CENTER FOR
MACHINE PERCEPTION

CZECH TECHNICAL
UNIVERSITY IN PRAGUE

A
0p)
LL]
1
—
2
ad
LL]
—
0p)
<T
=

Multi-Body Structure from Motion

Be. Jan Kréek

krcekjan@fel.cvut.cz

May 25, 2017

Thesis Advisor: Ing. Tomas Pajdla, Ph.D.

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University
Technicka 2, 166 27 Prague 6, Czech Republic
fax +420 22435 7385, phone +420 22435 7637, www: http://cmp.felk.cvut.cz

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc.Jan Krcéek
Study programme: Open Informatics
Specialisation: Computer Vision and Image Processing

Title of Diploma Thesis: Multi-Body Structure from Motion

Guidelines:

1. Review the state of the art in multibody structure from motion [1-11] and in particular
analyze the algorithm used in [1].

2. Suggest and develop a method improving of the multi-body structure from motion over [1].

3. Implement the method, demonstrate its performance on real data.

Bibliography/Sources:

[1] F. Srajer. Image Matching for Dynamic Scenes. MSc Thesis, CTU 2016.
https://dspace.cvut.cz/bitstream/handle/10467/64771/F3-DP-2016-Srajer-Filip-filip-srajer-diploma-thesis.pdf

[2] Tianwei Shen, Siyu Zhu, Tian Fang, Runze Zhang, and Long Quan.Graph-Based Consistent Matching
for Structure-from-Motion. ECCV 2016.

[3] R.Vidal and R. Hartley. Three-view multibody structure from motion. PAMI, 30(2):214-227, Feb 2008.

[4] A.W. Fitzgibbon, A. Zisserman. Multibody Structure and Motion: 3-D Reconstruction of Independently Moving
Objects. ECCV 2000 (http://www.robots.ox.ac.uk/~vgg/publications/2000/Fitzgibbon00/fitzgibbon00.pdf)

[5] P.Ji, H. Li, M. Salzmann, Y. Zhong. Robust Multi-body Feature Tracker: A Segmentation-free Approach.
CoRR abs/1603.00110 (2016)

[6] Shubhangi L. Vaikole, S. D. Sawarkar. Moving Object Segmentation with camera in motion Using GMEC and
Change Detection Method. JMPT 6(2): 53-60 (2015)

[7]1 C. Rubino, M. Crocco, V. Murino, A. Del Bue. Semantic Multi-body Motion Segmentation. WACV 2015: 1145-
115.

[8] R. Sabzevari, D. Scaramuzza. Monocular simultaneous multi-body motion segmentation and reconstruction
from perspective views. ICRA 2014: 23-30

[9] G. Pan, K-Y. K. Wong. Multi-body Segmentation and Motion Number Estimation via Over-Segmentation
Detection. ACCV Workshops (2) 2010: 194-203, 2005.

[10] N. Thakoor, J. Gao, V. Devarajan. Multibody Structure-and-Motion Segmentation by Branch-and-Bound
Model Selection. IEEE Trans. Image Processing 19(6): 1393-1402 (2010)

[11] A. Delong, A. Osokin, H. Isack, Y. Boykov. Fast Approximate Energy Minimization with Label Costs. IJCV
2012. http://www.csd.uwo.ca/~yuri/Abstracts/ijcv10_|c-abs.shtml

Diploma Thesis Supervisor: Ing. Tomas Pajdla, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

L.S.

prof. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, January 6, 2017

Acknowledgment

I wish to express my sincere thanks to Ing. Tomas Pajdla Ph.D., my thesis
advisor. I am extremely thankful and indebted to him for sharing expertise,
and sincere and valuable guidance and encouragement extended to me. My
thanks to Ing. Filip Srajer for his help and patience with all of my questions.
And finally I want to wholeheartedly thank my family for all of their support.

Abstract

This thesis first focuses on analyzing a C++ library YASFM [1], especially
with regard to the situations, when the resulting models are not satisfac-
tory. The work tries to document what causes those unsatisfactory results
via experimenting with different input scenes and setups and then chooses a
specific issue to focus on. Then it proposes an improvement of YASFM [1],
which would address that issue, mitigating its impact on the result and
further improving the output model’s quality. The principle of this im-
provement lies in recycling potential 3D points that were removed during
the reconstruction phase of the original model. The thesis then further de-
scribes the steps of this process, comparing the results with the original
YASFM [1] and showing its benefit through experimental results.

Keywords computer vision, 3d reconstruction, structure from motion,
yasfm, c++

Abstrakt

Diplomové préce se nejdiive zabyvé analyzou C++ knihovny YASFM [1],
se zaméfenim na piipady, kde vysledné modely generované knihovnou ne-
jsou piilis dobré a zkoumanim divodiu pro¢ k tomu dochazi. Vyzkum je
provadén formou dokumentovanych experimentu. Z objevenych problému je
poté vybrana mensi oblast, kterou se prace nasledné zabyva vice do hloubky.
Zjisténi jsou vyuzita k navrhu rozsifeni knihovny, které tyto nedostatky
fesi. Princip lezi piedeviim ve zhustovani vyslednych modeli o body, které
byly puvodnim YASFM [1] vyfazeny v prubéhu rekonstrukce. Préce pos-
tupné popisuje jednotlivé tpravy oproti puvodni funkénosti knihovny a na
vysledcich experimentu ukazuje jejich piinos.

Kliéova slova pocitacové vidéni, 3d rekonstrukce, scéna v pohybu, yasfm,
c++

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and that I
have listed all sources of information used within it in accordance with the
methodical instructions for observing the ethical principles in the prepara-
tion of university theses.

