Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Experimental slotcar-based platform for
distributed control of vehicular platoons

Bc. Martin Lad

Supervisor: doc. Ing. Zdenék Hurak Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Systems and Control

May 2017

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

DIPLOMA THESIS ASSIGNMENT

Student; Lad Martin

Study programme: Cybernetics and Robotics
Specialisation: Systems and Control

Title of Diploma Thesis: Experimental slotcar-based platform for distributed control of
vehicular platoons

Guidelines:

Your goal is to develop an experimental slotcar-based platform for distributed control of a platoon of
vehicles. Slotcars will be equipped with their own onboard computer processing the data measured by
onboard sensors such as the distances to the predecessor and the follower in the platoon, the current
through the motor winding, the velocity of the slotcar, the acceleration and the angular rate. The
onboard computer will also be able to communicate wirelessly with other slotcars and the operator's
computer. Base your project on the existing realization by Dan Martinec [1], but modify and extend the
realization towards greater openness, modularity and reliability. Additional instructions:

1. Give specifications for the hardware part and coordinate its development. Prefer standard, open
and modular solutions so that other developers can join in.

2. Design and implement the software both for the onboard computer(s) and for the operator's PC.

3. Make the project documentation and source code public through some popular developer’s webs.
The functionality of the platform containing some 10 vehicles should be demonstrated by
implementing a distributed LQG controller [2], a CACC [3] and possibly a distributed MPC [4].

Bibliography/Sources:

[1] D. Martinec. Distributed control of platoons of racing slot cars. Diploma thesis, CVUT in Prague, 2012.

[2] Alam, A., et al. Experimental evaluation of decentralized cooperative cruise control for heavy-duty vehicle
platooning. Control Eng. Practice, 38, pp. 11-25. 2015.

[3] Milanes, V., et al. Cooperative adaptive cruise control in real traffic situations. Intel. Trans. Sys., IEEE Trans.
on, 15(1), pp. 296-305. 2014.

[4] Dunbar, W. B., Caveney, D. S. Distributed Receding Horizon Control of Vehicle Platoons: Stability and String
Stability. IEEE Trans. on Aut. Control, 57(3), 620-633. 2012.

Diploma Thesis Supervisor: doc. Ing. Zdenék Hurak, Ph.D.
Valid until the summer semester 2017/2018

L.S

prof. Ing. Michael Sebek, DrSc. prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, January 30, 2017

iv

Acknowledgements

Many thanks to my supervisor
Doc. Ing. Zdenék Hurak Ph.D and
co-supervisor Ing. Ivo Herman for

guidance and support within this project.

And finally, thanks to my family who
endured this long process with me, always
offering support and love.

Declaration

I hereby confirm that I wrote this diploma
thesis on my own and that I listed all the
used materials in the references.

In Prague, 26. May 2017

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o
dodrzovani etickych principt pii pripravée
vysokoskolskych zavérecnych praci.

V Praze, 26. Kvétna 2017

Martin Lad

Abstract

This thesis aims to create a platform for
testing of distributed control algorithms
for a platoon of vehicles. The platform
is built on the basis of slot cars equipped
with electronics needed to control their
motors, to measure distance to their neigh-
bors and other quantities such as velocity,
acceleration, etc. The main computation
unit is the Raspberry Pi Compute Module,
which is complemented by a Wi-Fi card
used for communication between vehicles.
The thesis describes the used electronics,
principles of measurements, design of soft-
ware and GUI. In particular implementa-
tion of controllers from a perspective of
a user, and the use of a library for the
MATLAB Simulink. The library allows
displaying data and changing reference
signals in real-time, as well as simulation
of the platoon. The results are presented
by comparing simulations and real experi-
ments. The experiments are bi-directional
control using PI, PD controller and coop-
erative adaptive cruise control.

Keywords: Platform, Platooning,
vehicles, Distributed control, Cooperative
adaptive cruise control

Supervisor: doc. Ing. Zdenék Hurdk

Ph.D.

vi

Abstrakt

Tato prace mé za cil vytvorit platformu
pro testovani distribuovanych ridicich al-
goritmi kolony vozidel. Platforma je po-
stavena na zdkladé autodrahovych aut do-
plnénych o elektroniku potfebnou k fi-
zeni motoru, méreni vzdalenosti ke svym
sousedtim a dalsich velic¢in, jako je rych-
lost, zrychleni apod. Hlavni vypocetni
jednotkou je Raspberry Pi Compute Mo-
dule, ktery je doplnén o Wi-Fi kartu slou-
zici ke komunikaci mezi vozidly. V praci
je popsana pouzita elektronika, principy
meéreni veli¢in, navrh softwaru a GUI.
Zejména pak, z uzivatelského hlediska, im-
plementace kontroléra a pouziti knihovny
pro MATLAB Simulink. Knihovna dovo-
luje zobrazovani dat, zménu referencnich
signala v redlném cCase a simulaci kolony.
Vysledky jsou prezentovany porovnanim
simulace a realného experimentu. Prove-
dené experimenty se tykaji obousmérného
fizeni s pouzitim PI, PD regulatora a ko-
operativniho adaptivniho tempomatu.

Kli¢ova slova: Platforma, Kolona,
Vozidla, Distribuované tizeni,
Kooperativni adaptivni tempomat

Preklad nazvu: Experimentalni
autodrahové platforma pro distribuované
fizeni kolon vozidel

Contents

1 Introduction 1]
1.1 The thesis in context of history of
the project
1.2 Content
2 Hardware
2.1 Motor driver and back-EMF
measurement
2.2 Velocity measurement
2211IRC 9
2.2.2 Velocity from Back-EMF
2.3 Distance measurement. [11]
2.4 Super capacitor...............
2.5 Accelerometer, gyroscope and
magnetometer 13
3 Software
3.1 Slotcar File System
3.2 The STM Firmware
3.2.1 Behaviour description
3.2212csensors 18
3.2.3 Communication SPI interface [18§]
3.3 Why JAVA?
3.4 Raspberry Pi Slotcar Application
3.4.1 Program description........
3.4.2 Slotcar states..............
3.5 Graphical User Interface running
onPC......
3.5.1 Basic overview 23|
3.6 Simulink Model
3.7 Slotcar Controllers 25
4 Beginning with the platform 29
4.1 Clean installation
4.2 Connecting to WiFi...........
4.3 Connecting to CM
4.4 Eclipse IDE
4.5 Flashing STM
4.5.1 On Windows by a STM32
DISCOVERY BOARD 32|
452From CM
4.6 Linux command line commands 33|
5 Model 35
5.1 Linearization 136!
6 Control 141
6.1 Velocity control
6.2 Distance control
6.2.1 Bidirectional control........ 42|

vii

6.2.2 Cooperative adaptive cruise
control

7 Conclusion

Bibliography

A The contents of the enclosed
CD

Chapter 1

Introduction

Distributed control of platoons of vehicles has been an active research topic
for a few decades. Recently, the topic got more popular even in public thanks
to driver-less cars. The evolution can be track from cruise control (CC)
through adaptive cruise control (ACC) to cooperative ACC (CACC). The
cooperation is that a car shares some information with others using wireless
communication. An implementation and an experimental evaluation of a
CACC is one part of this thesis. CACC is a proved concept and it was tested
experimentally, for example, in [8] or in |9]. Other examples also tested
withing this work are predecessor following [10], symmetric bidirectional
control [1].

The motivations for creating the platform are following. Having a platoon
of real vehicles can be expensive, and even more expensive when an accident
happens. It also requires a lot of space. Our platform is small, affordable and
collisions are just moments for laughter. The platform (see an example in
Fig. |1.1) has been presented at school "open doors" events, at the Gaudeamus,
and at the Long Night of Museums. From our experience, it is very attractive;
we had many interested visitors, and children.

The platform, as seen in Fig. [1.2/ and Fig. 1.3, is based on racing slot cars
1:32 produced by Carrera used commonly as toys by children and adults.
Originally, these slot cars had no onboard controller. They are also free of
any sensor or communication interface. Their velocity is controlled remotely
by a human player varying the voltage on the conducting strips on the
track. The slot cars have been upgraded significantly by equipping them
with custom-made electronics including powerful microprocessors, sensors,
and a communication interface. The main computing unit is the popular the
Raspberry Pi Compute Module, which runs Debian Linux. All these parts
still fit within the small car, and the appearance is (almost) unchanged. A
part of the platform is a user PC running GUI and MATLAB Simulink.

The main features of the platform.

B Small size: each car is 13 cm in length and 5.5 cm in height. The simplest
required track for experiments is a circle with diameter of 1 m; it easily
fits on an office desk.

1. Introduction

Figure 1.1: An example of a fraction of our platoon of vehicles.

PC
| 7 \ Track

MATLAB [+ GUI

Figure 1.2: A visualization of the platform.

B Low cost: the total cost of each autonomous car is approximately 300 €,
including the bare slot car itself. A basic track costs about 70 €.

® Durability: since all the electronics is located inside the plastic cover of
the slot car, it can easily withstand almost any crash between cars.

® Ease of controllers design: a controller is just a plugin for the main
application in the car. Hence, it can be easily developed, deployed and
run. Moreover, source codes for the most commonly used controllers (PI,
PD, ...) are already provided.

® Graphical application for the platoon setup: a Java application is pro-
vided for the platoon management. It allows a user to upload controllers
to the cars, select a controller, and set its parameters, as well as update
the firmware of cars remotely.

® Matlab interface: the data measured by each car are communicated
among other cars, as well as to GUI. Matlab can be used not only to

1.1. The thesis in context of history of the project

Tk—1

Lk

Th41

Software on RPI

Hardware and firmware onboard the kth slot car

"@’| Reg v |—>| Amp |i| Motor H Car
Y

EMF

meas
€k

N
cur [TMATLAB

| Estimator of velocity |

Simulink

Software running on the STM computer

Data from other slot cars

Figure 1.3: A block diagram showing the k-th car in the context of the platform.

visualize and analyze the data, it can also be used to change reference
values of the platoon, such as the target velocity of leading vehicle.

