
Czech Technical University in

Prague

Faculty of Electrical Engineering

Bachelor´s Project

BARRISTER
Engine for duplicity searching in source code

Jiří Fryč

May 10, 2017

Supervisor: ING. ONDŘEJ MACEK, PH.D.

 BARRISTER FRYC, JIRI

 5/22/17

 BARRISTER FRYC, JIRI

 5/22/17

Bachelor thesis assignment

 BARRISTER FRYC, JIRI

 5/22/17

Declaration
I hereby declare that I have completed this submitted thesis independently and that I have

listed all the information sources, such as literature and publications, according to Methodological

instruction about adherence to Ethical principles during preparations of Bachelor’s thesis.

I have no objection to the usage of this work in compliance with the Act §60 Zákon č.

121/2000Sb. (copyright law), and with the rights connected with the copyright act including the

changes in the act.

In Prague, May 25, 2017 .

signature

 BARRISTER FRYC, JIRI

 5/22/17

 BARRISTER FRYC, JIRI

 5/22/17

Acknowledgements
I would like to thank all the people who helped me with this project. At first, I would like to

thank my supervisor Ing. Ondřej Macek, PH.D. for a lot of useful advice and aid with kicking off this

project, so it will not end up in a drawer but will be used by our faculty. I would also like to thank Bc.

Michal Roch and Ing. Jan Kočí for help with interconnectivity to faculty systems. And last but not least

I would like to thank Ing. Jan Kubr and Ing. Jan Drchal, Ph.D. for providing me necessary data from

faculty servers for proper analysis and testing.

 BARRISTER FRYC, JIRI

 5/22/17

Abstract
In this bachelor thesis, we analyze possibilities for plagiarism detection inside source files and

implement an ideal solution for CTU FEE. Due to this focus on CTU FEE, we try to solve plagiarism

detection mostly for the source code of students and their homework´s. An important part of this

project is extensibility by another functions or languages. Work is being written in Java due to

requirements by CTU CZM and profusely use XML and XSD technologies for input and output files.

These files are not in the human readable format because they are used by another service called

Prosecutor inside CTU CZM.

Keywords

Java, File testing, Plagiarism, Source code, Source code tokenization, Comparison

Abstrakt
V rámci bakalářská práce analyzuje možnosti pro detekci plagiátů ve zdrojových kódech a

vytváříme ideální řešení pro ČVUT FEL.Vzhledem k zaměření řešíme detekci plagiátů převážně pro

testování úloh zadaných studentům. Důležitou částí je možnost případného rozšiřování o další

funkcionality, či programovací jazyky. Práce je psaná v Java z důvodů požadavků ČVUT CZM a hojně

využívá technologie XML a XSD pro vstupní configurace a výstupní soubory. Vstupem a výstupem této

práce není člověkem čitelný záznam a configurace jelikož řešení má sloužit jako serverová service pro

system Prosecutor.

Klíčová slova

Java, Testování souborů, Plagiarism, Tokenizace zdrojového kódu, Porovnávání

 BARRISTER FRYC, JIRI

 5/22/17

Content
1 Project Introduction .. 14

1.1 Document structure .. 14

1.2 Plagiarism .. 15

1.3 General requirements ... 19

2 Analysis .. 21

2.1 Survey on reasons for plagiarism .. 21

2.2 Methods for detecting plagiarism in source code ... 22

2.3 Current software solutions for plagiarism detection .. 24

2.4 Analysis of students codes .. 24

2.5 Biggest problems in detecting plagiarism ... 25

3 Current software solutions .. 27

3.1 JPlag ... 27

3.2 Moss .. 27

3.3 Sherlock [8] .. 28

3.4 Plaggie [9] .. 28

3.5 SIM [10] ... 28

3.6 Data used for comparison ... 29

3.7 Comparison ... 30

3.8 Results ... 31

3.9 Main issues .. 34

3.10 Conclusion ... 35

4 Test lifecycle .. 36

4.1 Parsing configuration file ... 37

4.2 Preparing testing environment ... 37

4.3 Tokenization .. 37

4.4 Comparing ... 39

4.5 Parsing results ... 41

4.6 Grouping results .. 41

4.7 Filtering .. 41

4.8 Generating report file .. 41

5 Implementation ... 43

5.1 Used technologies ... 43

5.2 Structure of the Barrister .. 45

5.3 XSD Schema ... 46

 BARRISTER FRYC, JIRI

 5/22/17

5.4 XSLT ... 48

5.5 Multi-lingual support ... 48

5.6 Summary .. 49

6 Testing ... 50

6.1 Unit testing .. 50

6.2 Acceptance testing .. 50

7 Morphing Approximation Algorithm ... 55

7.1 Ideas behind MAA ... 55

7.2 Comparison with current algorithms .. 55

7.3 Activity diagram ... 57

7.4 Results ... 58

7.5 Negative impact ... 58

8 Future of Project .. 59

8.1 Rewriting to .NET ... 59

8.2 GUI ... 60

8.3 Generating cryptographic timestamp via CA .. 60

9 Conclusion ... 62

10 References ... 63

 BARRISTER FRYC, JIRI

 5/22/17

Dictionary
Submission (Entity) Submission is a collection of files that are tested

as single Entity.
E.q.:
A collection of files, that solves homework,
from a single student.

Submission set A collection of submissions with some
connection, either there are located in the
same folder, or contains some semantic
connection.
E.g.:
Student´s homework from the year 2016
Student´s homework from the year 2017

Basecode The source code that is provided to all entities.
E.g.: Interface class provided to students for
implementation with comments how each
method should work.

Entity (Submission) An entity which files are tested, also known as
submission.
E.g.:
Students

Token A small part of the code (usually with only a few
characters) with assigned meaning.
E.g.:
i = 10 ;
This code contains multiple tokens, one of them
is:
“=” with meaning “assigning value.”
or
“;” with meaning “end of the statement.”

One-way test (One-way relation) Type of relation between two submission sets.
This specific relation only allows testing inside
one submission set and with second submission
set. However, disallow testing inside second
submission set.
E.g.:
𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛´𝑠 𝑠𝑒𝑡𝑠 𝐴, 𝐵 𝑤𝑖𝑡ℎ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐴 → 𝐵

∃𝑎1𝑎2 ∈ 𝐴 𝑎1 ~ 𝑎2
∃𝑎 ∈ 𝐴 , ∃𝑏 ∈ 𝐵 𝑎 ~ 𝑏

∀𝑏1, 𝑏2 ∈ 𝐵 𝑏1 ≁ 𝑏2
Example usage:
If we want to test student homework from
current year against each other and last year,
but we do not want to detect plagiarism
between students from last year.

Two-way test (Two-way relation) Type of relation between two submission sets.
This specific relation allows all possible testing
for both submission sets.

 BARRISTER FRYC, JIRI

 5/22/17

E.g.:
𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛´𝑠 𝑠𝑒𝑡𝑠 𝐴, 𝐵 𝑤𝑖𝑡ℎ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐴 → 𝐵

∃𝑎1𝑎2 ∈ 𝐴 𝑎1 ~ 𝑎2
∃𝑎 ∈ 𝐴 , ∃𝑏 ∈ 𝐵 𝑎 ~ 𝑏

∀𝑏1, 𝑏2 ∈ 𝐵 𝑏1~ 𝑏2

Generic code Type of code that is expected to appear in all or
almost all submissions.
E.g.:
Importing common packages.
For example java.util.* in Java

Flagged (flagged entity) Entity marked as plagiarism.

 BARRISTER FRYC, JIRI

 5/22/17

List of figures
Figure 1-1 Plagiarism types ... 17

Figure 2-2 Survey results .. 22

Figure 2-3 Rough estimations of relation between code length and match of two originals .. 25

Figure 3-1 Code duplicity .. 34

Figure 4-1 Tokenization .. 37

Figure 4-2 Parser tree ... 39

Figure 4-3 Comparison order.. 41

Figure 5-1 Preview tree view of XSD schema for configuration file (splitted in half) 47

Figure 5-2 XSLT output example ... 48

Figure 6-1 JPlag matches in TCP homework ... 51

Figure 6-2 Barrister matches in TCP homework ... 52

Figure 6-3 JPlag matches in UDP homework .. 53

Figure 6-4 Barrister matches in UDP homework .. 54

Figure 7-1 Time relation between plagiarism and creating original based on complexity based

on anylysis ... 55

Figure 7-2 Morphing approximation algorithm lifecycle .. 57

Figure 8-1 GUI ... 60

Figure 8-2 GUI 2 .. 60

List of tables
Table 2-1 Survey results ... 21

Table 3-1 JPlag information .. 27

Table 3-2 Moss information ... 27

Table 3-3 Sherlock information .. 28

Table 3-4 Plaggie information .. 28

Table 3-5 SIM information .. 28

Table 3-6 Artificial set for testing 1 .. 29

Table 3-7 Artificial set for testing 2 .. 30

Table 3-8 Artificial set for testing 3 .. 30

Table 3-9 Computer used for testing .. 30

Table 3-10 Artificial set 2.i00 Expected results .. 32

Table 3-11 Artificial set 2 Results ... 32

Table 3-12 Artificial set 3 Expected results .. 33

Table 3-13 Artificial set 3 Results ... 33

Table 3-14 Comparison of critical points .. 33

Table 4-1 Comparing variables ... 40

Table 6-1 JPlag groups in TCP homework ... 51

Table 6-2 Barrister groups in TCP homework ... 51

Table 6-3 JPlag groups in UDP homework .. 53

Table 6-4 Barrister groups in UDP homework .. 53

file:///E:/Bachelor%20thesis.docx%23_Toc483469912
file:///E:/Bachelor%20thesis.docx%23_Toc483469913
file:///E:/Bachelor%20thesis.docx%23_Toc483469915
file:///E:/Bachelor%20thesis.docx%23_Toc483469916
file:///E:/Bachelor%20thesis.docx%23_Toc483469919
file:///E:/Bachelor%20thesis.docx%23_Toc483469920

 BARRISTER FRYC, JIRI

 PROJECT INTRODUCTION 5/22/17

 PAGE 14 OF 64

1 Project Introduction
Plagiarism, the use of another author´s works, is considered as one of the biggest problems in

education. Source codes, texts, and others works are plagiarized to complete assignments,

homework or even final exams. Fighting plagiarism in some areas became tough in last twenty years

due to the expansion of the Internet, electronic communication and repository like websites.