Prohlaseni autora prace

Prohlasuji, ze jsem predlozenou préci vypracoval samostatné a ze jsem uvedl
vesekeré pouzité informaéni zdroje v souladu s Metodickym pokynem o
dodrzovani etickych principu pii piipravé vysokoskolskych zavérecnych praci.

Contents

1

Intro

1.1 Contributions
1.2 Thesis structure
1.3 Frequently used terms

Related work

2.1 Feature point detection and matching
2.2 Object segmentation
2.3 3D Reconstruction
2.4 RANSAC,
2.5 Different approaches to SEFM

YASFM Analysis

3.1 YASFM pipeline
3.2 Algorithm
3.3 Common issues

The proposed modification
4.1 Two step modification algorithm
4.2 Finding the transformation

Implementation
5.1 Implemented features
5.2 Code modifications

Experiments

6.1 Camera technical specifications
6.2 YASFM settings
6.3 Experiment setups and results.
6.4 Experiment 1 - Shuffling books
6.5 Experiment 2 - Daliborka
6.6 Experiment 3 - Moving books
6.7 Experiment 4 - Moving books, no background .
6.8 Experiment 5 - Box and books, no background
6.9 Experiment 6 - Multiple objects, no background

Future work

Conclusion

12

13
16
17

18
18
19

20
20
20
21
21
24
26
28
31
38

42

43

1 Intro

With the ever growing quality of image capturing methods and hardware,
there is also growing demand for better 3D reconstruction techniques. One
such technique is Structure from Motion (SFM), nowadays an important
research topic within the field of computer vision. It estimates 3D structures
from a sequence of 2D images, usually coupled with local motion signals. It
has wide array of possible uses within applications working with complex
scenes in motion. One such example can be video post-production software.

Multiple different approaches to this problem are being researched. A
common approach used for estimating the 3D model usually works in sev-
eral steps. After the initial stage of adjusting the images, the next step
is detecting the features and finding correspondences between images using
SIFT descriptors. This first part of the process is usually very similar among
most of the approaches to estimating SFM. The biggest difference lies in the
next part, where the segmentation and reconstruction the specific struc-
tures is done. One of the commonly used methods for this task is employing
some homography or epipolar geometry constraints. This work focuses on
a slightly modified approach using a fast greedy algorithm implemented in
YASFM [1].

This approach proposed in Filip Srajer’s master’s thesis [1] detects mul-
tiple homographies and groups them together into motion groups.

When used for 3D reconstruction of a scene in motion, it yields good
results on many scenes and data-sets, however there is also a number of
other cases where the resulting model is flawed in some way. There are
situations, where multiple objects end up being merged together, when they
should be reconstructed separately. The opposite case is the reconstructed
model being incomplete, either missing some part or just being too sparse.
Those two issues are the most general and noticeable ones among all of the
problems that can occur. So if we can identify those issues and find their
cause, then we can try to mitigate or even fully remove them with the right
modifications to the current method itself and its implementation.

1.1 Contributions

This work builds upon the functionality of YASFM [1]. There are two main
contributions.

First being the in-depth analysis and describing the algorithm used
within the original library and exploration of different flaws occurring within
the results.

Secondly, we propose a modification of the original process, capable of
dealing with the issue of sparse models, missing unreconstructed parts. This
modification makes use of calculating complementary model from unrecon-
structed tracks for each original one and then using epipolar constraints to
merge the two models.

1.2 Thesis structure

The content of this work is structured into the four main parts:

1. (Section 2). The discussion of the State of the Art approaches to 3D
reconstruction and SFM.

2. (Section 3). Analysis of the YASFM [1] library run, with the focus
on input cases resulting in flawed models. Then in-depth study of the
issue, chosen to be addressed in the next chapter.

3. (Section 4). The theoretical background and description of the new
functionality added to the YASFM [1] library.

4. (Section 5). The documentation of the classes and methods added to
the YASFM [1] library [1].

5. (Section 6). Description of the specific setup for each experiment per-
formed and the discussion of the results.

6. (Section 7). Discussion of further work and possible improvements.

7. Section 8. Final summary of results and the proposed method’s ben-
efits.

Programming languages used for the scripting and experiments were
MATLAB and C++4. The Daliborka data-set was provided by CMP and
the YASFM [1] library by its author Filip Srajer.

1.3 Frequently used terms

Feature (point) is a detected signature spot within the image. In case
of YASFM [1] library, feature points are detected and assigned a SIFT de-
scriptor. [2]

Correspondence is a pair of feature points matched through their de-
scriptors.

Track is a set of feature points detected among the images and connected
via chain of correspondences among them.

Model is a resulting point-cloud of the 3D reconstruction, ideally repre-
senting one moving object within the scene.

Homography is a special relationship describing mainly the transforma-
tion between two points within different image planes. [3]

Segment is a homography group assigned to every correspondence be-
tween two images. This term is introduced mostly to better differentiate
between global track groups that form nViewMatches and the homography
groups, local to each image pair.

Group is how we refer to the global track groups.

2 Related work

Structure from motion and the problem of multi-body segmentation can be
broken down into several sub-problems, which are then each dealt with in a
suitable way. This chapter will cover some of those commonly used methods.

2.1 Feature point detection and matching

The first step of any Structure-From-Motion pipeline is the detection of ob-
jects within the captured images. What most classic approaches have in
common is that they begin with searching for points of importance, also
called features, that define the objects within the input image sequence.
Features can be detected and described via multiple methods, with the cur-
rently most widely used being SIFT [2], also used within YASFM [1].
Having detected the feature points, the next step is matching them based
on their descriptors. This is usually done by nearest neighbour search and
further filtering the outliers via some criterion such as Lowe ratio [2].

