
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

M
A
S
T
E
R
'S

T
H
E
S
IS

IS
S
N

1
2
1
3
-2
3
6
5

Discrete Energy Minimization with

Global Constraints

Valerii Ulitin

ulitival@fel.cvut.cz

May 24, 2017

Thesis Advisor: RNDr. Daniel Pr·²a, Ph.D.

Research Reports of CMP, Czech Technical University in Prague,

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz





Czech Technical University in Prague  
Faculty of Electrical Engineering 

Department of Cybernetics 
 

DIPLOMA THESIS ASSIGNMENT 

Student:   Valerii   U l i t i n 

Study programme:  Open Informatics 

Specialisation:  Computer Vision and Image Processing 

Title of Diploma Thesis:      Discrete Energy Minimization with Global Constraints 
 

Guidelines: 
Discrete energy minimization (a.k.a. MAP inference in graphical models) is a well known and 
intensively studied optimization problem which has many applications in low level computer vision. 
The goal of the thesis is to formulate extensions of the problem by introducing additional global 
constraints and propose algorithms for solving them. The global constraints should help e.g. to perform 
the image segmentation when a sufficient quality model of the foreground and background is not 
available, on the other hand there is some information on cardinalities or number of components of 
particular segmentation groups. 
- Summarize related state of the art methods working with global constraints ([4] - section 6.3, [5]). 
- Formulate your own extensions (based on experiments carried out within A4M33SVP) for a)  
  submodular instances with binary variables [1] and b) metric instances [2]. 
- Describe complexity of the extended problems and propose fast (approximation) algorithms to solve  
  them. 
- Evaluate the performance of the algorithms. Apply them to the image segmentation task. Compare  
  the achieved results with the results of standard methods (not working with global constraints). 
 
Bibliography/Sources:   
[1] Y. Boykov, V. Kolmogorov: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy  
     Minimization in Vision, IEEE Trans. on Pattern Recognition and Machine Intelligence, 2004. 
[2] Y. Boykov, O. Veksler, R. Zabih: Fast Approximate Energy Minimization via Graph Cuts, IEEE Trans. on  
     Pattern Recognition and Machine Intelligence, 2001. 
[3] B. W. Kernighan, S. Lin: An Efficient Heuristic Procedure for Partitioning Graphs, Bell Labs Technical Journal,  
     Volume 49, Issue 2, 1970. 
[4] T. Werner: Revisiting the Linear Programming Relaxation Approach to Gibbs Energy Minimization and  
     Weighted Constraint Satisfaction, IEEE Trans. on Pattern Recognition and Machine Intelligence, 2010. 
[5] A. Delong, L. Gorelick, O. Veksler, Y. Boykov: Minimizing Energies with Hierarchical Costs, International  
    Journal of Computer Vision, Volume 100, Issue 1, 2012. 

Diploma Thesis Supervisor:   RNDr. Daniel Průša, Ph.D.   

Valid until:   the end of the summer semester of academic year 2017/2018 

 
       L.S. 

prof. Dr. Ing. Jan Kybic 
Head of Department 

 prof. Ing. Pavel Ripka, CSc. 
Dean 

Prague, December 21, 2016 



iv



Acknowledgment

I would like to thank all the people who helped me with my diploma thesis in any
way. I thank my thesis supervisor RNDr. Daniel Pr·²a, Ph.D. for valuable comments
and remarks he had given me during the creation of this thesis. My thanks also goes to
my wife and my family for supporting and encouraging me.

Author's declaration

I declare that I have work out the presented thesis independently and that I have
listed all information sources used in accordance with the Methodical Guidelines about
Maintaining Ethical Principles for Writing Academic Theses.

Prohlá²ení autora práce

Prohla²uji, ºe jsem p°edloºenou práci vypracoval samostatn¥ a ºe jsem uvedl ve²keré
pouºité informa£ní zdroje v souladu s Metodickým pokynem o dodrºování etických
princip· p°i p°íprav¥ vysoko²kolských záv¥re£ných prací.

V Praze dne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Podpis autora práce

v



Abstract

The results of this work are algorithms that allow a segmentation of the sequence of
similar images, where user annotates just one image from the sequence. These algo-
rithms can be useful while dealing with large amount of data. Created solutions provide
the ability to segment similar scenes based on the one generated color model. The goal
of this work is to �nd algorithms that would e�ectively solve the problem of segmenta-
tion of the image sequences of one scene, where the color model is generated only for
few images. A knowledge of the foreground pixels number is assumed. Two algorithms
suitable for this task are presented. The �rst algorithm uses the bisection method to
�nd the most optimal value ∆, which will then be subtracted from the unary weights of
each pixel. This algorithm can work with multiple labels by using the alpha expansion
method. The second algorithm performs so-called pixel swapping using heaps, where it
tries to reduce overall segmentation energy while ful�lling the global constraints and it
is primarily used only when the �rst one fails.

Keywords: Energy minimization, graph algorithms, minimum cut, maximum �ow,
image segmentation

vi



Abstrakt

Výsledkem této práce jsou algoritmy umoº¬ující segmentaci sekvence podobných ob-
rázk·, kdy uºivatel anotuje pouze jeden obrázek ze sekvence. Takové algoritmy m·ºou
být p°ínosné p°i zpracování velkého mnoºství dat. Vytvo°ená °e²ení poskytují moºnost
na základ¥ jednoho vygenerovaného barevného modelu úsp¥²n¥ segmentovat podobné
scény. Cílem této práce je návrh algoritm·, které by efektivn¥ °e²ily problém segmen-
tace velké mnoºiny podobných obrázk·. Práce prezentuje dva takovéto algoritmy, jeº
dokáºou zlep²it (minimalizovat) celkovou energii p°i provedení segmentace na sekvenci
obrázk·. První algoritmus vyuºívá metody p·lení intervalu p°i hledání nejoptimáln¥j²í
hodnoty ∆, jeº je pak ode£tena od unárních vah kaºdého pixelu. Tento algoritmus dokáºe
pracovat i s více zna£kami, a to tak, ºe vyuºívá metodu alfa expanze. Druhý algoritmus
provádí tzv. prohození pixel· s vyuºitím hald, kde v kaºdém prohazování se snaºí zmen-
²it celkovou energii segmentace a je primárn¥ pouºíván pouze v p°ípad¥ selhání prvního
algoritmu.

Klí£ová slova: Minimalizace energie, grafové algoritmy, minimální °ez, maximální tok,
segmentace obrázk·

vii



Contents

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. State of the art review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Prerequisites 5

2.1. Problem instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Max-�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. α � expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. ∆-max-�ow 12

4. Pixel swapping 19

5. Complexity 26

6. Experimental results 28

6.1. Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2. System con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3. ∆-max-�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4. ∆-α � expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5. Pixel swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7. Conclusion 43

7.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A. Contents of the enclosed DVD 45

B. User manual 46

Bibliography 47

viii



List of Figures

1.1. Annotated image (a) is used for obtaining a color model. In image (b)
one can see segmentation performed on image (a). Image (c) shows the
image on which we attemp to apply the trained model. In image (d),
a segmentation error can be easily seen after the model from image (a)
was applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Correct segmentation of 1.1(c) after applying a size constraint to the task. 3

2.1. Graph representation of an image. Corner nodes have 3 neighbors, the
other border nodes have 5 neighbors, remaining nodes have 8 neighbors.
E.g., n1 has {n2, n8, n9} set of neighbors, n15 has {n8, n9, n16, n23,
n22}, n11 has {n3, n4, n5, n12, n19, n18, n17, n10}. . . . . . . . . . . . 6

2.2. Convention for displaying parameters θp, θpq, θq [1]. . . . . . . . . . . . . 7
2.3. Graph construction. Left: input energy function (in a normal form) with

three nodes and two edges. Right: corresponding graph G [1]. . . . . . . 8
2.4. An example of graph Gα for a 1D image. The set of pixels in the image

is P = {p, q, r, s} and the current partition is P = {P1,P2,Pα}, where
P1 = {p}, P2 = {q, r}, and Pα = {s}. Two auxiliary nodes a = ap,q, b =
ar,s are introduced between neighboring pixels separated in the current
partition. Auxiliary nodes are added at the boundary of sets Pl [3]. . . . 10

3.1. Example where ∆-max-�ow will converge but not into desired interval.
Left image shows changes in ∆. Right image shows percentage of fore-
ground pixels and required interval, in this particular case it was set to
[2.2, 5]. As it can be seen ∆-max-�ow can not get into interval and after
65 iterations stacked in a wrong value. Algorithm was stopped after 100
iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2. The image of Rotunda of St. Martin, Vy²ehrad . . . . . . . . . . . . . . 14
3.3. The image (a) demonstrates the result of segmentation just after applying

trained model from the image (a) in Figure 1.1. Image (b) demonstrates
results after applying ∆-max-�ow. . . . . . . . . . . . . . . . . . . . . . 14

3.4. Example where ∆-max-�ow successfully converged. The left image shows
changes in ∆. The right image shows the percentage of foreground pixels
and the required interval. Interval was set to [2, 5]. . . . . . . . . . . . . 14

3.5. The �gure demonstrates �tting process of labeling cardinality f during
the ∆ α � expansion algorithm running on image shown in Figure 3.7
(a). Here, desired intervals (percents) are: [3, 7] for the mole, [5, 8] for
the penguin, [2, 4] for the mouse. Background is calculated as a rest,
i.e. we subtract from 100 sum of all interval starting values a (from none
background labels) and write it as b for background interval and the for
a we subtract sum of all interval ending values b (from none background
labels). We get the interval [81, 90] for the background. . . . . . . . . . 16

