
CZECH TEcI-iNIcAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATtON TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Example-based Stylization of 3D Renderings on the GPU

Student: Be. Martin Dzurenko

Supervisor: doc. lng. Datiiel SSikora, Ph.D.

Study Programme: Inforinatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of winter semester 2017/18

Instructions

Explore state-of-the-art in example-based stylization of 3D renderings [1,2]. Given existing CPU
implementation of these algorithms identify time consuming parts that are suitable for parallelization on
currently available GPUs. Focus preferably on the problem of randomized nearest neighbor retrieval with

constraints on equitable utilization [3,4]. Using NVID]A CUDA implement a parallel version of the
algorithm [2] based on [4] and evaluate its efficiency on a real data set provided by the thesis supervisor.
Verify that the GPU implementation achieves comparable visual quality as the original CPU version of [2].

References

[1] Bénard et al .. Stylizing Animation by Example. ACM Transactions on Graphics 32(4):1 19. 2013.
[2] fiter ci al.: StyLit: llltirninaiion-Gtiided Example-Based Stylization of 3D Renderings, ACM Transactions on
Graphics 35(4):92. 2t] 6.
[3] Barnes et al.: PatchMatch: A Randomized Correspondence Algorithm for Strucitiral Image Editing. ACM
Transactions on Graphics 28:3(24). 2009.
141 Kaspar ci al.: Self tuning texture optimization. Computer Graphics Forum 34t2):349—360, 2015.

Ing. Michal Valenta, Ph.D.
Head of Department

,41
prof. log. Pavel TvrdIk, CSc.

Dean

Prague September 8. 2016





Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Example-based Stylization of 3D
Renderings on the GPU

Bc. Martin Dzurenko

Supervisor: doc. Ing. Daniel Sýkora, Ph.D.

10th January 2017





Acknowledgements

First of all, thanks to Daniel Sýkora for his phenomenal supervising skills and
precise approach during the whole process. Thanks a lot to Ondřej Jamrǐska
for his brilliant ideas, unmatched enthusiasm and keen willingness to help at
all times. Finally, thanks a lot to my family for their unconditioned support
and faith in me.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th January 2017 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Martin Dzurenko. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Dzurenko, Martin. Example-based Stylization of 3D Renderings on the GPU.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2017.



Abstrakt

Ćılem stylizace vzhledu na základě ručně kreslené předlohy je co nejvěrněǰśı re-
produkce stylu umělce. Aplikováńım stylizace lze ušetřit čas a námahu umělci
d́ıky eliminaci repetitivńı práce, např. při tvorbě animaćı. Současné př́ıstupy k
stylizaci nedokáž́ı zachovat všechny detaily uměleckého d́ıla. Častým problémem
jsou nedostatečné informace popisuj́ıćı vstupńı data a algoritmy vytvářej́ıćı
viditelné artefakty. Ćılem této práce je vytvořit alternativu moderńıho ref-
erenčńıho př́ıstupu, který se zabývá řešeńım těchto problémů. Naše metoda
je vhodná pro paralelńı implementaci na grafickém akcelerátoru. Inform-
ace popisuj́ıćı vstupńı data zobrazuj́ı r̊uzné části osvětleńı modelové scény,
č́ımž je umožněno přesněǰśı zachováńı stylu. Algoritmus syntézy využ́ıvá
minimalizováńı energie textury s termem energie rozš́ı̌reným o váhy pixel̊u
pocházej́ıćı z mapy výskyt̊u za účelem dosáhnout rovnoměrného využit́ı okoĺı
pixel̊u z předlohy. Referenčńı implementace naš́ı metody na GPU je detailně
popsána. Kvalita výsledk̊u referenčńı implementace je porovnatelná s mod-
erńı referenčńı metodou zat́ımco doba výpočtu je řádově kratš́ı. V závěrečné
části jsou předvedena daľśı vylepšeńı referenčńı GPU implementace. Důraz je
kladen na zvýšeńı výkonu bez viditelněǰśıch dopad̊u na výsledky.

Kĺıčová slova stylizace, na základě předlohy, mapa výskyt̊u, GPU paralel-
izace

ix



Abstract

The aim of stylization by example is to faithfully reproduce artist’s style.
Application of the stylization saves a lot of time and effort by eliminating
repeated work, e.g., when creating animations. Most of the current approaches
are unable to preserve all the details provided by the artist due to insufficient
guidance or algorithms producing visible artifacts. The goal of this thesis is
to create an alternative to a reference state-of-the-art approach that alleviates
these problems. Our approach is suitable for GPU parallelization. It is guided
by illumination decomposed to multiple 3D renderings of the same scene that
enable detailed preservation of the style. The synthesis algorithm utilizes
texture energy minimization with an extended energy term that includes pixel
weights from the occurrence map to encourage uniform distribution of patch
assignments. A reference GPU implementation of our method is described in
detail. Results of the implementation are of a quality comparable to those
of the reference state-of-the-art method while the performance is in orders-
of-magnitude faster. Finally, additional improvements to the reference GPU
implementation are proposed that further increase the performance of the
reference GPU method without visible impact on quality of the results.

Keywords stylization, example-based, occurrence map, GPU paralleliza-
tion

x



Contents

Introduction 1

1 Background 5
1.1 Image Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Texture Optimization . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 PatchMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Stylizing Animations by Example . . . . . . . . . . . . . . . . . 7
1.5 StyLit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 A Neural Algorithm of Artistic Style . . . . . . . . . . . . . . . 8

2 Method 11
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Texture Optimization . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 PatchMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Implementation 21
3.1 NVIDIA GPU Architecture [1] . . . . . . . . . . . . . . . . . . 21
3.2 GPU Occurrence Map . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 GPU PatchMatch . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 GPU Texture Optimization . . . . . . . . . . . . . . . . . . . . 29

4 Results 31
4.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Further Improvements 41
5.1 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Guide Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



Conclusion 57

Bibliography 59

A Acronyms 61

B Contents of enclosed CD 63

xii



List of Figures

I.1 Artist’s style example . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.2 Problem of stylization by example . . . . . . . . . . . . . . . . . . 2
I.3 Additional guidance textures . . . . . . . . . . . . . . . . . . . . . 3

1.1 Background comparison . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Pixel voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Synthesis pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 PatchMatch propagation . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 PatchMatch random search . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Lambda comparison: Stego . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Lambda comparison: Scorpion . . . . . . . . . . . . . . . . . . . . 34
4.3 Lambda comparison: Hand . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Lambda comparison: Teapot . . . . . . . . . . . . . . . . . . . . . 36
4.5 Lambda comparison: Helmet . . . . . . . . . . . . . . . . . . . . . 37
4.6 Lambda comparison: Pumpkin . . . . . . . . . . . . . . . . . . . . 38
4.7 Lambda comparison: Golem . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Shared memory improvement . . . . . . . . . . . . . . . . . . . . . 42
5.2 Guide map comparison: Stego . . . . . . . . . . . . . . . . . . . . . 48
5.3 Guide map comparison: Scorpion . . . . . . . . . . . . . . . . . . . 49
5.4 Guide map comparison: Hand . . . . . . . . . . . . . . . . . . . . . 50
5.5 Guide map comparison: Teapot . . . . . . . . . . . . . . . . . . . . 51
5.6 Guide map comparison: Helmet . . . . . . . . . . . . . . . . . . . . 52
5.7 Guide map comparison: Pumpkin . . . . . . . . . . . . . . . . . . 53
5.8 Guide map comparison: Golem . . . . . . . . . . . . . . . . . . . . 54

xiii





Introduction

Creation of a complex hand-drawn art from scratch is a time-consuming and
expensive process. In most cases, the overall result is a consistent application
of the artist’s personal style on a medium. The application often includes
tedious and repeated work of craft that takes non-negligible time. While the
creative part is currently irreplaceable with a machine, the repetitive part can
be taken care of once the machine has “learned” the style. The stylization
of 3D renderings by example is, therefore, desirable and applicable in a wide
array of areas such as animation or video games. For this kind of computer
aid to work properly and to create plausible results, one must consider many
aspects of the artist’s style. There can be various colors for different types of
shadows and reflections (see Fig. I.1) or different strokes around edges and
plain areas. Micro-scale details (e.g., painting methods such as watercolor,
oil, chalk) are just as important as macro-scale ones (color transitions, an
orientation of strokes, display of shapes). All this has to be taken into account
and addressed properly [6].

There has been a lot of research in the stylization by example area in
the past decades [17, 9, 5, 7, 6] that made many aspects of its current state
possible. The problem being solved is usually the same, given an example
guidance texture A and its stylized version A′, apply the same stylization on
a given target guidance texture B to produce the result B′ (see Fig. I.2).

Results of the previous approaches to stylization by example differ in qual-
ity. Their guidance is often driven by color information [9, 5] in the guidance
textures A and B which makes them unable to distinguish and reproduce dif-
ferent illumination effects properly. Some of the approaches apply greedy scan-
line method [9, 5] in the algorithm which causes unpleasant artifacts and un-
natural looking seams. Algorithms that use texture optimization [12, 19, 7, 4]
give better results overall, but are prone to excessive patch usage resulting
in a distinct wash-out effect [13] present in the stylized target. Recent re-
search [10, 11, 6] alleviate the wash-out effect problem by encouraging uniform
distribution of example patches.

1



Introduction

Figure I.1: The style of an artist in a real painting. It conveys many specific
details, e.g., both pink and dark shadows of the apple (left), or a hint of blue
in the pepper’s shadows (right). Image courtesy c© Kerry Daley (left) and
Gail Sibley via howtopastel.com (right). Source of images Fǐser et al. [6]

A A′ B B′

: :::

Figure I.2: Demonstration of the problem of stylization by example. A is
the example guidance texture and B is the target guidance texture. The
artist draws stylization of the example A′ following the exact outlines and
illumination areas of the guidance. Given A, A′ and B the program synthesizes
stylization of the target B′. Source of images Fǐser et al. [6]

2



A1 A2 A3

A4 A5 A′

Figure I.3: Five guidance textures of decomposed illumination using LPEs
along with the stylized example texture A′ c© Daichi Ito. A1 full global
illumination render, A2 direct diffuse, A3 direct specular, A4 first two diffuse
bounces, A5 diffuse inter reflection. Images source Fǐser et al. [6]

These publications are basis for the very recent work called StyLit [6]
that produces state-of-the-art example-based stylization by introducing two
important improvements. First is illumination-enabled guidance. Illumination
of the guidance textures A and B is now decomposed to five textures using
light path expressions (LPEs) in order to display the effects separately (see Fig.
I.3). They enable synthesis algorithm to match areas of the same illumination
effect with better accuracy which in turn applies the stylization on the target
as the artist would have intended. Second is an adaptive use of enforced
uniform patch assignments [10] in the algorithm. It plays an important role
in equal distribution of the whole style A′ on the result B′ that preserves
high-frequency details and does not leave disturbing artifacts or repetitive
patterns.

