CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Dart implementation for Smalltalk/X
Student: Bc. Branislav Havrila

Supervisor: Ing. Marcel Hlopko

Study Programme: Informatics

Study Branch: Web and Software Engineering
Department: Department of Software Engineering
Validity: Until the end of summer semester 2016/17

Instructions

The aim of the thesis is design and implementation of a compiler and runtime engine for programs written in
the Dart language in Smalltalk/X.

1. Analyze the possibility of reusing the existing Smalltalk/X bytecode engine.

2. Describe the architecture of your solution and implement it.

3. Demonstrate the completeness of your solution on a set of examples using Dart Standard Library modules:
core, collections, html, io, math, and mirrors.

4. Compare the performance with the Dart VM.

References

Will be provided by the supervisor.

L.S.

Ing. Michal Valenta, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague February 3, 2016

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacurLTy OF INFORMATION TECHNOLOGY /

DEPARTMENT OF SOFTWARE ENGINEERING

Master’s thesis

Dart implementation for Smalltalk /X

Be. Branislav Havrila

Supervisor: Ing. Marcel Hlopko

9th January 2017

Acknowledgements

I would like to express my special thanks to my supervisor Ing. Marcel Hlopko
for his exceptional advice as well as to Alexandra Antlova for her support and
love. Secondly I would also like to thank to my parents and friends for their
support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th January 2017 L

Czech Technical University in Prague

Faculty of Information Technology

(© 2017 Branislav Havrila. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Havrila, Branislav. Dart implementation for Smalltalk/X. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2017.

Abstrakt

Této praca sa zaobera podporou programovacieho jazyka Dart v Smalltalk /X,
porovnava jazyky Dart a Smalltalk, prezentuje moznosti implementacie jed-
notlivych konstruktov jazyka Dart a taktiez porovnava vykon kédu prelozeného
do bytekddu Smalltalk/X s Dart VM.

Klic¢ova slova Smalltalk, Dart, bytecode, AST, compiler, parser, tiida, kni-
hovna

Abstract

This thesis deals with the support of Dart programming language in the Small-
talk/X. It compares the Dart and Smalltalk languages, presents possibilities
of implementing a support of Dart language features inside the Smalltalk/X
and compares the performance of the implemented solution compiled into
Smalltalk/X’s bytecode with the Dart VM.

Keywords Smalltalk, Dart, bytecode, AST, compiler, parser, class, library

IX

Contents

Introductionl 1
1__Problem statementl 3
(I.1 Smalltalk/X]. 3
1.2 Dart language|.o oo 3
[l.3 Smalltalk/X and Dart| 6
2 Analysis 9
2.1 Compilation of Smalltalk code|. 9
2.2 Parsing and compilation ot Dart code| 14
2.3 Compilation into Smalltalk bytecode| 16
3__Realisation| 25
3. Main classed 25
[3.2 Parser implementation| 27
3.3 Compiler implementation| 35
3.4 Completeness| o o 45
8.5 Performancel. oL 54
[Conclusion| 57
|Bibliography| 59
|A° Acronyms| 61
[B_Contents of enclosed flash drivel 63

XI

List of Figures

3.1 Result in ms of measuring one sort of 100 elements 55
3.2 Result in ms of measuring 100 sorts of 100 elements| 56

XIIT

Introduction

Dart language has become a popular programming language over the past few
years. Developers can use the Dart language for their web applications, server
applications and now also mobile applications thanks to the Flutter project[1].
When building the server applications, developers can use the Dart Virtual
Machine to run their scripts or programs.

The Virtual Machines have been here for a few decades now and Smalltalk
has been one of the first programming languages to adopt the concept of a
virtual machine. However, over the time, virtual machines have evolved a lot
and there are more approaches how to evaluate the code. The implementation
of Smalltalk /X uses compilation to bytecode as an intermediate representation
and then the bytecode is interpreted or it might be compiled to native C code
with JIT compiler if it is executed often enough.

Dart VM is not a bytecode based virtual machine and some reasoning
about this can be found in the article "Why Not a Bytecode VM?” [2]. One
of the main reasons why the authors of the Dart language decided to create a
new virtual machine and not to make it a bytecode based is the development
process. Skipping the compilation to bytecode step and executing the code
directly should make the use of the Dart language pleasant and simple. The
authors also make a reference to the Smalltalk live editing feature.

As the Smalltalk/X is using bytecode and has the live editing feature, this
brought an idea of adding the support of Dart language into Smalltalk /X and
comparing the performance of the Dart VM and Smalltalk/X.

CHAPTER 1

Problem statement

The purpose of this thesis is to create a parser and compiler for Dart language
or at least its subset that would allow the Dart code to be executed in the
Smalltalk/X. Therefore, the current Smalltalk/X has to be analysed how it
would be possible to bring the functionality into the Smalltalk/X in a way,
that we don’t have to create a completely new bytecode based VM, but instead
we use the Smalltalk/X VM to execute the code written in Dart language.

If the analysis brings a successful results, we can move to the implement-
ation part and measure the performance of our solution afterwards.

1.1 Smalltalk/X

Smalltalk /X is a complete implementation of the Smalltalk programming lan-
guage, written by Claus Gittinger[3]. Smalltalk/X compiles the Smalltalk
source code into bytecode that is interpreted upon execution or it can be re-
compiled by the JIT compiler if the particular code is executed often enough.
This might bring some performance advantages over the Dart VM.

As Smalltalk is a completely dynamic system allowing the classes, its fields
and methods to be created, added, edited or removed while the system is
running, the iterative development process is a very pleasant way to do the
programming in Smalltalk. This brings the instant feedback and results as the
developer doesn’t have to go through the whole recompilation and run cycle.

1.2 Dart language

Dart is a class-based, object-oriented language. It is optionally typed, supports
mixin-based inheritance and actor style concurency. [4]

It was initially designed by Lars Bak and Kasper Lund, developed at
Google. It is a general purpose application programming language that is
meant to be easy to learn, scale and should be deployable everywhere.

3

1. PROBLEM STATEMENT

1.2.1 Important concepts

Types in Dart are based on interfaces and not on classes. This means that
every class in Dart creates an implicit interface that other clasess can imple-
ment.

Dart has no final methods and almost all method can be overriden with a
few exceptions like some built-in operators. However, this doesn’t mean that
Dart doesn’t have final variables. These can be defined as well as final class
fields.

Dart abstracts from object representation by ensuring that all access to
state is mediated by accessor methods.[4] This means that whenever a field is
accessed, it is done so through an accessor method, e.g. a getter method.

Dart supports top-level functions(e.g. the main() function) and also nested
functions, i.e. a function defined in a function. Similarly, Dart supports top-
level variables.

Unlike many other languages, Dart doesn’t use public, private, protected
keywords for defining the fields or methods. To define a private identifier(e.g.
a field), it has to start with the underscore ”_" sign. This identifier is then
visible only within its library.

1.2.2 Types in Dart

Dart language is an optionally typed language and this should provide a bal-
ance between the advantages and disadvantages of types.

Types can be a source of documentation, they make the code more read-
able, they can help to find errors in the code by the static analysis and having
types can improve the performance of the executed code as well.

On the other hand, complex type systems might get counter-productive if
the developers end up with trying to satisfy the type checker instead of doing
the productive work. Also, these advanced type systems are typically harder
to learn and to work with.[4]

So Dart as optionally typed language offers programmers to choose whether
they want to use types or treat the language as completely dynamic. However,
the type annotations, that are added by a developer, help tools to do a better
job in supporting the programmers, giving a better suggestions or warnings.

1.2.3 Classes

As mentioned in previous sections, Dart is a class-based language and it sup-
port the single inheritance of classes but extends it with the mixin-based
inheritance. Superclass can be specified explicitly or can be left out, in which
case the class inherits from the Object class. Therefore, every class has a
superclass except for the Object class.

4

1.2. Dart language

Classes can have fields defining the object’s state and methods defining the
object’s behaviour. Apart from that, classes can also contain static methods
and static variables(or class variables).

When defining fields, developers can choose to compute the actual value
instead of storing it as an instance field. This can be done by defining the
computed accessor methods. Syntactically, they are accessed in the same way
as other fields, but when this computed field is accessed, the actual accessor
method computing the value is called.

As Dart classes implicitly create an interface, explicit keyword for defining
an interface does not exist in Dart. Interfaces are therefore defined by abstract
classes. Checking if a class conforms to an interface at runtime is done through
1s keyword. The is keyword, however, has a major difference in functionality
that it might have in other languages. It is actually checking if the object
does conform to the interface rather than checking if the object is an instance
of a given class.

1.2.4 Other language features

e Mixins: Mixins are a powerful way of reusing a class’s code in multiple
class hierarchies.[5] To use a mixin, the with keyword has to be used
followed by one or more mixin names.

To implement a mixin, developer has to create a class that declares no
constructors and has no calls to super.

e Generics: A developer can use generics but as types are optional in
Dart, he or she doesn’t have to use them at all. However, it might help
to improve the readability of the code as well as getting better IDE
suggestions or better results from other tools that a programmer may
use when using the static analysis. Also Dart VM supports the checked
mode when the VM is checking if the object has a correct type and it
can do so e.g. on the collections as well if the generics are used.

e Libraries: Libraries can be a powerful way to create a modular code that
can be easily shared. Dart provides support for defining libraries using
the library keyword and they can be imported in other files using the
import keyword.

e Control flow statements: Dart has traditional control flow statements
like if and else, for loop, while and do-while loops, break and continue,
switch and case, and assert.

e Asynchrony support: Dart has several language features to support
asynchronous execution. The most commonly used are async and await
expressions.

1. PROBLEM STATEMENT

e Metadata: Dart has a built-in support for adding metadata to the
classes, fields or methods, known in other languages as annotations.
For example, they can be used to mark method as a deprecated one or
to create a todo note.

1.3 Smalltalk/X and Dart

Smalltalk was one of the languages that influenced the design of Dart and
probably this made Dart a pure object-oriented language. We can benefit
from the fact that everything is an object in the Dart language as well as in
Smalltalk. Even primitive types like numbers or boolean values are objects in
both languages.

Despite the fact that both languages are pure object-oriented languages,
there are differences in how the classes behave. For example, if an object wants
to access a field of another class in Smalltalk, it has to do through a message
send, i.e. by calling the accessor methods. This Smalltalk encapsulation
implementation is very similar to the implementation in Dart but there is a
major difference. If an object wants to access its own field in Dart, an accessor
method is always called. In Smalltalk, no accessor method has to be called if
an object is accessing its own field. That said, Dart cannot override its getter
or setter methods and it is a compile time error to redefine a getter or setter
method of an already defined field. In Smalltalk it is completely fine because
no default getter or setter methods are defined for the fields.

Dart has constructors for instantiating new objects whereas Smalltalk uses
new and basicNew methods for allocating new objects usually followed by a
call to some initialize method. Behaviour of the new and basicNew might
slightly differ across different implementations of Smalltalk(e.g. new might
call an initialize method). Dart has also some more syntactic sugar when
it comes to constructors and fields initialization and it has also support for
named constructors.

A one of the many similarities between the languages is that there are no
private, protected or public keywords. Every method in Smalltalk or Dart is
public. As Dart has automatically generated getter and setter methods all
the fields are public. However, there is one exception: field starting with an

underscore ”_” sign is considered as private and should be visible only within
the current library.

When it comes to overriding methods or flexibility in general, Smalltalk
might appear a bit more flexible as basically any method can be overridden by
a subclass whereas some operators are not overridable in Dart and Smalltalk
also allows any system class to be changed easily. On the other hand, Dart
has some more support in the control flow statements, like break, continue or
switch statements.

1.3. Smalltalk/X and Dart

Both languages support exceptions. In Dart however an arbitrary object
can be thrown(or raised) rather than just throwing a supported exception or
error types in Smalltalk.

Another difference between the languages can be found in the top-level
functions and variables. Smalltalk doesn’t support top-level functions nor
variables and everything has to be defined within a class.