Without the use of automatic detection, teachers cannot handle verifying each of the student's work

against each other (some courses contains 100+ students) or the Internet. So there is a need for semi

or fully automated system.1

This bachelor thesis deals with an implementation of Barrister2, system that would detect

plagiarism in a supplied source codes. We chose this theme after a one month of discussion between

several departments on CTU FEE. Firstly we wanted to create a cloud for testing students

homework’s, heavily focused on performance and code quality testing, with easy to use API for

teachers to develop their tests. However, many departments were against it for numerous reasons,

mostly they were afraid that we would leave backdoors for other students, but as we can find on

http://stm-wiki.cz, their current testing software has already many backdoors which are left

untreated for years.

So after that, we (me and Michal Roch, who represent CTU CZM) came with the idea of

plagiarism detection software. Currently (in the year 2016) there are not as many publicly accessible

tools, which are focused on this problematic. The aim of this project is to analyze and develop a

solution for detecting plagiarism inside the source code, in other words, found source codes that are

high likely duplicates of the one another.

1.1 Document structure
This paper is separated into nine chapters. 1introduces the reader to this project and

problematics around plagiarism and its detection inside the source code. 2 contains an analysis of

reasons for plagiarism, methods for detecting plagiarism and others problems surrounding

1 If you, as a reader, don’t believe that plagiarism is one of the biggest problems in education

and you are from CTU FEE then I recommend visiting http://stm-wiki.cz (website is only in Czech

language) before reading further. It could change your perspective on this topic.

On this website, you will find how well organized students (of the study program STM on the

CTU FEE) are, when it comes to sharing information about tests, homework´s, etc. Also, this website

has up to 10 years history of the courses.

(But on the other side this website is better organized, regarding information about courses, that any

website created on CTU FEE)

2 Name of the project “Barrister” was taken from the jurisdiction of England, where job

Barrister is described as: “A barrister, who can be considered as a jurist, is a lawyer who represents a

litigant as an advocate before a court of appropriate jurisdiction. A barrister speaks in court and

presents the case before a judge or jury.” [15]

http://stm-wiki.cz/
http://stm-wiki.cz/

 BARRISTER FRYC, JIRI

 PROJECT INTRODUCTION 5/22/17

 PAGE 15 OF 64

plagiarism. At the end of this chapter, we also take a look at major problems in detection and

common techniques to obfuscate plagiarized source code.

3provides a comparison of current services for plagiarism detection, based on artificial

testing sets of source code and also real students source code obtained from several courses taught

at CTU FEE. 4outlines how testing lifecycle in Barrister works. 5 is more technical, maybe not so much

interesting for people without programming skills, it is describing the implementation of the

Barrister. 6informs about the result of the Barrister testing.

7is above the scope of this assignment. This chapter contains a newly proposed algorithm for

plagiarism detection. It differs a lot from current algorithms and could be viewed as active when

compared to current algorithms. 8describe future of this project. 9 contains conclusion about this

thesis and future steps I will be making in this field.

1.2 Plagiarism
According to Merriam-Webster website word “Plagiarize” has meaning [1]:

• AS TRANSITIVE VERB

o TO STEAL AND PASS OFF (THE IDEAS OR WORDS OF ANOTHER) AS ONE'S OWN

o USE (ANOTHER'S PRODUCTION) WITHOUT CREDITING THE SOURCE

• AS INTRANSITIVE VERB

o TO COMMIT LITERARY THEFT

o PRESENT AS NEW AND ORIGINAL AN IDEA OR PRODUCT DERIVED FROM AN EXISTING SOURCE

What do we consider as plagiarism?

• Turning in someone else´s work as own.

• Copying parts or ideas from someone else work without giving credit.

• Giving incorrect information about the source of a quotation.

• Copying multiple small parts so that it will constitute together a larger part of code.

• Changing parts but copying the structure of someone else works without giving credit.

On the contrary, we do not consider as plagiarism following:

• Consulting assignment with the teacher.

• Using own older work, but this should be ideally stated it inside of the work.

Also, we should say that in this terms exist gray zone, under which we can found following:

• Consulting assignment with others students or people from uninterested parties.

o We do not see this as a major problem if and only if they are consulting only a small

part of the assignment, for instance, if they are stuck or don’t fully understand what

they should do.

• Searching for a solution online.

o This is becoming a problem in last years. Students often can solve assignment by

“gluing” together code from multiple posts, for instance on stackoverflow.com,

which solve part of given assignment.

• Sharing/taking advice from other students.

o To some extent, this should not be considered as plagiarism.

 BARRISTER FRYC, JIRI

 PROJECT INTRODUCTION 5/22/17

 PAGE 16 OF 64

Difference between source code and text regarding plagiarism detection
When we firstly started to research this topic, we found out, that many people believe that

source code plagiarism can be detected with services that are focused on plain (or formatted) text.

We agree that in some cases this method is sufficient, mainly if plagiarist copied the entire source

code and only changed few lines of code. However, in many cases, this is an entirely insufficient

method of detection.

This insufficiency is based on the main difference between text and source code, and that is how

is read (or executed in case of source code). We, as humans, read text from beginning to end, word

by word, line by line. We do not jump back and forth between paragraphs, words or lines. Of course

with some exception when we skip to some chapter that we are interested in, or we need to re-read

some section that we did not understand. Moreover, that is why we cannot simply reorganize or

replace paragraphs, lines or even words that easily, without changing the meaning of the larger part.

However, for the most of the source code types, mainly now in a time of OOP3, are executing

differently. Execution in OOP does not care about names (for instance names of the methods or

variables), entire bodies of classes can be reshuffled, and it will not change how source code execute.

For example, these operations do not alter (almost) anything about how OOP source code is

executing or compiling:

• Renaming functions, methods, classes, packages, variables, parameters.

• Adding or removing whitespace characters (whitespace, new line).

• Reshuffling body of classes

o Switching positions of methods and variables

• Reshuffling body of methods or functions

o Not every part of body can be reshuffled without changing context

As we can see, we can do a lot more with source code then can be done with text, based on this

we will need a much more accurate algorithm that will be able to see through those changes.

Exceptions

As partially implied, some types of source code, for instance, procedural
programming that dreadfully depends on line ordering, are similar to text and
therefore tools for text plagiarism detection are more likely to succeed for them,
then for OOP and functional programming.
This was not proven, so take it only as a deduction, based on how detection
algorithm works.

3 Object oriented programming

 BARRISTER FRYC, JIRI

 PROJECT INTRODUCTION 5/22/17

 PAGE 17 OF 64

Types of plagiarism inside source code
As we can see in Figure 1-1 Plagiarism types, we can divide plagiarism to multiple types. In

most cases, we will either see a significant part of code same as original or combination of at least

two of others types. This division should be taken only as basic labeling, that will be further extended

in next chapters.

Magnitude of plagiarism in education
The extent of plagiarism in education is an extremely sensitive topic for both parts, students,

and teachers. Students will not admit that they cheat because of fear of punishment, possibly even

due to the conscience. Teachers also won´t acknowledge that students cheat during homework our

tests so that it would not encourage more students.

As stated in Chapter 3, Section E I had access to students source code that they submitted,

and on average there are five to ten students from one hundred that copy another student work. (I

do not count approximately another five students that have very similar work to another student,

but on closer look, we can see that they heavily edited entire source code.) Based on that, we know

that approximately 10% of students use plagiarism on the CTU FEE.

Personal note as a student

This is a rather personal note, and I do not want to blame anyone specifically, but
each year I see on the final exam someone with the mobile phone under the table.
There is a significant lack of surveillance during final exams that would detect and
punish them. Alternatively, in some cases, those students are even ignored by
supervisors of the exam and by that they get away with it.
As a student, who does not ever cheated during the final exam, this is highly
demotivating. Moreover, highly demotivating is an understatement. Some
students cheated all the way during college. The only thing that is worst than that
is knowing that university is more trying to hide any evidence of cheating
students, then punishing them. They care more about public reputation and don’t
want to take necessary steps like changing results of the final exam or even
revoking bachelor/master degrees to punish students that were discovered for
cheating later.

Plagiarism
types

Exact copy

Large part of
code

Small part of
code

Modified copy

Structural
change

Renaming

Reformulation

Figure 1-1 Plagiarism types

 BARRISTER FRYC, JIRI

 PROJECT INTRODUCTION 5/22/17

 PAGE 18 OF 64

Students source code in contrary to advanced programmers source code
As one of the Czech proverbs states “Zvyk je železná košile.” (In English closes proverb would

be “Habit is a second nature”). There is one crucial difference, apart from skill level, between

students who started programming and programmer who spend thousands of hours programming.

Advanced programmers have his habits and preferences. Students, on the other hand, does

not and their code style and code quality change rapidly. Lack of habits makes almost impossible to

detect source code plagiarism based purely on his coding history. So in Barrister we will not focus any

afford in this way of detection. (This could still be beneficial for example in companies)

Student plagiarism in opposition to industry plagiarism
As we can see in Annex A most of student´s code is one relatively short file. When they try to

copy another student's code they mostly take an entire file and only slightly change it (obfuscated it).

When we deal with industry or large project plagiarism, then we can in most cases see an entirely

different pattern. In most cases, plagiarism happens on the small part of code.

Some companies take industry plagiarism to the extreme, like for instance Oracle with their

lawsuit against Google from the year 2012, where they suited Google for 9 billion dollars claiming

that Google stole nine lines of code. Code bellow is the one they say was stolen:

private static void rangeCheck(int arrayLen, int fromIndex, int toIndex {

 if (fromIndex > toIndex)

 throw new IllegalArgumentException("fromIndex(" + fromIndex +

 ") > toIndex(" + toIndex+")");

 if (fromIndex < 0)

 throw new ArrayIndexOutOfBoundsException(fromIndex);

 if (toIndex > arrayLen)

 throw new ArrayIndexOutOfBoundsException(toIndex);

}

By this example, we want to show how some accusations of plagiarism can be absurd.

