added to the tree.

In the �eld of tunnel detection in proteins, several tools were implemented with

sampling�based methods [32, 33]. Solutions that employ the sampling�based principle

can plan the path with an arbitrary probe shape, while other methods are limited only

to spherical probes (for example Voronoi diagrams�based methods). These methods

also require less memory when compared to grid�based methods. On the other hand,

if a solution to a given task does not exist, the sampling�based algorithms can run

forever and the user needs to de�ne time�dependent constraints. Another downside

of sampling�based methods is the variability of results due to the random nature of
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the approaches. If the task of these algorithms is the tunnel detection in the pro-

tein structure, the number and properties of found tunnels may di�er in every single

computation.

3.1.4 Surface�based methods

Another group of tunnel detection methods de�nes the protein surface by a speci�c

solvent or ligand. The most common surface representation is generated with water

as the solvent that determines the surface features. A frequently used surface repre-

sentations by researchers are solvent excluded surface, solvent accessible surface and

ligand excluded surface [34]. All of these representations are based on a similar prin-

ciple, which is the detection of protein parts that can be accessed by given solvents or

ligands.

One of the developed surface�based tools is Travel depth [35]. The idea of tunnel

detection of this method is the calculation of physical distance (the travel depth) that a

solvent molecule would travel from the protein surface to a prede�ned reference surface

(e.g., the convex hull). This approach is especially suitable for detection of surface

pockets or tunnel entrances.

3.2 Ligand molecule path planning

Another group of computational approaches tries to predict how ligands bind or

dock to macromolecular targets. These methods also want to screen thousands of

distinct compounds to �nd possible novel binding partners. The computational ligand

docking and screening is an already established method in the pharmaceutical industry

to accelerate the drug discovery process and choose promising drug candidates from

large collections of virtual compounds that could bind target proteins [36].

Molecule planning techniques aim to utilize algorithms from motion planning to the

biological domain. These methods try to �nd a collision�free path between the binding

site of protein and the exterior of the given protein.

The main challenge of molecule planning and docking experiments is the dynamic

nature of both protein and ligand, because when these two substances interact, a

number of structural changes within the ligand binding site might occur. This �exibility

of binding site is also the reason, why many diverse molecules can sometimes bind to

the same place.
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3.2.1 Protein�ligand docking

Computational docking experiments can be used to predict bound conformations

of small ligands to proteins or other macromolecules [37]. This research technique is

often used for the study of molecular interaction and reaction mechanisms, and it is the

basis of structure�based drug design. Several tools have utilized docking computations,

including AutoDock Vina [38], rDock [39] or EADock [40].

AutoDock Vina is a software tool based on a scoring function and fast gradient�

optimization conformational search [37]. In other words, the scoring function evaluates

how well a given ligand conformation binds to the protein. The goal of the optimization

task is to �nd a global minimum of the scoring function. It should be mentioned that the

docking generally assumes much or all of the protein rigid, because dynamic calculations

are yet too complex to accomplish. Ligands are treated as �exible compounds with 0�32

active rotatable chemical bonds. Results of AutoDock Vina docking and comparison

with structures of protein�ligand complexes obtained via X�ray crystallography are

presented in Figure 3.3.

Figure 3.3: Results from AutoDock Vina docking software tool. Flexible docking is
illustrated with green color of ligands, while grey color of ligands are conformations ob-
tained by X�ray crystallography. Ligands are a) indinavir, b) atorvastatin, c) imatinib
and d) oseltamivir bound to their respective targets (HIV�1 protease, HMG�CoA re-
ductase, Bcr�Abl tyrosine�kinase and in�uenza neuraminidase). The results show great
agreement of both computational and experimental results. Reproduced from [41].
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3.2.2 Ligand path planning

Although the transportation of ligand into the functional site of protein is usually

a complex process, it is still driven by geometric properties [42]. For this reason, it is

possible to simulate the ligand path from surface of protein to its binding site (or the

other way around). Only geometrical computation is a great simpli�cation model, but

it can serve as a starting point for further development of more complex simulations.

This basic approach can help researchers to �nd the most interesting parts of ligand

trajectory and understand its behavior.

One of the already published tools for ligand path planning is MoMA�LigPath [43].

It is a sampling�based method that applies a robotic�inspired algorithm to explore

a given con�guration space and it also considers partial �exibility of the ligand and

side chains of protein. As a purely geometric approach, it enables to simulate ligand

unbinding from the protein within short computing time, which is one of this method's

advantages. Results from this model can serve as a �rst approximation that can be

further re�ned by standard molecular modelling techniques. The MoMA�LigPath tool

also has more sophisticated algorithmic variants that take protein backbone �exibility

and energy models into account [44, 45]. Whilst these modi�ed methods can provide

more trustworthy simulations, it is at the expense of additional computational costs.

Figure 3.4 shows result of phenol unbinding from insulin hexamer computed by MoMA�

LigPath.

Figure 3.4: Results of MoMA�LigPath software tool in phenol unbinding from insulin
hexamer. In most simulations, the phenol molecule (in red circle) exited via pathway
1 or pathway 2 (PW1, PW2). In few simulations, ligand di�uses inside the hexamer
before �nding an exit pathway (dashed line). Reproduced from [43].
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3.3 Conclusion

There are already several works, which discuss the employment of the sampling�

based RRT method in the analysis of protein tunnel traversability by non�spherical

ligands. Among them is a article written by Vonásek and Kozlíková [10], which in-

troduces a novel method of tunnel detection in dynamic protein structures and also

suggests non�spherical ligand utilization for more realistic results. This approach would

increases the computational cost, because sampling with non�spherical ligand needs to

be performed in the 6D con�guration space in each frame of the dynamic protein struc-

ture. The authors propose a novel sampling method, which would generate the random

samples around the previously detected spherical tunnels to decrease the computational

demands.

Another work that describes utilization of the RRT method for ligand path plan-

ning, is [9]. The author designs and implements a RRT�inspired method for the de-

tection of paths inside proteins for spherical ligands and also presents the results from

motion planning of such ligand from the inside of a large protein.

Although many di�erent research approaches were used to create various software

tools, the problematics of tunnel detection in proteins and computations related to

ligand binding are still unresolved. During the research in this �eld, it turned out that

the intuitive geometrical approach is not su�cient to model the great complexity of

macromolecules, but it can be a good starting point to development of more sophis-

ticated solutions. This thesis focuses on implementation of sampling�based method

that can be used to detect tunnels and also simulate passage of small rigid molecules

through the found tunnels.



Chapter 4

Solution outline

For the purpose of this diploma thesis, several guidelines were set. Three main

tasks have been stated for the practical part: implementation of a method for tunnel

detection in static protein structures, adaptation of this method for tunnel detection

in dynamic protein structures, design and implementation of a novel method for anal-

ysis of ligand traversability through static tunnels. All the solutions are based on

Rapidly�exploring Random Trees, a sampling�based motion planning algorithm (the

basic principle of this algorithm is presented in section 3.1.3).

RRT was chosen due to its ability to cope with objects of arbitrary shape and

the ability to �nd paths in high�dimensional systems. Both features are necessary

for tunnel detection and molecular path planning. The inputs for this method are the

protein pdb �le, parameters of ligand and properties of the tree. Output of this method

is a constructed tree and detected tunnels.

Since the task of tunnel detection has some speci�cities, the Rapidly�exploring

Random Tree algorithm cannot be applied directly, but certain modi�cations need

to be made. The modi�ed RRT algorithm was implemented in C++ programming

language, while Python programming language was used for scripting and supporting

calculation purposes. The modi�cations and implementation details of all solutions are

presented in the upcoming sections.

4.1 Tunnel detection in static protein structures

The original RRT algorithm is not designed to detect multiple tunnels (i.e., generally

paths) in protein structure. It was rather developed to �nd a single path between two

precisely de�ned places. For the purpose of the tunnel detection, the task needs to be
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rede�ned, because �nding a path to an explicitly de�ned goal could noticeably limit

the performance speed, which is undesirable. Given the quite simple nature of the RRT

algorithm, it can be modi�ed for our needs.