3.6. The �rst image of the testing set for the ∆-α � expansion algorithm with
marked objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



List of Figures

3.7. (a) shows the testing image from the set on which we applied model
gained from image illustrated in Figure 3.6. (b) shows output of pure
α � expansion algorithm based on trained model. . . . . . . . . . . . . . 17

3.8. Results of the ∆-α � expansion algorithm applied on the output of the
pure α � expansion shown in Figure 3.7 (b). . . . . . . . . . . . . . . . 18

3.9. Results of ∆-α � expansion algorithm on the image that somehow di�ers
from that where model was obtained. As it can be seen in this particular
case ∆-α � expansion is not su�cient, we need some improvements. . . . 18

4.1. (a) shows the foreground to background swap. (b) shows the background
to foreground swap. (c) shows the edge �ip. (d) shows the swapping two
non-neighbor pixels with di�erent labeling. Note: red color corresponds
to a foreground pixel, blue color corresponds to a background pixel. . . . 22

4.2. (a) shows object on which we want to apply segmentation algorithm. (b)
algorithm is trying to expand found labeling. (c) algorithm is trying to
decrease the number of foreground pixels. (d) algorithm is trying to elim-
inate the found false positive component (top left corner). Segmentation
is de�ned by blue color. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3. (a) shows the image from where color model was obtained. (b) shows
segmentation based on pure max-�ow. . . . . . . . . . . . . . . . . . . . 23

4.4. (a) shows the image on which we applied trained model obtained from
image 4.3 (a). (b) shows result of the ∆-max-�ow algorithm. (c) shows
a result after we run the swapping algorithm on the output of the ∆-
max-�ow. (d) is a result of the swapping algorithm and applied image
dilatation on this result. Red color stands for the foreground and blue
for the background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5. Energy changes during the swapping algorithm. . . . . . . . . . . . . . . 25

5.1. (a) shows an instance of the graph bisection problem (b) shows an in-
stance of the binary energy minimization problem with object size con-
straint. Colors in graph (b) mean: red that pixel has foreground label
and blue that pixel has background label. . . . . . . . . . . . . . . . . . 27

5.2. (a) shows correct output of the graph bisection. (b) shows correct output
of the binary energy minimization problem with object size constraint.
Colors in graph (b) mean: red that pixel has foreground label and blue
that pixel has background label. . . . . . . . . . . . . . . . . . . . . . . . 27

6.1. Testing set with photographies of the Rotunda of St. Martin, Vy²ehrad,
Prague. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2. Image (a) from �rotunda� testing set with annotations. . . . . . . . . . . 30
6.3. Segmentation results by using pure max-�ow approach for the testing set

�rotunda�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4. Results of the ∆-max-�ow applied to images (d) and (e) from the �ro-

tunda� testing set. Algorithm �ts cardinality of f into the interval [2 5].
Image (a) corresponds to the image (d) from Figure 6.3 and (b) corre-
sponds to the image (e) from Figure 6.3. . . . . . . . . . . . . . . . . . . 31

6.5. Testing set with photographies of the mole toy with homogeneous back-
ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.6. Image (a) from �mole easy� testing set with annotations. . . . . . . . . . 32

x



6.7. Segmentation results by using pure max-�ow approach for the testing set
�mole easy�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.8. Testing set with photographies of the mole toy with quite complex back-
ground and with di�erent light conditions. . . . . . . . . . . . . . . . . . 34

6.9. Image (a) from �mole hard� testing set with annotations. . . . . . . . . . 34
6.10. Results of classical max-�ow segmentation using trained model. . . . . . 35
6.11. Results of the ∆-max-�ow applied to images (d) and (e) from the �mole

hard� testing set. Algorithm �ts cardinality of f into the interval [9
11]. Image (a) corresponds to the image (d) from Figure 6.10 and (b)
corresponds to the image (e) from Figure 6.10. . . . . . . . . . . . . . . 35

6.12. Testing set with photographies of di�erent toys with non-homogeneous
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.13. Image (a) from �toys� testing set with annotations. . . . . . . . . . . . . 37
6.14. Results of applying α � expansion algorithm to the �toys� testing set. . . 37
6.15. Results of applying ∆-α � expansion algorithm to the �toys� testing set. 38
6.16. Testing set with photographies of a tomato with di�erent shadow conditions. 39
6.17. Image (a) from �tomato� testing set with annotations. . . . . . . . . . . 40
6.18. Results of doing segmentation using classical max-�ow method. . . . . . 40
6.19. Results of ∆-max-�ow applied to images (b), (c), (d) from Figure 6.18.

The image (a) corresponds to the image Figure 6.18(b), the image (b)
corresponds to the image Figure 6.18(c) and the image (c) corresponds
to the image Figure 6.18(d). . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.20. The result of applying pixel swapping algorithm on image (c) from Fig-
ure 6.19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

List of Tables

2.1. Rules for adding an edge to the graph G . . . . . . . . . . . . . . . . . . 8
2.2. Weights assigned to the edges in graph G . . . . . . . . . . . . . . . . . . 11

6.1. System con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2. Running time for the testing set �rotunda�. ∆-max-�ow . . . . . . . . . 31
6.3. Running time for the testing set �mole easy�. ∆-max-�ow . . . . . . . . 34
6.4. Running time for the testing set �mole hard�. ∆-max-�ow . . . . . . . . 36
6.5. Running time for the testing set �toys�. ∆-α � expansion algorithm. . . . 38
6.6. Running time for the testing set �tomato�. Pixel swapping algorithm . . 42

List of Algorithms

1. Algorithm for submodular functions . . . . . . . . . . . . . . . . . . . . . 8
2. α � expansion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

xi



LIST OF ALGORITHMS

3. ∆-max-�ow algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4. Algorithm computing ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5. ∆-α � expansion algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6. Pixel swapping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7. Find optimal change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xii



List of Symbols and Abbreviations

HOP High order potentials.
MAP Maximum a posteriori.
MRF Markov random �elds.
GMM Gaussian mixture model.
3D Three dimension(al).
RGB Red, green, blue.
GB Gigabyte.
OS Operating system.
JDK Java development kit.
CPU Central processing unit.

xiii





1. Introduction

Energy minimization is a well known problem which has a strong practical and theo-
retical importance for computer vision [1]. In general energy can express how solution of
a computer vision task is good or bad so far. High energy leads to a bad result whereas
low energy leads to a good one. It is known, that even for low-level vision tasks solving
energy minimization problem can be hard (often NP-hard).
In this work we designed two algorithms that are capable of minimizing energy in the

task of image sequences segmentation by a given model. We are not improving existing
algorithms for achieving better segmentation results, but we are designing algorithms
that can e�ectively solve one particular problem which is energy minimization with
global constraints, e.g. segmentation a set of similar images using color model obtained
only from one annotated image from this set. Those algorithms work in polynomial
time using some heuristic approach and knowledge about the domain.
It is known that energy minimization problem can be NP-hard, e.g. when not dealing

with binary labels, and introducing another global constraints only make this problem
more di�cult.
For our algorithm as an initial step we used output of max-�ow algorithm [10], then

we proceed in two ways solving the energy minimization task with global constraints:

1. perform ∆-max-�ow, described in Section 4,

2. perform pixels swapping, described in Section 5.

Both algorithms repeat until they met desired results on segmented objects size. Here,
the second algorithm is used in cases where ∆-max-�ow failed to converge to desired
results and the output of ∆-max-�ow is further used in the pixel swapping algorithm as
an initial solution.

1.1. Motivation

Image segmentation is a widely known problem in computer vision. It stands for
detecting an object of interest and split it from the background or other objects. Sonka
et al. [2] wrote following about segmentation:

Image segmentation is one of the most important steps leading to the analysis of
processed image data � its main goal is to divide an image into parts that have a
strong correlation with objects or areas of the real world contained in the image. We
may aim for complete segmentation, which results in a set of disjoint regions
corresponding uniquely with objects in the input image, or for partial segmenta-

tion, in which regions do not correspond directly with image objects. To achieve a
complete segmentation, cooperation with higher processing levels which use speci�c
knowledge of the problem domain is necessary. ([2], page 175)

We are interested in segmentation in the case of a global context, because our goal is
to design such an algorithm, which can perform segmentation based on some knowledge
about the scene. There is a problem of object retrieval from the image sequences. It is a

1



1. Introduction

complicated task to obtain desired objects from the whole sequence of images in terms
of time. Generally, to successfully perform segmentation on image, we need to manually
annotate a sample of our desired object (foreground) and a sample of what does not
matter (background). In the case when there are 1000 images of the same scene and we
need to retrieve some object from the whole set one can imagine what time it will take.
So, what are the alternatives?
Theoretically if the scene does not change much one can obtain a color model (2.2) of

the �rst image and apply it to the rest of the set, but this solution can, and probably will,
lead to errors in segmentation (e.g. there will not be the desired object, something else
would be segmented or we segment our target together with not relevant one). Figure
1.1 shows an example of using an acquired model on the images of the same scene.

(a) (b)

(c) (d)

Figure 1.1. Annotated image (a) is used for obtaining a color model. In image (b) one can
see segmentation performed on image (a). Image (c) shows the image on which we attemp
to apply the trained model. In image (d), a segmentation error can be easily seen after the
model from image (a) was applied.

The idea of re-using the trained model is not bad, but requires some tweaking, hence
we introduce global constraints for the task of image sequences segmentation. A suitable
example of such constraints can be the object size - Figure 1.2 shows correct segmenta-
tion of 1.1(c) after we added this size constraint.
The size constraint can be described as an interval between two numbers:

sz = [a, b] a, b ∈ R (1.1)

In this work we study algorithms that can, based on a �xed color model obtained
from one image, perform segmentation on an images sequence in relatively short time
without the user's interaction. It means that by a given model we will acquire object

2



1.2. State of the art review

Figure 1.2. Correct segmentation of 1.1(c) after applying a size constraint to the task.

of interest from all images within the sequence. This would probably save a lot of time
spent on manual processing.