The motivation of our efforts is to improve the performance of the current
stylization algorithms. The closer the evaluation of stylized texture gets to
real-time the more productive and efficient the artist can be. In this regard,
we aim our approach to be fully and effectively parallelizable on GPU since
its hardware architecture is much better suited for this kind of problems and
can decrease time consumed multiple times [1]. Our solution builds upon the
existing reference GPU implementation (from now on referred to as “Ref”)

3



Introduction

which is based on the idea of additional guidance textures of StyLit [6] and
energy minimization [12, 19] with its energy term extended by an occurrence
term [11].

Goal

In our work, we will first look into the research background by analyzing
numerous state-of-the-art solutions with a focus on Fǐser et al. (StyLit) [6].
Next, a new problem of energy minimization will be described along with
our approach to its solution and followed by reviewing the most important
algorithmic parts of Ref. Results of Ref will be compared to those of StyLit
in quality as well as time-consumption and the benefits of the Ref’s GPU
solution will be presented. As our main contribution, we will then propose
further improvements of Ref. Method, implementation and comparison of our
results to those of Ref and StyLit will be provided for each improvement.
Our aim will be to improve Ref’s performance without notably decreasing the
quality of its results.

4



Chapter 1
Background

In this chapter we will talk about different and widely used approaches to
texture synthesis and the problem of stylization by example.

1.1 Image Analogies

Hertzmann et al. [9] presents the problem of stylization by example by provid-
ing the two guidance textures A and B and the stylized version A′ of the
texture A (see Fig. I.2, note that Hertzmann et al. allows arbitrary textures
A and B, e.g., two different photographs). The algorithm generates the result
B′ which is a stylization of B that is similar to the stylization A′ of A by
matching similar areas of A and B and then transferring their corresponding
pixel values from A′ to B′.

Guidance is mostly based on the color information of the textures A and B.
As a result, the algorithm is not able to match areas of the same illumination
effect and thus fails in proper application of the style (see how background
area of the style is incorrectly applied to the target area that should contain
direct light reflection in the image (d) in Fig. 1.1). Another issue of this
approach is its greedy nature when synthesizing as it creates seams and other
visible artifacts which lead to wrong and synthetic looking results.

The synthesis algorithm is of greedy nature. Each pixel of B′ is processed
in a scan-line order, its surrounding area is matched to the most suitable
example area (with combination of global [2] and coherent [18] search) and
its corresponding stylization pixel value is used as a resulting value of the
processed pixel.

1.2 Texture Optimization

Alternative approach to texture synthesis algorithm as opposed to the greedy
one [9] is texture optimization [12, 19]. Instead of filling the result pixel-by-

5



1. Background

pixel, the method refines the entire texture from coarse to fine quality as it
iteratively minimizes the texture energy term in an expectation-maximization
fashion. The value of a single pixel of B′ is now evaluated by averaging
multiple pixels’ values of A′. Overall, the method gives better results in simple
synthesis scenarios [7, 4], but when additional guidance channels are included
the iteration often creates wash-out effect in the result (see the “smoothed”
look of the image (f) in Fig. 1.1). The effect is caused by excessive usage of
example patches in assignments with low-frequency content [13].

To alleviate this issue, a specific research was conducted to find ways to
encourage uniform patch utilization [10, 11]. Jamrǐska et al. [10] uses reversed
nearest-neighbor retrieval that enforces the uniformity, but at the same time
fails to realistically synthesize StyLit [6] scenarios due to the enforcement. The
size of areas of a matching illumination effect often differ in the example and
target guidance and once all correct patches have been used, wrong ones are
forced to the remaining parts of the area (see how the direct reflection area of
the toroids is forced to incorrectly match background style in the image (g)
in Fig. 1.1)

Kaspar et al. [11] introduces an improved patch similarity term that counts
each example pixel’s usage in assignments to dynamically adjust its patch
usage penalization during the synthesis process. This way uniformity of as-
signments is more flexible and can adjust to a wider range of scenarios. The
drawback is the term includes unknown value of λ which must be specifically
tailored for each scenario as it controls the strength of pixel usage penalization.

1.3 PatchMatch

Barnes et al. [3] proposes a randomized algorithm for approximate nearest-
neighbors retrieval. The retrieval is a core component in texture synthesis
and many other image processing applications (e.g., noise reduction) and is
often their performance bottleneck. Brute force solution that evaluates non-
approximated exact nearest-neighbors would be extremely slow in most ap-
plications.

The approximation is iterative, its convergence is very fast and the result-
ing difference of patch distances from the exact solution becomes negligible
with enough iteration steps. The algorithm consists of two interleaved pro-
cedures. The propagation spreads coherent areas of assignments in the syn-
thesized texture as they often lead to best-perceived synthesis results. The
random search searches for improving assignments randomly through the ex-
ample texture.

Compared to previous approaches to the retrieval, PatchMatch achieves
20-100× decrease in time consumption.

6



1.4. Stylizing Animations by Example

1.4 Stylizing Animations by Example

Bénard et al. [5] further improves Image Analogies [9] by making it possible
to render stylized animations by providing every 10-20th stylized frame. The
most important and relevant contribution on top of the Image Analogies work
is improved synthesis guidance.

The improved guidance ensures temporal coherence of frames, preservation
of edges in the stylized target, ability to match rotated patches, etc. Addi-
tional guidance textures are used as well, but they are derived from the initial
guidance textures A and B which causes the whole approach to depend on
their color information and is, therefore, unable to create plausible results for
the same reason the approach of Hertzmann et al. [9] cannot. (see the image
(e) in Fig. 1.1).

Searching for patch assignments is evaluated with PatchMatch [3], but the
algorithm also applies the greedy nature of Hertzmann et al. [9] which results
in visible artifacts and disturbances in the result and is, therefore, insufficient
for our needs.

1.5 StyLit

Fǐser et al. [6] introduces illumination-guided stylization of 3D renderings that
better preserves the richness and detail of a hand-made art. The artist draws
the stylization A′ of the example rendering A following its outlines and StyLit
synthesizes similar stylization B′ of the target rendering B (see Fig. I.2).

To enable illumination guidance, the most important illumination effects
are decomposed to separate guidance textures using LPEs (see Fig. I.3). This
way, the matching of example and target patches includes and considers all
the provided effects. For instance, the white area in the guidance texture A3
causes most of its patches to be matched to patches of the same white area
in the guidance texture B3. Otherwise, the distance metric would yield the
patches as very distant. This way the additional guidance textures ensure
closeness of all illumination effects at the same time in the assignments and as
a result preserves their stylizations correctly (see the image (h) in Fig. 1.1).

Greedy synthesis algorithm [9] is replaced by optimization technique [12,
19]. Excessive patch assignments are dealt with the enforced uniform patch
distribution [10]. As already mentioned, the enforced uniformity alone causes
visible artifacts in the StyLit’s scenario as many of the assignments are forced
to incorrect positions. It is, therefore, used in an adaptive iterative fashion
wherein each step only the correctly enforced assignments are kept. The itera-
tion runs until no more unassigned patches remain. The drawback is that the
iteration might require a lot of steps and the estimation of correct assignments
in each step includes sorting which makes GPU implementation complicated
and ineffective.

7



1. Background

1.6 A Neural Algorithm of Artistic Style

An alternative approach of Gatys et al. [8] applies style of a painting A′ on
a given photograph B to create a stylized version of the photograph B′. The
approach does not consider the example guidance texture A at all.

The method is based on parametric texture synthesis [14] where the Gabor
filters are replaced with VGG-Network [16]. First, response from a specific
layer in the network is evaluated for A′ such that it represents its “style”
(smaller-scale patterns). Another response from a different layer in the same
network is evaluated for B that represents its “content” (larger-scale features).
The result B′ is initialized as white noise. By evaluating both the responses
on texture B′ and comparing their closeness to the responses from A′ and
B, a minimization problem is obtained. Iterative gradient descent is applied
to obtain the resulting stylization B′ that contains both “style” of A′ and
“content” of B. VGG-Network [16] is a publicly available convolutional neural
network trained for human object recognition.

While the results on natural photographs and paintings are very impress-
ive, the approach fails in our case as it does not work well in such synthetic
scenarios (see the image (c) in Fig. 1.1).

8



1.6. A Neural Algorithm of Artistic Style

(c)(a) (b)

(e)(d) (f)

(g) (h) (i)

(d) (e) (f) (g) (h) (i)

Figure 1.1: Quality comparison of results of background approaches. (d)
and (e) used only A1 and B1 as guidance. (a) Example stylization c© Pavla
Sýkorová. (b) Target guidance (only B1 is displayed). The green square
displays area used for the zoom-ins (bottom images). (c) Gatys et al. [8]. (d)
Hertzmann et al. [9]. (e) Bénard et al. [5]. (f) Wexler et al. [19]. (g) Jamrǐska
et al. [10]. (h) Fǐser et al. [6]. (i) Ref with λ = 10000. Source of images
(a). . . (h) Fǐser et al. [6].

9





Chapter 2
Method

In this chapter, we will formulate a new synthesis problem and describe its
solution which is based on the relevant background research [12, 19, 11] and
StyLit [6]. We will start by providing formal definitions of often used terms.

