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Abstrakt

Epilepsie je onemocnéni mozku vyznacujici se opakovanymi zachvaty. Tyto zé-
chvaty ztézuji pacientiim zivot a v nékterych situacich mohou mit fatdlni nasledky.
Stale neexistuje spolehlivd metoda, kterd by epilepsii vylééila nebo potlacila jeji
priznaky:.

Nedavné studie potvrdily, ze lze v mozkové aktivité pozorovat zmény jesté drive,
nez dojde k zachvatu. Tyto zmény zatim nebyly popsany. Zatim neni ani zjisténé,
jak dlouho pted blizicim se zachvatem jsou zmény pozorovatelné.

Cilem této préace je navrhnout postup klasifikace tisektt predchazejicich epilep-
tickému zachvatu v lidském nitrolebeénim zaznamu EEG. Tento tsek byl defino-
van jako jedna hodina pred zachvatem.

Pro optimalizaci a validaci algoritmu byla pouzita data volné dostupna z por-
talu ieeg.org. Data od péti pacientl byla pouzita pro optimalizaci a dalsi dva data-
sety pro otestovani. Pacienti byli muzi i zeny rtizného véku v rozmezi od 3 do 62 let.
Data byla rozdélena na desetiminutové preictal (pred zachvatem) a interictal
(bézna aktivita) useky.

Bylo vyzkouseno vice pristupt, jak se vyporadat s chybéjicimi hodnotami v
datech, ale nakonec byla pouze nahrazena nulou. Také byl fesen problém s rtiznym
poctem vzorki z jednotlivych tfid. Tato nevyvazenost byla vyresena namnozenim
vzorkil z mensi t¥idy pomoci vygenerovani nejblizsich sousedi. Bylo navrzeno
okolo padesati charakteristik a hladovym algoritmem bylo vybrano osm, které
byly pouzity jako priznaky. Z mnoha testovanych klasifikatora byl vybran Bagged
Trees.

S timto nastavenim bylo na nezavislych testovacich datech dosazeno hodnoty
plochy pod ROC krivkou rovné 0.8405. Tyto vysledky stale nejsou dostacujici
pro vyuziti v praxi. A to hlavné z toho divodu, Zze neni mozné zarucit sprav-
nou klasifikaci vsech tseki predchazejicich zéachvatu. Je tireba algoritmus jesté
optimalizovat a otestovat na vétsim mnozstvi dat, které nejsou zatim k dispozici.
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Abstract

Epilepsy is neurological disease which is characterized by repeated seizures. These
seizures make patient life more difficult and in some situation seizure can have
fatal consequences. There is still not reliable method to cure epilepsy or eliminate
Symptoms.

Last studies confirmed that there are detectable changes in brain activity before
seizure coming. These changes was not describes yet. Even amount of time before
seizure in which are changes obvious (preictal segment) is not know.

Target of this work is to propose procedure of patient specific classification
of preictal segment in human intracranial EEG record. Preictal segments was
defined as one hour before seizure.

Freely available data from ieeg.org portal were used for optimization and val-
idation algorithm. Data from five patient were used for optimization and two
datasets for test. Patients were men and women of different age from 3 to 62 years
old. Data were segmented and divided into ten-minute preictal (before seizures)
and interictal (normal activity) segments.

More approaches how to work with missing values in the data were tried but at
the end they were only replaced by zero. Also some methods of solving problem
with different amount of samples from each class were proposed. The samples
of minority class by generating the nearest neighbors to solve imbalance were
multiplied. About fifty characteristic of data were proposed and eight of them
were selected as features by greedy algorithm. Bagged trees from many tested
classifiers were chosen.

With this setting average of area under ROC curve equal 0.8405 on independent
test sets was achieved. But this result is still not sufficient for the practice use.
Especially because is not possible to assure correct classification of all preictal
segments. It is needed to optimize and test the algorithm on bigger amount of
data which is not available at this moment.

Keywords

epilepsy; prediction; iEEG; machine learning; classification; evolutionary algo-
rithm
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1 Introduction

1.1 Motivation

Epilepsy affected about 50 million people worldwide. It is difficult to live normal
life with this serious disease. In many areas of the world driving for people which
have experience with seizures is restricted or permitted. Much more activities
are problematic for these people, for example swimming as well as crossing the
street. It could end worse when seizure occur during these activities. It is possible
to attenuate symptoms of epilepsy by dietary changes or medication but these
method are not absolutely reliable. Even brain surgery does not always fix the
problem. People should take precautions and keep calm if we could predict a
seizure coming.

Longterm records of brain activity are available nowadays. Using these data
and techniques of machine learning should help to find a way how to predict
seizures. It is important for prediction to be reliable. There can be some false
positive classification (notification even though there is no seizure coming) but
there should not be false negative classification (seizure coming without warn-
ing). Patient will have implanted the device to record brain activity. The second
portable device will be connected to the first. The second device should warn of
seizure coming and patient should take his medication and keep calm.

1.2 Objectives

In this work I will try to propose a patient specific system for classification of
preictal intracranial EEG records. It is needed to choose a proper preprocessing
of signals, feature extraction procedure and pattern recognition methods. T will
discuss chosen methods. 1 implement methods in Matlab and optimize them
on a free available intracranial EEG data. The final system will be tested on
an independent data. At the end I evaluate the accurancy and discuss future
challenges.

1.3 State of the art

Not long ago only medication or surgery was used to treat epilepsy. But for many
patients antiepileptic drugs does not work and moreover it can be toxic. Even
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surgery does not work for all of them. New methods of treatment was developed
after the year 2000. To improve efficiency and decrease a toxicity of medication
new techniques of drug delivery were introduced. For example it can be done by
slow-release form of medication [1] or drug-loaded nanoparticles [2]. Another new
treatment method of epilepsy is focal cooling as an alternative to surgery. The
brain can be focally cooled to the temperature between 20°C and 25°C which
leads to terminate epileptic discharges without the neuronal damage [3]. Next
technique for treating drug-resistant epilepsy is electrical stimulation [4, 5].

Most of these methods are based on continuous stimulation but there are some
methods which stimulate only when the seizure is detected. It is called the closed-
loop stimulation. The advantages of this approach is that less stimulation is
needed which decreases side effects of the long term stimulation and leads to lower
energy consumption of the device. To maximize the effect of the stimulation is
better to use the stimulation before the seizure comes [6]. The most effective time
to apply the stimulation is not known.

The seizure prediction have to be sensitive and specific for the medical use.
It is necessary for maximizing the efficiency and minimizing the side effects of
the stimulation. Most often EEG records for prediction are used. It was not
certain if there are some detectable changes before the seizure but later studies
approve it [7]. Sensitivity and specificity requirements are not standardized. Some
studies define the maximum false prediction rate. [8, 9] There is an effort to
create guidelines for evaluating quality of seizure prediction methods. [10, 11]
The studies mostly agree that the seizure prediction algorithm have to be better
than chance but they differ in the way of comparing these predictions. Algorithm
should be tested by using long-lasting, continuous and unseen EEG recordings.
This data have to cover all pathological and physiological states of patients. The
methods can be evaluated in different ways so it is difficult to compare algorithms.