The choice of Raspberry Pi Compute Module. From the hardware point
of view, the Raspberry Pi Compute Module (CM) was chosen because of its
small size, performance and huge community of developers. It became sort-of
a standard in embedded technology.

CM runs a operating system(OS)—a Linux distribution called Raspbian
(based on the popular Debian distribution, as the name reflects). Having
an operating system allows a user to use many convenient services such
as SSH and SCP for easy maintenance, debugging, and file management.
While having already implemented drivers for Wi-Fi, SPI, and other standard
peripherals, a developer can only focus on a application itself.

Although we do not use a real-time version of Linux, the OS is capable of
running the control tasks with a sampling period of 30 ms.

B 1.1 The thesis in context of history of the project

A previous version of the experimental platform has already been reported
in [7]. An overview of the current version of the platform has also been
published [5]. This thesis is a logical follower, where the platform is described
in more detail and should serve as a manual for future contributors. It is

1. Introduction

also a summary of what the platform is capable of. The platform is still in
development; however, it is already able to serve its purpose. Some examples
of control principles were successfully tested; see Chapter [6.

The platform is being developed within numerous student projects following
the spirit of open source and open hardware. The code and the schematics
are publicly available through a git repository https://gitlab.fel.cvut!
cz/SlotcarPlatooning. Noticeable contributors or previous work /' are Jan
Moravec, who designed distance sensors and proposed principle of measuring
the distance; a revision of the code has been done recently. A group, consisting
of me, Filip Svoboda and Filip Richter, designed electronics of the cars. The
principle of speed measurement was presented in [4]. Other contributors
are listed in our paper. It is not a short-term project for one person for
one semester. The recent work has been focused on bug-fixing, cleaning of
the code, and experiments. The project is also published at [6]. This is a
popularization website allowing you to create a blog about a project. The
website is focused on technical, mainly home-made, projects. The community
consists of engineers and engineering enthusiasts.

Git repositories description:

slotcar-sw Raspberry Pi application and GUI, both written in Java.
slotcar-fw Firmware for microcontroller STM32F401, written in C.
slotcar-fs Raspberry Pi file system and OS related things.
slotcar-hw Hardware schematics, drawn in Eagle.

slotcar-ctrls Distance controllers, written in Java.

slotcar-doc Papers, documentation, and datasheets.

. 1.2 Content

This thesis is structured as follows.

Chapter 2| Describes hardware of a single car and the principles of measure-
ments.

Chapter 3| Describes the software running on Raspberry Pi, firmware run-
ning on a microcomputer, GUI, and Slotcar MATLAB Simulink library. The
microcomputer is responsible for measurements and control of velocity of the
car.

Chapter [4| Shows how to work with the platform from a developer’s per-
spective, and how to maintain the platform.

Chapter |5 Describes the mathematical model of the car and show some
experiments, that prove correctness.

Chapter (6| Presents some control algorithms; the simulation and the real
experiment, and compares it.

Chapter 7| Concludes the results of the work.

1Before the git repository was created.

https://gitlab.fel.cvut.cz/SlotcarPlatooning
https://gitlab.fel.cvut.cz/SlotcarPlatooning

Chapter 2

Hardware

In this chapter, we describe hardware solution and electronics. See Fig. [2.2l

Mechanics. The drivetrain is very simple: a brushed DC motor with a
permanent magnet drives the rear axle through a gear train (no differential)
with 3:1 ratio. The car drives on the track in a guiding slot, which allows
the car to move only forward or backward. The car takes electricity from
the pair of powered metal strips placed along the guiding slot. Since the side
motion is severely restricted, the platform is only suitable for experiments
related to longitudinal dynamics and control.

Electronics. It consists of two boards: top and bottom. Additionally, there
are two distance sensors and one infrared encoder (IRC) used for speed
measurement. All schematics of printed circuit board (PCB) are held in the
slotcar-hw repository. For design, we used the software named Eagle which is
widely used and very user-friendly.

Top board. On the top board, there is a Raspberry Pi Compute Module
(RPI), which is the main computation unit. Next, there is a USB connector
in which a Wi-Fi dongle is plugged in. A Wi-Fi network is used as the main
communication interface among all the cars and GUIL. We also equipped the
cars with the Zig-Bee communication interface |'|

Bottom board containing low-level electronics. Namely power supply
chain (rail voltage Uy; 5V; 3.3V; 1.8 V), a motor driver, the microcontroller
STM32F401 (STM) [12], a sensor for acceleration and rotation, a magnetome-
ter and a super capacitor. IRC and the distance sensors are connected to the
bottom board by cables.

. 2.1 Motor driver and back-EMF measurement

The motor is powered from the rail voltage and is driven by STM through
the H-bridge motor driver DRV8816 [14]. The whole situation is depicted in
Fig. 2.3,

Tt is not currently used. We prefer Wi-Fi because it is more common communication
interface.

2. Hardware

Figure 2.1: The hardware of the car; the bottom board, the top board, and the
car.

H-Bridge. DRVS8816 is not an actual motor driver, but an extended full
H-bridge. Among standard functions of a standard H-bridge, it provides a
dead-time check and a coast mode. In the coast mode, output pins are set to
a high-impedance state, which is essential for back-EMF measurements.

Lock Anti-Phase mode. The motor is driven by two signals A and B. Each
signal drives one-half of the H-bridge (the high level = the top transistor is
on, the bottom is off and vice versa). There are several ways of driving a
motor. Some are explained in . We chose the lock anti-phase because,
among others, its behavior is linear. In other words, the shape of acceleration
of the motor is symmetrical to the shape of braking.

This mode is periodically switching between a forward and reverse state
with a high frequency (tens of kHz); see Fig. In average, the proportion

6

2.1. Motor driver and back-EMF measurement

USB
RPI Wi-Fi
SPI PWM Motor driver
‘Super CapacitorM 5V ‘
STM

/

12C ADC ~ W Motor
4\@/

Accelerometer |
Gearbox
Magnetometer
IRC
Gyroscope
Distance sensors Wheels

Figure 2.2: Schematic diagram of the hardware.

of staying in one of these states determines whether the motor is rotating
forward or backward and how fast. When the proportion is 1:1, the motor
stops.

PWM. We control the motor by generating a complementary Pulse Width
Modulation (PWM) signal, which means, that one side of the H-bridge is
controlled by one PWM signal and the other side is controlled by its inversion.
The duty cycle of PWM

tOl’l
ton + toff,
where to, resp. tof is time of high resp. low state of the signal.

There is a convention problem. In the lock anti-phase mode, when d. = 50%,
the motor stops. The average input voltage on the motor is defined as

c =

loft _ 17 p, = Un(2d. — 1),

ton -
Uyyg = Up———
e 1rton + toft
where Uy is the rail voltage and D, is the duty cycle of our linear model. The
conversion formula is
D.+1

de = .
2

A timer which generates PWM is set to a center-align mode (Fig. 2.5). In
this mode, the timer counts repeatedly up to a maximum value and then
down to zero. It toggles a output pin on a comparison with a preset level. The
preset level determines the duty cycle and the maximum value determines
the frequency of PWM. The timer generates an interrupt once it reaches zero

7

2. Hardware

‘,,,,BackEMF ,, :
.| DVRS816
STM o
< - LA{H
PWM A k]

PWM B

~ H-bridge
Coast_mode on
(=)

| A
I
| L Ww
X
S

Figure 2.3: Schematic diagram of the interconnection of STM, the driver and
the motor.

or the maximum value. Therefore, interrupts appear twice in one period of
PWM.

Back-EMF (Back-induced ElectroMotive Force) measurement. We switch
the motor driver to the coast mode, and the motor is floating unconnected to
the driver. When the electric current decays in the motor winding, the motor
generates only the back-EMF, and then we measure it; see Fig. [2.6. The
time window, in which the feasible range of electric current is able to decay,
is determined experimentally to 300 pns. After that sequence, we switch the
motor back to the normal operation. The voltage on the motor is measured
by using a differential amplifier and by using the integrated analog-to-digital
converter (ADC) on STM.

Electric current measurement. We also measure the electric current flowing
through the motor by using an another differential amplifier which measures
a voltage drop on a resistor 0.2 2. The measurement is synchronized with
PWM, and we measure it only once per period at the longer state of PWM,
because we do not want to measure any noise factors connected with PWM
level changes. Mainly, it is important when the duty cycle is very low or very
high.

| Velocity measurement

The translation velocity is measured by using two types of sensors. The con-
sidered velocity range is between —2ms~! and 2ms~!. At higher velocities,
cars can get off the track in turns. The first sensor is a standard (albeit

8

2.2. Velocity measurement

Figure 2.4: In the picture we can see an H-bridge and flows of electric current.
In the forward resp. reverse state, the transistors (Q1, Q4) resp. (Q2, Q3) are
open, and (Q2, Q3) resp. (Q1, Q4) are closed. The red resp. blue line shows the
flow of the electrical current through the motor.

RUPTS
MAX

COMP

CNT
fIN = 0
PWM

PWM (complementary)

Figure 2.5: PWM center-align mode. The timer is counting (CNT) up/down
from MIN to MAX, toggles PWM on equal comparison with COMP value.

home-made) incremental rotary encoder (IRC). The other one is based on
measuring the back-EMF. Since we have two measurements, each with a
different precision and accuracy, they are be fused using an estimator, namely
Kalman filter (see [4]). This filter also provides an estimate of the friction
force affecting movement of cars.

B 221 IRC

A binary (black and white) disk is attached to the rear axle. The infra-red
emitter /receiver QRE1113 (see [2]) is pointed to the disk, and by measuring
the intensity of reflected light, is determined the color in front of the sensor.
There are two standard ways how to determine the speed of rotation. First,
by measuring the frequency of changes of the color in front of the sensor.
Second, by measuring the time between these changes.

9

2. Hardware

5
-100 0 100 200 300 400 500
t[ps]

Figure 2.6: Two measurements of back-EMF for two different duty cycles.

Measurement of the time between changes. The reason why we use this
method is that we have only six (three black and three white) stripes which
means six changes per one turn. Moreover, the sensor is situated after the
gear train from the perspective of the motor. Therefore the angular speed
is divided and becomes too slow for measuring just the frequency, even at
higher velocities.