CHAPTER 2

Analysis

In this chapter we will focus on the options of using the Smalltalk /X bytecode
when compiling the code written in Dart. We will analyse how we can reuse
existing Smalltalk classes to run the Dart code.

2.1 Compilation of Smalltalk code

As we know that Smalltalk/X is compiling its classes to bytecode first and
that’s what we want to do with our code we can focus first on how Smalltalk/X
is parsing and compiling the code written in Smalltalk.

2.1.1 Overview of the parse and compilation process

When a method or a change in a method source code is accepted in the Small-
talk editor, a ByteCodeCompiler class is the one responsible for compilation.
ByteCodeCompiler is a subclass of the Parser class and Parser class is a sub-
class of the Scanner class. But before going into the ByteCodeCompiler code,
there exists a ClassDescription class which decides first what class is its com-
piler class or in other words what class is responsible for compiling the code
of the current class. This means that there might be a different compiler for
each class, e.g. Smalltalk/X has already some support for Javascript com-
pilation and the ClassDescription class for the Javascript classes return the
JavascriptCompiler class.

When the correct compiler class is resolved by the ClassDescription class,
the code then moves into the compiler. For Smalltalk classes, the ByteCo-
deCompiler class is used and therefore the execution continues here. The
ByteCodeCompiler then asks its superclass which is the Parser to return an
AST first by calling the parseMethodBody method.

Parser is continuously asking its superclass Scanner for next token and
creates an AST which is afterwards returned to the ByteCodeCompiler. It
processes the AST and generate an array with symbolic code. This symbolic

9

2. ANALYSIS

code is an intermediate representation of the code and is composed of Smalltalk
symbols(e.g. #pushInstVarl) which is much easier to read and debug by a
developer working on the compiler features.

After the generation of the array containing symbolic code the ByteCo-
deCompiler converts this symbolic code to the actual Smalltalk/X bytecode
and is finally ready to create a new method and add it to the current class.

To summarize this process, after the method is accepted by the editor, the
code has to go through these steps to generate a bytecode:

e (lassDescription obejct decides what compiler to use

e Resolved compiler asks Parser to generate an AST from the current
code

e Parser continuously asks Scanner for next token and creates an AST
sequence which is returned to the compiler

e Compiler generates a symbolic code from AST returned as an array
e Compiler converts symbolic code to the actual bytecode

e Compiler creates a new method object with this bytecode and passes the
new method to the current class object by calling the addSelector:withMethod:
method.

2.1.2 Understanding Smalltalk class model

Before we find out how to create a class in Smalltalk/X we have to understand
its class model.

Object class is the superclass of all classes and it is the only class that has no
superclass. Every class has its class class object in runtime and a metaclass
object which is an instance of Metaclass class. Metaclass has also its Metaclass
class instance.

Now there is an important thing to understand. When creating a new
class, a new Metaclass instance is created for this class as well as the class
class object. Interesting point is that Object class has no superclass but still
responds to methods that are defined in Behavior, ClassDescription and Class
classes. This behaviour should be set up in the VM initialization.

Assuming that we create a class named MyClass that has the Object class
as its superclass the class inheritance for metaclass objects starting from My-
Class moving up to the superclasses is following: MyClass class — Object class
— Class — ClassDescription — Behavior — Object.

10

2.1. Compilation of Smalltalk code

2.1.3 Class creation

Now that we know that there are Metaclass objects in Smalltalk, we can move
to the class creation. When a new class is being added to the Smalltalk/X
system, it is being done through a Metaclass instance. A new Metaclass
object has to be created before the actual class is created. When a Metaclass
object is created a new class can be created by calling Metaclass’s instance
method name: inEnvironment: subclassOf: instanceVariableNames: variable:
words: pointers: classVariableNames: poolDictionaries: category: comment:
changed: classInstanceVariable Names:.

Important parameters in this method call are name, subclass, instanceVari-
ableNames, category and classInstanceVariableNames.

e name parameter defines the name of a new class and it should begin
with the namespace e.g. MyNamespace::MyClass

e subclass parameter defines a subclass of the newly created class

e instanceVariableNames parameter defines a list of instance variables. It
is passed as a string with variable names separated by space

e classInstanceVariableNames parameter defines a list of class instance
variables and it is also passed as a string with variable names separated
by space

e category defines a category which the class belongs to

This Metaclass’ method returns a new class that can be used in parse and
compilation process when adding new methods to the class or calling class’
methods.

2.1.4 Bytecode and symbolic code

As we are going to generate symbolic code and then a bytecode from the Dart
source code we should be familiar with the symbolic code. Checking if we
have generated the correct bytecode might be hard. Fortunately, there exists
a Decompiler class which is a subclass of ByteCodeCompiler and it might
be very useful as it can help us examine whether we've generated correct
bytecode by decompiling our method back into symbolic code array. We can
use this class also for decompiling methods written in Smalltalk to check what
symbolic code we should generate in order to implement specific functionality.

Example method that just returns an instance field of the class written in
Smalltalk looks like this:
myField

“myField

If we use the Decompiler for decompiling this Smalltalk method we get the

following result:

11

2. ANALYSIS

1: 08 02 LINE [2]
3: A6 retInstVarl

We can see some debug informations on the first line. The 08 bytecode
represents a line number bytecode and it is followed by one byte containing
the actual line number value. Then the actual instruction is followed. In this
case A0 represents a bytecode for returning the first instance variable in the
object.

2.1.4.1 Symbolic code overview

Smalltalk /X has currently more than 240 bytecodes and there’s a symbolic
code for each bytecode. Many of them are aimed for the optimization so we
can generate bytecode that needs less instructions to be executed, e.g. there
exists a bytecode for pushing first method argument on the stack. This saves
a few instruction compared to the case where VM knows it has to push a
method argument but has to read another bytecode to get the index of the
method argument which should be pushed on the stack.

The most important bytecodes and symbolic code symbols for our needs
are listed below:

Symbols used for pushing values on the top of the stack:

#pushNil - pushes nil object on the stack

#pushTrue - pushes true object on the stack

#pushFalse - pushes false object on the stack

#pushLit - pushes a literal value stored in the current method on the
stack. It is followed by an index of the literal.

o #pushSelf - pushes self object on the stack, i.e. object whose method is
currently being executed.

o #pushMethodArg - pushes a method argument on the stack. It is fol-
lowed by an index of the argument.

o #pushMethodVar - pushes a method variable on the stack. It is followed
by an index of the variable. Each method has a list of variables so it
can allocate space needed to store the variables.

o #pushBlockArg - pushes a block argument defined in the current block
on the stack. It is followed by an index of the argument.

o #pushBlockVar - pushes a block variable defined in the current block on
the stack.

12

2.1. Compilation of Smalltalk code

#pushlInstVar - pushes a current object’s instance variable on the stack.
It is followed by the index of an instance variable.

#pushOuterBlockArg - pushes an argument on the stack that exists in
the outer scope of the current block.

#pushQuterBlockVar - pushes a variable on the stack that exists in the
outer scope of the current block.

#pushGlobalS - pushes a global symbol on the stack. e.g. a class name’s
symbol that might be followed by a message send - a call to a class
instance method.

Symbols for storing values:

#storeMethodVar - stores the current value on the top of the stack in a
method variable. It is followed by the index of the method variable.

#storeBlockVar - stores the current value on the top of the stack in
a variable defined in a block. It is followed by the index of the block
variable.

#storelnstVar - stores the current value on the top of the stack in an
instance variable of the current class. It is followed by the index of the
instance variable.

#storeQuterBlockVar - stores the current value on the top of the stack
in a block variable defined outside of the current block. It is followed by
the index of the outer block variable.

#storeClassInstVar - stores the current value on the top of the stack in
a class instance variable. It is followed by the index of the class instance
variable.

Symbols used for returning values:

#retTop - returns value on the top of the stack.
#retSelf - pushes self on the stack and returns.

#retNil - pushes nil on the stack and returns.

#retTrue - pushes True object on the stack and returns.

#retFalse - pushes False object on the stack and returns.

Symbols used for control flow:

13

2. ANALYSIS

#falseJump - if top of the stack is the False object jump to the instruc-
tion specified on the next position of the symbolic code array

o HtrueJump - if top of the stack is the True object jump to the instruction
specified on the next position of the symbolic code array

o #nilJump - if top of the stack is the nil object jump to the instruction
specified on the next position of the symbolic code array

o #notNilJump - if top of the stack is not a nil object jump to the in-
struction specified on the next position of the symbolic code array

e Hjump - jump to the instruction specified on the next position of the
symbolic code array

Symbols used for message sends / method calls:

o #send - sends a message to the object on the top of the stack. It is
followed by a number of arguments and a selector symbol.

o #sendSelf - sends a message to the current self object. It is followed by
a number of arguments and a selector symbol.

o #sendDrop - sends a message to the object on the top of the stack and
pops the returned value from the stack. It is followed by a number of
arguments and a selector symbol.

o #superSend - sends a message to the current self object requesting to
execute a super implementation. It is followed by a number of arguments
and a selector symbol.

These symbols should be enough for most of the cases in our Dart compil-
ation. Now we have to focus on parsing the Dart code and its specific concepts
that we have to consider in the parse and compilation process.

2.2 Parsing and compilation of Dart code

Dart is an open source project and its parser and compiler is available online
as a part of the Dart SDK open source code. Therefore we may look at the
code which makes it easier to implement the behaviour correctly.

Dart Parser and Compiler is a bit different from the Smalltalk way of
compilation. First of all, Compiler is not a subclass of the Parser class, nor
the Scanner class. The parsing process couldn’t be done in one run. Dart
Parser has to parse the top level first before parsing the actual functions.
Scanner creates tokens from the source code while parsing the top level. One
of the reasons why top level parsing has to be done first is that properties or

14

2.2. Parsing and compilation of Dart code

class members might be defined at different places within a class definition,
whereas in the Smalltalk code, all the instance variables or class instance
variables are defined in one place. Therefore Dart has to parse the top level
first to be aware of what global variables or instance variables and classes are
available and after that, the Parser can parse the actual function definitions.

When the parsing is done and Compiler gets the parsed function with
AST, it continues doing optimizations like building a Flow Graph which is
one the optimization techniques so the Dart code can run faster in the Dart
VM. In our case the Compiler has to build the Smalltalk/X bytecode that will
be executed.

2.2.1 Dart libraries

One specific thing of the Dart language which is not present in the Smalltalk /X
are libraries. Dart library can contain top level functions, e.g. the main()
function and also global variables. A library can be imported within other
libraries using the import keyword and the classes, functions or any variables
defined within this library can be used in the current library. Libraries are
created by default so every app is a library even if it is not specified by the
library keyword. Apart from the modularity that libraries create, they are a
unit of privacy as all the identifiers that start with the underscore(_) sign are
visible only inside the library where they were defined. [5]

Smalltalk/X has a concept of packages that contain classes but it’s not
possible to have variables or top level functions within these packages. These
packages neither support any further privacy to the class fields or methods.

The concept of libraries can be easily simulated by creating equivalent
library classes that contain class instance methods and class instance variables
as a replacement for the global variables and top level methods but the privacy
behaviour has to be either simulated by generating special bytecode sequence
that checks the current library every time the method is called or a field is
accessed or leaving this functionality out of the implementation and stating
that this functionality is not supported in Smalltalk/X.

2.2.2 Types and type checking

As already mentioned, Dart is an optionally typed language so developers can
completely omit type annotations when writing the code. However, types can
be useful and if developer adds types to his or her code, Dart performs a static
type checking providing better feedback and suggestions about the code to the
developer.

The runtime checks are not performed by default. Nevertheless, Dart VM
supports a special runtime mode called strong mode. If the strong mode is
enabled, apart from the static type checks done by Compiler, Dart makes also
runtime type checks that ensure the correct type e.g. when casting an object

15

2. ANALYSIS

to another type. When compared to Smalltalk, which is a dynamic language
and does not do any type checks in runtime it would be very complicated to
add this behaviour and therefore we should stick to the normal Dart mode
where the type checks are not performed. Also omitting these runtime type
checks is better from the performance point of view.