The basic idea of the solution is to built a tree from the functional site of protein,

reach the surface of this protein with a spherical probe and detect the tunnels that lead

from the functional site. Results from the proposed RRT algorithm for tunnel detection

in static protein structures were compared to the results of CAVER 3.0 on the same

protein structures. The original RRT algorithm leaves the programmer with many

choices � how to sample the state space, how to de�ne the �nearest� node (especially

in higher dimensions) and how to plan the motion from the nearest node to newly

generated nodes. Even a small change of the sampling method can yield a dramatic

change in the running time of the planner [8]. Furthermore, the protein domain brings

another challenges and so, there are several subproblems that need to be resolved:

� Selection of a su�cient sampling region that is necessary for successful tunnel

detection

� Employment of a technique for protein surface detection

� Preventing the tree to build far outside the protein structure

� Detection of tunnel endpoints

� Designing a method for tunnel comparison, which is used to determine if protein

tunnels are identical

The above mentioned issues are discussed in the following sections and the solution for

each of them is explained. In this diploma thesis, we have proposed solutions for all of

these challenges and developed a method, which successfully detects tunnels in static

protein structures. Figure 4.1 on the next page shows the pipeline that was proposed

for the static tunnel detection.

4.1.1 Input parameters and sampling region

There are several input parameters that are necessary for the task of tunnel detec-

tion. First of all, it is obviously the information about protein atoms. For this purpose,

data from Protein Data Bank were used for XYZ coordinates of atoms and each atom

was assigned with its van der Waals radius. The next two parameters describe the

initial coordinates for the RRT algorithm and the radius of spherical probe that is

used for tunnel detection. Another parameter is used for description of the protein

surface (see section 4.1.3) and the last input parameter is a list of RRT parameters
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Figure 4.1: Proposed pipeline for the tunnel detection in static protein structures.
Algorithms 1, 3, 4 and 5 correspond to individual elements of the pipeline and the
pseudocode of each algorithm is presented in this chapter.

(e.g., number of nodes in the tree, the distance between individual nodes).

In order to detect tunnels, choice of the sampling region is very important. The

sampling region must be big enough to contain the whole protein structure, but not

too big, because it is useless to generate samples that are far away from the protein.

If the sampling region is smaller than the protein itself, it is obviously unfeasible to

reach its surface and detect the tunnels. At the beginning of the RRT algorithm, it

is also desirable to generate most of the random samples within the protein structure,

because it would be usually impossible to connect node from outside of the protein

structure with a node that is inside.

As the protein atoms are being loaded to the algorithm, minima and maxima of

XYZ coordinates are saved. In order to let RRT reach the protein surroundings, minima

and maxima are extended by 8 Å (1 Å = 10-10 m; proteins can be approximated by

a sphere with diameter usually in tens or hundreds of Å), which creates the sampling

region. After the sampling region is de�ned, both surface reaching phase and endpoints

detection phase use it to get random samples.

4.1.2 RRT implementation for tunnel detection

The original RRT algorithm is in theory designed to directly add the newly gen-

erated random sample and the searching of the nearest point is intended as �nding

the closest point of the tree. For practical purposes, a line connecting the new random
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sample and its closest node in the tree is segmented to several small parts, which serves

as an approximation, so the closest point of the RRT can almost be detected. Both

theoretical and practical approaches are described in Figure 4.2.

ω 

a) b) c)

Figure 4.2: Addition of new point to RRT. a) A part of RRT tree, the red point is
the newly generated random sample from the sampling region, blue circles represent
obstacles. b) Theoretically, the new point is connected to the already created tree with
a perpendicular line that leads to the closest part of the tree. c) The practical approach
approximates theoretical behavior by not directly adding the new random point, but
by incremental addition of new points on the line with a given distance (shown as w in
the image). The deviation from theoretical approach is shown as red dashed line.

The main advantage of the practical approximation is a noticeable decrease in com-

putational cost, because the nearest neighbor can be found with libraries that are

directly developed for this purpose. In this thesis, MPNN library was used for the

nearest neighbor search [46]. This library utilizes a k�d tree. With this representa-

tion, the time complexity of �nding the nearest neighbor in a tree with n nodes takes

O(log n) time on average case.

One of the most computationally demanding part of the sampling�based planners

is the collision detection. As it is performed for each newly created node, the speed of

the collision detection strongly in�uences the overall time performance of the planners.

The classical O(n) checking of collisions between a given sphere (probe) and all protein

atoms, would be too time consuming.

A fast collision detection requires more sophisticated data structures such as the

Oriented bounding boxes (OBB) trees. The principle of OBB trees is to create a

hierarchical, binary�tree representation of the objects, in this case the protein atoms.

Each node in the tree contains either a bounding box or a list of atoms. The root of the

tree contains the bounding box of the all proteins, and its two children contain smaller

bounding boxes that are contained in the �rst one. The leafs of the tree contain either
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single atoms or a list of few atoms.

The collision detection between this structure and a given sphere (probe) then starts

by checking collision with the bounding box of the root node. If there is no overlap

between the sphere being tested and the bounding box, there is de�nitively no collision

and the algorithm terminates. Otherwise, there might be a possible collision, which

needs a further examination. Therefore, it is determined in which part of the current

bounding box the query sphere lies. The search then continues in the corresponding

subtree. This repeats until the search reaches a leave, where collisions between the

protein spheres and the query sphere are accurately computed.

The big advantage of this approach is fast computation, as the binary�tree hierarchy

can be traversed in O(log n) time, where n is the number of protein atoms. There

are many methods for building the hierarchical collision detection trees. In this work,

we employed the OZCollide [47] library, which has been shown to provide very fast

collision detection between spherical objects [9].

Pseudocode of the RRT algorithm that was used for the static tunnel detection

is presented in Algorithm 1 on the next page. In the �rst two steps, the k�d tree

(t) and collision detection structure are initialized based on user input parameters

(initial coordinates qinit and protein coordinates). The algorithm then executes two

very similar sections.

In the �rst section, new nodes are added until the user�speci�ed number of nodes

limit (S ) for the surface reaching phase is achieved. The algorithm also check if the

tree is growing in function isTreeGrowing(). If the newly generated nodes from the

sampling region have many collisions in a row and therefore, no nodes are added to

the tree, it indicates that the tree already explored the paths in protein structure and

the loop is terminated. The idea of the algorithm is to generate a new random node

qrand from the sampling region, then �nding the nearest node qnear from the tree and

successive addition of new nodes qnew to the tree. Function newNodePosition() provides

coordinates for the new node qnew, which is on the line between qrand and qnear and in

distance w from node qnear. The new nodes are then also added to the tree at the

distance w from previous parent node in function surfaceReachingPhase(). The second

section is almost identical, only the iteration limit (T ) and the function that adds new

nodes di�er. Both of these functions, which add new nodes to the tree, are discussed

in detail in the following paragraphs.
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Algorithm 1: RRT � static protein tunnel detection pseudocode
Input: protein coordinates, surface spheres, initial con�guration, RRT

parameters

Output: protein tunnels
1 τ.init(qinit);

2 proteinAtoms←− setFromCoordinates(proteinCoordinates);

3 while i+ + < S and isTreeGrowing() do

4 qrand ←− randomCoordinates(samplingRegion);

5 qnear ←− nearestNeighbor(qrand, τ);

6 qnew ←− newNodePosition(qrand, qnear, ω);

7 surfaceReachingPhase(τ, proteinAtoms, surfaceSpheres, qrand, qnew);

8 while j + + < T and isTreeGrowing() do

9 qrand ←− randomCoordinates(samplingRegion);

10 qnear ←− nearestNeighbor(qrand, τ);

11 qnew ←− newNodePosition(qrand, qnear, ω);

12 endpointsDetectionPhase(τ, proteinAtoms, qrand, qnew);

4.1.3 Surface reaching phase

There are several ways, how the surface of proteins can be represented in structural

bioinformatics computations. One of the common approaches is the concept of so�

called a�shape, which describes the surface as a set of points, which can be achieved

by a sphere of a given radius that rolls on the protein atoms.

For the purpose of this thesis, computer program PyMOL was used to create the

surface representation of a given protein. PyMOL can save the surface as a set of points,

which are generally a speci�cation of a 3D polygon. It is also possible to change the

radius of the sphere used for the surface creation. This radius was usually set to 4�5 Å,

which gives a lower surface resolution, but it prevents the sphere from entering the

protein, which would complicate tunnel endpoints detection. Comparison of surface

representation by solvent with radius 1.4 Å and 4 Å is presented in Figure 4.3 on the

facing page.

