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Abstract

Navigation of Unmanned Aerial Vehicles
in GPS-denied environments can be done
with multiple techniques. On-board op-
tical flow calculation using single cam-
era gives the user fast-deployable and re-
liable solution. The goal of this work
was to create a replacement for popular
PX4FLOW Smart Camera, which is bur-
dened by many drawbacks, and to inte-
grate the solution onto a UAV platform.
We used Phase correlation for optical flow
estimation and a RANSAC-inspired post-
processing method. The solution was
tested on real-world datasets and com-
pared with PX/FLOW sensor. We were
able to provide significantly higher accu-
racy and reliability of horizontal speed
measurement in our tests. Moreover, a
method for yaw rate and vertical veloc-
ity measurement using optical flow in dif-
ferent parts of the image was designed
and tested. Tests on real-world datasets
showed that the accuracy of the yaw rate
estimation method was good enough for
practical applications. This makes the
method open for usage in magnetometer-
denied environments such as reinforced
concrete buildings.

Keywords: UAV, localization, optical
flow, computer vision
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Abstrakt

Existuje mnoho technik navigace bezpilot-
nich letadel v prostredich bez dostupnosti
GPS. Kalkulace optického toku na palubé
pomoci jedné kamery poskytuje uzivateli
rychle nasaditelné a spolehlivé feseni. Ci-
lem této prace bylo vytvorit nahradu pro
populdrni senzor PX/FLOW Smart Ca-
mera, ktery je zatizen mnoha nevyhodami,
a integrovat vzniklé feseni na UAV plat-
formu. Pouzili jsme fazovou korelaci pro
odhad optického toku, pro nasledné zpra-
covani byla pouzita metoda inspirovana
algoritmem RANSAC. Regeni bylo otesto-
vano na datech z realného svéta a porov-
nano se senzorem PX4FLOW. Byli jsme
schopni poskytnout vyrazné vétsi pres-
nost a spolehlivost méfeni horizontalni
rychlosti v rdmci nasich testi. Déale byla
také vytvorena a otestovana metoda pro
urceni vertikalni rychlosti a rychlosti ro-
tace, ktera pouziva odhadnuty opticky tok
z vice ¢asti obrazu. Testy na datech z re-
alného svéta ukéazaly, ze presnost méreni
rotace je dostatecnd pro praktické pouziti.
To umoznuje, aby metoda byla nasazena i
v prostredi, kde neni mozné pouzivat kom-
pas napr. v zelezobetonovych budovach.

Klicova slova: Bezpilotni letoun,
lokalizace, opticky tok, pocitacové vidéni

Pteklad nazvu: Lokalizace bezpilotni
helikoptéry analyzou optického toku v
obraze
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Chapter 1

Introduction

The popularity of small multi-rotor aircraft has been on a constant rise in
recent years. They are favourite for their construction simplicity and a small
number of moving parts. The UAVs are very often equipped with a semi- or
full- autonomous control system that is able to navigate the craft in space
and maintain its position. Such functionalities, however, require appropriate
position sensors that can provide sufficient update rate and accuracy.

As a localisation sensor, very often a GPS receiver in combination with
inertial measurement unit is employed. Such a solution has many advantages
like high precision position estimation that does not degrade during the flight
and so forth. However, this solution is vitally dependent on reception of a
GPS signal.

There are systems that provide high precision localization with high update
rate in GPS-denied locations rate such as Vicon, OptiTrack or Qualisys.
Nevertheless, these systems require multiple cameras to be installed on the
place beforehand, which could be very inconvenient in some applications.
Furthermore, the cost of such systems is very high.

Another group of localisation systems does not rely on any external infras-
tructure. In uses solely sensors placed on the aircraft. Very often, they use
cameras to track the movement of steady surroundings to gain information
about the craft’s velocity and position. One of the most known and often used
sensors in this group is PX/FLOW Smart Camera that tracks the velocity of
the ground.

However, the PX/FLOW Smart Camera has very constrained parameters.
The working altitude limit is very low, the requirements on the illumination
of the ground are relatively high, and maximal reachable velocity is quite
limited as well.

The goal of this thesis is to develop a substitution for PX/FLOW Smart
Camera that uses hardware already available on the UAVs of the Multi-robot



1. Introduction

systems group. Additionally, it should not share the drawbacks of the smart
camera.

Our motivation is to build a tool that enables application of formation flying
approaches [SVKP14][SKV ™ 14][SBS16] [SKP14] [SKV 13| [SVKP12][SBHT6],
being designed in a long-term research within the MRS group, in GPS-
denied environments. In particular, we aim to deploy these principles for
scanning of interiors of large historical building by a formation of cooperat-
ing UAVs [SKSB17] [http://mrs.felk.cvut.cz/projects/cesnet| and for
surveillance [SVC™16][SBTT16][SCP™14] and stabilization of UAV swarms
[Sas15][SVP14] in forests. All of these applications require to control the
UAVs in environment with insufficient light conditions, in which PX4FLOW
sensor cannot be used. The presented solution is planned to be used in feed-
back onboard Model Predictive Control (MPC) [BLS16] together with mutual
localization of UAVs in the group [FKCT13][KNE™14], which enables fully
autonomous flight in these demanding workspaces. Therefore, the proposed
method is designed to fulfill requirements of these applications.

We thus created a method that uses the same principles as PX/FLOW
sensor. It uses the on-board Bluefox camera to track ground movement and
combines this information with readings from a gyroscope and an optical
altitude sensor to create horizontal velocity estimates. The whole system
is highly versatile thanks to its implementation as a module in the Robot
Operating System. It can be easily modified to use different sensors.

Also, for optical flow calculation, we took a different approach than the
PX4FLOW sensor, which uses a very simple method called Block Matching.
Our solution gives a possibility to choose between Block Matching!| or Phase
Correlation. The second technique harvests the properties of Fourier trans-
form. By taking this path, we are able to measure higher speeds with lower
frame rate requirements.

Additionally, we created a method that can provide not just horizontal
velocity, but also vertical velocity and yaw rate measurement using the same
optical flow method.

!The Block Matching method was implemented in parallel to this work within Multi-robot
systems group.


http://mrs.felk.cvut.cz/projects/cesnet

Chapter 2

State of the art

The camera localisation systems for UAVs are a well-researched area. Already
mentioned systems using external cameras such as Vicon, OptiTrack or
Qualisys are widely available. We also already mentioned PX4/FLOW Smart
Camera developed by Honegger et al. [HMTP13|. This sensor tracks ground
using its on-board high-speed camera and ultrasonic range sensor to provide
speed and position estimation for UAVs. We describe the sensor in more
detail in section |3.3l

A similar work using dedicated hardware has been proposed by Heinrich
[Heil7]. The sensor mimics the concept of PX4FLOW but it uses Raspberry
Pi computer in combination with a compatible Sony IMX219 camera. Prob-
ably the main feature is the usage of hardware H.264 video format decoder
already integrated on the computer board for optical flow estimation. This
shrinks the CPU load significantly. The verification shows about the same
performance as PX4FLOW. Unfortunately, no verification under conditions,
where PX4FLOW sensor stops working (such as high altitude) was done. Ad-
ditionally, the construction used would be hard to integrate onto the existing
UAV, because a Raspberry Pi would have to be installed on board.

Aasish et al. in [CEUT15] present an implementation of Horn and Schunk
optical flow method [HS81] for two-dimensional position estimation. However,
they show only a general concept and do not include any results from testing.

Self-motion estimation using visual systems is done by More et al. in
[IMKK™15]. They use feature detection implemented in OpenCV library
along with iterative pyramidal Lucas-Kanade optic flow calculation method
to make the estimation. The height measurement is done with an ultrasonic
sensor. They also implement correction methods to deal with terrain height
variation and tilting of the camera.

Santamaria-Navarro et al. in [SNSACIH] present a solution for 3D odometry
sensor with PX/FLOW camera and a low-cost IMU unit. They test more
variants of the Kalman filter and propose different covariance matrices for

3
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different flight stages. They were able to show that a plain EKF filter performs
equivalently to nonlinear versions with the given setup. They also proposed
methods to overcome situations, where PX/FLOW gives erroneous readings.
This solution, however, does not solve the problem of poor performance of
the PX4FLOW in worse lighting conditions.

As Heinrich points out in [Heil7], computer mouse sensors are very popular
for visual odometry, especially amongst hobbyists. He references Briod et
al. in [BZF13] who uses multiple mouse sensors. Their method, unlike
other cited, does not scale the readings of optical flow, but just creates a
direction constraint that corrects for the drift of on-board IMU unit. This
technique dramatically decreases the position estimation error compared to
pure IMU solution. Another example according to Heinrich would be Kim
et Brambley [KBO7]. They use two mouse sensors to overcome the unknown
depth information in combination with EKF. Gageik et al. in [GSM13] also
test a mouse optical sensor in an implementation of an autonomous UAV.