2.2 Object segmentation

More specifically making use of motion information to model and segment
the scene. A review of some popular methods for segmentation of the scene
with focus on the Change direction method is done by Shubhangi L. Vaikole
and S. D. Sawarkar in their work [4]. The simplest traditional way of mod-
elling the scene starts with two-view relations, choosing the best pair and
gradually adding more views one at a time and thus building the model
incrementally. This approach was also used by Filip Srajer in the original
YASFM [1]. To further robustify this process, we could increase the number
of views, similarly like in the method proposed by R. Vidal and R. Hartley
in their work [5] using a three-view approach instead. Past that they stick
to the classical approach of using epipolar geometry to model the scene.
Another such approach is described by A. W. Fitzgibbon and A. Zisserman
in their work [6] also using epipolar geometry to model the scene via cal-
ibrating cameras modelling each object’s motion separately. Most of the
other similar approaches usually search for such model that has the highest
support and discard the rest. YASFM [1] works differently in the sense that
it groups together ”similar” homographies using a greedy algorithm, with
each of the resulting final groups modelling one object within the scene, thus
keeping as much information as possible.

This homography grouping step is essentially a type of image matching
followed by search for consistent groups. Thus applying some advanced
graph-based matching approaches, like the work of Tianwei Shen et al. [7]
could also improve the results.

2.3 3D Reconstruction

The actual process of reconstructing a 3D scene begins after we have found
at least the two-view matches among the images (cameras). What follows
is usually a process of starting from the best pair and further gluing more
cameras one-by-one as the pool of tentative matches changes with each ad-
dition. During this process, we often want to eliminate the outliers within
the reconstructed model and enforce consistency of the inliers via bundle
adjustment [8]. In YASFM [1] this step is performed by a system inspired
by Bundler [9] even saving the output in its default format, so that it can
be loaded and used by any tool compatible with it.

YASFM’s [1] main idea focuses on using the inliers of every detected
model, not only the most dominant one. Thus allowing for fast and still
reasonably accurate reconstructions.

The modification we propose in Section 4 further builds on this idea, by
making use of as many tracks as possible. To that goal we aim to reduce the
amount of unreconstructed points during the final model reconstruction.

2.4 RANSAC

The random sample consensus i.e. RANSAC [10] is among the most useful
tools used to further optimize the results while keeping fast processing time
of the whole pipeline. When modelling a scene using either homographies or
epipolar geometry, we need some points that will define the model. Searching
for a near-optimal subset of points is thus almost a necessary step, if we want
the results to be accurate.

An interesting alternative is proposed by Cosimo Rubino et al. [11],
where they use a general purpose detector to construct a sampling function
based on its semantic information. This function then allows the grouping
of similar features together. Where this approach is viable it can replace
the standard approach to fitting a model to a scene via multiple calls of
RANSAC [10].

2.5 Different approaches to SFM

Besides all of the more standard methods mentioned previously, multiple
different approaches that might not seem that related to 3D reconstructions
from motion can be applicable. Such as the segmentation-free approach
to multi-body feature tracking described by P. Ji et al. [12]. Within their
work, they introduce a method of tracking rigid scene motion by modelling
all motions at once with the use of epipolar constraints.

Reza Sabzevari and Davide Scaramuzza chose to tackle the problem of
single camera mounted on a car, which by itself is a rather complex scene.
By factorization of projective trajectory matrix, while omitting estimation of
depth, they focus on generating multiple hypotheses using epipolar geometry
to estimate both 3D structures and the motions.

Other interesting approaches are the the work of N. Thakoor et al. [13]
using Branch-and-Bound method, while G.Pan et al. [14] uses Over-Segmentation
Detection to estimate the number of motions within the scene.

3 YASFM Analysis

In this chapter we take a closer look at the inner workings within the in-
cremental pipeline of YASFM [1]. However we take a different approach to
how Filip Srajer described it in his own work. Our goal is to analyze and
evaluate it with future improvements in mind. So that we can choose which
area to focus on further on in this work.

3.1 YASFM pipeline
Steps:

1. Input image sequence processing - preprocessing and then scanning for
feature points and generating SIFT descriptors.

2. Matching - searching for correspondences among every pair of images.

3. Geometric verification - creating and assigning homography groups
modelling motion to every correspondence.

4. Model building - generating tracks and grouping them together via
algorithm described in Section 3.2.

5. 3D reconstruction and bundle adjustment - triangulating points from
the best two images for the specific group, then gluing the remaining
tracks via correspondence chains over multiple images.

For full and detailed description of the first steps of the pipeline, please
refer to the work by Filip Srajer [1]. This analysis is solely focused on the
last two steps - the merging of tracks into the n-view-matches and then
running bundle adjustment [8] on them.

Next we are going to take a closer look at the former of the two. The
merging step uses a rather greedy approach which could be represented by
an undirected graph G.

G issuch an undirected graph whose vertices are the basic two-view matches
outputted from the previous step and assigned their local homography group
ID. An edge connects such vertice to all others sharing the same homogra-
phy group. A single vertice can be part of multiple homography groups,
each for a different image pair.

Idea Local homography groups for one pair of images very often overlap
with local homography groups for other pairs consisting of either one of the
two images and a different image. This means that in G, such pairs are
always connected with edges. Thus if we find strongly connected compo-
nents [15] within G, we create the groups of tracks among multiple images,
also sometimes called n-view-matches and each n-view-match will ideally
represent one object within the scene.