2.3 Compilation into Smalltalk bytecode

As there are no major impediments that would restrain compiling the Dart
code into Smalltalk /X bytecode, we can start focusing on the details. Creating
equivalent Smalltalk classes is the first step that has to be analysed.

2.3.1 Constructors

As Smalltalk has no constructors if we are not considering the new method,
we have to introduce this concept here. I have chosen an approach where I
create a class instance method for every constructor. This method contains
only automatically generated code that creates a new instance of the class and
calls an instance method on this newly created instance which corresponds to
the constructor.

Let’s consider a class called MyClass with a constructor that takes one para-
meter and it initializes one instance field myField with the value from this
parameter.

This can be implemented in Dart with the following code:

MyClass (myParam) {
myField = myParam;

}

When creating a new instance this results to the following Dart code: new
MyClass(myParam);

This will be implemented in Smalltalk as a class instance method called MyC-
lass: and initializer instance method called MyClass:. Class instance method
with Smalltalk code will look like this:

MyClass : myParam
“(self new) MyClass:myParam

The instance method will execute the code as it is written in the actual Dart
constructor. In Smalltalk it would look like this:

MyClass : myParam
myField := myParam

Of course we will not write the Smalltalk code, it will be just the bytecode
that behaves this way. This means that the class instance method will con-
tain automatically generated bytecode that pushes class object on the stack,

16

2.3. Compilation into Smalltalk bytecode

sends the new message which returns the newly allocated instance of our class
and then sends a message executing the actual initializer(constructor) - the
instance method.

With this approach we’re not breaking any of the Dart features. Having a
method called new is not possible in Dart because new is one of the reserved
keywords. Also having a static method with the same name as a class is not
possible and results in a compilation error in Dart.

2.3.1.1 Named constructors

Dart also supports named constructors. It is basically a way how to create
more different constructors because Dart can only have one constructor whose
name is equal to the name of the class and method overloading(having another
method with the same name but with different parameters) is not supported.
There might be several reasons why this is not supported as for example, the
dynamic typing. Because of this limitation, every class member has to have a
unique name, otherwise there would exist an ambiguity when calling methods
or functions.

An example for the named constructor might look like this:

MyClass . myNamedConstructor (myParam) {
myField = myParam;
}

Implementation of named constructors could be the same as with the
simple constructors. Creating the class instance method with the name of
the constructor which has automatically generated bytecode just allocates a
new instance and calls the instance method that corresponds to the actual
constructor in Dart.

2.3.1.2 Redirecting constructors

Dart supports redirecting constructors. These redirecting constructors have
to call another non-redirecting constructor in the same class and they’re not
allowed to have a method body. This might be useful in cases where we want
to provide a convenience constructor that sets some default values which are
used in the other constructor called by the redirecting one. The constructor
call appears after a colon (:). [5]

This implementation is quite easy. If we have a redirecting constructor,
there’s only one call to the other constructor that has to be generated in our
instance constructor method. The class instance method stays the same as in
the previous cases.

17

2. ANALYSIS

2.3.1.3 Inheritance

Dart classes do not inherit constructors. If no constructor is defined in a
subclass a default one is generated and a default constructor or a constructor
with no parameters must exist in the superclass.

When an instance of a Dart class is being created by calling a particular
constructor, a superclass constructor is called at the very beginning of the
currently called constructor. There’s a special syntax for specifying the super
constructor that should be called which is outside of the constructor body.
Constructor definition with specified named super constructor in Dart has the
following code:

MyClass () : super.aSuperConstructor (”aParam”) {
// MyClass constructor body
}

If the super constructor is not defined explicitly in the code a default
superclass constructor is called. This behaviour has to be the same in our
implementation and an automatic call to the super constructor has to be
generated if no super constructor was called.

The fact that Dart constructors are not inherited is not reflected in our
approach with class instance methods creating new instance. This is because
in Smalltalk a class instance method can be called also from the subclass which
is a different behaviour compared to Dart constructors. Therefore we have to
either rely on the compiler producing an error in the compilation process or
generate additional bytecode checking if the class instance method allocating
new instance was called from the correct class.

2.3.1.4 More syntactic sugar

There’s one more thing to care about in the constructors and that is automatic
assignment of constructor argument to the instance variable. This removes
some of the boilerplate code that is very common in constuctors. As an
example let’s consider the following code:

MyClass (argumentl , argument2) {
mylnstVarl = argumentl;
mylnstVar2 = argument?2;

This code can be written in just one line if we prepend our constructor
arguments with this. keyword as in the following code:

MyClass (this . myInstVarl, this.mylnstVar2);

Support for this syntactic sugar is not very difficult. All we have to do
is to ensure the correct parsing of a constructor with this automatic instance
variable assignment and that AST is correctly generated for this assignment.

18

2.3. Compilation into Smalltalk bytecode

Compiler will generate instance field assignment for these fields prepended
with this. keyword and this feature becomes supported.

2.3.2 Fields, getters and setters

As already mentioned, Dart classes may have instance variables and static
variables. These are very similar to Smalltalk’s instance variables and class
instance variables respectively. However, Dart differs in the way how these
variables can be accessed. To make the behaviour the same, we will have to
automatically generate accessor methods for the defined fields in the class. It
means no more than generating bytecode for returning the instance or static
variable from the getter method and assigning value from parameter to the
instance or static variable in its setter method.

We definitely cannot omit the computed getter and setter methods. We
have to parse their body which might be just a single line or a whole block of
code. The body will be parsed exactly as if it was an another instance or static
method. When a field is accessed, a getter(or setter respectively) is always
called so the behaviour will be as it if was just another method. There is just
one more thing that the parser has to take care about and that is the number
of expected parameters when calling getter or the setter method. The setter
method expects exactly one parameter(when assigning a value) and getter
doesn’t accept any parameters.

2.3.3 Control flow

Dart control flow, when compared to Smalltalk, is quite different. Smalltalk
does its control flow always through message sends to other objects while
passing them a block that should be executed under the certain conditions.

For example a simple conditional statement in Smalltalk is done through a
call to the condition object which might be a block or a method call returning
a boolean value which is either True or Fulse object. True and Fulse classes
have each its own implementation of the ifTrue: and ifFalse: method. The
implementation in the True class just executes the block passed in the if True:
message send. On the other hand, ifFalse: implementation does nothing,
because the returned object was True object. False implementation behaves
conversely.

The if statement might be easily generated with jumps. Focusing on the
condition we have to generate a jump over the if branch that occurs if the
condition wasn’t fulfilled possibly landing on the else branch. When talking
about the else branch, we must not forget to generate a jump over the else
branch at the end of the if branch. Otherwise both branches would be executed
if the condition was fulfilled.

Smalltalk /X loops are part of blocks and they are implemented natively.
It has support for whileTrue:, whileFalse:, doWhile:, doUntil: and also loop,

19

2. ANALYSIS

which is an infinite loop. To implement support of Dart loops we have to
consider its for loop, while loop and do-while loop. All of these loops can be
implemented using jumps as well. As for the for loop, we have to generate
a jump back to the condition at the end of the loop so it can be evaluated
again. If the condition is not fulfilled we have to jump to the first statement
after our for loop and that means generating a jump again. Apart from the
condition, we have to take care about the initialization part of the for loop
and about the statement that has to be executed at the end of every iteration
just before we come to the jump at the end of the for loop.

While loop can be done exactly in the same way but we don’t have to
consider initialization part nor the statement execution at the end. There’s
just a jump at the beginning of the while loop which is executed if the condition
wasn’t fulfilled and jumps at the end of the while loop. At the end of the while
loop, there’s always a jump that jumps to the condition so it can be evaluated
at the end of the while loop.

Do-while loop is even simpler and we need only one jump which is at the
end of our while loop and jumps to the beginning of the loop if the condi-
tion was fulfilled. Otherwise the execution continues by execution the next
bytecode.

Smalltalk neither supports break, continue or switch statements. But it’s
not very hard to support them with a specific bytecode sequence. As for the
break statement, we have to generate a jump to the end of the current block.
The continue statement has to be generated as a jump to the start of the
current block e.g. a for or while loop, so the condition might be evaluated
again.

2.3.4 Libraries

As already mentioned, Dart creates implicit libraries even if the library is
not defined explicitly by the library keyword. This is actually good for our
implementation because we will have to always create a class representing
a library. The reason we have to create the class is that we need to store
somewhere the top level variables and functions. We can treat the top level
function as class instance methods and top level variables as class instance
variables. Parser will then generate corresponding AST nodes when accessing
top level variable or executing a top level function. Library classes will have to
have a unique name within the namespace to avoid any possible conflict in the
naming. If a library wasn’t defined at the beginning of the Dart source file,
the automatically generated library name with the Smalltalk/X namespace
can be based on the current filename.

We have to take a special care about the main function. If the main
function was defined in one of our source files, we have to treat this as a
beginning of the execution path and if we want to execute the code after the
compilation, we just want this method to be called.

20

2.3. Compilation into Smalltalk bytecode

2.3.5 Methods

We already know that we’re going to use instance methods of Smalltalk classes
as an equivalent for the instance methods of Dart classes and that static
methods will be generated as equivalent class instance methods. However,
Dart has more feature when defining and calling methods and we have to
make this support in the Smalltalk/X.

A first difference is right in the method declaration. Method parameters
in Dart might be optional whereas Smalltalk relies on the selectors that must
always have the correct number of parameters. This means that the paramet-
ers in Smalltalk have to be always passed otherwise it’s a different method(i.e.
different selector) that is called.

Dart has also named parameters which means that a method paramet-
ers might be assigned by its name rather than its position. However, op-
tional and named parameters cannot be present at the same time in one
method declaration. Optional or named parameters must be defined after
non-optional(positional) parameters.

When parsing and compiling the Dart code we don’t necessarily know the
type of the object that we are calling a method on. This means that we don’t
have all the information needed for making a correct call just by generating
a message send in the compile time. The missing part is the argument that
might be optional or named. For this reason we need to check in runtime what
method is going to be called based on the class of our object. When we resolve
the method in runtime and it has optional parameters that weren’t provided
in the method call, we have to pass the default values defined in the method
declaration. As for the named parameters we can use just one parameter which
is a dictionary containing name - value parameter pairs. These parameters
then have to be loaded as method arguments correctly.

It’s a bit easier when calling a static method as at this point we always
know the right class and method that is being called so we can directly resolve
the correct symbol and also arguments passing is easier. However, we can keep
this behaviour the same as with the instance methods if the implementation
would be easier.

2.3.6 Functions and Closures

Dart similarly as Smalltalk supports closures. As a pure obejct oriented lan-
guage, function is also an object whose type is Function. Smalltalk method’s
class is Method and there is a different type for closures which is Block. Blocks
can be passed as parameters to the other functions or stored in the variables
as Dart functions can be. When implementing the support of the closures we
have to specifically deal with the methods. The difference is in assigning a
method object to a variable and then calling it. In Dart, we have a function
object which can be called but in Smalltalk, we need to send a message which

21

2. ANALYSIS

executes the method. The solution is to actually pass a selector instead of
the method object, which is then called on a current instance in case of the
instance method or on the class instance object in case of a class instance
method.

2.3.7 Asynchronous support

Dart has several features to support asynchronous programming. The most
commonly used of these features are async functions and await expressions.[5]
The async keyword is used to create an asynchronous method whose body will
be executed in the background and a special Future object is returned. At
the time the method returns, none of its code was executed. When the code
finds an await statement, the execution is paused until this awaited object is
available.

Smalltalk/X uses Process class to execute code in the background, so the
support would mean to actually simulate async and await behaviour using
this class providing a different callbacks after the execution of the async code
was finished.

However, Dart asynchronous support is a broad topic and it exceeds the
size of this thesis and therefore we will only run our code in a single threaded
environment without asynchronous support.