So-called FPGAs (Field-programmable gate arrays) can be used to achieve
our goal with many advantages such as low power consumption and small
latency. This kind of computing hardware is employed for visual motion
detection in [AFF04] or [BK12]. In the latter Bahar and Karimian describe
implementation and testing of Horn and Schunck algorithm [HS81] on FPGA.
In the former Aubepart et al. utilise more biologically inspired sensors and
FPGA chip for visual guidance of an UAV. The sensor mimics housefly eye’s
properties. It consists of a linear array of angular sensitive light sensors,
so-called Elementary Motion Detectors.

Both of these approaches would, however, require undesirable additional
hardware. Moreover, additional development would be needed, because the
authors presented just a general concept and did not focus on potential
problems with real world application on UAVs.

Xian et al. in [XLZ"14] are implementing an approach that uses off-board
computing power in order to compute optical flow to stabilise a nano UAV.
They are successful in stabilising the aircraft in the radius of 20 cm from given
point. This application is, however, unsuitable for our case, since it requires
an external computer and other hardware such as a video transmitting device.
Secondly, it does not estimate the position of the craft.

Iyer et al. in [THCO5|] present a method for motion estimation from image
sequences that doesn’t use a common pinhole camera model but is inspired
by compound eye found in e.g. house flies. It is purposed to be used on UAVs,
but according to the paper, no experiments were done on this platform at
the time. This new method is further developed in [IMBO08] and [ITHOS].

Another biologically inspired approach is presented by Conradt in [Conl5|.
It is intended to be used on miniature UAVs but all calculations are done on
board. To achieve this, he uses a special event-based vision sensor where each
pixel asynchronously emits a signal on change of the incoming light intensity.

4
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These both works, though being very innovative, would require a special
kind of sensor, which is very undesirable because of its price and availability
on the market.

In our work, we also present a method for yaw rate and vertical velocity es-
timation from optical flow using a single camera. Stowers et al. in [SBSHMOQ9]
use a camera with fisheye lens for yaw speed measurement of an UAV. They do
a log-polar transformation of the captured images in combination with Phase
correlation. This allows them to estimate the rotational movement between
the frames. However, this method demands more processing power than
the method proposed in our work, which is caused by the need of log-polar
transformation.

Joos et al. in [JZSI0] present a method that estimates horizontal velocity
and yaw rate using two optical mouse sensors. The yaw speed is estimated by
a simple trigonometry. However, the method is presented on an automotive
vehicle. Implementation on an UAV would bring a new set of problems.






Chapter 3

System overview

This chapter describes the hardware applied in this work as well as its
constraints and technical parameters, which do not just define accuracy limits
for our algorithm but also shape the possible requirements. We also briefly
discuss the PX4FLOW Smart Camera we aim to replace with this work.

B 31 Hexacopter

The employed hexacopter uses a slightly modified F550 frame made by DJ]E
Its diagonal wheelbase (distance between opposite motors) is 550 mm and its
take-off weight is about 3 kg.

The UAV is equipped with Intel NUC 7 computer, which provides pro-
cessing power for control algorithms as well as for our localisation algorithm.
Control is done in combination with PixHawk autopilotﬂ

Figure 3.1: Photo of the hexacopter in flight.

'See http://dji.com/f lame—wheel—arf/specl
2See https://pixhavk. org/modules/pixhawk|
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3. System overview

Velocity constraints are given by the control algorithms and construction.
The maximal horizontal velocity is limited to 8.33 ms™!, the vertical velocity
in constrained to 2 ms~! while ascending and to 1 ms~! while descending.
The angular velocity in yaw has a maximum of 1 rads~!. We should note that
these are the maximal ratings, in the real-world application of our algorithm
the horizontal velocity will be limited to approximately 4 ms~! and the yaw
rate to 0.5 rad s~

B 32 Sensory equipment

Three key sensors are employed in our solution - camera, an altitude sensor

and gyroscope. In this section, we aim to describe the technical parameters
of these sensors.

B 3.2.1 Bluefox camera

In the work mvBlue FOX-MLC200w camera by Matriz Vision is used as the
main sensmﬂ Its chip has a resolution of 752 x 480 of grayscale pixels. It is
equipped with global shutter and is capable of a maximal frame rate of 93 Hz.
The camera is also capable of pixel binning mode, in which the resolution is
halved but the frame rate can go up to 170 Hz.
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Figure 3.2: Photo of the Bluefox camera the 2.1 mm lens. The camera is
installed on the UAV facing downwards.

After experimentation with different lenses, we decided to use lens MV-0-
SMOUNT 02.1 TN0212B by Matrixz Vision in the final application. It is a
1/3” lens with focal length of 2.1 mm that provides a big field of view. This

3Seemttps://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-ml¢.
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3.2. Sensory equipment

choice allows us to keep the frame rate relatively low thus also lowering the
computational power required.

B 3.2.2 Altitude sensor

As a source of altitude measurements, we use infra-red distance measurement
sensor TerraRanger On(ﬂ by Terabee that takes advantage of time-of-flight
measurements. Its specified maximal range is 14 m, but it decreases to 6 m in
sunlight. It has a very narrow field of view of only 3°. The claimed accuracy
is up to +4 cm.

Figure 3.3: Photo of the Terraranger altitude sensor.

B 3.2.3 Angular rate sensor

Angular rate is measured within the PizHawk autopilot unit. This unit
combines two separate three-axis gyroscopes. Omne of them is ST Micro
L3GD20H and the second one Invensense MPU 6000. However, no accuracy
estimations are known to the author to be available.

B 3.2.4 Position estimation system

In the real-world experiments, we compare the performance of velocity and
position estimation of our method to UAV’s internal estimates. They are
derived from RTK satellite navigation module PRECIS-BX305P|that works in
coordination with PizHawk inertial measurement unit and TerraRanger One
sensor. The RTK module itself is supposed to have an accuracy of horizontal

4See|h.ttp://teraranger.com/products/teraranger—one/|
®See https://tersus-gnss.com/collections/rtk-boards-receivers/products/|

precis-bx30
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3. System overview

positioning 10 mm + 1 ppm, vertical positioning 15 mm + 1 ppm and velocity
accuracy of 0.03 ms~! [TGI1].

. 3.3 PX4FLOW Smart Camera

The PX4FLOW sensor comprises a camera with MT9V034/ CMOS sensor,
16bit high-precision gyroscope and sonar for altitude measurements. It
calculates the optical flow present in the image, combines it with angular rate
and altitude measurements and outputs horizontal velocities in both axes as
well as altitude [PX413].

The camera has a resolution of 752 x 480 pixels, but the image is binned
four times in each axis, which allows the chip to work at a frame-rate of
400 Hz. It can be used with different lenses, in our setup we use 16 mm focal
length.

The manufacturer presents theoretical maximal measurements with different
focal lengths in different altitudes displayed in table [3.1 However, practical
usage showed the altitude to be limited to around 5 m and maximal horizontal
velocity to be circa 2 ms™! at 1.5 m altitude.

Altitude 1m 3m 10 m
16 mm lens | 24 m/s | 7.2 m/s | 24 m/s
8 mm lens | 4.8 m/s | 144 m/s | 48 m/s
6 mm lens | 6.4m/s | 19.2 m/s | 64 m/s
4 mm lens | 9.6 m/s | 288 m/s | 96 m/s

Table 3.1: PX4FLOW sensor theoretical maximal velocities under different
conditions [PX413].

10



Chapter 4

Preliminaries

This chapter describes the theory behind the core techniques used in our
approach to the problem. In the beginning, we present Motion Field equations
describing the relationship between camera movement and the amount of
movement in the image. These are used later in the next section for horizontal
movement estimation as well as for three-dimensional translational velocity
and yaw rotation estimation.

In the next section, we introduce two methods of optical flow calculation.
One of them, block matching, was implemented in parallel within Multi-robot
systems group. The second one, Phase correlation, was implemented as a
part of this work.

Finally, we describe post-processing methods used for filtering of the data
gathered by these algorithms.

B 4.1 Motion Field equations

Following the same principles as in [HMTP13], we model the effect of move-
ment of the camera on the optic flow present in the frames. We consider
the situation illustrated in figure The projection equation of the pinhole
camera model is as follows

P

where P = [P,, P, P,] is a point in the camera reference frame, p = [py, py, f]
is its projection onto an image plane I and f is focal length in terms of pixels.