The speed equation in a time of the color change k is following

(k) 4r 1

v(k) = ———=
A 7(k)’

where r is the radius of the wheel, A is the number of color stripes and 7

is the time between the recent and the last color change. In our case, we
measure the time by a timer

(2.1)

1
fvf

where f, ¢ is frequency of the timer, and N is number of ticks of the timer,
which is reset after each change of the color. In fact, the sensor can measure
only the speed of rotation and not its direction. The information about
direction is borrowed from the back-EMF measurement.

(k) = N (k) (2.2)

B 2.2.2 Velocity from Back-EMF

The back-EMF, denoted wpey, f, is proportional to the motor angular speed as

ubemf(t) = kw(ﬂ? (23)
where k is the so-called back-EMF constant (in SI units identical to the motor
torque constant). The equation for obtaining the speed is following

ve(t) = % Uneme (1) (2.4)

where n is gear ratio and r is the radius of wheel of the car. Unlike IRC,
the back-EMF measurement gives the direction of rotation. The con of this
method is that measuring back-emf is very complicated. However, once you
have the value, it is directly proportional to the velocity.

10

2.3. Distance measurement

. 2.3 Distance measurement

We could not find any commercially available sensor which would satisfy the
following requirements:

® small size, such that it fits into the car,
® wide field of view (important when going through turnings),
® no interference between the front and rear distance sensor.

It was possible to satisfy the first two requirements; however, the third one
seemed like a big obstacle. That is why we designed own sensor. It is based
on an infrared (IR) LED and a phototransistor. The diode emits square
pulses with a given frequency, and the phototransistor receives the signal.
To get rid of disturbances such as the sunshine or the room lighting, the
demodulation of the received signal exploits the correlation (synchronous
detection)—the frequency of the transmitted signal is known. There are
distinct frequencies for both front and the rear distance measurements: for
the front it is ff = 1111 Hz and for rear it is f, = 1666 Hz. Both are chosen
to be sufficiently well separated and also not being the multiplier (higher
harmonics) of 100 Hz, which is a frequency of the fluorescent tubes used in
the lab.

We do not use reflections. Reflection-based sensors are limited by the
angle of reflections. In our case, each car receives the emitted signal by its
neighbors (front and rear). Since we are using wide angle IR LEDs and
phototransistors, it gives a good precision even in turnings. The sketch of
the distance measurement is in Fig. 2.7

Measurement principle. The car with index ¢ — 1 emits the signal from its
rear LED with the frequency f;. The car i detects this signal at its front
transistor and demodulates it. The distance d is calculated from the strength
s of the demodulated signal by

(2.5)

where c¢ is a constant derived from calibration. The range of the sensor
is approximately from 5cm to 50cm. Similarly, the car ¢ — 1 calculates its
distance to the car i. Compared to the distance measurement schemes based
on reflections (some commercially available hobby-grade distance sensors rely
on it), the proposed scheme achieves four times stronger signal (the distance
for the light to travel is halved).

As any other sensors, these also have some disadvantages.

1. Sensors require calibration procedure. Currently, we calibrate the con-
stant ¢ by telling the sensor what is the real distance and by comparing
it to measurement and c is readjusted.

11

2. Hardware

car; 1 car;

fr = 1111Hz

f. = 1666Hz

Figure 2.7: Schematic of distance measurement between two cars. Two neighbors
car;—1 and car; exchange IR signals (with different frequencies). From intensities
of the signals, the cars calculate the distance. In turnings (red color), the sensors
are not in parallel position; each signal has slightly different time of fly. Therefore,
the intensities differ and also the measured distances are different.

2. Tt is necessary to have a car ahead, transmitting the modulated signal.
However, this does not cause any problems in our setting, since there is
always a platoon leader. The leader drives independently, following the
desired speed profile. Hence, the leader itself does not need any front
distance measurement.

3. In turnings, bumpers of two neighbors are not parallel (see Fig. [2.7);
therefore, the distances that measure car ¢ and i — 1 are different. It
cause problems for bidirectional control. We avoided this by using the
communication between two neighbors. By sharing the information,
the predecessor takes the front distance of the successor car as its rear
distance. In future work, the car should combine the information of its
measurement and of measurement of its successor.

B 24 Super capacitor

The main problem with the RPI is its power consumption. It is necessary to
have a backup power source because the car, for example during crashes, may
lose the connection with the power line. The loss of power leads to shutdown
of RPI, which cause a loss of data on the one hand and an additional time
needed for reboot on the other hand. The backup is something that saves
time, since the boot time is about a minute long. Of course, repairing harmed
OS image requires much more.

Therefore, we added a supercapacitor (1F; 5V) which serves as a power
backup for < 5V branches. It is able to backup the circuit for approximately
5s, which seems to be enough for emergency situations, such as crashes. Note
that since the car has a significant power consumption, a regular capacitor is
not sufficient for this task. Adding a battery is also not sufficient, because it

12

2.5. Accelerometer, gyroscope and magnetometer
needs a regular maintenance.

B 25 Accelerometer, gyroscope and magnetometer

We call this group of sensors I?C sensors, because they are all connected to
the common I?C bus shared between both RPI and STM.
The accelerometer and gyroscope are one-package sensor named LSM330DLC
(see [11]). The magnetometer is MAG3110 (see [3]). All of them are 3D.
The supported ranges are: for accelerometer £2g, +4¢g, +8 ¢, +16 g and for
gyroscope it is +250 deg/s, £500 deg/sand+2000 deg/s. The magnetometer
has fixed range and it is £1.55 uT.

13

14

Chapter 3

Software

The software is divided into three parts, corresponding to three processors:
the Firmware running on STM, the Car Application running on RPI, and
Graphical User Interface (GUI) running on PC. In this section, we describe
the environment of RPI, the Slotcar MATLAB library and the architecture
of the three software parts.

B 3.1 Slotcar File System

What we call the Slotcar File System are just files (configurations and scripts)
categorized by their position in the Linux directory tree. These files edit
the Raspbian on top of its standard configuration. We will not describe all
the files in detail. Instead, we denote some main features provided by this
configuration.

Read-only file system. We divided the flash memory of RPI into two
partitions the root (/) and /slotcar. The root is for OS and is mounted
as read-only, and /slotcar is for the car’s application which is mounted as
read-write. Some directories of the file system are mounted to RAM, for
example: /tmp, /var/log. This precaution is a standard safety mechanism
dealing with some unpredictable or unwanted events like loss of power while
writing to the flash memory and others.

Time synchronization. We use the Network Time Protocol (ntp) which is a
Linux service providing a precise time synchronization againts a server. The
server is a car designated by a user.

Networking. We are using a Wi-Fi network in Ad-hoc mode, which means
that there is no hot-spot and cars are communicating directly with each
other. We are using IP range 192.168.1.0/24, and each car has a fixed IP
address which is determined based on its number (a logic address). Cars
are numbered from 1 to N and therefore their address is 192.168.1.X, where
X =100 4+ n. For example car 1 has [P 192.168.1.1. Default logical address
for a car is 0.

15

3. Software

Slotcar Linux service. Using services in Linux is an easy way how to run
an process in background of the OS. It provides functions like stop, start,
restart the process, for example on error and more functions. We created
such a service for our application, which is very convenient and standardized
way how run a long term application in Linux.

Slotcar script for maintenance. It allows us to start/stop the car applica-
tion, to show logs, to set the logical address of the car, to set the NTP server,
to load program to STM, etc. As well it can make the upgrade of the whole
file system, by downloading it from Git slotcar-fs. More information can be
found in Chapter /4.

STM program loader. We did not find any suitable solution for flashing
the STM memory from a Linux via SPI. Therefore, we wrote our own C
application, using WiringPi library for programming the STM processor.
It uses the processor’s SPI built-in bootloader. However, it does not cover
all functionality yet, for example (un)locking sections. Therefore, for the
first programming it is still needed to used a official software to unlock the
sections.

. 3.2 The STM Firmware

The code is written in C language, and it has two purposes:

1. Being a sensor. It measures quantities with ADC, reads out data from
other sensors and filters them.

2. Being a controller. It controls the velocity of the car.

It measures the motor back-EMF, rail voltage, super capacitor voltage,
motor electric current, voltage from distance sensors and pulses from IRC.
Then it processes (demodulation, calculations, filtration) the data to get real
values or other quantities derived from them. It reads out 3D acceleration,
3D rotations and 3D magnetic field from external sensors. Based on velocity
measurements, it controls the duty cycle of PWM to track a reference velocity.

We use two interrupts and we try to do in main routine as much work
as possible. However, it is in balance with keeping the code as simple as
possible.

B 3.2.1 Behaviour description

The main function starts with initialization of all components and then
jumping into a infinite loop. The infinite loop has two parts, synchronous
and asynchronous. Jobs that need continuous execution are run in the
asynchronous part. In our case, it is polling of sensors. Jobs that need to
be called periodically are called in the synchronous part, for example, speed
control. Other jobs, that need precise high-frequency periods, are done in
interrupts, generated from ADC and SPI. See 3.1

16

3.2. The STM Firmware

20 kHz

Motor

40 kHz 500 Hz
TIM > PWM | ADC

! g - "| (injected)
ey ™GO0
(slave)
polling
200 Hz

500 Hz

Figure 3.1: STM interrupts and processing measurements

The asynchronous part of the infinite loop. It is running continuously and
we use it for:

1. Polling I2C sensors and measurements conversions.

2. Back EMF sample conversion and filtering.

3. Motor electrical current sample conversion and filtering.
4. TRC time conversion

Note that the samples are equivalent voltages given by measurement circuits
and measured by ADC. Therefore, they need to be converted to real values.
Conversions and filtering are always done only when a new sample is available.

The synchronized part of the infinite loop. It runs on 1ms period, from
which all slower periodical events are derived such as speed control loop
(200 Hz) and speed measurement update.

The SPI interrupt. It come from SPI when a byte is received. Since STM
is a slave on SPI, its response needs to be fast and flawless. Therefore, it has
the highest priority.