Algorithms mostly differs in features which they used and in the way the fea-
tures are tracked. The next paragraphs describes four algorithms published in
the last few years. The works that describe them are available on IEEE Xplore.

Seizure Prediction using Hilbert Huang Transform on Field
Programmable Gate Array

In [12], micro-volt scalp EEG was used. Preictal period was defined as 5 minutes
before the seizure. Interval was divided into 15s non-overlaping segments. Seg-
ments were decomposed by using Empirical Mode Decomposition. Hilbert Huang
Transform was used as features. The Least Square SVM (LSSVM) with a Radial
Basis Function kernel and a Logistic Regressor (LR) were used for classification.
Patient specific classifier was used. Area under the curve (AUC) of the Receiver
Operating Characteristic (ROC) curve was between 0.995 and 1 for LSSVM and



1.3 State of the art

between 0.928 and 1 for LR.

SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal

In [13], intracranial EEG data from dogs brain were used. Continuous stream of
records was segmented and labeled. Preictal period was defined as one hour before
the seizure. Features were extracted from 20 s window and one hour segments
were used for prediction. Three spectral characteristics were used as features in
this work. These were spectral power in six Berger frequency bands, signal in
time from six bands and crosscorrelation matrix. Features from 20 s windows
were classified by SVM based system and prediction for one hour system was
calculated. False positive varied between 0 and 5 % and false negative is between
0 and 33 %.

Seizure Prediction Using Undulated Global and Local Features

In [14], the patient specific prediction from intracranial data was presented. 30
minutes of signals before seizure was used as preictal segments. Global features
were extracted from relative change among signal-type epoch. Local features were
calculated as customized fluctuation and deviation from 10 s long segments with
128 samples overlap. LSSVM was use for classification. 5 minutes long window
was use for decision if seizure coming. Prediction accuracy was 95.4% and false
positive rate corresponds to 0.36 hour a day.

Seizure prediction using long-term fragmented intracranial canine and
human EEG recordings

In [15], the authors presented seizure prediction from intracranial EEG recorded
on dogs and human. They tried two feature sets and three classifiers. Features
were extracted from 4 seconds long segments with 50% overlap. First feature
set contained relative spectral power and spectral power ratio. Second feature
set contained cross correlation coefficients between electrodes. It was extracted
from 10 s long segments with 50% overlap. Classification and Regression Tree
was used to choose 50 most important features. AdaBoost, SVM and artificial
neural network (ANN) were used for classification. They combined best features
for each object and their best result was achieved by ANN with mean AUC equal
to 0.8884.
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Epilepsy

There are small cells called neurons in the brain. Neuron usually consists of
cell body, one long axon and several short dendrites. It is shown in Figure 1.
Signal from other neurons come to the cell body through dendrites. Information
is processed in cell body and sent next to other cells by axon as an electrical
signal. Axon ends by connections called synapses. Synapses transfer information
using chemical transmitter to dendrite of another cell or directly to cell body [16].

Synapses can be excitatory or inhibitory. Excitatory synapses increase activ-
ity in target neuron. Inhibitory synapses decrease this activity. Both types of
synapses change concentration of ions and polarization in neuron surroundings.
This stimuli can lead to produce action potential. Then axon carry electrical sig-
nal to next neuron. Producing of action potentials called firing. Neuron can fire
with different frequency but all impulse have same strength. It called all-or-none

Fig. 1 Neuron (Source: US National Institutes of Health, National Institute on Aging
[16])



Seizure focus
+60 -

Normal
+40

Spikelets

/

Millivolts (mV)

\
After hyperpolarization
1 L L ! 1

Time (ms) Time (ms)

Fig. 2 Action potential in normal activity and during seizure (Source: Jerrold S. Meyer
and Linda F. Quenzer [20])

principle. Intensity of stimulation not affect amplitude of signal but can affect its
frequency.

There are some theories about information coding in brain and there are prob-
ably more principles of coding information in brain itself. One model describes
information coding as firing rate. Average number of spikes per unit time de-
pends on strength of stimulus. This behavior is typical for motor neurons [17].
On the one hand this method is inefficient but it is very robust on the other hand.
Another model called temporal coding. According to this theory information is
coded by precise timing of single spikes [18].

Neurons firing seems to be randomly at first time. Normally brain activity
is non synchronous. After neuron firing it becomes more resistant to produce
new spikes as seen in Figure 2. These mechanisms are broken during epilepsy
seizures [19]. As a result of this abnormalities a group of neurons begin firing
excessive and synchronized. It can be caused by head injury, infection, genetic or
development condition but most often the cause is unknown.

Symptoms of disease must accomplish at least one of the following conditions
to diagnose it as epilepsy [21].

First, there are two unprovoked (or reflex) seizures occurring greater than 24
hours. Seizures can be result of concussion, fever or alcohol-withdrawal. This
cases are marked as provoked and would not lead to a diagnosis of epilepsy. The
term unprovoked means that there is no temporary factor lowering the threshold
for produce the seizure. It is quite misleading because we can never eliminate
presence of this factor with certainty.

Second case, when epilepsy can be diagnosed, is one unprovoked (or reflex)
seizure and a probability of further seizures similar to the general recurrence
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risk (at least 60%) after two unprovoked seizures, occurring over the next 10
year. This condition accomplish for example patient with one seizure at least a
month after a stroke.

Third option to diagnose epilepsy is diagnosis of an epilepsy syndrome. It can
be apparent from the record of brain activity. There can be abnormalities even
if patient have no seizure yet.

Brain electrical activity is more often measured by electrodes placed on the
scalp as shown in Figure 3. This method is called electroencephalography (EEG).
It is quite cheap but not much precise way of measuring neurons activity. Each
electrode records summed signal from many neurons in the brain. Moreover,
signal goes through skull to electrodes and therefore is weak. Particular result
of these issues is the use of intracranial electroencephalography. Electrodes are
placed directly on the brain and recorded signals are stronger.

Fig. 3 Measuring of EEG (Source: Chris Hope, [22])

Machine learning

Machine learning is subfield of computer science. The main task is to create
model which describes given samples. Such model is used for making decision,
classification or prediction. Machine learning algorithms typically use learned
rules instead of explicitly programmed instructions. Machine learning can be
unsupervised learning or supervised learning. When we use supervised learning
we need to know labels of samples. Computer tries to find model which maps
input to output most precisely. In unsupervised learning we do not know samples
labels or we purposely do not give them to learning algorithm. The goal in this
case is to find a hidden pattern in the data.