1.2. State of the art review

There are several di�erent approaches for solving the problem of energy minimization
with global constraints for graphs. Gupta et al. [6] designed fast inference algorithm
for graphical models where the clique potentials comprise of two parts: the �rst part is
sum of individual node potentials (unary energy) and, the second part is a symmetric
n-ary function that depends only on the number of nodes that get a particular label.
In their work these clique potentials are called cardinality-based.
Next approach was made by Tarlow et al. [8]. Their goal was to be able to use a

broad range of high order potentials (HOPs) generically within MAP message passing
algorithms as easily as used low order tabular potentials. They de�ned three issues that
must be addressed:

1. Message updates need to be computed e�ectively even when factors range over
very large subsets.

2. It should be easy to recognize when problems contain tractable high order struc-
ture.

3. HOP constructions should be �exible and reusable, not requiring new problem-
speci�c derivations and implementations on each use.

Werner in [9] showed that is possible to handle high-arity MRF with global constraints.
He described them as an extensional representation which means that it can be rep-
resented by explicitly or as an intensional representation which means that constraint
is a black-box function. Intensionally represented constraints of a non-�xed arity are
referred to global constraints.
He designed algorithms that are capable of solving such high-arity problems with

global constraints using plausible approximation factor.
Another solution that also uses global constraints but has di�erent approach than

ones described above was introduced by Delong et al. [11]. Their work is based on
using `context` to resolve ambiguities in object recognition. The main idea is that cer-
tain groups of labels are self-consistent because they tend to appear together, e.g. the

3



1. Introduction

{car, road, sky} all belongs to �outdoors� context. Based on this idea they introduced
hierarchical costs for labels that are explicitly grouped in a hierarchy. Their algorithm
h-fusion therefore solves optimization problem of hierarchical costs minimization.
These mentioned above approaches use message passing for solving problems with

global constraints and it is known that message passing is usually slower than combina-
torial algorithms. Also message passing can not handle some of global constraints, e.g.
constraint on number of components. When combinatorial approaches can handle such
constraints.
Unlike them we took the di�erent way in solving this task, seeing the problem as a

combinatorial optimization and solving it in a similar manner as Kernighan and Lin
described in their paper [7].

4



2. Prerequisites

2.1. Problem instance

Image segmentation is cast as the optimization problem of energy minimization in
the form of:

E(x) = θconst +
∑
p∈V

θp(xp) +
∑

(p,q)∈E

θpq(xp, xq). (2.1)

Here, G = (V, E) is an undirected graph. Set V corresponds to pixels; xp denotes the
label of pixel p ∈ V which belongs to the set {0, 1, ..., L − 1}, where L is the number
of labels. In our case it is possible to ignore the constant term θconst, hence we set
θconst = 0. θp(xp) denotes the unary terms which encode data penalty function, and
θpq(xp, xq) represents the pairwise terms which are interaction potentials (edge costs in
graph G).
For unary terms we compute probabilities of label i ∈ {0, 1, ..., L− 1} assigned to

pixel p using Gaussian Mixture Model (GMM )[2] for all labels.

pi(x; θi) =

K∑
k=1

φi,k N (x;µi,k,Σi,k). (2.2)

Here K is the number of components used in GMM estimation. Both foreground and
background GMM is fully speci�ed by a set of its parameters:

θi = {φi,1...φi,K , µi,1...µi,K ,Σi,1...Σi,K}.

Here φi,k denotes the prior probability for k-th component of label i. It holds

K∑
k=1

φk = 1.

µi,k represents the mean value of k-th component of label i and Σi,k denotes covariance
matrix of k-th component of label i. N (x;µi,k,Σi,k) stands for K multivariate normal
distribution.
In our segmentation task we represent an image as a graph in which each node has

8 neighbors except nodes on image borders, these have �ve neighbors, and nodes in
corners, these have 3 neighbors, example of such a graph is shown in Figure 2.1.

Pairwise terms are obtained as edge costs in graph G using the following equation:

θpq(xp, xq) = λ1 +
λ2

d(p, q)
e
−‖xp−xq‖

2

2β

Here λ1 is the weight of Ising term in pairwise costs and λ2 is the weight of dependent
term. Term d(p, q) is the Euclidean distance in image grid (neighboring pixels). It is
equal to 1 for horizontally and vertically neighboring pixels and it is equal to

√
2 for

diagonal neighbors. The term ‖xp − xq‖2 denotes squared Euclidean distance of pixel
colors. The pixel color xp ∈ [0, 1]3 is a 3D vector of RGB components.

‖xp − xq‖2 = (xRp − xRq )2 + (xGp − xGq )2 + (xBp − xBq )2

5



2. Prerequisites

n23

n25

n13 n41

n1 n8 n15 n22 n29 n36 n43

n2 n9 n16 n23 n30 n37 n44

n3 n10 n17 n24 n31 n38 n45

n5 n12 n19 n26 n33 n40 n47

n7 n14 n21 n28 n35 n42 n49

n4 n11 n18 n25 n32 n39 n46

n6 n13 n20 n27 n34 n41 n48

Figure 2.1. Graph representation of an image. Corner nodes have 3 neighbors, the other border
nodes have 5 neighbors, remaining nodes have 8 neighbors. E.g., n1 has {n2, n8, n9} set of
neighbors, n15 has {n8, n9, n16, n23, n22}, n11 has {n3, n4, n5, n12, n19, n18, n17, n10}.

The term β normalizes Euclidean distance of pixel colors. It is equal to the expected
squared Euclidean distance of pixel colors in image, i.e. over each pair of neighbors
{p′, q′} ∈ N, where N is a set of all neighboring pixels in a graph G:

β =
1

|N|
∑

(p′,q′)∈N

∥∥xp′ − xq′∥∥2

We will consider two cases in this work:

1. The possible labeling is binary, i.e. xp ∈ {0, 1}

2. The metric instance of the problem, where the number of possible labeling can be
arbitrary, i.e. xp ∈ {0, 1, . . . , L− 1}

The case where we deal only with binary labeling can be reduced to max-�ow problem.
It is known that graph cuts algorithms can be used to �nd an optimal solution for
submodular energy functions, i.e. functions whose pairwise terms satisfy:

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0).

This is a exact example of binary segmentation task described above.
In this work we call a problem instance whose energy terms meet these conditions as

submodular instance problem.
In situation when the cardinality of the set of labels is ≥ 3, we use the expansion

move algorithm (α � expansion) [3]. In this case energy function pairwise terms should
satisfy:

θpq(β, γ) + θpq(α, α) ≤ θpq(β, α) + θpq(α, γ), (2.3)

which must hold for all labels α, β, γ ∈ {0, . . . , L− 1}.
This condition says that penalty for changing labeling from β to γ while α is preserve

its labels should be less or equal than penalty for changing labels from β to α and as

6



2.2. Max-�ow

follows from α to γ.
Problems that meet conditions from (2.3) are called metric instance problems. They

also include submodular instance for two labels.

2.2. Max-�ow

In order to perform minimization of submodular two-label energy using max-�ow al-
gorithm we �rst mention the following notation introduced by Kolmogorov and Rother
[1]. The energy of (2.1) is speci�ed by the constant factor θconst, unary terms θp(i), and
pairwise terms θpq(i, j)where (i, j) ∈ {0, 1}. The last two terms are denoted as θp;i and
θpq;ij , respectively.
Further these notations are simpli�ed to θp to denote a vector of size 2 and θpq

to denote a vector of size 4, but since it holds for our task, that θpq;00 ≡ θpq;11 and
θpq;10 ≡ θpq;10 we can describe θpq as a scalar.

The energy (2.1) is therefore completely speci�ed by parameter vector θ, where pa-

Figure 2.2. Convention for displaying parameters θp, θpq, θq [1].

rameters of the energy are shown in Figure 2.2.
Kolmogorov and Rother [1] describe in their work an algorithm for submodular func-

tions. It consists of three steps:

1. convert the energy to a �Normal form�.

2. construct a directed weighted graph G = (V,A, c). Here, V is the set of vertices,
A is the set of arcs and c is the capacity, s.t. c : A → R+. There are two special
nodes - source s and sink t, called the terminals.

3. �nd minimum s− t cut for constructed graph G.

Notion �Normal form� as described in [1] means that the vector θ is in a normal form
if it satis�es the following:

1. min{θp;0, θp;1} = 0 for all pixels p.

2. min{θpq;0j , θpq;1j} = 0 for all directed edges (p → q) and labels j ∈ {0, 1}.

So in the algorithm optimizing label assignment task for submodular function [1] the
�rst step is the preprocessing which converts vector θ into the normal form. This can
be done in two phases as follows:

1. While there is an edge (p → q) and a label j violating Condition 2, do the
following:

compute δ = min{θpq;0j , θpq;1j};
set θpq;0j := θpq;0j − δ, θpq;1j := θpq;1j − δ, θq;j := θq;j + δ.

7



2. Prerequisites

Table 2.1. Rules for adding an edge to the graph G

component of θ corresponding edge a ∈ A capacity ca
θp;0 (p → t) θp;0
θp;1 (s → p) θp;1
θpq;01 (p → q) θpq;01

θpq;10 (q → p) θpq;10

2. For every pixel p:

compute δ = min{θp;0, θp;1}

set θp;0 := θp;0 − δ, θp;1 := θp;1 − δ, θconst := θconst + δ.

