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Abstract

This thesis proposes several modifica-
tions of the Object Scene Flow (OSF) algo-
rithm [MG15|, algorithm for simultaneous
estimation of 3D geometry and 3D motion
called scene flow.

We focus on the addition of tempo-
ral consistency to the algorithm’s output.
Our proposed modification applies the
temporal consistency to the OSF algo-
rithm in the form of previously estimated
independently moving objects propagated
to the currently estimated frame using
constant 3D motion assumption. The
OSF does not use the scene flow estimated
in previous frame nor any other estimated
information.

We are also interested in the details
of individual parts algorithm’s time con-
sumption. We propose a modification
to speed-up algorithm more than three
times.

We evaluate the progress on the
KITTI’'15 multi-frame dataset. We show
that propagating the labels and the cor-
responding motion information using the
estimated flow reduces the false negative
rate (missed cars). However, this naive
propagation also increases the false posi-
tive rate significantly. We reduce the false
positive rate with further proposed modifi-
cations, which result in the same false pos-
itive rates as the original OSF, but reduce
false negatives by 35%. The proposed
modifications also reduce an error of esti-
mated scene flow on the KITTI’15 optical
flow from 10.23% to 9.23% ranks 2nd in
scene flow estimation category over whole
image area, respectively 1st in scene flow
estimation category over non-occluded ar-
eas only.

Keywords: scene flow, optical flow,
disparity, autonomous driving, 3D scene
geometry, rigid motion, motion
segmentation

Supervisor: Mgr. Jan Sochman, Ph.D.

Abstrakt

Tato prace predstavuje nékolik modi-
fikaci algoritmu Object Scene Flow
(OSF) [MG15]. Algoritmus je uréen pro
soucasné odhadovani 3D geometrie scény
a 3D pohybu ve scéné nazyvaného scene
flow.

Nase navrhnutda modifikace pridava
temporalni konzistenci do OSF algoritmu
ve formé propagace nezavisle se pohybuji-
cich objektt odhadnutych v predchozich
snimcich k vylepseni scene flow v prave
pocitaném snimku. Ptvodni algoritmus
OSF nevyuziva scene flow ani zadné jiné
informace z predchozich snimki.

Detailné se zabyvame i ¢asovymi na-
roky individuélnich ¢ésti algoritmu. Navr-
hujeme upravu, kterd v priaméru vice nez
trojnasobné zrychluje algoritmus.

Nasge veskeré modifikace vyhodnocu-
jeme na testovaci sadé KITTI’'15. Uka-
zujeme, ze propagace segmentace a kore-
spondujici informace o pohybu nezavisle
se pohybujicich objektt prispiva ke sni-
zeni miry nedetekovanych vozidel. Avsak
tato propagace znatelné zvysuje i pocet
falesné pozitivnich detekci, kterd je ovSem
redukovana dalsimi prezentovanymi tpra-
vami. S vybranymi modifikacemi je cel-
kova mira nedetekovanych vozidel snizena
o 35%. Navrhnuté upravy také snizuji
celkovou chybu odhadnutého scene flow,
v benchmarku KITTI'15, z 10.23% na
9.23%. Modifikovany algoritmus dosahuje
prvniho mista pro scene flow kategorii —
vyhodnoceni pres body viditelné v obou
kamerach, respektive druhého mista pro
scene flow kategorii — vSechny obrazové
body.

Klicova slova: scene flow, opticky tok,
disparita, autonomni fizeni, 3D
geometrie scény, rigidni pohyb,
segmentace dle pohybu

Preklad nazvu: Pouziti Object Scene
Flow ve video sekvencich
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Chapter 1

Introduction

. 1.1 Motivation

For many computer vision tasks, it is essential to extract the geometry of
surrounding area of a camera and independent motion in the scene. Typical
examples of such tasks are driving assistance, autonomous driving or various
outdoor robotic applications like Visual Odometry or SLAM.

3D motion and 3D geometry of the scene estimated together is called scene
flow. Scene flow could then be used as input to the higher level algorithm for
obstacle avoidance, motion planning or prediction of the other vehicles and
pedestrians motion.

The most of the driving assistance or autonomous systems are using sensors
for direct depth measurement — LiDARs. LiDAR has many advantages. The
output of LiDAR sensor is directly the 3D point cloud of the surrounding
areas. It is independent of the illumination conditions since it emits a light
for measuring distance. LIDARs are more expensive than cameras (it costs
more than an ordinary car), provide only sparse information (the best models
provide 64-pixel high image of scanned area), and estimated depth of the scene
is limited to the range up to 100 m. Thus, it is assumed that cameras will
needed in the future of autonomous industry. However, scene flow estimation
from cameras is an ill-posed problem under general assumptions.

Accurate and efficient estimation of the scene flow is still an unresolved
problem. Figure [1.1] shows examples of estimated optical flow by state-of-the-
art scene flow and optical flow estimation algorithms on our own sequences.
Even the best methods often fail when the conditions differ from the ones of
KITTI [MG15] for which the methods were developed. However, from the
official KITTT results, it could be seen that stereo methods work better than
monocular.

Most of the state-of-the-art methods consider only two consecutive frames.
However, in practice, we have available whole video sequences, or we need
to process just captured frames in an online manner. Not using frames from
previous time steps leads to the inconsistent results and obviously, some
important information is neglected.

This thesis is focused on the addition of temporal consistency to the
existing algorithm. There are methods using temporal consistency, but they
are focused on temporal consistency on the level from pixel correspondences to
the temporal consistency of small planar patches. In particular, out proposed
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Figure 1.1: State of the art optical flow estimation results on
our internal dataset. Compared optical flow methods: C+NL-

fast (CNL) [SRB14], FlowNet (FN) [EDI*15], EpicFlow (EF) [RWHSI5], PCA-
Layers (PCAL) and scene flow methods PRSM [VSR15], OSF [MG15].

Images come from our internal dataset.

temporal consistency is on the level of the independently moving objects.

We propose several modifications of the Object Scene Flow (OSF) algo-
rithm [MGI5]. The OSF finds segmentation of independently moving objects
as part of scene flow estimation. We show that adding temporal consistency
leads to a more accurate scene flow estimation as well as more precise detection
of independently moving objects.

. 1.2 Contributions

This thesis presents several contributions:

® The main contribution of the thesis is the addition of temporal consis-
tency of independently moving objects to the OSF algorithm. Temporal
consistency usage results to a reduction of estimated scene flow and
optical flow error on the foreground and to decrease the missed car rate.
It also stabilises scene flow estimation so that the same independently
moving objects are detected more often through the sequence of images.

® We analysed the individual parts of the algorithm with attention to
non-determinism of the algorithm. We identified a critical component,
which was responsible for adding the most variance to the output of the
OSF algorithm — the independent moving objects proposals. To stabilise
the results we propose another two modifications:

A more robust dynamic ego-motion outlier definition. It replaces
the original fixed threshold and allows to better distinguish between
background and independently moving objects.

Using local optimised RANSAC [CMKO03] instead of an non-optimised
version of the algorithm increases the robustness of the algorithm
and also decrease the variance of the results.

® We also report attempt with only partial success as application of tem-
poral consistency on another level — temporally consistent superpixels.

® We provide a detailed analysis of the OSF components time complexity.
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® To reduce time complexity of the algorithm, we propose the search space
reduction of possible solution modification. Total time was reduced twice
in average using the assumption that is no need to optimise estimated
3D geometry and 3D motion over areas without any independent motion
hypothesis but ego-motion.

® We evaluated on KITTI’15 testing benchmark!l Our modifications
reduced the erroneous pixel percentage from 10.63% to 9.65% of estimated
scene flow, according to the original OSF. Moreover, we achieved
total 1st position in the scene flow category evaluated over
non-occluded areas and total 2nd position in the scene flow
category evaluated over whole image area.

® Finally, we experimentally evaluated the ability of the original and
extended OSF algorithms to detect independent moving objects. For this
evaluation, we use KITTI'15 training dataset and report false positives
(FP) and false negatives (FN) rates. The provided KITTI'15 dataset
contains only partially annotated set of moving objects. We completed
the annotation and added all moving objects in the scene. We show that
proposed modifications reduce the number of missed vehicles by 35%.

. 1.3 List of Publications

Parts of this thesis were published in:

Michal Neoral and Jan Sochman. Object scene flow with temporal consistency.
In 22nd Computer Vision Winter Workshop(CVWW). Pattern Recognition
and Image Processing Group, TU Wien & PRIP Club, Vienna, Austria,
February 2017. ISBN: 978-3-200-04969-7.

. 1.4 Thesis Outline

The remainder of this thesis is organised as follows. Chapter [2| presents prob-
lem formulation and challenges during estimation. In Chapter |3, we review
state-of-the-art methods and related works. Chapter 4] presents datasets and
benchmark for evaluation. Chapter |5 describes the OSF algorithm in details.
In Chapter |6, we present the proposed modifications of Object Scene Flow
algorithm and gives the reasons for individuals modifications. Chapter |7
evaluates results of the proposed modifications and compares them with state
of the art methods. Finally, the conclusions of this thesis are reported in
Chapter 9.

results at the time of publishing CVWW paper [NS17|
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Chapter 2

Problem Formulation

The aim of this chapter is to introduce stereo vision, optical flow and scene
flow estimation tasks. Then the basic challenges of aforementioned tasks
are described. These problems and challenges are introduced only to the
necessary level of detail to enable understanding of this thesis without deep
knowledge in computer vision field.

B 21 Correspondence Problem

The purpose of finding correspondences is to decide which part of one image
belongs to which parts of another image. The images could be taken at the
same time with different cameras (stereo) or by the same camera at another
time step (optical flow), or the configuration could be completely arbitrary.
When capturing two or more images of the same real world scene, the search
for correspondence is a search for a set of points in the scene which are
displayed in one image and identify them in the second another.

The correspondence problem is not trivial (more about it in Section 2.5),
and all of the following tasks could be seen as correspondence problem,
where dense correspondence solution is preferred. If the correspondence is
determined accurately, reconstruction of 3D scene geometry or 3D motion in
the scene is given by triangulation.

. 2.2 Stereo Vision

The stereo vision is a computer vision task which uses 2D images and known
relative calibration between cameras as an input to reconstruct the 3D
geometry of the scene from individual cameras viewpoints. 3D information is
estimated only from images without usage of specialised range measurement
devices. The most common methods use rectified images to build a dense
correspondence map between images called disparity map. The 3D information
is then reconstructed from disparity and camera calibration using geometrical
triangulation. Estimation of 3D geometry is not limited only to stereo pairs,
arbitrary set-up of cameras could be used as well. Figure 2.1 shows the stereo
estimation principle.
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Figure 2.1: Stereo geometry principle for rectified images, where z,y and z
are world coordinates, u and v are image coordinates, b is baseline between
cameras, f is focal length, X = [:c,y,z}T is point in 3D space, my = [uO,UO]T

T . . .
and my = [u1,v1]” are projected points to respective image planes, Cy and Cq
are camera centres and p is centre of coordinates.

