CENTER FOR
MACHINE PERCEPTION

CZECH TECHNICAL
UNIVERSITY IN PRAGUE

0,
D)
LL]
1
—
ad
LL]
—
0p)
<T
=

LIDAR Based Sequential
Registration and Mapping for
Autonomous Vehicles
Tomas Sixta

sixta.tomas@gmail.com

May 26, 2017

Thesis Advisor: Ing. Martin Matousek, Ph.D.

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University
Technicka 2, 166 27 Prague 6, Czech Republic
fax +420 22435 7385, phone +420 22435 7637, www: http://cmp.felk.cvut.cz

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. TomaS Sixta
Study programme: Open Informatics
Specialisation: Computer Vision and Image Processing

Title of Diploma Thesis: LiDAR Based Sequential Registration and Mapping
for Autonomous Vehicles

Guidelines:

The goal of this project is to develop and test a model that represents a possibly large
amount of LIDAR (Light Detection and Ranging) data from a moving vehicle and uses the
aggregated representation for a robust estimation of vehicle egomotion in the presence
of normal street traffic via a 6D geometric registration between the aggregated model and
a new data frame.

1. Propose a representation of 3D scene suitable for aggregation of LIDAR data - the map.
2. Develop an algorithm for robust registration of LIDAR measurements with the map.

3. Use the registration for ego-motion estimation of vehicle equipped with multiple LiDARs.
4. Develop an algorithm for updating the map with new (registered) measurements.

5. Test the methods on a real dataset from test drive.

Bibliography/Sources:

[1] Hartley, R. and Zisserman, A.: Multiple View Geometry. Cambridge University Press,
2nd ed., 2003.

[2] Thrun, S. and Biicken, A.: Integrating grid-based and topological maps for mobile robot
navigation. Proceedings of the Thirteenth National Conference on Atrtificial Intelligence.
944-950, 1996.

[3] Aulinas, J.: The SLAM Problem: A Survey. Proceedings of the 2008 Conference on
Artificial Intelligence Research and Development. 363-371, 2008.

Diploma Thesis Supervisor: Ing. Martin MatouSek, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

L.S.

prof. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, December 22, 2016

Author’s declaration

I hereby declare that I have completed this thesis independently and that I have listed all
used information sources in accordance with the Methodical guidelines on maintaining
ethical principles during the preparation of university theses.

Prague, day ...
Signature

Acknowledgements

I would like to thank to Martin Matousek for his guidance and mentoring, without
which this thesis could not be completed, and to UP-Drive project for providing the
datasets.

vii

Abstract

In this thesis, we investigate the problem of registering LIDAR point clouds to a com-
mon representation of a scene. This is necessary for autonomous vehicle navigation. A
representation of a 3D scene suitable for aggregation of LIDAR data is proposed, based
on discrete probability density distribution of points in space. An online algorithm for
robust registration of point clouds is introduced and used for improving the accuracy
of egomotion. The method is tested on two LIDAR datasets from real test drives.

Abstrakt

V této préaci fesime problém spravné registrace mrakt bodu z LIDARu do spoleéné
reprezentace scény, coz je dulezité pro navigaci autonomnich vozidel. Pfichdzime s
novou reprezentaci 3D scény vhodnou pro agregovani dat z LIDARu, kterd je zalozena
na diskrétni distribuci pravdépodobnosti bodu v prostoru. Predstavujeme online algo-
ritmus pro robustni registraci mraku bodu za 1c¢elem zpfesnéni egomotion. Poté je tato
metoda otestovana na dvou datasetech z realnych jizd.

viii

Contents

1. Introduction 1
2. Related Work 2
2.1. Basic Approaches 2
2.2. Visual and LIDAR Odometry 2

3. LIDAR Point Cloud Registration 4
3.1. Algorithm Overview 4
3.2. The Map o e 4
3.2.1. Non-static Scene Detection)

3.3. Types of Point Displacement 5
3.3.1. Within a Single Point Cloud 6

3.3.2. Between Different Point Clouds 6

3.4. Transforming Data between Different Coordinate Systems 6
3.5. Data Collection and Preprocessing 6
3.6. Motion Compensation 8
3.7. Finding Ground Plane oL 9
3.7.1. Computing Heights of Points above Ground 9

3.7.2. Adjusting Plane from the Previous Point Cloud 10

3.7.3. Finding New Plane 10

3.8. Fitting Point Cloud into the Map 10
3.9. Optimization and Point Cloud Update 11
3.10. Adding New Point Cloud to the Map 12
3.10.1. Histogram Convolution 12

3.10.2. Registering Points into the Surrounding Cells 13

4. Experiments 14
4.1. Hardware and Environment 0L 14
4.2. Visualization and Datasets. L. 15
4.3. Experimental Protocol oo oL 16
4.4. Initial Values e 17
4.5. Motion Compensation 17
4.6. Ground Plane and Heights of Points 20
4.6.1. Alternative Approach, 21

4.7. Convergence of the Optimization Function 21
4.8. Histogram Convolution and Registering into the Surrounding Cells . . . 23
4.9. Overall Results 25

5. Summary 30
5.1. Future Work L 30
Bibliography 31
A. Implementation Pseudocode 33

X

1. Introduction

In the recent years, LIDARs have become a common part of experimental self-driving
cars, enabling them to create a 3D map of the environment and supporting their means
of navigation. To perform these tasks, a huge amount of points that LIDARs record
must be correctly registered during a drive. Accurate egomotion data is necessary for
the correct registration, but for various reasons sensors providing the needed level of
accuracy might not be available. It is then necessary to use a special algorithm that
improves or estimates the egomotion, which in turn ensures the correct registration of
new points.

Typically, a car is moving and new point clouds are being recorded. These point
clouds are used for localizing the car and improving the egomotion. After that, they
are registered into the scene representation. This process, known as the simultaneous
localization and mapping (SLAM), is essential for 3D reconstruction of the environment
and for autonomous cars to be able to navigate in it.

Figure 1.1. Example of a LIDAR point cloud (around 100 000 points) from a typical street

2. Related Work

2.1. Basic Approaches

One of the basic techniques for matching point clouds is ICP (Iterative Closest Point).
This method tries to minimize the distance between two point clouds by estimating rel-
ative translation and rotation. Unfortunately, ICP-based methods encounter problems
when the motion of the car is relatively high compared to the LIDAR scan rate. This
problem is called motion distortion and means that points in a given point cloud do
not necessarily correspond to the points in the consecutive point cloud. In that case it
is meaningless to use ICP and try to minimize their distances.