3. Software

The ADC interrupt. It comes from ADC, when injected ' measurements
are done. It is periodical with frequency 40kHz. In this interrupt, we measure
motor electric current and back-EMF, we also do the distance signal demod-
ulation and the IRC measurement procedure. Other ADC measurements are
done in regular mode, which means that they are continuously read out.

IRC. We are measuring the time 7 in the ADC interrupt by counting pulses.
In the interrupt, we also check the color. The counter is reset when it changes
otherwise it is incremented. Additionally, we add together the time of crossing
black, and white together to increase precision. When a new change of color
happens we replace the latest crossing time with the new one. The number
of ticks per sequence (B-W-B or W-B-W) is in hundreds of ticks.

B 3.2.2 12c sensors

Sensors are connected to STM via I?C (100 kHz) bus. Polling method is used
for initialization of a data transfer, which is then done automatically via
DMA. On initialization of the data transfer, the status of I2C is checked and
when it is busy no action is taken, otherwise the data transfer for a next
sensor is initiated and a data conversion for the previous sensor is called.
Sensors return RAW data, therefore they must be converted by a conversion
constant.

B 3.2.3 Communication SPI interface

The communication interface is using SPI bus, where STM acts as slave.
STM provides access to its virtual memory of variable (the memory is defined
in code as MyVariables) by using addresses. In order to read resp. write the
data, the read (see Tab. 3.2)) resp. write (see Tab. 3.1)) frame is used. Follows
the description of each data blocks in the frames.

Byte | 0 12 3 4 N[F+N|[6+N
Data | SYNC | N | ADDR | WRITE+AINC | DATA | CRC | RESP

Table 3.1: SPI communication, write frame

Byte | O 112 3 4 5..N 6+ N
Data | SYNC | N | ADDR | READ+AINC | RESP | DATA | CRC

Table 3.2: SPI communication, read frame

SYNC Start of the frame (0x16). Resets the communication state.
N The length of the bytes to be written/read.

ADDR The address of the cursor register.

! ADC has regular (continues) and injected (periodical) measurement.

18

3.3. Why JAVA?

WRITE/READ Write (0x01) / Read (0x02) frame

AINC Auto increment (0x04). If N is bigger than the size of one register,
remaining data are stored in the following register, which means with
every successful write/read the address is incremented.

DATA The data to be written(read) to(from) register. The meaning of the
data depends on the register type.

CRC Longitudinal redundancy check. It is calculated from the frame. The
first byte used in the calculation is the SYNC; the last is the last byte
in the payload. The Slave calculates the CRC as well and stores the
data only when both the CRCs match. The calculation is a simple XOR
operation over all bytes.

RESP The response byte of the slave. If everything is OK, it returns
RES__OK(0x01), otherwise, it returns RESP__ERR (0xFF)

SPI is set as duplex 8bit slave. No CRC control and software chip select
(CS), where the physical CS used rather as an indication of a new commu-
nication. Each falling edge on CS is considered as a new data request. The
logic behind is a state machine which is reset with CS.

B 33 why JAVA?

Following sections are dedicated to GUI and RPI software. Both are written
in Java. Now we put down several reasons why Java is an ideal programming
language for our case.

1. Java Virtual Machine (JVM). It is a big advantage because it makes
Java a multi-platform language. In our case, the car’s SW is running
on a Linux OS and we expect that GUI will usually run on a personal
PC with the Windows. However, JVM makes both almost the same
from the perspective of the code. Therefore, the car’s SW and GUI
are developed simultaneously in one project because they share a lot of
code. The only difference is in their main functions. Nevertheless, JVM
gives an advantage of remote debugging, and it takes care of memory
management (memory leaks).

2. Native support of graphics. It makes creating graphical user interface
easy because it does not need any third-party framework.

3. Java is a high-level language with a huge community and a lot of libraries.

B 34 Raspberry Pi Slotcar Application

The main purpose of this software is to run a distance controller and commu-
nicate with other cars and GUI. Generally, the distance controller receives

19

3. Software

Car
(Pi Car)

Callbacks| | Car List |—\
Y/- State executor|

’ Communicator ‘) ﬂCar Image|(
v v N

’ Communication Manager ‘ ’ Pi Measurement M Pi Contro‘l\b—{ Controllers

v 4 /

Wi-Fi communication manager \'STM module V/

| Callbacks | | Message queue | |Irnage of STM memory|

! v
dIiDP read| | UDP writib [SPI read/write
A) N

s

Figure 3.2: Simplified structure of the slotcar application.

the full state of the local and all other vehicles (obtained by the wireless
communication). Based on these data, it calculates the reference (desired)
speed for the speed controller in STM. Alternatively, it can directly set the
duty cycle of PWM applied to the motor.

B 3.4.1 Program description

The application is multi-threaded. The structure of the program is depicted
in Fig. 3.2,

Thread: Communication with STM. The STM output resp. input memory
are periodically (5ms) read out resp. written in all at once.

Thread: Wi-Fi communication. The communicator manager reads a UDP
socket. It calls all registered callbacks once it receives a message. It is also
responsible for sending messages. Each message to be send is stored in queue
from which the manager reads them and sends them.

Thread: Control. It runs a distance controller selected via GUI. The
controllers are loaded dynamically on every change of the selected controller
(more in Section 3.7)).

Thread: State executor. The main program behaves like a state-machine.
It has several states, where each state has it initial, running and end function.
These states also tells the user what the car is doing at the moment, for
example state ready says that car is doing nothing; waiting for commands. On
the other hand positioning says that car is running a positioning procedure.

20

3.4. Raspberry Pi Slotcar Application

B 3.4.2 Slotcar states

Positioning This procedure determines the position (index) of the car in
the platoon. We take advantage of having distance sensor depended on
the car on the other side. When the car in front of other car turns its rear
sensor off, the other car cannot measure the distance. The procedure is
as follows: the car who sees no one in front of it sends an echo to GUI
and turns off its rear sensor. This step repeats until all cars respond to
GUI Then GUI sends the list of positions to each car. The procedure
takes about ones of second.

Experiment This procedure starts communication between cars in which
they send its state. We have implemented two principles. (1) The First
is so called Token ring, where each car is waiting for its predecessor to
communicate (the first waits for the last). They also have a backup
timeout strategy when a message got lost. (2) The second principle is
using default random access policy, and each car sends the messages
with a constant period.

Following test showed that the second method is faster. Instead of
dealing with communication on user space level, it is easier and faster to
pass it to the driver.

RANDOM ACCESS

Period:

20.00 + 1.02 (5.00, 35.00) ms
time of sending:

0.37 + 1.85 (0.00, 21.00) ms

Regular: 0/4745

Timeout: 4745/4745

Cars communication time periods:

car2 = 23.2 + 13.6 (2.0, 151.0) ms
car3 = 22.6 + 13.3 (8.0, 56.0) ms
card = 22.6 + 12.8 (4.0, 50.0) ms
carb = 21.8 + 12.6 (3.0, 110.0) ms
TOKEN RING

Period:

36.7 £ 18.7 (1.0 , 114.0) ms
time of sending:

1.94 + 1.97 (0.00, 16.00) ms

Regular: 3216/3392

Timeout: 171/3392

Cars communication time periods:

car2 = 39.1 + 22.3 (23.0, 59.0) ms
car3 = 38.4 + 23.9 (23.0, 96.0) ms
car4d = 37.4 + 20.8 (3.0 , 76.0) ms
carb = 39.5 + 22.7 (3.0 , 127.0) ms

21

3. Software

Control Starts/stops executing the selected controller in each car.

Calibration Automatic calibration of distance sensors on each car. It means
that a car readjust the calibration constant c. There are two ways how
to do it. First, a user rearranges the cars the way that a certain distance
is between all of them. Then GUI sends the distance as a reference to
each car, so it can re-adjust its measurement. Second option is to use
the communication. The calibration is done only on every second car,
which takes the reference distance from its neighbors measurements.

It is important that two neighbors measure same distances, rear and
front, between them, for example for bidirectional control.

Logging Start/stops periodical car state logging. The logs are stored in
CSV format.

B 35 Graphical User Interface running on PC

| Slotear GUI - O ®

Parameters | Controller Experiment | Upgrade
| Com || .
| Calibration

slotcar. pi.controller. ControllerSpeed

IW [JReadonclick [rite changes || Read changes |

Figure 3.3: Screenshot of the GUIL On the left there is a list of connected cars.

The Graphical User Interface (GUI), as seen in serves as a tool for
maintaining the platoon. It allows us to select a controller, to set its pa-
rameters, to set the reference values for each car, to upload controllers to
cars, as well as to start and to stop the experiment. On the top of that,
the application allows us to upload the cars’ firmware (using SCP), to reset
and flash STM and a few more system operations. GUI is specified only for
purposes of a user. For a developer, it is more convenient to use SSH access
(more in chapter [3.4)).

GUI acts as a server, to where the clients (cars) connect. The car connects
to the server after the boot sequence or on a request from the server. After
the car connects, the GUI updates the list of all connected cars and shares this

22

3.6. Simulink Model

list with all cars. Then it asks the car for its settings—the control parameters
(type of controller, desired distance, controller parameters). The user can
modify the parameters and upload them back to a car.

B 3.5.1 Basic overview

GUI is divided into parts: (1) Control Buttons (left-top corner), under these
(2) the List of Cars follows. (3) Operation Tabs.

Control Buttons. With these buttons, we can change the state of application,
and initiate several actions. Start the positioning procedure on the platoon,
start the global inter-car periodical communication, do a calibration of distance
sensors, by manually setting cars to equal distances from each other and
then telling them what the distance is. As well as start car’s state logging,
start control (the distance controller is executed), reset the state to ready
(do nothing) and manual control (moving the car forward or backward by
pressing keyboard’s arrows up or down).

List of Cars. Provides not only information about the list of connected cars.
The list is sorted by position of cars in the platoon (the possitioning must be
executed in order to achieve correct positions) as well as the current state of
the application in the car, group %, and status of synchronization. Before you
change settings to certain cars, you need to select them in the list.