B 2.3 oOptical Flow

The optical flow is 2D motion field which reflects the changes between two
consecutive frames due to motion in the scene. The most commonly accepted
definition of optical flow is as the apparent motion of brightness patterns
in an image sequence. Figure |2.2a) shows optical flow estimation principle.
This definition refers only to estimate the correspondence between two images
represented by 2D vector field. Thus, optical flow does not represent 3D
motion in the scene, it represents only the projection of that motion in the
image plane.

. 2.4 Scene Flow

Scene flow is a 3D motion field — 3D vector for each visible 3D point between
two consecutive frames. Optical flow introduced above is a projection of
scene flow to the image plane. Also, disparity map could be reconstructed
from scene flow. Thus, the estimation of scene flow could be seen as the
simultaneous optical flow and disparity estimation. A very similar task to the
scene flow estimation is structure-from-motion (SfM), which also reconstruct
the 3D geometry of a scene from different time steps or different camera
positions. However, SfM relies on the assumption that reconstructed scene is
static without any independently moving objects. The scene flow estimation
could be transformed to the problem that identifies the correspondences
among four images (two consecutive stereoscopic frames). Figure [2.2b) show
scene flow principle. The 3D geometry and 3D motion are then reconstructed
from these correspondences. The scene flow estimation is an ill-posed problem
and inherits the most typical challenges from stereo and optical flow. However,
scene flow estimation uses more information therefore it is assumed that it
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Figure 2.2: Optical flow and scene flow principle, where z,y and z are world
coordinates, v and v are image coordinates, X = [z, y, Z]T is point in 3D space,
my = [ug, 'U()]T and m; = [uq, vl]T are projected points to respective image planes
and Cgy and C; are camera centres. Notation without comma means in current
time step and notation with comma in the next time step. Image (a) shows
optical flow principle — estimation of correspondences between two consecutive
monocular images and image (b) shows scene flow principle — estimation of
correspondences between consecutive two stereoscopic frames.

should bring better results. Scene flow, optical flow and disparity estimation
could be solved as dense or sparse tasks.

B 25 Challenges

Scene flow, optical flow and disparity estimation could be seen as a correspon-
dence problem. If correspondences between images were found accurate, we
could reconstruct 3D geometry and 3D motion of scene directly from corre-
spondences and calibration using triangulation (see Sec. [2.6). Correspondence
estimation is, however, ill-posed task under the general assumptions. There
are many problems in real lighting conditions or noise within the images.

B 25.1 Occlusion

Occlusion is a phenomenon that occurs when the scene is captured from two
(or more) viewpoints. Occlusive pixels are such a group of pixels that is visible
from one viewpoint but not from another viewpoint. Even small occlusions
interfere with the assumption of illumination data consistency and can lead
to poorly estimated correspondences in the image and loss of information
about the hidden areas. Figure [2.3| shows the occlusion problem.

B 2.5.2 Large Displacements

Displacement is a situation, where pixels or a group of pixels that changed their
position between the two images due to movement in the scene. Algorithms
for estimating optical flow and scene flow most often assume presence of only

7
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C() Cl

Figure 2.3: Occlusion phenomenon. The yellow areas a and c are visible only
from one camera but not from another; the red area is not visible in cameras at
all.

Figure 2.4: Large displacements problem. Fast motions or low frame rate could
lead to bad estimation of optical flow F***! between frames at time ¢ and ¢t + 1.

Images are from [MG15].

small motion in the consecutive image. Significant shifts in the image can
lead to a flow estimation in the local minimum of possible solution and cause
the algorithm to fail. Large displacements occur in images with fast motion
or with low frame rate. Figure 2.4 shows displacement problem.

B 2.5.3 Illlumination Condition

Matching is not an easy task even with simple lighting conditions. It is, there-
fore, no surprise that under general lighting conditions and non-Lambertian
surfaces, this task is even more challenging.

One of the fundamental problems is oversaturation. This phenomenon
occurs due to the small dynamic range of the camera used to capture the
images and at the same time a high range of brightness in the scene (shadows
and dark objects vs. bright objects in direct sunlight).

In scenes with individually moving objects, there is also a phenomenon of
“strong brightness differences” caused by changing the position of an object

8
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(c): (d):

Figure 2.5: Various illumination conditions. Images (a) and (b) show oversatu-
rated areas in the images within blue bounding boxes and reflection in the red
bounding box. Image (c) shows strong brightness changes when the car goes
to a bridge shadow. Image (d) shows driving during the night with low light.

Images are from [MGI5].

Figure 2.6: Repetitive patterns problems. Image shows repetitive pattern within
the green bounding box.

from places with less light to a place with more light and vice versa.

Other problems in general scenes are reflective surfaces and specular high-
lights. Reflection problems are not caused only by human-made objects such
as glass or reflective paint on vehicles or buildings, but the reflective surface
could also be created from a puddle of water or a wet road.

A severe problem is also driving at night or under reduced visibility. Not
only the dark surfaces but also the brightness changes produced by car lights
or public lighting increase the difficulty of the correspondence task. The
examples of different illumination conditions are depicted in Figure 2.5

B 2.5.4 Textureless Surfaces and Repetitive Patterns

The textureless surface is a problem for matching, as the task becomes ill-
posed, especially for pixel-based methods. It occurs, that pixel areas with
insufficient texture result in false-positive correspondences. This problem is
similar to oversaturation. Textureless surfaces problem cause an error in the
stereo, optical flow and scene flow algorithms outputs.

Repetitive patterns are related to aperture problem. If the pattern in

9
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Figure 2.7: Aperture problem. The scheme shows a situation where is not

possible distinguish the motion of the line between two timesteps. The necessary
information is out of captured image area.

Figure 2.8: Focus of expansion problem. Image shows that size of optical flow
Ftt+1 between frames ¢ and t+ 1 inducted by ego-motion depends on the position
in the image area. Optical flow leads to zero close to the point of expansion
(green point) and reduces the accuracy of estimated motion. The image is used
from the KITTI'15 [MGI15] dataset.

the image is repeated several times, it may happen that the algorithms end
up at the local minima, which can lead to an algorithm failure in this area.
Figure [2.6] shows an instance of a repetitive pattern problem.

Bl 2.5.5 Aperture problem

The aperture problem is a problem of motion uncertainty that is observed
through the aperture, and there are no visible motion boundaries in the
image. and it is demonstrated in Figure The problem is mostly related
to textureless regions or repetitive patterns regions. The estimated motion
direction of such object is subject to considerable uncertainty. The algorithm
cannot decide in which direction the object moves with such texture, when
at least the boundary of the object is not visible in the image. This problem
affects pixel-wise matching as well as block matching.

B 2.5.6 Focus of Expansion Problem

The focus of expansion (FoE) is a point in the image where optical flow
vectors caused by camera motion intersect. If such a point is visible in the

10
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Figure 2.9: Pinhole camera model, where x,y and z are world coordinates, u

]" is point in 3D

and v are image coordinates, f is focal length, X = [z,y, z
T . . . . .
space, m = [u, v] is projected point to image plane, C is camera centre and

p = [ug, vo] is centre of coordinates in the image plane.

image, optical flow leads to zero in the areas near to FoE and scene flow
estimation is an ill-posed problem in these areas. Figure [2.8 shows focus of
expansion.

B 26 Projection Pipeline

The camera is a device which maps 3D information from scene to 2D image
plane. Point in 3D space is labelled as X = [z,y, Z]T and projected point
to image plane as m = [u, U}T. Projection of points according to standard
camera model (pinhole camera) is depicted in Figure |2.9. Projection function
is following:

m = PX, (2.1)

where P € R3*4 is projective camera matrix and underlined symbols mean

T
homogeneous coordinates, i.e. X = [wXT, w} , where w # 0 is the weight of
the point. Homogeneous coordinates allow us to use complex transformations
of points. Projection camera matrix

P=KR[I - C] (2.2)

is composed of inner calibration camera matrix K € R3*3, rotation matrix
R € R3%3, I € R®*3 is the identity matrix and C € R3*! is camera centre
w.r.t. world coordinate system. Inner calibration camera matrix

J 0 wup
K=10 f w (2.3)
0O 0 1

contains three parameters: focal length f and [ug, ’U()]T, which represent the
principal point of the image.

In a case that we have images from more than one camera, we can compute
3D information from the images. In other words, we can reconstruct 3D point
X from the pair of 2D points mg and m;. For the following calculations,
we count on the situation that cameras are fully calibrated, and images are

11



2. Problem Formulation

rectified (image plane is common for both images), which corresponds to
proposed algorithm input images. Process of camera calibration exceeds a
scope of this thesis and could be found in Hartley and Zisserman [HZ03].

Figure 2.2 (b) shows scheme of stereo reconstruction and its derivation
from similarity of triangles. If the stereo correspondences are solved, derived
reconstruction is following

Z_ﬂ x_ZUD+U1 = @
_d ) - 2f 9 - f7

where b is the baseline between camera centres and d = ug— u is the disparity.

(2.4)

12



Chapter 3
Related Work

This chapter first reviews different approaches for scene flow estimation. There
are discussed methods from variational approaches to methods with stronger
motion assumption on objects level segmentation. Briefly, is discussed the
recent development using deep learning. Then, follows the overview of the
algorithms using temporal consistency during estimation of optical flow or
scene flow.

B 3.1 Scene Flow Algorithms

Vedula et al. introduced the concept of scene flow [VBRT99| as a three-
dimensional vector field describing the motion of each three-dimensional
point, visible in the camera, or each visible surface in a scene. Scene flow
is also understood as a combination of dense stereo reconstruction and
optical flow estimation, which are both challenging problems themselves.
The algorithms for scene flow has to be able to solve the same problems as
algorithms for optical flow and disparity estimation. That means occlusions,
large displacements or radiometric challenges (see Sec. |2)). But a simultaneous
estimation would help to solve some ambiguities, as soon as more information
is available (more cameras). However, there are also more parameters to
estimate, since we estimate 3D geometry and 3D motion for each visible pixel.

. 3.2 Variational Methods

Various approaches have been proposed for optical flow estimation since Horn
and Schunck [HS81]. Similarly to the optical flow methods, most of the
state of the art approaches for scene flow estimation are also often based on
variational methods. Vedula et al. [VBRT99, VRCKO05] presented two-step
approach: in the first step the optical flows for each camera pair are estimated
and in the second step a scene flow is fitted to the computed optical flow.
However, during the second step, image intensities values are not used, and
scene flow estimation fails over areas, where illumination changes are not
induced by displacement but image perturbation (see Sec 2.5.3).

Huguet and Devernay [HDO07] proposed a method for first simultaneous
estimation of depth and optical flow in a single optimisation. Their joined
approach handles with large displacements and occlusions for both, stereo
and optical flow, nevertheless algorithm fails under the general illumination

13
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condition (66.90% scene flow error in the KITTI'15 benchmark [MG15]).
Wedel et al. [WRVT08] parametrise scene flow in the image plane. Motivated
by time consumption reduction, they decoupled scene flow estimation to
optical flow and disparity estimation. Optical flows are estimated for each
view using fixed pre-computed stereo estimation for each time step.

