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ABSTRACT 

The thesis describes the first attempt of hardware implementation of Multistream 

Compression (MSC) algorithm. The algorithm is transformed to series of Finite State 

Machines with Data path using Register-Transfer methodology. Those state machines are then 

implemented in VHDL to selected FPGA platform. The algorithm utilizes a special tree data 

structure, called MSC tree. The thesis presents new way to store nodes of the tree using the 

Left Tree Representation. To encode data, the described implementation of the algorithm 

chooses between two methods – Elias Alpha and ZEBC. 
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1 Introduction 

Information science has affected nearly all levels of modern society. Nowadays, the 

world is approaching the stage in which every device is going to be connected to a global 

network. Indispensable amount of research concerning the so-called Internet of Things 

conducted so far provides an opportunity for customized manufacturing, safer transport and 

more comfortable living with ever-increasing automation. These put above a big demand on 

communication infrastructure to cope with an enormous volume of data.  

Compression is a way to lower this volume. During the last few decades, numerous 

compression algorithms were invented, ranging from the universal ones (such as Huffman 

Coding or Arithmetic coding) to those designed for specific data (for example, JPEG, MP3). 

In pursuit of maximum compression ratio and speed, new compression methods are still 

being developed. 

One of the recently developed compression methods is Multistream Compression (MSC) 

algorithm [1]. In contrast to other methods, MSC encodes a special stream of counters to 

achieve decent compression ratio. Its design allows for parallel processing to reduce the 

processing time. In some applications, this method can be used as a replacement of some 

existing methods (Huffman or Arithmetic coding) as it often gives better outcome. Besides, 

this method gives favorable results if applied in conjunction with various transformations 

(such as Burrows-Wheeler Transform) used for input data preprocessing. Main application 

areas of the MSC algorithm are text and image compression. One of its utilizations could 

thus be found in compression of document databases. Analysis of text compression using the 

MSC algorithm is shown in [2]. The experiment using the MSC algorithm for compression 

of JPEG images can be found in [3].  

Due to its wide area of application, MSC is concern of transportation sciences as well.  

Nowadays, transport is already extensively computerized – there are information networks 

in vehicles, communication links between the infrastructure and control centers, and many 

others. The implementation of cooperative systems is inevitably causing a huge increase of 

transferred data on the infrastructure. Despite the fact that MSC algorithm does not find use 

in compressing XML or fixed-length binary encoded messages used by DSRC/WAVE 

standard [4], there are other possibilities of its utilization such as formerly mentioned 

database or image compression. 
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1.1 Goals of the thesis 

The goal of this thesis is to design and implement MSC algorithm on FPGA platform. 

Main features of the algorithm are complex tree structure, high memory demand and parallel 

processing.  

One of the main tasks is to find representation of the used tree structure in memory that 

would possess advantageous properties for latter stages of the algorithm. Further task is to 

specify the hardware requirements for implementation of the algorithm with given input 

parameters. The final objective is to implement the design to highest possible extent into 

selected platform and verify its functionality.  

This thesis should serve as a stepping-stone for further development of the hardware 

implementation of the algorithm and as an inspiration for building the decompression 

module which is not subject of this thesis. Obtained results of this implementation shall thus 

be presented in order to provide objective measure for monitoring future improvements.  

1.2 Organization of the thesis 

The content of the thesis is conceptually divided into two parts. In first half, the 

presented information is exclusively theoretical and goes from the ideas to be implemented 

(chapter 2), through the design methodology that describes how the ideas to be implemented 

have to be transformed to fit the used platform (chapter 3), to the description of actual 

hardware platform that physically realizes the ideas (chapter 4). The other half puts 

emphasis on the practical work although short sections of theory ale also contained. The 

chapter 5 describes mainly the hardware aspects of the overall design and chapter 6 

discusses the details of the individual parts with emphasis on the ideas. Chapter 7 analyzes 

the results of the implementation and chapter 8 gives incentives for further work. 

1.3 Initial remarks 

Before reading, some features of the thesis should be mentioned. The reader should 

beware of similar names for different entities. The MSC algorithm for example creates 

statistics more than once, so terms like „statistics‟ or „number of occurrences‟ are used in 

different contexts. 
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For an easy orientation, different fonts and capital letters are used in the chapters 

concerning the algorithm design. CAPITAL LETTERS are used to denote Finite State 

Machines and memories. Arial Narrow in italics is used for attributes in memory. 

Throughout the work, snippets of code using pseudo language are used. The occurring 

constructs are explained in Table 1 below: 

Table 1 Constructs used in pseudo language 

Construct Example Meaning 

== / != while (end == 0)  

equal to / not equal to in 

conditions 

= last = 1 assignment to variable 

(x) /  (x downto y) 

data(FREE-1 downto 0) = (others => '1') 

index / range of indexes 

(others => '1') 
assignment of specified value to 

range of indexes 

 

 read DATA_OUT(TYPE, INDEX, POSITION)

do specified operation 

var(x, y, ..) 

do specified operation with 

parameters in brackets (for 

example: read DATA_OUT 

from memory address specified 

by the parameters 

. CURRENT_NODE.left_child

attributes of memory item (for 

example: attribute left_child of 

item CURRENT_NODE 
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2 MSC Algorithm 

The MSC algorithm is a new lossless compression method invented by Czech scientist 

Jiří Kochánek [1]. The method is based on the idea that data can be split into different parts. 

Each of these parts contains own data for compression arranged in streams. For each part of 

the data, coding method that gives the best compression result is chosen. The MSC 

algorithm differs from other models based on splitting data into streams by the fact that in 

this case the streams do not contain symbols but counters. The process of compression is 

rather complex and requires multiple passes of input data. However, the algorithm presents 

the possibility of parallel processing. 

2.1 The Steps of the Algorithm 

The algorithm consists of these five steps [3]: 

 Input data statistics  

 Creation of binary tree based on statistics 

 Transformation of input data into logical streams belonging to single binary node 

 Statistical analysis of each stream ending with selection of the best performance 

compression method  

 Compression execution 

For simplicity, the description will be given only for sequential processing. The details 

about the parallel processing will be given in further chapters discussing the implementation.  

2.1.1 Input Data Statistics 

The algorithm starts with reading characters
1
 from the input data, one at a time. The 

input data of the algorithm could be a text or a picture in which case the symbol would be a 

letter or pixel color, respectively. For each symbol occurring in the input data, its first 

occurrence as well as number of occurrences is determined. After all input data are read, the 

statistics is sorted according to the number of occurrences. 

                                                 
1
 Character is one item in the input data. Symbol is a value of the character. Alphabet is a set of all 

symbols. 
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2.1.2 Creation of Binary Tree 

When the statistics is in the desired form it serves as a basis for building MSC tree. The 

items of the statistics become the leaves of the binary tree. In this stage, parents of two 

nodes with the lowest number of occurrences are created iteratively until there is only one 

unconnected node remaining – the root of the tree. The tree might resemble Huffman tree, 

however, the MSC tree is governed by additional rule which states that every left child has 

earlier occurrence in the data than the right one, even if it has lower number of occurrences. 

Moreover, the nodes are equipped with counters and direction switches. 

2.1.3 Creation of Counter Streams 

Initially, before the traversing of the tree starts, the counter of each node is set to zero 

and each switch position set to left as shown on Figure 1. The switch determines the active 

child of a node and thus one active path is built in a tree from root to leaf. During creation of 

streams the input data are read for the second time. Knowing the investigated symbol, the 

tree is traversed from the root node all the way to the leaf node representing this symbol. 

Each time a node is passed its counter is incremented. If two consecutive symbols are 

different, the direction switches need to be switched to other direction in those nodes where 

the current path differs from the previous path. The rule is that when the position of a switch 

is swapped, the counter value is written into stream of the particular node.  

When the reading of input data is finished, there are still nonzero values in node counters 

which need to be written to streams as well. Therefore, each node is entered once again. The 

values in streams are actually the data that will be compressed. 

 

abrcd
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brcd
0

br
0

cd
0

b
0

r
0

c
0
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Figure 1 Example of MSC tree in default setting 
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2.1.4 Statistical Analysis of Streams 

After obtaining the streams, the length of the compressed data is calculated for different 

coding methods and the method giving the best result is selected. The coding methods are 

specified in advance. The analysis is executed for each node of the tree separately and the 

best method is selected for every single one. If ZEBC coding (section 2.2.2) is among the 

investigated methods, the analysis is performed for whole range of bases. In case of 

Huffman coding, Huffman tree needs to be built for every node of the MSC tree. 

2.1.5 Compression  

At this stage, the streams of counters are known as well as the method of coding. First, 

the overhead of the final stream of coded values is written to the output. It carries 

information required for correct decompression. Some of the items in the overhead are input 

parameters, others are obtained at the compression module. 

For creation of the final compressed stream, traversing of the MSC tree is executed once 

again. At the beginning, the counter of root node is set to number of characters in input data, 

counters of other nodes are reset and switches are set to left. The tree is traversed from the 

root to leaf nodes using the active path until the counter of root node is equal to zero. In case 

the counter at the entrance of a node has value 0, next value from the stream of counters is 

read, coded and written to the final stream of coded values. If a node is accessed for the first 

time, additional information (consisting of leaf node flag, symbol in case of leaf, the chosen 

coding method and its parameters) is written to the output before the coded counter value. 

Each time a node is accessed, its counter is decremented. When it reaches zero, the switch 

position of the parent node is changed.   

2.2 The Coding Methods 

The previous paragraphs imply that the MSC algorithm chooses among different coding 

methods. Basically, they can be arbitrary methods. However, the criteria for the convenience 

of the method can differ. Sometimes, the speed of the decompression is crucial, in other 

cases the achievement of the maximal compression ratio is desired. Depending on criteria 

set of methods is adequately adjusted. In the first software application a set of 3 methods 

that appear to be complementary was tested. 
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2.2.1 Elias α 

 Elias Alpha coding is usually used for short or badly compressible streams. If all 

streams are coded by Elias α, the output data has equal length to the same data compressed 

by Huffman coding. In the MSC algorithm, the inverted version of this unary method is 

used. If a number n is coded by this method, it will be of the following form [5]: 

 ( )              

2.2.2 ZEBC 

 Zero Ending & Binary Complement (ZEBC) is a simple way of coding similar to Elias 

γ. It was developed specifically for MSC method by the authors of the algorithm [1]. It is 

parameterized by a selected number, the base – ZEBC(b), which further optimizes the 

coding of stream. Selection of this number is based on analysis of counters. This method is 

mostly used for compression of streams of middle length. 

The ZEBC coding is a type of variable-length coding that is used for coding natural 

numbers. The coded number comprises of Zero Ending (ZE) prefix coded by inverted Elias 

α coding and of a value expressed by the binary complement (BC) but only if the number to 

be coded is greater than the base value. If the number is lower than the base, it is expressed 

only in ZE code. The base can be viewed as a number that determines the boundary, from 

which the coded value is expressed by ZEBC code.  

The coding is performed according to ZEBC table of intervals (Appendix A). 

Construction of the table is governed by a set of elementary rules. Each interval has 

beginning and end. The values of the first table interval are known – the beginning is 0 and 

the end is 1. The index i denoting the intervals goes from zero onwards. The calculation of 

the i-th interval is governed by these rules:  

 ik+1 = ik + 1 

 beginning(ik+1) = end(ik)  + 1 

 end(ik+1) = beginning(ik+1) + (2*( end(ik) - beginning(ik) + 1)) – 1 

When number n is coded by ZEBC(b), these rules are followed: if the number n is lower 

than base b, the number n is expressed only in ZE code. If it is larger or equal to b, then the 

difference D is calculated as D = n – b and the table interval i into which D belongs is 

found. The ZEBC(b) code of the number is then expressed by sequence (b + i) in ZE code, 

followed by number (D – beginning(i)) in BC code of length (i+1) bits.  
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2.2.3 Huffman Coding 

This method is intended for coding of largest streams. It is because the first counter of 

each tree node coded by this method contains a large header containing all the necessary 

information for reconstruction of the Huffman tree. Therefore, if a large stream is coded, the 

percentage of the header in the final compressed stream is low. 

The method uses the static Huffman coding for coding of counters, meaning the number 

of occurrences of each symbol is known in advance. 

2.3 MSC Properties 

Since the invention of the first compression methods, many new methods were 

discovered. It is because none of the methods is the best one for all types of data and for 

various requirements and every single one has its benefits and drawbacks. MSC is not an 

exception. The list of the advantages and disadvantages is below [6]. 

ADVANTAGES 

 Higher compression efficiency than pure entropy methods for many types of data. 

Particularly suitable as replacement of Huffman and arithmetic coding in codecs, 

endecs (MPEG and JPEG types) and after BWT   

 Decompression is markedly fast with minimum requirements for memory size 

 Method allows both sequential and parallel processing 

 Parallel processing can fully exploit the nowadays progress in component base 

(multi-core processors, FPGA, CPLD,..) 

 The data is processed without multiplication and division (unlike arithmetic method), 

which is particularly advantageous for small devices lacking mathematic co-

processors (e.g. mobile phones) 

 The development of this method is only in its early stage with still huge potential for 

improvement  

DISADVANTAGES 

 Multiple passing - compression consist of 2 passes through input data and one pass 

through transformed data 

 High requirements on system components (memory size) during compression phase 

 Slower compression phase than current entropy methods  
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3 RTL Design 

As hardware systems nowadays are very complex, it is impossible to create a design 

considering the connection among transistors. In the modern era, logic gates as blocks of 

higher abstraction level are used to realize logic functions. For large designs, however, those 

are too detailed as there is a possibility in hardware to realize commonly used higher level 

operations that can be created from the logic gates. The example of such high abstraction 

blocks are adders, comparators, multiplexers or registers. This level of abstraction is called 

Register-Transfer Level (RTL). 

3.1 Method Overview 

In the area of informatics, complex processes are usually described by algorithms, as 

sequences of steps or actions. Nowadays, algorithms are generally implemented by software 

and executed in a general purpose computer. However, to obtain better performance and 

efficiency, it is sometimes beneficial or even necessary to realize them in hardware.  The 

Register-Transfer (RT) methodology is a design methodology that describes the system 

operation by a sequence of data transfers and manipulations among the registers.  

To realize an algorithm in hardware, general hardware constructs that resemble the 

variable and sequential execution model are needed. The RT methodology is aimed for this 

purpose. The key characteristics of this methodology are: 

 Registers are used to store the intermediate data and are equivalent to variables 

used in an algorithm 

 Data path is used to realize all the required register operations 

 Control path is used to specify the order of the register operations 

When an algorithm is realized by RT methodology, the necessary data manipulation and 

data routing are performed by dedicated hardware blocks. The data manipulation circuit, 

routing network and the registers together are known as the data path. Since an algorithm is 

described as a sequence of actions, a circuit to control the RT operations flow is needed, and 

it is known as the control path. Both blocks with connections between them are shown on 

Figure 2. 
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Figure 2 Block diagram of a general system designed by RT methodology (source: [7]) 

A control path is usually realized by a Finite State Machine (FSM), which uses states to 

enforce the order of the desired steps and branches, which are equivalent to conditions and 

loops in an algorithm. A FSM consists of two elements: combinatorial logic and registers. 

The registers are used to store the state of the machine. The combinatorial logic can be 

viewed as two distinct functional blocks: the next state logic and the output logic. There are 

two widely known types of state machines: Mealy and Moore. The output function which 

specifies the value of the output signals is where the two types differ. If it is a function of the 

state only, the output is known as a Moore output. On the other hand, if it is a function of the 

state and input signals, the output is known as a Mealy output. A complex FSM normally 

has both types of outputs. 
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Since an RT operation is performed in a state of the FSM, the FSM is extended to Finite 

State Machine with Data path (FSMD) to indicate the desired RT operation in each state. 