Some ICP-based methods exist — they can be used when the LIDAR is moving slowly
and motion distortion can be neglected, see for example [1]. Authors of [2, 3] try to
compensate for motion distortion by various approaches and use modified ICP.

2.2. Visual and LIDAR Odometry

If the motion distortion occurs, more sophisticated approach must be taken. Visual
odometry is one of the possibilities. It is based on using the input images to estimate
the motion of the camera. Typically, the image is pre-processed and feature points
are found, then these feature points are tracked across the images and motion flow is
estimated. Some examples of visual odometry are [4, 5, 6].

With the spread of LIDAR technology, visual odometry has been enhanced by us-
ing 3D point clouds. Data from both cameras and LIDARs are used to estimate the
egomotion, which improves the accuracy compared to purely visual odometry. Kalman
filter is a popular technique used for example in [7, 8].

Authors of [9] use Kinect sensor instead of LIDAR, because it assigns depth to each
image point. Feature points are detected in the image and 3D coordinates of those fea-
ture points are determined. They are then used for rotation and translation estimation
between consecutive images.

However, relying on data from cameras might be problematic when the light condi-
tions are worsened. That is why LIDAR-only approaches have been developed too.

In [12], authors rely on loop closure and matching of geometric structures to generate
a map of an underground mine. In [13], authors use two-layer approach. One algorithm
runs at high frequency, but with low fidelity and tries to estimate the velocity of the
LIDAR. The other algorithm runs at lower frequency, but is used for finer registration
of the point clouds. Feature points, such as those located on sharp edges or planar
surfaces, are extracted and matched.

2.2. Visual and LIDAR Odometry

Figure 2.1. Optical flow example; courtesy of Fridtjof Stein, Computation of Optical Flow
Using the Census Transform, 2004

Even though these state of the art methods have been successfully used, they come
with some drawbacks.

e [CP-based methods are virtually unusable for fast-moving cars because of the motion
distortion.

e Visual odometry is highly dependant on the light conditions — its performance sig-
nificantly decreases for example in the dark, during heavy rain or fog.

e Approaches using LIDAR are the most robust, but also considerably complex. Unless
a suitable scene representation is chosen, the memory requirements can be very high
if every point is stored.

We propose a new algorithm based on efficient scene representation. Probability of
each point cloud fitting into the scene representation is evaluated and this probability is
maximized. This yields the improved egomotion, which is used for correct registration
of the point cloud. Additionally, the scene representation naturally allows for easy
detection of non-static objects in the environment, which further helps with the car
navigation.

3. LIDAR Point Cloud Registration

3.1. Algorithm Overview

The proposed algorithm is based on the assumption that the point cloud that is to be
registered comes from several LIDARs. The positions and rotations of these LIDARs
with respect to the car coordinate system are known, the data they provide can be
merged together into a single point cloud. This point cloud is then processed and
registered.

The algorithm is being continuously given new data and processes them. Registering
a single point cloud is done by the following steps:

e Retrieve data from a single sensor

— Transform the data from the sensor coordinate system to the car coordinate
System

— Perform motion compensation

— Transform the data from the car coordinate system to the world coordinate
System

Merge data from four sensors together into a single point cloud
— Find the ground plane
— Compute height of each point from the ground

Find the point cloud transformation so that it can be registered into the scene with
the highest probability

— Use a robust optimization function to find the rotation and translation that
maximize the probability of the point cloud fitting into the scene

Apply the transformation

Add the transformed point cloud to the scene representation — the map

3.2. The Map

Storing every single point might appear as a straightforward solution, but it is impracti-
cal due to high memory and processing requirements, as several hundreds of thousands
of points are stored and processed every second. It actually isn’t necessary for the task
of improving or estimating the egomotion. Therefore an alternative scene representation
— the map — is used instead.

The XY plane is divided into a grid of square cells and each of these cells contains a
histogram of points’ heights, as illustrated in Figure 3.1. It is a discrete representation
of probability density function of points in space. With a properly chosen cell size
and histogram bin size, this leads to considerable memory savings while still providing
valuable information for egomotion estimation.

3.3. Types of Point Displacement

histogram

Figure 3.1. The map — example of representation of a scene with a tree

Preliminary experiments showed that if a point cloud is misplaced (registered with
incorrect egomotion), it will have a low probability of fitting into the map. That’s
caused by the fact that points in that point cloud will be registered into the wrong cells
and their respective heights into the wrong bins.

The probability of a point cloud fitting into the map can then be maximized in order
to obtain the optimal transformation. This transformation is then used to update the
egomotion and to transform the point cloud, then the point cloud is recorded into the
map.

3.2.1. Non-static Scene Detection

Another use of this method is the detection of non-static objects in the scene. The
idea behind the scene representation is based on whether each point belongs to its
place or not. After the optimal transformation is found, all the points that still have
a low probability can be marked as not belonging to the scene. This allows for simple
detection of changes and new obstacles without needing to interpret the visual data.

3.3. Types of Point Displacement

There are two types of point displacement that can occur. Each needs to be dealt with
by a different approach.

3. LIDAR Point Cloud Registration

3.3.1. Within a Single Point Cloud

The LIDAR captures points much faster than the egomotion system provides the lo-
cation data. While a unique timestamp is available for each point, the transformation
from the car coordinates to the world coordinates is not. When a point needs to be
transformed, it uses the last available transformation instead. Point displacement oc-
curs (Figure 3.2), because as the car is moving, the point is recorded at a different
position than the egomotion and thus is forced to use the incorrect transformation.

Because each point has a unique timestamp, the rotation matrix and the translation
vector can be interpolated. This process is called motion compensation (addressed in
Section 3.6) and it reduces this type of point displacement to a level where it is nearly
unnoticeable.