2.1 Definitions

Texture

Texture I is of specified width wI , height hI , has nI channels and a function
f I :

f I : 〈0, wI − 1〉 × 〈0, hI − 1〉 → H1 ×H2 × · · · ×HnI

where the pixel values are vectors of individual channel values. Typically, a
single texture consists of RGB color channels.

In this text, for simplicity reasons, the guidance and stylization textures
(RGB) are all included in single textures Ā and B̄ which means their pixels
consist of total (1 + 5) × 3 = 18 channels. We will exclusively refer to the
stylization “subtexture” B′ of B̄ with notation B̄.style. Note that B̄.style is
also a texture in which the result will be evaluated. Likewise, we will exclus-
ively refer to the guidance “subtexture” B1, B2, . . . , B5 of B̄ with notation
B̄.guidance. The same notation applies to Ā.

Patch

Patch P is a small square of pixels of odd width wP in texture I and its
coordinates (uP ; vP ) are given by its center pixel (see Fig. 2.1). The patch
has a function fP :

fP : 〈0, wP − 1〉 × 〈0, wP − 1〉 → H1 ×H2 × · · · ×HnI

fP (x, y) = f I(uP − rP + x, vP − rP + y)

11



2. Method

P - Patch

I - Texture

wP

Figure 2.1: Patch P of texture I. Width of the patch is wP and the small
pink circle represents its coordinates (uP ; vP ).

where radius rP = wP−1
2 . All patches have the same width in a single instance

of the problem, which means it is considered as a global parameter in the
algorithm. Set of all patches of a texture I is labeled as NI .

Patch Translation

Patch translation (�) is an operation applied on some patch P and vector
(x; y). It returns new translated patch Q:

� : NI × (Z× Z)→ NI

where uQ = uP + x, vQ = vP + y and wQ = wP . We will use the translation
operation in infix notation.

Patch Similarity

Patch similarity is a distance metric δ applied between patch P from B̄ and
patch Q from Ā. We use L2-norm which is a sum of squared differences (SSDs)
of their corresponding channel values. It is a widely used metric to measure
the exact distance between two images:

δ : NB̄ ×NĀ → N ∪ {0}

δ(P,Q) =
wP−1∑
x=0

wP−1∑
y=0

nB̄∑
i=1

(fPi (x, y)− fQi (x, y))2

Nearest-neighbor Field

Nearest-neighbor field (NNF) is a relation between textures B̄ and Ā that
describes closest patch assignments based on some patch metric ϕ (e.g., patch
similarity δ):

NNF : NB̄ → NĀ

12



2.2. Problem Formulation

NNF(P ) = arg min
Q∈NĀ

ϕ(P,Q)

Note that such rigid specification of NNF is expensive to obtain. Therefore,
the condition is relaxed by searching for approximate NNF (the assigned Ā
patches are only approximately closest). From now on, the abbreviation NNF
will refer to the approximate nearest-neighbor field.

Occurrence Map

Occurrence map Ω [11] stores weights of pixels of the example texture Ā.
The weight corresponds to the number of assigned Ā patches that contain the
pixel’s coordinates:

Ω : 〈0, wĀ − 1〉 × 〈0, hĀ − 1〉 → N ∪ {0}

Ω(x, y) = |{P ∈ B̄ : (x; y) ∈ κ(NNF(P ))}|

where κ(Q) denotes a set of all coordinates of pixels covered by the patch Q.

Patch Penalization

Patch penalization term ρ [11] penalizes repeated usage of example patches in
order to encourage their uniform distribution in NNF. The term is based on
weights of pixels of an example patch Q in the occurrence map Ω:

ρ : NĀ → R

ρ(Q) = ω(Q)
ωbest

where ωbest is the number of times each pixel of texture Ā would be used in a
perfectly uniform scenario:

ωbest = w2
Q

wB̄hB̄
wĀhĀ

and ω(Q) is the average weight of pixels of the patch Q:

ω(Q) = 1
w2
Q

wQ−1∑
x=0

wQ−1∑
y=0

Ω(uQ − rQ + x, vQ − rQ + y)

2.2 Problem Formulation

Our solution is based on the texture optimization approach [12, 19] that min-
imizes texture energy of B̄. The energy evaluates “closeness” of texture B̄ to

13



2. Method

the texture Ā, which implies “closeness” of the synthesized stylization B′ to
the example stylization A′. The energy term [12, 19] is as follows:∑

P∈NB̄

ϕ(P,NNF(P ))

where ϕ is a patch metric used in the evaluation of NNF.
In this regard, as proposed by Kaspar et al. [11], the metric ϕ is as follows:

ϕ(P,Q) = λ ρ(Q) + δ(P,Q)

where the similarity term δ encourages the assignments to be as similar as
possible while at the same time, the penalization term ρ encourages uniform
distribution of example Ā patches in the assignments. Parameter λ controls
the strength of the patch penalization. The energy of B̄ is minimized in the
same iterative fashion as in the texture optimization technique [12, 19].

Note that if NNF was exact and not approximated, the new metric ϕ
would imply a fundamental issue stemming from the cyclic dependency of
the definitions. Evaluation of exact NNF requires the state of Ω to correctly
evaluate the closest patch assignments with metric ϕ. However, the newly
evaluated assignments might cause different state of Ω, thus different weights
of pixels in the metric, thus the possibility that some of the assignments are
not longer closest. Our solution to evaluate approximate NNF searches for
the equilibrium in an iterative fashion based on PatchMatch [3].

2.3 Texture Optimization

Texture optimization technique [12, 19] synthesizes the entire texture by re-
fining it from coarse to fine quality. The refinement is achieved by minimizing
the texture energy term in a way that is similar to expectation-maximization
(EM) algorithm from statistics. Given two sets of unknown variables, i.e.,
assignments in NNF and pixel values in B′, the iteration alternates between
one set labeled as known and the other as unknown. Values of the known
variables are used to evaluate new, more refined, values of the unknown vari-
ables. This way, the two sets are refined until a specific criterion is met, or
until a required number of iterations are completed.

First, the M-step of the algorithm evaluates NNF using the current state of
Ā, B̄ with PatchMatch [3]. In a case of the very first M-step, NNF assignments
are initialized to random example patches. The occurrence map Ω changes as
well during the NNF evaluation as the assignments change during the process.
Second, the E-step of the algorithm evaluates B′ using the current state of
NNF in a procedure called voting.

In voting, new value of pixel (x; y) is evaluated as an average of w2
P “votes”

given by the patches of B′ that cover the pixel (x; y). Let there be patch

14



2.3. Texture Optimization

P25
P17

P ′1

P ′17

P ′25

S
NNF

x
P1P2

P ′2

B′ - target texture A′ - example texture

Figure 2.2: Voting for a new value of the pixel x in the synthesized texture
B′, patch width is 5. P1, P2, . . . , P25 are the set of patches containing pixel x
(dashed blue square S). These patches vote with values of pixels relative to x
given by their assignments P ′1, P ′2, . . . , P ′25 in NNF (displayed as red pixels in
A′).

P ∈ NB′ so that (x; y) ∈ κ(P ), then P votes with the value fA
′(uQ, vQ)

where Q = NNF(P )� (x− uP , y − vP ) (see Fig. 2.2).
Additionally, to further improve the refinement and to decrease impact of

the randomly generated initial NNF, there are multiple EM iterations that
are run in a pyramid-like resolution fashion. Textures Ā and B1, . . . , B5 are
downsampled from their originals for each level. Starting from the lowest
resolution, at the end of each level EM-refinement, both the NNF and B′ are
upsampled to the next level resolution where they are further refined (see Fig.
2.3). Since occurrence map Ω cannot be upsampled, its state is initialized
using state of the upsampled NNF (procedure InitOccurrenceMap).

15



2. Method

A1

A′

B1

B′coarse

B′refined

Figure 2.3: Five-leveled pyramid refinement of B′. Ā and B1, . . . , B5 are
downscaled from originals (only A1 and B1 are displayed). B′refined are states
after the final voting on the corresponding level and the black arrows display
upsampling to the next level.

16



2.4. PatchMatch

The whole approach of the texture optimization CPU algorithm is as fol-
lows:

function TextureOptimization(lvls, lvlIters, pmIters, Ā, B̄)
B′↑ ← null
NNF← RandomNNF((wB̄, hB̄), (wĀ, hĀ))
for lvl← 1 . . . lvls do

Ā↓ ← Downsample(Ā, 2lvls−lvl)
B̄↓ ← Downsample(B̄, 2lvls−lvl)
if B′↑ is not null then

B̄↓.style← B′↑
end if
Ω← InitOccurrenceMap(wĀ↓

, hĀ↓
,NNF)

for iter← 1 . . . lvlIters do
Vote(B̄↓.style,NNF)
PatchMatch(pmIters, Ā↓, B̄↓,NNF,Ω)

end for
if lvl < lvls then

B′↑ ← Upsample(B̄↓.style, 2)
NNF← Upsample(NNF, 2)

end if
end for

end function

2.4 PatchMatch

PatchMatch [3] is a state-of-the-art randomized algorithm that evaluates NNF.
The algorithm is iterative, it may start from scratch on random assignments,
or further refine their current state. It runs propagation and random search
procedures for each patch of B̄ in a scan-line order (left to right, top to bot-
tom). Additionally, even iterations examine patches in a reversed scan-line
order (right to left, bottom to top).

Propagation

The propagation procedure is based on the observation that correctly synthes-
ized textures usually consist of coherent areas which are continuous chunks
of the example texture. To encourage these areas, the propagation tries to
improve the current assignment P ′c of the patch Pc with candidate P ′ls =
NNF(Pl)�(1; 0) where Pl = Pc�(−1; 0) and candidate P ′ts = NNF(Pt)�(0; 1)
where Pt = Pc � (0;−1). The candidates keep the coherent areas of assign-
ments of Pl and Pt. (see Fig. 2.4).

17



2. Method

NNF

B̄ - target texture Ā - example texture

Pl
Pt

Pc

P ′c

P ′ls P ′ts

Figure 2.4: Propagation phase of PatchMatch where improving assignment for
Pc (black dot in the target texture) is being searched. Assignments for previous
target patches were already evaluated during the scan-line (displayed as yellow
pixels in B̄). The closest patch to Pc of the three green example patches P ′c, P ′ls
and P ′ts will be its new assignment where P ′c is the currently assigned patch.
P ′ls resp. P ′ts are candidate assignments that try to keep coherent assignment
areas of Pl resp. Pt. Note that the image displays the phase in odd iteration,
even iterations try to propagate assignments from bottom and right target
patches.