Valgaerts et al. [VBZ'10| generalised scene flow estimation task for uncali-
brated stereo sequences (the estimation is up to scale) and they are using epipo-
lar constraints instead. Unlike Huguet et al. [HDOT7] it does not use smoothness
term for displacements. All of these methods [HDOT7, WRV 08, [VBZ'10] are
using only 2D parametrisation between individual images to describe scene
flow. Basha et al. [ BMK13] shows that using 3D parametrisation for scene flow
brings better results to the algorithm output. However, stronger piece-wise
rigid assumption leads to better results than variational approaches.

B 3.3 Piece-wise Rigid Methods

Recently, many successful methods [VSRI3,[YMUT4, [ VSR15, MG15, LBA™16]
started using small planar patches to represent a description of the scene
instead of direct pixel-wise representations [HDOT, VBR™99]. Segmentation
of the scene into rigid planar regions increases robustness and decreases the
number of parameters which must be estimated [VSR13].

Unger et al. [UWPBI12] proposed segmentation based optical flow estimation
with occlusion handling where affine transformation parametrises each segment
in the image plane. Yamaguchi et al. [YMUI13]| extend his slanted-plane stereo
algorithm [YHMU12] using continuous MRF to epipolar flow estimation. The
motion of superpixel along epipolar lines describes flow. Later, the algorithm
was improved using joint stereo and flow estimation of epipolar flow [YMU14].
However, this approach still assumed the static scene without independent
motion. Vogel et al. [VSR11l [VSR13, VRS14, [VSR15| further reinterpreted
scene flow as joint task of shape and motion of each superpixel and proposed
discrete CRF containing regularisation of motion, geometry and occlusions
superpixels. Lv et al. [LBAT16| uses the same representation of a scene,
however they focus on the time complexity of the algorithm.

The Object Scene Flow (OSF) [MG15] further introduces an idea that scene
flow is composed from only a small number of independent motions. This
assumption leads to a strong regularisation for scene flow computation and
leads into a more accurate scene flow. Each independent motion is further
restricted spatially, allowing independently moving object segmentation.

. 3.4 Deep Learning and Recent Development

Since seminal work of Krizhevsky et al. [KSHI12| for image classification, the
deep neural network started to be applied to a wide range of computer vision
tasks.
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3.5. On Temporal Consistency

Dosovitskiy et al. [FDIT15] referred the importance of large dataset with
high-quality ground truth for learning optical flow. He proposed synthetic
dataset of 2D flying chairs for deep learning and end-to-end method of learning
optical flow with convolutional neural networks. His method demonstrates
that is possible to learn optical flow using CNN. However, his approach does
not achieve state-of-the-art results in popular benchmarks [MG15, BWSB12].
Recently, Tlg et al.[IMS™16] present an improved version of Dosovitskiy’s
approach [FDIT15|, which achieved the best position on the KITTI'15 optical
flow benchmark. Moreover, the algorithm belongs to the fastest on the
KITTT'15.

Mayer et al. [MIH™16] proposed the first method for learning scene flow by
convolution neural network by simultaneously learning disparity and optical
flow on their proposed datasets (see Sec. 4.3)).

More recently, there started appeared approaches using less number of cam-
eras for estimation, than it is specified from the minimal configuration of the
individual problems. Zhou et al. [ZBSL17] extended Godard et al. [GMAB16]
for monocular depth estimation and learned depth and ego-motion at the
same time. Their approach can estimated scene flow of static scenes from
monocular camera sequence. Vijayanarasimhan et al. [VRS™17| proposed a
learning scene flow in dynamic scenes by simultaneous estimation of depth,
ego-motion and motion of independently moving objects from the monocular
camera. However, for now, these methods achieve significantly worse results
than methods using a standard configuration for scene flow estimation.

Currently, the best methods for stereo estimation [SWT6, [GKT6, KMD™17]
and optical flow estimation [IMST16]' are using deep learning, while the
best positions for and scene flow estimation still belongs to “non-learning’
methods [VRS14, VSR15, MG15, LBA*16l INS17].

i

B 35 on Temporal Consistency

Since Murray and Buxton [MB8T], various approaches using temporal consis-
tency have been proposed for optical and scene flow. Some of them rely on
smoothness assumption of trajectory over multiple frames. A spatio-temporal
smoothness term for the optical flow was proposed in [MB87|]. However, the
algorithm does not work well for large displacements. Irani [Ira02] estimates
optical flow over long trajectories using multi-frame subspace constraints.
Volz et al. [VBVZII] proposed adaptive trajectory regularisation over five
consecutive frames. Motion fields of all frames are parametrised with respect
to the central reference frame. All of the above-listed methods use temporal
consistency on 2D pixel-level for optical flow estimation.

Devernay et al. [DMGO6] show that tracking of 3D points and surfels
(small planar square regions) bring better results than tracking only 2D
points. They proposed extension of [LK™81] using multiple cameras for
temporally consistent scene flow estimation. Rabe et al. [RMWEI10] used

lwith minimal optical flow configuration i.e. single camera
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3. Related Work

extended Kalman filter [KT60] for tracking, but instead of tracking matched
features they tracked dense scene flow computed by [WRV™T08|. Although
the algorithm is real-time, its use is rather limited, since it is not able to
handle fast motions. Basha et al. [BMK13| parametrise model according
to 3D scene flow constraints from 3D point clouds from several time steps
and simultaneously estimate depth and scene flow. They also show that 3D
parametrisation leads to better results than 2D parametrisation of scene in
methods of [DMGO06, WBV 11|

Using robustly linked frames, Hung et al. [HX.J13] proposed optical flow
and stereo estimation from long-temporal motion trajectories but algorithm
needs the whole sequence for the computation, therefore it is inappropriate
for online scene flow estimation.

Recently, Vogel et al. [VRS14, [VSR15] achieved temporal coherence using
sliding temporal windows for their both viewpoints and multi-frames con-
sistent model. They also proposed temporally consistent piecewise-planar
segmentation of the scene with an assumption of constant 3D motion. Their
approach belongs to the state-of-the-art methods ranked on the KITTI’15
benchmark. However, the method does not produce independent motion
segmentation like OSF, which is not only desirable as a function output but
as a strong regularisation for the scene flow estimation as well.

In the context of methods using temporal consistency listed above, our
proposed independent motion propagation (Section |6.1)) is a temporal consis-
tency of the highest level. Instead of enforcing individual pixels, small patches
or superpixel consistency over several frames, our proposed approach uses
propagation of whole objects’ segmentations and their estimated motions.
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Chapter 4

Datasets

Recent research in autonomous driving requires datasets and benchmarks
with realistic data and dense ground truth. As the acquisition of ground
truth scene flow for real world data is complicated, only a few datasets were
published for its evaluation. Benchmarks for scene flow should cover all
possible failures of algorithms. This chapter presents some benchmarks for
scene flow evaluation.

B 1 KITTI

KITTT is very heterogeneous dataset and contains several benchmarks like
stereo, optical flow, odometry, object detection and tracking benchmarks
as KITTI'12 [GLSUI2| or road benchmark [FKG13]. Recently, KITTI’'15
dataset [MG15] was published for scene flow, optical flow and stereo containing
independently moving objects.

KITTI is a very popular dataset with more than 60 submissions in optical
flow and stereo category and with more than 15 in scene flow category.
Dataset was captured from a moving platform using four cameras with global
shutter (two grayscale and two colours). For producing high-density ground
truth, they used Velodyne laser scanner and state of the art localisation
system [GLU13]. Dataset is focused on autonomous driving application and
highly difficult conditions. It contains scenes with oversaturation, flares,
transparent surfaces, strong illumination changes and reflections. Also, it
contains displacements longer than 250 pixels and disparities over 150 pixels.
Limitations of this dataset are sparsity of ground truth and the range of
ground truth (limitations of used range finder).

The biggest difference between KITTI’12 and KITTI’15 dataset is that
KITTT’12 contains only static scenes, while KITTI'15 contains 400 scenes
with ground truth over moving moving cars and vans, which was computed
using fitting CAD models to the scanned depth data. But CAD models were
not chosen for every object in the scenes. The other moving objects are not
presented (included some cars and vans far from the camera or with partial
overlap). As another part of the dataset are provided only bounding boxes
for all objects in the sequences, but this is focused on the identification and
orientation. Thus, no are distinguishing between moving and static objects.
The example of the input image and ground truth data is shown in Figure 4.1

We are interested in the scene flow estimation in sequences containing

17



4. Datasets

(a) : Reference view (b) : Moving objects labels

(c) : Disparity ground truth (d) : Optical flow ground truth

Figure 4.1: Sample images from KITTI'15 [MHGIH| dataset with the ground
truth over independently moving objects.

Figure 4.2: Sample input images from HCI benchmark suite [KNH™16

independently moving objects. Thus, we are using KITTI’15 dataset for
testing of our modifications influence.

B 12 Ha

HCT optical flow and disparity benchmark also focuses on the
application in the autonomous driving and contains sequences from moving
platform. The dataset contains 55 sequences captured in high resolution,
high dynamic range and high frame rate with 19 to 100 grayscale images
per sequence. Figure [4.2] shows an example of input images. HCI is even
more diverse compared to KITTI. Scene flow estimation is made hard by a
variety of radiometric challenges, bad weather sequences, bad light conditions
during night, different years seasons, fog, snow, raindrops on the windshield,
reflecting puddles on the road. On the other hand, it has poor variety at a
location, since the dataset was captured in the controlled environment of a
single street.

There are several cons to using this dataset for our purposes. First cons
is that the dataset contains only grayscale images, while KITTI'15 contains
both RGB and grayscale. The most important problem for evaluation of out
algorithm is the missing evaluation of scene flow over independently moving
objects. HCI excludes pixels over independent moving objects from evaluation.
From these reasons, we are not using this dataset for evaluation.

Note, that the benchmark contains only two submissions for optical flow
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4.3. FlyingThings3D, Driving, Monkaa

L .

(a) : FlyingThings3D (b) : Driving (c) : Monkaa

Figure 4.3: Sample images from scene flow datasets FlyingThings3D, Driving,

Monkaa [MIH*16]

and three submissions for disparity estimation. All of them were added
by authors of the HCI benchmark suite from publicly availed source codes.
Thus, the evaluation does not provide a high level of comparison with other
approaches.

B a3 FlyingThings3D, Driving, Monkaa

FlyingThings3D, Driving, Monkaa scene flow datasets were intro-
duced to be used for training neural networks. All three datasets are computer
generated and contain over 35000 frames with dense stereo and optical flow
ground truth in total. Figure [4.3| shows examples of input images for all three
datasets. FlyingThings3D contains sequences with an arbitrary number of
objects moving along randomised 3D trajectories, Monkaa contains sequences
from animated movie and Driving is dataset focused on autonomous driving.
However, we did not use this dataset for evaluation. Dataset is rendered
with low realism, contains only one sequence for autonomous driving, and
we cannot easily compare with other algorithms since there is no public
benchmark.