3.3.2. Between Different Point Clouds

Points in different point clouds representing the same object can be registered incor-
rectly at different positions. This happens when the egomotion is inaccurate, as illus-
trated in Figure 3.3. For example, if the egomotion is generated from a wheel-based
odometry, driving over a speed bump or breaking too fast can cause the car to tilt — this
can’t be detected by the odometry and can introduce a significant error to the point
cloud registration. Moreover, the wheel-based odometry suffers from error accumula-
tion.
This is more difficult to deal with and is the subject of this thesis.

3.4. Transforming Data between Different Coordinate Systems

In the context of this thesis, the point clouds after motion compensation are related
by rigid motion and thus transformed by rotation R and translation ¢. Because all the
point clouds are captured by sensors of the same type, there is no scale nor skew.

Transformation f : A — B of a point cloud from coordinate system A to coordinate
system B can be expressed by

Xp=Rag-Xa+ta, (3.1)

where X 4, Xp are points in their respective coordinate system, R4 is the rotation
matrix and t4 is the translation vector of the transformation f.

3.5. Data Collection and Preprocessing

The experimental vehicle used in this thesis is equipped with four LIDARs in each of
its roof corners. Data acquired from each of these sensors (point clouds X!, i = 1..4)
are stored in their respective coordinate system. The first thing that needs to be done
is to transform the data into the car coordinate system.

Car specifications are known for the used datasets. These specify the location and
rotation of each sensor, this information is given by a rotation matrix R’ and a trans-
lation vector t.. Using R! and t, the data are transformed into the car coordinate
system by

X' =R.-X!+t, i=1.4. (3.2)

3.5. Data Collection and Preprocessing

Figure 3.2. Point displacement within a single point cloud — points were transformed by the last
available transformation that didn’t match their timestamp, which caused the displacement

Figure 3.3. Point displacement between different point clouds — bright points belong to point
clouds that were captured much later than the blue points; the accuracy of the egomotion
had decreased in the meantime, which caused duplicate surfaces of the tree and the car

3. LIDAR Point Cloud Registration

The preprocessing step consists of selecting points of special interest. This has to be
done before the point cloud is transformed into the world coordinate system, because
these points of interest have important location relative to the car. These points of
interest are:

e Points on the car itself (these points can be removed, because they carry no useful
information as they are always in the same position relative to the car)

e Ground plane candidates (these points are used for the ground detection)

e Points in a predefined neighbourhood (these are used for the histogram evaluation)

After the preprocessing is completed, the data are transformed into the world coor-
dinate system and the motion compensation is performed.

3.6. Motion Compensation

The egomotion gives a rotation matrix R, and a translation vector t.. These provide
position of the car in space and need to be used for transforming the points from the
car coordinates to the world coordinates. The egomotion is available with much less
frequency than the points are scanned, so it is interpolated to match the timestamp of
those points.

Because interpolating R, and t. for every single point is very expensive, the points
are divided into n groups and R, and t. are interpolated for these groups only. With
a reasonable n, these groups will differ by only a fraction of millisecond while still
drastically reducing the number of interpolations. See Algorithm 1 for details.

Algorithm 1 Motion Compensation

Require: X, ts, n — data in car coordinates, timestamp, number of groups
Ensure: Returns X — point cloud in world coordinates after the motion compensation

idx + X.point_relative_time > interpolate timestamp for each group
times «linspace(min(idz),max(idz), n)

idx < idr—min(idzr) > assign points to the right group
. . id

idx ecell(ma;(fdgc) -n)

for i = 1:n do > interpolate rotation and translation and update points

[R;,t;] =interpolate(ts + times(i))
X(:ide ==1) = R; - X (s,ide ==1) + t;

3.7. Finding Ground Plane

3.7. Finding Ground Plane

Once the point cloud is assembled, the ground plane is found. Heights of points from
the ground plane are then registered into the scene representation.

3.7.1. Computing Heights of Points above Ground

Height of a point above the ground is its distance from the ground plane. Consider
point z and ground plane G = (n, gg) given by its unit normal vector n and point gg.

Let w be vector w = go — x. Then projecting w onto n gives the distance |dg(z)| of
point z from plane G [14],

|da(x)| = [proj, (w)| (3.3)
- |”’T'L‘w| (3.4)
=|n-w|, (3.5)

where |n| can be omitted from the denominator because it is a unit vector. Dropping
the absolute value gives the signed distance

dg(z)=n-w. (3.6)
The final formula for the signed distance dg(x) of z from G is then

da(z) =n-(go—x) . (3.7)

To meaningfully measure how good the ground plane is, the objective function needs
to be defined. This objective function is based on these two requirements:

e Angle between the ground plane’s normal and the Z axis is less than a

e Each point under the ground plane is penalized by value p

The reasons for these requirements are simple. The angle requirement ensures that
another dominant plane in the scene (e.g. a building) won’t be considered ground.
Because breaking / accelerating or driving over a speed bump tilts the car by only
several degrees, this restriction discards most unwanted planes while keeping only those
horizontal / nearly horizontal.

The other requirement is based on the assumption that no points under the ground
can be detected (if they are, they are most likely outliers). This means that the found
plane won’t be e.g. a flat roof of a building.

The last thing necessary for the objective function is some threshold ¢. Points closer
than the threshold are considered inliers, other points are considered outliers.

The objective function that computes plane’s support s is based on the maximum
likelihood estimate (MLE) [15] and is defined as

_ {—oo, if (n’-1[0;0;1] < a)

s —|U|-p, otherwise

with point cloud X, ground plane G = (n,go), distance function dg as defined in
Section 3.7.1, threshold ¢, angle restriction a, set of inliers I = {z | 0 < d(z) < t}, set

3. LIDAR Point Cloud Registration

of underground points U = {x | d(z) < 0} and penalty p for a point being under the
ground.

First line of Equation 3.8 satisfies the angle restriction. On the other line, the number
of inliers is computed, MLE criterion is applied and finally the penalty is applied for
the number of underground points.

With the objective function defined, there are two possible scenarios.

3.7.2. Adjusting Plane from the Previous Point Cloud

If a plane in the previous point cloud is known, it can be used as a starting point
for some optimization function. The support function as introduced in Equation 3.8
is maximized for the current point cloud. As long as the previous plane and the new
plane have a reasonably similar support, this approach is considered sufficient and the
new plane is used.

3.7.3. Finding New Plane

If a plane in the previous point cloud is not available or has too different support
compared to the new plane, another approach needs to be taken. MLESAC [15] with
the objective function as defined in Equation 3.8 is used. Only those points that were
marked as relevant for the ground detection during the preprocessing step (Section 3.5)
are used.