Random Search

The stochastic part is based on the law of large numbers, where after a number
of random assignments (that cover a reasonable fraction of the example tex-
ture) the probability of an incorrect assignment diminishes. Candidate assign-
ments for patch Pc are randomly picked from square areas Ai ∈ {A1, A2, ...}
in the example texture Ā. The areas are exponentially decreasing (halving) in
width and are centered in the current assignment P ′c. The closest candidate
to patch Pc that is also closer than the current assignment P ′c becomes the
new assignment of Pc in NNF. The search starts in the largest area A1 with
radius set to max(B.width, B.height) and continues while the area width is
larger than zero (see Fig. 2.5).

18



2.4. PatchMatch

Ā - example texture

P ′c

A5
A4

A2

A3

A1

Figure 2.5: Candidate assignments for Pc are randomly picked from example
texture areas Ai that shrink exponentially in radius and are centered in the
current assignment P ′c. The closest candidate that is also closer than the
current assignment P ′c will be the new assignment.

Both propagation and random search are used in the PatchMatch’s CPU
implementation as follows:

function PatchMatch(iters, Ā, B̄, NNF, Ω)
for i← 1 . . . iters do

if i is odd number then
for P ∈ NB̄ in left-right, top-bottom order do

PropagateLeftTop(P, Ā, B̄,NNF,Ω)
RandomSearch(P, Ā, B̄,NNF,Ω)

end for
else

for P ∈ NB̄ in right-left, bottom-top order do
PropagateRightBottom(P, Ā, B̄,NNF,Ω)
RandomSearch(P, Ā, B̄,NNF,Ω)

end for
end if

end for
end function

19





Chapter 3
Implementation

In this chapter, we will describe the reference GPU implementation of our
method. We will provide a pseudo code of NVIDIA CUDA kernels and the
most important procedures. Before we start discussing the kernels in detail,
the first section of this chapter will be a brief introduction to NVIDIA GPU
architecture.

3.1 NVIDIA GPU Architecture [1]

Execution-wise, NVIDIA GPU architecture is designed to execute large amounts
of threads in a parallel fashion. A single thread is an instance of a kernel which
is a procedure operating on a single item and designed to be run in parallel on
a large array of items. Execution of a kernel is always called from a code run-
ning on CPU. Threads are grouped into blocks and blocks are grouped into a
grid that usually covers the whole array (blocks of size 8×8 are demonstrated
in Fig. 5.1). The dimensions of a single block and grid are parameterizable
(1D, 2D, 3D) which gives the user helpful level of abstraction. Each thread is
able to evaluate its exact coordinates within the grid which are used to access
items in the array. Each GPU consists of a number of streaming multipro-
cessors (SMs). SM employs single instruction multiple thread (SIMT) archi-
tecture model. During kernel’s execution, all blocks are distributed among
individual SMs in a uniform fashion. Each SM has warp scheduler that parti-
tions blocks assigned to it into warps which it then executes. Warp is a group
of 32 threads that execute the same instruction set (delivered per-instruction
from warp scheduler) in a parallel lock-step fashion on a single SM. Therefore
it is important to design kernels in a way that the threads of a single warp
do not branch away from each other often as that causes thread divergence
which decreases parallel execution efficiency.

Memory-wise, GPU has its own memory accessed by threads during ker-
nel’s execution that is not directly accessible from outside of GPU. Prior to
kernel’s execution, required data have to be copied into the GPU memory

21



3. Implementation

(in case they are not already present) and copied back once the execution is
finished. This is a slow process and it is best to design the procedure that
calls kernels in a way that minimizes these memory transfers. GPU consists
of various memory types which differ in latency, bandwidth and size. Register
memory is physically placed on a GPU chip. Every SM has its own set of 32-
bit registers which are usually used for local variables of threads. Registers are
the fastest memory available, but their number is very limited. Their usage
directly implies how many warps can run in parallel on a single SM. Global
memory has the highest latency as it is placed away from GPU chip and is not
implicitly cached. Load requests to global memory that come from threads
of the same warp are grouped into 32, 64, or 128-byte transactions under the
condition that the requested memory segments are tightly consequential. This
way of accessing global memory is also called coalesced access and it is a very
important optimization part of GPU programming as it maximizes memory
throughput by serving multiple load requests in parallel. Shared memory is in
the middle (both in latency and size) between the former two. It is placed on
the chip for each SM as well. Shared memory is distributed per-block which
means that threads of the same block can communicate with each other using
this memory. Due to bandwidth optimization access, shared memory is di-
vided to banks which require special attention. The best case scenario is when
every thread of a single warp accesses memory from a different bank which
can be processed in parallel. In case multiple threads request different data
from the same bank, the requests are processed sequentially. Texture memory
is a part of global memory that is implicitly cached in the highest level cache.
This memory is optimized for 2D spatially close access.

22



3.2. GPU Occurrence Map

3.2 GPU Occurrence Map

The following kernels and GPU procedures describe handling of the occurrence
map Ω during evaluation of NNF. Procedure in this context refers to a code
run by GPU threads, unless otherwise stated. Note that a single patch of the
target texture B̄ is handled by a single thread that runs the kernel code.

Procedure PatchOmega evaluates the penalization term ρ of a single ex-
ample patch Q.

function PatchOmega(Q, Ω)
ωaverage ← 0
ωbest ← w2

Q
wB̄hB̄
wĀhĀ

for y ← −rQ . . . rQ do
for x← −rQ . . . rQ do

ωaverage ← ωaverage + Ω(uQ + x, vQ + y)
end for

end for
ωaverage ← ωaverage

w2
Q

return ωaverage
ωbest

end function

Procedure UpdatePatchOmega increments or decrements elements in the
occurrence map Ω that are part of the target patch Q. Collisions might emerge
since this procedure writes to global memory and can be run on overlapping
patches at the same time. Therefore, standard addition + is replaced with
atomic addition ⊕ to prevent undesirable race conditions between concurrent
threads. The atomic solution decreases the performance, but the preservation
of the occurrence map integrity is essential. The usual update values (para-
meter a) are +1 when new patch Q is assigned and −1 when removing old
assignment Q.

function UpdatePatchOmega(Q, Ω, a)
for y ← −rQ . . . rQ do

for x← −rQ . . . rQ do
Ω(uQ + x, vQ + y)← Ω(uQ + x, vQ + y)⊕ a

end for
end for

end function

23



3. Implementation

The following procedure SSD evaluates the similarity term δ between patch
P from the texture B̄ and patch Q from the texture Ā. The procedure slightly
differs from the definition as the metric weights the guidance channels with
guidance influence parameter µ, thus SSD is separated for guidance and style
channels. Additionally, early termination (with the knowledge of the current
assignment distance) can be applied in this procedure as well to improve its
performance.

function SSD(P , Q)
Pg ← B̄.guidance portion of P
Ps ← B̄.style portion of P
Qg ← Ā.guidance portion of Q
Qs ← Ā.style portion of Q
ng ← nB̄.guidance
ns ← nB̄.style
res← 0
for y ← 0 . . . wP − 1 do

for x← 0 . . . wP − 1 do
for i← 1 . . . ng do

res← res + µ
ng

(fPg

i (x, y)− fQg

i (x, y))2

end for
for i← 1 . . . ns do

res← res + 1
ns

(fPs
i (x, y)− fQs

i (x, y))2

end for
end for

end for
return res

end function

24



3.2. GPU Occurrence Map

Finally, to envelop the whole metric ϕ, we use a procedure called Im-
proveAssignment that compares distance of the current assignment Qcurrent
to patch P with distance of the candidate assignment Qnew to patch P . The
closer assignment is returned. The procedure updates the occurrence map Ω
in case the candidate is selected. This is the universal procedure that ap-
plies the metric ϕ between patches and accesses or makes any changes to the
occurrence map Ω.

function ImproveAssignment(P , Qnew, Qcurrent, Ω)
ρcurrent ← PatchOmega(Qcurrent,Ω)
ρnew ← PatchOmega(Qnew,Ω)
δcurrent ← SSD(P,Qcurrent)
δnew ← SSD(P,Qnew)
ϕcurrent ← λ ρcurrent + δcurrent
ϕnew ← λ ρnew + δnew
if ϕnew < ϕcurrent then

UpdatePatchOmega(Qnew,Ω,+1)
UpdatePatchOmega(Qcurrent,Ω,−1)
return Qnew

else
return Qcurrent

end if
end function

25



3. Implementation

3.3 GPU PatchMatch

The GPU implementation of PatchMatch is already included in the original
publication [3]. Propagation and random search are now separated to in-
dividual kernels, which means they are no longer interleaved per-pixel, but
rather per-texture. This change requires usage of redundant NNF′ in the
propagation search since the kernel reads assignments of other patches which
can become dirty due to concurrent updates. Therefore, the redundancy is
necessary to preserve the integrity of assignments. The random search does
not read assignments of other target patches and therefore does not require
this redundancy. Propagation utilizes jump flood scheme [15], the distance to
the neighboring target patches is halved in every iteration step until it is less
than 1. In order for the information to be distributed most effectively, the
jump distance should start as the larger dimension of the target texture B̄.
However, as stated by Barnes et al. [3], this is not needed and much smaller
maximum jump is sufficient. The reference GPU implementation uses starting
distance set to 4. The new CPU implementation of PatchMatch that launches
propagation and random search kernels is as follows.

function GPU PatchMatch(iters, Ā, B̄, NNF, NNF′, Ω, R)
for iter← 1 . . . iters do