A function (Algorithm 2 on the next page) was developed within this thesis that

takes the set of points that describe the surface (∼20 000 points) and returns a set of

spheres with a selected radius (∼600 spheres for radius of 3 Å). The function gradually
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a) b)

Figure 4.3: Comparison of PyMOL surface representation by solvent with radius a)
1.4 Å (represented by ∼145 000 points) and b) 4 Å (represented by ∼23 000 points).

adds spheres to surfaceSphereSet, if the selected point (a possible center of new sphere)

lies more than 3 Å away from the nearest already added sphere. The lower the radius,

the more spheres are returned. As a rule of thumb, the radius was most often set to

3 Å, which served as a good surface representation, while the number of spheres was

not too high. The returned sphere set is then used as one of the input parameters of

RRT.

Algorithm 2: Function that returns spheres for the surface representation

1 Function surfacePoints2surfaceSpheres(pointSet, thresholdRadius = 3 Å)

2 surfaceSphereSet.init(pointSet[0]);

3 foreach point p in pointSet do

4 qnear ←− nearestNeighbor(p, surfaceSphereSet);

5 if distance(qnear, p) > thresholdRadius then

6 surfaceSphereSet.add(p);

7 return surfaceSphereSet;

In the surface reaching phase (schema is shown in Figure 4.4 on the following page),

RRT starts to build from the initial con�guration qinit. As the tree reaches the surface,

which is checked as a collision with spheres from surfaceSphereSet, it needs to be

prevented from extending out of protein structure, since it is useless to build the tree

in the protein's surroundings. Furthermore, it is desirable to let the RRT algorithm

to further explore paths within the protein. This behavior is achieved by addition of

arti�cial spheres that serve as plugs for possible tunnels.
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a) b) c)

Figure 4.4: The surface reaching phase. a) The initial con�guration. Protein is rep-
resented in light blue, magenta circles represent the surface, blue dot is the root of
tree. b) After several iterations, the surface was reached and an arti�cial yellow circle
is added to prevent RRT from exploring its surroundings and also to let RRT further
explore the paths inside the protein. c) The end of the surface reaching phase. Another
plug was added and the limit of total nodes was reached.

Algorithm 3 describes the function surfaceReachingPhase(). While the distance be-

tween nodes qrand and qnew are greater than w (a user�de�ned constant), two conditions

are checked. The �rst is the collision with protein atoms. If the node qnew with probe

radius collides with protein atoms, the loop execution is stopped, otherwise qnew is

added to the RRT. Then, collision with surface spheres is checked and if qnew collides

with the surface spheres, a plug is added by function addPlug() at the position of qnew

and the loop is terminated.

Algorithm 3: Surface reaching phase

1 Function surfaceReachingPhase(τ, proteinAtoms, surfaceSpheres, qrand, qnew)

2 while distance(qnew, qrand) > ω do

3 if proteinAtoms.collide(qnew, probeRadius) then

4 break;

5 else

6 τ.add(qnew);

7 if surfaceSpheres.collide(qnew, probeRadius) then

8 addPlug(qnew);

9 break;

10 qnew ←− newNodePosition(qrand, qnew, ω);
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4.1.4 Endpoints detection phase

The next step is the endpoints detection phase, where the plugs from the previous

phase are removed and tunnel endpoints are being searched. As the RRT expands out

of the protein structure, the tunnel endpoint is detected, if a sphere with radius of

2 Å does not have collision with the protein atoms. The whole process repeats until

the user�de�ned limit of total node count (T ) is reached. Tunnels are then traced

back from tunnel endpoints to the root of the tree. Figure 4.5 schematically shows the

endpoints detection phase.

a) b) c)

Figure 4.5: Endpoints detection phase. a) RRT con�guration from surface reaching
phase without the plugs. The root is depicted as the blue dot. b) The algorithm
continues to explore protein structure and it also expands out of the protein. If a red
circle of a given radius (2 Å was used in the implementation) can be inserted without
collision with protein atoms, tunnel endpoint is detected. c) Tunnels are then produced
by tracing from tunnel endpoints to the root of the tree. Found tunnels are showed in
green, tunnel endpoints are the red dots.

The function that detects tunnel endpoints (Algorithm 4 on the next page) is very

similar to to the surface reaching function. New nodes are still added to the tree

with the same technique and the same collision with protein atoms is performed. The

di�erence is that the surface is not detected, but it is rather constantly checked, if a

sphere with radius of 2 Å (limitRadius) can be inserted without any collision with the

protein atoms. If this condition is ful�lled, a tunnel endpoint is detected and the loop

execution is stopped.
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Algorithm 4: Endpoints detection phase

1 Function endpointsDetectionPhase(τ, proteinAtoms, qrand, qnew)

2 while distance(qnew, qrand) > ω do

3 if proteinAtoms.collide(qnew, probeRadius) then

4 break;

5 else

6 τ.add(qnew);

7 if ¬proteinAtoms.collide(qnew, limitRadius) then

8 tunnelEndpoints.add(qnew);

9 break;

10 qnew ←− newNodePosition(qrand, qnew, ω);

4.1.5 Comparison metric

In order to determine if two tunnels that were detected by di�erent methods are

identical, some sort of comparison metric needs to be employed. The tunnels are usually

represented as a set of spheres that connect a place inside the protein structure (e.g.,

the root of tree in the RRT method) and the protein surface. The length of individual

tunnels can di�er and so, the number of spheres representing di�erent tunnels can vary

as well.

In this thesis, the following method for tunnel comparison was utilized. Let us

have two tunnels that are represented as a sequence of spheres. For each sphere from

tunnel 1, the closest sphere from tunnel 2 is found, distance of these two spheres is

calculated and the average from all distances is determined. The whole process repeats,

but now for each sphere from tunnel 2, the closest sphere from tunnel 1 is found. Both

approaches can give di�erent results. The maximum result from both computations is

selected and this number is used for tunnel comparison. If the result is smaller than

3.5 Å, the tunnels are labeled as identical. This threshold was chosen empirically. The

pseudocode of function that computes the comparison metric is shown in Algorithm 5

on the facing page.
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Algorithm 5: Comparison metric

1 Function compareTunnels(tunnel1, tunnel2)

2 firstResult = evaluateMetric(tunnel1.spheres, tunnel2.spheres);

3 secondResult = evaluateMetric(tunnel2.spheres, tunnel1.spheres);

4 return maximum(firstResult, secondResult);

5 Function evaluateMetric(spheres1, spheres2)

6 foreach sphere s in spheres1 do

7 nearestSphere = s.findNearestSphere(spheres2);

8 allDistances.add(distance(s, nearestSphere));

9 return average(allDistances);

4.2 Tunnel detection in dynamic protein structures

As noted in the previous chapters, proteins are dynamic structures and the atoms

constantly change their positions. It is therefore important to develop algorithms that

can detect tunnels not only in static protein structures, but also in dynamic protein

structures. As the protein molecule is moving in time, its tunnels are changing as well

[48]. A tunnel that seems to be wide in a random instance of time might in reality be

open just for a short period of time, which could imply that the tunnel is biochemically

unimportant.

In practice, the computation of static tunnels is performed on a single pdb �le, while

the tunnel detection in dynamic structures has to be performed on multiple pdb �les

that can be considered as snapshots from a given time interval. Individual snapshots

are usually generated by computer simulation from a pdb �le that was obtained by

X�ray crystallography.

4.2.1 Pipeline for tunnel detection in dynamic structures

In this thesis, we have modi�ed the proposed RRT�based technique, which was

used for the tunnel detection in static protein structures, to detect tunnels in dynamic

protein structures. The basic principle is to search several times for static tunnels

in each provided pdb �le (each snapshot). Ten runs per snapshot were used in this

case. After the static tunnels are detected in one frame, all found tunnels from these
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runs are successively compared to each other with the metric described in chapter

4.1.5. If a tunnel is identi�ed in more than 50 % of the runs, it is marked as an

actually detected tunnel for the frame. The same process is then performed on the

next snapshot. The pipeline for the tunnel detection in dynamic protein structures is

presented in Figure 4.6.

