CzECH TECHNICAL UNIVERSITY IN PRAGUE /
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Compression of natural Czech text
Student: Bc. Jan Navara

Supervisor: prof. Ing. Jan Holub, Ph.D.

Study Programme: Informatics

Study Branch: System Programming

Department: Department of Theoretical Computer Science
Validity: Until the end of summer semester 2016/17

Instructions

Design an algorithm for lossless compression of natural Czech text using lemmatiser, morphological tagger
and morphological generator. Make a survey of suitable open-source tools and select one. Implement the
algorithm in the C++ programming language. Perform experiments with various ways of utilization of
lemmas and tags in the compression process and evaluate the results of the experiments.

References

Will be provided by the supervisor.

L.S.

doc. Ing. Jan Janousek, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague February 17, 2016

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTy OF INFORMATION TECHNOLOGY

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE

Master’s thesis

Compression of natural Czech text

Be. Jan Navara

Supervisor: prof. Ing. Jan Holub, Ph.D.

30th June 2016

Acknowledgements

I would like to thank my friends and family for all support, my supervisor,
prof. Ing. Jan Holub, Ph.D., for frequent consultations and all guidance, and
also my employer for giving me as many days off as I needed to finish this
thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work for non-profit purposes only, in any way that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on 30th June 2016 L.

Czech Technical University in Prague

Faculty of Information Technology

(© 2016 Jan Navara. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Navara, Jan. Compression of natural Czech text. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2016.

Abstrakt

V ramci prace byly navrzeny a implementovany 4 algoritmy pro bezeztratovou
kompresi prirozeného Ceského textu vyuzivajici lemmatizdtor, morfologicky
tagger a morfologicky generator obsazeny v softwaru MorphoDiTa. Prvni z al-
goritmu je zalozen na uklddani lemmat jednotlivych slov a generovani slovnich
tvaru, druhy modeluje pravdépodobnosti jednotlivych slov na zakladé ulozené
informace o jejich slovnim druhu, tfeti modeluje pravdépodobnosti slov na
zakladé slovniho druhu predchoziho slova a ¢tvrty je rozsitenim prvniho, kdy
jsou spolecné s lemmaty uklddany i nékteré ¢asti tagu. Vysledné kompresni
poméry byly porovndny s kompresnimi poméry dosazenymi referen¢nim algo-
ritmem zékladni slovni komprese. Z porovnéani vyplynulo, ze druhy a tfeti pop-
sany algoritmus zlepSeni neptindsi, zatimco prvni a ¢tvrty algoritmus dokaze
kompresni pomér pii vhodnych konfiguracich zlepsit, typicky v fadu desetin
procenta. Hlavnim piinosem préace je diikaz, ze pouziti lingvistickych nastroju
muze byt pii kompresi ¢eskych textu z hlediska kompresniho poméru vyhodné.
Vyznamnym vedlej§im produktem préce je Siroce pouzitelnd implementace
adaptivni verze kompresniho algoritmu PPM, na niz jsou vysSe popsané algo-
ritmy zalozeny.

Klicéova slova komprese textu, lemmatizace, morfologické tagovani, morfo-
logické generovani, PPM, aritmetické kédovani, MorphoDiTa

X

Abstract

In scope of this thesis, 4 algorithms for lossless compression of natural Czech
text have been designed and implemented. The algorithms utilize the lemma-
tiser, morphological tagger and morphological generator contained in open-
source software MorphoDiTa. First of the algorithms is based on storing
lemmas of individual words and generating the word forms, the second one
uses stored part-of-speech tags to estimate probability of words, the third one
estimates probability of a word using part-of-speech tag of the previous word
and the fourth one is an extension of the first algorithm, storing some parts
of the tag alongside the lemma. The achieved compression ratios have been
compared to compression ratios achieved by a basic word-based reference algo-
rithm. The comparison has shown that the second and the third algorithm are
not better than the reference algorithm in terms of compression ratio, while
the first and the fourth algorithm are able to achieve better compression ratio
than the reference algorithm when using an appropriate configuration (they
typically improve the compression ratio by several tenths of percent). This
thesis thus proved that using linguistic tools in compression of natural Czech
texts may be beneficial in terms of compression ratio. An important by-
product of this thesis is a highly universal implementation of adaptive PPM
compression algorithm, which has been used as the core element of each of
the above-mentioned algorithms.

Keywords text compression, lemmatisation, morphological tagging, mor-
phological generation, PPM, arithmetic coding, MorphoDiTa

Contents

Introduction
[1.1 Linguistic definitions|
[1.2 Survey to find a suitable linguistic tool]
[1.3 About MorphoDiTa}
1.4 Introduction into data compression|
[1.5 Arithmetic codingl
M6 PPMl.ot
1.7 Text compression|
1.8 Stateoftheartl

2 Analysis
2.1 Incorporating MorphoDiTa into our project|
[2.2 Input of our compression program|
R3TestAles . .« o o v oo e e
2.4 Compression experiments|
2.5 Utilizing UT'F-8 encodingl
2.6 Compression method| L0
2.7 Trie statisticslo
[2.8 Formal specification of experiments|.