Let us denote the velocity of the camera as T' = [T, Ty, T%.] and its angular
velocity as w = |wy, wy,w;]. Then the velocity V' = [V,,V},, V] of the point
P will be:

V=-T-wxP. (4.2)

11



4. Preliminaries

By taking the derivative with respect to time from both sides of equation
(4.1), we get the velocity v = [vg, vy, v;] of projected point p:

d (P PV -V,P
’U—fdt(Pz>—fV27 (4.3)

z

since the time derivative of P is % (P) = V. After separating v to each
component and substituting (4.2), we get:

: (4.4)
z

Afterwards, we substitute P, and P, with p;, p, according to (4.1). The
result is expressed as:

T.p, —T — p?
%:Mffwﬁpywﬁw,
— DyWa — WyPzD
’Uy: Zpyp Yy +fwm_pxwz+ yrr fy:vy'
z

We assume the effect of the last term divided by f to be negligible. Thus, we
write:

T, - T,
Vg R 722%13 of _ fwy + pyw.,
z (4.6)
T.p, — T,
vy A 7Zpyp vf + fwz — Paws.
z

These equations describe how the optical flow at each point on the image
plane (pz,py) is affected by translational movement of the camera (73, T,,T%)
and its angular velocities (wy, wy, w,) with the knowledge of the depth position
P, of the projected point and the focal length f.

B a2 Optical flow estimation

In our work, we tested two approaches to optical flow calculation. The
first, Block matching, compares the intensities of each pixel to find a perfect
alignment of two frames. The second, Phase correlation, uses the properties
of Fourier Transform to calculate a correlation between two frames.

B 4.2.1 Block matching

Block matching is a common technique for estimation of translational motion
between two frames. It has been studied since the mid-1970s and many

12



4.2. Optical flow estimation
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Figure 4.1: Illustration showing projection of a point in space to an image plane.
The camera aperture is placed at the origin of coordinate system. The point P
is projected to an image plane I of a camera with focal length f. Rotational
velocities along each axis are denoted as w,, wy, and w;.

modifications were proposed. They vary in the metric that is used to match
two pixels and in a reduction of the steps that are needed to find an optimal
match.

We must note that an implementation of this algorithm is not a part of
this work, but we describe it here for better understanding of the subject.
The implementation was inspired by the optical flow calculation method in
[HMTP13].

First, let us describe the image difference by sum of absolute differences
[Sze10):
Esap(u) = > |I1(; +u) — Ip(x;), (4.7)

(2

where Iy and I are two frames, vectors @; = (z;,y;) point to all discrete pixel
locations in a frame and vector u is a displacement vector, which describes
the translational movement between the two frames. Our goal is to find
such vector w from all possible displacement vectors, so that the Egap(u) is
minimal.

The employed algorithm divides the image into n square sections of certain
size and distance. These sections can overlap. For each section the method
tries to estimate u. Mathematically, we could express this by defining sets
S1,59,...,5, where each set contains vectors pointing to pixels in one section
of the image.

Si - {wl,la L1125, wl,w/na L21,L22, .- 7ww/n,w/n}7Vi € <17 n>7 (48>

where w is the dimension of the whole frame (frames are cropped to have
square dimensions) and the vectors in one set S; point to all pixels in i-th
square section of the image. The number of sets n must be chosen such that
the frame dimension is divisible by it.

13



4. Preliminaries

We also have to define a set of displacement vectors U. It contains all
considered displacement positions. The algorithm performs a search for
minimal Fsap over these positions. We define the search radius r in pixels
so that U contains vectors:

U={(-r,—r),(=r+1,—r),...,(r,=7),(=r,—r+1),...,(r,7)}. (4.9)

Now, we can find for every set S; (i.e. for every square section of the image)
u; such that

Esap(u;) = min > | i(wij + k) — Io(xi ). (4.10)

xi,]-eSZv

After this step we have to combine the output from each section into
one output. A histogram is created for estimated displacements separately
for each dimension, i.e. if we denote u; = (ui,x,ui,y), then a histogram is
constructed from all u; , and u;,. From these histograms the number with
highest occurrence u;,u, is picked for each axis. Thus, the output of the
algorithm is u = (ug, uy).

B 4.2.2 Phase correlation

Another method to find a translational alignment is called Phase correlation.
It benefits from the properties of Fourier transform to calculate correlation
between two images. In our solution, we took advantage of the already
available implementation in OpenCV library [Its17].

First, let us denote two image frames I (x) and I3(x). Let I be circularly
shifted by vector u, i.e. for all possible x:

Ii(x) = Iy((xy + ug) mod dy, (zy + uy) moddy), (4.11)

where € = (z,,2y) and v = (ug,uy) and d,, d, are the dimensions of
the frames. In reality, the condition for circular shift is not satisfiable but
experiments show that the method is able to work without the condition up
to certain shift magnitudes.

In order to find u, we first take the Fourier transform of both frames
using FFTY, thus we obtain Z; and Z,, whereby Z we denote a complex
Fourier spectrum of an image. Then, using these spectra, we calculate Phase
correlation function (more precisely its Fourier transform) [Szel0]:

T (w)T5(w)

F{Epc(x)} = 1 Z1 (@) || Z2(@) ||

(4.12)

where Z5(w) denotes the complex conjugate of the spectrum.

1To remove edge effects, a Hanning window function is applied beforehand.
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4.3. Data post-processing

For this function ‘
F{Epo(@)} = e (4.13)

holds. To show this, we take the Fourier transform of both sides of equation
(4.11). By using properties of the transform we can write:

F{h(z)} = F{l2(x +u)}, (4.14)
T1 (w) = To(w)e 34, (4.15)

Then we can substitute to equation (4.12):

I (w)I;(w) e—jw-u
1 Z2(w)e 7 [ Za(w)]

F{Epc(x)} = = e Iwy, (4.16)

Now, we take the inverse Fourier transform of the function calculated in
(4.12)) and get:
Epc(z) =0 (x —u), (4.17)

where § (x — u) denotes an impulse shifted by w.

Afterwards, the task is to find the peak in Epc. First, the maximum is
found in the phase correlation function [Its17]:

U, = (Umzs Umy) = arg max (Epc(x)). (4.18)

To achieve sub-pixel accuracy, we compute a centroid weighted by intensities
of Epc in the 5 x 5 neighbourhood R of u,,:

Uy =

- v, Epc(x
S Ep @) >
e = (4.19)

= s Y oo
erR EPC mER

obtaining u = (ug,uy) as a result of the estimation.

B 43 Data post-processing

The output data from optical flow calculation methods sometimes contain
outliers, especially when an optically uniform area is contained in a part of
the image. The image is segmented into more rectangular parts, and optical
flow is calculated for each one separately to avoid this issue (this is further
described in |5.1)). Having more estimates available at a time, we can employ
an outlier detection technique inspired by Random sample consensus method.

Let U be the set of available estimates:
U={u,...,un}, (4.20)
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4. Preliminaries

where n > 2. We will compute an average vector a; ; for each pair, that is
for Vu;, u; € Ui, j € (1,n);i < j

(ui + Uj) . (4.21)

DN |

ai:j =

Now, we construct a set E; ; for each vector a; ; with elements from U that
are placed in a radius of r from a; ;:

E;j = {u; € U such that |u; —a; || < r}. (4.22)
Radius r is a tunable parameter that is adjusted in section |6.1.

Afterwards, we pick a set E from all F; ; that has the most elements:

E = argmax (card (£; ;)) . (4.23)
Ei’j

If more than one set has the maximal number of elements, the first found is
taken.

Finally, we create output vector u as an average of elements in F:

1
U= (B 626' (4.24)

Using this method, we can compute an average only from such vectors
that are within a certain distance from each other. This ensures that all
outliers present in the input set do not have any impact on the final result.
The key parameter for the method is the threshold radius r which has to be
determined empirically.
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Chapter 5

Implementation overview

This chapter describes the movement estimation system. First, we will
describe the function of two-dimensional motion estimation from an optical
flow that was inspired by [HMTP13]. Afterwards, we present a method that
can estimate translational as well as yaw velocity.

B 51 Horizontal velocity estimation from optical
flow

This chapter discusses the approach to horizontal velocity estimation of
the UAV from optical flow. We describe the method as a whole and the
approximations made in our approach.

Image data is first loaded from the camera and then they are converted to
grayscale and cropped into a square image. Optical flow is then measured
by comparing two consecutive images. To gain more readings at a time for
better post-processing possibilities, we measure the translational alignment
in more parts of the picture. The frame is thus separated into square sections
without overlaps and Phase correlation in calculated for each one. We will
assume that we get n optical flow estimates from each image section[l:

UL, U, ..., Uy, (5.1)

The exact number is subject to experimental tuning. In chapter we
estimate the optimum to be sixteen frame sections.

We assume that the ground below the UAV is flat so that all sections of the
camera frame are at the same vertical level. Thanks to the assumption, we
need to obtain only simple altitude measurement denoted by A. This is done

!This is, however, true only for measurements with Phase correlation. Block matching
method, that was not implemented as a part of this work, yields only one estimate at a
time that is already filtered by histogram filter.
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5. Implementation overview

by the on-board TerraRanger One sensor described in chapter 3.2.2L If this
assumption is not fulfilled, the optical flow caused by horizontal translation
has different values in different parts of the image, which could lead to
inaccurate or noisy readings.