Therefore the Barrister will only focus on plagiarism where we can say with high certainty that given

files are a copy of some other work. We do not want this work to start witch hunts between students

and teachers.

Unintentional plagiarism
Over the last few years, we saw huge grown of websites like Stack Overflow that serves for

solving problems with programming and many other parts of IT. Plenty of students uses it for

discussing problems with source code, searching for solutions, learning, and general discussion.

Community on this website mostly refuse to solve their entire homework’s and quickly remove posts

that are asking for this so students cannot get quick solution for their homework, but there is also

another problem. Moreover, that is if we look at the source code as an instrument for solving tasks,

that we can split to numerous sub-tasks. For instance, if some task should solve the mathematical

equation and write it to file, then we could have two smaller sub-tasks calculating mathematical

equation and writing an integer to file. This sub-tasks could be easily found solved on Stack Overflow.

If many students do this, then they source code will be highly likely similar. This type of plagiarism we

considered as unintentional, based on the same source where students were searching solutions for

some of the fundamental sub-tasks.

 BARRISTER FRYC, JIRI

 PROJECT INTRODUCTION 5/22/17

 PAGE 19 OF 64

1.3 General requirements
General requirements are our expectations from this project and key points for

implementation.

Local testing
All testing need to be done locally, so students personal information and source code will not

leave school to the third party services. Local testing is also necessary from a legal point of view.

Open source
This project should be open source so anyone can reuse it another system or extend it by

new ways of a testing. The ideal license would be AGPLv3 [2] because its handle open-source usage

for services used in the background of another publicly available software.

Security by obscurity

Some people on CTU FEE objected against open sourcing this system, as it will be utilized for

detecting plagiarism on our faculty, mostly because they like the idea of security by obscurity. In

other words secrecy of the design or/and implementation as one of the main method of providing

security. By this, they hide theoretical or even actual security risks and vulnerabilities and believe

that it is sufficient for preventing a successful attack.4

Adjustable
The Barrister should be configurable per each run, preferably via XML file and with default

sets of values, that should be ideal for most cases of testing.

Easily parseable results
Results should be easily and speedily readable by another service. Human readability is not

the key point of this service.

Runnable from console
The Barrister should be runnable from console or accessible as server service. So it can be

usable by another service without manual setup/run by users.

Multithreading
The Barrister should use multithreading for performance gain. Moreover, in future for easier

transmission to CUDA calculating.

4 Personally I don’t believe that for the most of systems used in an education it is a good idea.

Yes there is greater risk of exposing vulneraries, but also students can help to develop and maintain

these systems or learn from them.

I would rather experience successful attack against mine system and have an open discussion

with student who successfully penetrated security, without any punishment for him (if he didn´t try

to hide the facts that he attacked the system), then hide everything, be closed to discuss problems

with system and hope that nobody is abusing some of the bugs.

 BARRISTER FRYC, JIRI

 PROJECT INTRODUCTION 5/22/17

 PAGE 20 OF 64

Low requirements on system
The Barrister should have low requirements and manage to perform with limited resources.

Low requirements are needed because Barrister will run as a service in the background, possibly

multiple instances of the Barrister will be running at the same time.

Multiplatform
The Barrister should be runnable on main platforms like Windows, Linux, and Mac without

any difference in test results. Multiplatform support should be ensured by using strctfp parameter

for all floating points operations and united access to file system.

 BARRISTER FRYC, JIRI

 ANALYSIS 5/22/17

 PAGE 21 OF 64

2 Analysis
The analysis is a foundation of every successful project. It helps us determinate possible risks,

understand what is excepted from the project and how we should proc in fulfilling this excepted

functionality.

At the beginning of this chapter, we will find the small survey on reasons behind plagiarism.

Section B is about methods for detecting plagiarism inside the source code. Section C gives an

overview of the current services that are used for detecting plagiarism. Section D is this analysis of

student codes from several courses on the CTU FEE. Moreover, last two sections are about major

problems in detecting and various techniques that students use for obfuscating plagiarism.

2.1 Survey on reasons for plagiarism
Before the actual start of the analysis, a small survey was performed to determinate reasons

why students plagiarize source code. Expected benefits of this survey are a better understanding of

students who plagiarize and why.

The survey was performed in the form of a personal interview between students of CVUT

FEL; all participating students wanted to remain anonymous. 15 students that conveyed survey

confirmed that they cheat. In table and chart below we can find results.

Reason Student count

Stuck on some problem inside code 6

Stuck on problem with testing server 4

Not knowing how to solve assignment 2

Not enough time 2

Laziness 1
Table 2-1 Survey results

 BARRISTER FRYC, JIRI

 ANALYSIS 5/22/17

 PAGE 22 OF 64

Stuck on problem with testing server
From my personal experience is this specific to a few courses on CTU FEE that are running on

old or insufficient testing services, require specially adapted students code to function properly. It

would help to extend documentation for that homework.

Laziness
Laziness should be self-expletory. The student was too lazy or too disinterested in the course

to even try to complete homework and immediately went to find the easiest way to complete the

assignment.

2.2 Methods for detecting plagiarism in source code
All current methods of detection are based on methods that were firstly developed to for

different purposed. Mostly for comparing texts or others forms of data. The University of Sheffield

written several publications that were also used for improving search algorithm in Google. [3]

Passive metrics
Passive metrics are used with source code file without executing source code. We simply

parse the file and test it via these metrics.

• String similarity

• Token similarity

• Variable counting

• Operator counting

Not enough time
13%

Laziness
7%

Not knowing how to
solve assignment

13%

Stuck on some problem
inside code

40%

Stuck on problem with
testing server

27%

SURVEY RESULTS

Figure 2-1 Survey results

 BARRISTER FRYC, JIRI

 ANALYSIS 5/22/17

 PAGE 23 OF 64

Active metrics
Active metrics need to see source code during entire execution. Furthermore, the execution

has to be 100% same for all tested files. This metrics can be tricky especially for speed measurement

because it is hard to ensure that any other application will not use system resources during the test.

• Speed measurement

• Memory footprint

• Call graph

• Number of loops and conditionals

String similarity
For string similarity, we can use several algorithms. Most commonly we use Hamming

distance or Levenshtein distance. That are basic and see how many bits were changed. For

comparing small parts, for instance, comments from source code is also used Sørensen–Dice

coefficient. This coefficient has several advantages over other ones. Is often used in Lexicography as

a tool for detecting semantic, syntagmatic and paradigmatic relations. [4]

Token similarity [5]
The token similarity is similar to string similarity with few changes. We do not look at the

source code as a bunch of lines and characters, but we replace it for tokens by assigning each part of

language syntax own token, for example:

Syntax | Token

If | 0

Else | 1

else if | 2

try | 3

+= | 4

== | 5

After that, we do string similarity but with generated token arrays. Those tokens will give us

much more precise results, because during tokenization we lose some information from source code,

like whitespaces, names of variables and few others. This loss of some information is a good thing

because reorganization and renaming of variables are most common practice during plagiarism.

Variable counting
Variable counting metrics is based on the idea that many students only rename and

reorganize source code but leave some variables inside classes and methods. same. Based on that we

can assume that we will find the same number of the variable of given type in both codes, original

and plagiarism. [6]

Operator counting
Similar to variable counting, only with operators instead of variables.

Call graph and Speed measurement
A call graph is a representation of calling relations inside the application. A node represents

methods and edges calling between them. The only problem is that using this in plagiarism is very

problematic; we would have to plug in testing itself so we can observe these calls. Also, we would

have ensured that no random data are processed, so each application behaves same. [7]

 BARRISTER FRYC, JIRI

 ANALYSIS 5/22/17

 PAGE 24 OF 64

 Speed measurement coexists with call graph but only cares for how much time each

call need to completion.

From | To | Calls | Time

Player.Main() | Car.MoveForward() | 20045 calls | 0.12s

Player.Main() | Car.SteerLeft() | 693 calls | 0.54s

Player.Main() | Car.Brake() | 358 calls | 0.06s

Memory footprint
We used outside measurement of program memory usage during execution in a contrary to

speed measurement when we measured the required time for each call to complete. We take

samples each few milliseconds and create footprint graph.

2.3 Current software solutions for plagiarism detection
Current solutions for Java language are JPlag, Moss, Sherlock, Plaggie, SIM. Currently, only

JPlag and Moss are being used in the broader range. Sherlock, Plaggie, and SIM were not maintained

in years, and most of the people are avoiding them without giving them a chance. Full information

about these software’s can be found in 3. We did not include any other because there aren’t any or

are only forks of JPlag with small to none adjustments.

2.4 Analysis of students codes
We got access to students homework from three different courses (A7B01OMO, A7B36PSI,

and A7B01DSA). Totally almost 2000 unique files. Firstly we tested them in JPlag so we could have a

better idea which students have matches and are therefore interesting for manual investigation.

After that we also wanted to test these files in Moss, but because Moss is external service I have to

obfuscate any personal information that could be present in these data. So we created Python script

for removing any personal information (names and emails) from names of the files and their content.

This python script can be found on attached CD.

During the manual examination, we discovered that some students do not even bother to

delete original author name from the file name or comments inside the code. As Ing. Jan Kubr told us

some international students with little knowledge of Czech language were also caught because they

used in comments perfect Czech language. Other think we found out was that results of JPlag and

Moss are almost same with only a few exceptions.

From what we saw only interesting results are over 75% match score, under it, we discover

only one or two homework that is possibly plagiarism, but students went a long way in rewriting

them so only a few lines remained same. Between 75% and 85% match score, we found only one

false positive, other files were plagiarism. Therefore for fully automated testing, we would

recommend setting that would mark as plagiarism files with over 85% match score, with manual

checkup of marked files I would recommend setting that would mark files with over 70% match

score. Also please note that for fully automated testing we need to take in consideration students

that repeat the course and therefore is high likely they will use their homework from last time they

have taken this course.