2.3.8 More syntactic sugar

Dart has two operators that let developer concisely evaluate expressions that
might otherwise require if-else statements.[5] One of them is a well known
ternary operator: condition ? exprl : expr2. If condition if true, expri is
evaluated and the result value is returned; otherwise, expr2 is evaluated and
its result value is returned. Support in Smalltalk is easy and it’s the same as
generating if-else statements.

Second operator is ?? and the whole expression has the following structure:
exprl 27 expr2. If exprl is non-null, its value is returned; otherwise, expr2 is
evaluated and its value is returned. To support this, we need to store the result
of the exzpr! into a temporary variable and generate a condition checking if
the stored value is null. If it is null we return this stored value; otherwise, we
execute and return the value of the expr2.

Dart also simplifies the process of null checking. A developer doesn’t have
to write an if condition checking if the current object is not null if he wants
to execute a method or access a field of this object. There’s a special operator
for the conditional member access: ”¢.”. For example we can use it like this:
myObject?. myField = 4; or like this: myObject?. myFunc(); This operator
checks if the leftmost operand is non-null and executes a method if there’s a
live object. To implement this support, we have to always store the current
leftmost result into a temporary variable, generate if condition checking if the

22

2.3. Compilation into Smalltalk bytecode

value was non-null and if so, we execute the next call on the result object.
There is an important thing to take care about in the implementation of the
assignment expressions. We have to first pass the null checks at the left hand
side of the assignment expression and only if all the null checks were passed we
can safely execute the right hand side of the expression. Otherwise, if a null
value was found while doing the null checks, the right hand side expression
must not be executed.

There are also other operators, like [/ for direct array access, and we can
simulate those by generating a particular method call. For example, for the
[] operator, we need to generate a method call that accesses the item in the
array.

23

CHAPTER 3

Realisation

In the realisation chapter, an implementation of the parse and compilation
process will be discussed with all the specific issues and details needed to con-
sider while implementing the Dart support in the Smalltalk/X environment.
Implementation was inspired by the parsing process used in the Dart SDK
project.

3.1 Main classes

Implementation uses the following classes for parsing and compiling the Dart
code:

e DartScanner takes care about creating tokens from the source code.

e DartParser parses libraries and classes and generates AST from the
source code.

e DartCompiler is used for the actual bytecode generation from the AST
provided by the DartParser.

e DartParseNode is the base class of other AST nodes created by Dart-
Parser.

e DartParseClass and DartParseLibrary are classes that are created by
DartParser and they hold information about parsed classes, libraries
and its methods, fields and functions.

e DartMetaclass is a subclass of Smalltalk’s Metaclass and is used as a
Metaclass of all the generated Dart classes.

25

3. REALISATION

3.1.1 Compilation process overview

Compilation process begins by creating an instance of the DartCompiler class.
Compiler creates a DartParser instance which then creates an DartScanner
instance. When creating the compiler instance, a source code path is passed
to the compiler which passes it down to the parser and scanner. For reading
from the source file a FileStream is created based on the filename and parser,
scanner and compiler are initialized.

Then by calling compile method on compiler instance, the whole process
of scanning, parsing and compiling begins. Compiler calls first parser’s parse
method which parses all the code and creates the AST. While parsing the
code, parser continuously asks scanner to get a next token. Scanner reads the
source code from the file stream and creates new token every time the parser
asks for it until the end of file is reached.

When the parsing is finished, compiler loads the classes first by creat-
ing equivalent Smalltalk classes through DartMetaclass. It creates the super-
classes first until a default Object class is found to ensure that new classes
have always a correct inheritance hierarchy set up.

When a class is created, it continues by taking the parsed methods and
generating appropriate bytecode for these parsed methods, constructors and
generates also default accessor methods for getters and setters. Finally, it
installs the compiled method into its owning class.

3.1.2 DartScanner

DartScanner is used to read source from the source file and to create tokens
based on what it reads and returns these tokens to the parser. Scanner also
saves the read tokens so they can be easily accessed when performing the
second run of the parsing after the top level parsing was done.

3.1.3 DartParser

Parser performs the syntactic analysis based on the scanned tokens by DartS-
canner. It parses the top level first which means whenever it finds a function
it parses only its declaration or if it finds a class it parses its definition and it
adds the new function or class to the current library(which was created auto-
matically or defined by the library statement). When the top level parsing is
finished, it parses the definitions of function and methods and creates an AST
for each function or method.

3.1.4 DartParseNode

As a base class for all the AST nodes generated by the parser, it is designed
to contain information shared within all other nodes such as position in the
source code. With its accept: method it also makes the base for the visitor

26

3.2. Parser implementation

design pattern that is used in compiler for simple bytecode generation. This
method is overridden by all its subclasses to call the correct visitor’s method.

3.1.5 DartCompiler

Compiler, as already mentioned, uses a visitor design pattern to generate
bytecode. But first thing it does is creating equivalent Smalltalk classes, its
superclasses and constructing correct inheritance hierarchy. Then it generates
default getters and setters for defined class’ fields and finally it generates
bytecode for each method in the class. Compiler also creates the library class
and generates bytecode fot the top level functions.

3.1.6 DartParseClass

Instances of the DartParseClass along with the DartParseLibrary class in-
stance are created by parser. There is always one library class representing
the current library and then there might be many classes that were defined in
the source code.

DartParseClass contains all the information about the class needed for its
compilation like its superclass, all the instance fields, static fields, computed
getters and setters and of course parsed constructors and methods as well.
Parsed methods are instances of the DartParseMethod class. This class con-
tains all the information about the defined method like number of arguments,
whether it is static, native, starting position in the source code, used literals
an so on. These classes are provided to the compiler with all the information
needed for the bytecode generation.

3.1.7 DartMetaclass

DartMetaclass is there just as a base point for creating new classes compiled
by the compiler. It can provide also custom compiler class to the Smalltalk /X
IDE by overriding the compilerClass method which would allow developer to
write the Dart code directly using the Smalltalk /X code editor but this feature
is not currently supported.

3.2 Parser implementation

DartParser is doing a lot of important work and there’s a lot of things to be
clarified. We can start by the implementation of the top level parsing. Top
level parsing starts by the library, import statements parsing or a top level
variable / method declaration parsing or a class definition parsing. We will
discuss the details of each one of these in the forthcoming sections.

27

3. REALISATION

3.2.1 library and import directives

Dart has a great way of creating library packages, however, there is a lot to
implement including the correct organisation of the library files in a direct-
ory, supporting pubspec.yaml files and we will therefore provide just limited
support which can be extended later as we don’t necessarily need all the func-
tionalities to present the Dart support in Smalltalk/X.

If a library directive is specified, we take the specified name and set a new
name to the library instead of generating a unique name based on the current
path of the file that is being parsed. All the parsed classes are then assigned
as part of this library.

Import directives require a URI to be specified and a library is imported
based on this URI. For Dart built-in libraries, the URI has a special dart:
scheme. For other libraries a package: scheme is used. This scheme specifies
libraries provided by a package manager such as the pub tool.[5] However,
creating a support for the package manager is out of scope of this thesis and
therefore we support only the base dart: scheme for built-in libraries. By
default, dart:core library is imported automatically in Dart and so we import
it automatically as well. Example URI may look like this: import ’dart:io’;.
Dart also support lazy loading of libraries using the deffered keyword, which
in our case doesn’t make sense as we’re supporting only dart built-in libraries
and we're going to parse all the code before it is executed and therefore lazy
loading of the libraries is left out.

3.2.2 Top level functions declarations

When a top level function is found, we parse its declaration only as we may
find in the body references to classes or other top level functions or identifiers
whose declarations or definitions were not parsed yet. The same principle
applies when a function(method) is found while parsing the class definition.

Parser raises an error if the top level function is marked as static which is
not allowed in Dart. However we still mark the top level function as static as
we want to store it as Smalltalk’s class instance method which belongs to the
current library class.

What exactly is parsed in the declaration is discussed in the section

3.2.3 Class definitions

When a class declaration is detected, while parsing the top level, parser checks
first whether this class was already referenced before(e.g. as a superclass of
another class) by searching for it in the parser’s pendingClasses dictionary.
If it is found there, we take if from the dictionary; otherwise, we create new
instance of DartParseClass and parse its definition. This means parsing its
superclass first or making the base Object class as its superclass.

28

3.2. Parser implementation

If the superclass was specified but its DartParseClass instance wasn’t
found, parser creates new DartParseClass instance for this superclass and
adds it to its pendingClasses dictionary. Then the class definition is parsed
after the expected curly brace "{”. We are expecting here class members de-
clarations which means a static or instance fields, computed getters or setters
or functions(methods).

If a field is found and correctly parsed it is added to the fields dictionary of
the class that is currently being parsed. If a method is found, its declaration
is parsed, instance of DartParseMethod is saved in the methods dictionary and
the definition will be parsed in the second run. Similarly, the declarations of
computed getters, setters and constructors are parsed and instances of Dart-
ParseMehtod are saved in the getters, setters and constructors dictionaries
respectively for later parsing of theirs definitions. After the declarations, we
just skip to the matching closing brace(or skip expected semicolon in case of
an abstract method) and continue in searching for next class member to parse.

3.2.4 Function declaration

In the function declaration we check whether it is static, what type it returns,
parser gets the function name and then we parse its parameters. Parameter
may have its type specified which we just skip as the decision in the analysis
part was not to perform the type checking.

There is a special case while parsing the arguments if the current function
is a constructor. We have to take care about the syntactic sugar for the
automatic assignment of the constructor’s parameter to an instance variable
if the parameter name is prepended with this. keyword. Another special case
related to the constructors is the initializer list. The initializer list might be
specified after the parameters declaration and colon ”:” right where a call
to a super constructor might be specified as well but the super constructor
call has to be the last in the initializer list. The initializer list is supposed
to be used for initialization of instance variables and is particularly useful for
initialization of final fields that cannot be initialized in the constructor’s body.
However, these calls and initializations have to be parsed later after the top
level parsing is done as it also might contain calls or references to identifiers
that haven’t been specified at this point.

3.2.5 Functions definitions

The parser is ready to parse the function definitions after the top level parsing
was finished. Scanner has read all the tokens by now and they are saved for
reusing when parsing the function or method definitions. Parser therefore
takes every parsed class and iterates over the parsed method declarations.
Every method is checked whether it is a constructor as there’s are special
cases when parsing constructor first and constructor parsing is done separately.

29

3. REALISATION

Particular definition parsing is performed after these initial checks and every
statement will be discussed in the forthcoming subsections.

3.2.6 Constructor definition

As already mentioned we have to parse the automatic field initializers first.
After the parsing of parameters the parser already knows which one of the
parameters is marked as an initializer. So we iterate over the parsed paramet-
ers that are initializers and generate first AST nodes. We need to load the
argument and store it in our field. For this purpose we are using a DartStore-
InstanceFieldNode which takes the field that we want to store an argument’s
value in. We create an expression that provides the value as well and store
it in the node. This expression has to load the particular argument from
the call which is represented by the DartLoadMethodArgumentNode where the
particular argument that should be loaded is stored.

When the field initializers are parsed and required AST nodes are created,
we move to the initializer list. Here we can initialize final fields as well as other
instance fields using an expression, e.g. a call to some static method or just a
literal value. For each of these fields we create a DartStorelnstanceFieldNode
and we parse an expression that follows for each of these initializers.

At the end of the initializer list a super constructor call can be specified.
We might call a named constructor, e.g. ”super.namedConstr(myParam)”,
and we can parse it as a regular super call where a DartSuperSendNode is
created. Then we just verify that the called method is a constructor. An-
other option is calling a regular super constructor, e.g. ”super(myParam)”,
and then we have to create super send DartSuperSendNode where we specify
the superclass’ name as the method name. In both cases the required para-
meters are passed as DartArgumentListNode instance and saved in the created
DartSuperSendNode instance. Each parameter in the DartArgumentListNode
might be an expression.

After we've dealt with this special statements the rest of the constructor’s
body is parsed as a regular method with a sequence of statements.

One more thing to care about is the redirecting constructor and there we
have to generate just a regular method call to the constructor represented by
the DartInstanceCallNode that will contain the arguments list.