Tabs. We have several tabs, which are assigned a group of jobs. (1) Pa-
rameters tab, in which we have can set five basic parameters of the car and
the choice of the controller. The list of parameters is easily extensible by
new parameters, see Listing [3.1. Controllers are loaded the same way the
car loads it. The user generates a JAR file with controllers and adds it by
clicking the add button [, In order to read/write changes you need to click
read/write button. If there is an inconsistency in settings between dummy
and shadow car, the parameters background is red.

(2) Controller tab, where you can change settings (constants) of controllers.

(3) Experiment tab servers for very basic plotting state data of connected
cars. However, we stopped developing the functionality since MATLAB
provide much better plotting tools.

(4) Upgrade Tab. You go there typically when you need to make some
maintenance on the car. There are the most common actions that were
needed while development. If the action is not there you can always open
SSH tunnel. Provided functions are nothing else than just wrapped console
commands.

23

3. Software

CarParameter p = new CarParameter (

"Reference Speed", // Name of the parameter.
0.0f, // Default value.
—1.5f, // Min value.
1.5f, // Max value.
0.1f, // Minimal step between two values.
"0.0 m/s" // Displayed format.
)

{

@Override

public void setter (Carlmage car, float value) {
car.getCarControl (). setReferenceSpeed (value);

}

@Override
public float getter (Carlmage car) {
return car.getCarControl (). getReferenceSpeed ();
}
}s

Listing 3.1: Defining new parameter in GUI just by defining getter and setter.

. 3.6 Simulink Model

Along with GUI we also provide the Slotcar MATLAB Simulink library (see
Fig. |3.4). This library servers for plotting real-time cars’ states as well as
change reference signals, and for simulation of the platoon. The library is just
an extension of GUI, from which it takes data (obtained by communication).
In this section, we describe individual blocks of the library.

Platoon It is a thin client for GUI. The connection between GUI and the
library is duplex (uses UDP on the local network). It sets references and
reads states for each car. However, it cannot set the controller directly,
that is what the user must do in GUL

GUI is passively listening to the cars’ communication, from which it
takes the states of cars. The data are passed from GUI to Simulink
on request. Also, Simulink is sending reference signals to GUI which
passes them to cars. It does not start the communication of the cars
automatically.

CarModel Car Model, which represents the model of a single car. Please
take a look to Chapter |5/ which describes the model.

Vel.loop Velocity loop, which wraps the car model to a speed loop with a
speed controller.

CarDist The car distance block is a wrapper for the velocity loop block.
It allows us to make a platoon by interconnecting more of these blocks
together.

2All cars with the same setting belong to the same group
31t does not upload controllers to cars, you must do by the upgrade tab or by IDE

24

3.7. Slotcar Controllers

For real platoon For simulation
) vref X
) ble 1% :jl
ena
dF) dref v_des
dB . df
) otr pwm Sim. platoon dr
acc > d_ref >
gyro . X v_i-1Des speed
VIRC A xi X
N pwm vBEMF N 2 I
raw x_i+1 ce
platoon ,gEMmF d_front [p
iMotor ; DistanceController
) v uRail) desired_v d_rear >
uSC
iRef CarDist x
Nd pwmRef "
vRef v
. dRef vDp v des .
Y thw estimatedFriction Nde i i
bemf dc >
Plat
atoon CarModel Vel. loop

Figure 3.4: The Slotcar MATLAB Simulink library.

Sim. Platoon The block which simulates the platoon. The inside of the
platoon is automatically generated by script createPlatoon at compile
time. The block gets as inputs number of cars and the name of the
controller, which will be added to each car. The controller needs to be
implemented as a block with certain inputs/outputs. For more details,
we provide an example, from which everything will be clear.

DistanceController An interface of a distance controller used in Sim. Pla-
toon. An example is of a controller, as is used in this work, is implemented
inside; however, it can be re-implemented by breaking the link to the
library.

. 3.7 Slotcar Controllers

Our goal was to design the interface for making new controllers as easy
as possible. Therefore, we created a Java abstract class Controller from
which all new controllers inherit. This inheritance prescribe several methods,
which are self-describing. Hence, controllers are dynamically loaded to the
slotcar application in the run-time as plugins. Therefore, we do not need to
compile the whole application. In other words controllers can be developed
independently.

Being decoupled from the development of the main application, the control
designer is freed from the need to understand the complicated infrastructure.

25

3. Software

In fact, the code for the controller looks similar to a Matlab S-function, with
which many control engineers and students are familiar. A code snippet for a
simple controller is given in listing [3.2. All this gives an important advantage:
with the structure of basic controller fairly simple, even a person with little
programming experience can quickly implement his or her own controller.

Constructor. The constructor of Controller will ask you for period at which
the controller runs and the type of output. The types of output are following

STOP Just for internal purpose. The output is ignored and the car stays
still.

PWM Duty cycle of PWM, which is directly applied to motor.

SPEED Desired speed of controlled car, which is used as a reference for the
in-build STM speed controller, that controls the PWM duty cycle.

Step method. Once a controller is loaded and started, the step method is
periodically called. The step method need to be implemented carefully for
proper functionality. It has two arguments; last known state of local and of
all other cars (in case that communication is running).

Running precision. Since we are not using real-time OS, we also provide
some statistics of period stability for a simple PD controller.

Controller statistics: src.ControllerPD
Period: 30.00 + 0.86 (27.00, 33.00) ms
Ref period: 30 ms

Step time: 3.06 + 0.61 (2.00, 6.00) ms

Implementation tips. Catch Java exceptions and minimize usage of loops,
especially never use infinite loop. Careful implementation is necessary; the
application has no tools how to check your code.

26

3.7. Slotcar Controllers

@ClassInfo(label = "P controller with FF")
public class ControllerP_ FF extends Controller {

@FieldInfo(label="Controller P constant")
public float kp = 5f;

private final static long period = 301;

public ControllerP_FF () {
super (OutputType.SPEED, period);

@Override
public float step(Carlmagelnterface me, CarListInterface cars) {
float distRef = me.getReferenceDistance ();
float distMeas = me.getDistanceFront ();
float ctrEffort = kp*(distMeas — distRef);
float ldrSpeed = cars.getPos (0).getSpeed ();
float totalEffort = ctrEffort + ldrSpeed;
float desVel = Nonlinearities.sat(totalEffort , —1f, 1f);
return desVel;

}

@Override
public void init () {
// In this case, nothing needs to be initialized .

@Override
public void afterWritingConstants () {
// In this case, nothing needs to be renewed.

Listing 3.2: Example code of a simple proportional controller augmented with a
feedforward of the leader’s velocity.

27

28

Chapter 4
Beginning with the platform

This chapter should serve as a basic introduction for new people getting
familiar with the project. You are working with the Raspberry Pi Compute
Module (CM) and all information about the it could be found at the
raspberrypi.org't The most important item is the datasheet, where you can
find a table with I/O [} and other information. The website [stackoverflow!
is your best friend while solving a problem and you even do not need to
search for CM, just standard Raspberry Pi will do.

. 4.1 Clean installation

1. Donwload Raspbian Jessie Lite [

2. Flash CM [f| via CM development board, but do NOT boot just yet! It
would cause resize of file system, which we do not want.

3. Before first boot you need to edit /boot/cmdline.txt and remove "init=...".

4. Then boot the RPI and connect to it via Serial COM or just with
keyboard and monitor

5. log as root.
sudo -s

6. Follow the script slotcar-fs.git/car-fs/boot/slotcar-install.sh. Please run
the script line-by-line it is not yet automatized. Running it all at once
may cause errors.

7. Change logical address of the car (it will change both the logical and the
IP address.)

1|https ://www.raspberrypi.org/documentat ion/hardware/computemodule/l
Please note, that GPIO corresponds with BCM as used here https://pinout.xyz/}
where alternative functions are also shown. All pins are the same as in the standard version
of Raspberry Pi, but CM have a lot of extra pins.
3https://www.raspberrypi.org/downloads/raspbian/|
https://www.raspberrypi.org/documentation/hardware/computemodule/
|cm-emmc-flashing.md|

4

29

www.raspberrypi.org
www.raspberrypi.org
stackoverflow.com
stackoverflow.com
https://www.raspberrypi.org/documentation/hardware/computemodule/
https://pinout.xyz/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/hardware/computemodule/cm-emmc-flashing.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cm-emmc-flashing.md

4. Beginning with the platform

addr {address}

8. Reboot.

Final tip: Do not repeat this for every car. Just prepare one image and the
same way as you write into the memory you can read-out the image from the
memory and write it to other cars. This guarantees that all cars will be the
same.

B a2 Connecting to WiFi

Connect to the Wi-Fi in ad-hoc mode might be a problem since not every
card supports it. Therefore you must be sure that you have the right card in
your PC.

Linux. Connection to ad-hoc network on Linux is quite straight forward,
while using a network manager. You will not notice a difference.

Windows. Windows might make the situation complicated, because for
some reason they do not like them. This guide assumes that you use windows
7 or newer.

First , you need to find out whether your card supports the ad-hoc mode
or not. You can do that running following command in command line.

netsh wlan show wirelesscapabilities

If your card has the support, the result includes following statement.
IBSS : Supported

Then you can search for the car-control network.

netsh wlan show networks

If the network exists you must add the network profile by following these
steps:

1. Go to "Network and Sharing Center"

2. Click "Set up a new connection or network"

3. Double click "Manually connect to a wireless network"

4. Enter "car-control" (ssid) into the "Network name" field

5. Configure security settings as none.

6. Uncheck "Start this connection automatically” (important)

7. Click "Next", then "Close"

30

4.3. Connecting to CM

Then we need to set that the network is ad-hoc.
For Windows 10 we must do

netsh wlan set profileparameter car-control ~
connectiontype=ibss ~
connectionmode=manual

Otherwise

netsh wlan set profileparameter car-control connectiontype=ibss
Now we will connect to the network by

netsh wlan connect car-control

If you have more interfaces in your PC, then you must also specify the
interface in the commands.