Kernel Propagation(Ā,B̄,NNF,NNF′,Ω,4) in parallel on B̄
Swap(NNF,NNF′)
Kernel Propagation(Ā,B̄,NNF,NNF′,Ω,2) in parallel on B̄
Swap(NNF,NNF′)
Kernel Propagation(Ā,B̄,NNF,NNF′,Ω,1) in parallel on B̄
Swap(NNF,NNF′)
Kernel RandomSearch(Ā,B̄,NNF,Ω,R) in parallel on B̄

end for
end function

26



3.3. GPU PatchMatch

Propagation

To overcome the inherently sequential propagation, Barnes et al. [3] imple-
ments the solution called jump flood scheme [15]. Jump flood is an iterative
algorithm designed to broadcast information effectively across 2D data struc-
ture in parallel, i.e., to propagate patch assignments across NNF in order to
encourage coherent areas. In a single iteration step, every target patch scans
its four neighboring target patches that reside in the same distance d on ho-
rizontal and vertical axes. The candidates are selected in the same fashion
as in the sequential version of the algorithm, the relative example patches
are checked as candidates for improvements in order to try to keep the local
assignment areas coherent. In case some candidate is closer than the cur-
rent assignment, the occurrence map Ω is immediately updated based on this
change using ImproveAssignment procedure. After iterating all candidates,
the closest one (if it is closer that the current assignment) is stored in the
redundant NNF′.

function Kernel Propagation(Ā, B̄, NNF, NNF′, Ω, d)
P ← patch of this thread in B̄
Q← NNF(P )
Qc ← NNF(P � (d; 0))� (−d; 0) clamped to Ā range
Q← ImproveAssignment(P,Qc, Q,Ω)
Qc ← NNF(P � (0; d))� (0;−d) clamped to Ā range
Q← ImproveAssignment(P,Qc, Q,Ω)
Qc ← NNF(P � (−d; 0))� (d; 0) clamped to Ā range
Q← ImproveAssignment(P,Qc, Q,Ω)
Qc ← NNF(P � (0;−d))� (0; d) clamped to Ā range
Q← ImproveAssignment(P,Qc, Q,Ω)
NNF′(P )← Q

end function

27



3. Implementation

Random Search

Random number generation works slightly differently in CUDA. Random num-
bers are generated using variables of a specific type called curandState, state
of these variables changes after each generated number. Therefore, to ensure
globally random numbers among all threads and kernel calls, each thread re-
quires its own curandState instance initialized with a unique seed. These vari-
ables are stored in R. Similar as in the propagation, finding a closer candidate
immediately causes updates to Ω by using ImproveAssignment procedure.

function Kernel RandomSearch(Ā, B̄, NNF, Ω, R)
P ← patch of this thread in B̄
Q← NNF(P )
Q0 ← Q
rand← R(uP , vP )
for i← 1 . . .∞ do

r ← 2i−1

if r > max(B̄.width,B̄.height)
2 then

break
end if
Ai ← square area centered in Q0 with radius r clamped to Ā range
Qc ← GenerateRandomPatch(Ai, rand)
Q← ImproveAssignment(P,Qc, Q,Ω)

end for
R(uP , vP )← rand
NNF(P )← Q

end function

All the curandState variables must be initialized first with unique seeds,
e.g., an id of the executing thread. The initialization is a slow process and
is, therefore, run prior to the pyramid iteration using the following kernel
Kernel InitRandom.

function Kernel InitRandom(R)
(x; y)← coordinates of this thread in R
R(x, y)← initialized R(x, y) with thread-unique seed

end function

28



3.4. GPU Texture Optimization

3.4 GPU Texture Optimization

Kernel Vote is a kernel that handles voting in the M-step of the texture op-
timization technique.

function Kernel Vote(B′, NNF)
P ← patch of this thread in B′

pix← zero vector of nB′ channels
for y ← −rP . . . rP do

for x← −rP . . . rP do
Q← A′ portion of NNF(P � (x; y))� (−x;−y)
for i← 1 . . . nB′ do

pixi ← pixi + fQi (uQ; vQ)
end for

end for
end for
B′(uP , vP )← pix

w2
P

end function

29



3. Implementation

Now we put together all the described kernels and procedures to finalize
the reference GPU implementation of our texture synthesis method. Source
code for kernels Kernel Downsample and Kernel Upsample is not provided
as it is out of the scope of this text. The textures are sampled with ba-
sic bilinear interpolation as it has proved to be sufficient in our scenario.
GPU TextureOptimization procedure is executed on CPU and launches proper
kernels described earlier in this chapter. The procedure InitOccurrenceMap
stays implemented on CPU as its parallel implementation would cause a lot
of atomic concurrencies and the resulting contribution would be insignificant
since it is run only once per level. To keep things simple, some of the constant
parameters are omitted (e.g., λ, µ, wP , etc.) and are considered as global.

function GPU TextureOptimization(lvls, iters, pmIters, Ā, B̄)
R← 2D array of curandState instances of size B̄
Kernel InitRandom(R) in parallel on R
B′↑ ← null
NNF← Kernel RandomNNF((wB̄, hB̄), (wĀ, hĀ), R) in parallel on NNF
NNF′ ← Create redundant copy of NNF
for lvl← 1 . . . lvls do

Ā↓ ← Kernel Downsample(Ā, 2lvls−lvl) in parallel on Ā↓
B̄↓ ← Kernel Downsample(B̄, 2lvls−lvl) in parallel on B̄↓
if B′↑ is not null then

B̄↓.style← B′↑
end if
Ω← InitOccurrenceMap(wĀ↓

, hĀ↓
,NNF)

for iter← 1 . . . iters do
Kernel Vote(B̄↓.style,NNF) in parallel on B̄↓
GPU PatchMatch(pmIters, Ā↓, B̄↓,NNF,NNF′,Ω, R)

end for
if lvl < lvls then

B′↑ ← Kernel Upsample(B̄↓.style, 2) in parallel on B′↑
NNF← Kernel Upsample(NNF, 2) in parallel on NNF
NNF′ ← Create redundant copy of NNF

end if
end for

end function

30



Chapter 4
Results

In this chapter we will compare the reference GPU implementation (Ref) with
the CPU implementation of StyLit [6]. The comparison will be done in both
the quality of results and performance.

4.1 Configuration

The following configuration parameters are the same for both algorithms we
are comparing and also for the further improvements algorithms in the next
chapter:

Patch width 5
Pyramid levels 6
Votes per level 6
PatchMatch iterations 6
Guidance influence µ 2

The configuration of CUDA kernel launches and type of used GPU memory
is important to mention as well. We have used texture memory for data that
are often read from, but only once in a while written to as that is an ideal
scenario to take advantage of the cache. Global memory is for data which
require interleaved read and write operations.

Block size 32× 32
Texture memory Ā, B̄, NNF, NNF′
Global memory R, Ω

StyLit [6] results were generated on CPU, both Ref and our further im-
provement results were generated on GPU which kernels were launched in
CPU code:

31



4. Results

StyLit CPU 3GHz, 4 cores
Our/Ref CPU 3.5GHz, 4 cores
Our/Ref GPU GeForce GTX 660
OS 64-bit Windows 7

4.2 Comparison

The following figures show the results of Ref with increasing λ parameter and
their comparison to the results of StyLit [6]. Stylization textures A′ are various
paintings created by two artists using different methods. Example guidance
textures A1, . . . , A5 are renderings of the same 3D model: a sphere. The simple
shape of the sphere is used here so that the artist can draw the stylization
without much effort. Target guidance textures B1, . . . , B5 are renderings of
various 3D models with the same light source positions and viewpoints as in
the example renderings. Source of all guidance textures, as well as the results
of StyLit, is Fǐser et al. [6] All the results are of the same resolution 1200×912,
the examples are of resolutions 1200× 1100 or 1200× 912.

32



4.2. Comparison

(a) (b) (c)

(d) (e)

(h)(g)

(f)

(i)

(d) (e) (f)(c) (g) (h) (i)

Figure 4.1: Comparison of results of Ref and StyLit. (a) Stylized example
texture A′ c© Pavla Sýkorová. (b) Target guidance (only B1 is displayed).
The green square displays area used for the zoom-ins (bottom images). (c)
StyLit [6]. (d) . . . (i) Ref with increasing λ.

λ time [s] timeStyLit
time(x)

(c) - 2453 -
(d) 0 26.009 94.314
(e) 5000 46.890 52.314
(f) 10000 55.758 43.994
(g) 15000 64.957 37.763
(h) 50000 116.237 21.103
(i) 100000 143.980 17.037

33



4. Results

(a) (b) (c)

(d) (e)

(h)(g)

(f)

(i)

(d) (e) (f)(c) (g) (h) (i)

Figure 4.2: Comparison of results of Ref and StyLit. (a) Stylized example
texture A′ c© Pavla Sýkorová. (b) Target guidance (only B1 is displayed).
The green square displays area used for the zoom-ins (bottom images). (c)
StyLit [6]. (d) . . . (i) Ref with increasing λ.

λ time [s] timeStyLit
time(x)

(c) - 1628 -
(d) 0 25.791 63.123
(e) 5000 47.604 34.199
(f) 10000 50.310 32.359
(g) 15000 53.807 30.256
(h) 50000 106.620 15.269
(i) 100000 148.156 10.988

34



4.2. Comparison

(a) (b) (c)

(d) (e)

(h)(g)

(f)

(i)

(d) (e) (f)(c) (g) (h) (i)

Figure 4.3: Comparison of results of Ref and StyLit. (a) Stylized example
texture A′ c© Pavla Sýkorová. (b) Target guidance (only B1 is displayed).
The green square displays area used for the zoom-ins (bottom images). (c)
StyLit [6]. (d) . . . (i) Ref with increasing λ.

λ time [s] timeStyLit
time(x)

(c) - 2139 -
(d) 0 25.259 84.683
(e) 5000 48.643 43.973
(f) 10000 59.543 35.923
(g) 15000 70.381 30.392
(h) 50000 118.645 18.029
(i) 100000 140.747 15.197

35



4. Results

(d) (e)

(h)(g)

(f)

(i)

(d) (e) (f)(c) (g) (h) (i)

(a) (b) (c)

Figure 4.4: Comparison of results of Ref and StyLit. (a) Stylized example
texture A′ c© Daichi Ito. (b) Target guidance (only B1 is displayed). The
green square displays area used for the zoom-ins (bottom images). (c)
StyLit [6]. (d) . . . (i) Ref with increasing λ.