3.2.7 Identifiers resolving

One of the first things that the parser has to deal with is resolving of identifiers.
Inside functions we create different scopes based on the enclosing blocks where
a defined local variable or loaded method arguments can be found. Parser tries
to resolve an identifier in these scopes first by taking the current scope first
and if the identifier wasn’t found, it continues to search in the parent scope
representing a parent enclosing block. If the parent scope is null, we are in

30

3.2. Parser implementation

the first top function block and there is no other parent scope. If the identifier
was resolved in the scope search we have to generate an AST loading either
a method argument represented by DartLoadMethodArgument class or local
variable represented by DartLoadLocalNode.

If the identifier still wasn’t resolved, parser tries to resolve the identifier as
an instance field or method of the current class. If a field was found, AST node
for calling a getter is generated either as a DartStaticGetterNode if the field is
static or a DartInstanceGetterNode. If the resolved identifier was a method a
DartPrimaryNode is returned with the resolved method as its primary object.
This primary node is then used later when parsing selectors(i.e. when parsing
a possible sequence of calls like method1().method?2();) and it is converted to
the actual method call represented by DartinstanceCallNode.

Otherwise parser has to resolve the identifier in the global or top level
scope. This might be a class or a variable or a top level function and therefore
it is again returned as a DartPrimaryNode with the resolved identifier and the
primary node is again processed later when parsing selectors.

However, if the identifier wasn’t resolved even after searching in the global
scope, we search for an identifier in the imported libraries and return a
DartPrimaryNode instance again. Otherwise, we raise an error because the
identifier wasn’t found and therefore it could not be resolved.

3.2.8 Conditions AST

If we have found the if keyword we have actually found a beginning of a
condition and we expect an expression enclosed by parentheses to be present.
Therefore the condition is parsed and its AST is saved in a temporary variable.
Then if a left brace follows we parse a sequence of statements; otherwise, we
parse just a one statement which is the true branch that will be executed if the
condition was fulfilled. We store the saved AST in a temporary variable again
and then we parse the else branch if the else keyword is following right after
the end of the true branch. Finally, we create an AST node for the condition
which is represented by the DartlfNode that contains the AST of the parsed
condition, AST of the true branch and possibly the AST of the false branch.

3.2.9 Loops AST

In the loops section we have to distinguish parsing between the for and while
loops and also do-while loop. We parse all these statements separately.
3.2.9.1 For loop

For loop starts with the for keyword and after the keyword, we expect a left
parenthesis to be present. After the parenthesis, we check whether a variable
declaration follows and if so, we first parse a list of the variable declarations.

31

3. REALISATION

If the variable declarations does not follow, we try to parse an initializer
expression instead.

After the initializer, we expect a semicolon and the actual condition that
is evaluated at the beginning of every iteration and if it is not fulfilled we
jump to the next statement after the loop. When the condition is parsed, we
try to parse the increment expressions that are executed after every iteration
and then the closing parenthesis is expected to be present.

If we have all the ASTs of the initializers, condition and increment expres-
sions parsed correctly and stored in the temporary variables we move to the
parsing of the for body which might be just one expression or a sequence of
expression if a left brace is following.

If the body parsing was successful, we create the final AST representa-
tion of the for loop which is done by creating an instance of DartForNode
that contains the AST of initializer(either variable declarations or initializer
expressions), the for condition and the increment expressions.

3.2.9.2 While loop

While loop starts with the while keyword followed by an expression enclosed
in parentheses. Therefore we parse this expression and save its AST in a
temporary variable. Then similarly to for loop parsing, we parse the while loop
body which might be one statement or a sequence of statements if the left brace
"{” follows. At this point we have successfully parsed the the while statement
and we create an AST represented by the instance of DartWhileNode which
holds both the condition and the while loop body.

3.2.9.3 Do-While loop

Do-while loop parsing is very similar to the while loop parsing, but instead of
the while keyword, we have to find the do keyword first followed by a left brace
"{” with the body. We keep the parsed body in a temporary variable which is
a sequence of statements. After the body a while keyword is expected followed
by the condition in enclosing parentheses. Parsed body and condition is then
used for initialization of a DartDoWhileNode instance which represents our
currently parsed do-while loop.

3.2.10 Function calls

There are several scenarios of different function calls. It might be a top level
function call, call to an instance or a static function of the current class and
also an instance call of the function(method) of another class or a static call
of another class’ static function(method).

If we're calling a top level function, we have resolved a DartParseMethod
instance for this function and as we are treating top level functions as a static
methods of its owning library, we generate a DartStaticCallNode with this

32

3.2. Parser implementation

resolved DartParseMethod instance and its owning library as a receiver of
this method call.

In case of a current class’ function, either static or an instance, we have dir-
ect access to its DartParseMethod also. Therefore we generate either DartIn-
stanceCallNode with a special this receiver which represents the current in-
stance or a DartStaticCallNode with the receiver set as the current class in-
stance.

However if we are not calling an instance function(method) of the current
class, the receiver has to come from some variable or another previous function
or method call. As we are not parsing the types, we have to generate a
generic message send based on the selector. The selector is created out of the
function’s name and arguments that are in the current call. We represent it
again by DartInstanceCallNode whose receiver is an AST node coming from
the parsed preceding expression. The method name that should be called is
stored inside the node instead of the DartParseMethod instance.

In case of a static call to a function(method) of another class, a name of
the class has to be presented before the actual method call and therefore we
are able to resolve directly the instance of DartParseMethod which contains
information about the method needed for generating a DartStaticCallNode
and the receiver is the resolved class.

For all these calls we have to parse arguments as well. They are parsed
as expressions and there is an AST stored for each argument. These parsed
arguments are stored in the DartinstanceCallNode or DartStaticCallNode in-
stance.

There is one more thing to care about and those are the super calls. If a
super keyword is found we know that we are sending a super message. Method
is resolved by its name in the superclass and arguments are parsed in the same
way as for the regular instance or static calls. Super call is then represented
by an instance of DartSuperSendNode with stored resolved method and parsed
arguments.

3.2.11 Literal objects

Literal objects like numbers or strings are recognized by DartScanner first. It
creates a token with the literal value which is always a string but the token’s
type is set to #kDouble, #kInteger or #kString based on what literal type
was read.

Parser processes these values further based on the token’s type and it
creates a particular object out of the token’s string value. For example, it
creates a DartInteger instance if the token’s type is #kInteger and initializes
it to a value created from the token’s string value read by the scanner, e.g.
7123”7, After instantiating and initiliazing a correct object, parser creates an
instance of DartLiteralNode with the correct literal value. This value is still

33

3. REALISATION

the parser’s object and is not a native implementation of the Double, Integer
or String. It is converted later into a native object by the compiler.

3.2.12 Constructor call

Constructor call starts with the new keyword followed by the constructor’s
name, which might be just a class’ name or a class name followed by a dot and
a name of the named constructor. Parser also takes care of skipping possible
definition of a generic type. After the constructor is resolved, arguments are
parsed exactly as other function arguments. Resolved class, constructor name
and arguments are stored in the DartConstructorCallNode which represents a
constructor call.

3.2.13 Default constructors

If no constructor was specified in the class, parser generates a default con-
structor method whose name equals to the class name and generates a default
AST sequence for the constructor. This means that we create an instance of
DartParseMethod, we set its owningClass field to the class that we are gener-
ating the constructor for, arguments are set to nil value as default constructor
takes no arguments. The name of the method is the same as the class name.
The body of the generated constructor is a sequence node containing just a
super call to the resolved super constructor with no arguments which has to
exist. Otherwise, an error is raised because a non-default super constructor
has to be called.

Generated default constructor as a DartParseMethod instance is finally added
to the class’ constructors dictionary.

3.2.14 Getters and setters

Getters and setters that are generated have a very simple body. Every field
that was parsed is checked whether it has a getter and setter and if they
are missing, we generate their AST. The AST for getters consists of a single
DartReturnNode which returns a field value loaded on the stack either by
DartLoadInstanceFieldNode for instance fields or by DartLoadStaticFieldNode
for static fields.

3.2.15 Native classes

To inform parser what native classes are available in the runtime, we cre-
ate equivalent instances of DartParseClass and we fill them with DartParse-
Method instances containing just the declaration of the methods. This class
has already set its Smalltalk class so the compiler doesn’t overwrite our class
and the methods are marked as native, so they won’t be compiled either.
By default, the Core library is always imported and so it is imported even

34

3.3. Compiler implementation

without specifying the import statement. With this configuration, parser will
not complain about non-existent classes and it will create the correct AST
just as we need.

3.3 Compiler implementation

DartCompiler is responsible for creating new equivalent Smalltalk classes and
for doing the final compilation of the method’s AST returned by the parser
into the Smalltalk/X bytecode. Compiler goes over all the classes that parser
saved in the top level scope. It compiles each class but it skips the native ones
and finally compiles also the library which contains all the top level functions.

Compiler uses the Visitor design pattern to walk through the generated
AST nodes. Our compiler takes care of generating the symbolic code which is
an intermediate representation of the code that is more human readable than
the bytecode. Final compilation from the symbolic code to the bytecode was
copied from the Smalltalk/X compiler which uses this technique.

3.3.1 Class creation

As already mentioned compiler creates classes and its superclasses first to en-
sure a correct inheritance hierarchy. So if a Smalltalk equivalent of the class
wasn’t created yet, compiler creates a new class by calling a method create-
DartClass: of DartMetaclass. After this step it loops through all the methods,
getters and setters and compiles them. If the method is a constructor, com-
piler generates a special static method to create a static part of the constructor
first and then compiles the constructor method.

3.3.2 Constructors compilation

We have already mentioned that compiler is generating a static part of a
constructor. This part is very simple and we just create a DartAllocCallNode
instance and we pass it the current constructor method so when generating
bytecode we know what non-static constructor has to be called. This instance
of DartAllocCallNode is wrapped in a DartReturnNode so the bytecode for
returning the newly initialized instance is called.

As for the actual bytecode that is generated while visiting the DartAl-
locCallNode instance, we first store a literal symbol - #new message and we
generate the following sequence of symbolic code to create a new instance of
the current class:

#pushSelf

#send0

linenumber (e.g. 42)

literal index (#new message)

35

3. REALISATION

So we first push a self object on the stack which is a class class instance
and then we generate a message send to this class class instance. The send0
symbolic code means that we are sending a message with 0 arguments to the
object that is on the stack. The send0 code is then followed by the line number
in the original source code whose value is not important in our case as this is
a generated piece of source code. Last symbolic code is the index of a literal
stored in our method which is the #new message.

When we have a new instance on the top of the stack we call the correct
parsed non-static constructor. We first push all the arguments on the stack
that were passed to this static part of the constructor with the symbolic code
#pushMethodArg which is followed by the argument index. When the argu-
ments were pushed on the stack we generate the actual message send to the
correct constructor which is done through the send symbolic code again fol-
lowed by a line number in the original source code and the index of the literal
which is a selector symbol for the current constructor, e.g. #MyClass if the
constructor is not a named one.

Finally, we have an initalized new instance of our class on the top of the
stack and as this DartAllocCallNode is always wrapped in a DartReturnNode,
symbolic code #retTop for returning top of the stack is added at the end of
our symbolic code.

After this we just generate the bytecode out of the symbolic code by calling
the generateByteCode: method which has exactly the same implementation
as regular Smalltalk/X compiler.

3.3.3 Constructor calls

As described in the section [3.2.12] DartConstructorCallNode is created when
parsing a call to a constructor. For the actual symbolic code generation, we
call the static constructor method which allocates a new instance and calls the
correct instance constructor(initializer) method, which results in the following
sequence:

#pushGlobalS

literal index of the class
arguments load

#send

line number

literal index of the selector symbol
number of arguments

So we have to save the current class name as a symbol in the method’s
literals first to reference it after the #pushGlobalS symbolic code. This name
is constructed as a namespace plus the class name, e.g. #MyLibrary::MyClass.
When we’ve pushed this symbol on the stack we’re ready to generate a message
#send. This again consist of loading the arguments that should be passed

36

3.3. Compiler implementation

to the method, the send symbol, line number in the original code, index of
the selector symbol in the method’s literals array and a number of passed
arguments.