Rotation in all roll, pitch and yaw axes can have a significant impact on the
accuracy of the measurement. They cause an undesired optical flow present in
the image. Thus, we have to compensate these effects by measuring angular
rates. We get the measurements from on-board gyroscope further described in
chapter [3.2.3. Since x-,y- and z- axes of the camera are aligned to the drone’s
axes, we do not perform any further recalculation of the angular velocities.
Further, we take the assumption that the camera is placed in the centre of
rotation. In the real implementation, this is not entirely true, but the effect
on the readings is negligible. Let us denote the angular velocities by w;,w,
and w,.

Now, we take into account the simplifying assumptions above and also that
the vertical velocity has insignificant effect on the readings. Then, for each
optical flow measurement u; = (ug;, uyﬁ') the estimated translation according
to equations (4.6) can be calculated as follows [HMTP13]:

X

Tx,i ~ — (_ux,i - fwy + py,iwz) s
(5.2)

NGRS

Ty,i ~ ? (_uy,i - fw:r: +px,iwz) )

where p, ;, py,; are the coordinates of the center of the given image section in
the image reference frame (origin is in the center of the frame) and f is the
focal length of the camera in terms of pixels.

Finally, post-processing method described in chapter 4.3|is used on vectors
T, = Ty, Ty,). It aims to neglect the effect of any outliers and yields final
velocity estimate.

B 52 3D velocity and yaw rate estimation

Using the properties of the Motion Field described in [4.1, we can not only
estimate the horizontal velocity, but it is also possible to get the vertical and
yaw speed estimates.

In the method, image is loaded from the camera, cropped and grayscaled
in a way similar to previous chapter. It is then symmetrically divided into
nine parts. For each part, we separately calculate optical flow. Let us denote
the optical flow in each section vectors as

V11, V12,013, V21, --.,U33 (53)

as it is shown in figure 5.1

18



5.2. 3-D velocity and yaw rate estimation
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Figure 5.1: Illustration showing notation of optical flow vectors in parts of the
frame. The square frame is separated into nine parts with centres at p;;. The
optical flow vector in each part is denoted as v;;.

Taking an assumption of flat ground beneath the UAV and taking other
approximations described in the section above, each of the vectors v;; can
be approximately expressed according to equations (4.6) as a sum of five
different factors:

Vij . R —iTx + Doy Pijywz — fwy,
r (5.4)
Vijy ~ _ZTy + Zl’y T, — PijaWz + fwaza

where (pija, pijy) is the center of each square section, A is the altitude mea-
sured by TerraRanger One sensor, (T, T,,T>) is translational and (w,,wy, w-)
angular velocity of the UAV.

First, we use measurement of the angular rate in roll and pitch axes from
on-board gyroscope to compensate for effect of w, and w, in the equations.
We thus obtain vectors r;; as follows:

rij = vij + [ (wy, —wz) . (5.5)

As a next step, we estimate horizontal velocity T, and T,. We take
advantage of the fact that the effect of T, and w, on the motion field vectors
is centrally symmetric - the factors are being multiplied by p, or p,. That
means, we eliminate the effect by summing the opposite vectors. Hence, we
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5. Implementation overview

can calculate four horizontal velocity estimates T; as follows:

le?(7’11'}‘7"33)7112:g(rl2+r32)7~-’T4:

2f

(ro1 + 723) .

(5.6)

They are fed to our outlier filtering method described in section 4.3 along
with estimation from central vector T5 = %rgz which is not affected by
vertical nor yaw movement. We thus obtain an estimation of horizontal
velocity T

By adding the effect of horizontal velocity to vectors r;;, we create vectors

f

kij =17 + Z . (57)

These vectors should be simply a product of yaw and vertical movement?,
since we can write:

DPijx

kijo = A T, + pijyws, 55)
5.8
Dij,
kij,y ~ %Tz — PijaWz-

The estimation of vertical and yaw velocity can be done for each of the
eight vectors by solving the set of linear equations as follows

Pij,x -1
Teis| _ |74 Pijy Kija (5.9)
W i Pijy —Dii koio | )
2,1J A 19,% Y

All of the estimations are then averaged, and a final vertical velocity and
yaw velocity estimates are then obtained.

2We do not consider central vector T92, since it is unaffected by rotational and vertical
movement in our model.
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Chapter 6

Optimizing the parameters

B 61 Optimizing threshold radius of post-processing
method

To set the threshold radius for the post-processing algorithm described in
we performed two experiments on a supplied real-world dataset. We focused
mainly on the chief influence of the parameter - the number of measurements
averaged in the result. All experiments showed that the method yields the
best results with threshold radius set to 1 ms™!.

Two trajectories were designed for this experiment. In the first "straight"
trajectory, the UAV flew along the global y-axis at a constant speed of 2 ms™*
while also rotating along vertical axis at a rate of 0.5 rads™!. The altitude
was 4 m.

The second "complex" trajectory was designed to have a shape of the
number "8", while the maximum speed was around 4 ms~!. The altitude was
4 m. No rotation changes were planned in the trajectoryﬂ

Regarding other parameters, the input frame size was 240 x 240 px and it
was divided into nine sectionﬂ The maximal number of averaged velocity
estimates is thus nine. The real world video stream had 130 frames per
second.

The main influence of the parameter in question is the number of averaged
velocity estimates in the final result. When the threshold is set to a very
low value, right estimates are split into more groups making the final value
a product of chance. With high values of threshold, even wrong results
are sorted into the final average. We tested parameter values ranging from

For further reference, we took videos from the experiments. They can be
viewed on YouTube. Link to playlist is: https://www.youtube.com/playlist?list=|

PLSwHw6pigPZqNijnZfIL8_- otUzRgaQwV}

This experiment was performed before optimising the number of sections.

21


https://www.youtube.com/playlist?list=PLSwHw6pigPZqNijnZfIL8_-otOzRgdQwV
https://www.youtube.com/playlist?list=PLSwHw6pigPZqNijnZfIL8_-otOzRgdQwV

6. Optimizing the parameters

0.1 ms~! to 1.5 ms~!. Figure shows the number of averaged velocity
estimates for selected values at relevant parts of the trajectories.

The number of averaged velocity estimates is staying low or fluctuating for
low parameter setting. We can observe it with values of 0.1 ms™! or 0.5 ms™*
on the figure. We found that this effect starts to vanish from 1 ms~! setting.
Therefore we estimated this was presumably the optimal parameter setting.

9 9
LI SHLTRER  TUHESER L :
7 7
6 6
—0.1m/s
c5 0.5 m/s c5
—1m/s
4 4
3 3
2 2
1 1
2 4 6 8 10 2 4 6 8 10
Time [s] Time [s]
(a) : "Straight" trajectory (b) : "Complex" trajectory

Figure 6.1: Figures showing the number of averaged velocity estimates (maxi-
mum is nine) in time for two trajectories for different threshold radius settings.

B 6.2 Optimizing the number of frame sections for
horizontal velocity estimation

As it is further described in chapter when estimating the horizontal
velocity, the input frame is divided into more rectangular sections. For
each one, the optical flow is computed separately, and the results are then
combined.

The number of such rectangular sections is a subject for optimisation.
A small number of bigger sections leave space for a higher optical flow -
the overlap is large even with higher speeds. However, this also results in
a smaller number of estimates, thus lowering the potential post-processing
method performance. On the other hand, a greater number of smaller sections
decreases the maximal measurable optic flow, but it creates more estimates
for post-processing method.

To set the optimal number of sections, we performed tests with different
settings of this parameter. We used dataset created on a simulator. The
input video stream had on average 25 FPS, resolution of 480 x 480 px and
camera had a field of view of 91.5° which corresponds to the lens employed
in the final solution.
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6.2. Optimizing the number of frame sections for horizontal velocity estimation

Position error [m]

Maximal Average

Section size/no. of sections | x y X y
60 px/64 5.59 | 248 | 1.43 | 148

80 px/36 2.53 1 0.87 | 0.5
96 px/25 2.37 | 0.58 | 0.85 | 0.23
120 px/16 1.96 | 0.55 | 0.72 | 0.20
160 px/9 2.17 | 0.49 | 0.77 | 0.18
240 px/4 2.12 | 0.57 | 0.73 | 0.22

Table 6.1: Absolute error in position estimation for different number of sections.

The UAV’s trajectory was copying the shape of number "8" in altitudes of
1.5 m and 3 m in speeds ranging from 0.5 ms~! to 4 ms™'P.

To select the best number of sections (i.e. the best section size), we
integrated the velocity to gain position estimates. We then compared the
results to ground truth and calculated the absolute error. The average and
maximal errors for a different number of sections are shown in table 6.1l

The results do not show a clear answer. They indicate we should avoid
the area lower than 80 px. The final choice of 120 px gives in our opinion an
optimal compromise between sufficient number of optical flow measurements
for post-processing and maximal measurable velocity.

3To gain a better overview, the processed video with 16 sections (120 px) was recorded
and uploaded to https://youtu.be/bFa2c0LzPZ4
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Chapter 7

Simulator verification

We used Gazebo simulator to verify all mechanisms of the velocity estimator
before trying them in real-world. The behaviour of the UAV in the simulation
is very similar to the actual one since it simulates all on-board flight controllers.
It was shown that using Gazebo under ROS significantly speeds up the transfer
from simulation to real world.