Input 

parameters

Static tunnel

detection

(10 runs)

Protein tunnels

Frequent

tunnels

selection

Next

snapshot

Figure 4.6: Pipeline for tunnel detection in dynamic protein structures.

This approach to the tunnel detection in dynamic structures assumes that tunnels

are present in multiple snapshots. The number of runs per snapshot is a parameter

that can be easily altered. For each snapshot, the surface of protein was represented by

the set of spheres, which were generated with the help of computer program PyMOL

(see section 4.1.3 for details).

4.3 Passage simulation of molecules through tunnels

The simulation task of molecule passage through protein tunnels was also ap-

proached as a motion planning problem. The molecule is represented as a set of hard

spheres and a collision�free path through the protein tunnel is searched. Three di-

mensions, the spatial XYZ coordinates, were used for the detection of tunnels in both

static and dynamic protein structures. For the task of passage simulation, another

three dimensions need to be introduced � rotation angles a, b, g. These three angles

can describe rotation of a molecule in the state space and so, simulation of molecule

passage becomes a six�dimensional problem.
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Solution, which was implemented for this task, can be separated into two parts.

Firstly, for a given protein structure, the tunnels are detected (chapter 4.1 describes

the process). One of the resulting tunnels is selected for the second part � the passage

simulation itself. In the second part, a ligand molecule is guided through the tunnel

from the core of protein to its surface. An illustration of passage simulation is shown

in Figure 4.7.
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Figure 4.7: Simulation of passage of a small molecule through a protein tunnel. a)
Result of tunnel detection in static protein structure � the �rst part of the task. b)
In this illustration, formic acid is at the protein's binding site, where the simulation
starts. The dashed sphere represents the current sampling region. c) A later phase of
the algorithm � as the molecule changes position, another sphere is used as the sampling
region. d) The result of motion planning. The molecule gradually shifts through the
tunnel and it also rotates on the way. In this example, it successfully passes the tunnel.

Pseudocode for the function that performs the passage simulation is presented in

Algorithm 6 on the next page. The principle is similar to the already proposed RRT

implementations and utilizes a guided RRT�path approach, which was developed by

Vonásek et al. [49]. This function employs the tree, protein atoms, sequence of spheres

that represent tunnel and the molecule as parameters. As the �rst step of the algorithm,

only protein atoms that are close to the tested tunnel are used for collision detected,

since distant atoms cannot collide with the analyzed molecule in the case of guided

approach. During the run of this algorithm, each sphere is subsequently used as the

sampling region and at the same time, each sphere progressively serves as the goal

region that needs to be reached.

Until the last sphere of the tunnel is reached, random sample is generated from

currently �rst sphere in the sequence. This sample has six dimensions (X, Y, Z, a,

b, g), the spatial coordinates XYZ are randomly generated from the sampling region.

The rotation angles a, b and g are based on rotation angles of the parent node, the

equation for angle a is: α = αparent + U (−0.2, 0.2), where U denotes the uniform

distribution. Angles b and g are calculated analogously. The nearest point is then
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found and new node is created in the distance w. The inner loop checks if protein atoms

collide with the molecule, whose coordinates are determined by qnew (it represents the

center of molecule). After the inner loop adds the last point, it is checked, whether

the currently �rst sphere in the tunnel sequence is reached and if this condition is

ful�lled, this sphere is poped from the list. Since there is a possibility that the ligand

cannot reach the last sphere from the sequence, a time�dependent constraint needs to

be employed to prevent in�nite looping.

Algorithm 6: Simulation of passage of molecule through a tunnel

1 Function simulatePassage(τ, proteinAtoms, tunnelSpheres,molecule)

2 proteinAtoms←− selectAtomsNearTunnel(proteinAtoms);

3 while ¬tunnelSpheres.empty() do

4 currentSphere←− tunnelSpheres.getFirstSphereInSequence();

5 qrand ←− randomCoordinatesInSphere(currentSphere);

6 qnear ←− nearestNeighbor(qrand, τ);

7 qnew ←− newNodePosition(qrand, qnear, ω);

8 while distance(qnew, qrand) > ω do

9 if proteinAtoms.collideWith(molecule, qnew) then

10 break;

11 else

12 τ.add(qnew);

13 qnew ←− newNodePosition(qrand, qnew, ω);

14 if isSphereReached(currentSphere) then

15 tunnelSpheres.pop();

In practice, the small molecule is described in a pdb �le by local coordinates. During

the geometrical analysis of passage, the node qnew contains the global coordinates that

de�ne position of the molecule within the protein structure. Every time a collision

check of protein atoms with the molecule is performed (line 9 in pseudocode), the

molecule is �rst rotated by angles a, b, g and then translated by X, Y, Z coordinates

of node qnew before each sphere from the molecule is tested for collision with protein

atoms. The three�dimensional rotation that is calculated by the rotation matrix is

shown in the following equation:
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
cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ

sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ

− sinβ cosβ sin γ cosβ cos γ




x

y

z

=

xR

yR

zR


The rotated coordinates (xR, yR, zR) are obtained by multiplication of the rotation

matrix by local spatial coordinates (x, y, z). Angles a, b, g are expressed in radians.

Each sphere needs to be �rst rotated and only then translated, because the rotation is

performed with respect to the coordinates of origin.
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Chapter 5

Results

Algorithms and methods, which were designed in the previous chapter, were im-

plemented and successfully utilized for tunnel detection in both dynamic and static

protein structures and also for passage simulation of di�erent molecules through found

tunnels. Results of the tunnel detection in static protein structures are presented in

section 5.1. Comparison with CAVER 3.0, an already established software tool for tun-

nel detection, is also provided. The CAVER tool was used in its default con�guration.

Sections 5.2 and 5.3 respectively present results of tunnel detection in dynamic protein

structures and simulation of molecule passage through tunnels.

5.1 Tunnel detection in static protein structures

Several protein structures were used for the computation of static tunnels. The

RRT implementation that was developed for this task successfully found tunnels in

all provided protein structures. Results from tunnel detection are shown in following

sections, which are named according to pdb �lenames from Protein Data Bank website.

In order to compare results from the RRT implementation with CAVER 3.0 (in

text also referred to simply as CAVER), the RRT algorithms were run 100 times on

each protein structure. Given the stochastic nature of RRT, the results vary with each

run, while CAVER 3.0 is a deterministic method. All computations were executed with

probe radius of 0.9 Å. Every image presented in this section was created by computer

program PyMOL.

55
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5.1.1 1AKD

Figure 5.1 shows results from tunnel detection in protein 1AKD, its structure and

also tunnels found by CAVER 3.0. The RRT implementation found �ve protein tun-

nels in this particular run and CAVER 3.0 detected also �ve tunnels. Based on the

comparison metric (designed in section 4.1.5), four out of �ve tunnels were identical.

In the RRT algorithm, the limit for surface reaching phase (S ) was 10 000 nodes and

for endpoints detection phase (T ) 5 000 nodes. The distance between individual nodes

(w) was set to 0.2 Å.

During the 100 runs that were executed, the mode number of tunnels was 5, while

the extremes were minimal 2 and maximal 9 found tunnels. The overall comparison of

results from the RRT implementation with results of CAVER 3.0 is shown in Table 5.1.

a) b) c)

Figure 5.1: Results from the tunnel detection in protein 1AKD. a) Cartoon representa-
tion of protein 1AKD. b) Transparent surface representation of protein 1AKD. Green
tunnels were found by the proposed RRT algorithm. c) Orange tunnels, which were
found by CAVER 3.0.

CAVER ID Length [Å] Success rate of RRT

1 25.7 37 %

2 25.3 55 %

3 38.2 66 %

4 32.3 20 %

5 50.9 16 %

Table 5.1: Comparison of results from the RRT implementation with results of
CAVER 3.0 for protein 1AKD. The RRT algorithm was executed 100 times. Individual
columns contain the tunnel index from CAVER 3.0 results, the length of this tunnel
(in Ångströms) and the probability of �nding the tunnel by the RRT implementation.