If the DartConstructorCallNode doesn’t have any parent AST node the
value is then dropped from the stack right after the new instance was created.
Otherwise the new instance was pushed on the stack and will be used by some
other statement.

3.3.4 Method calls

We have already introduced method calls in the constructor calls. However, we
will go a bit deeper discussing different versions of the #send symbolic code in
this subsection and we will differentiate between the static and instance calls.

As for the static calls, we have to do exactly the same steps as when we
were calling the static part of the constructor. So we have to create a class
name as a symbol and we push it into the current method’s literals array first,
add #pushGlobalS symbolic code followed by the literal array. This will be the
receiver of our message send - a class class instance as it’s a static call. Then
we push the arguments, e.g. a literal, variable, or a method call, depending on
the argument’s AST. After the arguments we add the #send symbolic code
or one of its variants.

When making an instance call, we have to visit the receiver node first which
might be just a loading a local variable but also making a lot of subsequent
calls to get the actual receiver loaded on the stack. The receiver’s AST is
stored in the DartInstanceCallNode.

After the receiver is loaded which is either a class symbol for the static
call or another receiver for the instance call, we can proceed to the actual
message send generation. Smalltalk has a few different variants of the message
send symbolic code. The general one, #send, is followed by a line number, a
literal index of the method selector that should be called and number of the
arguments. If there are not many arguments to be passed in the call, we can
generate a specialized version of the #send symbolic code which is one of the
#send0, #sendl, #send2 or #send3. All these codes are meant to save one
bytecode and improve the performance as we know directly from the symbolic
code / bytecode how many arguments were loaded before we called a method.

Another specialized message send version is a #sendDrop0 and its siblings
with suffixes 1, 2 and 3. This specialized message send also drops the returned
value from the top of the stack without generating an explicit code to drop
the value. Dropping the returned value is needed if the result of the call is
not used or if the returned value is void.

There is also a shortcut for sending a message to the self(this) object. We
don’t have to explicitly push a self object on the stack, but we can use the
#sendSelf symbolic code. It just simply sends the message to the current
object whose method is being executed. It has the same following symbolic

37

3. REALISATION

codes as a regular send and there are also specialized variants with defined
arguments count, e.g. #sendSelf0). As for dropping the value for void or
unused returned values from method calls, there are versions for dropping
the value from the top of the stack exactly as in regular send. Those are
#sendSelfDrop0, and variants with suffixes 1, 2 and 3.

An example of an instance method call with name ”"myMethod:” whose
receiver is stored in a local variable and passing a method argument as a
parameter will look like this:

#pushMethodVarl (receiver in local variable)
#pushMethodVar2 (method argument)

#send1

line number

index of the method symbol literal (#myMethod:)

Assuming that our receiver is stored in a local variable of our method at
index 1, we push it on the stack by generating the #pushMethodVarl symbolic
code. Then we have to generate the code for loading a method argument,
which, as we defined, will be stored in another local variable, e.g. at index
2. We do this again by generating #pushMethodVar2 symbolic code. After
this we generate the actual message send. We know that we have only one
argument, so we can use the send! symbolic code to call the method. We
have to add the line number and finally we add index of our method symbol
#myMethod: in the method literals array.

An example of static call with name myStaticMethod: that takes one ar-
gument and whose receiver is a class called MyClass might look like this:

#pushGlobalS

literal index of the class

#pushMethodVarl (method argument)

#sendl

line number

index of the method symbol literal (#myStaticMethod:)

Exactly the same call was already introduced while describing the call to
a static constructor part in the section [3.3:3] We push the receiver which is a
global symbol of our class. Then we push the argument(assuming that it was
stored as a local variable) and we generate the message send exactly as in the
previous instance call example. The only difference is in the receiver loading
part.

3.3.5 Getters and setters

Automatically generated getters and setters have a generated AST as de-
scribed in the section B.2.14

As for the instance getters, we have all the information needed for compila-
tion stored in the DartLoadInstanceFieldNode which is just a reference to the

38

3.3. Compiler implementation

DartClassField instance that should be pushed on the stack. Let’s assume
that the instance field is the first one in the class. The compilation then res-
ults in the following symbolic code: #pushlInstVari. Just one code is enough.
However, if the field index is greater then 10, there is no specialized version
for pushing the field with index greater than 10 on the stack and therefore we
have to use the general #pushInstVar symbolic code, which is followed by the
index of the instance field.

The static field access is generated exactly the same way as the instance
field access. The only difference is that the getter is installed into the class
class object so it is accessing the class instance variable that we have decided
to use as an equivalent of the Dart static field.

The following code illustrates a static field access in Dart:

MyClass. myStaticField ;

This code is represented by the DartStaticGetterNode which contains a
DartParseClass containing the getter and also the getter reference that should
be called, e.g. MyClass and myStaticField getter as DartParseMethod. The
myStaticField might also be a computed getter in which case it is still repres-
ented by DartStaticGetterNode and the particular method call for this getter
is generated.

In case of instance calls, the following code might represent the instance
creation and getter call in Dart:

var mylnstance = new MyClass ();
mylInstance. myInstanceField;

This getter call is represented by the DartinstanceGetterNode and as we
don’t know what is the class of mylnstance at this point, we just generate a
simple message send.

A problematic piece of code is a code where a getter that returns a closure
is called and the closure is executed right away. This can be done by the
following code:

var mylnstance = new MyClass ();
mylInstance. myClosure ();

With this code we’re not able to differentiate between the getter call with
a closure execution or just a simple method call with no arguments. We have
to check in the runtime whether we have just called a getter and a closure is
currently on top of the stack and if it is the case, execute the closure; otherwise,
don’t do anything more because we have just called a simple method. This
behaviour is not currently supported in the implementation of the Dart in
Smalltalk /X.

Automatically generated instance setters with DartStorelnstanceFieldNode
are processed by compiler generating first the symbolic code for the value that
should be stored and right after that the actual symbolic code for storing it in

39

3. REALISATION

the correct field. This is done with the #storelnstVar symbolic code that is
followed by the index of the instance field. There are also specialised variants
with suffixes from 1 to 10 exactly as variants of #pushInstVar.

The storing of static fields is done again exactly the same way as instance
fields storing. So the static setter methods have the same symbolic code
/ bytecode for storing the fields, which is using the #storelnstVar but the
methods are installed into class class object so the static setters are storing
the class instance variables.

3.3.6 Loops

Loops in Smalltalk are implemented through the execution of blocks. How-
ever, I've decided to generate loops with jumps as this approach is easier to
implement.

3.3.6.1 For loop

DartForNode as an AST representation contains a four essential AST parts:
Initialization, condition, increment and the body. If the initializer contains
a loop variable, it is reserved in the current function or method as a local
variable. The symbolic code of the initializer is generated from its AST and
after this symbolic code we save the current position in a temporary variable
where the condition code will begin as this is the place where we have to jump
at the end of our for loop.

Compiler continues with the symbolic code generating for the condition. This
includes also a generation of the jump if the condition wasn’t fulfilled. There-
fore it generates an #falseJump symbolic code and it reserves a place for the
jump location. This location will become known once we have generated the
symbolic code for the body and increment statement.

After the reserved place for the jump location we generate the symbolic code
for the body and right after the body, compiler generates symbolic code for
the increment statement. This statement is finally followed by the jump on
the condition so it can be evaluated and checked whether we should continue
iterating or stop looping.

At this point we know the position in the symbolic code where we want to
jump if the condition wasn’t fulfilled and we can fill the reserved place for the
#falseJump location.

3.3.6.2 While loop

While loop symbolic code generation is simpler compared to the for loop as
it doesn’t contain initialization or increment but it is still very similar to the
for loop. We generate the symbolic code for the condition followed by the
#falseJump symbolic code and a reserved place for the jump location if the
condition wasn’t fulfilled. Then the compiler continues by generating code

40

3.3. Compiler implementation

for the body and appending jump to the while condition location so it can

be evaluated again. Finally it fills the reserved place of the condition’s jump

which is the first location after the body and jump to while loop condition.
Let’s consider the following code as an example:

while (true)

{
}

This will result in the following symbolic code:

#pushLitl
#falseJump
location

body code
Hjump
condition location

// body code

3.3.6.3 Do-While loop

Do-While loop is the simplest one to generate. It contains the same informa-
tion as the WhileLoopNode but it needs only a single jump. Compiler starts
by generating the symbolic code for the body which is followed by the sym-
bolic code for the condition. After the condition a single #trueJump to the
beginning of the body is generated. This means that at the end of the loop
the condition is evaluated and we jump to the beginning of the body if it was
fulfilled; otherwise, no jump is performed and the while loop is exited just by
continuing in the execution of the next bytecode instruction.

3.3.7 Conditions

When generating an if-else conditional statement, compiler starts by generat-
ing the bytecode for the condition. After the symbolic code for the condition
is generated, it generates a #falseJump and reserves one place for the jump
location. In case the DartIfNode contains also the else branch(the else AST
is non-null), jump location has to point at the first symbolic code of the else
branch; otherwise, it has to point at the first symbolic code after the generated
code for the if-body. It is important to state that these locations are different.

Compiler therefore generates the symbolic code for the if body and if the
else branch is non-null, it has to generate one more jump and reserve a place
for the jump location pointing at the first instruction after the else branch
which makes the difference in the locations. If the jump code was missing, the
else branch would be executed no matter what the if-condition value was. If
there was no else branch, compiler just updates the reserved location for the
condition jump with the correct value as just described.

41

3. REALISATION

If the else branch is non-null, compiler continues by generating the sym-
bolic code for the else body and it updates the jump location generated after
the if body afterwards.

As an examples we can consider the following code with hardcoded condi-
tion values set as true:

if (true) {
// if body
}

if (false) {
// if body

} else {
// else body
}

This results in the following symbolic code:

#pushLitl
#falseJump
locationl

if body

#pushLit2
#falseJump
location2

if body
#Fump
location3

else body

In the first condition that contains only if branch, the hardcoded true
literal as a condition is pushed first and the #falseJump is generated with
locationl. The locationl has to point on the first code of the second condition
which is the location of #pushLit2 and then the if-body symbolic code follows.

The symbolic code of the second condition starts exactly as the first one
but the difference comes after the if-body was generated. Here we can see the
#jump symbolic code with the location3. The location3 is pointing at the first
symbolic code after the else body. The location2 has to point at the symbolic
code after the location3 which is the start of the else branch.

3.3.8 Super call

Smalltalk /X uses for super calls the #superSend symbolic code. It requires the
same arguments as the standard message send with one additional argument
which is the super class object that owns the method object. So at first we push

42

3.3. Compiler implementation

the self object as an instance which we want to call the super method on by
#pushSelf symbolic code, then we generate symbolic code for the arguments
and finally the #superSend symbolic code is generated followed by the line
number, method literal index as a symbol, number of method arguments, and
the literal index of the superclass object.

Let’s consider two classes A and B where B is a subclass of A and overrides
a function called myFunction(argl):

class B extends A {
myFunction(argl) {
super .myFunction (argl);
}

}

This will results in the following symbolic code:

#pushSelf

#pushMethodArgl

#superSend

line number

1 (method literal index)

1 (arguments count)

2 (super class literal index)

Here we first push the self object on the stack which is an instance of
the class B. Then a method argument arg! is pushed and finally followed by
the #superSend symbolic code, the line number, method literal index(a super
implementation), arguments count and superclass literal index which is the
class A.

3.3.9 Return statement

Return statement represented by DartReturnNode contains only one expres-
sion that should be returned. It may be null in case of return in a wvoid
function. Therefore, the compiler tries to generate symbolic code for the ex-
pression whose result should be returned. If the expression is null (return
in a wvoid function), compiler generates #retNil symbolic code; otherwise, it
generates a #retTop symbolic code so the value from the return expression is
returned.