The state representation and state transition of an FSMD are similar to those of an FSM. An 

Algorithmic state machine with data path (ASMD) chart is a usual way of descripting 

FSMD [7]. 

Most architectures require both control and some data. Only very few of them are either 

all control (for example, simple communications protocols) or all data (digital filters). 

Separating the design into a controller and a data path helps to think about the operation of 

the system [8]. 

3.2 RTL Design Steps 

Frank Vahid [9] recognizes 4 steps in the RTL design. 

1. The desired behavior of the system shall be described as high-level state 

machine. The state machine is high-level as the transition conditions and the state 

actions are more than just Boolean operations on bit inputs and outputs. 

2. A data path to carry out the data operations of the high-level state machine is 

created. 

3. Data path, specifically the external Boolean inputs and outputs are connected to a 

controller block.  

4. High-level state machine is converted to FSM for the controller, by replacing 

data operations with setting and reading of control signals to and from data path. 

In case of FPGAs (and other Programmable Logic Devices) the hardware description of 

the circuit is the first step in the implementation, the description is coded and after that 

synthesized, technology mapped and packed usually by using software tools. At the end, the 

circuit is placed and routed to the hardware platform to complete the design flow. 
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4 FPGA Architecture  

Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can be 

electrically programmed. FPGAs consist of an array of different blocks, including general 

purpose logic blocks and specific purpose hard blocks, such as memory or DSP blocks. 

General purpose logic blocks are programmable and along with specific purpose hard blocks 

they are surrounded by a programmable routing fabric that allows these blocks to be 

programmably interconnected. The array of blocks and the routing fabric are then 

surrounded by programmable input/output blocks that connect the chip to the outside world. 

In the following text, architectures of two biggest FPGA vendors Xilinx and Altera will be 

described. The other manufacturers use similar architecture. 

  

A configurable logic block (CLB) used by Xilinx is a basic component of their FPGAs 

that further divides into slices. The slices contain blocks performing combinatorial logic, 

register resources and multiplexors [10]. The elementary building block of Altera‟s devices 

is called Logic Array Block (LAB) and it consists of ten Adaptive Logic Modules (ALM) or 

16 logic elements.  

 

Commercial vendors use Look-up Tables (LUTs) to provide basic logic and storage 

functionality. LUT-based blocks provide a good trade-off between too fine-grained and too 

coarse-grained logic blocks, ensuring that the wasting of resources is minimal while 

maintaining high performance. The capacity of a LUT is limited by the number of inputs, 

not by the complexity of a function. Unlike the logic realized by gates, the delay through the 

LUT is constant, regardless of what logic function is being performed inside.  

A LUT is typically built out of SRAM bits to hold the configuration memory LUT-mask 

and a set of multiplexers to select the bit of the SRAM that matches the inputs. To 

implement a k-input LUT (k-LUT), 2
k
 SRAM bits and a (2

k
 – 1) multiplexers are needed. 

Figure 3 shows a 4-LUT, which consists of 16 bits of SRAM and a 16:1 multiplexer 

implemented as a tree of 2:1 multiplexers [11].  



Implementation of the MSC algorithm in FPGA   

-23- 

 

 

Figure 3 Architecture of a LUT (source [11]) 

The parameters of various FPGAs differ beyond the names of different vendor 

components. The Xilinx devices encompass 6-input LUTs and two or three types of slices 

depending on platform. The LUTs of the most basic slice type can be configured as either a 

6-input LUT with one output, or as dual 5-input LUTs with identical 5-bit addresses (shared 

inputs) and two independent outputs. In contrast, the LUTs in the most complex slice type 

can also be used as distributed 64-bit RAM with 64 bits or two times 32 bits per LUT, as a 

single 32-bit shift register (SRL32), or as two 16-bit shift registers (SRL16s) with 

addressable length [10]. 

Unlike Xilinx, Altera uses two types of architecture in their model series. The 

architecture used in majority of their devices utilizes a component called Adaptive LUT 

(ALUT) with 8 inputs that provides resources for realizing either 6-input LUT or two LUTs 

that can work independently in case the total number of inputs is less or equal to 8, 

otherwise the inputs need to be shared. The number of shared inputs depends on widths of 

the realized LUTs. Two extra adders are included to enhance the arithmetic capability of the 

ALM, allowing for two 2-bit addition or two 3-bit addition per ALM. The comparison of the 

two architectures is shown on simplified schemes on Figure 4.  

 

Figure 4 Comparison of Xilinx's and Altera's architecture (source [11]) 
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The other Altera‟s architecture utilizes a 4-input LUT, however, a gradual shift to the 

formerly mentioned architecture is visible [11].  

Besides LUTs and registers, basic building blocks of devices from both vendors also 

have carry logic resources which are designed to implement arithmetic logic functions with 

high speed performance due to their dedicated carry chain which runs vertically in columns.  

   

The input/output blocks or elements (IOBs/IOEs), depending on a vendor, make an 

interface between the FPGA and the outside world. In Xilinx devices, IOBs are grouped into 

IO banks located on each edge of the device. The IOBs contain registers and some 

specialized resources. One of the purposes of the IOBs is to clock data in and out of the 

FPGA.  

Besides registers, the IOBs contain interface logic that is designed to translate the 

internal voltage domain of the FPGA to any used I/O standard.  

Spartan 6 has 4-6 IO banks, depending on the device density and each IO bank has 

between 30 and 83 IO pins [12].  

 

Interconnect is a programmable network of signal pathways between the inputs and 

outputs of functional elements within the FPGA, such as IOBs, CLBs, DSP slices, and block 

RAMs. Interconnect, also called routing, is segmented for optimal connectivity. The 

interconnect (besides the carry logic resources) is routed through the switch matrices. The 

switch matrices are in between each function block and they are designed to connect to other 

switch matrices as well as neighboring blocks as shown on Figure 5 [10].  

The implementation tools select an appropriate routing that may include different kinds 

of routing resources.  The result of the routing is designed to try and meet the timing needs 

of design. It is important that timing constraints are specified so that the timing objectives 

can be communicated to the implementation tools, allowing the software to choose the 

smartest routing solution to meet the needs.  

 



Implementation of the MSC algorithm in FPGA   

-25- 

 

 

Figure 5 CLB Array and Interconnect channels of Xilinx (source: [10]) 

 

Besides the LUTs, which can be configured as small memory blocks for coefficient 

storage and low capacity buffering, FPGAs contain also dedicated blocks of RAM memory. 

These memories can operate in true dual-port mode, meaning they have two ports A and B 

and either of these ports can be a WRITE or READ port, independent of the function on the 

other port, sharing only the stored data. In the dedicated memories, WRITE and READ are 

synchronous operations. Data bus of each port can be configured in one of the available 

widths, independent of the other port.  

The Xilinx block RAM (BRAM) is an 18 or 36 Kb block of memory, depending on the 

device, which can also be configured as two independent 9/18 Kb blocks. The maximum 

width of the memory data bus is 36/72 bits containing a parity bit for each byte [13]. Each 

Altera device uses one of the memories labeled as M20K and M10K with maximum data 

bus width of 40/20 bits (20-bit width applies for true dual port mode) same for both types 

and capacities of 20 Kb and 10 Kb, respectively. Unlike the Xilinx block, the M20K and 

M10K blocks cannot be split [14], [15]. High-end platforms from Xilinx also contain 

dedicated logic for cascading BRAMs thus creating Ultra RAM blocks of maximum 

capacity 288 Kb.  
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Today‟s FPGAs contain more types of clock networks that include at least global and 

regional networks. The networks are designed to minimize clock skew by optimized 

integrated circuit layout using buffers and multiplexors, and also some further techniques are 

employed such as Phase Locked Loop (PLL). 

 

 

Figure 6 General overview of Xilinx FPGA architecture (source: https://www.pantechsolutions.net) 

https://www.pantechsolutions.net/
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5 Design Overview 

Chapter 3 showed the difference between the way an algorithm is implemented in 

software and hardware. Before the hardware implementation, described in this thesis, was 

performed, there had already been software implementation of the MSC compression 

algorithm in C language. Analysis of its source code was performed as a first step of the 

hardware implementation. It was necessary to familiarize with the algorithm very closely 

and to understand it to smallest details.  

The analysis served as a basis for rewriting the code into pseudocode that removed all 

the features that are used in software but cannot be used in hardware, such as pointers. The 

pseudocode was written in a form that would allow direct inference of a Finite State 

Machines and that considered division of data to memory structures. Besides, new features 

had to be introduced, such as new representation of tree, for convenient mapping to 

hardware. Example of such pseudocode is shown at the end of this page. Pseudocodes for all 

parts of the algorithm are attached in Appendix B. 

At this point, memory demand of the design was already known so it was required to 

map these memory requirements into the resources, as described in section 5.1. 

At the end, Finite State Machines (with data path) were inferred for logically divided 

parts of the algorithm, according to the pseudocode. The FSMs aimed at minimizing number 

of states and using the minimum number of clock cycles so that each part of the algorithm 

took as little time as possible. They were then translated into VHDL code, continuously 

simulated to verify functionality and synthesized. The results of the synthesis served as a 

basis for choosing a suitable FPGA. At the end, the algorithm was programmed into the 

chosen FPGA. 

 

i = 0 

while (i < SID) 

 symbol = INPUT_DATA(i) 

 no_of_occ = STAT(symbol).no_of_occ 

 no_of_occ = no_of_occ + 1 

 if (no_of_occ == 1) 

  STAT(symbol).symbol = symbol 

  STAT(symbol).first_occ = i 

  STAT(symbol).sum = 1 

 STAT(symbol).no_of_occ = no_of_occ 

 i = i + 1 
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The figure 7a) shows the structure and flow of the hardware implementation of MSC 

algorithm. Rectangles symbolize FSMs, which are instantiated as components in VHDL 

language. The arrows symbolize the transition among the FSMs implemented by control 

signals. The FSMs that follow after parallel processing are launched as soon as processing in 

the slowest parallel block is finished. 

The parallel blocks run concurrently, however, all of them need not be utilized. The 

number of used blocks is fed into the algorithm as one of the input parameters. 

Some of the FSMs are further divided into subcomponents as figures 7b) and 7c) 

suggest. The ANALYZE block utilizes the subcomponents as steps, whereas the 

COMPRESS block uses its subcomponents when they are required. 

The algorithm is implemented completely in parallel, which means that no resources 

besides memory are explicitly shared. 
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c) 

COMPRESS

WRITE BINARY 
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WRITE ELIAS 
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Figure 7 The structure of MSC algorithm hardware implementation 

5.1 Choice of the Platform 

There is a variety of FPGA manufacturers that offer a broad range of products with 

different number of resources suitable for diverse applications. The number of logic cells in 

contemporary FPGAs lies in the range from few thousand to several million [16], [17], 

therefore the designer needs to make a selection of appropriate density as an integral part of 

a design. Even the features (such as LUT width) of similar sized platforms are different. 

Generally, the choice of the FPGA platform is constrained by cost and physical 

requirements. There is not one specific method that is used for selection of the right-sized 

FPGA, however, in the design process, as [18] suggests, one shall estimate the number of: 

 Look-up Tables, Flip-flops, RAM bits, DSP Blocks 

 IOs for each voltage level (3.3, 2.5, 1.8V…) 

 Clock pins, PLL/DLL/DCM, Clock buffers required (regional or global) 

 

In case an FPGA board is used, the electrical wiring is already provided. The pins of the 

FPGA dedicated for power supply and configuration are on the board wired to connectors 

that form the interface with outside world. The same applies for communication interfaces.  

With utilization of two clock domains, FPGAs provides enough clock resources for the 

implemented design of the algorithm, which leaves us with only need for specification of 

memory size, number of registers and logic elements, when there are no further 

requirements.  

In this section, numbers of these resources that are needed for implementation of MSC 

algorithm are estimated. The estimate will be very rough due to different physical 

implementations on different platforms, various optimizations, signal trimming, using 

dedicated components (e.g. DSP blocks) or using synthesis tools
2
 from different vendors.  

                                                 
2
 Synthesis tool is a computer program that executes logic synthesis. Logic synthesis is process of 

converting a high-level design description into an optimized gate level representation. 
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In the first step of estimation process, the architectures of currently used FPGAs from 

two major manufacturers Xilinx and Altera were analyzed. It was assumed that the 

algorithm implementation should not require using high-end platforms that are used for the 

largest designs. This premise already significantly reduced the number of possible choices. 

To substantiate this assertion, Table 2 shows comparison of 6 FPGA models from Xilinx 

and Altera that cover the entire range that today‟s market can offer. Choosing an oversized 

platform results in unnecessary expenses, which can eventually make the implementation of 

design unfeasible.  

Table 2 Comparison of FPGA models (source: http://www.digikey.com/, prices from 08/16/2016) 

Vendor Device family, model Price in USD # of LCs/LEs RAM bits # of IOs 

Xilinx Kintex Ultrascale KU115 5,635.00 1,451,100 77,721,600 338 

Xilinx Kintex 7 XC7K410T 1,301.25 406,720 29,306,880 400 

Xilinx Spartan 6 XC6SLX45 54.74 43,661 2,138,112 218 

Altera Stratix V 5SEEB 7,309.97 952,000 65,561,600 696 

Altera Arria V 5AGXB5 1,256.63 420,000 23,625,728 544 

Altera Cyclone V 5CEA4 49.40 49,000 3,464,192 224 

 

Xilinx offers three and Altera two lower-end FPGA families, from which the final 

platform suitable for this application will be picked. As the official materials say, the 

selected families of FPGAs put the main emphasis on low price [19] [20]. 

 

In the next step, after the description of all the state machines in HDL language, the 

code, which was written independently of any platform, was synthetized to different Xilinx 

platforms in WebPack ISE. From the synthesis report, it was found that the synthesizer 

infers the same RTL components for all tested FPGAs (with the same architecture) even for 

those that could not fit the design. Initially, the calculation of quantity of LUTs required for 

implementation of RTL components inferred by the synthesizer was performed. However, 

the estimated number of used LUTs, which is also provided at the end of synthesis, was very 

far from the calculated number, due to various optimizations and signal trimmings. It 

equaled approximately one third of the obtained result. Similar outcomes were obtained for 

only parts of the whole design. The calculation could be performed for the Altera 

architecture in the same manner, but it seems that the estimation would become more of a 

guess.  

http://www.digikey.com/


Implementation of the MSC algorithm in FPGA   

-31- 

 

Xilinx and Altera as two main rivals like to compare the performance of their products. 

They came up with a metrics that allows comparison of logic capacity of their FPGAs [21] 

[22]. This metric, however, mainly seems as a way to advertise their products. Not only 

there is a big dispersion of values for various designs, but the average value of 1.2 that 

expresses the logic capacity ratio of 6-input LUT/ALM claimed by the Xilinx is rather 

different from value 1.8 claimed by the Altera. 

These considerations leave the impression that the best way to find appropriate size of 

FPGA from the perspective of LUTs is to synthesize the design, which needs to be built 

anyway, for particular architecture and use the result of estimated resources for decision. 

The same way can be used with advantage in case of register count determination. 

 

Unlike the previous case, the memory requirements are already precisely determined 

during the design phase. After the memory bits are known, they need to be fitted to a 

particular platform. 

The MSC compression algorithm is memory demanding. The algorithm needs to store 

diverse types of data throughout the process. For some data, this demand increases 

exponentially with symbol size in input data.  