 BARRISTER FRYC, JIRI

 ANALYSIS 5/22/17

 PAGE 25 OF 64

2.5 Biggest problems in detecting plagiarism
Code length
The main issue in detecting is the length of homework. Some homework are short and

because of that is high like that they will contain very similar code. Ideally, homework should have at

least 200 lines of code.

For example, let’s say that we give students homework which they can solve through roughly

200 lines of code. Here we can probably (based on homework complexity) say that students who

created original homework will have between each other around thirty to seventy percent match.

Homework that would require 400 lines of code would create matches between twenty to sixty

percent match.

Figure 2-2 Rough estimations of relation between code length and match of two originals

Code complexity
Code complexity is another issue, if students are just starting out with programming they

only knew a small piece of language syntax and will produce similar results, then programmers that

know different OOP styles and actively use them.

Common parts of code
Common areas of the code can be divided into two groups. The first group includes things

like importing standard packages and others language common parts. The second more interesting

group contains given the structure of code by assignment. For instance, if we have homework that

requires implementing:

interface List<T>

{

 public T get(int index);

 public void set(int index T item);

}

0

10

20

30

40

50

60

70

80

90

100

10 50 100 250 500 750 1000 2500 5000 10000

Match between two originals based on code lenght

Match

 BARRISTER FRYC, JIRI

 ANALYSIS 5/22/17

 PAGE 26 OF 64

Then we know that all students will have a class that implements List<T> and also has methods get

and set with same parameters and return types. This means that we should have some system that

will take this part of the code and remove it.

For instance, Moss remove all code that is present in over 50% of students files from detection.

From our point, this is highly dangerous if the student did found out. They would simply all handed in

same code knowing that Moss will find nothing. On the contrary JPlag in this situation require access

to files with common code and use them to filtering them out of students files.

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 27 OF 64

3 Current software solutions
This chapter is focused on current software for detecting plagiarism. As stated in the last

chapter we did not include any other software because there aren’t any or is the only fork of JPlag.

Firstly we take a look at information about all software´s and then we will compare them against

each other. Then on data sets that were specially created for this comparison and then test itself.

3.1 JPlag
License GPL v3 (Open source)

Supported languages Java, C#, C/C++, Scheme

Supported version - Java 1.1, 1.2, 1.5, 1.5dm, 1.7

 - C# 1.2 (One of the first version of C#, Inadequate)

 - C/C++ Insufficient information

Others supported compares Text compare, char stream compare

Website https://jplag.ipd.kit.edu/

Source code https://github.com/jplag/jplag

Version used for compare 7e0efe941a5b7ca966aa5f53ebade33e75203b7c (commit)
Table 3-1 JPlag information

Currently (3.2.2017) JPlag is, together with Moss, one of the best software for detecting

plagiarism in Java, unfortunately, have many problems, for instance, all calculations are only one

threaded and have an issue with maintenance.

3.2 Moss
License Unknown

Supported languages C, C++, Java, C#, Python, Visual Basic, Javascript, FORTRAN,
ML, Haskell, Lisp, Scheme, Pascal, Modula2, Ada, Perl, TCL,
Matlab, VHDL, Verilog, Spice, MIPS assembly, a8086
assembly, HCL2

Supported versions Insufficient information

Others supported compares None

Website https://theory.stanford.edu/~aiken/moss/

Source code Close source

Version used for compare Version from May 18, 2014
Table 3-2 Moss information

Moss is offering by far the largest selection of supported languages for detecting plagiarism.

Unfortunately is close sourced and all files intended for testing must be uploaded to Stanford

servers. This could be problematic with Data Protection Acts and others laws because we hand over

students intellectual property to the third site. Furthermore, is not stated which versions of

languages are supported and how precisely their engine work (security by obscurity).

https://jplag.ipd.kit.edu/
https://github.com/jplag/jplag
https://theory.stanford.edu/~aiken/moss/

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 28 OF 64

3.3 Sherlock [8]
License GPL v2

Supported languages Java, C++, others languages in “basic/text mode.”

Supported versions Insufficient information

Others supported compares Tokenization and text control, but with highly complex
configuration

Website https://www2.warwick.ac.uk/fac/sci/dcs/research/ias/softwar
e/sherlock/

Source code On website above

Version used for compare Last version from the year 2003
Table 3-3 Sherlock information

3.4 Plaggie [9]
License GPL v1

Supported languages Java

Supported versions Insufficient information

Others supported compares None

Website https://www.cs.hut.fi/Software/Plaggie/

Source code On website above

Version used for compare Last version from the year 2006
Table 3-4 Plaggie information

Plaggie describes itself as highly similar to JPlag with the user interface. However, in last 11

years did not receive any upgrade or maintenance. Therefore for our usage is not favorite. We are

interested only in XML output; the user interface is not needed.

3.5 SIM [10]
License Open-source (unspecified)

Supported languages C, C++, Java, Pascal, Modula-2, Miranda, and Lisp

Supported versions Insufficient information

Others supported compares None

Website https://dickgrune.com/Programs/similarity_tester/

Source code On website above

Version used for compare 3.0
Table 3-5 SIM information

SIM is possibly one of the oldest implementation for detecting plagiarism, unfortunately in

last twenty years did not receive any update.

https://www2.warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
https://www2.warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
https://www.cs.hut.fi/Software/Plaggie/
https://dickgrune.com/Programs/similarity_tester/

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 29 OF 64

3.6 Data used for comparison
For comparison, we created special artificial sets that are focused on many aspects of

plagiarism detection. These sets can be found on attached CD.

Artificial set 1
Artificial set 1 is for comparison of detecting capabilities between changed versions of

original and original. This set was made from the solution for homework from course A7B36PSI on

topic UDP communication. Selected was mainly because:

• Sufficient number of rows

• Commented code

• Subclasses

• Solution use package java.nio.*, which can be replaced with java.io.* without larger need to

change the structure of the code. This will allow testing detection of changed technology

without changing the structure.

• Changed code can be tested for validity and that they will manage to finish a task.

File Description

p00_original.java Original file

p00_original_copy.java Copy of the original file

p01_without_comments.java Without comments (further only _wc)

p02_empty_lines_wc.java Without empty lines

p03_converted_to_one_line.java Without empty lines and converted to one line

p04_var_renamed_wc.java Renamed variables

p05_var_and_methods_renamed_wc.java Renamed variables and methods

p06_method_order_change_wc.java Changed order of the methods inside classes

p07_method_lines_order_change_wc.java Changed order of the body of the method while
maintaining functionality

p08_order_change_wc.java Changed order of the methods and their bodies while
maintaining functionality

p09_dummy_code_insertion_wc.java Dummy code inserted to the bodies of the methods

p10_dummy_code_insertion_2_wc.java Dummy code inserted. New classes and methods (never
called).

p11_dummy_code_insertion_3_wc.java Dummy code inserted to the bodies of the methods and
creation of new classes and methods (always called
from non-dummy code)

p12_changed_comments.java Changing content of the comments.

99_rewrite_to_io.java Rewritten code to the java.io package
Table 3-6 Artificial set for testing 1

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 30 OF 64

Artificial set 2
Artificial set 2 is for testing how well software solutions ignore fundamental parts of code

and code from a homework assignment.

File Description

i00_imp_0.java

These four files contain different empty class but same
package imports.

i00_imp_1.java

i00_imp_2.java

i00_imp_3.java

ixx_task.java Assignment

i01_ imp _0.java,
i01_ imp _1.java

Structure from assignment, different implementation.

i02_ imp _0.java,
i02_ imp _1.java

Structure and comments from assignment, different
implementation.

i03_ imp _0.java,
i03_ imp _1.java

Structure and comments from assignment, but both files
contains same changes to comments.

i04_imp_0.java,
i04_imp_1.java

Source code from auto-generation of GUI, same tool (IDEA)
used, but both files are original.

Table 3-7 Artificial set for testing 2

Artificial set 3
Artificial set 3 is for comparison of capabilities to test short assignments. Each of these files is

considered as “original, ” but the source code was still written by me, in other words, a one person

that has known all of the other files content. So this should not be viewed from a distance.

File Description

s00_first_student.java First original file

s01_second_student.java Second original file

s02_third_student.java Third original file
Table 3-8 Artificial set for testing 3

3.7 Comparison
Computer used for testing

Computer part

CPU Intel® Core™ i7-4790K

GPU MSI GeForce GTX 1070 SEA HAWK

SSD Samsung 850 EVO 500GB

MB MSI Z270 TOMAHAWK

RAM 32GB

Internet connection Download 300Mb/s Upload 150Mb/s

Operating system Windows 7 64bit

JVM Oracle JRockit JVM
Table 3-9 Computer used for testing

Testing was done on my private computer, that I mainly use for programming, games and in the

past for cutting videos. In days when was this thesis written are these specs almost high-end.

Internet connection is stated because Moss run only on third party servers. During testing, all

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 31 OF 64

nonessential process was terminated. We also use tuned version of Oracle JRockit JVM, but this

should not create a difference in results of the testing. This version used strict garbage collector and

modified how and how much memory get each thread.

Test runtime
All test run with strictfp on for every floating point operation. This should create stable

results amongst all operating system, JVM, and computer configuration.

Strictfp defines how should floating point operation be executed and how should be floats

and doubles stored in memory. Without it, it would be on JVM and operating system to decide how

they will handle it. Moreover, it would create slightly different results on different configurations.

Strictfp was activated via parameter ‘-XX+:-StrictFP’

3.8 Results
Artificial set 1
In the table below we will find only results that didn’t produce 100% match in all software´s.

Subject A Subject B JPlag Moss SIM Sherlo
ck

Plaggi
e

p00_original.java p09_dummy_code_insertion_wc 94% 95% 100% / X

p00_original.java p11_dummy_code_insertion_3_
wc

88% 85% 98% / X

p00_original.java p07_method_lines_order_change
_wc

92% 90% 92% / X

p00_original.java p06_method_order_change_wc 86% 88% 91% / X

p00_original.java p08_order_change_wc 83% 85% 88% / X

Plaggie

Testing failed without producing any results. This happened because of the unsupported

syntax of Java 1.7 and above. More precisely testing failed because of this line:

Int a= 2_000;

This line of code was contained only in one file, yet testing failed completely, influencing all

files.