Let’s consider the following code with non-void function and a simple
return of a literal value:

int myReturnFunc() {
return 1;
}

This will be compiled into following symbolic code:

43

3. REALISATION

#pushLitl
#retTop

The DartReturnNode will contain here only simple expression for loading
the literal value with number 1. When the value is on the top of the stack,
the function returns this value after the #retTop symbolic code.

3.3.10 Literal values

We’ve been talking about storing literals in the method’s literals array but
we haven’t explained enough what these literal values are and how they are
stored in Smalltalk/X.

Literal value can be any value that is known in compile time, e.g. a class class
object, number or string. This value has to be stored somewhere, where it
is available in the runtime as well. We store these values in the previously
mentioned method’s literal array. Then we often refer to these values in the
symbolic code by their indices depending on the symbolic code / bytecode
that needs the value stored as the literal.

Literals are represented by DartLiteralNode and there are 4 different variants
of the #pushLit symbolic code / bytecode. The first one is #pushLit with
suffixes from 1 to 8 for pushing literals with indices in range from 1 to 8. If the
index is larger than 8 but the index still fits in one byte(i.e. value is less than
or equal to 255) we have to use the #pushLitS symbolic code followed by the
actual index. If the index value doesn’t fit in one byte there’s #pushLitL that
expects number that fits into two bytes. If even this value is not enough, the
last variant is #pushLitVL that expects a number which fits into four bytes.

3.3.11 Loading local variables

Local variables are represented by DartLoadLocalNode containing the variable
that knows its index in the method’s local variables. Compiler then generates
symbolic code to push local variable on the stack which is the #pushMethod-
Var. There are also optimised variants with suffixes in range from 1 to 6 for
pushing variables at these indices. If the index is greater than 6 #pushMeth-
odVar symbolic code with index of the variable followed has to be used.

There is a special case when loading the self object on the stack which is an
equivalent of the Dart’s this object. If the parser finds this keyword it creates
the DartLoadLocalNode with special flag indicating that the receiver is a self
object. Afterwards the compiler has to handle this case. For example, when
generating a method call, compiler checks whether the receiver node is a self
object and if so, it uses the sendSelf symbolic code. If it is not a method call
it has to push the self object on the stack which is done through the #pushSelf
symbolic code.

44

3.4. Completeness

3.4 Completeness

Completeness of the solution will be presented on the set of examples using
Dart Standard Library modules. These modules were implemented natively
in Smalltalk and the developer can use them in his or her code. However, not
100% of the functionality is supported for each module.

3.4.1 Dart core

Dart core library contains built-in types, collections, and other core function-
ality for every Dart program.

Some classes in this library, such as String and num, support Dart’s built-
in data types. Other classes, such as List and Map, provide data structures for
managing collections of objects. And still other classes represent commonly
used types of data such as URIs, dates and times, and errors.[6]

The collection library is part of the dart:core library but we’ll provide ex-
amples in a separate section. We will show an examples of base core functions
like print, identical and base classes like Object and String.

3.4.1.1 print

The print function is implemented natively as part of the core library. In Dart,
this function prints the string representation of the passed argument object
on the standard output. I have slightly modified this behaviour to match the
Smalltalk behaviour and we print this object using the Smalltalk’s Transcript
class. If this was implemented to print the value on the standard output
developer wouldn’t be able to see the printed values unless the Smalltalk/X
is run from the command line.
The implementation of this function is the following code:

print :anObject
(aString isKindOf:DartCore:: Object)
ifTrue :[Transcript showCR:aString toString stString.]
ifFalse :[Transcript showCR:aString printString.].

There is one more thing to mention about the stString method. As the
Transcript needs an instance of Smalltalk’s String class, we have to always
convert this value into a Smalltalk/X String object and therefore there is the
stString that converts the core:String object into the Smalltalk String object.

In most of the cases it is the Dart’s core:String object that returns the
Smalltalk’s representation but there is an exception with the boolean objects.
That is given by the limitation when we have to use the Smalltalk’s True and
False objects while generating #trueJump and #falseJump bytecodes. These
bytcodes require Smalltalk’s boolean object on the stack to get the correct
jump behaviour provided by the VM. We can get an instance of standard
Smalltalk class like True and False into our print function and therefore we

45

3. REALISATION

have to check if our object inherits from our native DartCore::Object class and
call the right method to get the Smalltalk’s string.
We can consider the following Hello World code as an example:

main () {
print (”Hello World!”);
}

Here the compiler will create a literal for the ”Hello World!” string which
is an instance of core:String class. When calling the print method, it will
get this core:String instance as an argument and the Smalltalk’s String will
be extracted using the stString call and passed to the Transcript’s showCR:
method which will finally print the ” Hello World!” string.

3.4.2 identical

The identical function is the Dart’s way of comparing the object’s identity, i.e.
checking whether two instances reference the same object. In the past, Dart

also had the operator === but it was removed and replaced by the identical
function.

The native Smalltalk’s implementation of the identical function is very
simple using the == message send which performs the object identity check:
identical : first _:second

“(first = second)

Let’s consider the following Dart code as an example:

class MyClass {}

main () {
var objectl = new MyClass ();
var object2 = new MyClass ();
var object3d = objectl;

print (identical (objectl , object2));
print (identical (objectl , object3));

}

We have a single class called MyClass and we create two instances of it
stored in the object! and object?. Then we assign the object! to variable
object3 to reference the same instance. With the usage of the previous print
implementation we can print out the boolean value returned by the identical
function. The printed result is:

false
true

46

3.4. Completeness

In the first comparison we are comparing the object! with object2 which
both contain a different instance of the MyClass and therefore the false value
is returned and printed.

In the second case we compare the object! with object? and they both hold
reference to the same object and therefore the identical function returns true
value.

3.4.2.1 Object

The base Dart class, Object, is a part of the core library. In our Smalltalk’s im-
plementation it contains only the base toString method which might be over-
ridden by other classes and the implementation has to return the core::String
instance. The print function uses this toString method for printing objects.
The default implementation in Object prints the current class which corres-
ponds with the behaviour in Dart’s implementation. The Smalltalk’s imple-
mentation has the following code:

toString
String withSTString:(’Instance of
(self className),

7777)

So if we consider the following example code:

class MyClass {}

main () {
var object = new MyClass ();
print (object);

}

WEe’ll get the following string printed in the transcript window as a result
of the execution: Instance of ’DartmySrc6::MyClass’.

b
)

3.4.2.2 String

Native implementation of core::String uses the Smalltalk’s String class inside.
Smalltalk’s version is stored as a field called stString. Operations like con-
catenation using the operator + is implemented here as well as getters like
length.

The concatenation of two strings has the following code:

+ anOtherString
"DartCore:: String
withSTString:(stString , anOtherString stString)

So it concatenates the Smalltalk’s representation of String and creates a
new instance of core::String with the newly concatenated Smalltalk’s string.
Let’s consider the following example code:

47

3. REALISATION

main () {
var stringl = ”"String 17;
var string2 = stringl + 7 String 27;
print (stringl);
print (string2);
print (stringl .length);

}

This will result in a following output:

String 1
String 1 String 2
8

We can see that the original string in the string! variable wasn’t modified
and a new instance of the concatenated stringl with literal ” String 2”7 was
created. At the end, the length of the string1 is printed.

3.4.3 Collection

The open source Dart implementation contains interface definitions of Iterable,
List, Set and Map data structures in the core library. However, there is no
implementation provided directly in the core library. Base implementation
is done with the help of mixins in the collection library. For example, the
base class that can be used for implementing the List interface is the ListBase
class that uses a ListMizin and both of these classes are part of the collection
library.

In the core library, Dart uses factory method which has an external source
code for creating instances of the List, Map or Set. This external keyword is
used for a specific behaviour of the Dart compiler so it can provide different
implementation(e.g. when the code is cross compiled to javascript) and List,
Map or Set classes can be used right from the core library.

We don’t need to provide different implementations of the List, Set or
Map. Therefore, the factory methods are implemented directly in the core
library which creates an instance of the class from the collection library which
is implementing the correct interface, e.g. the List interface.

As an example, we can consider the following code using List and its
operations for adding, removing and selecting elements:

main () {
var list = new List ();
print (list .length);
list .add (1);
list.add (2);
list .add (3);
print (list .elementAt(1));

48

3.4. Completeness

list .add(4);

print (list .last);

list .remove(2);

print (list .elementAt (1));

}

We create a new instance of List first which will return an instance of our
base implementation which is backed up by the Smalltalk’s OrderedCollection
object. We print the length right after creating the list which returns an
integer with value 0. Then we add three numbers, print second element in the
array(at index 1), we add one more item, print last element, remove element
with value 2(which is at index 1) and we verify that the list was shifted and
we have number 3 at our second position now.

The output of the execution follows:

0
2
4
3

In the implementation we often just forward the calls with values to the
Smalltalk’s OrderedCollection implementation. However, we have to take care
about passing / returning the right object, e.g. Smalltalk Integer instead of
Dart’s int object and vice versa. We also have to be aware of the different
start index in Smalltalk. Indexing in Smalltalk starts from 1 whereas indexing
in Dart starts from 0. We can see all this on the following implementation of
the emelentAt and length methods:

elementAt:anlndex
“stArray at:anlndex stlnteger + 1

length
"DartCore::int withSTInteger:stArray size

In the elementAt method, we get a core::int in the parameter but we have
to pass a Smalltalk Integer object to the Array instance stored in the stArray
field. We also increment the index to match the correct one in the Smalltalk.

In the length method, the value returned from the size call to the stArray
is converted into core::int object as that’s what is expected from this method.

3.4.4 io

The io library provides API for reading, writing, creating or deleting files,
directories or links in the native file system as well as network APIs allowing
developers to use web socket protocol, TCP protocol as well as writing to
standard input and reading from standard output.[7]

49

3. REALISATION

Many of the APIs are designed to be asynchronous. However, as we are not
supporting the async execution in this version of our implementation, only the
synchronous versions are implemented. We can consider the following code
for creating, writing a string into a file and reading it again:

import ’dart:io’;

main () {
var name = '/ Users/branislavhavrila/dart_file.txt ’;
var file = new File (name);

file . writeAsStringSync (’New content ’);
var fileContent = file.readAsStringSync();
print (fileContent);

}

This code creates a new file called ”dart_file.tzt” and writes one line into
this file: ”New content”. Then we read the string from the file and print it
using the print function.

The File class implementation in Smalltalk is using internally Smalltalk’s
FileStream for writing. The writeAsStringSync implementation has the fol-
lowing code:

writeAsStringSync:aString
| fileStream |

fileStream := path stString asFilename writeStream.
fileStream nextPutAllUnicode:aString stString.
fileStream close.

“nil

We get the write stream first, which truncates the file if it already existed.
This matches the behaviour in the native Dart implementation. Then we write
the whole string to the stream and we close it to make sure that everything
gets written to the file. We have to make sure that we pass the Smalltalk’s
String to the nextPutAllUnicode: method and therefore we call the stString
method first. Finally, we return nil as the writeAsStringSync has a void return
type.

The readAsStringSync implementation has the following code:

read AsStringSync
| textContent |
textContent := path stString
asFilename
contentsAsString .

"DartCore:: String withSTString:textContent.

20

3.4. Completeness

Here we are using a very simple implementation for reading the whole
content of a file directly with the contentsAsString method. Then we create
the Dart’s string instance that contains the returned string.

3.4.5 math

The math library contains mathematical constants like 7w, base of natural
logarithms e, mathematical functions like min, maz, sin and also a random
number generator.

These mathematical functions are the top level library functions so they are
implemented as static functions in the library class called math. Mathematical
constants like 7w are implemented as method getters which is the usual way of
implementing constants in Smalltalk.

The implementation of the 7 constant has the following code:

PI
“DartCore:: double withSTFloat:3.1415926535897932.

The implementation of the functions like maz has a very simple code as
well:

max:a _:b
a > b ifTrue:["a] ifFalse:["b].