The probabilities in Table 5.1 are not very high, despite the RRT implementation

usually �nds similar count of tunnels as CAVER. To further inspect this outcome,
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other results were examined as well as the structure of protein 1AKD. It turned out

that this protein has quite sparse structure, which has many di�erent paths that cross

each other. This enables the RRT algorithm to take various paths and reach the surface

of protein at di�erent positions. With many possibilities how the path can lead and

a random sampling process, the algorithm usually takes di�erent paths in individual

runs.

Because of the mentioned reasons, it is hard to �nd identical tunnels as CAVER in

each iteration, especially if the tunnels are narrow and with frequent turns, which is

exactly the case with tunnels that were found by CAVER in this protein. Although this

RRT implementation can also detect narrow and serpentine tunnels, they are often not

identical with CAVER's results. So despite �nding similar count of tunnels as CAVER,

the tunnels found by RRT are not the same in many cases. Figure 5.2 shows overlaid

tunnels found by both methods.

a) b)

Figure 5.2: Comparison of tunnels found by a single run of RRT (in green) and
CAVER 3.0 (in orange) in protein 1AKD. a) In this RRT run, both methods found �ve
tunnels and comparison metric marked four out of �ve as identical. b) In another RRT
run, nine tunnels were detected. It can by observed that three tunnels were detected
on the left side, where no tunnel was determined by CAVER. Because of the sparse
nature of this protein, some of the tunnels (e.g., the one marked by black arrow) take
paths, which lead to the right side of the protein, but then end up in the bottom part
and therefore, these tunnels can not be identical to tunnels found by CAVER. In this
RRT run, no tunnels were marked as identical.
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5.1.2 1BL8

The results from tunnel detection in protein 1BL8 are shown in Figure 5.3 together

with its structure and also results from CAVER 3.0. In the presented results, RRT

found 15 tunnels and CAVER detected 17 tunnels. In this run, 13 tunnels from CAVER

were identical to tunnels found by RRT. In the RRT algorithm, the limit parameter S

was 10 000 nodes and the limit parameter T was 5 000 nodes. The distance w was set

to 0.2 Å.

For the 100 runs of RRT algorithm, the mode number of tunnels was 15, the ex-

tremes were minimal 0 and maximal 25 found tunnels. In order to prevent the RRT

algorithm to look for additional tunnels when the structure is already searched, the

execution is stopped, if speci�c number of new random samples have collision with

protein atoms. Number of this parameter was set empirically to 2 800 in this case

and it should normally speed up RRT execution by skipping the unnecessary searching

in already examined structure. Although this approach works well in almost all runs

and threshold of 2 800 samples was su�ciently set, in a single run it terminated the

RRT before any tunnel was found. Therefore the minimal found tunnels was 0. The

overall comparison of results from the RRT implementation with results of CAVER 3.0

is shown in Table 5.2 on the facing page.

a) b) c)

Figure 5.3: Results from the tunnel detection in protein 1BL8. a) Cartoon represen-
tation of protein 1BL8. b) Transparent surface representation of protein 1BL8. Green
tunnels were found by the proposed RRT algorithm. c) Orange tunnels, which were
found by CAVER 3.0.

Results of comparison from tunnel detection in protein 1BL8 by RRT and CAVER 3.0

show much higher �nding percentages than in protein 1AKD. The RRT implementa-
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CAVER ID Length [Å] Success rate of RRT

1 8.2 99 %

2 18.4 81 %

3 19.0 82 %

4 19.0 69 %

5 27.4 85 %

6 26.4 81 %

7 26.3 77 %

8 33.9 83 %

9 19.3 79 %

10 30.5 82 %

11 33.1 73 %

12 33.4 73 %

13 37.1 78 %

14 54.8 52 %

15 57.6 5 %

16 57.6 5 %

17 73.7 0 %

Table 5.2: Comparison of results from the RRT implementation with results of
CAVER 3.0 for protein 1BL8. The RRT algorithm was executed 100 times. Individual
columns contain the tunnel index from CAVER 3.0 results, the length of this tunnel
(in Ångströms) and the probability of �nding the tunnel by the RRT implementation.

tion successfully found same shorter tunnels as CAVER, while the longest tunnels were

found by RRT only in rare cases. After a further examination of tunnels, it turned

out that tunnel with ID 17 from CAVER results is very long and noticeable part of

this tunnel is on the surface of protein. The RRT implementation aims to prevent this

phenomenon by inserting plugs at tunnel endpoints. Since RRT has not detected this

tunnel at all, this approach seems to be suitable.

The position of the initial coordinates was in this case very close to the surface of

protein. Since surface is represented as a set of spheres (described in section 4.1.3),

even the initial coordinates with probe radius 0.9 Å had collision with the surface,

which resulted in addition of plug at initial position and RRT did not add another

node. The position of initial coordinates had to be moved several Ångströms in the

tunnel. These new coordinates were still quite close to the surface of protein. In several

runs, this resulted in expansion of the RRT predominantly at this position and in some
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runs and multiple tunnels were found in similar place, while CAVER found only one

tunnel there. Figure 5.4 shows results from such situation.

Apart from the fact that RRT can primarily build in close range to initial coor-

dinates, these results also show di�erent techniques in detection of tunnel endpoints.

While CAVER determines tunnel endpoints as soon as it reaches tunnel entrances

(already mentioned tunnel with ID 17 is just an exception in this case), the RRT

implementation detects tunnel endpoints only after the tree expands out of protein

structure. This case could be seen in Figure 5.3 on page 58, where tunnels found by

RRT reach out further from the protein than tunnels, which were found by CAVER.

The di�erent approach to tunnel endpoints detection might also cause RRT to look for

tunnels at locations, where other methods already completed searching. The diverse

methods in tunnel endpoints detection can be seen in Figure 5.4. In CAVER results,

the endpoint position of the single tunnel below initial coordinates serves as the termi-

nus and no other tunnels are detected. On the other hand, the RRT uses this position

as a branching site, from which several tunnels are found.

a) b)

Figure 5.4: Found tunnels from a) RRT and b) CAVER 3.0. The initial coordinates are
marked by red arrow. While CAVER found only one tunnel below initial coordinates,
the RRT found a total of eight tunnels at the same location in this trial.

5.1.3 1CQW

Figure 5.5 on the facing page shows results from tunnel detection in protein 1CQW,

its structure and also tunnels found by CAVER 3.0. In the presented results, the RRT

implementation found four protein tunnels and CAVER 3.0 detected also four tunnels.
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All the tunnels were identical based on the comparison metric. In the RRT algorithm,

the limit parameter S was 10 000 nodes and the limit parameter T was 5 000 nodes

just like in the previous two cases. The distance w was set to 0.2 Å as well.

During the 100 runs of the RRT algorithm that were executed, the mode number of

tunnels was 4, the extremes were minimal 0 and maximal 7 found tunnels. No tunnels

were detected in only a single case. The overall comparison of results from the RRT

implementation with results of CAVER 3.0 is shown in Table 5.3.

a) b) c)

Figure 5.5: Results from the tunnel detection in protein 1CQW. a) Cartoon repre-
sentation of protein 1CQW. b) Transparent surface representation of protein 1CQW.
Green tunnels were found by the proposed RRT algorithm. c) Orange tunnels, which
were found by CAVER 3.0.

CAVER ID Length [Å] Success rate of RRT

1 17.2 96 %

2 22.6 97 %

3 23.1 95 %

4 26.2 95 %

Table 5.3: Comparison of results from the RRT implementation with results of
CAVER 3.0 for protein 1CQW. The RRT algorithm was executed 100 times. Indi-
vidual columns contain the tunnel index from CAVER 3.0 results, the length of this
tunnel (in Ångströms) and the probability of �nding the tunnel by the RRT imple-
mentation.

The �nding probabilities of RRT are very high and results are comparable to results

of CAVER. The structure of protein 1CQW does not contain many di�erent paths and

so, RRT algorithm does not have many possibilities, how to built the tree. Therefore,

the RRT implementation in almost all runs detects very similar tunnels in this protein

as CAVER 3.0.
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5.1.4 1MXT

The results from tunnel detection in protein 1MXT are shown in Figure 5.6 together

with its structure and also results from CAVER 3.0. In this particular run, RRT found

six tunnels and CAVER detected also six tunnels. Five out of six of these tunnels were

identi�ed by comparison metric as identical. The limits for both surface reaching phase

and endpoints detection phase were the same as in previous cases, S was 10 000 nodes

and T was set to 5 000 nodes. The distance w was again set to 0.2 Å.

a) b) c)

Figure 5.6: Results from the tunnel detection in protein 1MXT. a) Cartoon representa-
tion of protein 1MXT. b) Transparent surface representation of protein 1MXT. Green
tunnels were found by the proposed RRT algorithm. c) Orange tunnels, which were
found by CAVER 3.0.