Sherlock

Sherlock testing is little special, he had similar token test results as JPlag, Moss, and SIM but

he also calculated “normalize results” that were around 5% for all tests, after that Sherlock calculated

an average value between normalize and token results, creating results around 55%.

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 32 OF 64

Artificial set 2

First subject Second subject Match Description

i00_imp_2 i00_imp_1 100% Same files.

i00_imp_2 i00_imp_0 <50% Only imports are the same.

i00_imp_0 i00_imp_1 <50% Only imports are the same.

i00_imp_0 i00_imp_3 ~80% Same imports, but line ordering inside methods is
different.

i01_imp_0 i01_imp_1 <60% Files are differently implemented and only
structure from the assignment is same.

i02_imp_0 i02_imp_1 <60% Files are differently implemented and only
structure and comments from assignment is same.

i03_imp_0 i03_imp_1 <60% Files are differently implemented and only
structure and comments from the assignment are
same. Moreover, comments contain same
changes.

i04_imp_0 i04_imp_1 <60% Two different files only generated by same tool.
Table 3-10 Artificial set 2.i00 Expected results

First Second JPlag Moss Sherlock SIM Plaggie

i00_imp_2 i00_imp_1 100% 99% 88% No match 100%

i00_imp_2 i00_imp_0 49.2% 79% 73% No match 43.1%

i00_imp_0 i00_imp_1 49.2% 79% 73% No match 43.1%

i00_imp_0 i00_imp_3 26.1% No match No match No match 38.1%

i01_imp_0 i01_imp_1 67.6% 58% 78% 77% 23.9%

i02_imp_0 i02_imp_1 65.6% 57% 85% 76% 13.9%

i03_imp_0 i03_imp_1 65.4% 57% 80% 76% 13.9%

i04_imp_0 i04_imp_1 90.7% 92% 54% 98% 82.6%
Table 3-11 Artificial set 2 Results

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 33 OF 64

Artificial set 3

First subject Second subject Match Description

s00_first_student s02_third_student <70% Files are differently implemented but with
same technology.

s00_first_student s01_second_student <50% Files are completely differently
implemented.

Table 3-12 Artificial set 3 Expected results

First Second JPlag Moss Sherlock SIM Plaggie

s02_third_student s00_first_student 67.6% 38% 63% 35% 40%

s01_second_student s00_first_student 0% 22% 0% 65% 0%
Table 3-13 Artificial set 3 Results

Comparing critical points

 JPlag Moss Plaggie Sherlock SIM

Launchable from console ✓ ✓ ✓ ✓ ✓

Active development ✓ (partially) ?   

License GPL v3 ? ? GPL v2 GPL v1

Support Java 1.8  *   

Documentation ✓    

Open source ✓  ✓ ✓ ✓
Table 3-14 Comparison of critical points

* Detected in testing

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 34 OF 64

3.9 Main issues
There are only two problems that were found during comparison of those software. One is

highly connected to the fact that three of those software´s weren´t updated in more than ten years.

Code duplicity
One of the most serious flaws in all mentioned software is a propensity to ignore code

duplicities. In another world, if a student takes someone else code and inserts it three times to his

empty file then detection software would found only 33% match. This is possibly exploitable by

students.

Version difference
As we can see mainly in SIM results, thanks to 20 years without maintenance Java changed

too much, and now SIM gives highly untrustworthy results. Same partially apply for Plaggie and

Sherlock.

There are two different approaches how to solve this at least partially. First, is ignoring

unknown parts of source code, this method is used inside Plaggie, SIM and Sherlock (possibly even

Moss, but without access to source code behind Moss we cannot be sure). As we can see on results,

this option is not working that well. The second approach is trying to replace unknown parts of

syntax inside source code by anonymous tokens. This approach is used by JPlag and partially solves

problems with unknown syntax. Partially because of this only work if changes in syntax between the

version of language inside source code and version of language supported by software are small

because the software does not know the relation between different anonymous tokens or

anonymous tokens and normal tokens.

Uncompilable code
The uncompilable code was not tested because it is not important for this work. Plagiarism

testing on CTU FEE is run only on fully compilable source codes after they were tested for

functionality inside Moodle or BRUTE.

Figure 3-1 Code duplicity

 BARRISTER FRYC, JIRI

 CURRENT SOFTWARE SOLUTIONS 5/22/17

 PAGE 35 OF 64

3.10 Conclusion
In this section, we would like to start with reasons for rejecting each of the tested systems

and after that describe reasons for choosing a winner. Mainly because all of the tested systems

performed above expectations in the most of the areas and were rejected only for few reasons.

Reasons for rejecting Moss
Rejecting Moss was not easy, all things considered, it would be probably the winner for

private testing thanks to highly precise results, but few things made this system inapplicable for CTU

FEE, Prosecutor:

• Close-source

• Remote testing on third party site

o We would have no idea what is happening with students personal information.

• Dependency on third party servers

o We would not have any control over service availability

o They could shut down Moss indefinitely

• Inadequate documentation

Reasons for rejecting Plaggie, SIM, and Sherlock
Main reasons for rejecting Plaggie, SIM, and Sherlock, were similar, all of them are pretty old

and unmaintained. They first versions were written over fourteen years ago. That would make

creating improvements difficult, especially because they use their parser with languages support for

versions from that time.

Reasons for choosing JPlag
JPlag and Moss are only one that is actively developed to this day. Unfortunately, Moss is

close-source and that leaves us with JPlag, which also have relatively good results.

 BARRISTER FRYC, JIRI

 TEST LIFECYCLE 5/22/17

 PAGE 36 OF 64

4 Test lifecycle
Test lifecycle describes how testing proceed from begging to end. So we can see each step

and understand what that step do and why is needed in lifecycle. This chapter is closely connected

with next chapter about implementation. (Because implementation implement this lifecycle to

Barrister)

UML 4-1: Lifecycle of testing in Barrister

 BARRISTER FRYC, JIRI

 TEST LIFECYCLE 5/22/17

 PAGE 37 OF 64

4.1 Parsing configuration file

Structure and content of configuration file and his scheme are described in

XSD files that can be found on attached CD.

As the first step of the test is parsing provided configuration file, this is accomplished by JAXB

library that read the configuration file and parses it to Java classes/entities. These entities are easily

reusable inside the entire application.

If the configuration file is not valid against XML schema, that test ends without generating report

file; this is one of only two reasons that can cause Barrister not to produce anything and therefore

forcing the user to look at console/log output. This is because we need a configuration file to

determine where we should generate report file. The second reason for not generating report file is

that during preparation step we found out that output location is nonwritable.

4.2 Preparing testing environment
This step can be divided to:

• Testing if we can create and write result file.

o The optimization that we do not end up after half an hour test with a message saying

that we do not have rights to write to this location.

• Setting up strictfp

• Validating file locations stated in the configuration file.

• Preparing multithreading

4.3 Tokenization
Tokenization is separated into three steps, or four if we count reading the file. As shown in

figure 4-1, a stream of characters goes into Lexer that generates word tokens which are sent to the

Parser.

The parser then transforms it to parse tree. Some systems use parse tree directly but in Barrister we

use an additional step, and that is Walker, which lets us filter out unwanted code.

Figure 4-1 Tokenization

 BARRISTER FRYC, JIRI

 TEST LIFECYCLE 5/22/17

 PAGE 38 OF 64

For instance trailing “;” or:

import java.util.*; //This is contained in almost every student's code in Java. For

plagiarism check, it does not say anything.

The best way to imagine the difference between Lexer and Parser is that Lexer
work on “word level” and Parser work on “grammatical level.”

Example of tokenization
The entire process of tokenization can be somewhat difficult to grasp, especially for users

who do not know much about interpreted languages such as Python, or process of compilation for

languages like Java, C#, C++. So it will be best to describe the process used to tokenization in Barrister

for example. This example is in pseudo-code and only contain few lines for simplicity, but should give

us overview over the entire process.

Input file

Let’s expect that we have this file, which we want to tokenize:

this.X = 1000;

X = 1_000;

X=1000;

this.X = 1_000;

1000 >> this.X;

Lexer
Lexer splits file to word tokens. This splitting have many rules, some of them are based on

programming language, for instance in most cases comments inside source code aren´t converted to

word tokens but instead are stored separately, but in PHP some parts of comments are kept because

they act as method/class/variable annotations describing how they should be interpreted. Also, all

whitespace characters are removed unless they are inside string. So all lines from our example except

for the last one will be converted to this “chopped” array:

X|=|1000|;|

However, as stated the last line is different, and Lexer will convert it to this:

1000|>>|X|;|

Moreover, that is one of the main reasons why we also need Parser. Others reasons are for

instance shuffling operators in boolean logic:

a && b || c

b && a || c // This lane has same logic meaning as the first line

a && c || b // This lane has different logic meaning than first and the second line

c && a || b // This lane also has completely different logic meaning then all above

This is commonly used by students to hide plagiarism, as found out by examination of

students codes (Appendix A). Possibly because they understand the Boolean logic from others

(mathematics) courses, but doesn’t understand others parts of programming.

 BARRISTER FRYC, JIRI

 TEST LIFECYCLE 5/22/17

 PAGE 39 OF 64

Parser
Parser convert code from Lexer to something that we call parser tree, this tree as showed on

figure bellow contains ordered tokens from Lexer in a meaningful way.

Figure 4-2 Parser tree

Walker
Walker simply “walks” true parser tree and calls API of the external program. Barrister is

connected on this level, but he is listening to the only part of calls. For example, we do not listen to

comments blocks because we handle them separately. An example of calls for parser tree above:

enterStat(StatContext);

enterAssign(AssignContext);

enterExpr(ExprContext);

exitExpr(ExprContext);

exitAssign(AssignContext);

exitStat(StatContext);

Future recommendation

This step could be extended by the generation of pseudo-code, that could help in
the examination of flagged entities. Pseudo-code would make some similarities
more visible and made code readable even for less skilled programmers.