. 4.4 Discussion

There are few other datasets which are used for both optical flow and dis-
parity evaluation. The Middleburry dataset was captured in a
laboratory environment with very high precise accuracy but contains only
twelve short sequences for training and twelve sequences for evaluation. The
MPT Sintel [BWSB12] dataset is derived from an animated short film. It
contains dense optical flow and scene flow ground truth for sequences with
various illumination conditions, locations and motions.

As none of these datasets is focused on the autonomous driving, we are
using KITTT’15 [MG15] for all important comparisons.
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Chapter 5
Object Scene Flow Algorithm

The main goal of this chapter is to apprise the reader of the Object Scene
Flow algorithm (OSF), introduced by Menze and Gaiger [MG15]. The OSF
is the algorithm for 3D scene flow estimation using strong assumptions about
individually moving objects in the observed scene.

The OSF decomposes each dynamic scene into a small number (hundreds)
of 3D planar patches using slanted-plane model [BT99, YHMUI12]. The
algorithm assumes that each patch belongs to one of a few independently
moving objects, each with its own rigid motion (six degrees of freedom).

In brief, each of the planar patch is parametrised by four variables: Three
of them for the plane parameters and one for a label index. Each label
corresponds to an object motion. Further, it is assumed that the set of
independently moving objects is small (up to ten). Scene flow estimation is
solved as a labelling problem, where each of the planar patches is assigned to
one of the rigid body motions using a discrete-continuous CRF. The CRFs
objective is defined as a weighted sum of unary and pairwise terms computed
from disparity, superpixels, sparse optical flow and motion candidates.

. 5.1 Notation

The OSF algorithm decomposes a dynamic scene into a set of 3D planar
patches s; = (n;,l;), where n; is a normal of the plane, [; is a label of 3D
motion ; € {1,...,]|0|} and O is a set of a few independent motions. Each
3D motion o € O is parametrised by rotation Ry € SO(3) and translation
t, € R3. Each plane normal n; is computed from a superpixel i € 9,
where S' is a set of superpixels in the reference frame, which is obtained by
fitting a plane to the depth values estimated from the disparity. The plane
parameters provide the mapping between 3D points X; = [z;, y;, zi]T and its
corresponding 2D points m; = [u;, v;]*. The frame ¢ is considered to be the
reference frame, ¢ + 1 is the next frame and ¢t — 1 is the previous frame, etc.

B 5.2 Structure of the Algorithm

The structure of the OSF algorithm is shown in Figure 5.1, Following text
introduce the OSF algorithm in details.
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5. Object Scene Flow Algorithm

Input images Superpixels

Disparity

A\ 4

left camera right camera

yD, s -

Sparse optical flow

3d motion hypotheses Optical Flow
e .

Optimization £
- Labeling

Egomotion

1) Egomotion outliers
2) Greedy RANSAC =
3) Independent motions hypotheses A

Figure 5.1: Overview of the Object Scene Flow algorithm [MG15]. Superpixel
segmentation S, disparity D, sparse-flow F, and ego-motion F.4, of the camera
are estimated from input stereo images. Then the independent motion candidates
are estimated. Labels of motion candidates to proper segments are assigned
during optimisation. Finally, the output in the form of scene flow and label
map are computed from motion candidates and segments parameters using

MP-PBP [PZBS14] and TRW-S [Kol06].

Input. The input to the algorithm are two consecutive stereo frames (I, I7),
(I, 1,17, ;). The OSF model needs the input images to be rectified. The left
image at time t, Ié, is used as the reference image.

Superpixel segmentation and initial disparity estimation. The superpixels
and the initial disparity is computed by SPS-St [YMUT4] and SGM [Hir05]
respectively. All reference view pixels are segmented into superpixels and
each superpixel is assumed to correspond to a planar 3D patch in the scene.
The planar patch plane is computed by fitting a plane to the corresponding
disparity measurements.

Ego-motion and sparse optical flow. Then, the camera position and orien-
tation are estimated. Ego-motion is computed using Geiger et al. [GZS11]
visual odometry algorithm and it assumes that dominant motion of the scene
is induced by the motion of the camera (a car with recording platform).

The algorithm relies on sparse features detected by corner and blob detector
and estimates the ego-motion by minimising the reprojection error using
Gauss-Newton optimisation.

Next, sparse optical flow is computed from set of correspondences between I,lf
and Ié 11 images. The correspondences are computed by the same feature and
correspondence detector [GZS11] as described above but without estimation
of single motion model. Instead, the set of sparse correspondences over whole
images are returned (even for independently moving objects). Sparse optical
flow is used as a clue to independent motion hypotheses as described bellow.

Motion hypotheses. The rigid body motion hypotheses of independently
moving objects are computed next. The ego-motion outliers are found, and
they are used as an input to a sequential RANSAC which greedily produces
hypotheses. The number RANSAC sequences ran over whole image area and
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5.3. Time Consumption Analysis

the number of inner RANSAC iterations are set to constant (up to hundred).
Non-maxima suppression is applied for motion models as the last step of
hypotheses estimation.

Optimisation. Finally, the CRF is formulated in order to assign planar
patches with the motion hypotheses as mentioned above.

The CRF function is formulated according to a data-term Ep and smooth-
ness (regularisation) term Eg [MP76]:

E (s,0) = Ep (s,0) + AEs (si, sj) , (5.1)

where A is weight of smoothness term. Data term evaluates the assumption
of the constancy in appearance between corresponding pixels over all four
images. Data term is computed for each superpixel and each object from the
set of possible motion hypotheses as a summation of matching costs of all
pixel inside the superpixel. The OSF uses dense and sparse matching costs.
Dense matching cost is defined as Hamming distance of appropriate census
descriptors. Sparse matching cost is defined using [ norm between warped
images using sparse feature correspondences [5.2.

The OSF smoothness term relies on the assumption that adjacent superpix-
els assigned with the same independent object (and its motion) have smooth
transitions between depth and orientation. Smoothness term penalises the
undesired relation between adjacent superpixels.

The OSF uses max-product particle belief propagation [PZBS14] and tree-
reweighted message passing [Kol06] for the optimisation. Details can be found
in the original paper [MG15]. The estimated dense scene flow is computed
from the planar patches parameters.

B 53 Time Consumption Analysis

The OSF algorithm is very time-consuming, it takes 50 minutes ' per frame.
In this section, we investigate algorithm time consumption of individual parts
to find out a possible opportunity of algorithm speed-up.

The most demanding part of the algorithm is the optimisation of the
resulting scene flow, which takes about 32 minutes [?. Figure [5.2b shows the
relative time complexity between initialisation and optimisation of the algo-
rithm. The reported durations are average times measured on the KITTI'15
dataset [MGI5].

Initialisation part analysis. As seen in Figure [5.2b] initialisation steps take
only a fraction of the overall running time. To initialisation part of the
algorithm belongs following steps. Computation disparity and superpixel
segmentation of images using SPS-St [YMU14] is the first step of the algorithm
and takes on the average 6.93 seconds. Note that the most of this time takes

!'measured time comes from original paper
Zsingle core Intel i5-2.4GHz, original paper presented 50 minutes

23



5. Object Scene Flow Algorithm

parts OSF [s] ‘ OSF-BG [s] Initialisation 27.1

z disparity and segmentation 6.93

Z | ego-motion estimation 12.75

4| sparse optical flow 0.28

E motion hypotheses 5.27

2| other initialisation 1.88

| data term comp. 26.88 7.52

£ | pair-wise term comp. 1.37 0.32 Sinal

g 5 - - ingle

2 TRW-S 7.63 1.66 Optimisation optimisation
other optimisation 0.98 0.66 1842.9 iteration 36.9
total (50 optim. iters) 1870.20 535.11

(a):

(b):

Other <1s

Other 1.9s Disparity and
Segmentation 6.9s

TRW-S 7.6s

Motion
hypotheses 5.3

Pairwise
Sparse term 1.4s

flow 0.3s

Data term 26.8s

Ego-motion 12.8s

(c): (d):

Figure 5.2: Time consumption analysis of the Object Scene Flow algo-
rithm [MGI5]. The top left table shows durations of individual steps of the
algorithm, where OSF means a original algorithm and OSF-BG proposed search
space reduction. The top right chart shows relative time complexity between
initialisation and optimisation. Bottom left chart shows relative time complexity
among individual parts of initialisation and bottom right chart shows relative
time complexity among individual parts of optimisation (times are shown for
one iteration).

up to the initial disparity estimation using SGM [Hir05]. The most time-
consuming part of initialisation is finding ego-motion [GZST11], which takes
12.75 seconds.

Searching for hypotheses of moving objects using the information from the
previous steps, and the RANSAC scheme takes 5.27 seconds. Figure [5.2¢
shows relative time complexity of the initialisation parts of the OSF algorithm.

Initialisation of the OSF algorithm is possible to speed-up several ways — e.g.
using real-time implementation of SGM algorithm m SLAR14, [GR10],
application of real-time correspondence and ego-motion estimation [BW16|
(even originally applied algorithm [GZS11] is able to run in real-time) of
effectiveness parallelisation of sequential RANSAC. However, significantly
the most time-consuming part of the OSF algorithm is optimisation. Thus,
speed-up of initialisation has been left as future work.

Optimisation part analysis. As mentioned in the previous paragraphs, the
slowest part of the algorithm is the optimisation itself. The times listed in
the following paragraph relate to one optimisation iteration and their value
is averaged over all image pairs in the KITTI'15 dataset. A total number of
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5.4. Discussion

iteration is set to 50°.

By far the most expensive part of the optimisation is the data-term compu-
tation for all possible superpixel shape combinations and possible hypotheses
of individually moving objects generated by the particle filter. It takes 26.88
seconds. Next, there are generated pairwise terms for the adjacent superpixels
in 1.37 seconds. Optimisation by TRW-S [Kol06] for computed data terms
and pairwise terms takes 7.63 seconds. The relative time complexity of the
optimisation parts are showed in the Figure [5.2d.

One of the algorithm speed-up is achieved by the number of iteration
reduction. This approach is presented and evaluated in the original OSF
paper. Other speed-up options of optimisation are the reduction of possible
solution search space, parallelisation on GPU, etc. We propose first of the
listed speed-ups in Section [6.5.

. 5.4 Discussion

The assumptions of locally planar superpixels and several rigidly moving
objects which explain motion in the scene have significantly improved the
results of algorithms in optical flow and scene flow benchmarks [GLSUI2,
MG15]. Although the OSF belongs to the state of the art methods, we have
identified several shortcomings.

® We run the algorithm on a video sequence and observe that it occurs
that the algorithm fails to identify moving objects that were considered
moving in previous frames. This effect leads to a poor estimate of the
scene flow and also to the loss of information about moving objects. Along
with that, the IDs of objects are not preserved thought the sequence.
Section [6.1] focus of this problem.

® The quality of the estimated scene flow is strongly dependent on initiali-
sation of the random generator. Total variance of estimated optical flow
is more than 3% for the scene flow computed on the same input data,
more about variance problem in Chapter [7.2.