The last step of the original pipeline takes each resulting group from the
previous step and then performs the camera gluing. Starting with the best
found pair, then running first bundle adjustment [8] optimization using Ceres
solver [16]. There are two extra filters for outliers based on reprojection error
and small ray angle thresholds done after the bundle adjustment [8]. Upon
removing outliers, the next best camera to add is chosen and the gluing
step is repeated, reconstructing matches, running bundle adjustment again
and filtering outliers. As this process goes on, the pool of tentative corre-
spondences connecting the current reconstructed result with the tentative
cameras is changing accordingly.

3.2 Algorithm

input : F ... set of features(keys) found for every camera
P ... set of CameraPair structures containing all matched
tracks and which segment they belong to, for every pair of cameras
output: G ...set of track groups, contains the label of group to which
each track belongs

/* Create a group of size one for every track. */

G = InitGlobalGroups(F,P);

/* Map of camera-pair-segment triples per group, so that
groupMap[jg]l = {group((2,3),1), group((5,8),0), ... }
means camera pair 2,3 was segmented to segment with
local id 1 and belongs to n-view match global group Id
jg, ... */

groupMap = InitGroupMap(F,P,G);

/* Merging the identical groups. Identical means they
match within all their camera-pair-segment triples. */

G = MergeldenticGroups(G);

/* Here we prepare a structure to keep information about
group relations, structure has to support removal of
whole rows, so Map<int Key,Map<int Key,int Value>>
structure is used in current implementation. */

commonSegmentsInPairsCount[groupsCount|[groupsCount;

for ig = 0...groupsCount do

for jg = ig+ 1...groupsCount do
/* Search for identical camera-pair-segment triples

between global groups ig and jg. */
commonSegmentsInPairsCount[ig][jg] :=
countCommonPairs(groupMap,ig,jg);

end

end
Algorithm 1: Initialization phase and merging of identic groups.

/* Main merging loop */
Set candidates; int maxCount = -1, maxJ, maxI;

while maxCount /= 0 do
findMaxCount(commonSegmentsInPairsCount,maxCount,maxJ,maxI);

/* Merge groups by adding all non-common entries from
groupMap [maxJ] to groupMap[maxI], each G[i]=maxJ
becomes G[i]=maxI x/
mergeGroups(groupMap, G, maxI, maxJ)
/* Replace all occurences of the removed group with the
now merged one. */
fixGroupAssignment (G,maxI,maxJ);
/* Push groups that had common image-pair-segments with
group maxl and maxJ x/
candidates.push(nonZeroGroups(commonSegmentsInPairsCount[maxl]));

candidates.push(nonZeroGroups(commonSegmentsInPairsCount[maxJ]));

/* Remove rows maxI and maxJ from
commonSegmentsInPairsCount */
removeRow (commonSegmentsInPairsCount,maxI);
removeRow (commonSegmentsInPairsCount,maxJ);
/* Go through all groups left in
commonSegmentsInPairsCount */
candidates.push(commonSegmentsInPairsCount.find AllRowsContaining(maxI));

commonSegmentsInPairsCount.removeElement(maxI);
candidates.push(commonSegmentsInPairsCount.find AllRowsContaining(maxJ));

commonSegmentsInPairsCount.removeElement(maxJ);
/* Recalculate common camera-pair-track counts for all

candidates */
maxCount = 0;
ig = maxlI;

for each jg in candidates do
commonSegmentsInPairsCount[ig][jg] :=
countCommonPairs();

if commonSegmentsInPairsCountlig/[jg] > maxCount then
maxCount := commonSegmentsInPairsCount|ig][jg];
maxJ = jg;
max] := ig;

end

end

end
Algorithm 2: Group merging loop. End of YASFM pipeline Step 4.

10

/* Single camera gluing step */

input :t ... single n-view-match (group of tracks) outputted from
the track merging step. Contains coordinates and image
indices for matches defining each track.

output: m ... the resulting model.

bestPair = findBestPairAmongCameras(t);

m = reconstructPoints(bestPair);

m = bundleAdjust(m);

m = filterOutliers(m);

camToAdd = findNextBestCam(m,t);

while camToAdd!=null do

m = reconstructAndAddPoints(camToAdd,t); m =

bundleAdjust(m);
m = filterOutliers(m);
camToAdd = findNextBestCam(m,t);
end
Algorithm 3: YASFM pipeline Step 5 - Camera gluing step.

This algorithm describes the reconstruction of single model performed
for each group outputted from the previous step separately.

11

3.3 Common issues

As the task of reconstructing a 3D model from a scene in motion is rather
difficult problem, so within complex scenes it is quite likely that the recon-
struction won’t result in a perfect model. The most commonly occuring
flaws are the following:

Unseparated objects is the situation, when multiple separately moving
objects end up being reconstructed as a single model. This issue mostly
occurs when there are two or more input images where the motion of such
objects is insignificant, close to standing still. Thus a single homography
group can cover correspondences found on all such objects. Then within the
algorithm above it can be observed that such tracks are grouped together
into a single nViewMatch, thus resulting into a merged model. This usually
results into multiple objects merging together with the background.

Fragmented objects is the opposite situation, where big objects end up
being fragmented into multiple smaller ones. This issue is considered a little
less severe, as it is much easier to merge such models together afterwards
compared to splitting incorrectly merged pointclouds.

Sparse model is the result when a part of the scene does not end up being
reconstructed or the point density of some part of the model is very low. In
extreme cases the whole model can be discarded. There are multiple factors
affecting this, starting with the input image quality, the amount of detected
and matched points and many more. But most of those problems are not
going to be covered by this work. For our purposes the most important
cause of this flaw is within the YASFM [1] pipeline, specifically the bundle
adjustment step.