B a3 Connecting to CM

If you use CM development board, you can connect with a keyboard and
a monitor. Or you can use serial COM, which is present on GPIO14 and
GPIO15. You need to use a UART-USB converter. These pins are also
present on our slotcar TOP board.

Once you have flashed the CM you and you installed slotcar-fs.git. The
CM will create or connect to the car-control Wi-Fi network. You can connect
to it (see section 4.2) and use SSH.

Cars are accessible via SSH; log in by root is allowed with password root [,

Or you can also use ssh-key for connecting directly as root.

private key: ./slotcar-fs/car-fs/root/.ssh/slotcar_id_rsa
public key: ./slotcar-fs/car-fs/root/.ssh/slotcar_id_rsa.pub
putty key: ./slotcar-fs/car-fs/root/.ssh/slotcar_id_rsa.ppk

For file exchange, you should use SCP and programs like WinSCP.

B 2.4 Eclipse IDE

We chose Eclipse IDE as a primary development tool in which we develop
software and firmware. The IDE has an advantage of plugins. For example
CDT (for C development), Git, Maven, Ant scripts (XML), and GNU ARM
Eclipse °, which we all use.

You also need to install JDK (version 1.8, or newer) and GNU ARM tools
embedded |*| for cross compilation, in case you want to program STM.

5If you change it, you also have to change it in GUI, and in the Eclipse’s Ant scripts.
However, we do not need to care about security; the cars are not connected to the Internet
most of the time.

Shttp://gnuarmeclipse.github.io/

"Please follow their installation steps on |https://launchpad.net/gcc-arm-embedded.

31

http://gnuarmeclipse.github.io/
https://launchpad.net/gcc-arm-embedded

4. Beginning with the platform

We use Maven for library management and for building the JAR for RPI
(We provide eclipse launcher SlotcarPi.launch, that automatize the build
procedure).

We use Ant script with JSCHP| for deploying the binaries to RPI: each
project has one: (1) jar2car uploads JAR to RPI and restarts the application,
(2) ctrl2car uploads controllers to RPI and (3) bin2car which uploads BIN
to RPI and flash STM. The list of cars is specified within each script, where
you need to edit it. Each script is simple and commented in detail for quick
understanding.

Project settings for Eclipse are also distributed via Git. All you need to do
is import

File -> Import -> General -> Existing Projects into Workspace

For slotcar-ctris, it is important to have up-to-date libraries, which are
generated from slotcar-sw by script CreateControllerLib

B a5 Flashing STM

B 45.1 On Windows by a STM32 DISCOVERY BOARD

1. Install STM32 ST-LINK Utility, which also installs the driver for the
discovery board.

2. Connect discovery board by SWD connector to the car. You must use
prepared cable or make it by yourself there is a specific connector. You
must connect STM SWD to discovery SWD connector. See Discovery
manual for pins information. Then search slotcar-hw for the same pins
and connect them.

3. Jumpers on ST-LINK must be on.

4. Put another jumper on slotcar as in setup to prevent STM falling to
boot mode.

5. Connect to STM via ST-LINK.
6. Set Option Bytes, disable flash protection for all sectors.

7. Load .bin file.

B 452 From CM

1. Install WiringPi.

8 To add JSCH to Eclipse, you need to download it from http://www.jcraft.com/jsch/
and Window -> Preferences -> Ant -> Runtime -> Classpath -> Ant Home Entries ->
Add External JARs...

32

http://www.jcraft.com/jsch/

4.6. Linux command line commands

2. Connect STM to CM via SPI when using IO board. On car’s board it is
connected already.

3. Copy bootloader stm32boot to RPi (You can find it in slotcar-fs.git/car-
fs/slotcar/stm32boot).

4. Run "/slotcar/stm32boot -p path to_bin.bin 0x08000000".

. 4.6 Linux command line commands

Slotcar. First script is used for maintaining the car. the help of the script
is self explaining.

/bin/bash /slotcar/slotcar.sh

Usage: /slotcar/slotcar.sh {COMMAND} argl arg2 ...

COMMANDS :
mro Makes / and /boot read-only.
mrw Makes / and /boot read-write.
start Starts the slotcar application.
stop Stops the slotcar application.
status Shows status of the slotcar application.
log Shows the log of the slotcar application.
addr Returns (and sets if {argl} is set) the address of the slotcar.
{argl} must be a number.
upgrade Upgrades slotcar’s file-system from Git.

stm Subscript for maintaining the STM.
For more information write ’stm help’.
ntp Sets ntp server.

{argl} is the IP address of the server.
help Shows this message.

STM. Another script is a subscript of the previous one. This script particu-
larly controls STM only. Again we show its call and help.

/bin/bash /slotcar/slotcar.sh stm

Usage: stm {COMMAND}

COMMANDS :
program, p Program STM flash.
Source file is "/slotcar/slotcar_stm.bin".

start Starts STM program.
stop Stops STM program.
restart Restarts STM program.
help, h Display this message.

33

4. Beginning with the platform

Standalone STM loader. As was mentioned, we created a STM loader
which a standalone application.

/slotcar/stm32boot -p /slotcar/slotcar_stm.bin 0x08000000

Bash aliases. The most used commands has been added into aliases (see
listing |4.1)).

Listing 4.1: Bash Command line aliases.

SLOTCAR_SH=’/bin/bash /slotcar/slotcar.sh’

alias
alias
alias
alias
alias
alias
alias
alias
alias
alias

1="/bin/1ls -al’
mro=’$SLOTCAR_SH mro’
mrw=’$SLOTCAR_SH mrw’
start=’>$SLOTCAR_SH start’
stop=’$SLOTCAR_SH stop’
restart=’$SLOTCAR_SH restart’
status=’$SLOTCAR_SH status’
log=’$SLOTCAR_SH log’
addr=’>$SLOTCAR_SH addr’
stm=>$SLOTCAR _SH stm’

34

Chapter 5
Model

The vehicle is modeled as a loaded brush-type permanent magnet DC motor
connected to the wheels through the gear train. The rotation of the wheels
produces a force that pushes the car. The force is proportional to the torque
of the wheels and also to the torque of the motor because we neglect slipping
of the wheels and we consider the gear train as ideal. The car alone is
represented by mass with weight m. The equations can be written down
almost immediately using the bond graph in Fig. [5.1

di(t) wu(t) R. k
do(t) k| Fy(v)
dt mm“z(t) m (5.2)
dz(t)
3 = v(t). (5.3)

The states are: the electrical current i flowing through the motor winding (in
A), the velocity v of the car (in ms™!), and the traveled distance = (in m).

RliR

|

Se:u—ALi——G: kAT n—AT:r—AL, —AI:m

L I

IllL R:Ff(’t})

Figure 5.1: Bond graph of the one-dimensional electromechanical dynamics of a
slot-car as a loaded permanent magnet DC motor with a permanent magnet.

The control input is the voltage u (in V). In reality, the input voltage
comes in the Pulse Width Modulated (PWM) signal of frequency 40 kHz with
the duty cycle D., where D, € [—1,1]. Hence u(t) = U, D(t) denotes just

35

5. Model

the low-frequency content, where U, |!| (in V) is the rail voltage lowered by
the input diode voltage (0.8V). The model has one significant non-linearity
and it is the static friction. The friction force

Fy(v(t)) = bav(t) + bgsign(v(t))

applied on the car has two parts static and dynamic, where coefficient by is
the dynamical (viscous) friction and bs is the static friction®. The relevant
physical parameters are in Table [5.1.

Physical parameter Symbol Value Unit
Resistance of the motor winding R 8 Q
Inductance of the motor winding L 2 mH
Torque constant k 0.006 NmA~!
Mass of the slot car m 0.15 kg
Dynamic friction coefficient bq 0.27 kgs~!
Static friction coeflicient b 053 N
Radius of the wheel r 0.01 m

Gear train ratio n 1/3

Table 5.1: Parameters for the vehicle model.

We implemented the full non-linear model in MATLAB Simulink, see
Fig|5.4] which is used for simulations. We can see in the figure|5.2|a comparison
of the simulation and the reality. The input for this test was the PWM duty
cycle from 0.1% to 0.5%. We can see that velocity and of course the back
EMF (from which the velocity is calculated) fit. Therefore the model of
non-linear friction is accurate. It needs to be noted, that it only works once
the wheels are rotating as you can also see from the figure. It turns out
that the model of static friction is more complicated when starting from zero
velocity, because on the way up 0.1% was not enough to move the wheels and
it was enough on the way down; it has a hysteresis.

. 5.1 Linearization

Note that while the linear model turns out nearly perfect for most aspects
here, it fails badly when describing the friction phenomenon. Here the friction
comes from three sources—friction induced by the angular motion of the
rotor shaft, friction in the slot, and the rolling friction. It is well known
that the rolling friction does not depend on the velocity but only depends

!The input (rail) voltage is not stabilized, therefore it can vary along the track because
of changes in electrical resistance, although not much. It is good to make a dummy ride
before running a comparison experiment just to find out how the voltage varies and then
put the mean into the model.

2The model of friction is simplified; it is not correct for velocities around zero. For a
better estimation of the friction, the Karnopp model should be used.

36

5.1. Linearization

N

Velocity (m/s)
N

o

El current(A)

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Back EMF(V)
o N & O

Figure 5.2: Car model: the reality compared to the simulation. In this case the
car is lifted and the wheels are rotating in the air. Therefore the coefficients are
different m = 0.01, bg = 0.01, bs = 0.09.

on the normal force (here it is not only the weight but also the attractive
force of magnets that push the slot car against the track). Introducing some
nonlinearity into the model seems inevitable. But temporarily, the linear
model of a friction is used to get a transfer function as rough models of the
overall dynamics.

The electric current dynamics is very fast compared to the mechanlcal
dynamics of the velocity, so we can neglect it by setting d(t) = 0in .