For the 100 runs of RRT algorithm, the mode number of tunnels was 5, the extremes

were minimal 3 and maximal 12 found tunnels. The summary of comparison of the

RRT algorithm results and results from CAVER is presented in Table 5.4 on the next

page. Tunnels with ID 1 and 3 were found in every single run of RRT and also tunnel

with ID 2 was detected in almost every run. Tunnel with ID 5 has noticeably low �nding

probability, since it was detected in only 36 trials. After a more thorough examination

of the results, it turned out that this tunnel guides through very narrow place in protein

structure and it also turns along its path. Tunnels with such properties are hard to

�nd by the RRT implementation, when compared to wide and straight tunnels, which

are �nd much more easily.
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CAVER ID Length [Å] Success rate of RRT

1 20.3 100 %

2 21.3 93 %

3 34.6 100 %

4 30.2 79 %

5 21.6 36 %

6 49.6 68 %

Table 5.4: Comparison of results from the RRT implementation with results of
CAVER 3.0 for protein 1MXT. The RRT algorithm was executed 100 times. Individual
columns contain the tunnel index from CAVER 3.0 results, the length of this tunnel
(in Ångströms) and the probability of �nding the tunnel by the RRT implementation.

5.1.5 1TQN

Next, tunnels were detected in protein 1TQN. The results are shown in Figure 5.7,

with protein structure and also results from CAVER 3.0. In the presented results, the

RRT implementation found 15 protein tunnels and CAVER detected 17 tunnels. In

this run, 10 out of 17 tunnels were identical based on the comparison metric. In the

RRT algorithm, the limit parameter S was 20 000 nodes and the limit parameter T

was 5 000 nodes.

a) b) c)

Figure 5.7: Results from the tunnel detection in protein 1TQN. a) Cartoon representa-
tion of protein 1TQN. b) Transparent surface representation of protein 1TQN. Green
tunnels were found by the proposed RRT algorithm. c) Orange tunnels, which were
found by CAVER 3.0.

The number of nodes for the surface reaching phase was increased, since with 10 000

nodes the number of detected tunnels was too low in some runs and protein structure
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was not su�ciently explored. The distance w was set to 0.2 Å.

During the 100 runs of RRT algorithm that were executed, the mode number of

tunnels was 18, minimal 8 and maximal 28 tunnels were found. The overall compar-

ison of results from the RRT implementation with results of CAVER 3.0 is shown in

Table 5.5. Most of the tunnels have quite high �nding probability, the exceptions are

tunnels with ID 8 and 16, which are narrow and with several turns. When CAVER

tunnels have such properties, they usually have smaller �nding probabilities by the

RRT algorithm, whereas wide and straight tunnels are ordinarily detected.

CAVER ID Length [Å] Success rate of RRT

1 25.5 98 %

2 20.0 84 %

3 17.6 78 %

4 35.3 78 %

5 26.4 85 %

6 18.0 84 %

7 40.4 41 %

8 30.5 0 %

9 39.3 87 %

10 26.3 94 %

11 30.3 66 %

12 35.7 84 %

13 28.6 70 %

14 45.2 69 %

15 38.7 31 %

16 46.9 7 %

17 46.8 22 %

Table 5.5: Comparison of results from the RRT implementation with results of
CAVER 3.0 for protein 1TQN. The RRT algorithm was executed 100 times. Individual
columns contain the tunnel index from CAVER 3.0 results, the length of this tunnel
(in Ångströms) and the probability of �nding the tunnel by the RRT implementation.

5.1.6 2ACE

The last static tunnel detection was performed with protein 2ACE. Figure 5.8 on

the facing page shows results from tunnel detection in protein 2ACE, the structure



5.1. TUNNEL DETECTION IN STATIC PROTEIN STRUCTURES 65

of this protein and also tunnels found by CAVER 3.0. In this particular run, the

RRT implementation detected four protein tunnels and CAVER detected three tunnels.

Based on the comparison metric, all three CAVER tunnels were found also by RRT.

In the RRT algorithm, the limit parameter S was 8 000 nodes and the limit parameter

T was 4 000 nodes. Both limits were decreased, because lower number of nodes were

su�cient for the tunnel detection in this case, where just a small number of short

tunnels were present. The distance w was set to 0.2 Å.

a) b) c)

Figure 5.8: Results from the tunnel detection in protein 2ACE. a) Cartoon representa-
tion of protein 2ACE. b) Transparent surface representation of protein 2ACE. Green
tunnels were found by the proposed RRT algorithm. c) Orange tunnels, which were
found by CAVER 3.0.

During 100 runs of the RRT algorithm that were executed, the mode number of

tunnels was 4, the extremes were minimal 2 and maximal 7 found tunnels. The overall

comparison of results from the RRT implementation with results of CAVER 3.0 is

shown in Table 5.6. All three tunnels were found in almost every single run and results

of both methods from the tunnel detection in protein 2ACE were comparable.

CAVER ID Length [Å] Success rate of RRT

1 11.2 94 %

2 9.3 96 %

3 20.7 100 %

Table 5.6: Comparison of results from the RRT implementation with results of
CAVER 3.0 for protein 2ACE. The RRT algorithm was executed 100 times. Individual
columns contain the tunnel index from CAVER 3.0 results, the length of this tunnel
(in Ångströms) and the probability of �nding the tunnel by the RRT implementation.
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5.2 Tunnel detection in dynamic protein structures

For the detection of tunnels in dynamic protein structures, we have analyzed the

structure of haloalkane dehalogenase. Individual snapshots were acquired in a computer

simulation, which takes a single frame with the protein structure and calculates the

coordinates of protein atoms in selected number of frames. A hundred snapshots were

used for the detection of dynamic tunnels and each of these frames was analyzed by

ten runs of the RRT algorithm.

The results from tunnel detection in dynamic protein structures are shown in Fig-

ure 5.9 on the facing page. The software tool CAVER 3.0 is also designed to detect

dynamic tunnels and the results from CAVER are presented together with the results

of the RRT implementation. It can be observed that both methods have found similar

tunnels and also similar count of tunnels. The RRT implementation detected the same

tunnels as CAVER in 82 % of the runs and in the remaining 18 %, usually only one

tunnel was not detected, which is a very good match of both methods.

Two phenomenons can be also noticed in the results. Firstly, the tunnels that were

detected by CAVER seem to be wider. This can be caused by the fact that the RRT

implementation randomly samples the sampling region and individual spheres, which

represent the tunnel, are not exactly in the center of this tunnel. On the other hand

CAVER aims to insert spheres, which represent the tunnel, in the same distance from

protein atoms, thus being closer to the center of this tunnel. Secondly, the tunnel

endpoints are again detected at di�erent positions (same situation arose in the results

of static tunnel detection in section 5.1). The tunnels detected by RRT are generally

a little longer, whereas tunnels found by CAVER are terminated closer to the tunnel

entrances of the protein surface.
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Figure 5.9: Results from the tunnel detection in the dynamics of haloalkane dehalo-
genase. The left side of this Figure contains four di�erent snapshots of the protein
and green tunnels, which were detected by the RRT implementation. The right side
shows the same four snapshots of the protein and orange tunnels, which were found by
CAVER 3.0. It can be observed that both methods found similar tunnels in separate
snapshots. Only the bottom pair di�ers, where RRT detected only one tunnel, while
CAVER found two tunnels.
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5.3 Simulation of molecule passage through tunnels

After the RRT�based method for geometrical analysis of small molecule passage

through protein tunnels was implemented, several ligands were tested for the traversabil-

ity of a given tunnel. The experiments were performed with tunnels, which were found

for the probe radius of 0.9 Å. It was usually not possible to detect tunnels with higher

value of the radius.