A significant amount of tracks is often fully discarded during the bundle
adjustment process. So the unreconstructed points relevant to those are
all lost. This is mostly caused by the bundle adjustment’s approach of
discarding the outliers. In some cases the outliers can even form the majority
of the tracks being reconstructed.

With this problem in mind, we designed the modification proposed in
the next section, aiming to reduce the loss of reconstructed points within
this step.

Other factors like low quality of the input images, including blur, occlu-
sion and many other effects, have rather high impact on the initial steps
of extracting feature points and further matching them into corresponding
pairs.

12

4 The proposed modification

We propose a two step modification of the original YASFM pipeline, aiming
to minimize the loss of potentially reconstructable points. These two steps
are performed for each model separately. The additional two steps are added
to the end of the original YASFM [1] pipeline, beginning just as the bundle
adjustment step is finished. At that point we have the reconstructed model
and also most importantly its unreconstructed outliers which are key for the
first step to work.

mopasw , A2
R A
;c.;;’fn -,!
'-.' * . b . P B F -l

Figure 1: Example of a model reconstructed by the original YASFM pipeline.

First step - Complementary model Within the first step, we take
the unreconstructed outlier tracks and run a second bundle adjustment only
on those tracks. The resulting model is complementary to the original. We
can repeat this step recursively until the amount of outliers is acceptably
low enough. However this approach can further complicate the following
step. We designed Experiment 4 described in Section 6.7 to test how many
points form an average complementary model and thus can be recovered.
This experiment also proved the necessity of the following step, as the com-
plement gets reconstructed separately, thus with different scale, translation
and rotation compared to the original model.

13

Figure 3: Example graph of which cameras (on the left and mirrored on the
right) observe the original(blue lines) models and their complements (orange
lines).

14

Second step - Merge After reconstructing both the original and its
complementary model, we need to find a transformation that would allow
us to fit one within the coordinate system of the other and thus merge them
accurately. For this purpose, we can make use of the following idea.

Idea Some tracks end up being split due to some of the correspondences
being visible only on several images. So both the original model and the
complement can contain a reconstructed point originating from the same
track. With knowledge of three or more such points, it is possible to calcu-
late a reliable rotation, translation and scale transformations. For this we
use SVD decomposition to calculate the transformation. In cases where we
have more than three common points, we can use RANSAC [to find the
best triple resulting in smallest transformation error.

If the only three such points lie on a line or very close to such degenerate
setup, the rotation transformation might require some additional manual
tuning. An example of such behaviour is shown in Section 6.9.

We can see that in the worst case the proposed modification will result
in the same amount of reconstructed points as the original model. However
in general case it will yield denser models, with even the possibility of re-
covering a fully discarded model.

R .

. . 5. . !‘ . -.-.‘w‘-
- - - .
.

- s.t‘:'

Figure 4: Example of the merged original model (black) with its complement

(red).

15

4.1 Two step modification algorithm

input : 7 ... n-view-matches (groups of tracks) outputted from the
track merging step.

output: M ...pair of models, complement is transformed into the
original’s coordinates.

for each t inT do

/* Step 1 - Create models x/

original = reconstructByCameraGluing(t);

M.insert(original);

t’ = getUnusedTracks(t);

while ¢’ is big enough do

complement = reconstructByCameraGluing(t’);

/* Step 2 - Find transformation */

commonPoints = findCommonPoints(original,complement);

if size(commonPoints) >= 3 then

/* Transform.rotation ... 3x3 rotation matrix x*/

/* Transform.scale ... scalar number */

/* Transform.rotation ... 3xl translation vector
x/

transform = findTransformBySVD (commonPoints);

for each point in complement.points do
point = transform.scale*transform.rotation*point +

transform.translation;
end
M.insert(complement);
t’ = getUnused Tracks(t’);
end

end

end
Algorithm 4: Two step modification

This algorithm modification calls the Camera gluing process once for the
original model and then recursively until we deplete all the unreconstructed
tracks.

Implementation note: Only the first step of the recursive complement
creation is performed, as within the experiments even after the first step the
amount of unreconstructed tracks was nearly always close to zero.

16

4.2 Finding the transformation

This section explains what happens inside of findTransformBySV D
function called in the Algorithm 4 describing the proposed modification
of YASFM [1]. To find the relevant rotation, scale and translation, we
use Singular Value Decomposition also known as SVD [17], based approach
inspired by the one described by S. Umeyama [18].

The task - We have two sets A and B, each consisting of n points (3x1
column vectors) such that the first point in A corresponds to the first point
in B. This holds for all pairs. Our goal is to find such rotation(R), scale(s)
and translation(t) which would allow us to fit set A onto B.

B =RsA+t (1)

Rotation - We begin by finding centroids C'4 and Cpg of the two sets.

I
Ca= - ;POZMA
o ©)
Cp=— ZPoint’B
n
i=1

After finding the centroids, we can re-centre both sets by subtracting
them and assemble a direction correlation matrix K. K is 3x3 square matrix
accumulating all of the pair coordinate vector products.

K = Z Point’y x (Point’)T (3)
i=1

Now we can perform the SVD and finally estimate the rotation from the
decomposed square matrices.

[U,—,V] = SVD(K)

S = diagonal([1 1 det(U) * det(V)]) (4)
R=USVT

17

Scale - s can be computed as the ratio between euclidean norms of both
sets.

s4 = || Point 4]|

sp = ||Pointg|| (5)
54
s=—
sB

Translation - Finding t at this point is simple, all we need to do is subtract
the transformed centroid of the set we want to shift from the other.

t=Cpg— RsCy (6)

5 Implementation

Within this section we make an overview of the changes done to the original
YASFM [1] library and also describe

As the original YASFM [1] library is implemented within C++ program-
ming language, we made modifications to the code described in previous Sec-
tion 3 and then used MATLAB scripts to complete the last step of the new
pipeline. The implementation was meant mostly to prove the concept and
thus we omitted the recursive approach to the first step (Complementary
model creation) of the modification.