There are 3 structures that consume the majority of memory. In case of implemented 8-

bit input symbols those structures take up approximately 6.5 Mb. There are FPGAs on the 

market that could fit this amount of data to internal memory. However, generally FPGAs 

with bigger memory are greater in all respects. So, it needs to be investigated, whether other 

resources would not stay unused, which is the case here. An alternative option is to use an 

external RAM memory.  

Besides the large data structures, the rest of data can fit into approximately 25 blocks of 

M20K memories or 18 Kb BRAMs. The Xilinx BRAM comes out better from the 

comparison to Altera memories as they offer wider data bus and thus possibility to retrieve 

more data in one clock cycle. 

 

The estimation of the component utilization by the synthesis tool is in Table 3.  

Table 3 Resource estimation 

NUMBER OF LUTS ~17 000  

NUMBER OF REGISTERS ~8 500 

NUMBER OF MEMORY BLOCKS ~25 
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The numbers consider the algorithm without the mentioned large data structures, FSM 

for external memory controller and UART receiver and transmitter. Also it is advised to 

utilize an FPGA not more than of 80% of its full capacity [18]. Based on the gathered 

information, a development board with the XC6SLX45 FPGA type from Spartan 6 family 

connected to external SDRAM memory was selected. 

5.2 Implementation 

The description of the hardware (FSMs) was performed in one of the two most used 

Hardware description Languages – VHSIC Hardware Description Language (VHDL), 

defined in standard IEEE 1076 [23]. The language is platform-independent, meaning it can 

be used for not only FPGAs but also other programmable logic devices (PLD) and 

Application-specific integrated circuits (ASIC). 

Because Xilinx platform was chosen, the design was implemented in the development 

environment of the same company – Xilinx ISE Design Suite 14.7, more specifically the 

free version ISE® WebPACK™ [24]. WebPACK provides FPGA and CPLD logic design 

solution offering HDL synthesis and simulation, implementation, device fitting, and JTAG 

programming. Therefore, it delivers a complete, front-to-back design flow providing instant 

access to the ISE features and functionality. Screenshot of the environment can be seen on 

Figure 8. 

 

 

Figure 8 Xilinx ISE® WebPACK™ development environment 

https://en.wikipedia.org/wiki/VHSIC


Implementation of the MSC algorithm in FPGA   

-33- 

 

During the design, the ISim [25] simulation environment, included in the WebPACK, 

was used. The ISim is capable of performing behavioral and timing simulations for designs 

described in Hardware Description Languages – VHDL, Verilog, and mixed VHDL/Verilog 

language designs. Its user interface is shown on Figure 9. 

 

 

Figure 9 Xilinx ISim simulation environment 

5.3 Memory structure 

It is obvious from previous sections that the implementation of the MSC algorithm uses 

internal (BRAMs) as well as external (SDRAM) memories to chosen platform. The Figure 

10 shows simplified structure of the MSC algorithm implementation, including memories. 

The memories are pictured as rectangles with rounded edges. FSMs are represented by 

rectangles with sharp edges and for easier orientation they are highlighted by grey 

background. For simplification, some of the memories in the scheme are grouped, thus 

scaling down the accuracy of the scheme.   

As different FSMs share the memories, memory inputs need to be multiplexed, otherwise 

they would be driven by more sources. The scheme also shows direction of data flow 

between memory and FSMs (whether data are read, written or both). For illustration 

purposes, sacrificing the accuracy, both of these phenomena are drawn in the same scheme.  
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The parallel segments of the algorithm are also illustrated in the scheme. Some of the 

memories are parallelized as well. Besides, there are nonparallel memories that are accessed 

from parallel blocks. To prevent collisions caused by simultaneous access of memory, an 

arbiter needs to be present in the design, which decides which parallel blocks are prioritized 

in the access over others (section 5.4). 

Due to the presence of external SDRAM in the architecture, a memory controller has to 

be part of the design serving as an interlink between the memory and the compression 

algorithm. This thesis tackles only the design of the interface between the controller and 

algorithm (section 5.3). The interaction with the SDRAM memory is elaborated by Ing. 

Tomáš Musil, Ph.D. who is one of the supervisors of the thesis. 
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Figure 10 Architecture of the MSC design 
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At closer inspection of the scheme, it can be seen that the STREAM STATISTICS are in 

the scheme more than once – in SDRAM and in BRAMs. That is not a mistake, it is an 

intention, because in the ANALYZE stage of the algorithm, part of the entire statistics, 

which is stored in SDRAM, is needed. Therefore, it is copied to BRAMs when needed for 

easier manipulation with the data. For more information see sections 5.4 and 6.7. 

5.4 SDRAM Interface 

The SDRAM memory is high capacity memory that is needed for the capacity-

demanding data structures in the MSC algorithm. Namely, those demanding structures are 

INPUT DATA, STREAMS, SMALL STATISTICS AND LARGE STATISTICS.  

The interface between the algorithm Finite State Machines and the SDRAM controller 

contains 4 equivalent ports. Each port is formed by 3 buses. The first bus is used for control 

of the interface as well as for manipulation of a single item of data. The two remaining buses 

control one memory port of two BRAMs contained in one port. It is because both blocks that 

form the SDRAM interface (MSC algorithm and SDRAM controller) possess one memory 

port of LARGE STATISTICS BRAM and one memory port of SMALL STATISTICS 

BRAM, which is shown in scheme on Figure 11.  

The complexity of the interface is given by the variety of data that are transferred via this 

interface and also due to parallel processing. Up to four blocks can run concurrently doing 

the same thing for different data – different nodes in the MSC tree, so each block owns one 

port and thus speed of the algorithm is not  reduced by constant waiting for data retrieval 

due to queues on the port. 

The high count of signals can also be taken as an advantage in times when there is only 

one sequential block running, during the stage when the counter STREAMS are created. In 

this stage, INPUT DATA are read and one value of counter is written into STREAMS and, 

depending on the value of the counter, to SMALL STATISTICS or LARGE STATISTICS. 

With this interface, each structure can have its own port for transfer. 

Parallel processing is used for analysis and compression. During analysis, both SMALL 

and LARGE STATISTICS are needed. In this case, it is not only one value but the whole 

block for one particular node. For this purpose, both statistics are copied into dedicated 

BRAMs. The LARGE STATISTICS is modified in the process but need not be copied back 

to SDRAM. When the compression is being carried out, values from STREAMS are read 

one by one.  
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The external memory should not present a bottleneck when single values are read. In 

case of reading the whole STATISTICS block into BRAMs a delay has to be expected. This 

delay can be lowered by clocking the SDRAM and the ports of the BRAMs, controlled by 

the SDRAM controller, to the highest clock frequency allowed by the design. 

5.4.1 Signals 

The interface is designed with respect to the above mentioned parameters. The 

description of signals and data buses of one port follows. 

 CMD launches the interaction with the SDRAM. As the Table 4 shows, if 

CMD = “00”, the memory waits for data transfer. If CMD = “01”, specified 

data are read and if CMD = “11”, specified data are written into SDRAM.  

Table 4 CMD signal 

CMD bit representation 

IDLE 00 

READ 01 

WRITE 11 

 

 SIZE specifies the amount of transferred data as shown in Table 5. If SIZE = 

„0‟, only one item is read from/written to an address specified by INDEX and 

POSITION. The size of an item depends on the TYPE as can be seen in Table 

6. Else if SIZE = „1‟, items on all POSITIONs from particular INDEX are 

transferred between SDRAM and particular BRAM. This option applies only 

for SMALL STATISTICS and LARGE STATISTICS. 

Table 5 SIZE signal 

SIZE bit representation 

ONE 0 

ALL 1 

 

 TYPE determines which data are manipulated. The list of used four types is 

in Table 6. 

 INDEX specifies exact position for block of data and rough position for 

specific item. 
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Table 6 Attributes of used TYPES of data 

TYPE bit representation INDEX POSITION data_size 

INPUT DATA 00 0 0-65534 8 

STREAM 01 0-3 0-65535 16 

SMALL STATISTICS 10 0-510 0-360 16 

LARGE STATISTICS 11 0-510 0-180 32 

 POSITION specifies exact position of specific item 

 DATA_IN bus specifies data to be written into SDRAM in case of writing 

one specific item. 

 READY is output signal to announce that DATA_OUT is ready or that 

writing is finished in case SIZE = „0‟. If SIZE = „1‟ then the BRAM that is 

paired with SDRAM is not accessed by the MSC algorithm side, until 

READY is equal to 1. 

 DATA_OUT outputs the read data in case of reading one specific item. 

 ADDRx is address for accessing BRAM 

 ENx is enable signal of BRAM that permits to read/write data 

 WEx is write enable of BRAM that allows writing into memory. Its 

functionality is determined by active ENx signal.  

 DIx is input data bus of BRAM 

 DOx is output data bus of BRAM 

 CLK_MSC/CLK_SDRAM are two different clock domains used by the two 

interface sides 

5.4.2 Pseudocode of SDRAM Controller 

 lower index determines to/from which BRAM the data are copied. There are 2 paired 

BRAMs for each interface port: BRAMLARGE_STATISTICS with 32 bit wide data bus and 

BRAMSMALL_STATISTICS with 16 bit data bus. 

 READY is in both READ and WRITE branch to determine if the SDRAM is 

occupied 

if (CMD == IDLE) 

 go to beginning 

elseif (CMD == READ) 

 if (SIZE == ONE) 

 read DATA_OUT(TYPE, INDEX, POSITION) 

  READY = 1 
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 go to beginning 

 elseif (SIZE == ALL) 

 copy to BRAMTYPE_n(TYPE, INDEX) 

  READY = 1 

 go to beginning 

elseif (CMD == WRITE) 

 if (SIZE == ONE) 

 write DATA_IN(TYPE, INDEX, POSITION) 

  READY = 1 

 go to beginning 

 elseif (SIZE == ALL) 

 copy from BRAMTYPE_n(TYPE, INDEX) 

  READY = 1 

 go to beginning 

5.4.3 Block Diagram 

The block diagram of SDRAM interface captures only 1 of 4 ports. The n in the names 

of the data buses ranges from 0 to 3 and so the interface is 4 times larger than Figure 11 

shows. The FSMs of the MSC algorithm decide when and how many ports are needed.  
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Figure 11 The SDRAM interface 
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5.5 Memory Arbiter 

An arbiter is generally an element that governs the access to shared resources according 

to a set priority [26]. In case of the described implementation, memories are shared among 

different parallel blocks. All of the parallel blocks have equal priority, so the access is 

decided according to the index of parallel blocks. The memory requesting FSMs generally 

need to use the memory resources quite a low percentage of time so the priority of the 

blocks is set constant. Otherwise, a token would have to be passed among parallel blocks 

prioritizing the ones that did not use the memory for a longer time than the other ones. 

In this setting, the memory arbiter is realized in hardware by a set of two input 

multiplexers. When a FSM requests a memory, it sets request signal req of particular 

memory to 1 and if no other parallel block with lower index requests the same memory, the 

appropriate grant signal gnt is set to 1. 

0
1 0

1 0
1

req_0
req_1

req_2

“1000”
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“0100”
“0010”
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Figure 12 Memory arbiter 

Sharing of the memory increases complexity of FSMs. New states are introduced 

causing slightly longer duration of FSM execution. Further delay might be introduced by the 

fact that blocks sometimes wait few clock cycles for the grant signal. However, this hold up 

is minor in comparison with the time saved due to parallel processing.  

As the parallel blocks access memories in random times, the memory output needs to be 

stored to registers as soon as it appears. It ensures that the FSM can operate this data many 

clocks after they were read.  
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5.6 UART 

The objective of FPGA board in this implementation is to perform the compression of 

input data. This data need to be loaded from computer (section 6.1). Similarly, the 

compressed data are transferred back to the computer after the compression is finished 

(section 6.10). For this purpose, the Universal Asynchronous Receiver/Transmitter (UART) 

is used as a transfer protocol between the computer and the FPGA.  

The UART is a protocol that sends bytes of data through a serial line one by one. The 

transmission of a single byte is shown in Figure 13. The serial line is in the ' 1' state when no 

data are transferred. The transmission is started with a start bit that has value „0‟, followed 

by five to eight data bits and ended with a stop bit of value ' 1'. It is also possible to append 

an optional parity bit to the end of the data bits. The transmission is defined by a set of 

parameters in advance, which include the baud rate (i.e., number of bits per second), the 

number of data bits, and use of the parity bit. The bits for each transmitted byte are sent 

from least significant bit (LSB) to most significant bit (MSB) [27]. 

 

 

Figure 13 Structure of data sent over UART (source: http://lslwww.epfl.ch/) 

 

http://lslwww.epfl.ch/
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6 Design details 

The steps performed in MSC algorithm were already described in chapter 2. In this 

section, detailed explanation of the algorithm implementation is provided.  

Unlike the software implementation, the algorithm presented in this thesis makes 

selection only between two coding methods – Elias Alpha and ZEBC. Besides those two 

methods and Huffman coding, no other methods were considered. The Huffman coding was 

eliminated during design phase for two reasons. The first reason is that it brought quite a 

significant simplification of the algorithm and rise in speed of its execution. And the second 

has to do with the size of the compressed files. In this implementation the number of 

characters in input file is limited to 65 535. The Huffman coding introduces large header for 

each node coded by this method, meaning that the header itself could form considerable part 

of the final compressed stream. The large size is a significant handicap for coding of short 

input files, so the Huffman method may possibly not get used. The header contains all the 

information needed for reconstruction of Huffman tree, in contrast with no parameters in 

case of Elias Alpha coding and one single parameter – the base in ZEBC coding. 

Besides, the Huffman coding is very demanding as far as the resources are concerned. Its 

implementation would occupy large amount of memory and it would require some change in 

the memory structure as well. 

6.1 Input of Data to FPGA Board 

The input data need to be loaded from computer to the SDRAM memory of the FPGA 

board. The data flow diagram of the SDRAM interface is shown on Figure 14.  

 

MSC 
ALGORITHM

SDRAM 
CONTROLLER

INPUT DATA0

 

Figure 14 Dataflow diagram of SDRAM interface during input data writing 

Besides those data, the compression algorithm also needs to receive compression 

parameters. The described implementation requires two parameters – a) number of used 

parallel blocks in range 1 to 4 and b) size of input data or in other words the number of input 

data characters.  
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The first parameter is sent as a first byte and two subsequent bytes in Big endian format 

are occupied by the second parameter. In order to lower memory requirements, the size of 

symbols in input data is limited to 8 bits, therefore one character is transferred in one byte. 

The transferred sequence is shown in Table 7. The N denotes number of input characters. 

The transfer follows the UART protocol described in section 5.6. The communication uses 8 

data bits without parity and the transfer rate is fixed to 115200 Bd. 

Table 7 Sequence of bytes sent from PC to FPGA 

Byte Type of data 

0 Number of parallel blocks 

1 Size N of input data (15 downto 8) 

2 Size N of input data (7 downto 0) 

3 Input data 

:  

N + 2 Input data 

6.2 Creation of Statistics 

To obtain statistics, the entire input data need to be read one by one from SDRAM as 

shown in dataflow diagram on Figure 15. For each read symbol, if it has not occurred in the 

input data yet (in other words if number of occurrences obtained from memory is zero) it is 

written into the memory along with its attributes. If it is not first occurrence of symbol, 

number of occurrences is incremented and the new value is written into the memory. It is 

obvious, that each symbol has a specified place in memory, which is determined by the value 

of symbol.  