λ time [s] timeStyLit
time(x)

(c) - 1714 -
(d) 0 27.396 62.534
(e) 5000 98.881 17.334
(f) 10000 113.362 15.120
(g) 15000 121.676 14.087
(h) 50000 144.630 11.850
(i) 100000 156.359 10.961

36



4.2. Comparison

(d) (e)

(h)(g)

(f)

(i)

(d) (e) (f)(c) (g) (h) (i)

(a) (b) (c)

Figure 4.5: Comparison of results of Ref and StyLit. (a) Stylized example
texture A′ c© Daichi Ito. (b) Target guidance (only B1 is displayed). The
green square displays area used for the zoom-ins (bottom images). (c)
StyLit [6]. (d) . . . (i) Ref with increasing λ.

λ time [s] timeStyLit
time(x)

(c) - 2663 -
(d) 0 28.116 94.714
(e) 5000 96.276 27.660
(f) 10000 107.939 24.671
(g) 15000 114.586 23.240
(h) 50000 137.384 19.384
(i) 100000 148.154 17.975

37



4. Results

(d) (e)

(h)(g)

(f)

(i)

(d) (e) (f)(c) (g) (h) (i)

(a) (b) (c)

Figure 4.6: Comparison of results of Ref and StyLit. (a) Stylized example
texture A′ c© Daichi Ito. (b) Target guidance (only B1 is displayed). The
green square displays area used for the zoom-ins (bottom images). (c)
StyLit [6]. (d) . . . (i) Ref with increasing λ.

λ time [s] timeStyLit
time(x)

(c) - 1796 -
(d) 0 24.652 72.854
(e) 5000 87.600 20.502
(f) 10000 109.294 16.433
(g) 15000 118.872 15.109
(h) 50000 148.641 12.083
(i) 100000 162.076 11.081

38



4.2. Comparison

(d) (e)

(h)(g)

(f)

(i)

(d) (e) (f)(c) (g) (h) (i)

(a) (b) (c)

Figure 4.7: Comparison of results of Ref and StyLit. (a) Stylized example
texture A′ c© Daichi Ito. (b) Target guidance (only B1 is displayed). The
green square displays area used for the zoom-ins (bottom images). (c)
StyLit [6]. (d) . . . (i) Ref with increasing λ.

λ time [s] timeStyLit
time(x)

(c) - 2561 -
(d) 0 28.903 88.607
(e) 5000 107.389 23.848
(f) 10000 122.495 20.907
(g) 15000 130.712 19.593
(h) 50000 154.068 16.623
(i) 100000 163.317 15.681

39



4. Results

4.3 Discussion

As we can see, the value of λ parameter has a great impact on quality of
the results. The best results are usually achieved with λ in the range [5000;
15000] with evaluation times being 15 − 50× faster than those of StyLit [6].
In quality comparison, the results of the reference GPU implementation come
very close to those of StyLit. To the untrained eye, some of them might seem
even identical on the first sight. However, the finest details are not preserved
(e.g., notable trails left by the paintbrush bristles in Fig. 4.1, discontinuities of
the wax paint in Fig. 4.3, or cardboard “grains” in Fig. 4.6). The differences
are acceptable considering the performance benefits we gained. In practice,
when using today’s high-end desktop NVIDIA GPU (e.g., GTX 1080) the
reference GPU implementation without our further improvements (see Chap.
5) is able to generate the same results in around 250ms. To our disadvantage,
to achieve the best possible results, we would have to fine-tune the λ value for
each input scenario separately.

The (d) results with λ = 0 are included only to demonstrate cases with
the occurrence map [11] “turned off”. They are what we would expect from
the texture optimization technique alone [12, 19]. In fact, we can already see
the mentioned wash-out effect [13] taking place. Note that in case λ = 0, the
memory of Ω is still being accessed which slows down the algorithm. In case
of the reference GPU implementation build purified of any occurrence map
routines the performance would be even better (1.5 - 2.5× faster) with results
nevertheless the same.

The (h) and (i) results with the largest λ values (50k and 100k) start to
display problems as well. Performance notably decreases with growing λ as
convergence to NNF is harder to reach. Any changes to NNF greatly affect
pixel weights in Ω which leads to even more reshuffling of assignments. Also,
in theory, as the value of λ increases, the behavior of the algorithm comes
closer to the approach that enforces uniform patch assignments [10].

40



Chapter 5
Further Improvements

In this chapter we will describe our experiments that improve the performance
of the reference GPU implementation (Ref) even further. The improvements
are implementational as well as algorithmic.

5.1 Shared Memory

Texture memory has an advantage of being implicitly cached, but we cannot
directly affect it or rely on its behavior. This improvement aims to create our
own cache memory in order to eliminate cache misses or its possible occupation
by unrelated data. For this purpose, we use shared memory.

5.1.1 Method

The PatchMatch [3] kernels are executed with blocks of 32×32 threads which
means that each block takes care of a square of 32× 32 assignments in NNF.
During execution of PatchMatch, the target texture B̄ and the example tex-
ture Ā are in read-only mode as they are used only to evaluate NNF’s metric
ϕ. Values of target patches that belong to a single block are repeatedly read
many times by the threads in propagation and random search when evaluating
the metric with candidate example patches.

We can easily determine a square area of 36×36 pixels of the target texture
B̄ accessed by all patches of a block (see Fig. 5.1). The square area of the
target B̄ with its underlying 18 channels can be fitted as a whole into the
shared memory of a single block. Both the propagation and random search
kernels will first start with synchronously filling the shared memory and then
continue with their work no longer requiring access to B̄, but instead using
the shared memory which grants us faster access to the required data at all
times without relying on the internal cache of the texture memory. Shared
memory “simulates” the cache in a private way that never misses or gets
dirty by different data. Unfortunately, this trick only applies to the target

41



5. Further Improvements

B̄ - target texture

P

Block(0;0) Block(1;0)

Block(0;1) Block(1;1)

Figure 5.1: The large purple square of size 12×12 pixels displays area covered
by all target patches that belong to threads from Block(1;1), in a case where
the blocks are of size 8× 8 threads and the patches are of width 5. The whole
area of both stylization and guidance textures is stored in the shared memory.
P is a top-left patch that demonstrates overlapping of the actual block area
near its borders.

texture B̄. In case of the example texture Ā, the example patches assigned
to the target patches of a single block can be randomly scattered all over the
example texture (see how scattered the assignments in NNF can be in Fig.
2.2) and can also change a lot during kernel’s execution. Of course, we want
the assignments to be as much coherent as possible, but we are still unable to
effectively determine which example pixels will be read more than once.

5.1.2 Implementation

The following algorithm shows the additional routine in the beginning of the
random search and propagation kernels where all the threads of the block
synchronously fill the shared memory. Line 8 fills the (0; 0)− (31; 31) portion
of the shared memory. Line 10 fills the (0; 32) − (31; 35) portion, line 12 fills
(32; 32) − (35; 35) portion and finally line 16 fills (32; 0) − (35; 31) portion of
the shared memory. Line 18 synchronizes all the thread blocks to wait until
all of them are finished. This way it is ensured that the shared memory has
been filled as a whole with proper texture data and can be used by any thread
of the block in the rest of the kernel’s execution.

42



5.1. Shared Memory

1: . . .PatchMatch kernel with parameters including B̄, Ā, NNF,. . .
2:
3: P ← patch of this thread in B̄
4: (xr; yr)← coordinates of this thread relative to its block
5: S ← shared memory of size 36×36×(nB̄)
6: x← uP − 2
7: y ← vP − 2
8: S(xr, yr)← B̄(x, y)
9: if yr < 4 then

10: S(xr, yr + 32)← B̄(x, y + 32)
11: if xr < 4 then
12: S(xr + 32, yr + 32)← B̄(x+ 32, y + 32)
13: end if
14: end if
15: if xr < 4 then
16: S(xr + 32, yr)← B̄(x+ 32, y)
17: end if
18: syncthreads()
19:
20: . . . rest of the kernel code, where S substitutes B̄ . . .

5.1.3 Comparison

Since the shared memory improvement is purely implementational as it only
enables faster access to the same data of B̄, there is no need to provide res-
ulting textures B′ as they would be the same as in the results of Ref. The
input target and style pairs are the same. To keep the table short we only
specify the targets in the table of results. The comparison is done purely by
execution times to Ref with λ = 10000 and StyLit [6]:

target Our [s] Ref [s] StyLit [s] Ref
Our

StyLit
Our

stego 47.983 55.758 2453 1.162 51.122
scorpion 42.827 50.310 1628 1.175 38.013
hand 50.845 59.543 2139 1.171 42.069
teapot 104.231 113.362 1714 1.088 16.444
helmet 99.862 107.939 2663 1.081 26.667
pumpkin 100.550 109.294 1796 1.087 17.862
golem 114.372 122.495 2561 1.071 22.392

5.1.4 Discussion

The column Ref
Our shows that this improvement decreased the time consumed

compared to Ref’s implementation only by 7 − 18%. The final percentage
decreases even further as the performance comes closer to real-time (i.e., when

43



5. Further Improvements

running on today’s high-end GPUs or when used on lower resolutions). Still,
the usage of shared memory gives us some small advantage considering the
resulting textures are not affected in any way.

5.2 Guide Maps

One of the most expensive parts of the reference GPU implementation (Ref)
is overhead of reading from texture memory during evaluation of SSD between
patches in PatchMatch [3] as each thread repeatedly reads w2

P pixel val-
ues from textures B̄ and Ā. Since the guidance textures Ā.guidance and
B̄.guidance are synthetic renderings, the RGB values of their nearby pixels
are often quite similar. We will try to estimate their SSD by using less pixel
information to reduce required texture memory access.

5.2.1 Method

The idea of this improvement is to approximate guidance portions of SSD of
two patches by using only their precomputed per-channel mean values.

SSD(P,Q) = w2
P

n∑
i=1

(meani(P )−meani(Q))2

meani(P ) = 1
w2
P

wP−1∑
x=0

wP−1∑
y=0

fPi (x, y)

where P is a patch of B̄.guidance and Q is a patch of Ā.guidance. Styliza-
tion textures B̄.style and Ā.style have to use the standard SSD that iterates
through the whole patch as they are not synthetic renderings and RGB values
of their nearby pixels often vary a lot.