In this thesis I try to solve problem of classification. It is a typical task in



machine learning. The data comes from two or more groups called classes and
algorithm should find model which divides this data into correct classes. Usually,
we know the target classes so we use the supervised learning.

Generally, the data are divided into two sets. First, called training is used to
learn an algorithm and to find pattern in data. Second set is called test set and
is used for accuracy evaluation. Training and test data should not be the same.
If it is same it can lead to an optimistically biased evaluation of the classifier. A
popular error estimate is cross-validation, which gives better error estimates than
resubstitution or hold-out methods. This method divides data into k parts. After
that, algorithm is used in k iteration. In each iteration, all parts except the k-th
one are used for training and the kth part is used for testing, as you can see on
Figure 4.

Data \

Fold 1 —>=Result;

|
FOId 2 :- I::>ReSUIt2

5
1
Fold 3 - '::>ReSU|t3 = Result = EZ Resu]ti
i=1
FOId 4 -:I::>ReSUIt4
Fold 5 -I:>Resu|ts

Training samples - Test samples

Fig. 4 5-fold crossvalidation

Usually input to the algorithm is not the data itself but values that describe
the data. They form so called feature vector. It is array of measurable properties
of original objects to be classified. Each object is described by one feature vector.
Features can be categorical, ordinal, binary but in our case they are real-valued.

A model which is capable to classify the samples into classes is called classifier.
The algorithm, which creates the model based on the data is called training
algorithm. There are many types of classifiers and training methods.

Simple example are linear classifiers. These algorithms tries to divide the classes
by a linear decision boundary. Examples are linear Bayes classifier or Perceptron.
They are typically based on a function that gives score for each sample. Score is
defined for each class. It is computed as dot product of feature vector of sample
and the vector of weights corresponding to class. Sample is assigned to class with
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highest score. In Bayes algorithms, such score is aposterior probability. Example
of linear classifier is shown in Figure 5. Linear classifiers are often very fast but
not as successfully as more complex algorithm. On the other hand, they typically
do not suffer by overfitting.
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Fig. 5 Example of linear classifier

Another type of classifiers are decision trees. Algorithm is a tree in the meaning
of graph theory. Usually, there is a threshold value assigned to each node. In
binary trees, algorithm goes through the tree and continues in one branch if the
value of a feature is greater than the threshold and in second branch otherwise.
Each leave corresponds to a class the input sample is assigned to. The nodes may
not be defined by number. They can correspond to a question with answer yes
or no or another. Moreover there can be more branches then two from each node
if the tree is not binary. Simple decision tree is depicted in the Figure 6.

Next type of classifier is algorithm called k-nearest neighbor. For each sample
to be classified, the algorithm finds k-nearest training samples, where k is a pa-
rameter defined by the user. Sample is assigned to the same class as majority of
its k neighbors.

Very popular algorithm in last few years are artificial neural networks. It is
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Fig. 6 Example of tree

a family of algorithms inspired by neurons in the brain. Typically, there are layers
with units which are connected between themselves. On the input to each unit is
weighted output from units from previous layer. Each unit has its own activation
function which determines the output. Simple artificial network is depicted in
Figure 7. Artificial neural networks are widely used not only for classification.

[ Output
nput Hidden layers P
layer layer

Fig. 7 Example of multilayer perceptron

Often, it is not possible to divide all samples successfully by one algorithm. For
that reason, there are popular boosting procedures. Boosting method converts
more weak classifiers to a strong one. There are many techniques how to do this
but usually the output of boosting classifier is a weighted sum of response of weak
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weak classifier 1 weak classifier 2 weak classifier 3 strong classifier
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Fig. 8 Example of boosting method

classifiers. Example of boosting algorithm with linear weak classifier is shown in
Figure 8.

2.1 Data

Electroencephalography (EEG) is highly used method for examine electrical ac-
tivity of the brain. It is typically noninvasive. Action potential of neurons is
recorded by electrodes from surface of the head. A disadvantage of this method
is that summed signal from many neurons in brain are recorded. To obtain more
precise information, it would be best to record the signals from each neuron sep-
arately. It is impossible because there are tens of billions of neurons in the brain.
Moreover, the electrodes would need to be extremely small. In practice, a more
precise intracranial EEG (iEEG) is used. Electrodes or stripes of electrodes are
placed directly on the brain. This can be done mostly during a surgery operation.
Consequently, there are only limit amounts of data.

The data which we used in this thesis comes from International Epilepsy Elec-
trophysiology Portal [23]. Annotated intracranial EEG data is freely available on
this website. The portal is developed by the University of Pennsylvania and the
Mayo Clinic. All the recordings originate from Mayo Clinic in USA.

A special Matlab toolbox is available on the IEEG portal, which can be used
for basic operations with signals. This toolbox was used here for creation of data
sets for further processing. In such data sets there are two types of segments.
Interictal segments are segments in normal iEEG signal. Neither three hours
before nor three hours after them there wasn’t seizure to avoid contamination by
seizure activity. One hour long parts were took and divided to six ten-minutes
long segments. Between parts there are 1.5 hours long spaces. Second types of
segments are preictal segment. These segments starts one hour before seizures.
Precisely first segment start one hour and five minutes before seizure and last
end five minutes before seizure. The five minutes gap is there for two reason.
Firstly, some epileptic activity before the beginning of the seizure can be missed

10
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Fig. 9 Data segmentation.

by epileptologist (annotator) and can affect the prediction. Secondly, patient
needs some time after seizure warning to take medication. As in the previous
parts three hours before them was no seizures. Data segmentation is shown in
Figure 9.

Each segment is saved as a Matlab structure containing channels, sampling
rate and signal data. Data from different patients can have different number of
channels and different sampling rate. Eight data sets from the portal were chosen.
Six of them were used for training and optimization and the remaining two were
used for testing of the proposed approach. Information about data is summarized
in Table 1.

11
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2.1 Data

2.1.1 Analysis of missing data

The data contain also segments with missing values. Most often it is caused by a
poor contact between electrode and brain. In that case zero or “not a number”
values are presented in the signal. There are two options. Missing values are
completely random or there are some connection between occurrence of missing
values and classification of segment. Therefor, the amount of missing values in
positive and negative class was compared to accept or reject such dependency.
First, histograms with probabilities of percentage of missing data were inspected.
There are some parts where all data are missing. More often interictal segments
are empty because there are more interictal segments then preictal. Segment with
no data were excluded. Histograms are shown in Figure 10.

Mean value of distributions seems to be equally for both of segment types.
Data from patient 1 and patient 4 seem to have some dependency between class
and percentage of missing data. Assuming that different mean value corresponds
to dependency, we can use t-test to compare means of two distribution. However,
since an important assumption about equality of variances is not guaranteed, we
used Welch’s t-test, which does not assume equality of variances. Null hypothesis
is that both distributions have approximately the same means. The level of
significance 5% was used. In Table 2 one can see p-values for each patient.