MSC 
ALGORITHM

SDRAM 
CONTROLLER

INPUT DATA
0

 

Figure 15 Dataflow on SDRAM interface during creation of statistics 

The INPUT DATA STATISTICS is stored in one 18Kbit BRAM. The size of alphabet 

(maximum variety of symbols) is 2
8
 = 256, due to the restriction to only 8bit symbols. Each 

item of statistics has five attributes and is represented by 58 bits in total. Because the width 

of the structure is higher than the memory data bus of width 32 bits, bit representation of 

symbol, sum of left subtree’s nodes and index (more on meaning of the values in paragraph 6.3) 

are stored on different address than number of occurrences and first occurrence of symbol.  
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The position in memory of the first group of attributes is [2*symbol] and it is 

[2*symbol + 1] for the other group. So in reality, one item takes up 64 bits of memory for 

their easy addressing in memory. The structure of the stored data can be seen in Table 8.  

Table 8 Structure of INPUT DATA STATISTICS in BRAM 

address/data 32 24 16 8 

0 symbol (31 downto 24) sum (23 downto 15) index (14 downto 6)             

1 no_of_occ (31 downto 16) first_occ (15 downto 0) 

: 

                               

  

510 symbol (31 downto 24) sum (23 downto 15) index (14 downto 6)             

511 no_of_occ (31 downto 16) first_occ (15 downto 0) 

 

Generally, not all symbols from alphabet are present in the input data, which means there 

will be unused addresses in the memory block. The statistics in this format is not convenient 

for next stages. So, when reading of the input file is finished, it is needed to prepare the 

STATISTICS for building the MSC tree. The items of STATISTICS are copied to the 

lowest addresses one after another so that they make one block, omitting the unused 

symbols. In this process, the STATISTICS array is traversed from the end to the beginning 

and if a symbol used in the input data is encountered, it is copied along with other attributes 

to the first unoccupied position (from the beginning) in the same array as shown in Tables 9. 

The number of used symbols (no_of_symbols), important for next processing, is obtained. At 

the end, the items are sorted in increasing order according to the number of occurrences. 

Table 9 a), b) Squeezing statistics 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 

symbol x   z   f   a b         c 

              index 0 1 2 3 4 5 

       symbol x c z b f a 

        

Although, a variety of sophisticated sorting methods have been elaborated in hardware, 

one of the simplest algorithms – the modified Bubble sort [28] was converted into FSM. The 

Bubble sort was selected due to its simplicity and its low resource demand. This method 

compares each two subsequent items in an array and if they are in wrong order (depending 

on type of sorting), they are swapped. Each iteration ends when the last swapped item in 

previous iteration is reached. Sorting ends, when no items are swapped in one iteration. 
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6.3 Building the Tree 

In this stage the STATISTICS becomes the array of unconnected nodes, which will be 

step by step overwritten by currently unconnected nodes. It is obvious that the initially 

unconnected nodes form leaves of MSC tree. 

Before the process of tree building is described, it is necessary to make introduction into 

representation of binary tree in memory. 

6.3.1 Representation of Binary Tree 

When it comes to representing a tree in the standard programming language, it can be 

done so quite easily by using pointers or objects, telling the program, which nodes are 

connected to a particular node. In case of hardware implementation, however, when the 

designer works directly with memory, there is not such an option. Moreover, the MSC tree 

is not ordinary binary tree, but it has some special properties, which play a big role in 

choosing the right representation.  

The important feature for selection of suitable tree representation is that the MSC 

algorithm requests traversing of the tree from root to a particular leaf, which is known in 

advance. The properties of the representation required by the algorithm are: 

 each parent  knows the position of left and right child  

 each node is capable of determining the direction to a particular leaf 

 the option to traverse only specified subtree of the MSC tree (for parallel 

processing) 

There are two widely used models of binary tree representation in memory [29]. The two 

following sections will present some theory on how they work and why they are not suitable 

for MSC tree representation. 

All of the tree representations will be demonstrated on the example of coding a word 

“abracadabra”. This tree can be seen on the Figure 16. 
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Node

First occurrence
No of occurrences

abrcd

0
11

a

0
5

brcd

1
6

br

1
4

cd

4
2

b

1
2

r

2
2

c

4
1

d

6
1

 

Figure 16 Example of MSC tree for "abracadabra"  

6.3.1.1 Sequential Representation 

In this representation, the position of all nodes in memory, which can be seen as an 

array, is fixed and is the same for all binary trees. The root is always stored at index 0, the 

left child of any node with index n is stored on position 2n + 1 and the index of right child 

of the same node is calculated as 2n + 2. At first glance, it seems like a perfect 

representation – no additional data required for finding both children. On closer inspection, 

it is apparent that in case of uneven tree (tree where the depth of the leaves varies 

considerably), a lot of memory is needed for the representation and also big percentage ends 

up unused. Another problem is that when the tree is to be traversed from the root to a 

particular leaf, additional information is required in order to determine the correct path. 

For the example shown on Figure 16, fifteen cells are needed for storage of nine nodes, 

leaving 40% of memory wasted. 

Table 10 Sequential representation of nodes in memory 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

node abrcd a brcd - - br cd - - - - b r c d 
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6.3.1.2 Linked Representation 

In linked representation, all nodes can be stored in cells one after another, but it does not 

come for free - some additional information is needed. Each node must store the index of 

left and right child in the array, which is not so memory consuming considering each node in 

the MSC algorithm possesses plenty of other information. In case of 8-bit input symbols, the 

indexes take up 9 + 9 bits. The obstacle with this representation is that only with this 

information, the path from root to particular node cannot be found due to the random 

position of each node. Each leaf of the tree would require some string of bits that would hold 

the information about which way to go from every node on the path. As depths in MSC trees 

can become quite high, these strings can be rather long, taking up plenty of memory and 

possibly requiring multiple reads from the memory. 

The Table 11 shows one of the possible layouts of tree nodes in memory. The path is 

expressed by directions from root to leaf which are represented by bits, where 0 means – go 

left and 1 means – go right. It can also be seen that there is a lot of unused memory space as 

leaves do not have children and the path is needed for leaves only. 

Table 11 Linked representation of nodes in memory 

index 0 1 2 3 4 5 6 7 8 

node d c r b a cd br brcd abrcd 

left_ch - - - - - 1 3 6 4 

right_ch - - - - - 0 2 5 7 

path 111 110 101 100 0 - - - - 

6.3.1.3 Left Tree Representation 

As the previous representations are barely usable for the MSC tree, a new representation 

was invented for this purpose – Left Tree Representation. This representation is a 

compromise between the two representations and it has some added value.  

It does not waste memory but each item has the deterministic position in the memory, 

which however depends on structure of the tree. Furthermore, it allows the tree traversing 

from root to leaves without any added information. 

Due to this representation, each node (if not leaf) knows where to find its descendants in 

memory and it can find a path from root to leaf due to smart organization of nodes, which is 

governed by following rules. 
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 left child of node is stored on a subsequent position: 

left_ch_index = parent_index + 1 

 right child is stored on a position that is computed in a following way: 

right_ch_index = parent_index + no_of_nodes_in_left_tree 

 

where no_of_nodes_in_left_tree stands for number of nodes in left tree of the active 

node. To explain further, each node X of a tree is a root of a subtree (subtree of leaf contains 

only one node – the leaf). This subtree can be more decomposed to left tree and right tree 

with X as a root, each including only one direct descendant of the node. For example, as 

Figure 17 shows, left tree of “brcd” node contains 4 nodes. 

 

abrcd

a brcd

br cd

b r c d
 

Figure 17 Left tree of "brcd" node 

 

The tree in the example above would be represented as node‟s array in following way: 

Table 12 Left tree representation of nodes in memory 

index 0 1 2 3 4 5 6 7 8 

 node abrcd a brcd br b r cd c d 

number of nodes in left tree 2 1 4 2 1 1 2 1 1 

 

The final test for the left tree representation is to find the path from root to a particular 

leaf. The only thing that is necessary for this task is the index of the leaf in node‟s array. 

Then, the task comes down to comparing the leaf‟s index with active node‟s right child 

index. If leaf‟s index is smaller than node‟s right child index, we proceed to left child, else 

proceed to right child. This is carried out until required index is equal to active node‟s index. 
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Let‟s demonstrate this on the example. Say, we want to get to leaf “r” with index 5. 

1. active node is “abrcd” (root) with index 0 

2. index of right child is (0+2) = 2, which is less than 5 -> proceed to “brcd” (right 

child) with index 2 

3. index of right child is (2+4) = 6, which is more than 5 - > proceed to “br” (left child) 

with index 3 

4. index of right child is 5, which is equal to leaf‟s node index 

What more, at the end of writing to streams (section 6.5), the counters of all nodes are 

written. This task needs to be carried out from top left to bottom right node in tree. The 

software implementation used recursion for this task, in this new hardware representation; 

the nodes are already arranged in exactly this order, so the node‟s array is only passed from 

the first to the last index. 

6.3.2 Process of Tree Building 

The construction of MSC tree is governed by two restrictive requirements, which causes 

that the process has to take place in two steps to achieve the desired representation.  

As a first step, the linked representation (LR) of tree is created. The leaves are stored at 

lowest indexes from index 0 and newly created nodes are stored behind them one after 

another. The root is thus stored at last index equal to (2*no_of_symbols – 2). For the LR 

representation, three auxiliary BRAM memories are used storing the statistics (symbol, 

number of occurrences and first occurrence), number of nodes in left tree (needed for 

transformation to the desired representation) and data of linked representation of tree 

(direction from parent node and indexes of left child, right child and parent) for each node. 

The memories structure can be found in Appendix C. 

In the second step, the linked representation is transformed into the left tree 

representation (LTR) according to following algorithm: 

end = 0 

index = 0  

 read ROOT from LR(2*no_of_symbols - 2) 

 write ROOT to LTR(index) 

CURRENT_NODE = ROOT 

index = index + 1 

while (end == 0) 

 read CURRENT_NODE.left_child 

 read CURRENT_NODE.right_child 

 write CURRENT_NODE.left_child to LTR(index) 

 index = index + 1 

if CURRENT_NODE.left_child.type != LEAF 
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 CURRENT_NODE = CURRENT_NODE.left_child 

 parent = CURRENT_NODE 

else  

 while(1) 

 write CURRENT_NODE.right_child to LTR(index) 

        index = index + 1 

    if CURRENT_NODE.right_child.type != LEAF 

 CURRENT_NODE = CURRENT_NODE.right_child 

 break 

 else 

 read parent 

CURRENT_NODE = parent 

do 

desc_dir = CURRENT_NODE.dir 

parent = CURRENT_NODE.parent 

CURRENT_NODE = parent 

 while(desc_dir == 1) 

 if index == 2*no_of_symbols - 2  

 break 

 end = 1 

The attribute denoting type of node (type) can take following values: root, middle and 

leaf. The attribute desc stands for descendant and denotes the direction from parent node to 

the CURRENT_NODE. 

The algorithm traverses the nodes in the same order – from left top to right bottom, they 

are ordered in LTR and stores the attributes of nodes, concerning the structure of the tree 

and the input statistics into the NODE memories. Besides that, the indexes of leaves in 

NODE memories are written to LEAVES memory.  Traversing of the tree is shown on 

Figure 18. 

 

abrcd

a brcd

br cd

b r c d
 

Figure 18 Traversing of tree during transformation from LR to LTR 
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6.3.3 Memory Structure Used for Nodes 

After building the node structure of the Left Tree Representation in memory, it is kept 

there until the very end of the algorithm as it is needed in almost all following stages. Each 

node is an individual entity that needs some attributes in each stage of the algorithm, 

possessing quite a large number of them in total. Some of these attributes are even large 

arrays of values, which are stored outside the FPGA due to high memory demand. The 

single value attributes of one node take up 138 bits in total. They were mapped into 

memories with 36-bit data bus width. As it is much easier not to mix attributes of different 

nodes on same address, the aim was to fit each node into n addresses, occupying n*36 bits. 

All the attributes are stored on four addresses and take up 144 bits, leaving 6 bits unused for 

one node. If Huffman coding was considered, there would be two more attributes – interval 

counter and max depth of Huffman tree.  

As the maximum number of nodes in a tree is 511 (2*alphabet_size – 1), it is obvious 

that the single value attributes will need 511x144 = 73 584 bits, which is nearly the 

maximum capacity of 4 block RAMs. As the attributes of one node are stored in 4 addresses, 

it is advantageous to store them to separate memories. Due to this separation, all of the 

attributes are advantageously stored on the same address, only in different memory. Another 

advantage is that there is a possibility to retrieve all the attributes of a node in one clock 

cycle. 

The structure of the NODE memories can be seen in Tables 13, 14, 15 and 16. The 

purpose of some attributes will be explained in further sections. The range in brackets 

denotes, which bits of data bus is occupied by the particular value. The tendency was to 

group attributes that are used in same stages together. 

Table 13 First block of memory containing node attributes (NODE1) 

0 

no_of_occ 

(35 - 20) 

first_occ 

(19 - 4) 

par_thr 

(3 - 2)     

: 
                                  

 

  

510 

no_of_occ 

(35 - 20) 

first_occ 

(19 - 4) 

par_thr 

(3 - 2)     

 

 

 



Implementation of the MSC algorithm in FPGA   

-51- 

 

Table 14 Second block of memory containing node attributes (NODE2) 

0 
counter 

(35 - 20) 

symbol 

(19 - 12) 

type 

(11-10) 

left_tree 

(9 - 1) 

dir 

(0) 

: 
                                    

510 
counter 

(35 - 20) 

symbol 

(19 - 12) 

type 

(11-10) 

left_tree 

(9 - 1) 

dir 

(0) 

 

Table 15 Third block of memory containing node attributes (NODE3) 

0 
point_str 

(35 - 20) 

point_par_thr 

(19 - 4) 

thr_ind 

(3-2) 

flg1 

(1)  

: 
 

510 
point_str 

(35 - 20) 

point_par_thr 

(19 - 4) 

thr_ind 

(3-2) 

flg1 

(1)  

 

Table 16 Fourth block of memory containing node attributes (NODE4) 

0 
ls_items 

(35 - 28) 

base 

(27 - 22) 

flg2 

(21)  

sum_counters 

(19 - 4) 

best_m 

(3 – 2)   

: 
 

510 
ls_items 

(35 - 28) 

base 

(27 - 22) 

flg2 

(21)  

sum_counters 

(19 - 4) 

best_m 

(3 – 2)   

 

6.4 Determination of Subtrees 

As some steps of the algorithm are carried out in parallel, each node needs to be assigned 

to a particular block. To get those blocks, a tree needs to be divided into subtrees or layers. 

In this implementation, the first option was chosen. It is the easier version because the 

interface between 2 different blocks is made up by only one node. The number of blocks that 

will process the data in parallel depends on the user, as it is one of the input parameters to 

the compression module, but the maximum number was set to 4. However, if number of 

nodes in a tree is lower than selected number of parallel blocks, then each node is assigned 

to its own block.  

The subtrees are selected in following way. Root of the tree is root of thread
3
 0. If the 

data is to be processed by more than one thread, the child of the root with higher number of 

occurrences is chosen as root of thread 1.  

                                                 
3 The software implementation used threads to implement parallelism in the algorithm. The word thread became 

almost a synonym of one instance of parallel processing in MSC algorithm, so the thesis uses interchangeably names 

“thread” and “parallel block”. 
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Figure 19 Chosen thread root if no_of_threads >= 1 

  OR    

Figure 20 Alternative choices for thread root 1 

 

If number of threads is higher than 2, the child with higher number of occurrences of the 

tree root‟s child with lower number of occurrences is chosen, but only if this root‟s child is 

not a leaf. Otherwise, the tree root‟s child with lower number of occurrences is labeled as 

root of thread 2. In case of 4 threads, the root of thread 3 is either the child with higher 

number of occurrences of root of thread 1 or pair node of root of thread 2 (the other child of 

parent of thread 2) if root of thread 1 is a leaf. The selection of the threads is shown on 

figures below. To save space, they show only cases when roots of thread 1 and 2 are right 

children. The same applies for left child. 