4.4 Comparing
Comparison algorithm is difficult to grasp at first. We need to define global variables, that

determinate for which range of matches we are looking for and how precise these matches has to

be. Then we move to processing stage, and after that, we also need post-processing to

Variables

Variable Typical values Description

min-match 40-60 (%) Minimal match between two
entities, expressed in
percentage

max-match 100 (%) The maximal match between
two entities, expressed in
percentage. Useful in some
scenarios on CTU FEE courses.

stat

assign

sp = 100

 BARRISTER FRYC, JIRI

 TEST LIFECYCLE 5/22/17

 PAGE 40 OF 64

sensibility 15-30 How much tokens we need to
create a matching group of
tokens.

error-margin 3 Maximum of unmatching
tokens in the matching group.

Table 4-1 Comparing variables

Processing
Processing that you can find two paragraphs bellow utilize variable from table 4-1 and should

give us idea how works. This outline of processing is taken directly from Barrister implementation

with only few reductions that serves only to performance optimalization.

As we can see on figure 4-3 bellow this algorithm is optimized by changed order of token

testing. After we compare first token we move to position of first token plus sensibility and error-

margin and make our way back, when we reach first token we continue from position of sensibility

with error-margin forward. This is because we know that some tokens are accompanied by others.

Thus tokens after first are more likely same. If we start from position of required sensibility we can

faster dismiss non matching parts of code.

1. Put all tokens from file A to stack S.

2. Select token Ta1 on top of the stack S.

a. If stack S is empty, then end comparison.

3. Find matching token Tbx to Ta1 from file B.

a. If such token does not exist, pop out Ta1 from stack S and repeat step 2.

4. Create matching group M and add matching tokens Tb and Ta1 to it.

5. Select token Tan where n=1+sensibility from file A and Tbs where s=x+sensibility from file B.

6. Compare tokens Tan and Tbs

a. If they do not match, then increase the number of errors.

7. If some errors are larger than error-margin:

a. Remove all errors from the end of the matching group.

b. If some matching pairs of the tokens are larger than sensibility:

i. Record matching group M

ii. Remove tokens in matching group M from stack S.

c. Else:

i. Remove token Ta1 from stack S.

d. Go to step 2.

8. Add a pair of tokens Tan and Tbs to matching group M.

9. Select tokens:

a. If n=1 or n>1+sensibility: n=n+1 and s=s+1

b. Else: n=n-1 and s=s-1

10. If such a tokens do not exist then:

a. If some matching pairs of the tokens are larger than sensibility:

i. Record matching group M.

ii. Remove tokens in matching group M from stack S.

b. Else:

i. Remove token Ta1 from stack S.

c. Go to step 2.

11. Go to step 6.

 BARRISTER FRYC, JIRI

 TEST LIFECYCLE 5/22/17

 PAGE 41 OF 64

Figure 4-3 Comparison order

Post-processing
Post-processing is used to get rid of all references to data and then to create output match

object that contains all matches from processing stage to this object we also attach console log that

was assigned to this processing.

4.5 Parsing results
This step is asynchronous focusing on calculating the percentage of matches and joining pairs

of files (comparisons A->B with B->A). Synchronous is because comparisons of A->B and B->A can

happen in different threads at different times. Mainly because of performance tuning in comparing

section.

4.6 Grouping results
Similar results are grouped together to form a group of files that possibly have a same origin.

These steps in Barrister is very simple by comparing tokens inside matching ranges against each

other. We do not try to create a perfect grouping or determine original work in groups. So groups

should be only considered as suggestions.

4.7 Filtering
Filtering filter matches above or under wanted limit. There is only one exception for not

filtering match outside of this wanted limit, and that is if a match is under wanted limit, but is also

part of the group.

4.8 Generating report file
This is a simple step because objects we use for storing information about matches are

prepared for storing as XML entities. Firstly we create root DOM element; then we copy root element

of the configuration file from the first step as a child element, so anyone can later examine test

 BARRISTER FRYC, JIRI

 TEST LIFECYCLE 5/22/17

 PAGE 42 OF 64

condition or even rerun test with same conditions. After that we push inside matches, ordered from

highest matches to lowest. Next, we fill necessary metadata like the time when was a test run. Lastly,

we validate file via XSD schema.

 BARRISTER FRYC, JIRI

 IMPLEMENTATION 5/22/17

 PAGE 43 OF 64

5 Implementation
This chapter discusses the implementation of the Barrister and is heavily cross-referenced

with the previous Chapter, which describes the lifecycle of an entire testing process.

Section 5.B provides the technical information about the Barrister, including the system and

software design decisions. Section 5.C outlines the structure of the Barrister, showing the various

directories and packages. It reviews and explains the organization and design of the packages. This

section also covers the libraries and tools used in this application. Section 5.D provides an overview

of the XSD Schemas for input and output files of Barrister. Section 5.E outlines usages of XSLT for

XML used in this application. Section 5.F alludes to the multilingual potential of the system and also

multilingual handling of files. Section 5.G provides a summary of this chapter.

5.1 Used technologies
This work contains only a few technologies so it could be as much as possible lightweight.

Java
Java was a programming language with biggest community, functionality, and platform

support on the planet. In current years Java is under its current owner Oracle in decline. They have

serious problems keeping up with others languages, and frankly, all open source projects Oracle

bought falls apart.

Antlr
Antlr is leading library for parsing, interpreting or compiling source code in most of the

current languages, its supported under C#, Java, C++ and many others. Anyone can extend it by

additional functionality and has a stable community for continued support and maintenance.

JAXB
JAXB is one of few libraries that are currently used for mapping Java classes to XML files and

vice versa. It also supports the generation of these classes by importing XSD schema file. This

functionality was used in Barrister for generating classes for input configuration and output result

file. There are few problems through, mainly bad performance rate against native DOM or XPath.

XML
XML is a software- and hardware-independent tool for storing and transporting data.

• XML stands for eXtensible Markup Language

• XML is a markup language much like HTML

• XML was designed to store and transport data

• XML was designed to be self-descriptive

• XML is a W3C Recommendation [11]

Benefits of XML
1. Data reuse

• The same data can be used and presented in much different software. For example,

with XSLT we can natively present data as HTML page.

2. Non-proprietary software

• XML does not belong to a particular company or group of individuals.

3. Unicode

 BARRISTER FRYC, JIRI

 IMPLEMENTATION 5/22/17

 PAGE 44 OF 64

• Multi-lingual

• Interoperability

4. XSD Schema

• Definition of XML structure and format

5. XSLT

• Transforming XML document to other XML documents, or other formats.

Downsides of XML
1. XSLT

• XSLT is becoming quite obsolete and in a few years could be completely unsupported

in most of website browsers and systems.

 BARRISTER FRYC, JIRI

 IMPLEMENTATION 5/22/17

 PAGE 45 OF 64

5.2 Structure of the Barrister
This section is heavily focused on technical aspects of Barrister, and without basic

programming skills, can be difficult to read and grasp. Also if you are only interested in functional

aspects of Barrister, then you can safely skip this section.

Barrister
package: prosecutor.barrister

The main package of entire software, contains configuration classes and main class that is used for
starting Barrister.

Submissions
package: prosecutor.barrister.submissions

This package contains classes for handling entities and their source code files (submissions).

Tasks
package: prosecutor.barrister.tasks

Tasks package contains different tasks that can be executed from the console for instance:

barrister version // Calls VersionTask

barrister compare inputConf.xml // Calls CompareTask

Figure 5-1 Structure of the Barrister

 BARRISTER FRYC, JIRI

 IMPLEMENTATION 5/22/17

 PAGE 46 OF 64

Trials
package: prosecutor.barrister.trials

Trials package contains main part of the Barrister, we furthermore divide package to sub packages.
Mode for different types of comparison modes. Tiling for comparison algorithms. Runnable for
thread wrappers.

Report
package: prosecutor.barrister.report

Report package contains classes handling output file and grouping + sanitization of results.

Languages
package: prosecutor.barrister.languages

Package languages provide support for Multilanguage support.

5.3 XSD Schema
The first phase of implementation contained creation of three interconnected XSD Schema

that will be used for validation and relational mapping of objects between program and input/output

XML files. These were selected because of easement during next stages. In many projects, designers

must update XSD schema files and serialization entities inside code simultaneously, otherwise XML

files itself will not be valid. Here we use XSD schema for generation of serialization entities.

XSD Schemas inside project

• ProsecutorCoreSchema.xsd

o Core schema is containing a definition of objects used in both other schemas.

• BarristerInputSchema.xsd

o Contains definition for input file.

• BarristerReportSchema.xsd

o Contains definition for report (output) file.

UML 5-1 Relations between XSD files

 BARRISTER FRYC, JIRI

 IMPLEMENTATION 5/22/17

 PAGE 47 OF 64

XSD schema for configuration file

 As we can see in the figure above, XSD for the configuration file is quite extensive, this figure

can be found in full resolution on CD. So we will focus only on high levels of this schema. Rest is fully

described in XSD file itself, that can be found in attached CD. (For displaying comments inside XSD is

recommended to use specialized software designed for displaying XSD files, for example, Oxygen

XML Editor)

Root attributes

Attribute Name Type Description

outputLocation Output location xs:anyURI Location of result XML. (Indicating file
location, not folder location)

outputEntityLocations Output entities xs:boolean If barrister should also output entities
and their files to a folder with result
XML.

projectName Project Name xs:string Optional, the name of the test. Purely
for the visual enrichment of result file.
(Has no functional meaning)

rootDirectory Root directory xs:anyURI Root directory/folder for testing, if
configuration file uses relative path,
then this folder will be used as root. If
this value is empty or null, then folder
from which Barrister was started is
used.