The parameters of the camera used in the simulation were mimicking
the real hardware described in chapter The field of view was set to
correspond to the 2.1 mm lens (i.e. in terms of pixels 366.8 px), the output
frame rate was 24 Hz at resolution 752 x 480 pixel. Unfortunately, we were
not able to simulate the lens distortion.

B 7.1 Horizontal velocity estimation

In the first section, we test the performance of horizontal velocity estimation
further described in[5.1. First, we verify the function of angular rate correction.
Afterwards, we aim to give information about the limits and the accuracy
of the solution. In the end, we compare the Phase correlation to parallel-
developed Block matching method for optical flow calculation.

B 7.1.1 Angular rate correction

Angular rate compensation prevents the estimates to be influenced by rotations
in all axes. We divide the mechanism into two parts. The first one is tilt
correction, that compensates for rotation in pitch and roll axes. The second
part, yaw rotation correction aims to compensate movement in the yaw axis.
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7. Simulator verification

B Tilt correction

The helicopter moves in pitch and roll axes especially when accelerating.
Therefore a trajectory where the UAV accelerates along the x-axis from zero
to 2 ms™! in smallest possible time was designed. The compensated and
uncompensated velocity estimates where then compared. The result is shown
on figure [7.1] along with angular rate in the y-axis.

As we can observe, the corrected estimates are significantly closer to the
ground truth than the uncorrected ones.

—— Ground truth Kl
3 || - = = No correction » . ‘n
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2 | | | | 0. | | | |
0 0.5 1 1.5 2 25 0 0.5 1 15 2 25
Time [s] Time [s]
(a) : Velocity in global x-axis. (b) : Angular rate in y-axis.

Figure 7.1: Figure showing tilt correction verification on a simulator dataset.
On the left-hand side, we show actual velocity in x-axis along with corrected and

uncorrected readings from our algorithm. On the right side is shown angular
rate in the y-axis.

B Yaw rotation correction

When performing rotation along yaw axis, the optical flow calculation method
is prone to indicate glitch or biased horizontal movement. Yaw rotation
compensation is designed to cope with this problem.

To test the method, we designed a simple trajectory where the UAV
performs two full rotations along its z-axis at a rate of 0.5 rad s~! while trying
to maintain its position. We then compared compensated and uncompensated
estimates of velocity in the x-axis. The result is shown on figure [7.2 along
with angular rate about the yaw axis.

It is visible that the estimates without correction contain more noise and
even a glitch at circa 7.5 s when angular velocity suddenly changed. Such

inaccuracies can lead to degraded performance of position estimation.
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7.1. Horizontal velocity estimation
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(a) : Velocity in global x-axis. (b) : Angular rate in yaw axis.

Figure 7.2: Figure showing yaw velocity correction verification on a simulator
dataset. On the left-hand side, we show actual velocity in x-axis along with
corrected and uncorrected readings from our algorithm. The angular rate about
the yaw axis is shown on the right side.

B 7.1.2 Maximal measurable velocity

Maximal measurable velocity will vary with altitude, frame rate and focal
length. To determine the maximum for each combination of variables, we
need to specify the maximal measurable optical flow, i.e. the maximal shift
in pixels between two frames.

Let s, be the maximal measurable shift and R the frame rate. Then, if
we presume the effect of angular rate to be negligible, we can according to
equation (5.2) state the relation between s, and maximal measurable velocity
Up, A8

smBRA
Um — 9 7.1
7 (7.1)

where and A is the altitude and f is focal length in terms of pixels.

To determine s,, we designed a trajectory where the UAV slowly accelerates
from steady state to 4 ms~!. We limited the frame rate to R = 11.5 Hz, the
altitude was A = 1.5 m. The resulting velocity estimates are shown in plot
We observe that the maximal velocity estimates for the setup are around
2 ms~!'. We can thus conclude the maximal frame shift is:

S = 42.43 px . (7.2)

Estimated maximal velocities at different altitudes for different frame rates
are shown in table [7.1l

B 7.1.3 Accuracy testing

To make an accuracy test, we used the same trajectory as in experiment for
frame sections optimization described in chapter [6.2l The trajectory has a
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7. Simulator verification

ms~!] Altitude
Framerate | 1.5m | 2m | 4m | 8 m
20 Hz 3.48 4.64 | 9.27 | 18.55
35 Hz 6.09 8.12 | 16.23 | 32.46
50 Hz 8.69 11.59 | 23.19 | 46.37
80 Hz 13.91 | 18.55 | 37.10 | 74.19
100 Hz 17.39 | 23.19 | 46.37 | 92.74

Table 7.1: Maximal velocities based on simulation results for different frame
rates and altitudes. The table assumes a setup with Bluefox camera with 2.1 mm
lens.

—— Ground truth
[ | — Velocity estimates

Speed [ms 'l]
o

0 2 4 6 8 10 12
Time [s]

(a) : Velocity in global x-axis.

Figure 7.3: Maximal velocity test for Phase correlation on a simulator dataset.
Frame rate was limited to R = 11.5Hz to reach maximal value easily.

shape of a figure "8" that is followed twice in altitude of 1.5 m and thrice in
altitude of 3 m. The shape of the trajectory can be seen on figure [7.4. The
velocity ranges from 1 ms™! to 4 ms~! in global x-axis and from 0.5 ms™*
to 2 ms~! in y-axis. The total length of the trajectory is about 130 m.

Processed video was captured for the trajectory. An example snapshot can
be found on figure 7.5 along with hyperlink to the video.

We integrated the velocity estimates to create position estimates and
compared them with ground truth. We then calculated the maximal and
average velocity and position errors as shown in Table|7.2. Position estimation
comparison is shown on figure |7.6.

As the table shows, velocity estimates have on average an error of no more
than 0.1 ms~! but sometimes can contain outliers. As we see on the image,
position estimation error in the x-axis is rising with time as expected up to
2 m at the end. Both average and maximal errors in y-axis are smaller, which
is caused by the fact that a shorter distance was flown in this axis.
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7.1. Horizontal velocity estimation

Figure 7.4: The shape of the trajectory used for accuracy testing on a simulator.

Velocity error [ms™!] Position error [m]
Maximal Average Maximal | Average
X y X y X y X y
1.9 2.2 |0.096 | 0.063 | 1.96 | 0.55 | 0.72 | 0.20

Table 7.2: Maximal and average velocity and position estimates errors for
horizontal velocity measurements based on results from simulator dataset.

Figure 7.5: Example picture from processed video from horizontal velocity
estimation testing in simulator. White vectors show estimated optical flow
for each section during flight. The video can be found on https://youtu.be/ |

b OLzPZ4
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Figure 7.6: Figure showing position estimation for Phase correlation with a
simulator dataset. The UAV was following a trajectory shaped as a figure "8".
The velocities ranged from 0.5 ms™! to 4 ms~!. The first 60 s the altitude was
1.5 m and it changed to 3 m afterwards. The total length was about 130 m.

30



7.1. Horizontal velocity estimation
B 7.1.4 Comparison with Block Matching algorithm

A comparison with Block Matching method for optical flow calculation
developed in parallel to this work was done. The method is described in
chapter|4.2.1. The section size was set to 24 px, the distance between sections
to 24 px and the scan radius was 21 px. At first, we performed experiments
to find constraints of the method. Accuracy tests taking into account the
limits were done afterwards.

B Maximal measurable velocity

We used the same methodology as in section [7.1.2] to find the maximal
measurable optical flow s,,,. The UAV was again slowly accelerating in the
global x-axis to 4 ms~!. We limited the frame rate to R = 14.1 Hz, the
altitude was A = 1.5 m. The resulting velocity estimates are shown in figure
.0

The maximum was reached at a speed of around 1.2 ms~!. We can thus
conclude according to equation (7.1) that maximal measurable optical flow is:

Sm = 20.7 px. (7.3)

We can create a table [7.3| of maximal velocities for Block matching method
based on the value. The table shows that the maximal velocities are slightly
lower than the limits of Phase correlation. It is especially significant for the
frame rates of 20 Hz and 40 Hz, where they are partly below the velocities that
are expected to be employed in the usecase for the optical flow localization.
But as long as the frame rate stays around 60 Hz and above, we would not
expect any problems.

[ms—1] Altitude
Framerate | 1.5m | 2m | 4m | 8 m
20 Hz 1.70 2.26 | 4.52 | 9.05
35 Hz 2.97 3.96 | 7.92 | 15.84
50 Hz 4.24 5.66 | 11.31 | 22.62
80 Hz 6.79 9.05 | 18.10 | 36.20
100 Hz 8.48 | 11.31 | 22.62 | 45.25

Table 7.3: Maximal velocities with Block Matching method at different altitudes
and for different frame rates based on the results from simulator. The table
assumes a setup with Bluefox camera with 2.1 mm lens.