 

 OR     OR   

Figure 21 Alternative choices for thread root 2 
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  OR   OR   

Figure 22 Alternative choices for thread root 3 

Three attributes of nodes – parent thread index (par_thr), thread index (thr_i) and flag of 

thread root (flg1) are stored to NODE memories for thread root nodes. Besides, index of each 

root in NODE memories and type of thread is stored to AUXILIARY memory for each 

thread. There are four possible types of thread as shown in Table 17. The representing 

values must be non-zero, because they are written into the final compressed stream by Elias 

Alpha coding. Also, the values are selected with respect to occurrence of each type in 

compressed data - the most used threads are coded by the lowest value. 

Table 17 Types of threads 

TYPE REPRESENTING VALUE 

MAIN THREAD WITHOUT CHILDREN 4 

MAIN THREAD WITH CHILDREN 1 

CHILD THREAD WITHOUT CHILDREN 2 

CHILD THREAD WITH CHILDREN 3 

NOTE: 

Selection of the subtrees influences the processing time of stages of the algorithm that 

run in parallel. The execution time of the ANALYZE phase depends mainly on total number 

of counters of all nodes in particular block. Duration of the COMPRESS phase then depends 

considerably on number of occurrences of root node of subtree. 

We choose to select threads from the top of the tree as the nodes have higher number of 

occurrences and thus higher number of counters in a stream that will be processed. 

However, the root of the tree has only one counter in stream, so we generally do not want it 

to have both children in different threads, because in the ANALYZE stage of the algorithm, 

there would be no nodes to analyze. For the sake of simplicity of this FSM, there is one case 

in which this occurs as shown on Figure 21.  
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If all leaves of MSC tree are in depth higher than two, then all subtrees consist of more 

than one node. Example of possible subtree selection is shown on Figure 23. It is apparent 

that in this particular case every subtree contains between 7 and 9 nodes and those with less 

nodes tend to have higher number of occurrences, thus maximizing the effort to make the 

processing time uniform.  

 

Figure 23 Selection of subtrees for a random tree 

6.5 Creation of Streams 

To create streams, the INPUT DATA need to be read for second time and even though 

the blocks for parallel processing have already been determined, this stage still runs 

sequentially, but the information about parallel block indexes is used.  

On the beginning, all the counters counter are reset and all switches dir in the MSC tree 

are set to 0 – pointing to left side. For each symbol, the tree is traversed from root to leaf, 

which is based on calculating child‟s index of each node until the desired index is reached as 

specified in section 6.3.1.3. To find an index of particular leaf in the NODE memories, an 

auxiliary memory structure LEAVES is used, which contains indexes that leaves occupy in 

the NODE memories. All of the leaves are contained and they are stored at an address that 

has the value of the leave‟s symbol.  

During traversing of the tree, the position where the counter of node will be written into 

thread STREAMS is specified as soon as the counter starts incrementing. The process is 

described in section 6.5.1. 
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If the investigated node is not a leaf of tree, then we proceed to a child lying on the path 

from root to the particular leaf. If switch from the investigated node is not pointing to child 

on the path, counter of the node lying on the switch (pair node) is written into the thread 

STREAM (to specified position by str_pos and str_par_pos) and the counter STATISTICS. 

The counter is written to both memories, because they have different structure. The thread 

STREAM is used for compression, whereas the counter STATISTICS is intended for 

analysis. The counter of the pair node is then reset and the switch direction is changed to 

follow the path. Each time a node is entered during traversing, its counter is read, 

incremented by one and written back to the memory. 

When the end of input data is reached, there are still nonzero values in node counters, 

which need to be written to STREAMS as well. As explained earlier (section 6.3.1.3), the 

array of nodes are accessed in order specified by LTR. The interaction with SDRAM 

controller during the phase of creating streams is shown on Figure 24. 

MSC 
ALGORITHM

SDRAM 
CONTROLLER

LARGE STATISTICS

INPUT DATA/STREAMS

SMALL STATISTICS

STREAMS
0
1
2
3

 

Figure 24 Dataflow of SDRAM interface during creation of streams 

6.5.1 Specification of Counter Position in Thread Streams 

Each thread has its own thread STREAM. Thread STREAM is an array of numbers that 

contains all of the counters of all of the nodes in one thread but also counters of root nodes of 

child threads if the thread has any. The order in which counters are stored is specified and is 

crucial for the compression phase. A large number of counters might need to be stored in 

each STREAM, thus they are stored into external memory.   

The writing into the thread streams has following rules. If counter of investigated node is 

0, then the node remembers the first free position in the respective thread stream. The 

counter value of node will later be written to this position. The position is stored in node 

attribute str_pos. Moreover, if the current node is a root of child thread, the node stores the 

first free position in parent thread stream into str_par_pos. To determine the index of parent 

thread, the NODE1 memory contains par_thr, which stores this value for each thread root 

node. At the end, the first free position in the current thread stream is incremented. In case 

of thread root, the same thing happens for parent thread. 
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To illustrate the process of storing stream positions, an example is presented on tree 

shown on Figure 25. The tree is divided into 4 threads. For illustration purposes let‟s say, 

symbol C in read from input data and the thread streams are empty. 

 Initially, the node 0 (root) is investigated 

o value 0 is stored into str_pos as it is first free position in red thread stream 

 The node 1 is investigated 

o value 0 is stored into str_pos as it is first free position in green thread 

stream 

o value 1 is stored into str_par_pos as it is first free position in red thread 

stream (red thread is parent thread of green thread) 

 The node 3 is investigated 

o value 0 is stored into str_pos as it is first free position in blue thread 

stream 

o value 1 is stored into str_par_pos as it is first free position in green thread 

stream (green thread is parent thread of blue thread) 

 The node C is investigated 

o value 1 is stored into str_pos as it is first free position in blue thread 

stream 

0

1 2

A 3 D E

B C  

Figure 25 Example of MSC tree 
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6.5.2 Counter Statistics 

The counter STATISTICS is another attribute of node. It also needs to be stored outside 

the FPGA due to high memory requirements. It is divided into two parts by delimiter. 

Delimiter is a defined number that separates values of counters to statistics of low value 

counters SMALL STATISTICS and statistics of large value counters LARGE 

STATISTICS. The value of the delimiter is computed with respect to minimization of 

memory demand for statistics storage. The delimiter is computed in a following way, which 

applies for the worst case scenario. 

   ((           )       ⌊
                  

           
⌋     ) 

For this particular configuration, the delimiter is equal to 361. To understand the formula 

above, the structure of both of the statistics have to be understood first. One item in the 

SMALL STATISTICS occupies 16 bits and stores only the number of occurrences of 

counter with particular value as the counter value is specified by the position in the array.  

For large statistics this approach would not be very convenient. The occurrence of high 

values of counters is very sparse, which would leave us with a lot of unused memory. 

Instead, the value of counter as well as its number of occurrences is stored taking up 32 bits 

of memory and the items of large statistics are stored one after another. The number of 

occurrences is, however, determined in next phase, at this stage the values higher or equal to 

delimiter are just stored on first free position in memory. 

For computation of memory needed for large statistics, the worst case scenario needs to 

be determined. It is the scenario when the investigated node is accessed delimiter number of 

times (in our case 361) without resetting the counter and then the pair node is accessed once. 

It means that after each delimiter + 1 number of times the tree is traversed, the counter is 

written into statistics. To get the maximum number of the items in LARGE STATISTICS, 

delimiter + 1 must divide the maximum number of items in the input data. For this 

implementation: 

⌊
     

     
⌋      

The statistics for one node will therefore take up  

(                 )                               

As the statistics needs to be stored for each node separately, it consumes big amount of 

memory.  
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Example: 

Counters 128, 131, 570, 128, 391, 128, 417, 570, 391 of one node shall be stored to 

node‟s statistics.  

1) The initial state is: 

SMALL STATISTICS 

          position 0 …. 127 128 129 130 131 132 …. 360 

number of occurrences 0 …. 0 0 0 0 0 0 …. 0 

 

LARGE STATISTICS 

        position 0 1 2 3 4 5  …. 180 

counter 0 0 0 0 0 0  …. 0 

number of occurrences 0 0 0 0 0 0  0 

 

2) After storing the counters 

SMALL STATISTICS 

          position 0 …. 127 128 129 130 131 132 …. 360 

number of occurrences 0 …. 0 3 0 0 1 0 …. 0 

 

LARGE STATISTICS 

        position 0 1 2 3 4 5  …. 180 

counter 570 391 417 570 391 0  …. 0 

number of occurrences 1 1 1 1 1 0  0 

 

NOTE: 

In the described implementation, the value of delimiter was selected with objective to 

minimize the memory demand of the streams STATISTICS. If memory is not a concern and 

the goal is to maximize speed of the algorithm, the delimiter value should be determined 

differently. It could be determined empirically by observation for various input data. The 

lower counters are generally more tightly packed. The values of counters from the lowest 

values to some set threshold after which the values become dispersed shall be stored to 

SMALL STATISTICS and the values above the threshold shall be stored to LARGE 

STATISTICS. 
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6.6 Calculation of ZEBC Table 

The ZEBC table is calculated for indexes 0 to 15 according to the rules described in 

section 2.2.2. The table is stored in one BRAM. Its structure can be seen in Table 18. 

Table 18 ZEBC TABLE memory structure 

DATA PARITY 

31 downto 16 15 downto 0 3 2 1 0 

beginning end    

x 16 

 

6.7 Parallel Analysis 

The purpose of the analysis is to determine a method for each node, by which the counter 

values will be coded. Besides, the parameters of the selected method are defined. 

The analysis starts with reading the index of thread root and type of thread from 

AUXILIARY memory. The root of the MSC tree (node with index 0) is not analyzed, 

because its statistics always contains only one value and it is already written in the header of 

the compressed string, so there is no need to analyze it. Other thread roots are processed 

equally to ordinary nodes. 

  

The analysis is conducted for each node separately. In the analysis, the stream 

STATISTICS as a whole is processed. To decrease the number of interactions with the 

external memory, the entire STATISTICS of the processed node is copied into the BRAMs 

before the node is analyzed. Manipulation of STATISTICS during this phase is shown on 

dataflow diagram on Figure 26. 

MSC 
ALGORITHM

SDRAM 
CONTROLLER

LS/SS BRAMs

LS/SS BRAMs

LS/SS BRAMs

LS/SS BRAMs

LS/SS

LS/SS

LS/SS

LS/SS

LS/SS

LS/SS

LS/SS

LS/SS

0

1

2

3

 

Figure 26 STATISTICS manipulation during analysis phase 
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The analysis of each node is performed in four steps 

1. Statistics processing 

2. Elias Alpha coding analysis 

3. ZEBC coding analysis 

4. Advance to next node 

In reality, the component ANALYZE contains three subcomponents as shown on 

Figure 7b). The first step is divided into two components running in parallel that separately 

process SMALL and LARGE STATISTICS. The last component is realization of the third 

step. Steps 2 and 4 are not in subcomponents as they present just few lines of code. 

6.7.1 Statistics processing 

The processing time of SMALL STATISTICS depends on the value of delimiter. Logic 

demand for realization the FSM processing SMALL STATISTICS is quite simple and so 

one iteration is quite short. The number of iterations of LARGE STATISTICS processing 

depends on its number of items, which is generally not very high if the delimiter is chosen 

reasonably, but average processing time of one item is much higher with more associated 

logic. Also, no resources are shared for processing of the both STATISTICS. This resulted 

in decision to put processing of SMALL STATISTICS and LARGE STATISTICS in 

parallel. 

 

The SMALL STATISTICS is not changed during the processing. The whole array is 

only read and two values are determined – total number of counters and maximum counter. 

The LARGE STATISTICS is processed in two steps. First, it is sorted in increasing 

order according to the counter values. The Modified bubble sort is used in the same form it 

was used earlier. In second step, the LARGE STATISTICS is squeezed in order to merge 

same counter values to one with appropriate number of occurrences. Thus, the LARGE 

STATISTICS is changed before the coding analysis is conducted. As the statistics is no 

longer needed in subsequent stages of the algorithm, it does not have to be stored back into 

the SDRAM. Similarly to SMALL STATISTICS, the number of counters of LARGE 

STATISTICS is determined. The number of counters of both STATISTICS are added 

together in the higher module and stored to NODE4 memory along with other attributes. 
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Example (continued from section 6.5.2): 

LARGE STATISTICS 

        position 0 1 2 3 4 5  …. 180 

counter 391 417 570 0 0 0  …. 0 

number of occurrences 2 1 2 0 0 0  0 

6.7.2  Coding analysis 

During the coding analysis stage, the length of counter values coded by all chosen 

coding methods is calculated for one node at a time. At the end, the method giving the best 

result is chosen and additional values are added to this length. The calculation of length is 

very simple in case of Elias Alpha coding. The number of bits needed for coding all counter 

values of a node is equal to number of occurrences of the same node. 

The analysis of ZEBC coding is more difficult. Computation of length interacts with the 

ZEBC table of intervals (Appendix A). The FSM calculates the lengths of coded data for 

different ZEBC bases and the aim is to find the minimum length value. The algorithm can be 

well understood from the Table 19. 

The first column in the table contains the value to be coded. The second column contains 

indices of ZEBC table intervals to which values belong. From third column on, the values in 

cells contain the length of coded value by ZEBC(b), where for illustration base b = 1..5. The 

numbers in the brackets are differences of coded values‟ lengths comparing to coding with 

(b – 1) considering same counter value (basically it tells us how much the length differs 

from the length in previous column). 

Table 19 Examples of values coded by ZEBC with different bases 

Value Index in ZEBC table ZEBC(1) ZEBC(2) ZEBC(3) ZEBC(4) ZEBC(5) 

1 0 2 1 (-1) 1 1 1 

2 1 2 3 (+1) 2 (-1) 2 2 

3 1 4 3 (-1) 4 (+1) 3 (-1) 3 

4 1 4 5 (+1) 4 (-1) 5 (+1) 4 (-1) 

5 1 4 5 (+1) 6 (+1) 5 (-1) 6 (+1) 

6 2 4 5 (+1) 6 (+1) 7 (+1) 6 (-1) 

7 2 6 5 (-1) 6 (+1) 7 (+1) 8 (+1) 
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First, the benchmark is set by computing the length of coded data by ZEBC(1). On a 

closer look of the table above, a pattern can be seen. In ZEBC(1) column, we see that the 

minimum length is 2 and the length increases by two every time a second value in ZEBC 

table interval (underlined) is reached. The total length of one node‟s counter values is 

calculated by formula: 

              ∑    ( )     ( )

  

   

  

where: 

   – maximum counter of analyzed node of MSC tree 

     – number of occurrences of counter with value   

    – length of counter with value   coded by ZEBC(1) 

 

For bases higher than 1, we can see in the table above that when the value of counter 

(                          –   ) is reached the length of coded value by ZEBC(b) is 

lower by one and the length of all the other values is higher by one comparing to     

ZEBC(b-1). In this manner, the length is calculated for counters in SMALL STATISTICS. 

In case of dispersed LARGE STATISTICS, each investigated counter value is firstly 

decremented by the current ZEBC base   and then the       of interval where this value 

belongs is found. The length is then determined from the formula: 

(                     ) 

At the end of the analysis for each base, the obtained total lengths of both STATISTICS 

are added to get the final length, which is compared to so far lowest length (calculated for 

lower bases) and if the lowest length is higher than the current length, the current length 

becomes the lowest and the current base is stored as a best base. 