It is seen that after converting energy to a normal form, unary and pairwise terms
become submodular.

Algorithm for Submodular Functions

The following algorithm from [1] is used to assign labels to pixels in the case when all
terms of energy (2.1) are submodular.

Algorithm 1: Algorithm for submodular functions
Data: θ unary and pairwise energy terms
Result: xp ∈ X with assigned labels
1. θ̃ = normalize (θ);
2. create s, t;
3. create G = (V,A, c) from θ̃;
4. add {s, t} to V ;
5. X = maxflow(G);
6. Return X
Here V corresponds to pixels set V and s, t are the terminals. For every nonzero

component of θ, an edge is added to A according to the rules described in Table 2.1
The process of constructing the directed graph from energy terms is shown in Figure

2.3. After constructing the graph we get the minimum s− t cut (S,T) by computing

Figure 2.3. Graph construction. Left: input energy function (in a normal form) with three
nodes and two edges. Right: corresponding graph G [1].

8



2.3. α � expansion

maximum �ow from the source to the sink. This cut de�nes labeling X as follows:

xp =

{
0 if p ∈ S

1 if p ∈ T

It can be seen that the cost of any cut is equal to the energy of the corresponding
labeling plus the constant term θconst.

2.3. α � expansion

For solving segmentation task where cardinality of labels set is greater or equal three
it is not possible to use submodular maximum �ow directly. Let us introduce the metric
notation of pairwise penalty V . Boykov et al. [3] in their work call V a metric on the
space of labels L if it satis�es

V (α, β) = 0 ⇔ α = β, (2.4)

V (α, β) = V (β, α) ≥ 0, (2.5)

V (α, β) ≤ V (α, γ) + V (γ, β), (2.6)

for any labels α, β, γ ∈ L. If V satis�es only (2.3) and (2.4), it is called a semimetric.
For expansion algorithm we are interested only in metric penalization. Algorithm of

α � expansion that authors described in their work [3] is shown in 2.

Algorithm 2: α � expansion algorithm
Data: arbitrary labeling f
Result: labeling f that minimizes an overall energy E(f)
1. success := 0;
2. for each label α ∈ L do

2.1 Find f̂ = argminE(f ′) among f ′ within one α � expansion of f ;
2.2 If E(f̂) < E(f), set f := f̂ and success := 1;

end

3. If success = 1 goto 1;
4. Return f ;

The main idea of α � expansion algorithm is to compute minimum cut on a graph
Gα = 〈Vα, Eα〉. The structure of this graph is determined by the current partition
P (assigned labels to pixels) and by the label α. A representation of graph G is
illustrated in Figure 2.4.

9



2. Prerequisites

Figure 2.4. An example of graph Gα for a 1D image. The set of pixels in the image is
P = {p, q, r, s} and the current partition is P = {P1,P2,Pα}, where P1 = {p}, P2 = {q, r},
and Pα = {s}. Two auxiliary nodes a = ap,q, b = ar,s are introduced between neighboring
pixels separated in the current partition. Auxiliary nodes are added at the boundary of sets
Pl [3].

The set of nodes V includes the two terminals α and ᾱ, as well as all image pixels
p ∈ P, where P stands for a set of pixels in image. In addition, for each pair of
neighboring pixels {p, q} ∈ N separated in the current partition (i.e., such that fp 6= fq,
where f is the current labeling), auxiliary node apq is created. Auxiliary nodes are
introduced at the boundaries between partition set Pl for l ∈ L. Thus, the set of all
nodes is:

Vα =

{
α, ᾱ, P,

⋃
{p,q}∈N
fp 6=fq

apq

}
.

Each pixel p ∈ P is connected to the terminals α and ᾱ by t-links tαp and tᾱp , respec-
tively. For each pair of neighboring pixels {p, q} ∈ N such that fp 6= fq, we create a
triplet of edges Ep,q = {ep,a, ea,q, tᾱp }, where a = apq is corresponding auxiliary node.
The edges ep,a and ea,q connect pixels p and q to ap,q and the t-link tᾱp connects the
auxiliary node apq to the terminal ᾱ. So, the set of all edges can be written as:

Eα =

{ ⋃
p∈P
{tαp , tᾱp },

⋃
{p,q}∈N
fp 6=fq

Ep,q,
⋃

{p,q}∈N
fp=fq

ep,q

}
.

The edges weights are assigned according to Table 2.2.
After getting the minimum cut C on the graph Gα we get the labeling fC corresponding
to this cut. Formally,

fCp =

{
α if tαp ∈ C

fp if tᾱp ∈ C
∀p ∈ P.

In other words, as it is described in [3], a pixel p is assigned label α if the cut C
separates p from the terminal α, while p is assigned its old label fp if C separates p
from ᾱ. Note that, for p /∈ Pα, the terminal ᾱ represents labels assigned to pixels in the
initial labeling f . Boykov et al. [3] stated the following lemma:

10



2.3. α � expansion

Table 2.2. Weights assigned to the edges in graph G

edge weight for

tᾱp ∞ p ∈ Pα

tᾱp θp(fp) p /∈ Pα

tαp θp(α) p ∈ P

ep,a θpq(fp, α)

{p, q} ∈ N, fp 6= fqea,q θpq(α, fq)

tᾱp θpq(fp, fq)

ep,q θpq(fp, α) {p, q} ∈ N, fp = fq

Lemma 2.3.1 A labeling fC corresponding to a cut C on Gα is one α � expansion away
from the initial labeling f .

Both algorithms, max-�ow for submodular functions and α � expansion, will be actively
used further in this work.

11



3. ∆-max-�ow

In order to be capable of solving segmentation tasks for the image sequences we expand
the algorithm of maximum �ow for submodular instance problem and the α � expansion
algorithm for metric instance problem to cope with the global constraints.

Submodular instance problem

As we could see in the Introduction part we can not just create a color model from
the �rst image in the images set and apply it to the rest, because in this case we will end
up with many errors and inaccuracies. Let us introduce an object size as a new global
constraint to this problem, so we can say that our max-�ow based algorithm performs
correct segmentation if the searched object has size that lies in a de�ned interval.
To handle this global constraint we introduce ∆ which is the new term for unary

vector. We are going to re-balance unary weights by adding or subtracting ∆ from θp;1
until we met desired results in object size. By using ∆ we can achieve more accurate
results, because after adding or subtracting and perform new max-�ow cardinality of
current target labeling f can change. We only need to �nd such a ∆ that will lead us
to correct interval sz (1.1).
So the new unary term will be computed in the following manner:

θ∆
p;1 = θp;1 ±∆, (3.1)

here, ± means that in case when we are interested to make foreground label (xp = 1)
more favorable we then decrease cost of θp;1 by ∆, the other way around when we are
interested to place foreground label at a disadvantage we then increase cost of θp;1 by ∆.
Lets us modify previously de�ned max-�ow algorithm 1 by adding ∆ term. The al-

gorithm is shown in 3.

Algorithm 3: ∆-max-�ow algorithm
Data: θ unary and pairwise energy terms
Result: xp ∈ X with assigned labels
1. compute ∆;
2. θ∆

p;1 = update unary term θp;1 by computed ∆;
3. θ̃ = normalize (θ with θ∆

p;1);
4. create s, t;
5. create G = (V,A, c) from θ̃;
6. add {s, t} to V ;
7. X = maxflow(G);
8. Return X

First of all we need to �nd ∆. Algorithm of �nding ∆ is shown in 4.

12



Algorithm 4: Algorithm computing ∆

Data: θ unary and pairwise energy terms
[a, b] requested interval for object size, Section 2, (2.2)

Result: xp ∈ X with assigned labels
1. i = argmax

i
(‖θi;0 − θi;1‖2), i = 1, . . . , |P|;

2. ∆ = compute interval bisection for interval [0, |θi;0|+ |θi;1|];
8. Return ∆

The algorithm 4 works iteratively until meets desired requests in interval size sz, where
sz = [a′, b′]. ∆ is computed for a foreground label using bisection interval method. It
means that at the start we have such an interval [a, b] that after adding c = a+b

2 to fore-
ground unary terms and perform max-�ow we will get segmentation where cardinality
f of foreground pixels is the same as cardinality of all pixels in image.
In the next step we set a new interval [a, b], s.t. a = c if previous max-�ow result led

to cardinality of f < a′ or b = c if previous max-�ow result led to cardinality of f > b′.
Then we continue with a new interval [a, b] until after adding or subtracting c we get

cardinality of f ≥ a′ and f ≤ b′. After the algorithm ends the value c is our ∆.
After computing ∆ we are going to update unary term using (3.1). All the next moves

are classical max-�ow which has already been described in Section 2.
This ∆ method will help us achieve desired results on object size constraint, but there

can be cases when this will not work. It means that algorithm after adding or subtract-
ing even small ∆ can not get into required interval. Example of this situation is shown
in Figure 3.1, where we applied model acquired from image (a) of Figure 1.1 to image
(c) of Figure 1.1.
Figure 3.4 illustrates a successful example of ∆-max-�ow. For more illustrative results,

Figure 3.1. Example where ∆-max-�ow will converge but not into desired interval. Left image
shows changes in ∆. Right image shows percentage of foreground pixels and required interval,
in this particular case it was set to [2.2, 5]. As it can be seen ∆-max-�ow can not get into
interval and after 65 iterations stacked in a wrong value. Algorithm was stopped after 100
iterations.

another image from the set was taken. This image is shown in Figure 3.2. Just as in
previous example we applied the training model from the image (a) Figure 1.1. Results
of segmentation after applying trained model and after ∆-max-�ow are shown in Figure
3.3.