At the beginning, all atoms from molecules were assigned with corresponding van

der Waals radius, but since the probe radius for tunnel detection was quite low, the

radii of atoms had to be decreased just in order to �t the molecule in collision�free

initial con�guration. Two di�erent tunnels, detected by RRT in the structure of protein

1BL8, were used for computations. In the �rst instance, water molecule was analyzed

for the traversability of given protein tunnel. The results are shown in Figure 5.10.

Figure 5.10: Geometrical analysis of water molecule passage through a protein tunnel
(represented in green) found in pdb �le 1BL8. Sliced protein is shown in blue. The left
upper image depicts the initial con�guration. The next three images show, how the
water molecule progressively moves to the tunnel endpoint in the bottom right image.

Even though the water molecule is small, the van der Waals radii of individual
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atoms had to be decreased in order to �nd a path from start to tunnel end. The

van der Waals radii of oxygen and hydrogen are respectively 1.52 Å and 1.2 Å. For

the purposes of RRT computations, these values were altered to 1.1 Å for oxygen and

0.9 Å for hydrogens. The distances between atom centers in water molecule were not

changed.

The results of water molecule passage simulation show that at some places the tun-

nel narrows and the molecule needs to rotate into speci�c con�guration to successfully

pass to next section. On the other hand, some parts of the tunnel are quite wide,

which allows the molecule to freely rotate without any obstacles. With the described

alterations of atomic radii, the water molecule reached the tunnel endpoint.

The next geometrical analysis was performed with the ethanol molecule, which con-

tains nine atoms and is considerably bigger than the molecule of water. The results of

ethanol passage simulation are shown in Figure 5.11 on the next page. Another tunnel,

which was also detected in protein 1BL8, was used for the analysis of the traversabil-

ity in this case. This tunnel was signi�cantly shorter then the tunnel tested with the

water molecule and it did not have many narrow places. Individual atoms of ethanol

molecule had to be scaled down even more than in the case of water molecule, other-

wise the initial con�guration could not be found. The radii of oxygen and hydrogens

were respectively decreased to 1.0 Å and 0.7 Å. The carbon atoms were scaled down

to 0.9 Å, while its van der Waals radius is 1.7 Å. The distances between atoms centers

in the ethanol molecule were not changed.

Since there was not too much free space for rotation in this case, it can be observed

that the ethanol molecule does not distinctly rotate. It rather turns just a little in

order to successfully progress to the next parts of the tunnel. With the decreased radii

of individual atoms, the ethanol molecule reaches the tunnel endpoint.

The results also show that some atoms of the molecule get out of the de�ned

tunnel boundaries in certain parts of the simulation. The spheres, which represent the

tunnel, are used to generate random coordinates for the molecule center. After these

coordinates are obtained, it is checked, whether individual atoms from molecule have

collision with protein atoms. Therefore, some atoms may overlap the boundaries of

found tunnel, since it does not completely �ll the space in the protein structure.



70 CHAPTER 5. RESULTS

Figure 5.11: Geometrical analysis of passage of ethanol through a found protein tunnel
(represented in green) found in pdb �le 1BL8. Sliced protein is shown in blue. The
left upper image depicts the initial con�guration. The next three images show, how
the molecule of ethanol progressively moves to the tunnel endpoint in the bottom right
image.

5.4 Running times of RRT implementations

All the experiments were computed on computer with speci�cations shown in sec-

tion 8.2. The running times for detection of tunnels in static protein structures are

shown in Table 5.7 on the facing page. The average time of a single RRT run contains

also the time, which was spent on comparison to tunnels that were found by CAVER.

The comparison sometimes consumed even half of the running time, especially in cases,

when a lot of tunnels were compared (proteins 1BL8 and 1TQN). The results show an

expectable trend � with lower number of tunnels, the running time is shorter.

In the case of tunnel detection in dynamic protein structure, the overall running

time was only 5 minutes, while 100 snapshots were analyzed with 10 runs per snapshot.

So for 1000 runs of the RRT algorithm, the average time for a single run was less than
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Protein pdb
name

Number of
CAVER tunnels

Mode count of
RRT tunnels

Average time of a
single RRT run

1AKD 5 5 15 s

1BL8 17 15 41 s

1CQW 4 4 7 s

1MXT 6 5 10 s

1TQN 17 18 50 s

2ACE 3 4 17 s

Table 5.7: The average running times for detection of tunnels in static protein struc-
tures.

1 second.

The geometrical analysis of molecule traversability was analyzed on two tunnels. If

the tested molecule was able to pass through the tunnel, the computation took only

few seconds for both tunnels.
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Chapter 6

Discussion

With the increasing amount of data about structures of biomolecules like proteins

and DNA, computations in the �eld of structural bioinformatics are a very popular

research area. Detection of tunnels in static and dynamic protein structures is a widely

studied problematics, for which several di�erent approaches were utilized. One of the

approaches uses sampling�based motion planning algorithms, which are well known

from the robotic domain. This thesis focuses on the employment of a sampling�based

algorithm, Rapidly�exploring Random Tree, which can be modi�ed for the biological

domain and the tunnel detection in both static and dynamic protein structures.

Apart from tunnel detection, this thesis also presents a novel approach to geomet-

rical analysis of passage of small molecules through protein tunnels and this method

is also based on Rapidly�exploring Random Tree. The results, which were obtained

within this diploma thesis, are discussed in the following sections.

6.1 Tunnel detection in static protein structures

The RRT implementation, which was developed for the detection of static protein

structures, was used for the analysis of six di�erent protein molecules. The results

from the static tunnel detection show that the RRT method was able to detect similar

tunnels, which were found by CAVER 3.0, a state of the art software tool for protein

tunnel detection. The RRT algorithm proved especially well in the detection of tunnels

which are straight, wide and short. Tunnels with these properties were found even in

100 % of trials. On the other hand, tunnels that are rather serpentine, narrow and

long were much harder to detect and in some cases, no tunnel with such properties was

found. Nevertheless, the long and narrow tunnels might be biochemically unimportant,
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because transportation of ligand through such tunnels is not very probable in real world

and so, missing these tunnels does not have to be a problem.

The RRT method also had problems with the detection of the same tunnels as

CAVER in sparse protein structures (e.g., pdb �le 1AKD), which means that they

have many possible paths in their structure that can be explored by the tree. Although

RRT was able to detect similar count of tunnels as CAVER, there were cases in which

none of the found tunnels was identical to CAVER tunnels, resulting in lower success

of RRT.

The surface of individual proteins was represented by spheres, which were gener-

ated from set of surface points that were computed by computer program PyMOL.

This approach seemed to work well in almost all situations, but the tunnel endpoints

were often detected later than with CAVER and so, the found tunnels are longer.

Even though it did not make a big di�erence in most of the cases, several additional

tunnels were detected in some runs with protein 1BL8 in places, where CAVER had

already terminated its search. Therefore, the determination of tunnel endpoints could

be improved for better correspondence with CAVER.

The RRT algorithm was separated into two phases mainly because of the fact that

we wanted to let the tree explore the protein structure as much as possible. But since

the protein surface was represented by spheres with radii of 3 Å, which could reach a

little into the protein structure, we did not determine tunnel endpoints immediately

after the surface spheres were achieved, because these spheres could be theoretically

reached also in paths, which are near to the surface, but not leading out of the protein.

The tunnel endpoints were therefore detected after the tree extended out of protein

structure, which results in longer tunnels.

Although the surface representation worked well in most cases, it failed in the

situation, when the active site was very close to the surface of protein and initial

con�guration was therefore inside of the spheres that represent the surface (pdb �le

1BL8). In such case, no tunnels were detected, until the initial con�guration was

manually moved to a di�erent location. Active sites of enzymes are often located near

its surface and so, similar situation need to be approached with caution. A possible

solution to these cases could be representation of the surface by a�shape.

During the development of the RRT algorithm, we thought that the need to de-

termine limits for total count of nodes for each phase will make the analysis of a new

protein di�cult. Nevertheless, both of these parameters (S and T ) were the same for
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most of the proteins (10 000 nodes for �rst phase and 5 000 nodes for second phase)

and alterations were necessary just in the case of one smaller and one larger protein.