After the new plane is found, it is used as a starting point for some optimization
function that maximizes the support (just like in Section 3.7.2). This adjusts the plane
and provides slightly higher support than MLESAC could on its own. Only MLESAC
inliers are used for this step.

With the new ground plane, height for each point is calculated.

3.8. Fitting Point Cloud into the Map

Consider a point with height x;. The relevant cell ¢ for point x is determined based
on position of z on the XY plane,

[:E.'Ea :Ey] - Moffset
Mcell,size

Ceoords = round(), (3.9)
where My size is the size of the cell and M, fse is the offset of the map (data in the
world coordinates are not placed near the origin [0; 0; 0], so Moffser compensates for
that). This cell contains histogram H. Bin 4 in histogram H to which z;, belongs is
determined as

Th — Hmzn)
)

i = round((3.10)

Hbm,size
where H,,;;, is the minimal height that can be registered into the histogram and Hy;y,_size
is the size of the bin (vertical step).

The probability p(z) of height z;, belonging to H is

p(xn) = g(g :

(3.11)

This probability also represents the probability that x under its current transformation
belongs to the map, p(z;,) = p(x).

10

3.9. Optimization and Point Cloud Update

It can happen that p(z) = 0, either due to H being empty or H(i) = 0. Having
zero probability for some point is very likely to happen, considering one point cloud
consists of tens of thousands of points. This would negatively affect the outcome of the
algorithm, so a threshold value p,, is used to counter this. If probability p(x) of some
point is lower than this threshold, the probability is assigned the threshold value,

if (p(x) < pmin) then p(z) < Pmin - (3.12)

The probability p(X) of the whole point cloud belonging to the map is the product of
probabilities of individual points. For simplicity, the independence of points is assumed,

p(x) = [»le) - (3.13)
zeX
For the sake of numerical stability, logarithm of the probability log(p(X)) is used.
The log-probabilities of the points are summed together, which gives the log-probability
of the whole point cloud fitting into the map. This log-probability is what needs to be
maximized to determine the optimal point cloud position and rotation with respect to
the current map.
The final log-probability p;,q(X) of the point cloud fitting into the map is

Prog(X) =) log(p(x)) - (3.14)

rzeX

3.9. Optimization and Point Cloud Update

Some robust optimization function is used to find the parameters that maximize the
log-probability pjoe(X). These parameters are the rotation matrix R and the translation
vector t that refine the egomotion and that need to be applied to the point cloud to
register it with the highest possible probability.

At the beginning of the algorithm, R will be very similar to the identity matrix [
and t to the zero vector 0. But as the car keeps moving, the error caused by inaccuracy
in the egomotion accumulates and R diverges from I and ¢ from 0 (that also happens
if the egomotion is not available at all). Therefore some suitable initial parameters for
the optimization function other than I and 0 need to be chosen.

The initial parameters used are the last known R and ¢. This is based on the as-
sumption that if the last position reported by the egomotion system differs by ¢,,.c,, from
its correct value, the current egomotion will present a similar error. Same reasoning
applies for R.

Once R and t are found, they are used to transform the whole point cloud,

X'=R-X+t. (3.15)

This updated point cloud then fits into the scene representation with the maximal
possible probability and can be added.

11

3. LIDAR Point Cloud Registration

3.10. Adding New Point Cloud to the Map

The final step is to add the updated point cloud to the map. For each point, the
corresponding cell and bin is determined, just like in Section 3.8.

A simple solution would be to update the corresponding histogram H by H (i) <«
H (i)+1. However, this would result in many sharp peaks in the histogram. Preliminary
experiments showed that this could prevent the optimization function from converging
to the correct value and get stuck in a local maxima instead. Therefore the histogram
convolution is performed to make it smoother and to remove sharp peaks.

3.10.1. Histogram Convolution

Contributing to the histogram bin 4 is the same as adding vector 1(7) to the histogram,

H(i)« H(i)+1=H + H+1(i) . (3.16)

The hard registration of xj; to a single bin is replaced by a softer alternative, where
xy, contributes to its surrounding bins as well. This can be expressed as a convolution
of vector 1(i) with a Gaussian N(0,0?) before adding it to the histogram,

H+ H+ (1(i)) ® N(0,0%)) , (3.17)

which is the same as

H + H+N(i,0?) , (3.18)

where o2 is the variance of the Gaussian and 4 is used as the mean. Figure 3.4 shows
the difference.

This will make the histogram and the objective function defined in Section 3.8 much
smoother and easier to optimize.

12

Probability
o
&

2

3

4 5
Height

(a) 1(z)

Figure 3.4. Two ways of updating the histogram H

6

7

8

9

10

e o
® ©

=
bt

Probability
©c & o = o
2 8 2 8

=)

o
>

o

-1] 1 2 3 4 5 B 7 8 9 10

Height

(b) N(i,0?) = 1(i) ® N'(0,0?)

3.10. Adding New Point Cloud to the Map

3.10.2. Registering Points into the Surrounding Cells

Just like with the histogram, registering a point only into its cell makes it harder for the
optimization function to converge. Therefore when a point x is about to be registered
into cell ¢, Gaussian N (i,02) is created as described in Section 3.10.1.

The Gaussian A (i, 02) is then added to histogram H in cell c as well as to histograms
in other cells surrounding c. Before every addition, N(i,0?) is multiplied by some pre-
defined coefficient that loosely models 2D Gaussian distribution around c.

Similarly to the histogram convolution, this improves the smoothness of the objective
function and should make it easier for the optimization function to converge to the
correct value.

When all points are recorded into the map, a new data is read and the new point
cloud is processed in the same way.

13

4. Experiments

4.1. Hardware and Environment

Datasets used in this thesis were acquired by Volkswagen Golf E demonstration vehicle
of H2020 EU project UP-Drive [16] with four LIDAR sensors, each in one of the car’s
roof corners. Table 4.1 provides basic specifications of the LIDAR sensors.

sensor type Velodyne VLP-16
range 100 m
accuracy 3 cm
field of view — horizontal 360°
— vertical + 15°

resolution — horizontal 0.1°-04°
— vertical 2°

rotations per second 5-20
points per second up to 300 000

Table 4.1. Basic specifications of the used LIDAR

In these datasets, 10 rotations per second is used, meaning a new point cloud is
produced every 100 milliseconds. More details and the exact settings can be found in
the attached configuration file.