13



3. ∆-max-�ow

Figure 3.2. The image of Rotunda of St. Martin, Vy²ehrad

(a) (b)

Figure 3.3. The image (a) demonstrates the result of segmentation just after applying trained
model from the image (a) in Figure 1.1. Image (b) demonstrates results after applying ∆-
max-�ow.

Figure 3.4. Example where ∆-max-�ow successfully converged. The left image shows changes
in ∆. The right image shows the percentage of foreground pixels and the required interval.
Interval was set to [2, 5].

14



So, to handle bad algorithms outcome and achieved requested results we need to
develop other method which can improve results of ∆-max-�ow. For this particular
situations we designed pixel swapping algorithm described in Section 4.

Metric instance problem

Further we also want to expand functionality of α � expansion algorithm using ∆
approach to handle situations where we know about objects we are looking for and their
sizes. Now we have di�erent ∆ for each possible α, so we will write it as ∆α.
Just as in the case of the classical max-�ow, we modify unary terms of the energy

function (2.1). In α � expansion algorithm we iteratively add/subtract ∆ from the
current θp;α using (3.1), so this operation looks like the following:

θ∆
p;α = θp;α ±∆α. (3.2)

We then improve the algorithm of α � expansion 2 described in Section 2. Improved
algorithm is given below 5.

Algorithm 5: ∆-α � expansion algorithm
Data: arbitrary labeling f

set I of objects size intervals
Result: labeling f that minimizes an overall energy E(f) and all objects �ts in

their given intervals
1. success := 0;
2. for each label α ∈ L do

2.1 ∆α = compute ∆ for current α, s.t. |fα| �ts into Iα;
2.2 modify unary term θp;α by ∆α, ∀p ∈ P;
2.3 Find f̂ = argminE(f ′) among f ′ within one α � expansion of f ;
2.4 If E(f̂) < E(f), set f := f̂ and success := 1;

end

3. If success = 1 or not all objects �ts into their intervals goto 1;
4. Return f ;

Algorithm for computing ∆ stays the nearly same. The only di�erence is that we are
now looking for maximum Euclidean distance over all labels. In this case line 1 from
algorithm 4 will have the following form:

i = argmax
i

(
∥∥θi;α −max(θi;L\α)

∥∥2
), i = 1, . . . , |P|.

Here, L is the �nite set of all possible labels that can occur in the current task. We
are looking of a such index i, that maximizes the di�erence between the unary term θα
and the maximum value from unary terms θL\α.
In the next step we calculate ∆α using interval bisection optimization method. Inside

this method we iteratively re-compute current ∆α, modify unary terms and perform
α � expansion algorithm with adjusted parameters. It repeats until we get such a ∆α

that will lead us to a solution where |fα| lies inside the requested interval.
After obtaining ∆α we once again modify the unary term θα, construct a graph Gα in

the same way as it is described in the Section 2 and compute the energy. These processes
will repeat until none of the α will decrease the overall energy and cardinalities of all
labels will not be in required intervals.

15



3. ∆-max-�ow

Process of the computing ∆α is similar as in the case of ∆-max-�ow describe above.
The only di�erence is that we need to maintain constraints on object size at the same
time. This means, that is not enough just to compute ∆α for an one object save this
∆α and move to another one. We need to iteratively change these ∆αs in order to hold
all constraints. It can happen that after we found ∆α for one object and modify unary
terms, another object which has been already processed in previous step can alter its
size and we need to �nd new ∆α for it. Figure 3.5 shows iteration process of �tting to
desired object sizes for the image demonstrated in Figure 3.8.
Here, global constraint sz is written as a set of individual constraints for the each

label in the form of:
sz = {[a1, b1], [a2, b2], . . . , [aL, bL]}

where L is a number of possible labels.
Figure 3.8 illustrates an example of ∆-α � expansion. We take the �rst image from

0 5 10 15 20 25 30 35 40

Iterations

0

10

20

30

40

50

60

70

80

90

P
ix

el
 p

er
ce

nt
ag

e

Changes in pixels distribution for ∆  α  expansion algorithm

Percentage of pixels with label 1
Desired interval for label 1
Percentage of pixels with label 2
Desired interval for label 2
Percentage of pixels with label 3
Desired interval for label 3
Percentage of pixels with label 4
Desired interval for label 4
Found desired result for labels

Figure 3.5. The �gure demonstrates �tting process of labeling cardinality f during the ∆
α � expansion algorithm running on image shown in Figure 3.7 (a). Here, desired intervals
(percents) are: [3, 7] for the mole, [5, 8] for the penguin, [2, 4] for the mouse. Background
is calculated as a rest, i.e. we subtract from 100 sum of all interval starting values a (from
none background labels) and write it as b for background interval and the for a we subtract
sum of all interval ending values b (from none background labels). We get the interval [81,
90] for the background.

the testing set for ∆-α � expansion algorithm. It is shown in Figure 3.6 and trained our
model on this image. Next we applied gained model to the next image from the set,
results are shown in Figure 3.7. This image is from the same scene but di�ers in a scale
and an angle of view.
As it can be seen in Figure 3.7 after applying just simple model transfer we get

horrible results, but if we afterwards apply ∆-α � expansion then results are improved
dramatically, see Figure 3.8.

16



Figure 3.6. The �rst image of the testing set for the ∆-α � expansion algorithm with marked
objects.

(a) (b)

Figure 3.7. (a) shows the testing image from the set on which we applied model gained from
image illustrated in Figure 3.6. (b) shows output of pure α � expansion algorithm based on
trained model.

Unfortunately just as in the case of submodular instance problem there can not exist
guaranteed solution for every case. Example of the not so clear output which needs
some additional enhancements is shown in Figure 3.9. It may be useful to use other
relaxations, e.g. number of components constrain, for solving such cases.

17



3. ∆-max-�ow

Figure 3.8. Results of the ∆-α � expansion algorithm applied on the output of the pure
α � expansion shown in Figure 3.7 (b).

Figure 3.9. Results of ∆-α � expansion algorithm on the image that somehow di�ers from
that where model was obtained. As it can be seen in this particular case ∆-α � expansion is
not su�cient, we need some improvements.

18



4. Pixel swapping

As we described in Section 3, there can be cases when ∆-max-�ow algorithm can
fail and do not converge into desired interval. Of course solution might be just simple
expand the interval, but what if after expanding the interval we relax the task in such a
manner that we got bad results? As bad results we understand that there will be more
than the expected number of targets or our target will not be segmented accurately
enough (see Figure 1.1(c)).
For this particular case we developed algorithm that makes possible to achieve rather

accurate changes, say at a pixel level, to gain the segmentation, we will call it pixel
swapping algorithm.
Further in this work we will consider only border pixels as targets of potential changes.

So we will deal with only two possible options:

1. algorithm is trying to expand current labeling f to �t its cardinality into requested
interval

2. algorithm is trying to shrink current labeling f to �t its cardinality into requested
interval

Pixel swapping algorithm

The whole algorithm 6 is described below:

Algorithm 6: Pixel swapping algorithm
Data: labeling f gotten from ∆-max-�ow

unary and pairwise terms θ
Result: labeling f that satis�es object size constraint
/* H1 stores changes in energies after swapping foreground pixel to background */

1. create priority queue H1;
/* H2 stores changes in energies after swapping background pixel to foreground */

2. create priority queue H2;
/* H3 stores changes in energies after flipping edge between pixels with different

labels */

3. create priority queue H3;
4. δ = �nd optimal change(H1, H2, H3);
5. apply found change δ;
6. modify priority queues;
7. if we have not met conditions on object size goto 4;
8. Return f ;

Function �nd optimal change take the best choice over all priority queues and returns
δ which is the parameter that tell us what changes should be applied to the current
labeling f , e.g. swap pixel p from background to foreground or vice versa, �ip an edge
(change neighboring pixels labeling) e between two pixels p and q or swap pixel p from

19



4. Pixel swapping

foreground to background and simultaneously swap pixel q from background to fore-
ground.
Description of the function �nd optimal change 7 is presented below:

Algorithm 7: Find optimal change
Data: priority queue H1

priority queue H2
priority queue H3

Result: parameter of changes δ
1. valueH1 = get root of H1;
2. valueH2 = get root of H2;
3. valueH3 = get root of H3;
4. valueH4 = bestH1 + bestH2; // where bestH1 and bestH2 are the pair of pixels

that are not neighbors in the image

5. valuesArray = [valueH1, valueH2, valueH3, valueH4];
6. i = argmax

i
(indexof(max(valuesArray))), i = 1, . . . , 4; // i is the index of a

maximum value in the values array

7. set parameter δ according to i;
8. Return δ;

The main goal of this algorithm is to get target object into desired interval and at the
same time try to keep energy as minimum as possible. It means that during run time
of the algorithm the energy can slightly increase and our aim is to keep this change as
small as possible.
Described algorithm uses three priority queues to store changes in energy after ap-

plying one of the following transformations, each for every queue:

1. swap foreground pixel to background

2. swap background pixel to foreground

3. �ip edge between pixels with di�erent labeling f

We compare elements inside queues using their values, that is an element with the
highest change in energy (the lowest |Echange| (4.1)) is placed in the root of the queue.
Equation for computing an energy changes for one particular pixel p with labeling fp is
written in (4.1).