Separating i(¢) and plugging it to (5.2), we get

do(t) Uk b k2

A~ Rt~ 500 g, (5.4)
dz(t)
a @ (5.5)
Transfer functions from the input voltage are
v(s) RkUr
G S) = mnnr , 56
W76 - 5+ + T (56)
z(s) 1
H(s) = — ‘ ‘

37

5. Model

@ 3 T T T T T T T
g/ 2+ s €] ||
B>y = = sim
-
F 1L i
=
=0 '
4 18 20
Time (s)
2 1 T T T T T T T
z
5]
£ 05
=
(]
H o
4 6 8 10 12 14 16 18 20
Time (s)
=4 .
=
A
Q
)
M 0 .
4 6 8 10 12 14 16 18 20
Time (s)
Figure 5.3: Car model: the reality compared to the simulation.
After plugging in the values of the parameters,
3.2
G(s) = ———. 5.8
()= 93511 (58)

In combination with a dead-zone on input, which represents the static
friction, is the linear model good approximation of reality. The dead-zone is
set to range [—0.30,0.30]% of PWM duty cycle, which is needed to overcome

the static friction.

38

5.1. Linearization

Friction
Sign
——
PWM v
T
uty cycle
dc yey ‘
Power source
PWM
Motor Ang to tan
Car's mass
* 1 | orce 1 1
>kt P 1/r/n L e - H 1
= L.s+R r| Toque' s s
X
Motor dyn. Speed | Distance
| ghess 1. S
BEMF ke |‘ 1/r/n |‘ - 2
%

bemf

Figure 5.4: The Simulink model of the car. In the case of the car k., = ki = k.

39

40

Chapter 0

Control

We separate the control problem into (1) control of the velocity of the car and
(2) control of the inter-vehicle distances. They are connected in the cascade
structure, where the velocity control loop is the inner one and the distance
control loop is the outer one, as seen in Figl1.3|

B 61 Velocity control

The velocity measurement and the control loop is implemented in STM. The
velocity controller is a standard discrete PI controller with following structure

Tsv
z—1

CV(Z) = kp,v + ki,v , (6.1)
where k, , = 2, ki y = 10 and sampling period 75, = 0.005s. The controller
implements an anti-windup in a form of clamping [—1, 1]. The input control
eITor €, = Upef — U , Wwhere vyt is reference velocity. The control effort is
the PWM duty cycle D.. The comparison of the simulation and the real
implementation, Fig. shows a good agreement in both, the velocity and
the control effort.
For continuous analysis, we use the transfer function

25+ 10
Cy(s) = P

The bode diagram of the velocity loop is in Fig.

. 6.2 Distance control

The platform aims for being able to run many forms of controllers. Therefore,
we provide all kind of measurements (see Chap. , that can be used. The
full states of the cars are also communicated among each other. We expect
that especially the communication is the key factor for a successful controller.
In this section, we provide some examples of standard controllers and some
extended controller by communication. In all experiments, the leader is
tracking user-defined velocity profile.

41

6. Control

B 6.2.1 Bidirectional control

This experiment is a revision of an experiment, that was done previously
done in . We briefly describe the situation. We use a simple bidirectional
control law, which accepts a single input—the weighted regulation error as in

e = (dj — d*) + e(diy1 — d™), (6.2)

where d; = z;_1 — x; is the distance to the ahead, d;11 = x; — x;41 is the
distance to the car behind, d™f is the reference distance the cars should keep
among each other, and ¢ is a constant of asymmetry. This constant weighs
the contribution of the rear spacing error. When € = 0, the controller only
uses the distance to the car ahead (the so-called predecessor following), when
€ = 1, the car weighs the rear spacing error with the same weight as the front
error (so called symmetric bidirectional control).

Bode Diagram

-10F

Magnitude (dB)

-30 .
10t 10° 10t 102
Frequency (Hz)

Figure 6.1: The bode diagram of the velocity control loop.

N

—T00,]
= = sim

Velocity (m/s)

o

S
=
©
=,
&)
2
=
A
0 2 4 6 8 10 12
Time (s)

Figure 6.2: Comparison of speed controller in reality and in simulation. The
PWM is the control effort.

42

6.2. Distance control

Velocities of cars Front distances of cars

— 0.6 0.4
= B
g £ 04 =
- . o] L ¢
< Z 02 A Y e
o +
g9 2
ns 0 A
2 4 6 8 2 4 6 8
Leader Cart Car2 Car3 |
— 0.6 0.4 T

Distance (m)
?]

Experiment

Velocity (m/s
o o
(SRS

o

o

Time (s) Time (s)

Figure 6.3: Example of predecessor following (e = 0) with PI controller (k, = 3,
ki = 0.8, and Ty = 0.03). Cars are tracking the reference distance dref = 0.15m.
The experiment expose higher over-shoot than simulation, because the platoon
starts from zero velocity and the model neglects the Stribeck effect of the
mechanical friction.

In first experiment we wanted to track the reference distance. When leader
moves with constant velocity, the d; is a ramp signal-In order to track a ramp
signal double integrator in open-loop is needed. One integrator is already a
part of the system from v to z and we added one integrator in controller. We
selected a discrete PI controller
C2) = ky + k—2 (6.3)
z—1
where k, resp. k; is proportional resp. integral constant. The example
of symmetric bidirectional control is depicted in Fig. and predecessor
following in Fig. Which again proves the good agreement between the
model and the reality (our platform). However, having another integrator in
the open open loop means slow and oscillatory transient.

In the second experiment, we only required tracking of the leader’s velocity
and the steady-state distance error could be nonzero. Therefore, we needed
only one integrator in open-loop (one integrator is already a part of the system).
An instance of such a controller is the following filtered PD controller

N

Ca(z) = kp + kdm7 (6.4)
z—1

where ky resp. kq is proportional resp. derivative constant, N is filter
coefficient. In our experiments, we use the PD controller with parameters
kp =5, kq = 0.2, N =50, and T = 0.03. The example using PD controller is

depicted in Fig.

43

6. Control

Velocities of cars

Front distances of cars

—~ 0.6 0.4
{ ~~
5§ £ 04} =
)
T > 02t
=g 02 ki
g9 7
@ O . _ 1= | |
0 5 10 0 5 10
Leader Car Car2 Car3 |
~
g é 0.4 ¢} % ‘/\
Z 2o = 02k \
IS 5 vy
% 2 A “\,
= ‘
ms 0 . . e . .
0 5 10 0 5 10
Time (s) Time (s)

Figure 6.4: An example of symmetric bidirectional control (¢ = 1) with PI
controller, where k, = 2, k; = 2, Ty = 0.03.

The steady-state error was able to achieve by using the wireless commu-
nication, where leader send its velocity vg(t) to all the cars. The vy(t) was
added as a feed-forward signal to the desired velocity produces by the distance
controller. The control law for the ith car becomes

W (1) = vo(t) + ri(D), (6.5)
where r; is the output of the distance controller (6.4). We can see, that
unlike the controller without communication (Fig. the same controller
with augmented with communication (Fig. is able to track the reference
distance.

B 6.2.2 Cooperative adaptive cruise control

This example is similar to cooperative adaptive cruise control (CACC) as
presented in . The structure, Fig. shows that we augment our control
loop with standard PD controller, as was previously used in predecessor
following, with time-headway and the target speed v™! (obtained by wireless
communication) of the predecessor. The preceding car-following policy has
following structure

P(s) =hs+1, (6.6)

where h is time-headway. The result of such control can be seen in Fig 6.8
Additionally, forwarding the target speed of the leader v™f0 was tested; see

In these cases of CACC experiments, we can see, that the advantage of com-
munication is in fast reaction time and, although not clearly shown, it allows
tracking the target distance, which is where a standard PD fails. Moreover,

44

6.2. Distance control

Velocities of cars Front distances of cars
—~ 0.6 0.3
wn Y
X g
o — i 0.25}
o= <
E % 0.2 z 92 '
n > A
. . 0.15 . .
3 3.5 4 4.5 3 3.5 4 4.5
Leader Cart Car2 Car3 |
— 06 03
83 3
~— 2 L
e = i
g 3 % 02 = '
5 E 0.2 5
: : 0.15 : :
3 3.5 4 4.5 3 3.5 4 4.5
Time (s) Time (s)

Figure 6.5: An example of predecessor following (¢ = 0) with PD controller.
We can see, that the controller alone is not able to track the desired distance

dres = 0.15m.

forwarding the target speed of leader gives almost immediate response of other
cars. Whereas in predecessor forwarding, it takes some time to propagate
the change in target velocity of the leader. The simulations exposes, that
forwarding the target speed of the predecessor gives no overshoot unlike
forwarding target speed of the leader; however, not proved by experiments.

45

6.

Control

Front distances of cars

Velocities of cars

— 02
g 506 £
2 ° J\
q 204} = 0.15 -~
=3 3
g % 0.2} 5
n= g 0.1 :
4 5 6 7 8
Cart Car2 Car3 |
- —_ 02
g S o6})
~ 0]
= 204 = 0.15 ,,,q.ﬂ EW-
Qg : 3
&< 02t 2
~ A
M > 0 l 0.1 l l l
4 5 6 7 8 4 5 6 7 8
Time (s) Time (s)

Figure 6.6: An example of symmetric bidirectional control (¢ = 1) with PD
controller extend with the feed-forward from the speed of the leader vy, because
of which the cars are able to track the reference distance d*f = 0.15m.

. From predecessor
v S11CCELLOT
i—1 D(s) To_successor _y,

Preceding car-following policy

Figure 6.7: The structure of CACC. Distance controller Cy extended with
feed-forwarded information of predecessor by using wireless communication.