However, we cannot use this technique on arbitrary patches as we would
lose important information in patches containing edges or other areas of rap-
idly changing intensity. In order to distinguish these specific patches, we first
evaluate sum of per-channel variances for all patches in the target guidance
B̄.guidance:

var(P ) =
n∑
i=1

1
w2
P

wP−1∑
x=0

wP−1∑
y=0

(meani(P )− fPi (x, y))2

The sums are then used to create a new texture called guide map (black&white
texture). The black pixels mean that their corresponding patches will use
standard SSD evaluation while the white pixels will cause the patches to use
the new approximation of SSD based on their arithmetic means. To create
the new map, the evaluated sums of variances are compared to user-provided

44



5.2. Guide Maps

ε value where values below the ε imply that the patch pixels are considered to
be of similar value and are white on the map.

It is important to note the drawbacks of this approach. Threads of a
single warp will not necessarily have the same value in the guide map. This
leads to their instruction set divergence as some of the threads quickly use
the new mean values and then have to wait for others to crawl through all of
w2
P pixels in order to evaluate the standard SSD. However, as we will see a

number of black pixels in the map get sparse very fast with increasing ε while
the quality of results is maintained. Also, extra GPU memory is required to
store the guide map and the pre-evaluated means for both target and example
guidance textures. Plus, there is still an overhead of reading pixel weights from
the occurrence map [11] where we cannot use this trick as their exact values
are crucial for our method to properly encourage uniform patch assignments.

5.2.2 Implementation

At the start of each pyramid level, the mean textures have to be evaluated for
both guidance textures B̄.guidance and Ā.guidance. The guide map is evalu-
ated at the start of the level as well, but only for B̄.guidance. The following
kernel Evaluate Means evaluates the mean texture MX for a guidance texture
X:

function Evaluate Means(X, MX)
P ← patch of this thread in X
sum← zero vector of nX channels
for y ← −rP . . . rP do

for x← −rP . . . rP do
for i← 1 . . . nX do

sumi ← sum + fP (x, y)
end for

end for
end for
MX(uP , vP )← sum

w2
P

end function

45



5. Further Improvements

The guide map G is created by evaluating sum of variances over all patch
channels using already evaluated texture of target guidance means MB and
then comparing the sums to ε value. The kernel of the Evaluate Map is as
follows:

function Evaluate Map(B̄, MB, ε, G)
P ← patch of this thread in B̄.guidance
mean←MB(uP , vP )
sum←zero vector of nB̄ channels
var← 0
for y ← −rP . . . rP do

for x← −rP . . . rP do
for i← 1 . . . nB̄ do

sumi ← sumi + (fPi (x, y)−meani)2

end for
end for

end for
for i← 1 . . . n do

var← var + sumi

w2
P

end for
if var < ε then

G(uP , vP )← white
else

G(uP , vP )← black
end if

end function

46



5.2. Guide Maps

We use the new textures MB, MA and G in our improved SSD evaluation
function.

function SSD(P , Q, MB, MA, G)
Pg ← B̄.guidance portion of P
Ps ← B̄.style portion of P
Qg ← Ā.guidance portion of Q
Qs ← Ā.style portion of Q
ng ← nB̄.guidance
ns ← nB̄.style
res← 0
if G(uP , vP ) is white then

meanB ←MB(uP , vP )
meanA ←MA(uQ, vQ)
for i← 1 . . . ng do

res← res + µ
ng

(meanBi −meanAi )2

end for
res← res w2

P

else
for y ← 0 . . . wP do

for x← 0 . . . wP do
for i← 1 . . . ng do

res← res + µ
ng

(fPg

i (x, y)− fQg

i (x, y))2

end for
end for

end for
end if
for y ← 0 . . . wP do

for x← 0 . . . wP do
for i← 1 . . . ns do

res← res + 1
ns

(fPs
i (x, y)− fQs

i (x, y))2

end for
end for

end for
return res

end function

5.2.3 Comparison

The results of our new improvement with increasing ε parameter are com-
pared to the results of Ref with λ = 10000 and StyLit. Parameter λ in our
method is set to 10000 as well to simplify the comparison. The results display
corresponding guide maps for selected ε values as well.

47



5. Further Improvements

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(e) (g) (i) (k)

(c) (d) (g) (i) (j) (k) (l)

Figure 5.2: Comparison of our results with those of Ref and StyLit. (a) Styl-
ized example texture A′ c© Pavla Sýkorová. (b) Target guidance (only B1 is
displayed). The green square displays area used for the zoom-ins (bottom im-
ages). (c) StyLit [6]. (d) Ref with λ = 10000. (e) . . . (l) Our with increasing ε.

ε time [s] timeRef
time(x)

timeStyLit
time(x)

(c) - 2453 - -
(d) - 55.758 - 43.994
(e) 3 45.939 1.214 53.397
(f) 5 33.379 1.670 73.489
(g) 10 25.656 2.173 95.611
(h) 25 22.404 2.489 109.489
(i) 100 20.266 2.751 121.040
(j) 500 19.461 2.865 126.047
(k) 5000 18.404 3.030 133.286
(l) 10000 17.505 3.185 140.131

48



5.2. Guide Maps

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(e) (g) (i) (k)

(c) (d) (g) (i) (j) (k) (l)

Figure 5.3: Comparison of our results with those of Ref and StyLit. (a) Styl-
ized example texture A′ c© Pavla Sýkorová. (b) Target guidance (only B1 is
displayed). The green square displays area used for the zoom-ins (bottom im-
ages). (c) StyLit [6]. (d) Ref with λ = 10000. (e) . . . (l) Our with increasing ε.

ε time [s] timeRef
time(x)

timeStyLit
time(x)

(c) - 1628 - -
(d) - 50.310 - 32.359
(e) 3 33.358 1.508 48.804
(f) 5 25.050 2.008 64.990
(g) 10 22.003 2.287 73.990
(h) 25 20.930 2.404 77.783
(i) 100 19.090 2.635 85.280
(j) 500 17.568 2.864 92.668
(k) 5000 16.234 3.099 100.283
(l) 10000 15.408 3.265 105.659

49



5. Further Improvements

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(e) (g) (i) (k)

(c) (d) (g) (i) (j) (k) (l)

Figure 5.4: Comparison of our results with those of Ref and StyLit. (a) Styl-
ized example texture A′ c© Pavla Sýkorová. (b) Target guidance (only B1 is
displayed). The green square displays area used for the zoom-ins (bottom im-
ages). (c) StyLit [6]. (d) Ref with λ = 10000. (e) . . . (l) Our with increasing ε.

ε time [s] timeRef
time(x)

timeStyLit
time(x)

(c) - 2139 - -
(d) - 59.543 - 35.924
(e) 3 42.261 1.409 50.614
(f) 5 34.875 1.707 61.333
(g) 10 27.648 2.154 77.365
(h) 25 22.790 2.613 93.857
(i) 100 20.911 2.847 102.291
(j) 500 20.339 2.928 105.167
(k) 5000 19.250 3.093 111.117
(l) 10000 18.577 3.205 115.142

50



5.2. Guide Maps

(e) (f) (g) (h)

(i) (j) (k) (l)

(e) (g) (i) (k)

(c) (d) (g) (i) (j) (k) (l)

(a) (b) (c) (d)

Figure 5.5: Comparison of our results with those of Ref and StyLit. (a)
Stylized example texture A′ c© Daichi Ito. (b) Target guidance (only B1 is
displayed). The green square displays area used for the zoom-ins (bottom im-
ages). (c) StyLit [6]. (d) Ref with λ = 10000. (e) . . . (l) Our with increasing ε.

ε time [s] timeRef
time(x)

timeStyLit
time(x)

(c) - 1714 - -
(d) - 113.362 - 15.120
(e) 3 69.126 1.640 24.795
(f) 5 49.991 2.268 34.286
(g) 10 35.126 3.227 48.796
(h) 25 32.379 3.501 52.936
(i) 100 31.277 3.624 54.801
(j) 500 30.795 3.681 55.658
(k) 5000 30.277 3.744 56.611
(l) 10000 30.041 3.774 57.055

51



5. Further Improvements

(e) (f) (g) (h)

(i) (j) (k) (l)

(e) (g) (i) (k)

(c) (d) (g) (i) (j) (k) (l)

(a) (b) (c) (d)

Figure 5.6: Comparison of our results with those of Ref and StyLit. (a)
Stylized example texture A′ c© Daichi Ito. (b) Target guidance (only B1 is
displayed). The green square displays area used for the zoom-ins (bottom im-
ages). (c) StyLit [6]. (d) Ref with λ = 10000. (e) . . . (l) Our with increasing ε.

ε time [s] timeRef
time(x)

timeStyLit
time(x)

(c) - 2663 - -
(d) - 107.939 - 24.671
(e) 3 61.015 1.769 43.645
(f) 5 39.351 2.743 67.673
(g) 10 33.266 3.245 80.052
(h) 25 31.722 3.403 83.948
(i) 100 30.451 3.545 87.452
(j) 500 29.797 3.622 89.371
(k) 5000 29.010 3.721 91.796
(l) 10000 28.762 3.753 92.587

52



5.2. Guide Maps

(e) (f) (g) (h)

(i) (j) (k) (l)

(e) (g) (i) (k)

(c) (d) (g) (i) (j) (k) (l)

(a) (b) (c) (d)

Figure 5.7: Comparison of our results with those of Ref and StyLit. (a)
Stylized example texture A′ c© Daichi Ito. (b) Target guidance (only B1 is
displayed). The green square displays area used for the zoom-ins (bottom im-
ages). (c) StyLit [6]. (d) Ref with λ = 10000. (e) . . . (l) Our with increasing ε.