B Accuracy comparison

To preform an accuracy comparison we created a trajectory that respected
the findings of maximal velocities. The UAV copied the shape of figure "8"
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—— Ground truth
—— Velocity estimates

Speed [ms ‘1]

0 2 4 6 8 10 12
Time [s]

(a) : Velocity in x-axis.

Figure 7.7: Maximal velocity test for Block matching on a simulator dataset.
Frame rate was limited to R = 14.1 Hz to reach maximal value easily.

two times in speeds ranging from 1 ms~! to 2 ms™! at an altitude of 3 m.
We simulated the usual Bluefox camera setup with 2.1 mm lens, the frame
rate was 24 Hz. The total length of the trajectory was around 48 m.

The velocity estimates were integrated to create position estimates. The
outputs from the two methods were then compared to ground truth. The
absolute is error shown in table 7.4l The comparison of position estimates is
displayed on figure [7.8

We observe from the table that maximal error is very similar for the
two methods in both position and velocity estimates. Regarding the velocity
estimates, Phase correlation is slightly more accurate on average. The position
error shows different results in each axis. In the x-axis, in which more portion
of total length was absolved, Phase correlation is better.

The figures show that estimates of position in x-axis are very similar. In
y-axis, the difference between the two method is more significant, but does
not go over 0.5 m.

Overall, we can state the two methods perform very similarly regarding
the accuracy. The decision between the two should therefore be based more
on the available frame rate (closely connected with the required processing
power) and required maximal velocity.

Velocity error [ms!] Position error [m]
Maximal Average Maximal Average
X y X Yy X Yy X y

Phase corr. | 0.85 | 0.49 | 0.077 | 0.058 | 1.10 | 0.31 | 0.538 | 0.129
Block Mat. | 0.88 | 0.40 | 0.092 | 0.071 | 1.14 | 0.20 | 0.581 | 0.092

Table 7.4: Comparison of accuracies of Block matching and Phase correlation
based on simulator measurements. The testing trajectory was 48 m long.
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7.1. Horizontal velocity estimation
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(b) : Position in global y-axis.

Figure 7.8: Accuracy comparison between Block Matching and Phase correlation
on a simulator dataset. The UAV was following a trajectory shaped as a figure
"8". The velocities ranged from 1 ms™! to 2 ms™! at an altitude of 3 m. The
total length was about 48 m.
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7. Simulator verification

. 7.2 3D translational velocity and yaw rate
estimation

In this section, we test the accuracy of the method for the translational
3D-velocity and yaw rate estimation described in chapter [5.2. Firstly, we
focus on the translational velocity estimation. Then we test the yaw rate
estimation.

B 7.2.1 Translational velocity estimation testing

In this chapter, we test horizontal velocity estimation as well as vertical
velocity measurement. Horizontal velocity is already being tested in the
section above, but since this method uses slightly different approach to the
measurement, we test it here too.

We prepared four trajectories for the experiment. The first, "flat", was
designed to specifically test accuracy of horizontal velocity estimation. It
is the same trajectory as e.g. in experiment in section |7.1.3. It copies the
shape of figure "8" (see figure 7.4) twice at altitude of 1.5 m and thrice at
3 m in horizontal speeds varying from 0.5 ms~! to 4 ms~'. The length of
the trajectory is around 130 m.

The other trajectories tested accuracy of vertical speed estimation and how
it is affected by horizontal movement. They are illustrated on figure [7.10l In
the second "vertical" trajectory, the UAV was ascending at a rate of 1 ms™!.
In the third and fourth, vertical and horizontal speeds were equal. In third
trajectory the speeds were 1 ms™' and in the fourth 2 ms™!. Processed
video was captured for each of these trajectories. An example snapshot can

be found on figure |7.9 along with a hyperlink to the video.

We integrated the velocity estimates and created position estimates. We
then compared the outputs to ground truth, calculated the absolute error
shown in tables [7.5 and [7.6. Vertical velocity estimates from last three
trajectories are also shown in figure [7.11]

First, let us compare the horizontal velocity estimation accuracy. In
comparison with tests done in section |7.1.3| we see that the average error is
comparable when measuring velocity. However, the integrated position is
burdened with higher error when using the 3D method.

Vertical velocity average error does not seem to be very affected by horizon-
tal movement up to the vertical speeds of 2 ms™!. It is around 0.06 ms~"' for
all trajectories with lower vertical speed. Figures show the estimates contain
noise that seems to be directly proportional to the velocity. Average and
maximal position errors get higher with longer experiments, because of the
integration.
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7.2. 3D translational velocity and yaw rate estimation

Figure 7.9: Example picture from processed video from vertical velocity es-

timation testing in simulator. White vectors show estimated optical flow for

each section. As we see on them, the image was taken while the UAV was

ascending. The videos can be found on https://www.youtube.com/playlist? |
1st=PLSwHwbpigPZqsUZs -BBvexpk_

Velocity error [ms™!]

Maximal Average
Trajectory | x y z X y Z
Flat 1.91 | 0.77 | 1.45 | 0.095 | 0.060 | 0.051
Vertical - - 0.70 - - 0.067

1 ms! 0.33 | 0.11 | 0.28 | 0.061 | 0.028 | 0.054
2ms! 0.54 | 0.14 | 0.50 | 0.11 | 0.041 | 0.11

Table 7.5: Velocity estimates errors for different trajectories for translational
3D-velocity testing on the simulator dataset.

Position error [m)]

Maximal Average
Trajectory X y z X y Z
Flat 2.5 0.43 1.3 0.87 | 0.13 | 0.25
Vertical - - 0.074 - - 0.023
1ms™! 0.31 | 0.13 | 0.097 | 0.15 | 0.062 | 0.029
2 ms! 0.096 | 0.046 | 0.074 | 0.038 | 0.012 | 0.023

Table 7.6: Position estimates errors for different trajectories for translational
3D-velocity testing on the simulator dataset.

35


https://www.youtube.com/playlist?list=PLSwHw6pigPZqsUZsWBD0J5-BBvexpk_A9
https://www.youtube.com/playlist?list=PLSwHw6pigPZqsUZsWBD0J5-BBvexpk_A9

7. Simulator verification

— i

(a) : No horizontal movement, (b) : Horizontal speed 1 ms™?,

vertical speed 1 ms™!. vertical 1 ms™!.

. i
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1

1

(c) : Horizontal speed 2 ms™*, vertical 2 ms™*.

Figure 7.10: Trajectories used for vertical rate estimation testing.

36
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Figure 7.11: Vertical rate estimation at different horizontal speeds along global
x-axis with a simulator dataset.
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7. Simulator verification
B 7.2.2 Yaw velocity estimation testing

We tested accuracy of yaw rate estimation on three different trajectories. In
all of them the UAV was rotating at a rate of 0.5 rads™!, i.e. the maximal
safe speed. The difference was in the horizontal movement. In the first, none
was planned. In the rest, movement along global x-axis at a speed of 1 ms™!
and 2 rads™! was designed. This was done to show the effect of horizontal
movement on accuracy of the measurement. The last two trajectories are
illustrated on figure The setup stays the same as in other experiments,
simulated Bluefox camera with 2.1 mm lens, frame rate of 24 Hz.

Processed video was captured for each trajectory. An example snapshot
can be found on figure along with a hyperlink to the video.

As in other experiments, we integrated the velocity estimates, calculated
error from ground truth and put maximal and average values into table [7.7
The yaw velocities are also compared to ground truth on figure As
we can see, the horizontal movement does not seem to have any effect on
the accuracy. The maximal velocity error with 1 ms~! shows that outliers
sometimes get into the results. But overall, the average yaw rate error is not
more than 0.035 rads™ 1.

Figure 7.12: Example picture from processed video from yaw velocity estima-
tion testing in simulator. White vectors show estimated optical flow for each
section. As we see on them, the image was taken while the UAV was rotat-
ing. The videos can be found on https://www.youtube.com/playlist?list= |
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7.2. 3D translational velocity and yaw rate estimation

(a) : Yaw rate 0.5 rads™!, horizontal speed 1 ms™1.

(b) : Yaw rate 0.5 rads~!, horizontal speed 2 ms~!.

Figure 7.13: Trajectories used for yaw rate estimation testing. The red arrow
shows the UAV orientation.

Velocity error [rads™!] | Position error [rad]

Horiz. speed | Maximal Average Maximal | Average
0 0.26 0.035 0.10 0.039
I ms™! 0.66 0.035 0.13 0.044
2ms! 0.20 0.024 0.09 0.028

Table 7.7: Yaw rate estimations errors at different horizontal speeds.
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Figure 7.14: Yaw rate estimation at different horizontal speeds along global
x-axis with a simulator dataset.
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Chapter 8

Real-world verification

In this chapter, we present a verification of our method on a real-world dataset
as well as its comparison to Block matching method and PX4FLOW Smart
Camera sensor. First, we verify the horizontal velocity estimation. We then
focus on the proposed 3D-translational speed and yaw rotation estimation
method.