When the length for all investigated coding methods is obtained, some values from 

node‟s header, that is included in the compressed data, are added to this length. The header 

will be described later, but it contains two items important for now – best method and 

coding parameters. Because length of those items differs for different methods, it needs to 

be included into the decision of best method. Each method has a value assigned to it, which 

is coded by Elias alpha in the final stream, thus its length is equal to its value. In this 

implementation, Elias alpha has value 1 and ZEBC has value 2 assigned. As far as the 

compression parameters are concerned, Elias Alpha does not have any and ZEBC has one – 

the base (giving the lowest length) coded by Elias Alpha.  
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6.7.3 Advance to next node 

During analysis, each node of subtree is entered and analyzed. This stage determines the 

sequence, in which the nodes are analyzed. Also, the total length of coded data is calculated 

for the parallel block.  

The subtree of one parallel block is traversed from left top to right bottom. To obtain 

attributes of a particular node, which are stored in LTR, it means that index of the node is 

just incremented by one in order to proceed into the next node. Sometimes, it happens that 

the node on the next index is from a different parallel block. If this node is left child of its 

parent, then right child is entered instead. If the node is right child, the analysis is terminated 

(right child is at the subsequent index in LTR if the node at the current index is leaf node).  

The total length of coded data is incremented after analysis of each node by the obtained 

minimum length plus the remaining items of the header (will be specified later) that have not 

yet been added. When a node from different thread is found during traversing of the subtree, 

the length of different parallel block identifier (described in section 6.9) is added to the total 

length. 

6.8 Buffer scheme 

Before talking about the compression phase, let us mention the storage of compressed 

data into an intermediate buffer. The buffer is necessary as the output data cannot be 

transferred to PC directly. The binary values that appear on the output from the algorithm 

can be either values coded by inverted Elias Alpha coding that have defined structure and 

variable length, which can be in some cases quite high. Or it can be arbitrary binary coded 

value of length between 1 and 32 bits. Some of the values in the MSC overhead are 

represented by 32 bits otherwise the length does not exceed 16 bits. 

As the coded values appear on the output in random time and with random lengths, an 

intermediate element that would buffer those values in correct format and order is needed. A 

combination of 8-bit register and BRAM were selected for this task.  

The register stacks and splits the variable length values so that they form 8-bit blocks. 

When the register is full, its content is copied into first unoccupied position in BRAM, thus 

buffering the values. The parity bit is also used; it is set to „0‟ for all data. After the last byte 

of compressed data is stored, one special byte with any value and parity bit set to „1‟ is 

stored to buffer, which is used when sending data to computer to recognize last byte of data. 
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Generally, the data are compressed in parallel, so each parallel block has its own buffer 

and the last byte in the each buffer is marked by the parity bit. Also the overhead has its own 

buffer, but due to its known length, there is no need to denote the last byte. 

The pseudocodes for producing 8-bit values from Elias Alpha coded and binary values 

are below.  

WRITE_ELIAS_ALPHA(FREE, LEN) 

end = 0 

last = 0 

while (end == 0) 

 if (LEN > FREE) 

  data(FREE-1 downto 0) = (others => '1'); 

  last = 1 

 elseif (LEN == FREE) 

  data(0) = '0'; 

  data(FREE-1 downto 1) = (others => '1'); 

  end = 1 

  last = 1 

 else 

  data(FREE-LEN) = '0'; 

data(FREE-1 downto FREE-LEN+1) = (others => '1'); 

FREE = FREE - LEN 

end = 1 

 if (last == 1) 

  last = 0 

  FREE = 8 

  LEN = LEN - FREE  

 write data to BUFFER 

  data(7 downto 0) = (others => '0'); 

 

WRITE_BINARY(FREE, LEN, VALUE) 

end = 0 

last = 0 

while (end == 0) 

 if (LEN > FREE) 

  i = 8 – FREE 

  while (i < 8) 

   data(7-i) = VALUE(LEN–i–1+8-FREE);  

   i = i + 1 

  LEN = LEN – FREE 

  last = 1 

 elseif (LEN == FREE) 

  i = 8 – FREE 

  while (i < 8) 

   data(7-i) = VALUE(LEN–i–1+8-FREE);  

   i = i + 1 

  last = 1 

  end = 1 

 else 

  i = 8 – FREE 

  while (i < 8–FREE+LEN) 

   data(7-i) = VALUE(LEN–i–1+8-FREE);  
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  end = 1 

   i = i + 1 

 if (last == 1) 

  last = 0 

  FREE = 8 

 write data to BUFFER 

  data(7 downto 0)=(others => '0'); 

 

6.9 Compression 

The compression starts with specification of the overhead. It contains information 

necessary for decoding. The length of the overhead differs with number of used parallel 

blocks. It contains general parameters regardless of the number of parallel blocks and 

specification of each parallel block. Table 20 shows the sequence of values in MSC 

overhead, their size in bytes and their offset in the final stream of compressed data for 

different number of parallel blocks. 

Table 20 MSC Overhead 

Offset 
Size (bytes) Value 

1 2 3 4 

0 0 0 0 1 Size of one symbol in bits 

1 1 1 1 1 Number of threads 

2 2 2 2 4 Length of compressed data 

   6 4 Number of occurrences of thread root 3 

   10 4 Number of counters of thread root 3 

   14 4 Compressed data offset of thread 2 

  6 18 4 Number of occurrences of thread root 2 

  10 22 4 Number of counters of thread root 2 

  14 26 4 Compressed data offset of thread 1 

 6 18 30 4 Number of occurrences of thread root 1 

 10 22 34 4 Number of counters of thread root 1 

 14 26 38 4 Compressed data offset of thread 0 

6 18 30 42 4 Number of occurrences of thread root 0 
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After the MSC overhead is written, the parallel compression of counters in subtrees is 

launched. Initially, the counter of each node in MSC tree is reset and direction switches are 

set to left. The index of subtree root in NODE memories along with thread type are read 

from AUXILIARY memory. Initially, thread type is written to the appropriate output buffer. 

Knowing the index of the root, its number of occurrences in the input data is read, defining the 

number of times the subtree is traversed.  

Then, the traversing is started and each node besides the root of MSC tree is 

investigated. This time, the traversing is governed solely by the switches. The compressed 

data are composed of counters coded by specified method for each node. The first 

compressed counter of each node has a header attached to it. The counters are read from 

STREAMS, which are stored in SDRAM. Each thread uses one port of the SDRAM 

interface as shown on Figure 27. 

 

MSC 
ALGORITHM

SDRAM 
CONTROLLER

STREAMS

STREAMS

STREAMS

STREAMS
0
1
2
3

 

Figure 27 Dataflow on SDRAM interface during coding phase 

The header differs for leaves and non-leaf nodes as shown in Table 21. First bit 

distinguishes between the leaf and non-leaf node. In case of leaf its symbol is included after 

the first bit. The selected best method, chosen for coding the particular node is the next item 

in the header, followed by coding parameters of the coding method. The best method 

identifier is 1 for Elias Alpha coding and 2 for ZEBC coding. The best method identifier is 

coded by Elias Alpha. Each method for coding counters contains a different number of 

coding parameters. Elias alpha coding does not have any and ZEBC coding stores the best 

base, which is also coded by Elias Alpha. 

Table 21 Header format of node's first coded counter 

LEAF 1 symbol (8 bits) best method identifier coding parameters 

NON-LEAF 0 best method identifier coding parameters   

 



Implementation of the MSC algorithm in FPGA   

-67- 

 

In case a node is from different thread, only identifier of the thread, shown in Table 22, 

is written the first time the node is accessed and the counters of this node are not written to 

buffer of this thread. The first bit of the identifier is 0, which suggests that this bit is 

followed by identifier, not a symbol. In this case it is not the identifier of a method, but of 

CHILD THREAD that is written by Elias Alpha and which must be different from values of 

coding methods. It has value 4 to comply with the software implementation. It is followed 

by ID of thread, coded by Elias Alpha as well. 

Table 22 Identifier of different thread 

 

 

The management of storing output values into output buffers is performed by the tree 

and counters themselves. If counter of an entered node is 0, new value from first unread 

position in thread STREAM is obtained and it is written to appropriate buffer. Each time a 

node is entered, its counter value is decremented by one. If the counter value after 

decrementing is 0, then direction of parent‟s switch is changed. 

6.10 Output of Compressed Data 

The 8-bit values representing the output data, stored in the output buffers are transmitted 

via UART to computer as specified in section 5.6. The UART uses identical parameters as 

in case of loading the input data. Initially, the entire overhead is transferred to the computer. 

After that, the buffers are read in the order in which the compressed data are stored in the 

final stream, which is from the highest used thread index to 0. Each buffer is read until last 

byte with parity bit of value 1 is reached. This last byte is not transmitted to the computer. 

The receiver in computer receives all data that are transmitted by the FPGA. The total 

number of received bytes is determined after first six bytes of overhead are received. The 

computer program remembers the length of compressed data, which is sent in last four bytes 

of these six bytes in Big Endian format. Hence, after these six bytes, the computer receives 

number of bytes that is equal to obtained length subtracted by 6.  

One computer program is built for both parts – transferring of input data into an FPGA 

(described in section 6.1) and receiving the compressed data. The program is not part of this 

thesis. It was developed by one of the supervisors – doc. Ing. Vít Fábera, Ph.D. 

 

0 CHILD THREAD ID of thread  
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7 Results 

The task to implement the algorithm to greatest extent allowed by available resources 

was accomplished. There was only insufficient amount of time to finish pairing of the 

SDRAM memory with the FPGA. Despite the seemingly correct functioning, the read data 

on the output did not correspond to those on input. However, the functionality of the MSC 

algorithm was tested with success in a version utilizing only BRAM memories. This version 

allowed simulation in iSim.  

To visualize signals of the implementation using SDRAM memory for testing purposes, 

a logical analyzer Omega from Asix company was used. Forte programmer from the same 

company was then utilized for the FPGA programming. The workplace layout is shown on 

Figure 28. 

 

 

Figure 28 Workplace 
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The result of the thesis consists in evaluation of utilized resources of the used FPGA 

platform. Performance comparison of software and hardware implementation is not 

presented as there are not any applicable results of software implementation available and 

the other reason is the unfinished pairing of SDRAM and FPGA. 

 

Table 23 shows the utilization of FPGA resources. The values are taken for the algorithm 

utilizing SDRAM memory and connected logic analyzer. Those values were recorded in the 

moment of finishing the thesis, so after completion of the project, they are supposed to 

change only minimally.  

Table 23 FPGA resource utilization 

Resource Absolute usage Relative usage in XC6SLX45
4
 

Number of Slice Registers 9,265 16% 

Number of Slice LUTs 14,346 52% 

Number of occupied Slices 4,786 70% 

Number of bonded IOBs 69 21% 

Number of used BRAMs 25 21% 

 

The chosen platform seems to be a reasonable choice. However, as it seems, Xilinx 

offers even more suitable XC7A35T model from Artix 7 family, which contains 

approximately 75% resources and the price is by 20 USD
5
 lower comparing to the selected 

platform. 

For information, table 24 shows the utilization of IOBs. The majority of IOB pins is 

utilized for SDRAM memory and logic analyzer. 

Table 24 IOB utilization 

Purpose Number of IOBs 

Clock 1 

UART 2 

Logic Analyzer 16 

SDRAM memory 50 

 

                                                 
4
 XC6SLX45 is the chosen platform of Spartan 6 family 

5
 The prices are taken on 26/11/2016 
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The maximum frequency of the design that is to be programmed into the FPGA is 

provided at an output of the design synthesis. This frequency is determined by critical path 

delay incremented by periods needed to prevent timing violation. The synthesis tool 

calculated the maximum frequency of the design to be equal to 50.521MHz. Due to further 

optimizations after the synthesis process the frequency could be increased to 80 MHz. The 

SDRAM memory uses another clock domain of 320 MHz, which is easily obtained from the 

base frequency. 
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8 Future Considerations 

The described implementation presents the first trial to code MSC algorithm to hardware 

platform. Some of the algorithm features had to be elaborated from the beginning. Some 

features were omitted or used in simple, non-optimized way. The implementation features 

can be divided into two not strictly separated groups – hardware platform and algorithm 

features. Both of them present big space for various modifications and improvements. 

Examples of the former group can be optimization for specific architecture, timing and area 

optimization techniques such as pipelining or resource sharing, and others. In following 

sections three algorithm modifications are proposed for future work.  

8.1 Sorting Algorithm 

In the described implementation, sorting algorithm is used twice. If Huffman coding was 

included this number would raise to four. If a more efficient algorithm was introduced, the 

compression time might get lower. The implemented sorter compares only two values at a 

time, however, the hardware implementation allows sorting of more items at once. For 

illustration, as [30] shows a big improvement in speed of parallel sorting compared to 

quicksort implemented in software can be achieved. 

8.2 Decomposition of Tree to Layers 

Besides the implementation described in this thesis, a MSC tree can be also broken into 

layers. A research shall be conducted, if this alternative way presents some advantageous 

properties. The designer must, however, bear in mind that the left tree representation does 

not allow direct traversing of the tree in layers and that in the compression phase of the 

algorithm the tree is traversed from top to bottom. 

As the information about the parallel blocks is stored in the final compressed stream, the 

decompression module at the receiver side cannot use different parallel blocks for 

processing, so it is necessary to resolve this feature for both modules simultaneously.  
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8.3 Huffman Coding 

To exploit full potential of MSC algorithm, Huffman coding should be considered as one 

of the coding options, especially if big files are compressed. With Huffman coding, a larger 

HW platform must be considered, because the coding requires considerable amount of 

additional logic and memory resources.  

Especially, the analysis becomes much more complex, because in order to make 

decompression possible, a node compressed by Huffman method must include all the 

necessary information for reconstruction of the Huffman tree in the header. Therefore, 

besides the length for determination of the best method, the values needed for representation 

of Huffman tree are computed. At the end of analysis, the Huffman tree is built to get the 

binary representation of each counter. And this is performed for each node of the MSC tree. 

Fortunately, nodes are analyzed sequentially in parallel block, so some values are discarded 

after analysis of node is done and so the memory demand is lowered.  

For further illustration, it was computed that in order to store 4 Huffman trees (because 

the analysis can run concurrently in 4 threads) twelve 18 Kb BRAMs would be required. 

Another auxiliary BRAM would be needed for building the trees and further memories for 

representation of the Huffman trees. 
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9 Conclusion 

The thesis describes the first hardware implementation of MSC algorithm. The 

implementation is described in VHDL language and utilizes two methods for streams coding 

– Elias Alpha and ZEBC. The implementation limits the size of symbols in input data to 8 

bits and number of characters to 65,535 in order to lower the memory requirements. 

During the design phase, software implementation, written by the author of the 

algorithm, served as a main inspiration for building Finite State Machines that realize this 

compression algorithm in hardware. However, new features had to be introduced, because in 

hardware the memory is accessed directly without a support of pointers or objects. One of 

the outcomes is the invention of Left Tree Representation of MSC tree. 

The implementation confirmed high memory demand of the algorithm comparing to 

other compression methods. It is because the algorithm encodes counters instead of data, 

which need to be stored in two memory structures in different forms – one for analysis, the 

other for compression.  

The implemented design uses clock with frequency of 80 MHz without any explicit 

optimizations for the particular platform. The overall synthesis results confirm that the 

choice of the platform was reasonable. 

The interface with PC, used for transfer of input and output of data utilizes UART 

protocol with 8 data bits and Baud rate of 115,200 Bd. A logic analyzer was used for 

visualization of signals during testing phase. 