Etemp = Eold − θpfp −
∑

{pfp ,q}∈Npfp

θpfp ;q + θpf̄p +
∑

{pf̄p ,q}∈Npf̄p

θpf̄p ;q

Echange = Etemp − Eold (4.1)

Here, Npfp
stands for the list of neighbors of the pixel p in the neighborhood grid

(example of neighborhood grid is shown in Figure 2.1). pf̄p is the pixel p with the
opposite label, e.g. for binary labels representation it holds, fp = 1− fp.
For each pixel in image we store energy changes in the corresponding priority queue,

here as it can be seen from algorithm 6:

1. priority queue H1 stores changes when foreground pixel becomes background

20



2. priority queue H2 stores changes when background pixel becomes foreground

3. priority queue H3 stores changes when neighboring pixels with di�erent labeling
fp 6= fq are �ipped

The next step of the algorithm is �nding an optimal change. After creating all priority
queues we then proceed to �nding the best swapping move. The algorithm goes iter-
atively the condition on the target object size is met. In each iteration we take root
node from all the priority queues and additionally we create a new value that represents
swapping non-neighbors pixels. The possible operations are written below:

1. take root r1 from priority queue H1

2. take root r2 from priority queue H2

3. take root r3 from priority queue H3

4. compute energy change r4 in case when we swap two non-neighbors pixels r1 and
r2, where fpr1 6= fpr2 and {pr1 , pr2} does not exist

Here, pr1 means pixel in image corresponding to energy change r1.
We then compare obtained values and choose such a value that gives us the best

change in energy, in other words a value that will minimize overall energy or increase it
by as small as possible value. There can be four possible changes they are illustrated in
Figure 4.1:

1. Figure 4.1 (a) shows how pixel with id 7 changes its labeling from foreground to
background fp7 = 1→ fp7 = 0

2. Figure 4.1 (b) shows how pixel with id 5 changes its labeling from foreground to
background fp5 = 0→ fp5 = 1

3. Figure 4.1 (c) shows edge �ip between pixels with indexes 5 and 7
fp5 = 0 → fp5 = 1 and fp7 = 1→ fp7 = 0

4. Figure 4.1 (d) shows swapping labels between pixels with id 4 and 9
fp4 = 0 → fp4 = 1 and fp9 = 1→ fp9 = 0

21



4. Pixel swapping

1 4 7

2 5 8

3 6 9

1 4 7

2 5 8

3 6 9

(a)

1 4 7

2 5 8

3 6 9

1 4 7

2 5 8

3 6 9

(b)

1 4 7

2 5 8

3 6 9

1 4 7

2 5 8

3 6 9

(c)

1 4 7

2 5 8

3 6 9

1 4 7

2 5 8

3 6 9

(d)

Figure 4.1. (a) shows the foreground to background swap. (b) shows the background to fore-
ground swap. (c) shows the edge �ip. (d) shows the swapping two non-neighbor pixels with
di�erent labeling. Note: red color corresponds to a foreground pixel, blue color corresponds
to a background pixel.

In the next step we apply the best found change to our labeling f check if we are done,
i.e. objects size constraint is met, if so then algorithm ends and output new labeling f̂
in the other way it continues performing swapping.
In general algorithm is suitable for solving the following situations:

1. we have an initial labeling and we need to increase the number of foreground pixels
4.2 (b)

2. we have an initial labeling and we need to decrease the number of foreground pixels
4.2 (c)

3. we have an initial labeling and we need to eliminate some other false positive
segmentations 4.2 (d)

22



(a) (b)

(c) (d)

Figure 4.2. (a) shows object on which we want to apply segmentation algorithm. (b) algo-
rithm is trying to expand found labeling. (c) algorithm is trying to decrease the number of
foreground pixels. (d) algorithm is trying to eliminate the found false positive component
(top left corner). Segmentation is de�ned by blue color.

In our case we are interested only in situations (a, b, c) illustrated in Figure 4.1, because
we want to preserve only one component already found and just slightly modify it.
In Figure 4.4 is shown example of algorithm application. First of all we got our trained

model from image illustrated in Figure 4.3. After obtaining the model we applied it to
the image (a) (shown in Figure 4.4) and performed ∆-max-�ow to acquire cardinality of
labeling f within desired interval. Results are demonstrated in Figure 4.4 (b) it is clearly
seen that the part of the object, the one in a shadow is not chosen by the algorithm.
In the case that we are really needed these missing pixels be labeled as foreground we
apply our swapping algorithm that will try to expand current cardinality of labeling f .

(a) (b)

Figure 4.3. (a) shows the image from where color model was obtained. (b) shows segmentation
based on pure max-�ow.

23



4. Pixel swapping

(a) (b)

(c) (d)

Figure 4.4. (a) shows the image on which we applied trained model obtained from image
4.3 (a). (b) shows result of the ∆-max-�ow algorithm. (c) shows a result after we run
the swapping algorithm on the output of the ∆-max-�ow. (d) is a result of the swapping
algorithm and applied image dilatation on this result. Red color stands for the foreground
and blue for the background.

One can see that in the image (c) in the Figure 4.4 some sort of a �scar� appears be-
tween the two foreground areas. It happened because the algorithm is needed to choose
such a border pixel that will de�nitely increase total energy. Normally after performing
segmentation we have the biggest di�erence between foreground and background pixels
precisely on borders. So the algorithm tries to �nd such a value that causes minimal
energy increasing. After this pixel was found the algorithm will expand to its neighbors
and never return to those border pixels again. This behavior can be easily explain by
fact that choosing neighbor pixels of a new foreground will lead to minimization of the
overall energy, because these neighbor pixels will likely have smaller penalty (cost to
change label from background to foreground) than initially found border pixels.
One can also eliminate such an output with �scars� simply using a dilatation on a

result of swapping algorithm. Result of applying dilatation is shown in Figure 4.4 (d).

24



0 50 100 150 200 250 300 350 400 450 500

Iteration

-12

-10

-8

-6

-4

-2

0

2

E
ne

rg
y

×104 Energy changes in time

Figure 4.5. Energy changes during the swapping algorithm.

In Figure 4.5 is shown energy decreasing process. At the very beginning it can be
seen that there is no change in energy. This is a moment where the algorithm chose
new foreground pixel. After this the energy was decreasing nearly linearly.

25



5. Complexity

We now show that the binary energy minimization problem with object size constraint
solving by the descried algorithms can also be solved by computing the graph bisection.
Let us remind the energy function from Section 2 together with introduced global con-
straint on object size:

E(x) = θconst +
∑
p∈V

θp(xp) +
∑

(p,q)∈E

θpq(xp, xq),

s.t.

∑
p∈P xp

|P|
∈ sz

here,
∑

p∈P xp for binary problem gives us cardinality of foreground pixels set.

Graph bisection Let G = (V,E) be an undirected graph with n vertices and m edges,
where n is even. For a subset S of the vertices (with S 6= ∅ and S 6= V ), the cut(S, V \S)
is the set of all edges in G with one endpoint in S and one endpoint in V \S; these edges
are said to be the cut by (S, V \S). The cost of a cut is the number of edges in it.
A cut (S, V \S) is called a bisection of G if its two partitions, S and V \S, are each of

size n/2. Let us denote the minimum cost of a bisection of G by b = b(G). Minimum
bisection is the problem of computing b for an input graph G. This problem is known
as NP-hard [5].
Based on knowledge that the graph bisection is NP-hard problem we prove that our

binary energy minimization problem with object size constraint is NP-hard as well by
reduction fromminimum bisection to the binary energy minimization problem with object
size constraint.

Reduction. Graph bisection → binary energy minimization problem with object

size constraint We perform the following reduction to show that the binary energy
minimization problem with object size constraint is NP-hard:
Let us assume that we have a graph G = (V,E) that represents the graph bisection

problem instance. We then transform it to a graph G′ = (V,E, θ) that represents
instance of the binary energy minimization problem with object size constraint. This
transformation is shown in Figure 5.1.

In the next step we show that it is possible to transform instance of a graph G into
a graph G′ using the following operations:

1. for ∀v ∈ V (G) we add unary terms vector θp, so vertex p now will have values for
foreground and background labels

2. for ∀e ∈ E(G) where e is an edge between two neighbor vertices {p, q} we add
pairwise terms vector θpq so edge e will now have penalty values for choosing
di�erent labels between {p, q} and choosing same labels between {p, q}

Further we consider the fact that correct output of the graph bisection problem also can
be described as the correct output of binary energy minimization problem with object

26



(a) (b)

Figure 5.1. (a) shows an instance of the graph bisection problem (b) shows an instance of the
binary energy minimization problem with object size constraint. Colors in graph (b) mean:
red that pixel has foreground label and blue that pixel has background label.

size constraint. This is shown in Figure 5.2.

(a) (b)

Figure 5.2. (a) shows correct output of the graph bisection. (b) shows correct output of the
binary energy minimization problem with object size constraint. Colors in graph (b) mean:
red that pixel has foreground label and blue that pixel has background label.

Approximation factor. We can also show that it is unlikely that the binary energy
minimization problem with object size constraint has any constant factor approximation.
Feige and Krauthgamer [4] showed that there exists a polylogarithmic approximation of
the minimum bisection for planar graphs with ratio of O(log n) and for general graphs
it is O(log1.5n) time of the known approximation ratio for min-ratio cuts.

27



6. Experimental results

In this section we will show results of applying designed algorithms and describe their
weaknesses and strengths. We will show cases when these algorithms work perfectly
and cases when additional e�ort is needed to improve quality. We will do an analysis of
computational time and outline reasons why it is slow or fast.

6.1. Implementation details

All three algorithms:

1. ∆-max-�ow

2. ∆-α � expansion

3. pixel swapping

were implemented in Matlab 2015b. For �nding minimum cut in a graph we used the
algorithm provided by Kolmogorov [10] also written in Matlab. For the pixel swapping
algorithm were used priority queue. Unfortunately Matlab does not have build-in im-
plementation of priority queue and it was somehow problematic to implement it due
to Matlab speci�cs (vector oriented). So it was decided to use Java for priority queues
implementation and connect compiled Java library with Matlab. The rest of the pixel
swapping algorithm was written in Matlab.