The datasets employed in real-world verification have the same parameters
as those in simulator verification. The UAV was commanded with the same
trajectories and a raw video stream was captured from the Bluefox camera
equipped with 2.1 mm lens (i.e. in terms of pixels 366.8 px). The only
difference was in the frame rate, which was set to 35 Hz. Internal position
estimation system described in was used to provide the ground truth
data.

All of the testing was done in an outside environment. The ground texture
is grass since the experiments were done on a greenfield side.

B 8.1 Horizontal velocity estimation

This section describes verification of our horizontal velocity estimation method
described in section and simultaneously provides a comparison with Block
matching method and PX/FLOW Smart Camera. To carry out such a
comparison, a special test setup was done on the UAV. The PX/JFLOW
sensor was mounted next to the Bluefox camera as figure shows.

B 8.1.1 Maximal measurable velocity

Following the same methods as in sections and we first determine
the maximal measurable optical flow for Phase correlation and Block matching
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8. Real-world verification

Figure 8.1: Figure showing the test setup for comparison with PX/FLOW Smart
Camera sensor. The Bluefox camera is on the top part of the image, PX4FLOW
sensor on the bottom. Both sensors are mounted on the bottom of the UAV
facing the ground.

methods to create a table of velocity constraints. We then present measured
maxima for PX4/FLOW sensor for comparison.

Similarly to the sections referred above, the UAV was slowly accelerating in
the test trajectory from the steady state up to 4 ms~! in an altitude of 1.5 m.
The frame rate was limited to 17.5 Hz. Block matching method was using
the same parameters as in section The measured speeds are shown
for both methods on figure [8.2. We observe that maximal stably measured
velocity is 1.95 ms™! for Phase correlation and 1.5 ms™! for block matching.
This corresponds to maximal measurable frame shift for Phase correlation
according to equation (7.1))

Sm,pc = 27.2 px (8.1)

and for Block matching;:
Sm,m = 20.3 px. (8.2)

The value for Block matching is basically the same as the results from
simulation. However, the performance of Phase correlation has dropped
significantly. This may be caused by lens distortion and more noise present
in the image.

Based on these values we can calculate the maximal measurable velocities
following the equation (7.1). The results are shown for each optical flow
calculation method in tables [8.1 and [8.2,
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8.1. Horizontal velocity estimation
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(a) : Estimated speed with Phase (b) : Estimated speed with Block
correlation. matching.

Figure 8.2: Figure showing maximal speed testing for Phase correlation and
Block matching methods on a real-world dataset. The UAV was accelerating in

the global x-axis at an altitude of 1.5 m. The frame rate was limited for the test
to 17.5 Hz.

[ms~1 Altitude
Framerate | 1.5m | 2m | 4m | 8 m
20 Hz 2.23 2.97 | 5.94 | 11.87
35 Hz 3.90 5.19 | 10.39 | 20.77
50 Hz 5.56 7.42 | 14.84 | 29.68
80 Hz 8.90 11.87 | 23.74 | 47.48
100 Hz 11.13 | 14.84 | 29.68 | 59.36

Table 8.1: Maximal velocities for Phase correlation based on real-world experi-

ments for different frame rates and altitudes. The table assumes a setup with
Bluefox camera with 2.1 mm lens.

[ms—1] Altitude
Framerate | 1.5m | 2m | 4m | 8 m
20 Hz 1.66 2.21 | 4.43 | 8.86
35 Hz 2.91 3.88 | 7.75 | 15.50
50 Hz 4.15 5.54 | 11.07 | 22.15
80 Hz 6.64 8.86 | 17.72 | 35.44
100 Hz 8.31 11.07 | 22.15 | 44.30

Table 8.2: Maximal velocities for Block matching based on real-world experi-
ments for different frame rates and altitudes. The table assumes a setup with
Bluefox camera with 2.1 mm lens.

To test the maximal velocity of PX4FLOW sensor, we performed the same
test flight with UAV accelerating from steady state to 4 ms™! at altitudes of
1.5 m, 2 m, 4 m and 8 m. The sensor provided results only for the first two
altitudes, at the other two the readings remained at 0 possibly because of
an exceeded range of the sonar installed on the sensor. The estimates in the
first two altitudes are shown compared to ground truth in figure 8.3
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Figure 8.3: Figure showing maximal speed testing for PX/FLOW sensor. The
UAV was accelerating in the global x-axis at an altitude of 1.5 m and 2 m.

We see in the figures that we were not able to reach the maximal velocity.
However, the estimates often fall to zero, especially in the higher altitude.
This is probably caused by instability of the sonar measurements. The results
are concluded in table [8.3.

[ms—1] Altitude
Frame rate | 1.5 m 2 m 4m|8m
250 Hz >4 >4 (unstable) | 0 0

Table 8.3: Maximal velocities for PX4/FLOW sensor based on real-world experi-
ments in different altitudes. The sensor was not able to measure velocity in 4 m
and above. Results in lower altitudes were unstable as shown in figures.

B 8.1.2 Accuracy testing

To perform accuracy tests we created a trajectory where the UAV copied
the shape of figure "8" (see figure two times at an altitude of 1.5 m and
three times at 3 m in speeds ranging from 1 ms~! to 4 ms~!. However, the
results from PX/FLOW sensor were highly inaccurate at the higher altitude.
We thus present only the results from the flight in the lower altitude, where
the maximal velocity was limited to 2 ms™'. The total length was about
56 m. Other parameters were set the same as in other experiments (see
the beginning of the chapter). For further reference, we created a video on
showing the processed dataset, see figure |8.4

The velocity estimates were integrated to obtain position estimates. The
PX4FLOW sensor provided many zero measurements. These were ignored
since that provided better results than including them. All of the readings
were compared to ground truth and average and maximal absolute error was
computed. The results are shown in table The velocity estimates are

shown in figure position in figure
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8.1. Horizontal velocity estimation

Figure 8.4: Snapshots of a video compiling the accuracy testing. Highlighted
vectors in the image show measured optical flow. The video can be viewed on
https://youtu.be/udpxrFuNzs8.

The table and also figures show that the average errors in both velocity
and position estimation are very similar between Phase correlation and Block
matching. Furthermore, the values do not differ significantly between x- and
y-axis. An occasional outlying result is given by both methods, but this does
not happen very frequently. The average velocity error of both approaches
is around 0.1 ms~!. The endpoint error is again almost the same for both
methods. After the 56 m distance, the position estimation error was around
1 m. Compared to the simulator, the errors are slightly higher, but this has
to be expected.

Looking at PX/FLOW results in figure we see that they contain
very much noise. The average position and velocity errors considering only
x-axis are about twice as big as with the other two methods. However, the
performance of the sensor in the y-axis is very poor. The sensor seems to
fail in providing a velocity measurement in y-axis in significant parts of
the trajectory thus deviating the position estimates significantly. Possible
explanation for the effect might be that the velocity in x-axis was high so
that the sensor could not measure the velocity in the other axis accurately.
However, the real cause of the problem is unknown to the author and to our
team.
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8. Real-world verification

Velocity error [ms™!] Position error [m)]

Maximal | Average | Maximal | Average

X y x y X y x y
Phase corr. | 1.7 | 0.57 | 0.13 | 0.11 | 1.78 | 0.78 | 0.36 | 0.31
Block mat. | 0.90 | 1.7 | 0.12 | 0.11 | 0.62 | 0.85 | 0.25 | 0.36
PX4FLOW | 251 | 44 | 0.25 | 0.38 | 2.03 | 3.72 | 0.67 | 1.40

Table 8.4: Maximal and average velocity and position estimates errors for more
methods based on the real-world dataset.

‘ 7 -
2 : :
i
— 1 §
< W
o ~ B
E° i
1t ' T T e T K :
g —— Ground truth i {
U 2 L| - - -Phase correlation "‘- 4
Block Matching ',:
-3 F| - - -PX4FLOW % i
0 10 20 30 40 50 60
Time [s]
(a) : Velocity in global x-axis.
S T HHR ‘ M
:||{ II |I||I :I I: ol Y
R i Y T
o ! i|I ||\ ; Ny \| " |'| |J I ! : L
' ST m oAl 1 iy TR 1
DN T R W
g 0 ity ‘I‘ “lf‘wv v"\’-a'r \-‘{:
— e i " L HH |
Bt .' i |,|f " :' (N &
L —— Ground truth -s ! L
0 2 L|- - -Phase correlation i i y | y
Block Matching { "
3 1| - - -PX4FLOW i i i
I [ L I I
0 10 20 30 40 50 60
Time [s]

Figure 8.5: Velocity estimates obtained by Block Matching, Phase correlation
and PX/FLOW sensor from a real-world dataset. The UAV was following a
trajectory shaped as a figure "8" at an altitude of 1.5 m. The total length was

56 m.