Tab. 2 p-values for datasets

Patient p

1 0.16
0.11
0.10
0.03
0.91
0.65

S U = W N

It can be observed that we can reject the null hypothesis only for patient 4 and
only at the level of significance 5%. For other data we can not accept nor reject
dependency between percentage of missing data and class.

13
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3 Methods

All proposed methods were implemented in Matlab [24]. For some calculation was
used Matlab Pattern Recognition Toolbox for representation and generalization
(PRTools) [25]. Figure 11 shows the entire prediction process.

First, we tried to find the best settings for data preprocessing. We used the sums
of power spectral density in bands as features. Combinations of outlier removal
procedure and class balancing procedure were evaluated. K-nearest neighbor
classifier was used for the evaluation. The number of nearest neighbors was set to
40. The best combination of methods was chosen and different ways of handling
of the missing data were tested.

Next, we tried to find the best feature set by the greedy algorithm and by the
evolutionary algorithm. In both approach, the data preprocessing settings found
before were used.

Finally, different classifiers with various parameter settings were tested. A
script which can use the best data preprocessing method, extracts features and
trains classifier (which was the best classifier) for further seizure prediction.

Training Removal of Feature
samples missing data extraction
Removal of o
. Normalization Class balance
outliers
Training the Classification Predicted
classifier of test data labels

Fig. 11 The prediction process schema
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3 Methods

3.1 Signal preprocessing

There is a lot of missing segments in the data. The values are sometimes absent
in some channels but sometimes they are absent in all channels. The following
solutions for this issue were proposed:

1. we replaced missing segments by zero.

2. we tried to remove all of the samples which have less than fifty percent of
data from the training set

3. we tried the same method but this time the samples with more than ten
percent of zero data were removed

4. we tried quite more sophisticated approach. At the beginning the training
samples with less than fifty percent of data were removed. Then we found
the most similar channel for each channel based on the cross-correlation. At
the end the missing parts were replaced by corresponding parts from the
most similar channel. In case the replacing part was empty we used the
average value of the original channel.

5. the time segments in which the data were absent in some channel were
removed.

3.2 Feature extraction

Several of features were tested. This section summarizes the features and pro-
vides a short description if needed. Most of features are inspired by the previous
research in the area of prediction of epileptic seizure [26]. Features were extracted
from the entire ten-minute segments.

Mean spectral power in six band

The spectral power is calculated from data and divided into six bands between
limits - 0, 4, 8, 12, 30, 70, 180. The average of values from each band is added to
the feature vector. It is done for each channel.

Covariance matrix characteristic

The covariance matrix is calculated from the spectrum. The feature vector con-
sists of the average value, standard deviation and the three biggest values of the
covariance matrix.

Fractal dimension

The feature vector is composed of three estimates of fractal index for each channel.
The two first estimates are based on the second order discrete derivative, the
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3.2 Feature extraction

second one is wavelet based. The third estimate is based on the linear regression
of the variance of detail versus level in logarithmic scale [27].

Sorted eigenvalues of correlation matrix of spectrum data

Correlation matrix between channel was calculated from spectrum. Infinite and
NaN values were replaced by zero. Eigenvalues were calculated from correlation
matrix and sorted by their values.

Upper triangle from correlation matrix of spectrum data

Spectrum was calculated from data and the amplitude of the lowest frequency was
replaced by zero. Correlation matrix between channel was calculated. Feature
vector consist of values from upper triangular part.

Frequency with maximal amplitude

Spectrum was calculated from data. Amplitudes for frequency under 0.1 Hz were
set to zero. The frequency with the biggest amplitude was chosen from other
values. It was done for each channel.

Higuchi fractal dimension

Features were calculated by Higuchi’s technique for computing fractal dimen-
sion [28]. T used implemented function in MATLAB to computing Higuchi fractal
dimension [29].

Hjorth parameters

Three indicators of statistical properties which is known as Hjorth parameters [30]
were used. They are defined in time domain and they called Activity, Mobility,
and Complexity.

Hurst exponent

Hurst exponent is used to measure influence of distance between two points on
their statistical dependency. It relates to autocorrelation function of time series
and the change of this function when the distance between points are changed.
Matlab implementation of Hurst exponent was used to compute Hurst expo-
nent [31].

Kurtosis

Kurtosis in each channel was calculated. It describes "tailedness" of the probabil-
ity distribution. Feature vector consists of values from all channels.
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Spectral magnitude divided into 18 bands

First, logarithm of spectral power is calculated. After that it is divided into 18
bands by its value.

Mean of spectral power with logarithmic scaling for bands up to 48 Hz

Spectral power is divided into ten frequency bands determined by logarithm -
limits are (0.5, 2.25, 4, 5.5, 7, 9.5, 12, 21, 30, 39, 48). Then the average of values
in each band is added to feature vector.

Median of lower 20 percent of spectrum divided into 24 bands

Lower twenty percent of frequencies is equally divided into twenty-four frequency
bands. Feature vector consists of medians of values in bands.

Mean, standard deviation and maximal value in frequency and time domain
in each channel and in their average

Mean, standard deviation and maximal value were calculated from data in each
channel separately. The same procedure was done for channel which was calcu-
lated as average of all channels. And the same procedure was done once more for
spectrum.

Percentage of missing data per channel

Percentage of missing values in each channel was calculated. These values were
used as feature vector.

Shannon’s entropy at dyadic frequency bands

Shannon’s entropy is calculated with summed probabilities per bands. Limits
of bands are calculated by interval bisection - the last band is from the half
of maximal frequency to maximal frequency, the penultimate band is from the
quarter of maximal frequency to the half of it, etc.

Skewness

Skewness of the data was calculated. It measured asymmetry of the probability
distribution about its mean.
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3.2 Feature extraction

Sorted eigenvalues of correlation matrix of spectrum data summed into
dyadic bands

First, data are divided into dyadic bands (limits are found by bisection). Then
bands are replaced by sum of data which they contain. The correlation matrix of
these values is created and its sorted eigenvalues form a feature vector.

Spectral edge frequency 50 up to 40 Hz

Spectral edge frequency 50 was calculated. It means frequency below which 50
percent of total power are located. Only the values below 40 Hz were used for
cumulative sum.

Spectral edge frequency 75
Frequency below which 75 percent of total power are located was found in each
channel. These values were used as features.

Spectral edge frequency 90

Same as in the previous paragraph but 90 percent was used instead of 75.

Eigenvalues of inter channel correlation of spectrum entropy

Entropy is calculated in each channel and in each of six frequency bands (limits -
0.1, 4, 8, 12, 30, 70, 180). Correlation inter channels is calculated. Feature vector
is equal to sorted eigenvalues of mentioned correlation matrix.