6.2. System con�guration

All algorithms were tested on the system with the following con�guration:

Table 6.1. System con�guration

CPU Intel(R) Core(TM) i7-3517U CPU @ 1.90GHz
Memory 8.0 GB

OS Windows 10 Home
Matlab R2015b
JDK 1.7

28



6.3. ∆-max-�ow

6.3. ∆-max-�ow

In this part we will show some results of applying ∆-max-�ow algorithm.
As a �rst testing set were chosen batch of photos of Rotunda of St. Martin, at

Vy²ehrad in Prague. Photos were taken from di�erent angles of view and approximately
from the same distance. In these photos we chose as our target the door. We will call
this set �rotunda�.
A next testing set consists of photographies of a mole toy with a simple background.

We will show that it is enough to just train a model and apply it to another images from
a set without using ∆-max-�ow if the target object greatly di�ers from background and
if the background is homogeneous (e.g. white). We will call this set �mole easy�.
Third testing set will be again the mole toy but now we will put it to more complex

background and also try to change light conditions. We will call this set �mole hard�.
All the testing images had the following size:

width = 438px

height = 328px

Testing set �rotunda� The whole testing set is shown in Figure 6.1. As it was described
in Section 3 we take �rst photo and train our color model on it. This photo and
annotation is illustrated in Figure 6.2.

(a) (b) (c)

(d) (e) (f)

Figure 6.1. Testing set with photographies of the Rotunda of St. Martin, Vy²ehrad, Prague.

29



6. Experimental results

Figure 6.2. Image (a) from �rotunda� testing set with annotations.

As a �rst step we run max-�ow algorithm on the �rst image from the set and get
trained model with number of components K = 1. Then using the obtained model we
perform segmentation of the rest of the set. Results are shown in Figure 6.3.

As it can be seen there are some errors for images (d) and (e), the algorithm

(a) (b) (c)

(d) (e) (f)

Figure 6.3. Segmentation results by using pure max-�ow approach for the testing set �rotunda�.

segmented a larger part than required. Such errors can be caused by di�erent light
conditions or by presence of an object that has similar colors.
We then run the ∆-max-�ow algorithm on both images in order to acquire more ac-

curate results. These results are shown in Figure 6.4.
Running time for generating model and performing segmentation using max-�ow

and ∆-max-�ow algorithms for the �rotunda� testing set are shown in Table 6.2.

30



6.3. ∆-max-�ow

(a) (b)

Figure 6.4. Results of the ∆-max-�ow applied to images (d) and (e) from the �rotunda� testing
set. Algorithm �ts cardinality of f into the interval [2 5]. Image (a) corresponds to the image
(d) from Figure 6.3 and (b) corresponds to the image (e) from Figure 6.3.

Table 6.2. Running time for the testing set �rotunda�. ∆-max-�ow

Image Training a model[s] Max-�ow segmentation[s] ∆-max-�ow[s]
(a) 9.436 1.566 -
(b) - 1.478 -
(c) - 1.475 -
(d) - 1.465 5.50912
(e) - 1.577 6.36154
(f) - 1.794 -

In the case of �rotunda� testing set ∆-max-�ow algorithm successfully ful�ll all re-
quests with a high quality output.

Testing set �mole easy� The whole testing set is shown in Figure 6.5. The image with
an annotation on which we perform training is demonstrated in Figure 6.6. Model was
trained with a number of components K = 1.

31



6. Experimental results

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.5. Testing set with photographies of the mole toy with homogeneous background.

Figure 6.6. Image (a) from �mole easy� testing set with annotations.

There is one interesting thing for this particular testing set. After obtaining a model
and performing classic max-�ow segmentation we have already gotten correct results,
that is we did not need to perform any further optimizations. These results are shown
in Figure 6.7.

It means that theoretically if we have a homogeneous background as in the example

32



6.3. ∆-max-�ow

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.7. Segmentation results by using pure max-�ow approach for the testing set
�mole easy�.

above and target object that greatly di�ers from background one can simple use acquired
model on the whole set.
Running times for generating model and performing segmentation using max-�ow are

shown in Table 6.3. We do not perform ∆-max-�ow on any of the image from this
training set because it was not necessary.

Testing set �mole hard� The whole testing set is shown in Figure 6.8. The image
with an annotation on which we perform training is demonstrated in Figure 6.9. Model
was trained with a number of components K = 30. We use such a huge number of
components here in order to obtain better model that can be capable of distinguishing
between our target and background.

It can be seen that image (d) and (e) di�er from the rest of the set. It will be
interesting to see how can our approach deal with a such situation. First of all we perform
classical segmentation using gained model and max-�ow approach. These results are
illustrated in Figure 6.10.

33



6. Experimental results

Table 6.3. Running time for the testing set �mole easy�. ∆-max-�ow

Image Training a model[s] Max-�ow segmentation[s] ∆-max-�ow[s]
(a) 10.217 1.166 -
(b) - 1.460 -
(c) - 1.437 -
(d) - 1.453 -
(e) - 1.447 -
(f) - 1.437 -
(g) - 1.412 -
(h) - 1.480 -

(a) (b) (c)

(d) (e)

Figure 6.8. Testing set with photographies of the mole toy with quite complex background
and with di�erent light conditions.

Figure 6.9. Image (a) from �mole hard� testing set with annotations.

34



6.3. ∆-max-�ow

(a) (b) (c)

(d) (e)

Figure 6.10. Results of classical max-�ow segmentation using trained model.

As it could be expected classical max-�ow approach failed with images (d) and (e)
from Figure 6.8. Di�erent light, target position and �new background� signi�cantly af-
fected the scene and classical max-�ow was hardly `confused�.
Now we apply ∆-max-�ow on Figure 6.8 (d) and Figure 6.8 (e). Results are shown

in Figure 6.11.
Surprisingly it performed very well for such a simple approach. While here are still

(a) (b)

Figure 6.11. Results of the ∆-max-�ow applied to images (d) and (e) from the �mole hard�
testing set. Algorithm �ts cardinality of f into the interval [9 11]. Image (a) corresponds to
the image (d) from Figure 6.10 and (b) corresponds to the image (e) from Figure 6.10.

some incorrectly labeled parts it is already possible to use the gained output. It also
make further improvements possible, e.g. adding new constraint for numbers of searched
target.
Unfortunately to get sensible output we need to pay cost in computational time.

Running time for generating model and performing segmentation using max-�ow and
∆-max-�ow algorithms for the �mole hard� testing set are shown in Table 6.4.

35



6. Experimental results

Table 6.4. Running time for the testing set �mole hard�. ∆-max-�ow

Image Training a model[s] Max-�ow segmentation[s] ∆-max-�ow[s]
(a) 340.705 2.966 -
(b) - 2.263 -
(c) - 2.298 -
(d) - 3.268 8.282
(e) - 3.781 8.323

In the case of �mole hard� testing set ∆-max-�ow algorithm performed notably well.
It demonstrated ability to handle di�erent light conditions and handle presence of pre-
viously unknown background.

Conclusion of the ∆-max-�ow ∆-max-�ow showed its usefulness in di�erent situa-
tions with relatively fast computational time.

6.4. ∆-α � expansion

In this part we will show some results of applying ∆-α � expansion algorithm to the
image set. As a testing set were chosen batch of photos of di�erent toys. Photos again
were taken from di�erent angles of view and approximately from the same distance to
preserve objects size. We are interested in segmentation of three di�erent toys: mole,
mouse and penguin. The whole testing set are shown in Figure 6.12. We will call this
set �toys�.
All the testing images had the following size:

width = 456px

height = 342px

(a) (b) (c)

(d) (e)

Figure 6.12. Testing set with photographies of di�erent toys with non-homogeneous back-
ground.

36



6.4. ∆-α � expansion

Model was obtained from the �rst image from the set. This image with annotation
is shown in Figure 6.13. Our model was trained with a number of components K = 35.
While dealing with multiple labels it is always necessary to acquire �well trained� model,
here with large K, to be capable of distinguishing between many targets.

Next we will show how classical α � expansion algorithm performed with the rest of

Figure 6.13. Image (a) from �toys� testing set with annotations.

the set using obtained model. Results are shown in Figure 6.14.

(a) (b) (c)

(d) (e)

Figure 6.14. Results of applying α � expansion algorithm to the �toys� testing set.

37



6. Experimental results

It is not hard to see that pure α � expansion can not handle such a task. Output is
very raw, inaccurate segmentation, even for the image (a) from which we have gained
the model. The alpha expansion algorithm does not lead to globally optimal solution.
Hence, ambiguities can appear in the results, especially when we apply model gained
from di�erent image.
Next we will try to apply our ∆-α � expansion approach on this testing set. Results

are shown in Figure 6.15.
In compare to results from pure α � expansion we got pretty accurate output with

(a) (b) (c)

(d) (e)

Figure 6.15. Results of applying ∆-α � expansion algorithm to the �toys� testing set.

the exception of few small details. It can be seen that in image (e) in Figure 6.15 did not
manage to correct annotate penguin toy. It can be caused by insu�cient information
in model about color of the �car� on which this penguin was placed. It can be also
spotted small green annotation in the right top corner. This can happen when there is
no information in the model about a new background.
Regardless of some errors one can see that the ∆-α � expansion did a nice job seg-

menting each individual toy.
Table 6.5 shows running times for obtaining model and performing α � expansion and

∆-α � expansion.

Table 6.5. Running time for the testing set �toys�. ∆-α � expansion algorithm.