5.1 Implemented features
The proposed modification - The final two steps of the pipeline.
First step - Implemented within the C++ code of YASFM [1], makes use

of the unused/split tracks left after running bundle adjustment and recon-
structing the original model. Then does the same with the leftover tracks.

Saving common points - A new utility function was added for saving the
ID’s of known common points within each original model and its comple-
ment. Saves the data into text (.txt) files, two ID’s per line, first the original
and second the complement.

The second (merging step) - Realized partly via additional MATLAB
scripts also included within the whole project.

18

Tools for the analysis

Camera time-stamp attribute - We added functions to extract and keep
track of the time of capture for each image.

Homography group visualization - A C++ utility function for saving
the data and also a MATLAB tool for plotting out the inliers of each ho-
mography group after the merging step.

Result visualization - Whole set of MATLAB scripts written for this task
is included within the final build. These allow plotting of resulting 3D mod-
els, their back projection into the original images and plotting the graph of
model visibility per camera.

Additional library For the transformation estimation via SVD and
some of the visualizations, we use MATLAB library functions provided by
the thesis adviser, T. Pajdla.

5.2 Code modifications

Within Filip Srajer’s thesis proposing YASFM [1], he describes the general
use and functionality of the main classes used within the pipeline. So in
a similar fashion, we would like to point out the necessary additions and
changes in order for the modified pipeline to work. However the main classes
remain mostly unchanged.

Camera class was extended to hold information of the image capture time-
stamp. This wasn’t necessary for the two-step modification of the pipeline,
but proved helpful with the analysis. Also it can be used by any future
modifications and additions to the YASFM [1].

main.cpp is the file, where the algorithm of the proposed modification
is implemented. It contains all of the separate steps of the incremental
pipeline.

utils_io.cpp contains most of the tools to save and load data. Within
this file was added most of the utility functions necessary to pass the data
to MATLAD for visualization and the analysis as well the common point
indices necessary for the final step of the modified pipeline.

1. Homography group data - saved to files named homographies_a_b.txt,
where a and b are the two image indices in the input sequence.
Format - The first row holds the amount of groups detected. For
each group the file contains a block, with a number of its inliers first

19

and then twice that amount of lines. Odd lines contain the first image
coordinates whilst the even ones the ones in second image.

2. Common point indices - saved to files named commonldx_modeln.txt,
where n is the number of the generated model.
Format - First row holds the amount of common points, whilst two
following columns are the indices within first the original and second
the complementary models.

6 Experiments

The main goal of running all the following experiments was to evaluate
and compare changes resulting from modifying and improving the current
YASFM [1] library. Each of the experiments focuses on the specific newly
added modification, showing its effect upon the resulting point-cloud and
object segmentation within the images.

6.1 Camera technical specifications

The images were captured with a regular iPhone 4S camera with the follow-
ing specifications:

Lens focal length: 4.28 mm

Sensor size: 1/3.2” diagonal (4.54 mm x 3.42 mm)

Sensor model: Sony IMX105 Exmor R

Sensor technology: Back-side illuminated (BSI) CMOS (Complementary Metal Oxide)
Sensor resolution: 8 megapixel (3,264 x 2,448 pixels)

Macro working distance: 6.5 cm

6.2 YASFM settings
Common YASFM settings for all of the experiments:

Points re-projection error threshold: 8 [px]
Ray angle re-projection error threshold: 2 [px]
Similarity transform threshold: 20 [px]
Affine transform threshold: 10 [px]
Homography threshold: 5 [px]

20

6.3 Experiment setups and results

6.4 Experiment 1 - Shuffling books

Within this experiment we try to run YASFM [1] upon a scene modelling
the situation where both the camera and the objects move around. It is one
of the more complex cases, so our goal here was to observe the results and
confirm our hypothesis of expected results based on the previous theoretical
analysis.

Scene setup:

6 Images

3 planar objects (book piles)
Textured background
Moving camera position

Positions

3 2

Figure 5: Book pile positions being shuffled during the experiment.

21

We placed the books upon the textured background and shuffled their
positions in the following sequence, making sure to capture images from
different angles in a circle around the scene. Colours in the table relate to
the top book cover for each pile.

Image | Position 1 | Position 2 | Position 3
1 Green Yellow Blue

2 Blue Green Yellow
3 Yellow Blue Green
4 Green Blue Yellow
5 Yellow Green Blue

6 Blue Yellow Green

Figure 6: Example - first image in the sequence.

22

Results and observations

The expectations weren’t too far from the actual results. The textured
background ended up reconstructed as the biggest model and the corre-
spondences upon book piles appearing in the same spots within multiple
images got merged into it. The resulting model doesn’t contain very good
reconstruction of the book piles themselves, due to the yellow and green
books having very few feature points detected and matched at the begin-
ning of the pipeline. For future experiments, more suitable objects were
used.

Figure 7: All models projected back into the image

23

6.5 Experiment 2 - Daliborka

Here we test the YASFM [1] library upon images of Daliborka model. This
time there is just one object, which stays still and only the camera is moving
around it in a half-circle. This is the only data-set captured using a higher-
spec camera and its main purpose is to show that the modification retains
the original functionality for input sets, where it is not needed.