However, the Dart implementation has slightly complicated implementa-
tion as it deals with the NaN and negative zero values. This example code
uses max, min functions and prints out the PI value:

import ’dart:math’;

main () {
var maximum = max(1, 2);
var minimum = min(1, 2);

print (maximum);
print (minimum);
print (PI);

}

This simply prints out the following lines:

W = N

.14159265358979

3.4.6 html

HTML elements and other resources for web-based applications that need
to interact with the browser and the DOM (Document Object Model). This

51

3. REALISATION

library includes DOM element types, CSS styling, local storage, media, speech,
events and more. [§]

The html library is operating on top of the HTML document and the
source that is using the library should be included as a Dart script in the
script HTML tag and it should have a main function. The HTML document
is represented by the HtmlDocument class and it is automatically included as
a property in the html library when the Dart script is executed.

The main function contains the logic e.g. for manipulating the DOM
model. For example, a developer can subscribe to the click events on a partic-
ular HTML element which he can find by using the querySelector or querySe-
lectorAll functions and then append, remove or change the content.

As this functionality depends on a web browser support, we provide only
basic examples of the Element as it is out of scope of this thesis to provide
all the functionality and integration of Smalltalk/X with a browser and to
implement all the APIs that are included in this library. Also the Dart doesn’t
include the html library in the stand-alone VM as it is meant to be used for
work with the DOM, CSS etc. in a browser. There are also many javascript
objects wrapped into their Dart equivalent to provide all the functionality.
Therefore, if a developer tries to include the html library and run the code
from the command line, the following error message is shown: The built-in
library ’dart:html’ is not available on the stand-alone VM.

However, to show at least some basic usage of manually creating HTML
elements, a developer can use the Element class which has many factory meth-
ods for creating them. The following code is creating a new anchor element,
break line br and div:

main () {
var anchor = Element.a();
var br = Element.br ();
var div = Element.div ();

}

These elements then can be appended to another elements, for example
the HTML body or used for other operations like setting their CSS style class
and so on.

3.4.7 Mirrors

The mirrors library provide basic reflection for Dart programs with support
for introspection and dynamic invocation. Introspection is that subset of reflec-
tion by which a running program can examine its own structure. For example,
a function that prints out the names of all the members of an arbitrary ob-
ject. Dynamic invocation refers the ability to evaluate code that has not been
literally specified at compile time, such as calling a method whose name is

02

3.4. Completeness

provided as an argument (because it is looked up in a database, or provided
interactively by the user).[9]

The Dart mirror system is using mirror objects, e.g. an InstanceMirror
or ClassMirror, that provide an interface to access information about the
object and class’ structure. A developer can get an InstanceMirror object
by calling the reflect function and passing the object that he wants to get
information about. Through the instance mirror, the developer can access its
class through a getter call to the type member which returns a ClassMirror
object or an mirror on the field can be obtained and a setter can be invoked.
The ClassMirror object provides a way how to get a list of fields, methods,
getters, setters or constructors or even just a name of the class.

As Smalltalk is a very dynamic system and one can access all the proper-
ties, methods in the class object, it is not hard to implement this system. The
example code below presents a way how to get an InstanceMirror by calling
a reflect function and its ClassMirror by calling the type getter of the Instan-
ceMirror. Then we print the name of the class by calling the simpleName
method which returns an instance of Symbol class, which is a part of the core
library.

import ’dart:mirrors ’;
class MyClass {}

main () {
var myObj = new MyClass ();
InstanceMirror mirror = reflect (myObj);
ClassMirror type = mirror.type;
Symbol name = type.simpleName;
print (name);

}

This prints the following text:
Symbol (” DartmySrcl4 :: MyClass”)

It is basically a toString method called on the Symbol object which represents
the MyClass symbol. The output is slightly different from the original Dart
implementation where the output is just ”Symbol(”MyClass”)”. The difference
is in the way how Smalltalk returns the class name. Smalltalk/X return always
the namespace(in our case it is an autogenerated library name) and the class
name concatenated. It would be possible to get the same output as in the
original Dart with a bit of string processing.

The Smalltalk’s implementation of the reflect function is simply returning
the InstanceMirror with the the reference to the passed object:

reflect :anObject
“InstanceMirror InstanceMirror:anObject

93

3. REALISATION

When we have the InstanceMirror for our instance of MyClass class, we
can ask for the type to get the ClassMirror object that holds an instance of
the class object which is the MyClass class:

type
“ClassMirror ClassMirror: mirroredObject class

Finally, the ClassMirror’s simpleName method returns a Symbol instance:

simpleName
| symbolName |
symbolName := DartCore:: String
withSTString : (mirroredClass
name
asString).

“DartCore :: Symbol Symbol:symbolName.
Then the symbol is simply printed on the output.

3.5 Performance

The performance measurements were run on a MacBook Pro (13-inch, Mid
2012) with 2.5GHz Intel Core i5 and in the OS X El Capitan, version 10.11.6.
We have to state here, that the Smalltalk/X version doesn’t currently sup-
port Just In Time Compilation in its version for OS X and therefore we are
comparing just the execution of a the bytecode with the execution in the Dart
VM.

The compilation process in Smalltalk is slower as the Dart’s compiler and
parser are written in C++ and so it is directly executing the machine code
without another intermediate level. As our compiler is written in Smalltalk
the VM is executing bytecode and this is making it slower. But the interesting
part is how fast is our compiled code going to be compared to the execution
in the Dart VM.

The performance is compared on a simple bubble sort algorithm whose
complexity is #(n) where n is the number of elements in the array:

sortArray (list) {
for (int i = 0; i < list.length — 1; 1 =i +
for (int j = 0; j < list.length — 1; j =j
if (list[j] > list[j + 1]) {
swapWithNext (j, list);
}

}

1) {
+ 1) {

}
}

o4

3.5. Performance

swapWithNext (j, list) {
var tmp = list [j];
list [j] = list[j + 1];
list [j + 1] = tmp;

}

We are measuring simply the execution time of the main method which
initializes a List with 100 numbers and then sorts it with bubble sort algorithm
written above. This is done for just one instance to see how much time we
need to sort 100 items and we are performing a bigger sort as well which is
doing 100 times the same intialize List - sort cycle.

Dart is using Stopwatch class for this purpose and we can easily call the
start method to start the measurement. After our computation is done, we call
stop and get the elapsed time by accessing the elapsedMilliseconds property.
For measuring the Smalltalk’s execution time, we are using the TimeDuration
class and its method toRun: which accepts directly a block that should be
executed and measured. We pass a block with the main method being executed
here. The tests were run 10 times and the average execution time is presented

in the graphs [3.1 and [3:2]

1 sort of 100 elements

200 B Dart VM
B Smalltalkix
150
g 100
50
2

Figure 3.1: Result in ms of measuring one sort of 100 elements

From the results we can clearly see that there is a big lack of performance
in our solution compared to the Dart VM. The Dart VM beats the Smalltalk’s
bytecode execution implementation by more than 100 times.

The JIT compiler can surely improve the performance but due to the issues
in OS X version of Smalltalk /X we are not able to measure by how much would
JIT compilation improve the performance.

95

3. REALISATION

100 sorts of 100 elements

16000 B Dart VM
14690.5 B Smalltalksx
12000
E BOOO
4000
118.9
0

Figure 3.2: Result in ms of measuring 100 sorts of 100 elements

56

Conclusion

This thesis brought me a deep understanding of how Smalltalk/X’s compila-
tion process works, what are the technical details that a usual Smalltalk user
or developer doesn’t explore. I was also able to examine some very specific
parts of the Dart’s parser and compiler in detail by reading and studying its
implementation.

In the first part I described both Dart and Smalltalk languages and their
platforms, summarized the key concepts and features and found the main
differences. 1 have described Smalltalk/X’s symbolic code and afterwards
I have analysed the options how the Dart code can be compiled into the
Smalltalk /X’s bytecode. I presented a way how to create equivalent Smalltalk
classes, how to compile specific cases and syntactic sugar of Dart and presented
selected sequences of compilation into Smalltalk’s symbolic code and bytecode.

The implementation is highly inspired by the original open source Dart
parser written in C++ but it still keeps the important concept of the symbolic
code from the Smalltalk’s compiler. Still there are many things to improve
and features that are not supported.

In the last part I presented sample codes for Dart native libraries that are
supported also in our implementation and I have tested the performance on
a bubble sort algorithm which turned out to be much faster in the Dart VM.
However, the Smalltalk/X’s JIT compiler can bring additional performance
improvement which might be more competitive.

Even tough the performance was not matching my initial expectations it
was worth it implementing the parser and compiler as I gained experience that
helped me understand the architecture of the Smalltalk/X’s virtual machine
and I hope I will be able to work on this project in the future and make
another improvements that will bring competitive results.

o7

1]

2]

3]

Bibliography

Flutter. Flutter [online]. [cit. 2017-1-4]. Available from: https://
flutter.io/

Dart. Why Not a Bytecode VM? [online]. [cit. 2016-11-11]. Available from:
https://www.dartlang.org/articles/dart-vm/why-not-bytecode

eXept Software AG. Smalltalk/X [online]. [cit. 2017-1-4]. Available from:
https://www.exept.de/en/smalltalk-x.html

Bracha, G. The Dart Programming Language. ISBN 9780133429954.

Dart. A Tour of the Dart Language [online]. [cit. 2016-11-16]. Available
from: https://www.dartlang.org/guides/language/language-tour

Dart. Dart API reference documentation, Library dart:core [online]. [cit.
2016-12-29]. Available from: https://api.dartlang.org/stable/1.21.0/
dart-core/dart-core-library.html

Dart. Dart API reference documentation, Library dart:io [online]. [cit.
2016-12-29]. Available from: https://api.dartlang.org/stable/1.21.0/
dart-io/dart-io-library.html

Dart. Dart API reference documentation, Library dart:html [online]. [cit.
2017-1-3]. Available from: https://api.dartlang.org/stable/1.21.0/
dart-html/dart-html-library.html

Dart. Dart API reference documentation, Library dart:mirrors [on-
line]. [cit. 2017-1-4]. Available from: https://api.dartlang.org/stable/
1.21.0/dart-mirrors/dart-mirrors-library.html

29

https://flutter.io/
https://flutter.io/
https://www.dartlang.org/articles/dart-vm/why-not-bytecode
https://www.exept.de/en/smalltalk-x.html
https://www.dartlang.org/guides/language/language-tour
https://api.dartlang.org/stable/1.21.0/dart-core/dart-core-library.html
https://api.dartlang.org/stable/1.21.0/dart-core/dart-core-library.html
https://api.dartlang.org/stable/1.21.0/dart-io/dart-io-library.html
https://api.dartlang.org/stable/1.21.0/dart-io/dart-io-library.html
https://api.dartlang.org/stable/1.21.0/dart-html/dart-html-library.html
https://api.dartlang.org/stable/1.21.0/dart-html/dart-html-library.html
https://api.dartlang.org/stable/1.21.0/dart-mirrors/dart-mirrors-library.html
https://api.dartlang.org/stable/1.21.0/dart-mirrors/dart-mirrors-library.html

APPENDIX A

JIT Just-in-time compiler

VM Virtual Machine

API Application programming interface
URI Unique Resource Identifier

DOM Document Object Model
HTML HyperText Markup Language

CSS Cascading Style Sheets

61

Acronyms

APPENDIX B

Contents of enclosed flash drive

readme.tXt...overiieniennnnnnnnn the file with the contents description
< ol o2 the directory of source codes
eXamples .. .ouiiiiii the directory with example source codes
thesis.....oovvveeennn. the directory of IXTEX source codes of the thesis
LDPﬁavrila,Branislav,QOl?.pdf the thesis text in PDF format

63

	Introduction
	Problem statement
	Smalltalk/X
	Dart language
	Smalltalk/X and Dart

	Analysis
	Compilation of Smalltalk code
	Parsing and compilation of Dart code
	Compilation into Smalltalk bytecode

	Realisation
	Main classes
	Parser implementation
	Compiler implementation
	Completeness
	Performance

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed flash drive