(b) : Velocity in global y-axis.
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Figure 8.6: Position estimates obtained by Block Matching, Phase correlation
and PX/FLOW sensor from a real-world dataset. The UAV was following a
trajectory shaped as a figure "8" at an altitude of 1.5 m. The total length was
56 m.
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8. Real-world verification

B 8.2 3D translational velocity and yaw rate
estimation

In this section, we test the accuracy of the 3D translational velocity and yaw
rate estimation method proposed in section [5.2| on a real world dataset. The
tests were done in a way similar to tests on the simulator in section 7.2l First,
we focus on translational velocity, and then we verify yaw velocity.

B 8.2.1 Translational velocity estimation testing

In this chapter, we examine the accuracy of horizontal and vertical velocity
estimation. The horizontal velocity accuracy is already being tested above,
but since this method estimates the horizontal velocity with a slightly different
method and parameters, we test it here as well.

We created four trajectories for the test. The first, "flat" trajectory was
the same as in section |8.1.2. It was used to test the accuracy of horizontal
velocity estimation. The UAV copied the shape of figure "8" (see figure 7.4)
two times at an altitude of 1.5 m at speeds ranging from 0.5 ms™! to 2 ms™".

The length of the trajectory was around 56 m.

The other three trajectories were the same as in section |7.2.1. They tested
the accuracy of vertical speed estimation and how it is affected by horizontal
movement. They are illustrated on figure 7.10. In the second "vertical
trajectory, the UAV was ascending at a rate of 1 ms™!. In the third and
fourth, vertical and horizontal speeds were equal. In third trajectory the
speeds were 1 ms™! and in the fourth 2 ms™'. The results from these

trajectories are compiled in a video, see figure 8.7,

Again, velocity estimates were integrated to obtain position estimates, and
after a comparison with ground truth, an absolute error was computed for
both. The tables [8.5] and [8.6) show maximal and average errors for both
position and velocity. Figure |8.8 shows the vertical velocity estimates for the
last three trajectories.

As we observe on the figures, the vertical velocity with no horizontal
movement was estimated without much noise. However, the estimates seem
to saturate at around 0.5 ms~!. This might be caused by a short TerraRanger
sensor failure. We see more noise on the tests with horizontal movement,
which is to be anticipated. Compared to the simulator results, the estimates
are again noisier.

Considering the tables, the average errors in vertical velocity and position
estimation are very similar for all of the trajectories. They are one order of
magnitude higher than the results from the simulator. We could state that
the average velocity error is about 0.2 ms™!.
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8.2. 3D translational velocity and yaw rate estimation

Observing the errors of horizontal velocity estimates, we see that they
are significantly higher than the errors of methods tested in the previous
section. We can thus recommend the tested method only for vertical velocity
estimation.

Velocity error [ms™!]

Maximal Average
Trajectory | x y Z b'e y Z
Flat 1.7 | 1.31 | 1.21 | 0.41 | 0.30 | 0.19
Vertical - - 0.57 - - 0.20

1m/s 1.3 1095|085 | 0.35| 0.21 | 0.22
2 m/s 1.7 1.3 | 1.2 | 041 | 0.30 | 0.18

Table 8.5: Maximal and average 3-D velocity estimation error with real-world
dataset for different trajectories.

Position error [m)]
Maximal Average
Trajectory | x y Z b'¢ y Z
Flat 1.0 | 0.76 | 1.88 | 0.36 | 0.30 | 0.51
Vertical - - 14 - - 0.59
1m/s 0.17 | 0.47 | 0.96 | 0.058 | 0.17 | 0.43
2 m/s 1.7 1052 | 1.1 | 096 | 0.22 | 0.59

Table 8.6: Maximal and average 3-D position estimation error with real-world
dataset for different trajectories.
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(a) : No horizontal movement, verti-  (b) : Horizontal speed 1 ms~1, verti-

cal speed 1 ms™!. cal 1 ms™!.

1

(c) : Horizontal speed 2 ms™

cal 2 ms~1L.

, verti-

Figure 8.7: Snapshots from a video compiling the vertical velocity estimation
testing. Highlighted vectors in the image show measured optical flow. The video
can be viewed on https://youtu.be/K1bvQMz9£0o.
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Figure 8.8: Vertical rate estimation on real-world data at different horizontal
speeds along global x-axis.
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8. Real-world verification
B 8.2.2 Yaw velocity estimation testing

Yaw rate estimation accuracy was tested with three different trajectories
already employed in simulator testing [7.2.2l All the tests were done in a
3 m altitude, and the UAV was commanded to rotate at a rate of 0.5 rads™!
during the flight. We created a video compiling the experiment, see figure
8.9 The three trajectories differ in the horizontal velocity along the global
x-axis - we used speeds of 0, 1 and 2 ms™!.

The resulting velocity estimates were integrated and compared to ground
truth in the same way as in the other experiments. The resulting errors are
shown in table 8.7. The estimates compared to ground truth are shown in
figure |8.10.

Figures show that the yaw rate estimation is very accurate and independent
of the horizontal movement. However, with the current parameters, the
estimates saturate at a rate circa 0.6 rads~!. This claim is also supported by
the results from the table that show very low average velocity error.

The maximal velocity errors in the table show that the results sometimes
contain outliers which are visible on the figures as well. However, deviated
results under 0.6 rads~! occur rarely.

In conclusion, we can thus state that the yaw velocity estimation works
with a very low average error. Deviated measurements sometimes occur but
a filtering method can be presumably developed to cope with this issue.

Velocity error [rads~!] | Position error [rad]

Horiz. speed | Maximal Average Maximal | Average
0 0.42 0.070 0.95 0.43
I ms! 0.69 0.050 0.38 0.13
2ms ! 0.22 0.039 0.22 0.090

Table 8.7: Yaw velocity estimates errors for trajectories that differ in horizontal

speed along the global x-axis. The yaw rate was 0.5 rads~! same for all.
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8.2. 3D translational velocity and yaw rate estimation

(a) : Yaw rate 0.5 rads™!, no hori-  (b) : Yaw rate 0.5 rads~!, horizontal

zontal movement. speed 1 ms~L.

(c) : Yaw rate 0.5 rads™!, horizontal

speed 2 ms~ .

Figure 8.9: Snapshots from a video compiling the yaw rate estimation testing.
Highlighted vectors in the image show measured optical flow. The video can be
viewed on https://youtu.be/KT01fcT1h3M
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8. Real-world verification
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Figure 8.10: Yaw rate estimation with different horizontal speeds along global
x-axis. The yaw rate was 0.5 rads~! same for all the trajectories.
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Chapter 9

Conclusion

We conclude that all points of the assignment of the thesis was fulfilled.

We implemented an FFT-based method that uses Phase correlation for
optical flow calculation. The calculated optical flow is combined with data
from other sensors and filtered with RANSAC inspired method. The imple-
mentation is described as a whole in section [5.1], the optical flow calculation
method is depicted in 4.2.2] the Motion field equations used for conversion to
relative velocity in 4.1 and the filtering procedure in 4.3/

We optimise the parameters in chapter 6| and verify the whole algorithm on
datasets obtained from the simulator in chapter 7] and on real-world datasets
in chapter |8, We compared our solution with Block matching algorithm in
both chapters. Moreover, comparison with PX4FLOW Smart Camera was
done in chapter |8.

Also, we designed, implemented and fully tested a method that estimates
3D translation and rotation in yaw. The design and implementation are
described in section 5.2 and the method is tested on a simulator dataset in
chapter 7.2/ and on a real-world dataset in section |8.2.

The results from real-world verification show that our FFT (Phase corre-
lation) method provides horizontal velocity estimates with an average error
around 0.1 ms~!. The results with Block matching algorithm are very simi-
lar. Both approaches have at least two times better average accuracy than
PX/FLOW Smart Camera according to our tests.

The experimentation on real-world data was also done with our method
estimating 3D translation and rotation in yaw. It showed that yaw rate could
be measured with the average error as small as 0.04 rads~'. This makes
the method usable for yaw estimation in magnetometer-denied environments.
Horizontal velocity estimates are worse with this approach. The average error
goes up to around 0.4 ms~'. Vertical velocity can be estimated with an

average error of 0.2 ms™!.
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9. Conclusion

Apart from higher accuracy and improved reliability, we must stress that
the results of the work are highly modular. The software was implemented
as a node for Robot Operating System. This means that an adjustment
for another UAV running ROS is a matter of minutes. Furthermore, the
parameters of the camera, altitude sensor, lens or gyroscope can be changed
easily to adjust for the current environment.

Still, more development can be done on the work. As a direct follow-up
to the results presented, it is planned that the method will be employed
in feedback onboard Model Predictive Control (MPC) in the next months.
Furthermore, we would like to focus filtering methods used with yaw velocity
estimation, since the measurements sometimes tend to contain outliers.

56



Appendix A

CD contents

The description of each directory on the CD is written in table

Directory name Description

sources Software source code
thesis This thesis in pdf format
videos Videos of experiments

Table A.1: Table describing the contents of each directory on the CD.
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