Figure 5-2 Preview tree view of XSD schema for configuration file (splitted in half)

 BARRISTER FRYC, JIRI

 IMPLEMENTATION 5/22/17

 PAGE 48 OF 64

Elements under root

Element Name Description

EntitiesLocations Entity Locations Location of files that will be compared/tested.
Also, contains information which files in this
location should be tested and which one should
be excluded or handled differently.

Trials Trials Describes sets of test which will be run over
files. Also, contains information how they
should be configurated.

Options Options Provides map/dictionary of key and value for
setting additional parameters. For instance
even parameters for JVM itself.

XSD schema for report file
XSD schema for report file is even more extensive than for configuration file, so you can only

found it on attached CD.

5.4 XSLT
You can find XSLT for results from the Barrister on the attached CD. This XSLT transform

humanly badly readable XML to HTML website. Unfortunately, this part of the project was not

completed because of problems with XSLT inside new versions of browsers and lack of support for

XSLTv2 standard.

5.5 Multi-lingual support
Currently Barrister support only English, but can be easily extended by providing translated

resources to a lang folder inside source code and after recompilation, they will be included to

Barrister.

Figure 5-3 XSLT output example

 BARRISTER FRYC, JIRI

 IMPLEMENTATION 5/22/17

 PAGE 49 OF 64

5.6 Summary
Implementation was done without any bigger problems. Thanks to extensity of Antlr and

JAXB we manage to easily manage to handle entire input and output process, even for source code

files. The only problem during implementation stage was with algorithms used for comparison from

JPlag. It is high likely that JPlag itself use algorithms from some other software that were written in C

or C++ because of the code structure. We repaired many problems and improved performance.

Our algorithm also takes in count more tokens from source code that algorithm inside JPlag

this is based on knowledge of newer language version and newer version of Antlr libraries.

 BARRISTER FRYC, JIRI

 TESTING 5/22/17

 PAGE 50 OF 64

6 Testing
This chapter describes the testing and evaluation of the Barrister performance and

functionality.

6.1 Unit testing
Unit Testing is a level of software testing where individual units/ components of the software

are tested. The purpose is to validate that each unit of the software performs as designed. [12]

The project contains several unit testing that test main parts of application and integration

tests that test workflow of the entire application. Further testing was not performed because

acceptance testing were sufficient way of proving complete functionality of the application.

6.2 Acceptance testing
The biggest part of Barrister testing was done on real fresh data from course A7B36PSI on the

end of winter semester 2016/2017, together with Ing. Jan Kubr we run several tests over course data

and then manually compared each of detected files. By request of Ing. Jan Kubr all student names

were blacked out. We also manually removed a few students files that were repeating the course

and used same homework solution from last time they have taken this course.

Course A7B36PSI contains two homework; both require the student to write approximately

500 lines of code and have a large number of possible solutions.

 BARRISTER FRYC, JIRI

 TESTING 5/22/17

 PAGE 51 OF 64

Homework about TCP
Firstly we will look at TCP homework, as we will see in tables and figures Barrister found out

fewer students, but this was predicted because Barrister is capable of one-way comparison and thus

he filtered out matches between old courses.

Jplag 1 student 2 student 3 student 4 student 5 student 6 student

Group 1 Abcdefge Abcdefge
(99.5%)

Abcdefge
(96.7%)

Abcdefge
(76.4%)

Abcdefge
(62.8%)

Group 2 Abcdefge Abcdefge
(96.3%)

Abcdefge
(80.8%)

Abcdefge
(61.3%)

Group 3 Abcdefge Abcdefge
(95.6%)

Abcdefge
(94.1%)

Abcdefge
(86.2%)

Abcdefge
(79.6%)

Abcdefge
(71.1%)

Group 4 Abcdefge Abcdefge
(92.3%)

Abcdefge
(84.6%)

Abcdefge
(78.1%)

Abcdefge
(71.1%)

Group 5 Abcdefge Abcdefge
(83.9%)

Abcdefge
(77.3%)

Abcdefge
(63.2%)

Table 6-1 JPlag groups in TCP homework

Barrister Student count Students usernames

Group 1 3 Abcdefge , bcddefge ,
bcddefge

Group 2 3 Abcdefge , bcddefge ,
bcddefge

Table 6-2 Barrister groups in TCP homework

Figure 6-1 JPlag matches in TCP homework

0

5

10

15

20

25

30

35

40

45

50

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

JPlag

 BARRISTER FRYC, JIRI

 TESTING 5/22/17

 PAGE 52 OF 64

Figure 6-2 Barrister matches in TCP homework

0

5

10

15

20

25

30

35

40

45

50

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

Barrister

 BARRISTER FRYC, JIRI

 TESTING 5/22/17

 PAGE 53 OF 64

Homework about UDP
Secondly, we will look at UDP homework, results are similar to TCP homework.

Jplag 1 student 2 student 3 student 4 student 5 student

Group 1 Abcdefge Abcdefge
(77%)

Abcdefge
(62.2%)

Abcdefge
(57.2%)

Abcdefge
(46.4%)

Group 2 Abcdefge Abcdefge
(59.6%)

Abcdefge
(55.9%)

Abcdefge
(55.5%)

Group 3 Abcdefge Abcdefge
(54%)

Abcdefge
(46%)

Table 6-3 JPlag groups in UDP homework

Barrister Student count Students usernames

Group 1 5 Abcdefge , bcddefge ,
bcddefge, bcddefge , bcddefge

Table 6-4 Barrister groups in UDP homework

Figure 6-3 JPlag matches in UDP homework

0

5

10

15

20

25

30

35

40

45

50

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

JPlag

 BARRISTER FRYC, JIRI

 TESTING 5/22/17

 PAGE 54 OF 64

Figure 6-4 Barrister matches in UDP homework

Conclusion
As we can see on Figures there were some changes between JPlag and Barrister results,

Barrister filtered out matches between old courses and left only matches in current course and

between the current course and old courses. Also, new algorithm filtered out few false positive

results with a match between 65 and 90 percent.

Thanks to this users receive more precise results from the Barrister. They don´t have to go

thru additional matches from old/different courses and also don´t have to go through many of false

positive.

Also, this testing proved one of the expectation and that around 10% students in courses

cheat. Moreover, we should be more aware of this problem. The current solution is still very basic,

based only on passive algorithms, it is highly possible that if we had an engine that also checks for

plagiarism on the internet, we would found even more matches. Alternatively, if we would have an

efficient algorithm that would try to transform one code to another while recording approximation

time need to do these changes by a human.

It is hard to speculate how many students plagiarize from the internet, but if students know

that currently, we can check only their solutions between each other and not against internet

sources, it could be another 10%. Together with proved cheaters, it adds up to 20%, and that is

untenable. It would be best to make homework more distinctive or let students solve different

problems, but this would require more a distinctive approach to each student and therefore more

tutors or other personal.

0

5

10

15

20

25

30

35

40

45

50

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

Barrister

 BARRISTER FRYC, JIRI

 MORPHING APPROXIMATION
ALGORITHM

5/22/17

 PAGE 55 OF 64

7 Morphing Approximation Algorithm
This chapter is about the proposition of completely different algorithm for comparing two

source codes. This algorithm was not and is not one of the goals in this thesis, but during work on the

thesis I found out that an algorithm based on morphing one source code to another could be

beneficial for detecting software plagiarism. Based on that I included this chapter to the thesis, and I

intend to focus on implementing this algorithm in the future. The working title for this algorithm is

MAA (Morphing Approximation Algorithm). This algorithm is focused on student´s work and

student´s homework and has strict limitations for other use cases.

7.1 Ideas behind MAA
The main idea behind this algorithm is that a student who is using other students source

code as its own, have either lack of time or lack of skill needed to create this source code on their

own and they do not want to spend too much time alternating this source code. Therefore steps they

made should be easily back-traceable. Because either they made only a few steps or they made steps

that weren’t too much invasive to the source code (renaming variables, alternating Boolean logic,

etc.).

Also in this algorithm, we do not consider a student who spent lots of time, especially if they

spent more time that would take writing it alone, as a plagiarist. The same applies to students that

used highly complex changes to source code.

Figure 7-1 Time relation between plagiarism and creating original based on complexity based on anylysis

7.2 Comparison with current algorithms
From first look, you could say that these algorithms are practically the same, but they are

not. We can look at current algorithms as passive ones; they only iterate over source code without

C
o

m
p

le
xi

ty
 o

f
h

o
m

ew
o

rk

Time

Relation between plagiating and creating homework

Approx. time expected to plagiate homework Approx. time required to complete homework

 BARRISTER FRYC, JIRI

 MORPHING APPROXIMATION
ALGORITHM

5/22/17

 PAGE 56 OF 64

any change to its context. This method can be viewed as active one with several loops. Each loop is

trying to determinate which steps are needed to do to make one file to another, thus backtracking

steps needed to do to create plagiarism.

Advantages over current algorithms

 Back-tracing steps student make while alternating original work.

 Estimated time student spent alternating original work.

 The estimated complexity of steps student makes to alter original work.

 Can be beneficial in others fields like teaching AI programming or self-repairing source code.

Disadvantages over current algorithms

 More complex algorithm

o High demands on calculating power

o Challenging to create

 This algorithm expects that both compared source codes solve same or almost the same

task. It will become useless if we want to detect plagiarism only in part of the solution.

 BARRISTER FRYC, JIRI

 MORPHING APPROXIMATION
ALGORITHM

5/22/17

 PAGE 57 OF 64

7.3 Activity diagram
Bellow you can see activity diagram that would be used by MAA. This is only a first draw of

such algorithm so it is high likely that this diagram will change in future.

Figure 7-2 Morphing approximation algorithm lifecycle

Generating random seed
We need to generate a random seed, so each pass is unique. Random seed will be used in

determining a starting point for the passive scan, etc.

Passive scan
The passive scan is same as scanning for a matching block inside JPlag, Barrister or Moss. The

only difference is what happens with these matching block after.

Morph block to its counterpart
Morphing will make all necessary changes needed to make one block from another. All

changes are logged.