There were some problems that occurred during the implementation. In the process of 

simulation, some bugs were found in the design that required their correction. For example, 

a process of MSC tree building had to be adjusted by inserting creation of linked 

representation of tree. Most of the minor problems that were being solved resulted from 

overlooking important details in datasheets of the FPGA.  

Owing to the shortage of time, the pairing of SDRAM memory with FPGA platform was 

unsuccessful. However, the functionality of the algorithm implementation for limited input 

data was tested using internal memories of the FPGA. Work on the project is planned to 

continue.  

At the end of the thesis, possible modifications are introduced. Those should be 

considered during future implementations. 
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Appendices 

APPENDIX A – ZEBC TABLE 

Table of intervals of ZEBC coding 

Index Beginning of interval End of interval 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

0 

2 

6 

14 

30 

62 

126 

254 

510 

1022 

2046 

4094 

8190 

16382 

32766 

65534 

131070 

262142 

524286 

1048574 

2097150 

4194302 

8388606 

16777214 

33554430 

67108862 

134217726 

268435454 

536870910 

1073741822 

2147483646 

1 

5 

13 

29 

61 

125 

253 

509 

1021 

2045 

4093 

8189 

16381 

32765 

65533 

131069 

262141 

524285 

1048573 

2097149 

4194301 

8388605 

16777213 

33554429 

67108861 

134217725 

268435453 

536870909 

1073741821 

2147483645 

4294967293 
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APPENDIX B - PSEUDOCODES 

CREATE STAT 

i = 0 

while (i < SID) 

 symbol = INPUT_DATA(i) 

 no_of_occ = STAT(symbol).no_of_occ 

 no_of_occ = no_of_occ + 1 

 if (no_of_occ == 1) 

  STAT(symbol).symbol = symbol 

  STAT(symbol).first_occ = i 

  STAT(symbol).sum = 1 

 STAT(symbol).no_of_occ = no_of_occ 

 i = i + 1 

 

 

SQUEEZE AND SORT STAT 

front = 0x00 

back = 0xFF 

do 

 stat_front = STAT(front) 

 stat_back = STAT(back) 

 if(STAT (back).no_of_occ != 0) 

  while(STAT(front).no_of_occ != 0 AND front < back) 

   front = front + 1 

  STAT(front) = stat_back 

  front = front + 1 

 back = back – 1 

while(front <= back) 

no_of_symbols = front 

end = no_of_symbols - 1 

do 

 cnt = 0 

 i = 0 

 while(i < end) 

  stat_i = STAT(i) 

  stat_i1 = STAT(i+1) 

  if(stat_i.no_of_occ > stat_i1.no_of_occ) 

   tmp = stat_i1 

   STAT(i+1) = stat_i 

   STAT(i) = tmp 

   cnt = cnt + 1 

  i = i + 1 

 end = end – 1 

while(cnt > 0) 
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BUILD TREE 

i = 0 

j = 0 

k = 0 

while(i < no_of_symbols) 

 stat_i = STAT(i)  

 BUILD_TREE(i).symbol = stat_i.symbol 

 BUILD_TREE(i).sum = stat_i.sum 

 BUILD_TREE(i).no_of_occ = stat_i.no_of_occ 

 BUILD_TREE(i).first_occ = stat_i.first_occ 

 STAT(i).index = i 

 i = i + 1  

while(i < 2*no_of_symbols-2)  

 stat_k = STAT(k) 

 stat_k1 = STAT(k+1) 

 if(stat_k1.first_occ < stat_k.first_occ) 

  swap = 1  

BUILD_TREE(stat_k).parent = i 

BUILD_TREE(stat_k1).parent = i 

 if (swap == 1) 

  BUILD_TREE(i).left_tree = stat_k1.sum + 1 

BUILD_TREE(i).no_of_occ = stat_k1. no_of_occ + stat_k. no_of_occ  

BUILD_TREE(i).first_occ = stat_k1.first_occ 

BUILD_TREE(i).left_ch = stat_k1.index 

BUILD_TREE(i).right_ch = stat_k.index  

BUILD_TREE(stat_k).dir = 1 

BUILD_TREE(stat_k1).dir = 0 

else 

  BUILD_TREE(i).left_tree = stat_k.sum + 1 

BUILD_TREE(i).no_of_occ = stat_k1. no_of_occ + stat_k. no_of_occ 

BUILD_TREE(i).first_occ = stat_k.first_occ 

BUILD_TREE(i).left_ch = stat_k.index 

BUILD_TREE(i).right_ch = stat_k1.index 

BUILD_TREE(stat_k).dir = 0 

BUILD_TREE(stat_k1).dir = 1 

 j = k + 2 

 stat_j = STAT(j) 

 while(stat_j.no_of_occ < (stat_k1. no_of_occ + stat_k. no_of_occ) AND j 

< no_of_symbols) 

  STAT(j-1) = stat_j 

stat_j = STAT(j) 

j = j + 1 

 STAT(j-1).sum = stat_k.sum + stat_k1.sum + 1 

STAT(j-1).index = i 

STAT(j-1).no_of_occ = stat_k1. no_of_occ + stat_k. no_of_occ 

if swap == 1 

STAT(j-1).first_occ = stat_k1.first_occ 

 else 

STAT(j-1).first_occ = stat_k.first_occ 

 i = i + 1 

 k = k + 1 

index = 0 

bt_i = BUILD_TREE(i) 

NODE(index).no_of_occ = bt_i.no_of_occ 

NODE(index).first_occ = bt_i.first_occ 
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NODE(index).counter = 0 

NODE(index).type = ROOT 

NODE(index).left_tree = bt_i.left_tree 

NODE(index).dir = 0 

index = index + 1 

position = bt_i.left_ch 

position2 = bt_i.right_ch 

while(index < 2*no_of_symbols-2) 

bt_pos = BUILD_TREE(position) 

bt_pos2 = BUILD_TREE(position2) 

NODE(index).no_of_occ = bt_pos.no_of_occ 

NODE(index).first_occ = bt_pos.first_occ 

NODE(index).counter = 0 

NODE(index).left_tree = bt_pos.left_tree 

NODE(index).symbol = bt_pos.symbol 

NODE(index).dir = 0  

if(bt_pos.sum > 1) 

    parent = position 

position = bt_pos.left_ch 

position2 = bt_pos.right_ch 

NODE(index).type = MIDDLE  

index = index + 1 

  else 

   NODE(index).type = LEAF 

   LEAVES(bt_pos.symbol) = index 

index = index + 1 

   while(1) 

    NODE(index).no_of_occ = bt_pos2.no_of_occ 

NODE(index).first_occ = bt_pos2.first_occ 

NODE(index).counter = 0 

NODE(index).left_tree = bt_pos2.left_tree 

NODE(index).symbol = bt_pos2.symbol 

NODE(index).dir = 0  

    if(bt_pos2.sum > 1) 

NODE(index).type = MIDDLE  

     index = index + 1 

     position = bt_pos2.left_ch 

     position2 = bt_pos2.right_ch 

     break 

    else  

     position = parent 

NODE(index).type = LEAF 

LEAVES(bt_pos2.symbol) = index 

index = index + 1 

do 

desc_dir = BUILD_TREE(position).dir 

parent = BUILD_TREE(position).parent 

position = parent 

while(desc_dir == 1) 

bt_pos2 = BUILD_TREE(parent) 

   if(index == 2*no_of_symbols) 

     break 
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DETERMINE THREADS 

note: memory ROOTS became part of memory AUXILIARY 

if(no_of_threads > 2*no_of_symbols – 1) 

 no_of_threads = 2*no_of_symbols - 1 

thread = 0 

index = 0 

ROOTS(thread).index_node = index 

NODE(index).index_thread = thread 

if(no_of_threads == 1) 

 ROOTS(thread).type = MAIN_WITHOUT 

else 

 ROOTS(thread).type = MAIN_WITH 

 thread = 1 

 node = NODE(index) 

 NODE(index).par_thread = 0 

 left_ch = NODE(index + 1) 

 right_ch = NODE(index + node.left_tree) 

 if(left_ch.no_of_occ > right_ch.no_of_occ) 

  index = index + 1  

  pair_index = index + node.left_tree 

 else 

  index = index + node.left_tree 

  pair_index = index + 1  

 ROOTS(thread).index_node = index 

 NODE(index).index_thread = thread 

 NODE(index).flag = 1 

 ROOTS(thread).type = CHILD_WITHOUT 

if(no_of_threads >= 3) 

 thread = 2 

 node = NODE(pair_index) 

 if(node.type != LEAF) 

  left_ch = NODE(pair_index + 1) 

  right_ch = NODE(pair_index + node.left_tree) 

  if(left_ch.no_of_occ > right_ch.no_of_occ) 

   index2 = pair_index + 1 

   pair_index2 = pair_index + node.left_tree 

  else 

   index2 = pair_index + node.left_tree 

   pair_index2 = pair_index + 1 

  ROOTS(thread).index_node = index2 

  NODE(index2).index_thread = thread 

  NODE(index2).flag = 1 

 else 

  ROOTS(thread).index_node = pair_index 

  NODE(pair_index).index_thread = thread 

  NODE(pair_index).flag = 1 

 ROOTS(thread).type = CHILD_WITHOUT 

 par_threads(thread) = 0 

if(no_of_threads == 4) 

 thread = 3 

 node = NODE(index) 

 if(node.type != LEAF) 

  left_ch = NODE(index + 1) 
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  right_ch = NODE(index + node.left_tree) 

  if(left_ch.no_of_occ > right_ch.no_of_occ) 

   index = index + 1 

  else 

   index = index + node.left_tree 

  par_threads(thread) = 1 

  ROOTS(1).type = CHILD_WITH 

 else 

  index = pair_index2 

  par_threads(thread) = 0 

 ROOTS(thread).index_node = index 

 NODE(index).index_thread = thread 

 NODE(index).flag = 1 

 ROOTS(thread).type = CHILD_WITHOUT 
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CREATE STREAMS 

note: memory STR_POS became part of memory AUXILIARY 

i = 0 

delimiter = 361 

ls_items = 0 

while(i < SID) 

 n_index = 0 

 symbol = INPUT_DATA(i) 

 des_index = LEAVES(symbol) 

 do 

  index = n_index 

  write = 0 

  node = NODE(index) 

  if(node.counter == 0) 

   NODE(index).point_str = STR_POS(node.thread) 

   str_pos(node.thread) = STR_POS(node.thread) + 1 

   if(node.flag == 1) 

    par_thr = NODE(index).par_thr 

    NODE(index).point_par_str = STR_POS(par_thr) 

    str_pos(par_thr) = STR_POS(par_thr) + 1 

  NODE(index).counter = node.counter + 1 

  if(node.type != LEAF) 

   if(des_index < index + node.left_tree)  

    n_index = index + 1 

    pair_index = index + node.left_tree 

    if(node.dir == 1) 

     write = 1 

   else 

    n_index = index + node.left_tree 

    pair_index = index + 1 

    if(node.dir == 0) 

     write = 1 

  if(write == 1) 

   pair_child = NODE(pair_index) 

STREAM(pair_child.thread, pair_child.point_str) = pair_child.counter 

   if(pair_child.flag == 1) 

STREAM(node.thread, pair_child.point_par_str) = 

pair_child.counter 

   if(pair_child.counter < delimiter) 

no_of_occ = SMALL_STAT(pair_index, pair_child.counter).no_of_occ 

SMALL_STAT(pair_index, pair_child.counter).no_of_occ = no_of_occ 

+ 1 

   else 

LARGE_STAT(pair_index, pair_child.ls_items).counter = 

pair_child.counter 

LARGE_STAT(pair_index, pair_child.ls_items).no_of_occ = 1 

    NODE(pair_index).ls_items = pair_child.ls_items + 1 

   NODE(pair_index).counter = 0 

   NODE(index).dir = NOT node.dir 

 while(index != des_index) 

 i = i + 1 
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i = 0 

while(i < 2*no_of_symbols – 1) 

 node = NODE(i) 

 if(node.counter != 0) 

  STREAM(node.thread, node.point_str) = node.counter 

  if(node.flag == 1) 

   par_thr = NODE(index).par_thr 

   STREAM(par_thr, node.point_par_str) = node.counter 

  if(node.counter < delimiter) 

   no_of_occ = SMALL_STAT(i, node.counter).no_of_occ 

   SMALL_STAT(i, node.counter).no_of_occ = no_of_occ + 1 

  else 

   LARGE_STAT(i, node.ls_items).counter = node.counter 

LARGE_STAT(i, node.ls_items).no_of_occ = 1 

   NODE(i).ls_items = node.ls_items + 1 

 NODE(i).counter = 0  

NODE(i).dir = 0    

 i = i + 1 
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GET_ZEBC_TABLE 

ZEBC_TAB(0).begin = 0 

ZEBC_TAB(0).end = 1 

i = 1 

while(i < 16) 

 zebc = ZEBC_TAB(i-1)  

 last_diff = zebc.end – zebc.begin + 1 

 ZEBC_TAB(i).begin = zebc.end + 1 

 ZEBC_TAB(i).end = zebc.begin + (last_diff*2) – 1 

 if(delimiter < zebc.end) 

  large_stat_ind = i  

 i = i + 1 

  



Implementation of the MSC algorithm in FPGA   

-87- 

 

ANALYZE 

note: METH_EA and METH_ZEBC are identifiers of coding methods, CHILD_THREAD is identifier of child thread 

ln_anal = 0 

end = 0 

index = ROOTS(ind_of_thread).index_node 

while(end != 1) 

 node = NODE(index) 

 if(index != 0) 

  SQUEEZE_AND_SORT_LARGE_STAT 

  GET_STAT_ITEMS_AND_MAX_SMALL_COUNTER 

  ANALYZE_EA 

  best_meth = METH_EA 

  best_len_head = len_head 

  best_len_body = len_body 

  best_len_ = len_head + len_body 

  ANALYZE_ZEBC 

  if(best_len >len_head + len_body) 

   best_meth = METH_ZEBC 

   best_len_head = len_head 

   best_len_body = len_body 

   best_len_ = len_head + len_body 

  NODE(index).best_meth = best_meth 

  ln_anal = ln_anal + 1 + best_len 

  if(node.type == LEAF) 

   ln_anal = ln_anal + 8 

  NODE(index).ls_items = ls_items 

NODE(index).best_base = best_base 

NODE(index).first_cntr_flag = 1 

NODE(index).sum_cntrs = sum_cntrs_ss + sum_cntrs_ls 

NODE(index).best_meth = best_meth 

 if(index < 2*no_of_symbols – 2) 

  left_ch = node(index + 1) 

  right_ch = node(index + node.left_tree) 

  if(left_ch.thread != ind_of_thread) 

    if(right_ch.thread != ind_of_thread) 

    end = 1 

    if ((index + 1) != (index + node.left_tree)) 

ln_anal = ln_anal + 1 + CHILD_THREAD + left_ch.thread + 1 + 

CHILD_THREAD + right_ch.thread 

len_thread(ind_of_thread) = ROOTS(ind_of_thread).type_thread + 

ln_anal 

   else 

    index = index + node.left_tree 

    ln_anal = ln_anal + 1 + CHILD_THREAD + left_ch.thread 

    LOAD STATISTICS FROM SDRAM 

  else 

   index = index + 1 

   if(right_ch.thread != ind_of_thread) 

    ln_anal = ln_anal + 1 + CHILD_THREAD + right_ch.thread 

   LOAD STATISTICS FROM SDRAM 

 else 

  end = 1 

len_thread(ind_of_thread) = ROOTS(ind_of_thread).type_thread + ln_anal 
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SQUEEZE_AND_SORT_LARGE_STAT 

end = node.ls_items 

sum_cntrs_ls = node.ls_items 

do 

 cnt = 0 

 i = 0 

 while(i < (end-1)) 

  large_stat_i = LARGE_STAT(i) 

  large_stat_i1 = LARGE_STAT(i+1) 

  if(large_stat_i.counter > large_stat_i1.counter) 

   tmp = large_stat_i1 

   LARGE_STAT(i+1) = large_stat_i 

   LARGE_STAT(i) = tmp 

   cnt = cnt + 1 

  i = i + 1 

 end = end – 1 

while(cnt > 0) 