Eigenvalues of inter channel correlation of spectrum probabilities

Probability is calculated in each channel and in each of six frequency bands (limits
-0.1, 4, 8,12, 30, 70, 180). Correlation inter channels is calculated. Feature vector
is equal to sorted eigenvalues of mentioned correlation matrix.

Eigenvalues of inter dyadic bands correlation of spectrum probabilities

Probability is calculated in each channel and each of frequency bands (dyadic).
Correlation inter bands is calculated. Feature vector is equal to sorted eigenvalues
of mentioned correlation matrix.

Mean spectral power in six channels

Probability is calculated in each channel and in each of six frequency bands (limits
- 0.1, 4, 8, 12, 30, 70, 180). Correlation inter bands is calculated. Feature vector
is equal to sorted eigenvalues of mentioned correlation matrix.
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Entropy of frequency bands

Entropy is calculated with summed probabilities per bands. Limits of bands are
0.1, 4, 8, 12, 30, 70, 180.

Standard deviations of frequency amplitude in bands and channels

Standard deviation is calculated in each of six bands (0.1, 4, 8, 12, 30, 70, 180)
in each of channels.

Sums of power spectral density in bands

Power spectral density was estimated by Welch’s method. Amplitudes were
summed in bands in each channel separately. Bands limits are powers of two
(1, 4, 16, 32, 64, 128, 200).

Eigenvalues of correlation matrix inter channels

Spectrum was calculated from data. Amplitude for frequency 0 Hz was replaced
by zero. After that probability of each frequency were calculated. Data were
divided into bands and in each band were summed. Limits of bands are 0.1, 4,
8, 12, 30, 70, 180. It was done for each channel separately. Correlation matrix
between channels was calculated. Feature vector consist of sorted eigenvalues of
this matrix.

Correlation matrix of data

Correlation matrix between channel was calculated in time domain data. Whole
matrix was used as feature vector.

Upper triangle matrix of correlation matrix

Same procedure as in previous paragraph was done. Only values from upper
triangular part was used as feature vector.

Variance of values in channels

Variances of all segment in each channel were calculated and used as features.

3.2.1 Features processing

This section describes the preprocessing of data that was made prior to classifier
training.
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3.3 Feature selection

Removal of outliers

The outliers could negatively affect normalization so it is appropriate to remove
them. There are many methods how the outliers can be detected (and subse-
quently removed). We tried two of them. In the first technique, the outliers are
features which contain many values which are further from the median more than
three times of the standard deviation.The second approach uses mean instead of
the median.

Normalization

Some classifiers are sensitive to relative ranges of feature values. Features with
bigger range can have greater impact on classification decision. Therefore, it is
beneficial to scale the data. In this thesis, the features were shifted to their mean
and divided by the variance. Finally, the scaled features have zero mean and unit
variance. First we computed the scale mapping from the training data. Such
mapping was used to normalize the training and testing datasets.

Class balance

As expected, the records of the positive class are less common than the negative
class records. Many of classifiers minimize error during their learning and can
prefer the negative class. To solve this issue, some methods can be used to
balance samples of both classes. We tried five methods:

1. First we used the easiest way. The representatives from bigger class are
randomly chosen and removed so both classes contain approximately the
same number of the samples as smaller class.

2. Second we tested another method of under-sampling. This method uses
distances between samples from different classes for finding the values to
remove. For each sample from the majority class three furthermost samples
from minority class are found. The samples whose mean of this distances is
smaller are removed.

3. In the third approach we tried to make the minority group bigger by copying
their samples with Gaussian noise added.

4. Next way is oversampling too. New samples are generated as the nearest
neighbors of minority class samples.

5. At last, Synthetic Minority Over-sampling Technique (SMOTE) was used [32].

3.3 Feature selection

We used two approaches of the feature selection. First, we tried greedy algorithm
which selects the best feature vector in each run and adds it to the feature set.
Then we tried simple evolutionary algorithm.
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3 Methods

3.3.1 Greedy algorithm

In this algorithm also called Sequential Forward Selection (see Algorithm 1),
maximal number of feature vectors which will be selected is set. After that all of
the feature vectors are evaluated and one with the best result is added to final
feature vector. In the next round the combinations of the best vector from the
first round and each of other vectors are evaluated. This process is repeated until
the preset number of features is selected.

Algorithm 1 Greedy algorithm

1: procedure GREEDYSELECTION(maxzNum, features)
2 best Features < ()

3 for i < maxNum + 1 do

4 AUC + 0

o: 73«0

6 for all feature in features do

7 AUC; <~ GETAUCFORCOMBINATION( feature, best Features)
8 j++

9: end for

10 I + GETMAXINDEX(AUC)

11: best Features; < featurey

12: end for

13: return best Features

14: end procedure

3.3.2 Evolutionary algorithm

Evolutionary algorithms (EA) is set of techniques for optimization inspired by
natural evolution. There have to be defined some representation of problem called
individual. After that set of individuals are generated. These individuals form a
population. A generation can be absolutely random or can have some restrictions.
Value called fitness function is computed for each individuals in the population.
Target of EA is to maximize the fitness function. Next, individuals are repeatedly
chosen from population and cross-overed (combined) between themselves while
new population is formed. Chosen individuals for cross-overing are called parents
and their combinations are called children. A child can be randomly modified
after cross-over during process called mutation (see Algorithm 2). There are
different approaches for selection of parents, their crossing, mutation, population
filling and some other details.

The combination of feature vectors is optimized in our implementation of EA.
Features which will be used for classification is represented as binary string. The
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3.4 Classification

Algorithm 2 Evolutionary algorithm

1: procedure EVOLUTIONARYSELECTION( features)
2 X < INITIALIZEPOPULATION()

3 while not TERMINATIONCONDITION() do

4 Xpew — 0

5: while not CREATEDNEWPOPULATION() do
6 Parents < SELECTPARENTS(X, f)

7 Children < CROSSOVER(Parents)

8 Children < MUTATE(Children)

9 Xpew ¢ COMBINE(X ¢y, Children)

10: end while

11: X  JOIN(X, Xew)

12: end while

13: return GETBESTINDIVIDUAL(X)

14: end procedure

value one or zero at some position means that feature corresponding to this po-
sition is or is not used for classification, respectively. As fitness function is used
value discussed in validation methodology (cross-validated AUC). Each bit in
the string is generated absolutely randomly. Children are produced by one-point
crossover of binary string. Each bit is flipped with a probability during mutation.
Best individual from old population is propagated to new population and all of
other individuals are replaced by children.

3.4 Classification

We used KNN classifier during the feature selection. After that we tried the
different classifiers. There is a list of them with their parameters. All classifiers

which we used are implemented in Statistics and Machine Learning Toolbox in
MATLAB [24].

3.4.1 Decision trees

Decision trees can be used for classification or for regression. We used decision
trees for classification. Advantages of decision trees are that they are simple
to understand and interpret because they make decision similarly as human do.
They are independent on data normalization. Data can have different ranges.
Moreover variables do not have to be numerical. Decision trees are fast even on
big amount of data.