Scene setup:

10 images

1 3D object (Daliborka)
No background

Moving camera position

Figure 8: Sample image

24

Results and observations

For simple scenes like this one, where just one object is present with no
background, the results match the ones produced by the unmodified original
pipeline in Filip’s work. For this specific data-set, we get almost no outliers
after the bundle adjustment, so there is no need to use the modified pipeline
here. However this occurs only under very specific conditions. The scene
must be very simple, ideally without background and the input image quality
needs to be very high.

WE&&@@@@@'

25

6.6 Experiment 3 - Moving books

Within this scene, we have one moving object while the camera and the
rest of the scene remain still. Here we test the hypothesis, that only the
moving object should get segmented and the static objects merge with the
background.

Scene setup:

1 moving object (single book)
1 static object (pile of books)
Wooden floor background
Static camera position

Figure 9: Sample image

26

Results and observations

The hypothesis seems to be proven right, according to the following figures
displaying the results. We can see that the static pile of books is merged
with the background. This also helped with the analysis of the track group
merging algorithm described in 3.2.

Figure 10: Experiment 3 resulting models. Blue is the background merged
with the static bookpile, while the black model is the segmented moving
object.

27

6.7 Experiment 4 - Moving books, no background

Almost the same setup as in the previous experiment, only this time without
a textured background and using only two books. Within this experiment
we try to test the newly added functionality of creating a complementary
model for each of the original ones.

Scene setup:

7 images

1 moving object (single book)
1 static object (single book)
No background

Static camera position

Figure 11: Sample image

28

Results and observations

Figure 12: Resulting original models are black and blue, while green and
red are the complements.

-~ r&g}'--_.._ ., .

Y
vy
¥

Figure 13: 3D reconstruction of the scene. Black circled green dots represent
reconstructed cameras and their directions.

29

Figure 14: 3D reconstruction of the scene, side view. Black circled green
dots represent reconstructed cameras and their directions.

From the previous figures we can see, that by performing the first step of
the proposed modification will result in a complementary model displaced
and differently scaled and rotated from the original. This shows the necessity
of the second step.

The following table compares the amount of reconstructed points within
the original and the complementary models.

Model Original | Complement
1. Black 167 o1
2. Blue 657 32

30

6.8 Experiment 5 - Box and books, no background

In the fifth experiment, we decided to add a little more complexity to the
scene, by adding a bigger and more three dimensional object. With moving
the camera around enough, we can get some split tracks by their matched
correspondences not being in the field of vision anymore. Those split tracks
are then used for the merging of original and complementary models, as
described in Section 4.

Scene setup:

3 moving objects (two books and a box)
No background

Moving camera position

Figure 15: Sample image

31

Results and observations

Finally adding the last step of the modified pipeline, we can now see the
results of the whole process upon the following examples of the merged mod-
els. A thing worth noticing is that usually the complement is created from
different cameras than the original model.

Model 1

Figure 16: Cameras capturing scene that changed too much often result
in creating the complement, as its matches are labeled inconsistent during
bundle adjustment and removed from the original model.

32

Figure 17: Original model (black) and the complement (gold) with their re-
spective cameras before merging within the second step of the modification.

Figure 18: Result of the merging.

33

.
el Lo

Figure 19: Result of the merging in a side view.

Model 4

Figure 20: Original model (red) observed by cameras 6 and 7. Example
image is from camera 6.

34

Figure 21: The complementary model (green), visible by cameras 1,2,3,4
and 5. Example image is from camera 1.

Figure 22: Original model (red) and the complement (green) with their re-
spective cameras before merging within the second step of the modification.

35

ot :‘
i

-
‘l
.J.\..
- -
of

Figure 23: Result of the merging, side view.

Figure 24: Result of the merging, top view.

36

In the following table we compare all of the models with regard to their
amounts of reconstructed points. We can see that models 3. and 4. are
nearly identical, only reversed in order of the tracks within the original and
complement. This is possible due to the fact, that the YASFM’s [1] track
grouping algorithm allows tracks to belong within multiple groups. Thus
being part of more than a single resulting model.

Model Original | Complement | Common pts.
1. Black 195 81 71
2. Blue 97 16 0
3. Green 306 67 5
4. Red 67 306 5
5. Purple 12 61 0
6. Turquoise 20 28 0
7. Pink 30 29 0

37

6.9 Experiment 6 - Multiple objects, no background

Within the final experiment, we tried capturing higher amount of images
with more complex scene, which is also changing more than in the previous
ones.

Scene setup:

20 images

Multiple moving objects
No background

Moving camera position

Figure 25: Sample image

38

Results and observations

Figure 26: Example model (green) and its complement (black).

39

PO .
. ‘-2:',. - r
<, '.. 1
- . .o-. .
- "'c' *
. \-: v e,
'l:t" ': .
.ot &
' * s “na
W W S
P .
‘ '.-3 Y
. s,
.l
. o .. "‘.." Q-.
o * . % St i
e” e s t:ﬁ"ﬂ o v
L] - . . ™ e

-.'3: .
. 5 - .."ﬂ'
. . -
L] - .
. . 2%,
PR L et we .
N $e .
. . o
A T

Figure 27: Result of the successful merging.

40

Within this experiment we also noted the occurrence of the degenerate
case resulting into wrong rotation transformation.

o
o ‘
.-
e
.
o o v etavme wew w bl
. 1
. '.E!' - . '..f:l.".
i S0
* L . ‘.
LN ¢ »
. Mo
.
o .
R
. *

Figure 28: Degenerated result

Again, we compare all of the models with regard to their amounts of
reconstructed points.