® The algorithm is very time-consuming (see Sec. |5.3). One reason is non-
optimal algorithm implementation (no parallelisation) and the second
reason is very complex optimisation (see Sec. 6.5).

® Other problems are identified as: the wrong estimation of small vehicles
near to focus of expansion, more than one hypothesis on large vehi-
cles, failed ego-motion estimation and limitations of greedy hypotheses
generation. These problems have been left as future work.

3according original paper settings
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Chapter 6

Object Scene Flow with Temporal
Consistency

In this chapter, we present our extensions of the OSF algorithm. We focus
on the temporal consistency of the independently moving objects. Further,
we introduce ego-motion outlier redefinition — the method for more precise
distinguish between background and moving objects. Next, we propose
robust motion hypotheses generation — an application of local optimisation
within the algorithm for searching proposals of independently moving objects.
Then, modification using temporally consistent superpixels and reduction of
optimisation space, which is focused on speed-up of optimisation part of OSF
algorithm. All the proposed modifications are evaluated experimentally in
Chapter

B 6.1 Object Motion Labels Propagation

As noted above, the OSF does not use any information from the previous
stereo image pairs. We expect that adding temporal consistency will lead
to a more accurate scene flow estimation. We also expect that some objects
that are missed by standard OSF will be detected thanks to the temporal
consistency. Finally, the object labels should become stable throughout the
sequence.

Following text uses notation introduced in Chapter 5 and Chapter
Assuming constant velocity, we propagate estimated motion parameters 0?1
from the frame ¢ — 1 and use them for estimation of of, in frame ¢. However,
we do not simply use o}?l as a motion candidate at frame t. Instead, we use
disparity and sparse correspondences between the frames t and ¢ + 1 to find
a good candidate motion ol as it is shown in Figure

Let Ly = {i;l; = k} be a set of indexes of all planar patches s; assigned
with the same motion 0’,;_1 and let Xth be a set of all 3D points associated
to all segments from Li. We get a set of 3D points Xﬂ;l using a constant

motion assumption.
an! t—1~rt t—1
X = RITIXG, +ty (6.1)

Since the constant motion assumption is only approximately valid, we use
3D points X%k and Xi‘:l only to estimate the bounding box of expected
object location. The actual positions of 3D points are then estimated from
disparity and sparse correspondences in the following way. We reproject the
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6. Object Scene Flow with Temporal Consistency

Figure 6.1: Scheme of object motion labels propagation. Dense 3D point cloud
X} ! is computed from segments assigned with motion o}, . 3D points X} *

are transformed by 02_1 to the frame ¢ and ¢t + 1 as X’j:k and XtL'Zl respectively.
Sparse correspondences F Stz’f“ with larger density for motion estimation are
computed in the appropriated areas where Xth and Xt;;l are reprojected.

3D points Xth and Xﬂ;l back to the image plane as 2D points rﬁ’};k and riltL‘;l,

respectively. We compute sparse flow FL!*! correspondences [GZST1] between
frames t and ¢ + 1, with larger density than in the original OSF (five times in
our case). These correspondences are computed in the image area bounded
with the smallest rectangular bounding box containing all reprojected points
Iflth and ﬁltfkl, respectively. We enlarge the bounding box by 20 pixels at each
side to increase robustness. For all computed correspondences, we estimate
their corresponding 3D points X%SP,XE; using stereo camera calibration
and estimated disparity.

To remove obvious outliers, we remove all points X?;} (with their X'};Sp

correspondences) which are further away from the medz’an(f(t;kl) than a
threshold 65PE|‘ We also remove all correspondences which have similar motion
as the camera ego-motion. Motion hypothesis candidate of, = (R}, t}) is
estimated on the remaining correspondences by RANSAC. We propagate
every object motion 0’,5;1 except the ego-motion.

B 6.2 Ego-motion Outlier Redefinition

The motion hypothesis propagation has a positive effect on the error of the
estimated scene flow and decreases the number of missed vehicles. However,
the label propagation also increases false positive detection rate (Table .
This is caused mostly by propagating additional false positive detection from
previous frames. False positive detection could be seen in Figure [6.2

As discussed above, the OSF algorithm finds 3D motion hypotheses as

105, = 3m; Similar process as used in [MG15)
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6.3. Robust Motion Hypotheses Generation

Figure 6.2: Evaluation of independently moving objects labelling from Object
Scene Flow algorithm [MGI5] on the KITTT'15 dataset. Missed vehicles are
coloured in red; correctly detected vehicles are in green, and falsely detected
vehicles are coloured in yellow. As false positive detections are considered also
moving objects e.g. cyclists, trucks, persons, etc. since foreground ground-truth
contains only moving cars.

ego-motion outliers in sparse flow correspondences. A correspondence is
considered as ego-motion outlier when its end-point-error Eep(u, v) is greater
than a fixed threshold (2 px) for all (u,v) where Fj, is defined.

Figure shows the ego-motion outliers of the original approach (labelled
with red colour). It could be observed that the fixed threshold works well at
medium flow magnitudes but worse at the boundary of the images where the
optical flow is larger and a small disparity error causes significant EPE. To
eliminate this effect, we propose to use a dynamic threshold which depends on
the motion magnitude. Correspondence in the image point (u,v) is labelled
as ego-motion outlier if

Fusv

ego

(Bepe (1, v))” > max (|

2,9mm) : (6.2)

where 0,,in = v/2 is a minimal optical flow threshold to increase robustness.

Application of this change is shown in Figure The false ego-motion
outliers disappear at image edges and the true estimated outliers are found
on the distant vehicles.

B 6.3 Robust Motion Hypotheses Generation

Examining further the results, most of the remaining errors are caused by
the random nature of the algorithm. Depending on the initialisation, we
observed a high output variance. Due to inaccurate matches, this approach
of multi-instance model fitting could produce imprecise models. Inaccurate
models hypotheses are then discarded during labelling and optimisation step
of the OSF algorithm. Particle filtering in the optimisation loop should fix the
inaccuracy of the models, nevertheless this works only for small deviations.

Figure|6.4] compares the best and the worst case from 10 randomly initialised
runs of the algorithm on the same input data. Possible reason of the poor
hypotheses are often a small number of correspondences or inaccurately
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6. Object Scene Flow with Temporal Consistency

Figure 6.3: Demonstration of ego-motion outlier redefinition. Green colour
marks ego-motion inliers and red colour ego-motion outliers. (top) original
approach and (bottom) proposed approach. The most significant difference
is on the sides of the images, where lots of false-positive ego-motion outliers
disappeared. Red ellipses mark areas with significant number of false-positives
ego-motion outliers and yellow ellipses mark false-negative ego-motion outliers.

estimated disparity. A small error at disparity leads to a significant error of
estimated model.

To alleviate these problems we decided to use LO-RANSAC [CMKO03]
to generate motion hypotheses. Because of its local optimisation step it
tends to produce more precise motion hypotheses. As we will demonstrate
it in Section |7, the number of missing cars is the lowest from all tested
combinations. The variance of the algorithm is also reduced.

| X Temporally Consistent Superpixels

We assume that superpixels formed on the same surfaces in the scene but
observed from different viewpoints or time steps should not significantly differ
in appearance or shape. We decided to apply temporal consistency on another
level and use time-consistent superpixels to initialise the OSF algorithm.

We decided to use Chang et al. [CWF13] algorithm for temporal superpixels
(TSP). Their algorithm is based on the probabilistic model and previous
seminal work from simple linear iterative clustering (SLIC) [ASST12]. They
explicitly model the optical flow using bilateral Gaussian process. Instead of
that, we use optical flow estimated by OSF algorithm.

In a situation that we have not estimated optical flow available (first
frame in the sequence), we initialise with disparity estimated by SGM [Hir05].
Figure shows the superpixel segmentation of TSP with compare to SPS-St.
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6.5. Optimisation Space Reduction

Segmented objects on left image (0023_10)
Ee

Outliers on NOC GT (000023_10)

Figure 6.4: Demonstration of OSF variance. (top) shows the best result and
(bottom) shows the worst result on a random KITTI'15 sequence with ten
randomly initialised computations. Left images show the final labels of indepen-
dently moving objects (background not shown) and right images represent EPE
of the found optical flow (red colour for EPE > 3px).

Consequently, we proposed two versions of modification for robust disparity
estimation:

® The estimated initial disparity [Hir05] is fitted to all pixels assigned
with given superpixel to find a 3D plane describing the shape of the
superpixel. Fitting is provided for each superpixel separately by the
RANSAC scheme [FB81]. The version is labelled as SGM+TSP in the
following text.

® The superpixel shape and appearance estimated by TSP is used only
for the default initialisation for the SPS-St[YMU14] algorithm. The rest
of the SPS-St algorithm is kept untouched. The version is labelled as
SGM+TSP+SPS-St in the following text.

The quantitative and qualitative results of both versions are presented in
Section [7.3.

B 65 Optimisation Space Reduction

Speed-up analysis of the OSF (see Sec. [5.3) shows that significant time
consumption of the algorithm belongs to optimisation part (98.5% with 50
iteration setting).

As was mentioned in Chapter [5], there are three obvious possibilities to save
time consumption of optimisation. The first is the reduction of an optimisation
iterations total number. This modification was presented in the original paper.
The second possible modification is GPU parallelisation, where theoretical
acceleration is up to ten times, as indicated by the [FMO0S8, [AMY09]. Due to
a complexity of GPU parallelisation algorithm development, it is kept as the
future work. The third modification is a searching space of possible solutions
reduction, on which we are focused in this section.

We are using an assumption that initially estimated ego-motion and dis-
parity on the background are provide enough accuracy over areas without
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6. Object Scene Flow with Temporal Consistency
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Figure 6.5: Qualitative comparison of superpixel segmentation algorithms on

the KITTT'15 dataset [MGI5]. The top image is segmentation using SPS-

St [YMUT4], and the bottom image is segmentation using temporal superpixel

representation by [CWF13]. Images show that [CWEF13] builds complicated

shapes of superpixels but can adjust to the shape of the individual objects.

independently moving objects. We build our assumption on the optical flow
and disparity benchmark results [GLSUI2, [MG15] for static scenes, where
algorithms for ego-motion scene flow [YMUI3| reach state-of-the-art
results.

Thus, we decided not to optimise the shape and motion for superpixels that
have ego-motion as only one possible hypothesis. Instead of that superpixels
keep disparity and motion estimated in algorithm initialisation. According to
that, the default CRF for OSF is modified as follows:

E(S,O) = Z E%D (Si70)+)‘2 Z[[Z?é]]] EZS (Si7sj)7 (63)

ieS* i€S* jES*

and {S* C S |1 € S* || > 2}, where ||74] is number of independent
motion hypotheses in superpixel 1.