Image Training a model[s] α � expansion segmentation[s] ∆-α � expansion[s]
(a) 223.713 12.406 220.939
(b) - 16.293 210.035
(c) - 12.298 313.397
(d) - 11.228 202.149
(e) - 13.181 241.058

38



6.5. Pixel swapping

Conclusion of the ∆-α � expansion ∆-α � expansion showed that is possible to
enhance pure output of classical α � expansion and achieve better results but for the
cost of increasing computational time.

6.5. Pixel swapping

In this section we will show example of applying pixel swapping algorithm for obtaining
more accurate results.
As a testing set was chosen photographies of tomato lying on white paper. For this

experiment we took one photo with just tomato and to the rest of the set we added
additional shadows to make the segmentation task harder for our ∆-max-�ow algorithm.
The whole set is shown in Figure 6.16. We will call this �tomato�.
All the testing images had the following size:

width = 228px

height = 171px

Model was obtained from the �rst image from the set. This image with annotation

(a) (b)

(c) (d)

Figure 6.16. Testing set with photographies of a tomato with di�erent shadow conditions.

is shown in Figure 6.17. This model was trained with a number of components K = 1.
As for the previous cases we �rst perform classical segmentation using max-�ow with

trained model and see if there are some improvements needed to be applied to results.
The output of the segmentation using max-�ow approach is shown in Figure 6.18.

As it can be seen images (b), (c), (d) from Figure 6.16 were not perfectly segmented

39



6. Experimental results

Figure 6.17. Image (a) from �tomato� testing set with annotations.

(a) (b)

(c) (d)

Figure 6.18. Results of doing segmentation using classical max-�ow method.

by using just trained model. It mainly cause by shadows and inability of classical max-
�ow handle this situation. So we run our ∆-max-�ow algorithm on these images to see
if there would be better output. Results are shown in Figure 6.19.

40



6.5. Pixel swapping

(a) (b)

(c)

Figure 6.19. Results of ∆-max-�ow applied to images (b), (c), (d) from Figure 6.18. The
image (a) corresponds to the image Figure 6.18(b), the image (b) corresponds to the image
Figure 6.18(c) and the image (c) corresponds to the image Figure 6.18(d).

We see that results now are much better but still there is small misclassi�cation in
the image (d) of Figure 6.19. Part of the shadow was also classi�ed as our target object.
When these cases happen in order to obtain more authentic output one can use pixel
swapping algorithm. In Figure 6.20 is illustrated the result of applied pixel swapping
algorithm to the image Figure 6.19 (d).

We can see that output in now pretty accurate and ful�lls our requests.

Figure 6.20. The result of applying pixel swapping algorithm on image (c) from Figure 6.19.

41



6. Experimental results

Table 6.6. Running time for the testing set �tomato�. Pixel swapping algorithm

Image Training a model[s] Max-�ow[s] ∆-max-�ow[s] Pixel swapping
(a) 2.15471 12.406 - -
(b) - 0.420 3.706 -
(c) - 0.389 3.221 -
(d) - 0.407 2.504 89.748

In Table 6.6 are shown running times for classical max-�ow, ∆-max-�ow and pixel
swapping algorithm.

Conclusion of the pixel swapping We demonstrated that it is possible to improve
accuracy of the segmentation by applying pixel swapping algorithm but with growing
computational cost.

42



7. Conclusion

In this thesis we have described state of the art methods applied for energy minimiza-
tion task. Image segmentation task was chosen as a problem of energy minimization.
The goal of this task is to split pixels in image that have similar color into several sets
by using user provided initial annotation.
We used obtained GMM model from the one of the image with known annotations

and apply it to the similar images within the same dataset.
It was shown that is just not enough to simple apply obtained GMM model to the

rest of the set without losing accuracy of the segmentation.
We introduced global constraints as relaxations to problem of the energy minimiza-

tion. As follows three fast (approximation) algorithms that uses global constraints were
also introduced. These are the following algorithms:

1. ∆-max-�ow

2. ∆-α � expansion

3. pixel swapping

∆ algorithms (∆-max-�ow and ∆-α � expansion) use special auxiliary parameter ∆ to
adjust unary weights of each labels and �t cardinality of a target object into the de-
sired interval. The best ∆ is found by using bisection interval method as optimization
approach.
Pixel swapping is an iterative algorithm based on knowledge of changes in energies

after swapping some of pixel was performed. Main goal as in cases of ∆ algorithm is �t-
ting searched object into desired interval. It uses priority queues to store energy changes
and always tries to apply the best one change therefore minimizing overall energy. This
algorithm is applicable only after ∆ algorithm fails.
Algorithms performance was evaluated on �ve di�erent datasets (rotunda of St. Mar-

tin, at Vy²ehrad, mole toy on a homogeneous background, mole toy on a complex
background, bunch of toys on a complex background and tomato on a homogeneous
background) and compared with classical approach for the segmentation task (max-�ow
and α � expansion) with just simple applying acquired model.
It was shown that computational cost is growing with applying global constraints to

the task, especially for ∆-α � expansion algorithm.
We showed that the binary energy minimization problem with object size constraint

is NP-hard by reduction the graph bisection problem, known to be NP-hard [5] to our
problem. Besides we can not expect existence of constant approximation factor.

7.1. Future Work

A limitation of the current approach is that it can not handle situations when multiple
target components (disjoint areas) with the same labels appear and high computational
time can be required due to some Matlab limitations.
Possible extensions can be to introduce new global constraints that make situation with
several target components possible to solve. This can be e.g. number of components.

43



7. Conclusion

Perhaps methods that can compute homogeneity of components may be useful for this.
It also possible to improve computational time by re-written these algorithm into C/C++.
We can also improve pixel swapping algorithm by expanding it to more labels in the
same way as it was for binary problem. We can iterate over all possible labels and try
to adjust them to required interval but it will probably need better data structures.

44



A. Contents of the enclosed DVD

/

thesis

thesis.pdf ...............digital copy of this thesis
application ................. implementation of described algorithms

main_rotunda.m ...........will run ∆-max-�ow on �routunda� dataset
main_mole_easy.m ........will run ∆-max-�ow on �mole easy� dataset
main_mole_hard.m ........will run ∆-max-�ow on �mole hard� dataset
main_toys.m ..............will run ∆-α � expansion on �toys� dataset
main_tomato.m ............will run ∆-max-�ow and pixel swapping on

�tomato� dataset
data .........................testing data thesis

rotunda ...................�routunda� dataset
mole_easy ................ �mole easy� dataset
mole_hard ................ �mole hard� dataset
toys ......................�toys� dataset
tomato ....................�tomato� dataset

45



B. User manual

Installation

There is no installation needed. However it is necessarily that Matlab 2015b or
higher and Java JDK 1.7 or higher must be installed. To run provided algorithms one
should simple copy folders �application� and �data� from DVD to a local folder and run
appropriate scripts described in Appendix A.

Algorithms output

All output results of algorithms would be saved as images to �data� folder. For each
testing dataset results will be stored in a corresponding folder, e.g. for the dataset
�rotunda� it will be:

1. �data/rotunda/results_pure� for classical max-�ow

2. �data/rotunda/results_delta� for ∆-max-�ow

3. �data/rotunda/1_initial.png� shows annotated image which was used for obtaining
model

46



Bibliography

[1] Kolmogorov V., Rother C. Minimizing nonsubmodular functions with graph cuts
- a review. IEEE Trans. on Pattern Recognition and Machine Intelligence, 29(7),
JULY 2007. ix, 1, 7, 8

[2] �onka M., Hlavá£ V., Boyle R. Image Processing, Analysis and Machine vision.
Thomson Learning, Toronto, Canada, 3rd edition, 2007. 1, 5

[3] Boykov Y., Veksler O., Zabih R. Fast approximate energy minimization via graph
cuts. IEEE Trans. on Pattern Recognition and Machine Intelligence, 23, November
2001. ix, 6, 9, 10

[4] Feige U., Krauthgamer R. A polylogarithmic approximation of the minimum bi-
section. Society for Industrial and Applied Mathematics, 31(4):1090�1118, 2002.
27

[5] Garey M. R., Johnson D. S., and Stockmeyer L. Some simpli�ed NP-complete
graph problems. STOC '74 Proceedings of the sixth annual ACM symposium on
Theory of computing, pages 47�63, MAY 1974. 26, 43

[6] Gupta R., Diwan Ajit A., Sarawagi S. E�cient inference with cardinality-based
clique potentials. Appearing in Proceedings of the 24th International Conference
on Machine Learning, 2007. 3

[7] Kernighan B. W., Lin S. An e�cient heuristic procedure for partitioning graphs.
The Bell system technical journal, February 1970. 4

[8] Tarlow D., Givoni Inmar E., Zemel Richard S. Hop-map: E�cient message passing
with high order potentials. Appearing in Proceedings of the 13th International
Conference on Arti�cial Intelligence and Statistics, 9, 2010. 3

[9] Werner T. Revisiting the linear programming relaxation approach to Gibbs en-
ergy minimization and weighted constraint satisfaction. IEEE Trans. on Pattern
Recognition and Machine Intelligence, 2010. 3

[10] Kolmogorov V. Max-�ow algorithm implementation. http://pub.ist.ac.at/

~vnk/software.html [Online]. 1, 28

[11] Delong A., Gorelick L., Veksler O., Boykov Y. Minimizing energies with hierarchical
costs. In International Journal of Computer Vision, volume 100, pages 38�58.
Springer, 2012. 3

47

http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html

	Introduction
	Motivation
	State of the art review

	Prerequisites
	Problem instance
	Max-flow
	 – expansion

	-max-flow
	Pixel swapping
	Complexity
	Experimental results
	Implementation details
	System configuration
	-max-flow
	- – expansion
	Pixel swapping

	Conclusion
	Future Work

	Contents of the enclosed DVD
	User manual
	Bibliography