46

Velocities of cars

6.2. Distance control

Front distances of cars

—~ 0.8 0.2
= B
g
2 Z 06 - —
-y = 0.15
g g o4} 55
omi O Q
n > 0.2] i i 0.1]]]
4 4.5 5 5.5 6 4 4.5 5 5.5 6
Leader Car1 Car2 Car3 |
- g
g Y = %‘“ﬁ
B ey = 015§ -
e A
B> 0.2]]] 0.1]]]
4 4.5 5 5.5 6 4 4.5 5 5.5 6
Time (s) Time (s)
Figure 6.8: An example of CACC; the target speed of the predecessor
as the feed-forward. the Tracking distance d"f = 0.15m and time-headway
h = 0.03.
Velocities of cars Front distances of cars
—~ 0.8 T T T 0.2 T T T
2 = B
2 0s O EY——
& 2 S 015} 1
g g o4} g
omi O Q
n > 0.2] i i 0.1]]]
4 4.5 5 5.5 6 4 4.5 5 5.5 6
Leader Car1 Car2 Car3 Car4
- 0.8 o2
~
g E os} ‘i’ pa—— ===
E 2 % 0.15
&‘ 'io‘) 0-4 i :‘z
e A
K= 0.2 : 0.1 : : :
4 4.5 5 5.5 6 4 4.5 5 5.5 6

Time (s)

Figure 6.9: An example of CACC; the target speed of the leader as the
feed-forward. Tracking distance d** = 0.15m and time-headway h = 0.03.

Shows immediate response in velocity.

47

48

Chapter 7

Conclusion

This thesis describes the progress of work done on the continuously-evolving
experimental slotcar platform. My goal was to develop the software and
the firmware parts of the platform and to implement some controllers and
evaluate them in experiments. The platform, as it is designed today, is fairly
user-friendly. A user just needs to implement the controller interface and does
not need to understand the very platform details. The inputs of interface are
state of the car running a controller and states of other cars (obtained by
the communication). The state includes every quantity for which we have
a sensor or which is calculated somehow else. However, It is necessary to
mention that operator still needs to be familiar with the platform when doing
maintenance. It should be covered within this work. The description here
should also serve as a manual for new contributors, as well as for users as an
overview of capabilities.

The experiment evaluations showed that the platform is ready for control
algorithms based on wireless communication. It was also shown that the
communication, as it was expected, improves the transient response of the
platoon. As seen in an example, when PD controller is extended by the target
velocity of the predecessor, the response of the car is faster and can track
the reference inter-vehicle distance. However, the communication interface
itself needs to be inspected more closely, and more precise statistics need to
be made. The results showed a positive agreement between simulation and
the real data. Therefore, it fulfills the essence of a platform, and it is able to
verify theoretical findings in practice. Of course, there are some limitations
in a way that the simulation is ideal and does not include turnings, a noise of
the sensors, and other disturbances.

There is still some room for improvement and some tasks to be done. To
get the platform closer to perfection, some breakthrough decisions must be
made. Our communication interface should be replaced by something more
standard such as ZeroMQ. Service messages are now hard coded into the
communication interface this should be replaced by JSON to make it more
flexible. Next, there is a possibility of using the electric current (measured on
the motor) to improve velocity estimation or to compensate the mechanical
friction. The measurement of current must be improved; It is heavily filtered
in order to get reasonable values; a lot of noise is present. The source of the

49

7. Conclusion

noise was not found. There is also a possibility of using other measurements
for instance acceleration and rotation to get a better estimation of velocity. In
future, IRC sensor should be removed because of the mechanical construction
and complicated maintenance. After all, it does not provide excellent precision.
Its only advantage is the simplicity of the measurement. Therefore, it can be
taken as a reference of a steady velocity value. For having the cars even closer
to the model, it is needed to add a stabilization of rail voltage to each car.
As cars are moving along the rail, the resistance of the track and therefore
the voltage slightly varies; however, it is noticeable in the simulation. These
are just tips how to make the platform better; not failures.

The only serious mistake is that the bottom board contains an error in the
design. This error causes an occasional burn out of the board. It is rare; yet
several boards were destroyed, and the reason is still not clear. It is probably
connected with the power supply chain.

As a final conclusion the platform works well as you can see on videos
at [6].

50

Bibliography

[1] P. Barooah and J. P. Hespanha. “Error Amplification and Disturbance
Propagation in Vehicle Strings with Decentralized Linear Control”. In:
Proceedings of the 44th IEEE Conference on Decision and Control. Dec.
2005, pp. 4964-4969. DOI: [10.1109/CDC.2005.1582948.

[2] Fairchild Semiconductor. QRE1113, QRE1113GR Minature Reflective
Object Sensor. 2011. URL: http://cdn.sparkfun.com/datasheets/
|[Sensors/Proximity/QRE1113.pdf|

[3] Inc. Freescale Semiconductor. Xtrinsic MAG3110 Three-Axis, Digital
Magnetometer. 2013. URL: http://www.nxp.com/assets/documents/|
|data/en/data-sheets/MAG3110.pdfl

[4] Martin Lad. “Design and implementation of a control system for a slot
car”. Bachelor thesis. Czech Technical University in Prague, 2014. URL:
https://support.dce.felk.cvut.cz/mediawiki/index.php/Bp_|
414 _enl

[6] Martin Lad, Ivo Herman, and Zdenék Hurdk. “Vehicular platooning
experiments using autonomous slot cars”. In: Toulouse, France, July
2017. URL: http://aadcc.dce.fel.cvut.cz/content/vehicular-
[platooning-experiments-using-autonomous-slot-cars,

[6] Martin Lad and Zdenék Hurdk. Slotcars for vehicular platooning. 2017.
URL: https://hackaday.io/project/19087-slotcars-for-vehicular-

[7] Dan Martinec. “Distributed control of platoons of racing slot cars”.

MA thesis. Czech Technical University in Prague, 2012. URL:
|/ /support.dce.felk.cvut.cz/mediawiki/index.php/Dp_480_en.

[8] V. Milanés et al. “Cooperative Adaptive Cruise Control in Real Traffic
Situations”. In: IEEE Transactions on Intelligent Transportation Sys-
tems 15.1 (Mar. 2014), pp. 296-305. 1SSN: 1524-9050. DOLI:
TITS.2013.2278494

[9] G. J. L. Naus et al. “String-Stable CACC Design and Experimental
Validation: A Frequency-Domain Approach”. In: IEEE Transactions on

Vehicular Technology 59.9 (Nov. 2010), pp. 4268-4279. 1SsN: 0018-9545.
DOI: [10.1109/TVT.2010.2076320.

o1

https://doi.org/10.1109/CDC.2005.1582948
http://cdn.sparkfun.com/datasheets/Sensors/Proximity/QRE1113.pdf
http://cdn.sparkfun.com/datasheets/Sensors/Proximity/QRE1113.pdf
http://www.nxp.com/assets/documents/data/en/data-sheets/MAG3110.pdf
http://www.nxp.com/assets/documents/data/en/data-sheets/MAG3110.pdf
https://support.dce.felk.cvut.cz/mediawiki/index.php/Bp_414_en
https://support.dce.felk.cvut.cz/mediawiki/index.php/Bp_414_en
http://aa4cc.dce.fel.cvut.cz/content/vehicular-platooning-experiments-using-autonomous-slot-cars
http://aa4cc.dce.fel.cvut.cz/content/vehicular-platooning-experiments-using-autonomous-slot-cars
https://hackaday.io/project/19087-slotcars-for-vehicular-platooning
https://hackaday.io/project/19087-slotcars-for-vehicular-platooning
https://support.dce.felk.cvut.cz/mediawiki/index.php/Dp_480_en
https://support.dce.felk.cvut.cz/mediawiki/index.php/Dp_480_en
https://doi.org/10.1109/TITS.2013.2278494
https://doi.org/10.1109/TITS.2013.2278494
https://doi.org/10.1109/TVT.2010.2076320

Bibliography

[10] P. Seiler, A. Pant, and K. Hedrick. “Disturbance propagation in vehicle
strings”. In: IEEE Transactions on Automatic Control 49.10 (Oct. 2004),
pp. 1835-1842. 188N: 0018-9286. DOI: [10. 1109/TAC. 2004 . 835586,

[11] STMicroelectronics. LSM330DLC, iNEMO inertial module: 3D ac-
celerometer and 3D gyroscope. 2012. URL: http://www.st.com/en/
mems-and-sensors/1sm330d1lc.htmll

[12] STMicroelectronics. STM32F401RB. 2017. URL: http://www.st.com/
|content/st_com/en/products/microcontrollers/stm32-32-bit~
larm-cortex-mcus/stm32f4-series/stm32f401/stm32f401rb.html|

[13] Andras Tantos. H-Bridge Secrets. 2011. URL: http://www.modularcircuits.
|com/blog/articles/h-bridge-secrets/|

[14] Texas Instruments. DRV8S16 DMOS Dual 1/2-H-Bridge Motor Drivers.
2013. URL: http://www.ti.com/1it/ds/symlink/drv8816.pdf|

52

https://doi.org/10.1109/TAC.2004.835586
http://www.st.com/en/mems-and-sensors/lsm330dlc.html
http://www.st.com/en/mems-and-sensors/lsm330dlc.html
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f4-series/stm32f401/stm32f401rb.html
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f4-series/stm32f401/stm32f401rb.html
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f4-series/stm32f401/stm32f401rb.html
http://www.modularcircuits.com/blog/articles/h-bridge-secrets/
http://www.modularcircuits.com/blog/articles/h-bridge-secrets/
http://www.ti.com/lit/ds/symlink/drv8816.pdf

Appendix A

The contents of the enclosed CD

The CD includes:
® Text of this thesis in pdf format.

® All git repositories as they were listed in Chapter

53

	Introduction
	The thesis in context of history of the project
	Content

	Hardware
	Motor driver and back-EMF measurement
	Velocity measurement
	IRC
	Velocity from Back-EMF

	Distance measurement
	Super capacitor
	Accelerometer, gyroscope and magnetometer

	Software
	Slotcar File System
	The STM Firmware
	Behaviour description
	I2c sensors
	Communication SPI interface

	Why JAVA?
	Raspberry Pi Slotcar Application
	Program description
	Slotcar states

	Graphical User Interface running on PC
	Basic overview

	Simulink Model
	Slotcar Controllers

	Beginning with the platform
	Clean installation
	Connecting to WiFi
	Connecting to CM
	Eclipse IDE
	Flashing STM
	On Windows by a STM32 DISCOVERY BOARD
	From CM

	Linux command line commands

	Model
	Linearization

	Control
	Velocity control
	Distance control
	Bidirectional control
	Cooperative adaptive cruise control

	Conclusion
	Bibliography
	The contents of the enclosed CD