Figure shows a percentage of the image with superpixels ego-motion
hypothesis only. We assume that the theoretical acceleration of the algorithm
will be proportional to the area where no optimisation is applied and total
image area. We evaluate the results of this modification in Chapter [7, where
we focus not only on the algorithm acceleration analysis but also on the
impacts that this change affected on the accuracy of estimated scene flow, as
well as the impact on false positive and false negative rates of moving objects.
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6.5. Optimisation Space Reduction

(a) : 15.38% (b) : 16.61%

Figure 6.6: An example of the superpixels contains independent motion hypothe-
ses on the KITTI'15 dataset [MGI5]. Upper images show motion hypotheses
after non-maxima suppression in the reference frame. Lower images show areas
assigned with hypotheses different from ego-motion and their neighbouring super-
pixels (yellow) and areas with ego-motion hypothesis only (blue). Under image
is a percentage of area with are used in the optimisation excluding ego-motion

only areas.
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Chapter 7

Experiments

In this chapter, we experimentally evaluate of the proposed extensions. First,
we show analysis of variance analysis of the original algorithm. Then we
focus on the proposed modifications evaluation. For evaluation, we are
using the standard KITTI'15 benchmark [MGI5]. The benchmark contains
stereo camera sequences with large displacements and nontrivial environment
conditions.

We evaluate the precision of the estimated disparity, optical flow and scene
flow but we also evaluate the quality of moving objects detection with false
positive and false negative rates. Finally, we compare our proposed extensions
with state-of-the-art methods for scene flow estimation.

B 7.1 Evaluation protocol

To evaluate the scene flow, optical flow and disparity we use the standard
KITTT’15 metric — a percentage of erroneous pixels. Pixels are considered
erroneous when the end-point-error exceeds 3 pixels.

Since the OSF does not compute only scene flow, but returns also seg-
mentation of the scene into independent moving objects, we also report the
number of missed moving vehicles — false negatives (FN), and the number of
falsely detected vehicles — false positives (FP) as annotated in the data. We
label object Oy as true positive if

GTm O

L2 "L s, (7.1)

|LGTm U LOk|
where LETm is the set of pixels of the mth moving vehicle marked in the
ground truth and L9 is a set of pixels labelled as k-th object by the proposed
algorithm. This evaluation is complementary to the scene flow quality measure,
and we believe that it better reflects the ultimate goal of all these methods -
dynamic scene understanding.

Video sequences provided by KITTI'15 dataset contain different types of
independently moving objects as pedestrians, cyclists, passenger cars, vans,
trucks, trains and buses. However, ground truth labels are available only for
some moving cars and vans (see Sec. 4.1). However, we observe that the OSF
is able to detect moving objects in the scene no matter object class. Thus,
we extend the label annotation of another 148 objects to total number 577.
We also distinguish classes among individual objects. Figure |7.1] shows some
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7. Experiments

FP opp FN opn

OSF [MGI5] 236.6 14.7 | 1704 3.3
+ label propagation 276.1 11.7 | 153.5 8.4
+ dynamic outliers 219.6 8.3 | 1427 3.0

+ LO-RANSAC (3 frames) 2444 124 | 1253 29
+ LO-RANSAC (5 frames) 2353 9.3 |121.0 3.6
+ LO-RANSAC (12 frames) | 236.3 17.0 | 123.2 54

Table 7.1: Comparison of detection results of moving vehicles. Tested on the
KITTT’'15 training multiview dataset. We run listed algorithms algorithm 5
times for each sequence and each extension. FP and FN denote mean of false
positive (wrong detection) and false negative (missed detection) respectively. In
addition the standard deviations opp and opn are shown for better comparison.
Total number of vehicles is 429.

B o= =

(a) : Original annotation (b) : Extended annotation

Figure 7.1: Comparison of original and extended annotation on KITTI'15
dataset for moving objects labels.

instances of extended annotation and specific number of objects among all
categories are listed in Table

. ) Object Scene Flow Variance Analysis

As was mentioned above, we noticed that the OSF results vary significantly
depending on the random seed initialisation. To investigate this variance, we
removed all fixed random generator seeds in all parts of the OSF algorithm
and instead initialised all the seeds randomly for each computation. We
then run the OSF algorithm 30 times for each sequence. Figure [7.2| shows
variance of the OSF results. We noticed that sequences with large variance
have difficult radiometric conditions or large displacements.

To determine the cause of high variance more accurately, we performed the
following experiment. We ran the OSF algorithm and stored part results after
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Figure 7.2: Variance of the OSF algorithm (variance bar graphs only for every
10th, mean and variance over all 200 sequences). The central line inside each box
indicates the median. The bottom of the box refers the 25th percentile and the
top of the box refers to the 75th percentiles, respectively. Outliers are marked
with the red symbol ‘x’.

every step that is dependent on a random numbers generator. Subsequently,
we proceeded from these part results, we restored calculations and continued
the algorithm computation (ten times for each part result). We found that the
measured data contain a substantial decrease in the variance after estimation
of the independent motion hypotheses step. Graph shows the experiment
for selected examples.

We identified the estimation of motion hypotheses as a critical step of the
algorithm. We assume that temporal consistency of independently moving
objects should add more stability to the algorithm. Our other two proposed
modifications also contribute to the step of motion hypotheses estimation.

B 7.3 Evaluation of the Proposed Object Scene
Flow Extensions

We compare results of our modifications according to various quantitative
criteria as erroneous pixels percentage of scene flow, optical flow and disparity
for different scene flow estimation variants.
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Figure 7.3: Optical flow variance of individual parts of OSF algorithm. The
graph shows ten runs of the algorithm on chosen examples. Each stochastic part
of the algorithm was precomputed and then was computation initialised with
this precomputed values in each stochastic step. Numbers in the legend of the
graph represent mean and standard deviance respectively over whole KITTI'15
training dataset. The central point inside each box indicates the median. The
bottom of the box refers the 25th percentile and the top of the box refers to the
75th percentiles, respectively. Outliers are marked with the symbol o.

Object motion label propagation. Object motion label propagation is a
modification of OSF algorithm which is focused on an addition of temporal
consistency to the algorithm (see Sec. . The modification influence is
shown in Table [7.1. The number of undetected vehicles decreases. On the
other hand, the number of false positive detections increases. Besides that,
we observe also a slight increase of scene flow error as shown in Table |7.2.
As discussed above, this is connected with the propagation of false positives
in time. Independently moving objects are stable during longer sequences.
Thanks to labels propagation we also preserve objects IDs. Figure |7.6/ shows
the comparison between original algorithm and proposed modification.

Ego-motion outlier redefinition. Next, we evaluate the ego-motion outlier
re-definition (Sec. . It helps to decrease the number of false positive
detections as shown in Table[7.1. Also the number of false detections decreases.
The scene flow is still worse than the original OSF but gets slightly better
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7.3. Evaluation of the Proposed Object Scene Flow Extensions

Alg.\Error D1-bg Di1-fg D1-all | D2-bg D2-fg D2-all
OSF [MG15] 377 % 730 % 445 % | 4.22% 1241 % 5.60%
+ label propagation 3.85 % 6.78 % 452 % | 438 % @ 1034 % 5.65 %
+ dynamic outliers 3.714 % 6.50 % 439 % | 437 % 9.57 % 5.56 %
+ LO-RANSAC (3 frames) 3.78 % 6.11 % 433% | 441 % 8.49 % 5.30 %
+ LO-RANSAC (5 frames) 3.81 % 6.33 % 4.42% | 4.43% 9.04 % 5.51 %
+ LO-RANSAC (12 frames) 3.81 % 6.28 % 4.42% | 4.44 % 8.76 % 547 %
OSF+TC+SGM+TSP 3.56 % 7.40 % 4.96 % | 4.20 % 831 % 5.68 %
OSF+TC+SGM+TSP+SPS-St | 3.53 % 734 % 490 % | 4.13 % 9.13 % 5.83 %
OSF-BG 3.79 % 507 % 421 % | 4.46% 948 % 5.48 %
OSF+TC-BG 380% 479 % 4.19 % | 4.56 % 7.63% 538%
Alg.\Error Fl-bg Fl-fg  Fl-all | SF-bg SF-fg SF-all
OSF [MG15] 4.45% 2036 % T7.04% | 548 % 22.95% 820 %
+ label propagation 468 % 1890 % 744 % | 5.73% @ 2141 % 851 %
+ dynamic outliers 475 % 1777 % 734 % | 578 % 2043 % 845 %
+ LO-RANSAC (3 frames) 479 % | 1274 % 6.37% | 582 % 1521 % 7.52 %
+ LO-RANSAC (5 frames) 481 %  14.05% 6.79% | 586 % 1654 % 7.91 %
+ LO-RANSAC (12 frames) 478 % 1401 % 680 % | 582 % 1652 % 7.92 %
OSF+TC+SGM+TSP 476 % 11.70 % 684 % | 559% 2277 % 829 %
OSF+TC+SGM~+TSP+SPS-St | 4.70 % | 1258 % 7.08% | 553 % 24.43 % @ 8.56 %
OSF-BG (orig, 2 frames) 572% 1718 % 7.69% | 6.74 % | 1886 % 8.78 %
OSF+TC-BG 6.01% 13718 % 756 % | 7.04% 1554 % 8.64 %

Table 7.2: Scene flow evaluation of proposed modifications. Tested on the
KITTT15 training multiview dataset. Columns marks categories of evaluation:
scene flow as SF, optical flow as F, disparity D1 for the first frame of the test
pair and D2 for the second; and subcategories: evaluation over bg background
regions, evaluation over fg foreground regions and all evaluation over all ground-
truth. Categories where proposed modifications performs better than the original
OSF are highlighted in grey and the best results are in bold.

results compared to the previous experiment (see Table [7.2]).

Robust motion hypotheses. The additional application of LO-RANSAC
(see Sec. 6.3) in the motion hypotheses estimation leads to a significant
decrease of the scene flow error from 8.2% to 7.52% (Tab. [7.2) compared
to the original OSF algorithm. Besides, the number of false negatives also
decreases. Only the number of the false positives increases slightly (Tab. |7.1)).
For the case of application of all extensions, we try a different number of
frames as input to the temporally consistent OSF.

We run experiments in for 3, 5 and 12 frames. Temporally consistent
moving objects are propagated from the previous frame to current frame in
an online manner. Using more frames from the past reduces FPs and FNs as
shown in Table 7.1, however the scene flow results degrade a bit (Table |7.2).
This effect is most likely caused by the different density of ground-truth in
the KITTTI dataset (foreground is about 4x denser — sparse data from LiDAR
and extrapolated data with using of CAD models). Every super-pixel falling
on both foreground and background is more likely to be removed from the
motion hypothesis when propagated longer. This nibbling of the car borders,
however, causes higher foreground scene-flow errors as shown in Table |7.2
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———————r SRR

Figure 7.4: Qualitative comparison of superpixel segmentation on KITTI’15
dataset. The top row shows an example of segmentation and initial disparity
estimation from SPS-St used in the OSF. The middle row shows an example of
TCS and robust estimation of disparity using RANSAC over segment assigned
pixels initialised by SGM. The bottom row shows segmentation and dispar-
ity estimation produced by the combination of TCS and SPS-St, where TCS
segmentation is used as initialisation of SPS-St superpixel shapes.