The algorithm was implemented in MATLAB. Numerical optimizations were done
using MATLAB’s function fminsearch() that uses Nelder-Mead method [17]. For im-
plementation pseudocode see Appendinx A.

Figure 4.1. Velodyne VLP-16 LIDAR

14

4.2. Visualization and Datasets
4.2. Visualization and Datasets

Two different visualization modes are used in these experiments. In the first mode, the
point’s color codes the time when the point was captured — the older points are more
blue, the newer points are more red. Unless specified otherwise, point clouds will be
coloured using this time-based mode. The other mode is based on heights of the points
— points that are low are more blue, points that are high are more red. See Figure 4.2
for illustration. To save memory, only 10 % randomly selected points are shown.

The experiments were conducted on two datasets. The first dataset (Figure 4.3) is a
series of point clouds recorded by a car that is moving forward on an almost straight
street with a crossroad in the middle. It consists of approximately 400 point clouds
collected over 40 seconds. Point displacement caused by inaccurate egomotion is rather
low.

The other dataset (Figure 4.4) is a series of point clouds recorded by a car on a
parking lot. In this dataset, the car makes several loops. It consists of over 1 000
point clouds collected over 100 seconds. There is a major point displacement caused
by inaccurate egomotion, leading to numerous duplicate surfaces.

low < height ————— high
old time new

Figure 4.2. Visualization modes used for the experiments are based on height and time

Figure 4.3. Dataset 1 — straight street with a crossroad; coloured based on points’ height

15

4. Experiments

Figure 4.4. Dataset 2 — parking lot; major point cloud displacement is apparent (duplicate
cars and trees); coloured based on points’ height

4.3. Experimental Protocol

The experiments are divided into several sections, each investigating a specific part of
the proposed algorithm:

e Setting of initial values
e Motion compensation

e Whether the ground plane can be consistently found across different point clouds and
if it is useful to store heights of points in the scene representation

e If the proposed scene representation carries useful information for egomotion estima-
tion and how well does the optimization function converge

e If the histogram convolution and registering points into the surrounding cells improves
the convergence of the optimization function

e Overall results

Unfortunately, when evaluating the overall result, there is no clear way of determining
its quality. The objective function that is optimized gives some probability, but this
probability is quite complex to be interpreted in a meaningful way. Moreover, there
are problems regarding local maxima, where the optimization function can get stuck.
Therefore, evaluation of the overall results is done on an empirical basis just by looking
at how well do the point clouds match.

16

4.4. Initial Values

4.4. Initial Values

The values used in the experiments (unless stated otherwise) are summarized in Ta-
ble 4.2.

preprocessing ground plane candidates [20, —20, 10, —10,1, —1.5]
predefined neighbourhood [5,—30,15, —15,20, —5]

motion compensation | n groups 100
the map map cell size 50 cm
histogram — bin size 10 cm

— minimum height -1 m

— maximum height 10 m

probability threshold p,,n 106

Table 4.2. Initial values used for the experiments

The vector of values for the ground point candidates and predefined neighbourhood
marks those points that are inside the given range relative to the car ([front, back,
left, right, top, bottom], in metres). Other values, like RANSAC settings or Gaussian
parameters for the convolution are discussed in their respective sections.

These values were selected empirically. Since the results are evaluated on the empir-
ical basis, it would likely not be possible to refer to the best found values as optimal
anyway. Some minor experiments were done to check some alternative values (for ex-
ample cell size = 25 c¢m, bin size = 5 cm or pmin = 10_3), but the differences were
hardly noticeable.

4.5. Motion Compensation

Motion compensation (as explained in Section 3.6) addresses the problem of point
displacement within a single point cloud (Section 3.3.1). The process is quite straight-
forward and the only real parameter is the number n of groups used.

Modifying this parameter has a very small impact on the result of the motion com-
pensation. Because n follows logarithmic curve, setting n = 20 leads to correction of
points by up to several centimetres compared to n = 1, but n = 100 only refines the
points by additional couple of millimetres compared to n = 20. Thus, if n is too small,
there are visible problems (displaced points). And setting n to higher values is possi-
ble, but the algorithm would require more processing time while providing questionable
benefit.

Motion compensation examples (Figures 4.5 and 4.6) are only demonstrated on the
dataset street, not on the parking dataset. In the latter case, there is too much point
displacement caused by inaccurate egomotion that it hides any data relevant to motion
compensation.

17

4. Experiments

Figure 4.5. Motion compensation on the dataset street — traffic light on the crossroad

18

4.5. Motion Compensation

(a) Before

(b) After
Figure 4.6. Motion compensation on the dataset street — a sign and a pole on the crossroad;

notice that the blue points are still displaced — this is caused by inaccurate egomotion and
cannot be fixed by motion compensation

19

4. Experiments

4.6. Ground Plane and Heights of Points

Finding the ground plane consistently in different point clouds is essential for the pro-
posed algorithm. If the plane is not consistent in two consecutive point clouds, the
points representing the same object (that should be very close in the correctly recon-
structed environment) would have different heights and would fall into different bins in
the histogram. MLESAC with additional optimization, as described in Section 3.7, is
used.

The maximal angular distance a of plane’s normal n from the Z axis [0;0; 1] is set
to a = 5°. This value is based on the assumption that breaking hard or driving over
speed bump would cause the car to tilt, but no more than the chosen angle.

Threshold ¢ was set to t = 10 cm. As it is usual with RANSAC parameters, this is
based on observation and used datasets. But because MLE criterion is used, changing
this value doesn’t have a high impact on the result.

Penalty p is set to p = 1000 based on the datasets and the expected amount of noise
(points incorrectly detected under the ground). Each underground point lowers the
support by the same amount as p points directly on the plane would increase it.

As it is apparent from Figure 4.7, locating the ground plane is problematic. It might
be caused by the fact that the street is actually not a plane, but a slightly curved
surface. This means that there are multiple positions where the ground plane could be
located, all providing similarly good support.