On the other hand, learning of decision tree is NP-complete task and thus
learning algorithm do not guarantee globally-optimal tree. Moreover they are
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very dependent on training data. Small change in the training data can make big
change in the tree. Another problem is overfitting. If inappropriate number of
nodes are set, a very complex tree can be formed which does not classify well an
unseen data.

We tried three classification trees with different settings of parameters. Trees
varied in maximum number of splits. It means maximal number of nodes which
graph contains. Set values are listed in Table 3. Learning algorithm works from
the root to leaves. At each step it finds a variable, which best splits classes. For
all trees, Gini’s diversity index was used as a split criterion.

Tab. 3 Parameters of decision trees

Parameter Simple tree  Medium tree Complex tree

Maximum number of splits 4 40 100

3.4.2 Discriminant analysis

This classifier tries to find a linear combination of features to characterize the
classes. There are two types of discriminant analysis classifiers. Linear Discrim-
inant Analysis (LDA) which assumes equality of class covariances. In Quadratic
Discriminant Analysis (QDA), there is no assumption that the covariances of
classes are identical. We tried both types of this classifier.

3.4.3 Support vector machine

A Support Vector Machine (SVM) classifier represents samples as points in the
space. Target of learning SVM is find empty gap in space as big as possible
which splits points correctly. First SVM was proposed as a linear classifier but a
method to make them nonlinear was suggested later. The samples are projected
into space with higher dimension. SVM compute kernel function. There is a risk
of overfitting, when too high dimension is used for projection. We tried six SVM
classifiers. They vary mostly in the kernel function and are listed in Table 4.

3.4.4 Nearest neighbor classifiers

As previously written, Nearest neighbor classifier finds k nearest samples in train-
ing data. Meaning of nearest can vary with chosen distance metric. Moreover, the
number of nearest neighbors affects the result of classification. Classifiers with
their parameters are listed in Table 5.
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3.4 Classification

Tab. 4 Parameters of SVM

Parameter Linear Quadratic Cubic Fine Medium Coarse
SVM SVM SVM Gaussian  Gaussian ~ Gaussian
SVM SVM SVM
Kernel Linear Quadratic Cubic Gaussian ~ Gaussian ~ Gaussian
function
Kernel Auto Auto Auto 5.6 22 89
scale

Tab. 5 Parameters of KNN

Parameter Fine Medium  Coarse Cosine Cubic Weighted
KNN KNN KNN KNN KNN KNN

Number 3 40 100 10 10 10

of neigh-

bors

Distance  Euclidean Euclidean FEuclidean Cosine Minkowski Euclidean

metric

Distance  Equal Equal Equal Equal Equal Squared

weight inverse

3.4.5 Ensemble classifiers

Sometimes, only one classifier is not accurate enough. Ensemble classifiers are
strong classifiers made from more weak classifiers. There are three main types of
them.

1. Bagging methods learn each weak classifier on random chosen subset of the
training data. The result of classification is a combination of results from
each weak classifier.

2. Subspace methods are similar to bagged methods but only some features are
chosen to train each weak classifier.

3. Boosting method are also similar to bagging methods. However,the subsets
for training are not chosen randomly, but incorrectly classified samples are
preferred.

Classifiers with parameter values are listed in Table 6.
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Tab. 6 Parameters of Ensemble classifiers

Parameter  Boosted Bagged Subspace Subspace RUSBoosted

Trees Trees Discrimi- KNN Trees
nant

Ensemble AdaBoost Bag Subspace Subspace RUSBoost

method

Learner Decision Decision Discriminant Nearest Decision

type Tree Tree neighbors Tree

Maximum 20 20 - - 20

number of

splits

Number of 30 30 30 30 30

learners

Learning 0.1 - - - 0.1

rate

Subspace - - 248 248 -

dimension

3.4.6 Multilayer perceptron

Multilayer Perceptron (MLP) consists of input layer, one or more hidden layers
and one output layer. In input layer there is the same number of neurons as
number of features. Number of neurons in hidden layers vary. Output layer
consists of one neuron for each class.

It is necessary to find close to optimal weights for each neuron. It is done during
learning phase. MLP is typically learned by technique called back-propagation,
however there are many othe algorithms. We tried two of them.

Levenberg-Marquardt backpropagation (LM) is one of the fastest methods.
This method combine advantages of two optimization methods: Gauss—Newton
algorithm, which is very fast but not always finds a solution and gradient descent
which always finds a local optimum but is not so fast. LM is quite slower than
Gauss-Newton but always converges to local optimum. Disadvantages of LM
method is that found local optimum is not necessarily the global one. Another
limitation of this method is that mean or sum of squared errors have to be used
as performance function.

Second used learning method called Scaled Conjugate Gradient Backpropaga-
tion (SCG). Common conjugate gradient adjusts the weights along conjugate di-
rection instead of steepest descent direction as other methods like LM. SCG avoids
the time-consuming line search which other conjugate gradient methods do.
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Tab. 7 Parameters of MLP

3.4 Classification

Parameter Fine MLP Two hidden SCG MLP
layer MLP

Number of hid- 1 2 1

den layers

Number of neu- 10 20, 20 30

rons in layer

Training func- LM LM SCG

tion

Performance Mean squared Mean squared Cross entropy

function error error

Used MLP classifiers are listed in Table 7.

3.4.7 Self-organizing map

Self-organizing map (SOM) is another type of artificial neural network. It is

typically two dimensional network of neurons. Each neuron is connected to its

neighbors. Neighbors are defined by topology function and neighborhood size.

Neighborhood size and distance between neurons are changed during learning

process. Parameter values are listed in Table 8.

Usually, SOM is trained using unsupervised learning. Neurons made clusters

with similarly properties during learning. Each neuron is assigned to one class

according to majority class of its associated samples. New samples are classified

according to the nearest neuron.
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Tab. 8 Parameters of SOM

Parameter Fine Medium  Coarse Grid Manhattan Big
SOM SOM SOM SOM SOM neighbor-

hood size
SOM

Size 2,2 7,7 10, 10 7,7 7,7 7,7

Initial 3 3 3 3 3 7

neigh-

borhood

size

Layer Hexagonal Hexagonal Grid Hexagonal Hexagonal Hexagonal

topology

function

Neuron Link dis- Link dis- Link dis- Link dis- Manhattan Link

distance tance tance tance tance distance distance

function
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4 Experiments

This chapter summarizes all the experiments performed on our data.

4.1 Validation methodology

Area under receiver operating characteristic (AUC) was used as main quality
indicator. We calculated AUC in five-fold crossvalidation for each patient. This
calculation was iterated ten times and all values were averaged. This average was
used for final comparison.