 BARRISTER FRYC, JIRI

 MORPHING APPROXIMATION
ALGORITHM

5/22/17

 PAGE 58 OF 64

7.4 Results
As stated before this algorithm would create more precise results and also give us more

information about both works. This information can help us determinate how much likely student

plagiarize and if he taken enough time during plagiarism to fully understand homework assignment

and therefore learn something from this.

Number of steps needed to morph one source code to another
This will also have a time estimate, thanks to this we can determinate if the student is taken

the time to create this plagiarism or if he simply copies entire homework and made only slight

adjustments.

Complexity of steps needed to morph one source code to another
Complexity can help us determinate if given student was able to do this changes, or if it is

more likely that those changes would be to advance for him.

Approximate time needed to create plagiarism
This would be based on several factors:

• Level of the programmer that we can determinate by complexity of steps

• Number of steps required to morph source code

o Each of the steps would also have different complexity expressed by a multiplier of

that given step.

Significance of these results

• If the approximate time to morph source code is larger than approximate time to create

source code by himself than we can safely say that this source code is not plagiarism of

another.

• If the complexity of steps is low, we can assume that plagiarism is probable.

7.5 Negative impact
This algorithm could be misused to generate plagiarism to a great scales, and only this

algorithm could later detect it. This is based on morphing part of the algorithm. It can approximate

two codes but also known which steps can be done to not to change the context and functionality of

the code.

However, this negative impact could be taken as advantage in others fields, we could simply

use it to learn AI or neural network how to create own source code, or we could implement it to

programs to create self-repairing code, each time this code would crash, we would rewrite it, adding

exception catchers, preventing death-locks, etc.

 BARRISTER FRYC, JIRI

 FUTURE OF PROJECT 5/22/17

 PAGE 59 OF 64

8 Future of Project
In the long run, I would like to implement a much more complex solution that would fight a

lot more efficiently against plagiarism of any kind; this would require the cooperation of multiple

universities, organizations and a significant source of funding and professionals that perfectly

understand this problematic and furthermore how each programming language interprets.

Our vision of end-game solution would be:

• Cloud and on-premise software.

• Fully written in .NET Core.

• Connected with OWIN.

• Providing RESTful API.

• Offering client libraries.

• The interactive browser of the test result with an explanation for each match and

recommendation for how to deal with the result.

• Option to cross-connect universities, organizations, and institutes.

• Comparison against sources from the internet.

• Option for using CUDA cores for faster testing.

• Comparison of source codes, text files, images and most of the others formats.

• The neural network that would distinguish generic code and try to determinate skill sets of

the author and time needed to write supplied source.

• Morphing Approximation Algorithm described in Chapter 8.

To this day there is implemented passive detection for source code inside Barrister. Then

inside Prosecutor project, there is RESTful API, client library in PHP and interactive browser.

8.1 Rewriting to .NET
This is one of the first steps I will make after submitting this work. The only reason why

Barrister was written in Java was that CTU CZM objected strongly to anything else. Even that it would

make many things more simple, faster, etc.

One of biggest advantages of .NET is that any programming language that is under CLI

(common language infrastructure) is compatible, allowing people all around the world using C#, F#,

C++, Ruby, Python, PHP, Pascal, etc. for extending or rewriting Barrister.

Java is not under CLI at this moment, Microsoft makes affords by creating J# that
was CLI compatible. However, discontinued J# thanks to Oracle threats of
lawsuits.

Another advantage would be performance. In this moment .Net can be translated to native

code, making it almost as fast as applications written in C++. Also, it would allow usage of graphical

cards, for clarification usage of CUDA cores, for calculations. With current technology, JAVA can

utilize only threads on CPU (in most cases 8 threads). However, with CUDA we could utilize tens of

thousands threads for a large part of Barrister comparison process.

There are also others advantages as larger platform support that JAVA, OWIN, support for

Cloud computing, Timestamping results, etc..

 BARRISTER FRYC, JIRI

 FUTURE OF PROJECT 5/22/17

 PAGE 60 OF 64

8.2 GUI
One of the things that are currently in development but unfinished is GUI for this application.

That would allow users better usability then console. Bellow, we can see previews of GUI.

Figure 8-1 GUI

Figure 8-2 GUI 2

8.3 Generating cryptographic timestamp via CA
This would cryptographically prove that results were generated at given time and that no one

change those results. Without credentials authority that would confirm generation date and content

of results (more precisely confirm hash generated from the content of results), we cannot prove that

 BARRISTER FRYC, JIRI

 FUTURE OF PROJECT 5/22/17

 PAGE 61 OF 64

someone did not change results at a later point. Currently, not many software use cryptographic

timestamping but that also means that they cannot be used as self-standing proves from a law

perspective.

 BARRISTER FRYC, JIRI

 CONCLUSION 5/22/17

 PAGE 62 OF 64

9 Conclusion
We manage to develop new plagiarism detection software based on JPlag that solves many

problems JPlag has. In the analysis we revealed many of the problems connected with plagiarism that

we later settled in implementation. Our multi-threading comparison algorithm utilizes current multi-

core processor and therefore provides greater performance.

In a comparison of current solutions for detecting plagiarism we found out that most of them

are under-founded and under-developed, most of them did not receive any update in last years.

In testing, we not only tested our application but also helped with detection of cheaters in

one of the CTO FEE courses. So we have direct results proving that Barrister can and is helping

courses in the detection of plagiarism.

We think that with future work we will be able to create an ultimate solution to this problem.

Unfortunately more than anything else this problematic would require founding and creation of task

force preferably by U.N., EU or cooperation of several universities that would take it to a larger scale.

If we peek outside our scope to plagiarism of Bachelor thesis and others, we can see that students

can take their work from different university and no one knows about it.

This bachelor thesis successfully fulfilled its assignment and lead us to think about entirely

new plagiarism detection algorithm called MAA and described in chapter 7.

 BARRISTER FRYC, JIRI

 REFERENCES 5/22/17

 PAGE 63 OF 64

10 References

[1] Smith v. Little, Brown & Co., "Merriam-Webster Online Dictionary," Merriam-Webster, 10 4
2017. [Online]. Available: https://www.merriam-webster.com/dictionary/plagiarize. [Accessed
10 4 2017].

[2] Free Software Foundation, "GNU Operating System," 1 1 2007. [Online]. Available:
https://www.gnu.org/licenses/agpl-3.0.en.html. [Accessed 15 4 2017].

[3] N. L. P. Group, "Sam's String Metrics," University of Sheffield, 20 12 2008. [Online]. Available:
http://web.archive.org/web/20081224234350/http://www.dcs.shef.ac.uk/~sam/stringmetrics.
html. [Accessed 12 5 2017].

[4] D. N. P. M. F. C. F. C. J. van RIJSBERGEN B.Sc., "INFORMATION RETRIEVAL," University of
Glasgow, 1 1 1979. [Online]. Available: http://www.dcs.gla.ac.uk/Keith/Preface.html. [Accessed
18 5 2017].

[5] G. M. M. P. Lutz Prechelt, "JPlag: Finding plagiarisms among a set of programs," Universite at
Karlsruhe, 28 3 2000. [Online]. Available: http://page.mi.fu-
berlin.de/prechelt/Biblio/jplagTR.pdf. [Accessed 20 5 2017].

[6] E. S. Kshitiz Gupta, "Source Code Plagiarism Detection using Multi Layered Approach for C
Language Programs," National Institute of Technology Kurukshetra, 12 12 2014. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.800.4260&rep=rep1&type=pdf.
[Accessed 15 4 2017].

[7] G. D. J. D. C. C. David Grove, "ACM DL," University of Washington, 5 6 1997. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=263700.264352. [Accessed 10 3 2017].

[8] R. Pike, "The Sherlock Plagiarism Detector," The University of Sydney, [Online]. Available:
http://www.cs.usyd.edu.au/~scilect/sherlock/. [Accessed 5 4 2017].

[9] Ohjelmistotekniikan laboratorio, "Plaggie," Ohjelmistotekniikan laboratorio, 8 12 2006.
[Online]. Available: https://www.cs.hut.fi/Software/Plaggie/. [Accessed 27 3 2017].

[10
]

D. Grune, "The software and text similarity tester SIM," VU University Amsterdam, 31 11 1989.
[Online]. Available: https://dickgrune.com/Programs/similarity_tester/. [Accessed 20 2 2017].

[11
]

W3C, "W3C schools," W3C, 20 3 2017. [Online]. Available:
https://www.w3schools.com/xml/xml_whatis.asp. [Accessed 20 3 2017].

[12
]

Software Testing Fundamentals, "Software Testing Fundamentals," 18 4 2017. [Online].
Available: http://softwaretestingfundamentals.com/unit-testing/. [Accessed 18 4 2017].

[13
]

Oxford, "Oxford Living Dictionaries," Oxford University Press, [Online]. Available:
https://en.oxforddictionaries.com/definition/plagiarism. [Accessed 5 4 2017].

[14
]

Oxford, "Oxford Living Dictionaries," Oxford University Press, [Online]. Available:
https://en.oxforddictionaries.com/definition/source_code. [Accessed 4 5 2017].

[15
]

RKHRamsay, "https://en.wikipedia.org/wiki/Barrister," Wikipedia, 20 12 2001. [Online].
Available: https://en.wikipedia.org/wiki/Barrister. [Accessed 6 4 2017].

Content of CD
 source-code //Folder with source-code

 barrister // Barrister

 prosecutor_api //Other software in Prosecutor family

 prosecutor_php //Other software in Prosecutor family

 prosecutor_evalviewer //Other software in Prosecutor family

 builds //Folder with builded barrister

 tested_software //Folder with JPlag, Moss, Plaggie, SIM, and Sherlock

 xml

 xml_schema

 BarristerInput.xsd

 BarristerOutput.xsd

 ProsecutorCoreLibrary.xsd

 oxygenproject.xpr // Oxygen project for xsd

 xslt

 examples

 scripts // Scripts for anonymization

 data-sets // Testing data sets

 artificial_sets

 dsa_anonymized

 omo_anonymized

 documentation

 Bachelor_Thesis.docx

 Bachelor_Thesis.pdf

 xml_schema //Documentation for xml schema