On top of that, other objects close to the ground (like cars’ wheels or sidewalks)
directly affect the computed support and thus the plane’s position. If there is e.g.
a parked car, it would be registered in some point cloud and its wheels would affect
locating the ground plane. But after a second or two, it would be out of range and the
ground plane would be located differently, as outlined in Figure 4.8.

(a) Point cloud 1 (b) Point cloud 2

Figure 4.7. Inconsistent plane detection in two consecutive point clouds at the crossroad in
the street dataset; green points are the plane inliers (within 10 ¢m from the plane)

———— 1@<r—

(a) Empty street (b) Street with another car

Figure 4.8. Street cross-section; notice that the street is not flat, but rather arched; green line
is the detected ground plane

20

4.7. Convergence of the Optimization Function

4.6.1. Alternative Approach

Because locating the ground plane and computing point’s heights proved to be prob-
lematic, a different approach is used in these experiments. Instead of recording heights
of points, just the points’ coordinates on the Z axis are registered. This completely
removes the necessity for the ground plane detection while still following the original
idea of the proposed algorithm.

This alternative comes with a slight disadvantage though. Registering heights of
points would allow for easy parametrization of space. Thus, for example if a car was
driving uphill, no special approach or modification would be necessary to the algorithm
or the scene representation. This is no longer the case when the Z coordinates are
registered. If a car drives uphill, the recorded Z axis coordinates might soon become
too big to be registered into the histogram.

The histogram settings — the minimum and maximum values that can be registered
— must be chosen with a specific dataset in mind. In real-life scenarios, any elevation
of just a couple of tens of metres would be problematic regarding memory require-
ments. Therefore this alternative approach is only applicable in these experiments,
where datasets are relatively small and flat. Robust ground plane localization and
computation of points’ heights is a topic of future work.

4.7. Convergence of the Optimization Function

It is essential for the optimization function to converge to the right value in order to
register the points correctly. In this experiment, a short sequence of point clouds is
merged together (there is no major point displacement, because that typically occurs
when point clouds that are recorded far from each other are merged). Once they are
combined, a random point cloud pc that has already been added is registered to the
scene representation again, but slightly shifted (only = and y coordinates) from its
original position. The correct location of pc in this experiment should be around point
[0;0] — no relative shift from the used egomotion data. Registration of points in this
experiment is done without the histogram convolution.

This experiment has two parts, as described in Algorithm 2. In the first part, pc is
repeatedly shifted by [i,j], where i and j range from —5 to 5 centimetres. For each
shift, it is evaluated how well does pc fit to the map, the result is stored in a matrix
P. At the end, the matrix P is visualized. If the scene representation carries useful
information, there should be a strong peak in the middle, around point [0;0].

In the other part, the point cloud pc is shifted by a random amount r. The algorithm
then tries to optimize the objective function as defined in Section 3.8, which yields
translation ¢. If working correctly, this ¢ should be reasonably similar to the negative
of r, t ~ —r, in order to counter the random shift and to place pc to its correct position
around [0; 0].

Note that the shift only affects x and y coordinates and shift of z coordinates and ro-
tations are left out. This is purely for visualization purposes, as it would be impractical
to try to visualize the results for more than 2 degrees of freedom.

21

4. Experiments

Algorithm 2 Experiment pseudocode

Require: Map, pc — map (scene representation), point cloud to be inserted

P=]]
fori=-5:5do //incm
for j=-5:5do //incm
P.record(M ap.evaluate(shift(pc, [i; 7])))
visualize P

> visualization part

r =random(1, 2)

> convergence part
t =optimize(M ap.evaluate(shift(pc, r)))

]
b

log-probabili
shift on Y axis [cm|

0

0

shift on Y axis [cm] 5 -5

shift on X axis [cm) 5 4 3 2 44 0 1 2 3 4 5
shift on X axis [cm]
(a) Visualization part (b) Convergence part

Figure 4.9. The convergence experiment performed on a sequence of 20 point clouds from
the dataset street; the point cloud pc is shifted to the location A and the optimization

function correctly converges to B; note that the points are registered without the histogram
convolution

B P -
3 g
2 21 726%0% S5 %
: :
S 22 =
£
5
-23
5
5
0
o
shift on ¥ axis [cm] 5 5 shift on X axis [cm)] -5 -4 -3 -2 -1 0 1 2 3 4 5
shift on X axis [cm]
(a) Visualization part (b) Convergence part

Figure 4.10. The convergence experiment performed on a sequence of 20 point clouds from the
dataset parking; the point cloud pc is shifted to the location A, but the optimization function
fails to converge to the correct position and gets stuck in a local maximum B instead; note
that the points are registered without the histogram convolution

22

4.8. Histogram Convolution and Registering into the Surrounding Cells

Visualization part of Figures 4.9 and 4.10 shows a peak in the middle. On the dataset
street, the function was able to converge to the correct value in the centre. However,
in the sequence from the dataset parking, the function failed to converge correctly and
got stuck in local maxima instead.

The functions are not smooth either, there are many local extrema present. As
demonstrated, this could pose a problem for the convergence of the optimization func-
tion. Therefore the histogram convolution and registering points into the surrounding
cells is used to smooth out the function and to try to remove the local extrema.

4.8. Histogram Convolution and Registering into the
Surrounding Cells

Problem with the convergence of the optimization function in Section 4.7 is most likely
caused by numerous local extrema. To remove them, or at least to limit their amount,
the histogram is updated with a Gaussian rather than with a single value, as explained
in Section 3.10.

The mean of the Gaussian N (i,0?) is i, the target bin of the histogram, and the
standard deviation is set to be ¢ = 1.5. This Gaussian is then added to the histogram
H.

Because the Gaussian A/ (i, 02) is also registered to the surrounding cells, it is impor-
tant to choose some suitable coefficients by which it is multiplied before it is added.
These coefficients (Figure 4.11) try to loosely model 2D Gaussian distribution.

The experiment in Section 4.7 is repeated on the same data, this time with the
convolution.

Results of these experiments (Figures 4.12 and 4.13) look similar to those in Sec-
tion 4.7. But taking a closer look at the peaks, it is apparent that the convolution
makes the objective function smoother, as shown in Figures 4.14 and 4.15. Unfortu-
nately, the optimization function still doesn’t converge correctly on the dataset parking.
Figure 4.15 shows that there might be some local extrema remaining that cause the
optimization function to fail. Choosing a different, more suitable optimization method
is another topic of future work.