It is important to divide data into test and training sets correctly because there
are six samples from one hour. Data coming from the same hour can be very
similar. An appearance of samples from one hour in both training and testing set
would lead to an optimistically biased cross validation estimate. For this reason,
we placed each whole sextuplet either into test or into training set.

4.2 Results

Feature preprocessing

First we found the best setting of feature preprocessing. Different combinations
of outliers removing and class balancing were tested. Results are shown in Fig-
ure 12. Descriptions of combinations are in Table 9 with means and standard
deviations. Three values are written in each cell. First number is ID of combi-
nation corresponding with Figure 12. Second number is mean of AUC and third
value is standard deviation.

We can observe two phenomena in Figure 12. First, outliers removing method
based on distance matrix seems to be better than the second method. Second,
class balance method based on undersampling gets worse results than oversam-
pling methods. It was expected because there is lack of data, which gets even
worse when undersampling is done.

Combination with ID 5 and 7 perform similarly. We choose combination 7
for the remaining experiments, because it has bigger value of 25th and 75th
percentile. In final algorithm, nearest neighbor method was used for balancing
classes together with distance matrix based outlier removal.
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Fig. 12 AUC of different combination of preprocessing methods

Tab. 9 Combination ID and their means with standard deviations of AUC

Distance matrix Distance from median

ID mean std  ID mean std
Random undersampling 1 0.5992 0.1945 2 0.6178 0.1868
Near miss undersampling 3 0.5799 0.2175 4 0.5632  0.2149
Gauss noise oversampling 5 0.7127 0.2241 6 0.6919 0.2105
Generating NN 7 0.7103 0.2321 8 0.6907 0.2156
SMOTE 9 0.7090 0.2285 10 0.6916  0.2140

Missing values

Next we tried different approaches to handle missing values. The results are
shown in Figure 13 and listed in Table 10.

We can see that proposed method does not work well. Third method does not
work at all. It is because this method uses for training only samples with more
than 90% measured data and there are not enough samples like that.

Only the last method gets better result than simple replacement of missing
values by zero. But the difference is not satisfying. we choose replacing miss-
ing values by zero for this reason. Moreover analyze of missing data indicated
that there sometimes can be dependency between class where sample belong and
percentage of missing values. Moreover, when the algorithm should be used in
practice the speed of methods is important. Replacing missing values by zero is
definitely fastest from proposed methods.
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Tab. 10 Missing value removing method ID and their means with standard deviations

of AUC

Feature selection

Greedy algorithm

Missing value removing method ID mean std
Replaced by zero 1 0.6973 0.2358
More than 50% 2 0.6920 0.2145
More than 90% 3 0 0
Replaced by most similar 4 0.6976 0.2214
Delete missing parts 5 0.7114 0.2147

Results of greedy algorithm for feature selection is shown in Figure 14 and listed

in Table 11. AUC in table means AUC for combination of feature in the same

row and all features above it.

We can see that the best result is obtained for

first eight features. Using more features is unnecessarily because we do not have

enough data for learning and it leads to over-fitting.
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AUC with different number of features
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Tab. 11 AUC for greedy algorithm by different number of features
Feature
1 mean amplitude in time domain
2 hjorth mobility
3 percentage of missing data on channel
4 higuci fractal dimension
5 spectral edge 50 under 40 Hz
6 time series correlation eigenvalues
7 maximal amplitude in frequency domain
8 spectral eigenvalues per frequencies
9 maximal amplitude in frequency domain in average channel
10 minimal amplitude in time domain
11 maximal amplitude in time domain in average channel
12 spectral edge 90
13 correlation eigenvalues in spectral domain
14 kurtosis
15 spectral entropy
16 mean amplitude in frequency domain in average channel
17 spectral edge 75
18 standard deviation of amplitude in frequency domain in average channel
19 correlation matrix triangle in time domain
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4.2 Results

Evolution of AUC
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Fig. 15 AUC for evolutionary algorithm of different population

Evolutionary algorithm

We had great expectation from evolutionary algorithm (EOA) and assumed good
results. Other works use EOA and their results are improved [33, 34, 35]. Unfor-
tunately those expectations were not confirmed. Power of evolutionary algorithm
is in large number of population. But calculating of fitness function as AUC from
5-fold cross-validation is too slow. We used population with 10 individuals but
did not get better result than with greedy algorithm in a reasonable amount of
time. Evolution of AUC is shown in Figure 15 and list of used features in last
population is listed in Table 12.

It would be appropriate to propose faster fitness function in terms of a filter
approach. For example, maximization of distance between samples of different
classes ad minimization of distance between samples of same classes could work.

It could be beneficial to set some restriction about amount of initially selected
features. Now each feature is used with probability 0.5. There are 48 possible
selected features so about 24 features are selected in average. Optimal number of
features is according to greedy algorithm about eight (considering our particular
amount of available training data).

Unfortunately, there was no more space for research about improvement of
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Tab. 12 List of features selected by evolutionary algorithm

1 characteristic of covariance matrix in frequency domain
2 correlation eigenvalues in frequency domain

3 hjorth activity

4 hjorth complexity

) hjorth mobility

6 hurst exponent

7 kurtosis

8 mean of spectral power with logarithmic scaling for bands up to 48 Hz
9 maximal amplitude in time domain

10 maximal amplitude in time domain in average channel
11 mean amplitude in frequency domain in average channel
12 mean amplitude in time domain in average channel
13 mean amplitude in time domain

14 minimal amplitude in time domain

15 percentage of missing data on channel

16 spectral edge 50 under 40 Hz

17 spectral edge 75

18 spectral eigenvalues per frequencies in dyadic

19 spectral eigenvalues per frequencies

20 spectral entropy

21 standard deviation of amplitude in frequency domain
22 standard deviation of amplitude in time domain in average channel
23 standard deviation of amplitude in time domain

24 correlation matrix in time domain

25 correlation matrix triangle in time domain

evolutionary algorithm in this work because it is not main area of interest of this
work. We used features found by greedy algorithm in the final algorithm due to
the better results.

Classifier

We tried to classify data with 31 different classifiers. Results are shown in Fig-
ure 16 and classifiers are listed in Table 13.

Only two classifier did not work. It was Boosted and RUSBoosted Tress. All
of other classifier had median over 0.5. This was probably because an incorrect
usage of the available implementation.