Application of temporally consistent superpixels. The proposed modifi-
cation of temporal consistency addition on another level is described in
Section Figure shows qualitative comparison between temporal con-
sistent superpixels application (Sec and original OSF. Evaluation of
disparity, optical flow and scene flow for both proposed scenarios is shown in
Table Although the qualitative comparison of superpixel shape is better
for methods using temporally consistent superpixels. The original usage of
SPS-St [Hir05] achieves better results in quantitative comparison for scene
flow estimation. Proposed modifications using temporal superpixels achieve
the best results for foreground optical flow estimation, but modifications have
worse results in the scene flow category than other proposed modifications or
their combinations.

From the reason of worse scene flow estimation results, we decided not
use this modification with the state-of-the-art comparison!. The another
modifications using temporally consistent superpixels are kept as the future
work.

Reducing time consumption. Measurement of time consumption modifica-
tion is depicted in Figure Average speed-up of algorithm optimisation
is 3.82x, which results in a reduction of whole algorithm duration from
32 minutes and 40 seconds to 8 minutes and 52 secondﬁﬂ Further, we exper-
imentally prove an assumption that speed up linearly depends on the area
occupied by the motion hypotheses different from ego-motion. Figure

'KITTT’15 benchmark allows only one submission for one algorithm to reduce the
overfitting
Zsingle core Intel i5-2.4GHz
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Figure 7.5: Influence of search space reduction on time of the optimisation
part of the OSF algorithm. The left chart shows the optimisation speed-up on
each 10th image from the KITTI'15 dataset, where the red line is measured
mean of original OSF and green line is mean of measured modifications over
the whole KITTI’15 training dataset. The right graph shows that the speed-up
is approximately linear in the percentage of the area occupied by the motion
hypotheses.

shows their approximately linear dependency. Table |7.3| shows an evaluation
of false positive and false negative detection rates for this modification. Ta-
ble |7.2| shows the evaluation of estimated disparity, optical flow and scene
flow for the proposed speed-up marked as OSF-BG (for application directly
on the original OSF) and OSF+TC-BG (for application on OSF with other
extensions applied). Results show that application of search space reduction
has a positive effect on false negative moving objects detection (OSF+TC-BG
the best result from all tested modifications) with a comparison of methods
without space reduction, but at the same time, it increases the number of
false positive detection.

The speed-up of the algorithm with accuracy decreasing effect is a problem
for the most of the estimation algorithms. For now, we have no correction
for an algorithm accuracy with the usage of optimisation space reduction
modification. We can choose between slow and more accurate or quicker and
less accurate options.

Space reduction also has a positive effect on disparity, optical flow and
scene flow estimation over foreground areas. However, with a comparison to
scene flow and optical flow is worse across all flow categories than proposed

OSF+TC method.

B 73.1 Summary

We also evaluate some of the modifications on the extended dataset of moving
objects (see Table 7.4) which was mentioned above. We do not observe big
differences for modifications among object categories, except moving cars,
where the modifications using temporal consistency are significantly better.
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£3 Frvad

FP  FN| FP  FN

OSF [MGI5] | 236.6 170.4 | 220.3 292.7
OSF+TC 2444 1253 | 210.7  233.3
OSF-BG 208.7 1504 | 267.1 266.7
OSF+TC-BG | 333.4 120.3 | 291.3 226.0

Table 7.3: Comparison of detection results of moving vehicles. Tested on the
KITTT’15 training multiview dataset. We run listed algorithms algorithm 5 time
for each sequence and each extension. FP and FN denote mean of false positive
(wrong detection) and mean of false negative (missed detection) respectively. In
addition the standard deviations opp and opyn are shown for better comparison.
FP" and FN™ denote false positive and false negative on spread dataset of moving
objects labels. The best case in the category is coloured in green, and the worse
case is coloured in red.

*

FN
Car  Van Cyclist Pedestrian Truck Train
OSF [MG15] | 238.7 15.0 2.0 11.7 17.3 5.0
OSF+TC 182.7  13.3 2.0 12.7 15.3 4.3
OSF-BG 214.0 13.7 2.3 11.0 18.0 4.7
OSF+TC-BG | 177.0 12.0 2.3 12.0 15.0 4.7
Total number 482 39 8 18 25 5

Table 7.4: Comparison of detection results of moving objects. Tested on the
KITTTI’15 training multiview dataset. We run listed algorithms algorithm 5 times
for each sequence and each extension. FN" denote mean of false negative (missed
detection) for individual class of moving objects labels on extended dataset. The
best case in the category is coloured in green, and the worse case is coloured in
red.

The method is termed OSF+TC in the comparisons.

Based on the results, the propagation through three frames was chosen
for further comparison with the state of the art. The level of false positives
and false negatives is similar to other variants, but the scene flow errors are
significantly lower.

B 74 Comparison with the State of the Art

We compare the best combination of all proposed extensions (temporal
consistency using three stereoscopic frames, ego-motion outlier redefinition
and robust motion hypotheses generation) with the best-ranked KITTI’15
submissions in the scene flow category. Table [7.5 shows the results for
evaluation on all pixels from ground-truth in the image frame. OSF+TC
decreases EPE of the original OSF from 10.63% to 9.65% and achieves the
second position in the scene flow estimation total. The loss to the first place
(PRSM [VSR15]) is less than a quarter percent. Moreover, OSF+TC ranked
first for scene flow evaluation on non-occluded pixels as shown in Table [7.6,
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(a) : Original (b) : Proposed

Figure 7.6: Propagation of moving object label through time. Three moving
objects (id=2,7,9) in (b) have stable label over the whole sequence as opposed
to the original approach in (a). Car 2 is detected earlier due to the stronger
LO-RANSAC model estimation and is then correctly propagated. Object 7 is a
man on a bicycle. Also many false positives are reduce due to the ego-motion
outlier redefinition.

with a modification to the original algorithm by 1%. Finally, OSF+TC
achieves the first position for scene flow and optical flow over foreground
regions for both, non-occluded pixel and all pixel evaluation.

A complete comparison with other KITTI’15 competitors is listed in Ap-
pendix [Bl Recently tested but unpublished methods are also listed for fair
comparison.
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Alg.\Error D1-bg Di-fg D1-all | D2-bg D2-fg D2-all
PRSF [VSR13] 4.74 % 13714 % 624 % | 11.14% 2047 % 12.69 %
CSF |[LBAT16] 457% 13.04% 598% | 7.92% 20.76 % 10.06 %
OSF [MG15] 454 % 1203% 579% | 545% 1941 % 177 %

PRSM [VSR15] 3.02% 1052% 4.27% | 513% 1511 % 6.79%

OSF+TC (ours) | 411 % 9.64% 503% | 518% 1512% 6.84 %

Alg.\Error Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all

PRSF [VSR13] 11.73 % 2773 % 1439 % | 13.49% 33.72% 16.85 %
CSF |LBAT16) 1040 % 3033 % 13.71 % | 1221 % 3697 % 16.33 %
OSF [MG15] 562% 2217% 837% | 701 % 2876 % 10.63 %
PRSM [VSR15] 533% 17.02% 7.28% | 6.61 % 23.60% 9.44%

OSF+TC (ours) | 5.76 % |16.61% 7.57% | 7.08% | 22.55% 9.65 %

Table 7.5: Quantitative comparison with the state-of-the-art results (all pix-
els). Columns mark categories of evaluation: scene flow as SF, optical flow
as F, disparity D1 for the first frame of the test pair and D2 for the second;
and subcategories: evaluation over bg background regions, evaluation over fg
foreground regions and all evaluation over all ground-truth. Categories where
OSF+TC performs better than the original OSF are highlighted in grey and the
best results are in bold.

Alg.\Error D1-bg Dil-fg D1-all | D2-bg D2-fg D2-all

PRSF [VSR13| 441 % 13.09% 584 % | 635% 1612% 810 %
CSF |[LBA™16] 403% 11.82% 532% | 639% 167 % 825%
OSF [MGI15] 414 % 11.12% 529% | 449% 1633 % 6.61 %
PRSM [VSR15] 2.93% 10.00% 4.10% | 4.13% 1285 % 569 %

OSF+TC (ours) | 3.79 % 8.66 % 459% | 418 % 12.06% 5.59 %

Alg.\Error Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all

PRSF [VSR13| 6.94% 2364% 997% | 835% 2845% 11.95%
CSF [LBAT16] 872 % 2698 % 12.03 % | 10.26 % 32.58 % 14.26 %
OSF [MGI5| 421 % 1865% 683 % | 552% 2458 % 893 %
PRSM [VSR15] 433% 1415% 611% | 554 % 2016 % 816 %

OSF+TC (ours) | 434 % 12.86 % 5.89 % | 5.52 % 18.02% 7.76 %

Table 7.6: Quantitative comparison with state-of-the-art results (non-occluded
pixels). Columns marks categories of evaluation: scene flow as SF, optical flow
as F, disparity D1 for the first frame of the test pair and D2 for the second;
and subcategories: evaluation over bg background regions, evaluation over fg
foreground regions and all evaluation over all ground-truth. Categories where
OSF+TC performs better than the original OSF are highlighted in grey and the
best results are in bold.
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Chapter 8
Future Work

Since we are particularly focused on automotive industry usage of the al-
gorithm, we want to achieve real-time scene flow computation. For this
reason, we want to reimplement parts of the algorithm to GPU and achieve
computation speed-up using parallelisation.

We plan to use a better way of initialisation object motion candidates
by an algorithm for multi-class and multi-instances model fitting or use
such an algorithm directly for object motion labelling, instead of extremely
time-consuming discrete-continuous CRF optimisation, which is presented in
the original algorithm. Multi-class object fitting is considered be helpful for
distinguishing between big independently moving objects, like trucks or trains,
and small moving objects, as pedestrians. Both categories cause mismatches
in the current version of the algorithm.

We also plan cast temporary consistent superpixels (e.g. [CWF13| RJRO13])
in another way than is proposed in this thesis, to achieve temporal consistency
of labels and scene flow over much longer sequences. This modification is
considered be useful especially for objects close to focus of expansion point
where motion parallax over longer sequence could help to distinguish moving
objects from the background.
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Chapter 9

Conclusion

The first part of the thesis shows the basic concept of scene flow estimation
with a focus on several possible estimation difficulties. Then, we review related
works and briefly survey scene flow datasets associated with autonomous
driving. Next, The Object Scene Flow algorithm [MG15] and its individual
parts are described in details. Also, time consumption analysis of the algo-
rithm parts is performed. Finally, we introduce severe modifications to the
OSF algorithm. The proposed modifications are evaluated on the KITTI'15
benchmark, and their limitations are identified.

In particular, we proposed a modification adding temporal consistency to
the OSF algorithm. It uses independent motion segmentation and motion
parameters estimated in previous frames to achieve better initialisation of
the scene flow in the current frame. We use the assumption that the mo-
tion of an individual object is almost constant between consequent frames.
Moving objects segmentation is more stable over longer sequences using this
modification.