0.10.17/0.25/0.17| 0.1

0.17, 0.3 | 0.5 0.3]0.17

0.25| 0.5 1 0.5 | 0.25

0.17, 0.3 | 0.5 0.3 |0.17

0.1 |0.17 | 0.25]0.17| 0.1

Figure 4.11. When Gaussian N (i,02) is added to the central cell, it is also added to the
surrounding cells after multiplying by these coefficients

23

4. Experiments

T
S
S

——
0“\\

log-probability

shift on Y axis [cm]

0
0

shift on Y axis [cm] 5 -5 shift on X axis [cm) -5 -4 -3 -2 -1 1] 1 2 3 4 5
shift on X axis [cm]
(a) Visualization part (b) Convergence part

Figure 4.12. The convergence experiment repeated with the same sequence from the dataset
street, with the histogram convolution; the point cloud pe is shifted to the location A and

the optimization function correctly converges to B; the objective function is significantly
smoother

x10%

log-probability

shift on ¥ axis [cm]

0

0

shift on Y axis [cm] 5 5

shift on X axis [cm] s 4 2 2 a4 0 1 2 3 4 s
shift on X axis [cm]
(a) Visualization part (b) Convergence part

Figure 4.13. The convergence experiment repeated with the same sequence from the dataset
parking, with the histogram convolution; the point cloud pc is shifted to the location A, but

the optimization function still fails to converge correctly, even though the objective function
is somewhat smoother

24

4.9. Overall Results

(a) Before

Figure 4.14. Magnified peak from the dataset street used in the convergence experiment before
and after the convolution; notice the local extrema present before the convolution are removed

T
S S

S

(a) Before (b) After

Figure 4.15. Magnified peak from the dataset parking used in the convergence experiment
before and after the convolution; notice the number of local extrema present before the
convolution is reduced

4.9. Overall Results

As illustrated by Figures 4.16 and 4.17, the algorithm performs very well on the dataset
street. Misplaced points are detected and the point cloud is moved to the position with
the highest probability, which improves the egomotion and fixes the problem of duplicate
surfaces.

However, the dataset parking is far more challenging. Figure 4.18 shows that the
algorithm fails to converge to the global maximum and all the major point displacement
and duplicate surfaces remain.

The car makes several loops around the parking lot, which includes a couple of U-
turns. While the yellow and orange points generated when the car is driving straight are
matched correctly, the blue points that were recorded before the U-turn are displaced
(Figure 4.19). It appears that the U-turn causes a rapid change of the rotation matrix
and the optimization function fails to deal with that. Coupled with the non-smooth
surface of the objective function shown in Figure 4.15, it gets stuck in a local maximum
instead.

25

4. Experiments

(b) Merging point clouds with improved egomotion

Figure 4.16. Results of the algorithm on the dataset street; the bright points were recorded
later than the blue points and were given inaccurate egomotion data, leading to duplicate
surface of the tree and the car; the algorithm finds that they could be inserted into the scene
with a higher probability and transforms them accordingly

26

4.9. Overall Results

(b) Merging point clouds with improved egomotion

Figure 4.17. Results of the algorithm on the dataset street; the blue points were recorded
much sooner than the red points and the accuracy of the egomotion had decreased in the
meantime, leading to duplicate surface of the building; the algorithm detects that they could
be inserted into the scene with a higher probability and transforms them accordingly

27

4. Experiments

(b) Merging point clouds with improved egomotion

Figure 4.18. Results of the algorithm on the dataset parking; the car was driving in circles
around the parking lot — yellow points were recorded 1 lap after the blue points, orange
points 1.5 laps after the blue points; the algorithm fails to converge to the global optimum
and match the blue and yellow points together; however, some improvement is observable as
the yellow and orange points are matched correctly

28

4.9. Overall Results

(a) Standard merging with inaccurate egomo- (b) Merging point clouds with improved ego-
tion motion

Figure 4.19. Zoomed-in result from the dataset parking — yellow and blue points represent the
same car and are not matched properly; however, yellow and orange points, also representing
the same car, are matched correctly using the improved egomotion

29

5. Summary

In this thesis, the problem of correct registration of LIDAR point clouds and egomotion
estimation was investigated. A new scene representation was proposed, where the XY
plane is divided into cells, each of the cells contains a histogram of points’ heights. It
is a discrete representation of probability density function of points in space.

An online algorithm for registering new point clouds to this scene representation was
introduced and used for improving the egomotion. Registering a new point cloud could
be summarized as follows:

Point cloud is assembled

— Ground plane is found

— Heights of points are computed

Optimization is performed so that the point cloud fits into the scene representation
with the highest probability

Point cloud is transformed according to the optimization result

Point cloud is added to the scene representation

— Histogram convolution is performed to limit the adverse effects of local extrema
on the optimization function

The experiments conducted on datasets from real drives showed that the proposed
scene representation carries useful information for improving the egomotion. However,
computing the heights of points proved to be quite problematic. Therefore an alterna-
tive approach was tested, where only the Z coordinate of each point was recorded into
the histogram.

The proposed scene representation and algorithm were successfully used for improving
the egomotion and reconstructing the 3D environment. Even though the histogram
convolution was performed, in some cases the remaining local extrema prevented the
optimization function from converging to the correct value.

5.1. Future Work

More robust way of determining the heights of points should be studied. Currently,
locating the ground plane is affected by other objects like cars’ wheels, which leads
to inconsistent results. The same points are assigned different heights and cannot be
matched.

Also, different means of optimization should be explored that would avoid the local
extrema and converge to the correct value.