ε time [s] timeRef
time(x)

timeStyLit
time(x)

(c) - 1796 - -
(d) - 109.294 - 16.433
(e) 3 52.674 2.075 34.097
(f) 5 38.231 2.859 46.978
(g) 10 33.104 3.302 54.253
(h) 25 31.493 3.470 57.029
(i) 100 30.725 3.557 58.454
(j) 500 30.065 3.635 59.737
(k) 5000 29.512 3.703 60.857
(l) 10000 29.222 3.740 61.461

53



5. Further Improvements

(e) (f) (g) (h)

(i) (j) (k) (l)

(e) (g) (i) (k)

(c) (d) (g) (i) (j) (k) (l)

(a) (b) (c) (d)

Figure 5.8: Comparison of our results with those of Ref and StyLit. (a)
Stylized example texture A′ c© Daichi Ito. (b) Target guidance (only B1 is
displayed). The green square displays area used for the zoom-ins (bottom im-
ages). (c) StyLit [6]. (d) Ref with λ = 10000. (e) . . . (l) Our with increasing ε.

ε time [s] timeRef
time(x)

timeStyLit
time(x)

(c) - 2561 - -
(d) - 122.495 - 20.907
(e) 3 61.019 2.007 41.971
(f) 5 44.587 2.747 57.438
(g) 10 38.979 3.143 65.702
(h) 25 36.211 3.383 70.724
(i) 100 33.768 3.628 75.841
(j) 500 33.004 3.712 77.597
(k) 5000 32.619 3.755 78.513
(l) 10000 31.864 3.844 80.373

54



5.2. Guide Maps

5.2.4 Discussion

The execution times of our improved approach have significantly decreased
compared to Ref (up to 3.8×) thanks to the reduced memory load. The
performance tends to improve the most for small ε changes in the beginning
(ε < 100) and then later stabilize with minor changes as the value grows
further (ε > 100). In most cases, the new results are identical to those of
Ref where the (i) results with values around ε = 100 tend to be in a “sweet
spot” between performance and final quality. The guide maps with values of
ε over 5000 start to lose important edge information. As a result, body of
a stylized target might start to bloat (see the space between front limbs in
Fig. 5.2), or the edges might fade out (see the left horn of the helmet in Fig.
5.6). In some cases, there are artifacts present in all results no matter what
ε value we use (see the “spilled” shadow in the teapot and golem scenarios in
Fig. 5.5 and 5.8). These special cases of “spilling” are mostly style-dependent
and can be easily fixed by providing additional guidance textures B6 and A6
carrying ID information of the scene objects, i.e., target rendering containing
only 3 distinct colors that strictly distinguish background, floor, and object
from each other.

Unfortunately, the user-provided ε value suffers the same problem as in
the case of λ in Ref. To achieve the best results, we would have to fine-tune
the values in each scenario by comparing the outputs. Plus in this case, we
would have to fine-tune both λ and ε at the same time which increases the
complexity of the parameter setting.

55





Conclusion

In this work, we have first presented the problem of stylization by example
and the motivation to solve such problem. Numerous related publications
from the area were described, most important of all Fǐser et al. (StyLit) [6].

Based on StyLit, we formulated a new problem of energy minimization
in texture synthesis that uses extended energy term. The term includes pixel
weights coming from the occurrence map Ω [11] that encourages uniform distri-
bution of patch assignments while also making effective GPU implementation
possible.

We then presented a method that solves the problem with texture op-
timization algorithm [12, 19] run in a pyramid scheme to synthesize the result
and PatchMatch algorithm [3] to evaluate NNF. We also used additional guid-
ance textures of StyLit to be able to preserve the example stylization details
provided by the artist.

As a next step, the reference GPU implementation was presented along
with its detailed kernels. The ability to provide effective GPU accelerated
version of the synthesis process proved to be beneficial as the execution times
were in orders of magnitude lower than those of StyLit. The quality of the
implementation results, when compared to those of StyLit, decreased as ex-
pected. However, the quality was still within satisfactory and comparable
range.

Finally, we conducted experiments that further improved performance of
the reference GPU implementation, one of which brought exceptional results
additionally lowering execution time multiple times and without any addi-
tional drawbacks on the quality in most cases. The final version of our GPU
algorithm is able to provide real-time synthesis performance on today’s high-
end GPUs (i.e., GTX 1080) on high resolutions which successfully fulfilled our
goal. As a result, we were able to provide the artists with much faster and
more reliable feedback.

For future work, there is still space for additional further experiments that
might decrease the rate of accessing global GPU memory during execution

57



Conclusion

of PatchMatch [3] which is still the slowest part of the process. Algorithmic
improvements that include approximations seem to be the key to achieving
this as their correctly configured scenarios might be able to notably improve
performance without harsh impact on the quality.

58



Bibliography

[1] NVIDIA CUDA Toolkit Documentation. http://docs.nvidia.com/cuda.
Accessed: 24.11.2016.

[2] Ashikhmin, Michael. Synthesizing natural textures. In Proceedings of
Symposium on Interactive 3D graphics, pp. 217–226. 2001.

[3] Barnes, Connelly, Shechtman, Eli, Finkelstein, Adam, and Gold-
man, Dan B. PatchMatch: A randomized correspondence algorithm for
structural image editing. ACM Transactions on Graphics, 28(3):24, 2009.

[4] Barnes, Connelly, Zhang, Fang-Lue, Lou, Liming, Wu, Xian, and Hu,
Shi-Min. PatchTable: Efficient Patch Queries for Large Datasets and
Applications. ACM Transactions on Graphics, 34(4):97, 2015.

[5] Bénard, Pierre, Cole, Forrester, Kass, Michael, Mordatch, Igor,
Hegarty, James, Senn, Martin Sebastian, Fleischer, Kurt, Pesare,
Davide, and Breeden, Katherine. Stylizing Animation By Example.
ACM Transactions on Graphics, 32(4):119, 2013.

[6] Fǐser, Jakub, Jamrǐska, Ondřej, Lukáč, Michal, Shechtman, Eli,
Asente, Paul, Lu, Jingwan, and Sýkora, Daniel. StyLit: Illumination-
Guided Example-Based Stylization of 3D Renderings. ACM Transactions
on Graphics, 35(4), 2016.

[7] Fǐser, Jakub, Lukáč, Michal, Jamrǐska, Ondřej, Čad́ık, Martin, Gin-
gold, Yotam, Asente, Paul, and Sýkora, Daniel. Color Me Noisy:
Example-based Rendering of Hand-colored Animations with Temporal
Noise Control. Computer Graphics Forum, 33(4):1–10, 2014.

[8] Gatys, Leon A., Ecker, Alexander S., and Bethge, Matthias. A Neural
Algorithm of Artistic Style. CoRR, abs/1508.06576, 2015.

59

http://docs.nvidia.com/cuda


Bibliography

[9] Hertzmann, Aaron, Jacobs, Charles E., Oliver, Nuria, Curless,
Brian, and Salesin, David H. Image Analogies. In SIGGRAPH Confer-
ence Proceedings, pp. 327–340. 2001.

[10] Jamrǐska, Ondřej, Fǐser, Jakub, Asente, Paul, Lu, Jingwan, Shecht-
man, Eli, and Sýkora, Daniel. LazyFluids: Appearance Transfer for
Fluid Animations. ACM Transactions on Graphics, 34(4):92, 2015.

[11] Kaspar, A., Neubert, B., Lischinski, D., Pauly, M., and Kopf, J.
Self Tuning Texture Optimization. Computer Graphics Forum, 34(2):349–
360, 2015.

[12] Kwatra, Vivek, Essa, Irfan A., Bobick, Aaron F., and Kwatra,
Nipun. Texture optimization for example-based synthesis. ACM Transac-
tions on Graphics, 24(3):795–802, 2005.

[13] Newson, Alasdair, Almansa, Andrés, Fradet, Matthieu, Gousseau,
Yann, and Pérez, Patrick. Video Inpainting of Complex Scenes. SIAM
Journal of Imaging Science, 7(4):1993–2019, 2014.

[14] Portilla, Javier and Simoncelli, Eero P. A Parametric Texture Model
Based on Joint Statistics of Complex Wavelet Coefficients. International
Journal of Computer Vision, 40(1):49–70, 2000. ISSN 1573-1405. doi:
10.1023/A:1026553619983.
URL http://dx.doi.org/10.1023/A:1026553619983

[15] Rong, Guodong and Tan, Tiow-Seng. Jump flooding in GPU with ap-
plications to Voronoi diagram and distance transform. In Proceedings of
Symposium on Interactive 3D Graphics and Games, pp. 109–116. 2006.

[16] Simonyan, Karen and Zisserman, Andrew. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556, 2014.

[17] Sloan, Peter-Pike J., Martin, William, Gooch, Amy, and Gooch,
Bruce. The Lit Sphere: A Model for Capturing NPR Shading from Art.
In Proceedings of Graphics Interface, pp. 143–150. 2001.

[18] Wei, Li-Yi and Levoy, Marc. Fast Texture Synthesis Using Tree-
structured Vector Quantization. In Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’00, pp. 479–488. New York, NY, USA: ACM Press/Addison-Wesley Pub-
lishing Co., 2000. ISBN 1-58113-208-5. doi:10.1145/344779.345009.
URL http://dx.doi.org/10.1145/344779.345009

[19] Wexler, Y., Shechtman, E., and Irani, M. Space-Time Completion of
Video. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(3):463–476, 2007.

60

http://dx.doi.org/10.1023/A:1026553619983
http://dx.doi.org/10.1145/344779.345009


Appendix A
Acronyms

RGB Red green blue color model

CPU Central processing unit

EM Expectation-maximization

GPU Graphics processing unit

LPE Light path expressions

NNF Nearest-neighbor field

OS Operating system

SIMT Single instruction multiple thread

SM Streaming multiprocessor

SSD Sum of squared differences

61





Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

wbdcm ...................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

63


	Introduction
	Background
	Image Analogies
	Texture Optimization
	PatchMatch
	Stylizing Animations by Example
	StyLit
	A Neural Algorithm of Artistic Style

	Method
	Definitions
	Problem Formulation
	Texture Optimization
	PatchMatch

	Implementation
	NVIDIA GPU Architecture CudaDoc
	GPU Occurrence Map
	GPU PatchMatch
	GPU Texture Optimization

	Results
	Configuration
	Comparison
	Discussion

	Further Improvements
	Shared Memory
	Guide Maps

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