Model Original | Complement | Common pts.
1. Black 88 184 0
2. Blue 185 116 3
3. Green 257 70 11
4. Red 106 190 7
5. Purple 18 255 0
6. Turquoise 63 327 1
7. Pink 106 105 2
8. Gold 114 106 6
9. Orange 58 106 0
10. Yellow 34 0 0

41

7 Future work

Among the issues covered within the Section 3, the proposed modification
deals only with the problem of sparse models. Addressing any of the other
issues and especially the biggest one being the merging or splitting of objects
incorrectly, would dramatically improve the results upon complex scenes and
scenes containing multiple similarly shaped objects.

One such approach could be keeping track of multiple possible assign-
ments to future models for each track and not making a strict decision until
the final reconstruction.

The weakest point of the current approach is the condition of having
knowledge of three common points in general position. (Not in line)

Possible improvement to this method would be additional modification,
that could find the transformation between the original and its complement
without the prior knowledge of their common points or to guarantee the
existence of at least three such points for any general model and its comple-
ment. Searching for specific additional matches could be one of the ways to
deal with this.

Lastly implementing any of the advanced approaches described in Section
2 should also lead to better results, as most of the current YASFM [1]
incremental pipeline’s steps are implement by rather basic methods that
could be further improved. Especially the graph-based greedy homography
grouping algorithm analyzed in 3.2. It could be modified to prevent the
merging of objects with background in scenes where on several images the
object does not move as can be seen on figures 7 and 10.

42

8 Conclusion

The main purpose of this work was to perform an in-depth study of the
YASFM [1] library. With the use of specifically set up experiments identi-
fying its weaknesses and then working towards the goal of removing them.

Narrowing the focus, we chose to address the issue of big amounts of
unreconstructed tracks. With this problem in mind, we proposed a modifi-
cation to the original pipeline. This two-step modification firstly attempts
to reconstruct the leftover tracks as complementary model to the original,
then finding a transformation allowing us to merge these two models back
together with as low error as possible. For this merging step, we make use of
knowledge of common points within both models, reconstructed from split
tracks.

Upon implementing these changes, we ran several experiments to prove
the concept and evaluate its strengths and limitations. We also cover the
special case, resulting in non-standard behaviour. The finalized pipeline is
described in the following table.

Step Code State
1. Input processing C++ Unmodified
2. Matching C++ Unmodified
3. Geometric verification C++ Unmodified
4. Homography grouping C++ Unmodified
5. Reconstruct original model C++ Unmodified
6. Complementary model C++ Added
7. Merging C++, MATLAB Added

Results of the performed experiments were satisfactory and often showed
promising potential of this approach to greatly increase the density of mod-
els reconstructed by the modified YASFM [1]. The only important require-
ment upon the input sequence is that the chosen object for reconstruction
should be captured from multiple different angles, which greatly increases
the amount of split tracks. Otherwise some minor manual adjustment of the
complementary model’s point-cloud might be necessary.

43

References

[1]

Filip Srajer. Image matching for dynamic scenes. http://cmp.felk.
cvut.cz/~srajefil/theses/filip-srajer-diploma-thesis.pdf,
2016.

David G. Lowe. Distinctive image features from scale-invariant key-
points. In Proceedings of the International Conference on Computer
Vision, pages 1150-1157, 2004.

Tomas Pajdla. Elements of geometry for computer vision. http://
cmp. felk.cvut.cz/~pajdla/gvg/GVG-2016-Lecture.pdf, 2016.

Shubhangi L. Vaikole and S. D. Sawarkar. Moving object segmenta-
tion with camera in motion using gmec and change detection method.
JMPT, 6(2):53-60, 2015.

René Vidal and Richard Hartley. Three-view multibody structure from
motion. PAMI, 30(2):214-227, 2008.

A. W. Fitzgibbon and A. Zisserman. Multibody structure and mo-
tion: 3-D reconstruction of independently moving objects. In Furopean
Conference on Computer Vision, pages 891-906. Springer-Verlag, 2000.

Tianwei Shen, Siyu Zhu, Tian Fang, Runze Zhang, and Long Quan.
Graph-based consistent matching for structure-from-motion. ECCYV,
2016.

B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bun-
dle adjustment - a modern synthesis. In In Proceedings of the Inter-

national Workshop on Vision Algorithms: Theory and Practice, pages
298-372, 2000.

Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism:
Exploring photo collections in 3d. SIGGRAPH, pages 835-846, 2006.

M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and au-
tomated cartography. Commun. ACM, 24(6):381-395, 1981.

C. Rubino, M. Crocco, V. Murino, and A. Del Bue. Semantic multi-
body motion segmentation. WACV, 6(2):53-60, 2015.

P. Ji, H. Li, M. Salzmann, and Y. Zhong. Robust multi-body feature
tracker: A segmentation-free approach. 2016.

N. Thakoor, J. Gao, and V. Devarajan. Multi-body structure-and-
motion segmentation by branch-and-bound model selection. I[EFEE
Trans. Image Processing, 19(6):1393-1402, 2010.

44

[14]

G. Pan and K-Y. K. Wong. Multi-body segmentation and motion num-
ber estimation via over-segmentation detection. ACCV Workshops,
(2):194-203, 2005.

Micha Sharir. A strong connectivity algorithm and its applications
to data flow analysis. Computers and Mathematics with Applications,
7(1):62-72, 1981.

S. Agarwal, K. Mierle, and et al. Ceres solver. http://ceres-solver.
org, 2010.

J. C. Nash. The singular-value decomposition and its use to solve least-
squares problems. In Compact Numerical Methods for Computers: Lin-
ear Algebra and Function Minimisation, chapter 3, pages 30—48. Adam
Hilger, England, 2 edition, 1990.

S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. Pattern Analysis and Machine Intelligence,
1991.

45