We can see in results that often smaller classifiers obtain better results than
more complex ones. For example decision tree with 4 splits gets better result
than one with 40 and one with 100 splits. Similar situation can be seen with
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Tab. 13 List of classifiers, their AUC and standard deviation

ID Classifier mean AUC std AUC
1 Simple tree 0.6581 0.2338
2 Medium tree 0.6158 0.2172
3 Complex tree 0.6158 0.2172
4 Linear discriminant 0.6892 0.2136
5 Quadratic discriminant 0.6642 0.1814
6 Linear SVM 0.6865 0.2638
7 Quadratic SVM 0.6923 0.2471
8 Cubic SVM 0.6599 0.2740
9 Fine Gaussian SVM 0.7029 0.2345
10 Medium Gaussian SVM 0.7493 0.2260
11 Coarse Gaussian SVM 0.7339 0.2439
12 Fine KNN 0.6726 0.2037
13 Medium KNN 0.7413 0.2357
14 Coarse KNN 0.7397 0.2204
15 Cosine KNN 0.6877 0.2199
16 Cubic KNN 0.7168 0.2169
17 Weighted KNN 0.7213 0.2147
18 Boosted Trees 0.0978 0.2407
19 Bagged Trees 0.7556 0.2224
20 Subspace Discriminant 0.6660 0.2625
21 Subspace KNN 0.6831 0.2036
22 RUSBoosted Trees 0.0856 0.2111
23 Fine MLP 0.6530 0.2719
24 Two hidden layer MLP 0.6492 0.2707
25 SCG MLP 0.6275 0.2721
26 Fine SOM 0.6521 0.2094
27 Medium SOM 0.6773 0.2002
28 Coarse SOM 0.6389 0.2028
29 Grid SOM 0.6829 0.2032
30 Manhattan SOM 0.6776 0.2030

31 Big neighborhood size SOM 0.6795 0.2055

35



AUC

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

4 Experiments

-1 -

=1
- —
F———1 -

- —————4 4
AR
— a4
—— =

- — =
- — = A
E— = -

- —
=
b — — — o o
- — — 4
[
| ER——
- =
- ———1 4

- —— =
===
e =
- — ——1 A

b= -

|
A

S

H_______
-
— A —

— e
_—————

——————— —
_F————————— — —

———— — — — — — — — ]

-
|
|
|
|
|
|
|
|
|
L

e —m——mmm ]

I
T I
| |
| |
| |
| |
| |
| |
| |
| |
| 1
| +
| +
1 +

b - -

L
I
I
I
I
I
I
I
I
I
I
I

1
I

P N L N
_|_
_|_

B OF
I

ID of classifier

Fig. 16 AUC for different classifiers

multilayer perceptrons. The best results of MLP gets fine MLP with only one
hidden layer which contains ten neurons. One the other hand the simplest 4NN
classifier with four neighbors gets worse results than others KNN classifiers. KNN
classifiers with 40 and 100 neighbors achieve similar results but had a bit more
stable results with less number of extra poor results.

We choose Bagged trees classifier as the final algorithm because its results are
the best from all results. It is quite interesting that classifier which is composed
from trees are the best while decision trees themselves are not much good in this
context. On the other hand weak decision classifiers are converted to the strong
one which is exactly what this algorithm should do.

Results on independent data

Finally, we test the algorithm on two patients which we did not use during op-
timization. We used the same way of validation with cross-validation as during
optimization to obtain more precise results. Results are shown in Figure 17 and
listed in Table 14.

Apart of some outstanding runs, algorithm achieves AUC higher than 0.5 on
both patients. Moreover averages are over 0.8 for both datasets. Median of results
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4.2 Results

Tab. 14 Results for independent data
Patient ID mean AUC std AUC

7 0.8282 0.1401
8 0.8527 0.1939

is worse for the first patient but on the other hand minimum of results are higher
for the first patient. It means the algorithm works more reliable on data from first
patient and results are more stable. But the algorithm also achieves very good
results for quite big amount of iteration on data from the second patient although
in some few cases results are quite bad for them. It depends on subjective opinion,
on which data the results are better.

In Figure 18 we can see five examples of ROC for each one of test datasets. One
can see an imperfect classification in Figure 18a but for four of five ROC curves
we can set threshold for which all of preictal segments will be classified correctly.
It is most important property for use in practice. When set threshold like true
positive rate (TPR) will be one, false positive rate (FPR) will be under 0.2. It
means that maximal 20% of interictal segments will be classified as preictal. It is
quite a lot but there is some prediction power. Unfortunately not for all iteration
we can set threshold optimal. As we can see on green ROC curve in Figure 18a.
There is no possible way to set threshold which leads to classification of all preictal
segments correctly and gets good FPR at the same time. Similar situation is in
Figure 18b. There are two absolutely correct classification (second ROC is hide
behind the green one). Moreover for another two figures, false positive rate is
be about 0.1, while true positive rate is preserved equal to one. Unfortunately,
even there, for some iterations, it is not possible to avoid wrong classification of
preictal segments.
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5 Conclusions

All goals from assignment were accomplished. Missing values in given data were
replaced by zero because it was fastest from all of the proposed methods and
other proposed methods did not obtain better result.

Oversampling method was used to achieve balanced amount of samples from
each class. Classes were ballanced by using nearest neighbors based method. This
method lead to best results. Both proposed undersampling methods reduced the
accuracy of classification because they probably reduced the number of samples
too much.

Eight features were selected by greedy algorithm containing characteristics both
from time and spectral domain. Evolutionary algorithm was too slow with used
fitness function and did not provide sufficient results in reasonable time.

Support vector machine classifiers with Gaussian kernel function and K-nearest
neighbors classifiers obtained better result than other proposed classifiers. Bagged
trees classifier with 30 trees obtain best results from all proposed classifiers. Sim-
ple trees had lower accuracy.

Proposed procedure achieved average value 0.8405 of area under the ROC curve
on the independent test data. This result is not still sufficient for use in practice.
Moreover results are not stable enough which is main reason why the algorithm
is not applicable, yet.

On the other hand results confirm that there are detectable changes in preictal
segment and it is possible to predict seizure coming.

There are not enough available intracranial EEG data at this moment. So it
is appropriate to record as much data as possible and continue with optimization
in bigger amount of records to achieve better and more stable results. Moreover
data should cover all physiology and psychology states of the patient.

After the result will be sufficient enough algorithm could be converted to pre-
diction of seizure in real time instead of classification of single segments. Finally,
an implantable device for seizure coming alert can be developed.
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Appendix A
Appendix

A.1 Content of the CD

Folders and most important files are listed in the Table 15. CD contains also

examples of data. It is only few samples due to size of each of them. Implemented

algorithm is in main.mat. ROC curve generated by algorithm has no information

value due to amount of training data.

Tab. 15 List of folders and files on enclosed CD

Path Description

data folder with data

data\lists folder with lists of data used for optimization
data\test example test data

data\training example training data

matlab folder with matlab files

matlab\3rd_party third party functions

matlab\classifiers functions for training classifiers and comput-

matlab\data_preparing
matlab\data_preprocessing
matlab\feature_extraction
matlab\feature_preprocessing

matlab\feature_selection
matlab\other_ functions

matlab\main.mat
lenkazoulova_MT.pdf

ing AUC

functions for samples creation

function for removal of missing data
functions for features extractions

functions for removal of outliers, normaliza-
tion and class balance

greedy algorithm and evolutionary algorithm
implementation

other useful functions

implemented algorithm

this thesis
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