30

Bibliography

1]

[6]

[7]

[10]

[11]

[12]

Frangois Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magnenat.
Comparing icp variants on real-world data sets. Auton. Robots, 34(3):133-148,
April 2013. 2

Frank Moosmann and Christoph Stiller. Velodyne slam. In Intelligent Vehicles
Symposium (1V), 2011 IEEE, pages 393-398. IEEE, 2011. 2

Seungpyo Hong, Heedong Ko, and Jinwook Kim. Vicp: Velocity updating iter-
ative closest point algorithm. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 1893-1898. IEEE, 2010. 2

David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry for ground
vehicle applications. Journal of Field Robotics, 23(1):3-20, 2006. 2

Bernd Kitt, Andreas Geiger, and Henning Lategahn. Visual odometry based on
stereo image sequences with ransac-based outlier rejection scheme. In Intelligent
Vehicles Symposium (IV), 2010 IEEE, pages 486-492. IEEE, 2010. 2

Mark Maimone, Yang Cheng, and Larry Matthies. Two years of visual odometry
on the mars exploration rovers. Journal of Field Robotics, 24(3):169-186, 2007. 2

Yashar Balazadegan Sarvrood, Siavash Hosseinyalamdary, and Yang Gao. Visual-
lidar odometry aided by reduced imu. ISPRS International Journal of Geo-
Information, 5(1):3, 2016. 2

Sebastian Schneider, Thorsten Luettel, and Hans-Joachim Wuensche. Odometry-
based online extrinsic sensor calibration. In Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, pages 1287-1292. IEEE, 2013. 2

Mark Fiala and Alex Ufkes. Visual odometry using 3-dimensional video input. In
Computer and Robot Vision (CRV), 2011 Canadian Conference on, pages 86-93.
IEEE, 2011. 2

Ji Zhang and Sanjiv Singh. Visual-lidar odometry and mapping: Low-drift, ro-
bust, and fast. In Robotics and Automation (ICRA), 2015 IEEFE International
Conference on, pages 2174-2181. IEEE, 2015.

Julien Moras, Véronique Cherfaoui, and Phillipe Bonnifait. A lidar perception
scheme for intelligent vehicle navigation. In Control Automation Robotics & Vision
(ICARCYV), 2010 11th International Conference on, pages 1809-1814. IEEE, 2010.

Robert Zlot and Michael Bosse. Efficient large-scale 3d mobile mapping and surface
reconstruction of an underground mine. In Field and service robotics, pages 479—
493. Springer, 2014. 2

Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time. In
Robotics: Science and Systems, volume 2. Citeseer, 2014. 2

31

Bibliography

[14]

[15]

32

Eric W Weisstein. Point-plane distance. MathWorld - A Wolfram Web Resource,
http://mathworld.wolfram.com/Point-PlaneDistance.html, 2002. 9

Philip HS Torr and Andrew Zisserman. Mlesac: A new robust estimator with appli-
cation to estimating image geometry. Computer Vision and Image Understanding,
78(1):138-156, 2000. 9, 10

Up-drive - h2020 european union program. http://up-drive.eu/, 2016. 14

Donald M Olsson and Lloyd S Nelson. The nelder-mead simplex procedure for
function minimization. Technometrics, 17(1):45-51, 1975. 14

Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vi-
sion. Cambridge university press, 2003.

Sebastian Thrun and Arno Biicken. Integrating grid-based and topological maps
for mobile robot navigation. In Proceedings of the National Conference on Artificial
Intelligence, pages 944-951, 1996.

Josep Aulinas, Yvan R Petillot, Joaquim Salvi, and Xavier Lladé. The slam prob-
lem: a survey. In CCIA, pages 363-371. Citeseer, 2008.

http://mathworld.wolfram.com/Point-PlaneDistance.html
http://up-drive.eu/

A. Implementation Pseudocode

The algorithm is divided into several parts. Here is a brief overview of each of them
and how they interact with each other.

The main loop is located in function reconstruct_trip(). It is being given new data,
processes them and corrects the egomotion and the point cloud. Map is the scene
representation as described in (3.2).

Algorithm 3 function reconstruct_trip()

Require: Nothing
Ensure: Exports correctly reconstructed environment X
X]
Map +new Map()
while d = available_data do
Xtemp +reconstruct_pointcloud(d)
[R, t] <—optimize(M ap.evaluate(Xiemp))
Xcm"r — R- Xtemp +1
Map.add(Xcorr)
X.append(Xcorr)

export X // correctly reconstructed environment

Function reconstruct_pointcloud() is given a chunk of data. These data belong to four
different sensors and must be processed separately before being combined into the final
point cloud. Once the point cloud is complete, the ground plane is found and height of
each point is computed.

Algorithm 4 function reconstruct_pointcloud(data)

Require: data — raw data from Velodyne
Ensure: Returns X, h — single point cloud reconstructed from 4 LIDAR, sensors and
heights of respective points
X]
for sensor = 1:4 do
Xiemp <—reconstruct_sensor(data(sensor))
X.append(Xtemp)
// ground =find_ground(X) - removed from the experiments
// h =compute_heights(X, ground) - removed from the experiments
X =pc_color(X) // optional, add colors to the point cloud for easier interpretation

33

A. Implementation Pseudocode

Function reconstruct_sensor() takes the raw data and transforms them from the sen-
sor coordinate system into the car coordinate system. Then some preprocessing and
motion compensation is performed. After that, the data are transformed into the world
coordinate system and returned.

Algorithm 5 function reconstruct_sensor(data)

Require: data — raw data from Velodyne
Ensure: Returns X, — part of the point cloud in world coordinates
Xpart <—sensor2car(data) //transform data from sensor coords to car coords
preprocessing of X,
motion compensation of X
Xpart =car2world(X) // transform data from car coords to world coords

34

	Introduction
	Related Work
	Basic Approaches
	Visual and LIDAR Odometry

	LIDAR Point Cloud Registration
	Algorithm Overview
	The Map
	Non-static Scene Detection

	Types of Point Displacement
	Within a Single Point Cloud
	Between Different Point Clouds

	Transforming Data between Different Coordinate Systems
	Data Collection and Preprocessing
	Motion Compensation
	Finding Ground Plane
	Computing Heights of Points above Ground
	Adjusting Plane from the Previous Point Cloud
	Finding New Plane

	Fitting Point Cloud into the Map
	Optimization and Point Cloud Update
	Adding New Point Cloud to the Map
	Histogram Convolution
	Registering Points into the Surrounding Cells

	Experiments
	Hardware and Environment
	Visualization and Datasets
	Experimental Protocol
	Initial Values
	Motion Compensation
	Ground Plane and Heights of Points
	Alternative Approach

	Convergence of the Optimization Function
	Histogram Convolution and Registering into the Surrounding Cells
	Overall Results

	Summary
	Future Work

	Bibliography
	Implementation Pseudocode