Both values are therefore a good starting point for possible parameter optimization in

the analysis of di�erent proteins. Furthermore, because these two parameters need to

be determined, it is controlled during the run of the algorithm, how many times in a

row has the new node qnew collision with protein atoms in function isTreeGrowing().

If this number exceeds a given limit, the current phase is terminated. This should

prevent the tree from exploring an already searched paths of the protein and it worked

well in vast majority of the trials.

The proposed RRT method for the tunnel detection in static protein structures

has better speed performance than another already employed RRT�based solution [9].

The improvement in speed was achieved by separation of our implementation into two

phases and by better positioning of added plugs in the �rst phase, which prevented the

tree from expanding into undesirable areas.

6.2 Tunnel detection in dynamic protein structures

The detection of tunnels in dynamic protein structure brought results, which were

very similar to the results of CAVER 3.0. Ten runs of the RRT algorithm per snapshot

and selection of frequent tunnels that are in at least 50 % of these runs proved to be a

good approach to the analysis of dynamic protein structures.

It has to be mentioned that the proposed solution does not take into account the

subsequent and preceding snapshots of individual structures and analyzes all frames

separately. Although this approach might be acceptable, in order to detect a tunnel in

the structure, it is necessary to �nd the path all the way from initial coordinates to the

protein surface. For example, if the initial coordinates are not directly connected to

the surface of protein, but there is a cavity that gradually changes its position towards

the protein surface in subsequent snapshots, the proposed solution would miss this

dynamic tunnel. Figure 6.1 on the next page shows this situation. The implemented

solution can serve as a starting point for development of methods, which would take

subsequent snapshots into consideration.

The proposed solution to tunnel detection in dynamic protein structures was very

fast, the average running time per RRT run in this case was less than one second. The

main reason is that the tunnels in analyzed protein structures were quite short and also
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Figure 6.1: A speci�c situation in the detection of tunnels in dynamic protein structure.
Protein is represented in blue, three magenta residues are at the initial con�guration.
If a cavity changes its position towards the protein surface in subsequent snapshots of
the structure, the proposed RRT method would not detect it as a dynamic tunnel.

only two or three tunnels were usually detected in each run. Therefore, the analyses

did not require so many tunnel comparisons as in the case of static tunnel detection,

which signi�cantly prolongs the running time.

6.3 Geometrical analysis of small molecules passage

through protein tunnels

The RRT�based principle, which was designed and implemented for the geometrical

analysis of small molecule passage through protein tunnels, successfully found paths

for small molecules. Nevertheless, even the radii of water molecule atoms had to be

decreased, otherwise the molecule could not even �nd the initial collision�free con�g-

uration. The proposed model, in which atoms are assigned with their van der Waals

radii, is probably too strict, since carbon atoms alone were too big to �t the found

tunnels.

Both of the presented results of molecule planning were performed on tunnels from

protein 1BL8. It has to be mentioned that neither the water molecule, nor ethanol are

substrates of this protein and these tunnels were just used to verify the implemented

solution. When we tried our method on protein 1CQW (haloalkane dehalogenase) and

a substrate (1,2�dibromoethane) of this enzyme, the radii of substrate atoms had to

be decreased by more than 50 % of their van der Waals radii just to �t into initial

con�guration and we were not able to �nd a collision�free path to the tunnel endpoint.

The biggest downside of the hard sphere model is the inability to properly simulate
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real ligands that are rather �exible. It should be emphasized that in reality both

protein and ligand adapt their structures during the binding process. The proposed

solution is simulating a transport of rigid small molecule between two locations in the

static protein structure. Nevertheless, this strictly geometrical approach can serve as a

starting point for advanced solutions. A great improvements might be the calculations

with �exible molecules and also the addition of electrostatic interactions, which can

describe attractive or repulsive forces between protein and ligand.

If the molecule was able to pass through the protein tunnel, the computation was

very fast and the whole trial was completed within few seconds (computer speci�cations

are presented in section 8.2). For the collision detection, only protein atoms, which

were in close distance to the tested tunnel, were used. The fact that only a small part

of protein atoms were employed further improved the speed of our implementation.

The utilization of the guided RRT�Path approach [49] also signi�cantly improves the

performance of the algorithm, since only relevant samples are generated for the motion

planning task.

A big advantage of our implementation of this geometrical analysis is the possibility

to use tunnels, which were detected by di�erent methods. The RRT�based solution uses

the tunnel to generate random samples and for example tunnels detected by CAVER

can be used for this purpose.
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Chapter 7

Conclusions

The detection of protein tunnels and other computations related to protein tunnels

are a very attractive �eld of structural bioinformatics. There are several di�erent

approaches to the task of tunnel detection and the vast majority of them are geometrical

methods that usually neglect the physicochemical properties of individual molecules,

which are represented by a hard sphere model. This thesis focused on utilization of

a well known sampling�based algorithm, Rapidly�exploring Random Tree. We have

proposed modi�cation to this algorithm for various computations with protein tunnels.

In this diploma thesis, a novel RRT�based method for tunnel detection in static pro-

tein structures has been developed. It successfully detects tunnels in protein molecules

and the results were in selected cases very similar to the results of CAVER 3.0, an es-

tablished state of the art method for tunnel detection that employs Voronoi diagrams.

The proposed RRT method had the best performance with detection of short and wide

tunnels, while long and narrow tunnels were harder to detect.

The developed RRT implementation was then utilized for tunnel detection in dy-

namic protein structures, which were represented by a sequence of snapshots. Each

snapshot was analyzed by several RRT trials and the most frequently found tunnels

were selected as dynamic. This method was again comparable to CAVER 3.0 as it

detected identical tunnels in more than 80 % of the snapshots.

This thesis also presents a novel RRT�based approach to the geometrical analysis

of tunnel traversability of protein tunnels by small non�spherical probes. This model

represents molecules as rigid, hard sphere objects and it uses a guided approach to solve

the task of �nding a path through a given tunnel. Although the developed principle

successfully works, the radii of atoms in molecules, which were used in computations,

needed to be decreased in order to �t the tunnel and �nd a path in the tunnel. The
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ability to analyze the tunnel traversability by non�spherical probes is not yet available

in most of the developed methods.

The proposed RRT methods have many future research possibilities. In the case

of tunnel detection in dynamic protein structures, a solution that would take the sub-

sequent snapshots into account can be designed. A very interesting improvements to

the geometrical analysis of molecule path planning in protein tunnels might be the

computation with �exible molecules (i.e., considering additional degrees of freedom)

and also with electrostatic interactions between individual molecules.

Sometimes, the downside of the proposed solutions is the probabilistic nature of the

RRT method, so the results vary with every trial and in rare cases, the RRT algorithm

did not detect any tunnels, even though in other trials it detected several tunnels. The

proposed RRT implementations might therefore be run more than once. Since the

speed performance was quite fast, it is not problematic to have a few trials for each

analysis.

To summarize all the completed guidelines, this thesis has presented a novel RRT�

based approach to tunnel detection in static and also dynamic protein structures and

provided comparison with CAVER 3.0, an established tunnel detection method. The

results of the tunnel detection implementations were in some cases comparable to

results of CAVER. A new method for geometrical analysis of tunnel traversability by

rigid molecules was designed and implemented. The principle of geometrical analysis

proved to successfully �nd path for rigid molecules in tunnels, nevertheless the van

der Waals radii of individual atoms were to big to �t the tunnels and so, the radii

of atoms needed to be scaled down. There are still possible improvements to the

proposed methods and the models of molecules can be further developed for a more

real world�like behavior.



Chapter 8

Appendices

8.1 Contents of the attached disc

The disc, attached to this thesis, contains:

� A pdf �le with text of this thesis.

� Folder programs, which contains source codes of the RRT implementations for

tunnel detection and geometrical analysis of molecule passage through protein

tunnels. It also contains the utilized libraries (MPNN and OZCollide) and var-

ious supporting source codes for creation of surface spheres or computation of

comparison metric.

� Folder inputs, with the �les that were used as inputs in all proposed solutions

� Folder results, with images and PyMOL session �les, which were used in the

Results section

8.2 Computer speci�cations

All the experiments were run on the same computer laptop with the following

speci�cations:

Acer Aspire 5820TG, Intel® CoreTMi5 CPU 430M, clocked at 2.26 GHz, 8 GB RAM
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