Then, we proposed the method for more precise distinguish between static
background and independently moving objects. It takes an advantage that
the optical flow is not the same over the whole image area but varies with the
distance from the focus of expansion. It results in less false positive detections
in the regions where the optical flow is big. Also, the modification reduces
the number of missed detections of independently moving objects near the
focus on expansion.

We also proposed a modification of hypotheses generator for independent
motions. We changed the standard RANSAC algorithm for the locally
optimised RANSAC to achieve a more robust estimation of motions. The
main achievement of this method is the reduction of scene flow error.

Next, we proposed two variants of the modification using temporal con-
sistency on the superpixel segmentation level. Both variants combine initial
disparity estimation, superpixel segmentation and optical flow between the
previous and current frame. However, the success of this modifications is only
partial. Thus, the further extension of the algorithm based on temporary
consistent superpixel segmentation is kept as a future work.

Furthermore, we introduced a speed-up of the algorithm’s optimisation part.
We reduced the search space of possible solutions removing optimisation of
superpixel with ego-motion hypothesis only. This modification brought speed-
up of the algorithm more than three times in average. We also experimentally
verified that speed-up is approximately linearly depended on the proportion
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9. Conclusion

of the area with independent motion hypotheses and the whole image area.

We experimentally evaluated all proposed modifications of the OSF algo-
rithm on the KITTI'15 testing dataset. We focused on the error of estimated
scene flow, optical flow and disparity, as well as on the detection of indepen-
dently moving objects. We also extended the annotation of moving objects
with additional segmentation of bicyclist, pedestrians, trams, trucks and
distant vehicles (the original annotation contains only passenger cars and
vans close to the camera). We tested our modifications also on this extended
dataset. The number of false negative detections was reduced by more than
35% using proposed modifications.

The combination of the proposed modifications (object motion label prop-
agation, ego-motion outlier redefinition and robust motion hypotheses gen-
eration) was evaluated in the competitive KITTI'15 scene flow benchmark
as OSF+TC. We achieved absolute first place in the scene flow estima-
tion category over non-occluded pixels and second place in the scene flow
estimation over the whole image area. Further, we achieve first places for
optical and scene flow foreground estimation for both non-occluded pixels
and whole image area.
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B. Tables

Method D1-bg Di-fg D1-all | D2-bg D2-fg D2-all
ISF (unpublished) 412% 617% 446% | 4.8 % 1134 % 59 %
PRSM ([VSRI5]) 3.02% 1052% 427% | 513% 1511% 6.79 %
OSF+TC (ours) 411% 964% 503% | 5.18% 1512% 6.84 %
SSF (unpublished) 355% 87 % 442% | 494% 1748 % 7.02%
SOSF (unpublished) 430% 872% 503% | 5.13% 1527% 6.82%
OSF ([MG15)) 454 % 1203% 579% | 545% 1941 % 777 %
FSF+MS ([TSS17)) 572% 11.84% 6.74% | 757% 21.28% 9.85%
CSF ([LBAT16]) 457T% 13.04% 598% | 7.92% 20.76 % 10.06 %
PR-Sceneflow ([VSR13)) 474 % 13.74% 624 % | 11.14 % 2047 % 12.69 %
SGM+SF ([Hir05) [HER14)) 515% 1529% 6.84% |1410% 23.13% 15.60 %
PCOF-LDOF ([DPSLBI6]) 6.31 % 1924 % 846 % | 19.09% 30.54 % 20.99 %
PCOF+ACTF ([DPSLBI6]) 631 % 1924 % 846 % | 19.15% 36.27% 22.00 %
SGM+C+NL ([Hir05] SRBI4)) | 515 % 1529 % 6.84 % | 28.77 % 25.65 % 28.25 %
SGM+LDOF ([Hir05 BMII])) | 5.15% 15.29% 6.84% | 29.58 % 23.48 % 28.56 %
DWBSF ([JRKVTT6)) 19.61 % 2269 % 20.12% | 35.72 % 28.15% 34.46 %
GCSF ([CSRH11)) 11.64 % 27.11% 14.21% | 32.94% 3577 % 33.41 %
VSF ([AD07)) 2731 % 21.72% 26.38 % | 59.51 % 44.93 % 57.08 %

Table B.1: KITTI’15 evaluation over all pixels. Columns marks categories of
evalution: disparity D1 for the first frame of the test pair and D2 for the second;
and subcategories: evaluation over bg background regions, evaluation over fg
foreground regions and all evaluation over all ground-truth.

Method Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all
ISF (unpublished) 540 % 1029% 6.22% | 6.58% 1563 %  8.08

PRSM ([VSRI5]) 533% 1340% 6.68% | 6.61% 20.79%  8.97

OSF+TC (ours) 576 % 13.31% 7.02% | 7.08% 20.03%  9.23

SF (unpublished) 563% 1471 % 714% | 7.18% 2458 %  10.07
SOSF (unpublished) 542 % 17.24% 739% | 6.95% 2578 %  10.08
OSF ([MG15]) 562% 18.92% 7.83% | 7.01% 2634 % 10.23
FSF+MS ([TSS17)) 848 % 2543 % 11.30 % | 11.17 % 33.91 %  14.96
CSF ([LBA*16)) 10.40 % 2578 % 1296 % | 1221 % 33.21 %  15.71
PR-Sceneflow ([VSRI3)) 1173 % 24.33% 1383 % | 13.49 % 31.22%  16.44
SGM+SF ([Hir05] [HER1E]) 20.91 % 25.50 % 21.67 % | 23.09 % 34.46 %  24.98
PCOF-LDOF ([DPSLB16)) 14.34 % 38.32% 1833 % | 25.26 % 49.39 %  29.27
PCOF+ACTF ([DPSLBI6)) 14.89 % 60.15 % 2243 % | 25.77 % 67.75 %  32.76
SGM+C+NL ([Hir05] [SRB14]) | 34.24 % 42.46 % 35.61 % | 38.21 % 50.95 %  40.33
SGM+LDOF ([Hir05 BMI1]) | 40.81 % 31.92% 39.33 % | 43.99 % 42.09 %  43.67
DWBSF ([RKVT16]) 40.74% 3116 % 39.14 % | 46.42 % 40.76 %  45.48
GCSF ([CSRH11)) 4738 % 41.50 % 46.40 % | 52.92 % 56.68 %  53.54
VSF ([HD07]) 50.06 % 45.40 % 49.28 % | 67.69 % 62.93 %  66.90

Table B.2: KITTI’15 evaluation over all pixels. Columns marks categories of
evalution: scene flow as SF and optical flow as F; and subcategories: evaluation
over bg background regions, evaluation over fg foreground regions and all
evaluation over all ground-truth.
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B. Tables

Method D1-bg Dil-fg D1-all | D2-bg D2-fg D2-all
ISF (unpublished) 374% 546 % 4.02% | 406 % 9.04% 495%
OSF+TC (ours) 379 % 866% 459 % | 418% 12.06 % 5.59 %
PRSM ([VSR15)) 293% 1000% 410% | 413% 1285 % 5.69 %
SSF (unpublished) 330% 774%  4.03% | 412% 1457 %  5.99 %
SOSF (unpublished) 398% 782% 462% | 426% 1231 % 570 %
OSF ([MGiH]) 414% 1112% 529% | 449% 1633% 6.61 %
PR-Sceneflow ([VSRI3)) 441 % 13.09% 584% | 635% 16.12% 8.10%
FSF+MS ([TSS17]) 542 % 1076 % 6.30% | 6.55% 16.65 % 8.35 %
CSF ([LBAT16]) 403% 11.82% 532% | 639% 16.75% 825 %
SGM+SF ([Hir05] [HFR14)) 475 % 1422% 631% | 834% 1871 % 10.20%
PCOF-LDOF ([DPSLBI6]) 598 % 1840% 8.03% | 840 % 2659 % 11.66 %
PCOF+ACTF ([DPSLBI6)) 598 % 1840 % 8.03% | 836% 32.86% 12.74 %
SGM+C+NL ([Hir05) SRBI4)) | 4.75 % 1422% 631 % | 1572 % 20.79 % 16.63 %
SGM+LDOF ([Hir05) BMIT]) | 475 % 14.22% 6.31 % | 17.08% 18.66 % 17.36 %
DWBSF (JRKVT16)) 1876 % 2114 % 19.16 % | 23.92 % 21.88 % 23.55 %
GCSF (|CSRHI11]) 1124 % 2626 % 13.72% | 21.88 % 31.66 % 23.63 %
VSF ([HDO7)) 26.38 % 19.88% 25.31 % | 52.30 % 40.83 % 50.24 %

Table B.3: KITTI'15 evaluation over non-occluded pixels. Columns marks
categories of evalution: disparity D1 for the first frame of the test pair and
D2 for the second; and subcategories: evaluation over bg background regions,
evaluation over fg foreground regions and all evaluation over all ground-truth.

Method Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all
ISF (unpublished) 421% 683% 469% | 531 % 11.65%  6.45
OSF+TC (ours) 434% 967% 531% | 552% 1557 %  7.32
PRSM ([VSRI5)) 433% 1080% 550% | 554 % 17.65%  7.71
SSF (unpublished) 420% 1081% 540% | 570% 19.93%  8.25
SOSF (unpublished) 404% 1318% 570% | 544 % 21.11%  8.25
OSF ([MG15]) 421 % 1549% 6.26% | 552% 2231 %  8.52
PR-Sceneflow ([VSRI3)) 6.94% 2024% 936% | 835% 26.08% 11.53
FSF+MS ([TSS17]) 6.53 % 20.72% 9.11% | 9.23% 28.03% 12.60
CSF ([LBAT16]) 872 % 2238% 11.20% | 10.26 % 28.68 %  13.56
SGM+SF ([Hix05) HEFR14)) 13.36 % 21.78% 14.89 % | 1528 % 29.68 %  17.86
PCOF-LDOF ([DPSLBI6)) 924 % 3440 % 13.80 % | 14.21 % 44.79 %  19.69
PCOF+ACTF ([DPSLBI6)) 9.77 % 57.63 % 18.45 % | 14.67 % 64.73 %  23.63
SGM+C+NL ([Hix05] SRB14]) | 23.03 % 38.80 % 25.89 % | 26.22 % 46.44 %  29.84
SGM+LDOF ([Hix05 BMI1]) | 30.41 % 27.62% 29.90 % | 33.00 % 36.59 %  33.64
DWBSF ([RKVT16]) 3013 % 26.68% 29.50 % | 35.65 % 34.86 %  35.51
GCSF (|CSRH11)) 3812 % 3777 % 38.05% | 43.64 % 5241 % 45.21
VSF ([HDO7)) 4115 % 41.85% 41.28 % | 61.14 % 59.17 %  60.78

Table B.4: KITTI'15 evaluation over non-occluded pixels. Columns marks
categories of evalution: scene flow as SF and optical flow as F'; and subcategories:
evaluation over bg background regions, evaluation over fg foreground regions
and all evaluation over all ground-truth.
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