 

old_beg = 0 

ls_items = 0 

last_cntr = 0 

do 

 cntr = LARGE_STAT(index, old_beg).counter 

 if(cntr != last_cntr) 

  ls_items = ls_items + 1 

  LARGE_STAT(index, ls_items).counter = cntr 

  last_cntr = cntr 

 else 

  no_of_occ = LARGE_STAT(index, ls_items).no_of_occ 

  LARGE_STAT(index, ls_items).no_of_occ = no_of_occ + 1 

 old_beg = old_beg + 1 

while(old_beg < end) 

 

GET_STAT_ITEMS_AND_MAX_SMALL_COUNTER 

i = 0 

max_small_cntr = 0 

while(i < delimiter) 

 ss_item = small_stat(index, i).no_of_occ 

 if(ss_item != 0) 

  sum_cntrs_ss = sum_cntrs_ls + ss_item 

  max_small_cntr = i 

 i = i + 1 

 

ANALYZE_EA 

len_head = METH_EA 

len_body = node.no_of_occ 
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ANALYZE_ZEBC 

best_base = 1 

volume_stat_s = 0, volume_stat_l = 0 

add = 2 

ind = 0 

end = ZEBC_TAB(ind).end 

end1 = end + 1 

cntr = 1 

i_b = 2 

break = 0 

while(cntr <= max_small_cntr) 

 if(cntr > end1) 

  ind = ind + 1 

  end = ZEBC_TAB(ind).end 

  end1 = end + 1 

  add = add + 2 

 occ = SMALL_STAT(index, cntr).no_of_occ 

 while(occ > 0) 

  volume_stat_s = volume_stat_s + add 

  occ = occ – 1 

 cntr = cntr + 1 

cntr = 0 

while(cntr < ls_items) 

 value = LARGE_STAT(index, cntr).counter – 1 

 end = ZEBC_TAB(large_stat_ind).end 

 while(value > end) 

  ind = ind + 1 

  end = ZEBC_TAB(ind).end 

 occ = LARGE_STAT(index, cntr).no_of_occ 

 while(occ > 0)      

  volume_stat_l = volume_stat_l + ind + ind + 2 

  occ = occ – 1 

 cntr = cntr + 1 

best_volume = volume_stat_s + volume_stat_l 

while(i_b <= 50) 

 ind = 0 

 while(break != 1) 

  zebc = ZEBC_TAB(ind) 

  uli = i_b + zebc.begin – 1 

  if(uli <= max_small_cntr) 

   puli = SMALL_STAT(index, uli) 

   volume_stat_s = volume_stat_s – puli 

   uli_end = i_b + zebc.end – 1 

   if(uli_end > max_small_cntr) 

    cntr = max_small_cntr – uli 

    uli = uli + 1 

    while(cntr != 0) 

     puli = SMALL_STAT(index, uli).no_of_occ 

     uli = uli + 1 

     volume_stat_s = volume_stat_s + puli 

     cntr = cntr – 1 

    break = 1 

   else 

    cntr = uli_end – uli 

    uli = uli + 1 
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    while(cntr != 0) 

     puli = SMALL_STAT(index, uli).no_of_occ 

     uli = uli + 1 

     volume_stat_s = volume_stat_s + puli 

     cntr = cntr – 1 

  else 

   break = 1 

  ind = ind + 1 

 volume_stat_l = 0 

 ind = large_stat_ind 

 cntr = 0 

 while(cntr < ls_items) 

  value = LARGE_STAT(index, cntr).counter – i_b 

  zebc = ZEBC_TAB(ind) 

  while(value > zebc.end) 

   ind = ind + 1 

   zebc = zebc_tab(ind) 

  while(occ > 0) 

   volume_stat_l = volume_stat_l + i_b + ind + ind + 1 

   occ = occ – 1 

  cntr = cntr + 1 

 volume = volume_stat_s + volume_stat_l 

 if(best_volume > volume) 

  best_volume = volume 

  best_base = i_b 

 i_b = i_b + 1 

len_head = METH_ZEBC + best_base 

len_body = best_volume 
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GET_COMPRESSION_OVERHEAD 

note: WR_BIN and MSC_WR_ALPHA are writing functions described in section 6.8 

size = 8 

WR_BIN(size)  

WR_BIN(no_of_threads)  

buff_len = 0 

i = 0 

while(i < no_of_threads) 

 x = len_thread(i)/8 

 y = len_thread(i) – 8*x 

 if(y != 0) 

  x = x + 1 

 buff_len = buff_len + x 

 i = i + 1 

i = 0, z = 0 

while(i < no_of_threads) 

 x = len_thread(i)/8 

 y = len_thread(i) – 8*x 

 if(y != 0) 

  x = x + 1 

 z = z + x 

 buff_offset(i) = buff_len - z 

 i = i + 1 

i = 0 

j = no_of_threads – 1 

file_offset = 2 + (((no_of_threads*3) – 1)*4) 

while(i < no_of_threads) 

 if(i == 0) 

  x = buff_len + file_offset 

  WR_BIN(x)  

 else 

WR_BIN(buff_offset(j))  

WR_BIN(NODE(root(j).index).no_of_occ)  

 if(i != (no_of_threads – 1)) 

  counters = node(root(j).index).sum_cntrs 

 WR_BIN(counters)  

 i = i + 1 

 j = j – 1 
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COMPRESS 

type = ROOTS(thread_ind).type_of_thread 

index = ROOTS(thread_ind).index 

root_ind = ROOTS(thread_ind).index 

root_node = NODE(index) 

cntr = root_node.no_of_occ 

STR_POS(thread_ind) = 0 

MSC_WR_ALPHA(type) 

pos = STR_POS(thread_ind) 

root_node.counter = STREAM(thread_ind, pos) 

STR_POS(thread_ind) = pos + 1 

if(type == MAIN_WITHOUT) 

 while(cntr != 0) 

  node = root_node 

  parent = root_node 

  do 

   if(node.direction == 0) 

    index = index + 1 

   else 

    index = index + node.left_tree 

   node = NODE(index) 

   if(node.counter == 0) 

    if(node.first_cntr_flag == 1) 

     node.first_cntr_flag = 0 

     INIT_COMPR_NODE_STREAM(node) 

pos = STR_POS(thread_ind) 

    node.counter = STREAM(thread_ind, pos) 

STR_POS(thread_ind) = pos + 1 

if(node.best_meth == METH_ELIAS_ALPHA) 

     MSC_WR_ALPHA(node.counter) 

elseif(node.best_meth == METH_ZEBC) 

     MSC_WR_ZEBC(node.best_base, node.counter) 

   NODE(index).counter = node.counter – 1 

   if(node.counter == 0) 

    parent.direction = NOT parent.direction 

   parent = node 

  while(node.type != LEAF) 

 

if(type == MAIN_WITH) 

 while(cntr != 0) 

  node = root_node 

  parent = root_node 

  break = 0 

  do 

   if(node.direction == 0) 

    index = index + 1 

   else 

    index = index + node.left_tree 

   node = NODE(index) 

   if(node.index_thread != thread_ind) 

    diff_thr = DIFF_THREAD(node.index_thread) 

    if(diff_thr.counter == 0) 

     if(diff_thr.flag == 0) 

      DIFF_THREAD(node.index_thread).flag = 1 

      INIT_COMPR_THREAD_STREAM(node) 
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     pos = STR_POS(thread_ind) 

     diff_thr.counter = STREAM(thread_ind, pos) 

     STR_POS(thread_ind) = pos + 1 

DIFF_THREAD(node.index_thread).counter = diff_thr.counter – 1 

    if((diff_thr.counter – 1) == 0) 

     parent.direction= NOT parent.direction 

    break 

   else 

    if(node.counter == 0) 

     if(node.first_cntr_flag == 1) 

      node.first_cntr_flag = 0 

      INIT_COMPR_NODE_STREAM(node) 

pos = STR_POS(thread_ind) 

     node.counter = STREAM(thread_ind, pos) 

STR_POS(thread_ind) = pos + 1 

if(node.best_meth == METH_ELIAS_ALPHA) 

      MSC_WR_ALPHA(node.counter) 

elseif(node.best_meth == METH_ZEBC) 

      MSC_WR_ZEBC(node.best_base, node.counter) 

    NODE(index).counter = node.counter – 1 

    if(node.counter == 0) 

     parent.active = NOT parent.active 

    parent = node 

    if(node.type == LEAF) 

     break 

  while(1) 

 

if(type == CHILD_WITH) 

 while(cntr != 0) 

  node = root_node 

  parent = root_node 

  break = 0 

  do 

   if(node.index_thread != thread_ind) 

    diff_thr = DIFF_THREAD(node.index_thread) 

    if(diff_thr.counter == 0) 

     if(diff_thr.flag == 0) 

      DIF_THREAD(node.index_thread).flag = 1 

      INIT_COMPR_THREAD_STREAM(node) 

     pos = STR_POS(thread_ind) 

     diff_thr.counter = STREAM(thread_ind, pos) 

     STR_POS(thread_ind) = pos + 1 

DIFF_THREAD(node.index_thread).counter = diff_thr.counter – 1 

    if((diff_thr.counter – 1) == 0) 

     parent. active = NOT parent. active 

    break 

   else 

    if(node.counter == 0) 

     if(node.first_cntr_flag == 1) 

      node.first_cntr_flag = 0 

      INIT_COMPR_NODE_STREAM(node) 

pos = STR_POS(thread_ind) 

     node.counter = STREAM(thread_ind, pos) 

STR_POS(thread_ind) = pos + 1 

if(node.best_meth == METH_ELIAS_ALPHA) 

      MSC_WR_ALPHA(node.counter) 
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elseif(node.best_meth == METH_ZEBC) 

      MSC_WR_ZEBC(node.best_base, node.counter) 

    NODE(index).counter = node.counter – 1 

    if(node.counter == 0 AND index != root_ind) 

     parent.active = NOT parent.active 

    parent = node 

    if(node.type == LEAF) 

     break 

if(node.direction == 0) 

     index = index + 1 

    else 

     index = index + node.left_tree 

    node = NODE(index) 

  while(1) 

 

if(type == CHILD_WITHOUT) 

 while(cntr != 0) 

  node = root_node 

  parent = root_node 

  do 

   if(node.counter == 0) 

    if(node.first_cntr_flag == 1) 

     node.first_cntr_flag = 0 

     INIT_COMPR_NODE_STREAM(node) 

pos = STR_POS(thread_ind) 

    node.counter = STREAM(thread_ind, pos) 

STR_POS(thread_ind) = pos + 1 

if(node.best_meth == METH_ELIAS_ALPHA) 

     MSC_WR_ALPHA(node.counter) 

elseif(node.best_meth == METH_ZEBC) 

     MSC_WR_ZEBC(node.best_base, node.counter) 

   NODE(index).counter = node.counter – 1 

   if(node.counter == 0 AND index != root_ind) 

    parent.active = NOT parent.active 

   parent = node 

   if(node.type == LEAF) 

    break 

if(node.direction == 0) 

    index = index + 1 

   else 

    index = index + node.left_tree 

   node = NODE(index) 

  while(node.type != LEAF) 
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INIT_COMPR_THREAD_STREAM 

WR_BIN(0) 

MSC_WR_ALPHA(CHILD_THREAD) 

MSC_WR_ALPHA(node.index_thread) 

 

INIT_COMPR_NODE_STREAM 

if(node.type == LEAF) 

 WR_BIN(1) 

 WR_BIN(node.symbol) 

else 

 WR_BIN(0) 

MSC_WR_ALPHA(node.best_meth) 

if(node.best_meth == ZEBC) 

 MSC_WR_ALPHA(node.best_base) 
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APPENDIX C – MEMORY STRUCTURES 

STATISTICS 

address/data 32 24 16 8 

0 symbol (31 downto 24) sum (23 downto 15) index (14 downto 6)             

1 no_of_occ (31 downto 16) first_occ (15 downto 0) 

: 
                               

  

510 symbol (31 downto 24) sum (23 downto 15) index (14 downto 6)             

511 no_of_occ (31 downto 16) first_occ (15 downto 0) 

 

BUILD TREE1 

address/data 32 24 16 8 

0 symbol (63 downto 56) sum (55 downto 47)                               

: 
                                

510 symbol (63 downto 56) sum (55 downto 47)                               

 

BUILD TREE2 

address/data 32 24 16 8 

0 no_of_occ (31 downto 16) first_occ (15 downto 0) 

: 
                                

510 no_of_occ (31 downto 16) first_occ (15 downto 0) 

 

BUILD TREE3 

address/data 32 24 16 8 

0 left_ch (31 downto 23) right_ch(22 downto 14) parent(13 downto 5) dir(4)         

: 
                                

510 left_ch (31 downto 23) right_ch(22 downto 14) parent(13 downto 5) dir(4)         

 

NODE1 

address/data 32 24 16 8 3 2 1 0 

0 no_of_occ (31 downto 16) first_occ (15 downto 0) par_thr     

: 
                                   

 

510 no_of_occ (31 downto 16) first_occ (15 downto 0) par_thr     

 

NODE2 

address/data 32 24 16 8 3 2 1 0 

0 counter (16) symbol (8) 
type 
(2) left_tree (9) dir 

: 
    

                       
       

 

510 counter (16) symbol (8) 
type 
(2) left_tree (9) dir 
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NODE3 

address/data 32 24 16 8 3 2 1 0 

0 point_str (35 downto 20) point_par_thr (19 downto 4) 
thr_i 
(3-2) flg   

:   

510 point_str (35 downto 20) point_par_thr (19 downto 4) 
thr_i 
(3-2) flg   

 

NODE4 

address/data 32 24 16 8 3 2 1 0 

0 ls_items base (6) flg   sum_counters (16) best_m     

:   

510 ls_items base (6) flg   sum_counters (16) best_m     

 

AUXILIARY 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

index_of root 0           type_thr     

index_of root 1           type_thr     

index_of root 2           type_thr     

index_of root 3           type_thr     

stream_position 0     

stream_position 1     

stream_position 2     

stream_position 3     

temp_counter 0     

temp_counter 1     

temp_counter 2     

temp_counter 3     

flag                                   

flag                                   

flag                                   

flag                                   

len_thread 0 

len_thread 1 

len_thread 2 

len_thread 3 

 

ZEBC TABLE 

address/data 32 16                                                                               0 3 2 1 0 

0 beginning ending       

:   

15 beginning ending       
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LEAVES 

address/data 16 8 

0 index_of_node(15 downto 7)               

:   

255 index_of_node(15 downto 7)               

 

LARGE STATISTICS 

address/data 32 24 16 8 

0 no_of_occ counter 

:   

180 no_of_occ counter 

 

SMALL STATISTICS 

address/data 16 8 

0 no_of_occ 

:   

359 no_of_occ 

 

DIFF THREAD 

address/data 16 8 1 0 

0 counter0 flg   

1 counter1 flg   

2 counter2 flg   

3 counter3 flg   

 