3 Design
3.1 Language tools|
[3.2 Input/output| oo
3.3 Rangecoder|.
B4 PPM structure
B35 PPMcoder
3.6 Language compression|
3.7 Main filel.

xi

29
29
30
32
32
45
45
48
49

4 Implementation|

4.1 Code properties and compiling|
4.2 Handling of errors]

[Testing and evaluation|
5.1 Algorithms gzip, bzip2 and Izma]
[5.2 Byte-oriented PPM compression|
[5.3 Basic word-based compression|.
[5.4 Basic experiment using morphological generator|{.
[>.5 Experiment with part-of-speech tags (1)
[5.6 Experiment with part-of-speech tags (2)]
[5.7 Experiment with non-part-ot-speech tags/.
[5.8 Summary of experiments|. Lo

Conclusion

IBibliography|

|IA Design — class diagrams|

IB Evaluation of algorithms — tables|

|C Acronyms|

[D_Contents of enclosed CDI

xii

107

109

115

119

123

125

List of Figures

1.1 PPM trieexample] 24
2.1 Letter case heuristicsl. 36
IA.1 PPM structure and coders — class diagram| 116
|IA.2 Input processing and linguistic tools — class diagram| 117
IA.3 Compression units — class diagram| 118

xiii

List of Tables

[1.1 Summary of MorphoDiTa taggers|. 7
[1.2 Brief summary of MorphoDiTa tags 8
1.3 Table for arithmetic coding example 1} 15
1.4 'Table for arithmetic coding example 2| 17
[1.5 PPM encoding example|o L. 21
2.1 POS dependency experiment| 40
2.2 Isolated tagging experiment| 42
5.1 Test files summary|o 92
5.2 External compression algorithms| 92
5.3 Basic word-based compression — compression ratios| 94
5.4 Basic word-based compression — trie statistics| 94
5.5 Basic experiment using morphological generator — compression |
C—rafiod o 96
5.6 Basic experiment using morphological generator — trie statistics| . 97
5.7 Experiment with part-of-speech tags (1) — compression ratios| . . 98
5.8 Experiment with part-of-speech tags (1) — trie statistics| 99
[5.9 Experiment with part-of-speech tags (2) — compression ratios| . . 100
5.10 Experiment with part-of-speech tags (2) — trie statistics| 101
[5.11 Experiment with non-part-of-speech tags — trie statistics| 103
[5.12 Summary of compression ratios| 105
[B.1 Experiment with non-part-of-speech tags — first testing (1) 120
[B.2 Experiment with non-part-of-speech tags — first testing (2)| 121
B.3 Experiment with non-part-of-speech tags — final testing| 122

XV

Introduction

To compress a natural text with a good compression ratio, the compression
algorithm can utilize the fact that a lot of information contained in the text
is determined by characteristics of the language. From all possible character
sequences of length NN, some of the sequences occur much more frequently
than some other sequences in the natural text written in a specific language.
The same can be said about the individual characters. Of course, we can also
see the text as a sequence of words, not just as a sequence of characters; we
can again state that some words or sequences of words occur more frequently
than other words or sequences of words, respectively. Words can also be clas-
sified into several groups called parts of speech, where each part of speech has
a different role in the sentence. Moreover, words typically have various gram-
matical categories; especially in highly inflective languages, the grammatical
categories determine the specific form of a word which appears in the text, and
again, there are more or less strong rules for where a grammatical category
(or a specific value of grammatical category) occurs more likely and where it
occurs less likely.

In our compression algorithms designed and implemented within this the-
sis, we are utilizing all of these features. However, our main task is to focus
on parts of speech and grammatical categories; we want to show that the
compression of natural Czech text can be improved using these properties of
words.

From all the characteristics of Czech language which may influence the
compression ratio of our algorithms, we want to point out the following two:

e Czech is a highly inflective language. Especially for nouns, adjectives,
pronouns, numbers and verbs it holds true that a specific word can
appear in many different forms, depending on the values of grammatical
categories. This means that by a naive compression algorithm, different
forms of the same words may be recognized as different words, which
may negatively influence the quality of the compression model.

INTRODUCTION

e The word order is relatively loose in Czech language; this may be a
challenge for compression algorithms which are utilizing word order,
order of part-of-speech tags in the sentence etc.

Linguistic tools (lemmatiser, morphological tagger and morphological ge-
nerator) help us to process the text and to get the necessary linguistic infor-
mation about the individual words. We are focusing on compression ratio,
compression time is not our priority. We are testing several ways of using the
linguistic information to show which ways are worth developing further and
which are probably not helpful. According to our best knowledge, most of
the algorithms implemented in this thesis have not yet been implemented by
anyone else or the results have not been published (at least for texts written
in Czech language).

CHAPTER 1

Preliminaries

1.1 Linguistic definitions

This section explains some key linguistic terms which are used in this thesis.
Examples are shown later (when presenting the selected linguistic tool). As
the definitions of some of these terms vary depending on the source of the
definition, some definitions have been adjusted a little bit to match our needs
in this thesis (and to match the real functionality of the selected linguistic
tool); this includes the definition of morphological tag which is valid at least
as long as we are using Czech morphological system by Jan Haji¢ [I].

Definition 1. Lemma of a given word is a canonical form of this word.[I]
The process of converting a word form to its lemma is called lemmatisation
in the rest of this thesis.

Definition 2. In scope of this thesis, a morphological tag (or simply a
tag) is an information about part-of-speech and possibly other grammatical
categories of a word form. The process of assigning a tag to a given word form
is called tagging in the rest of this thesis.

Definition 3. In scope of this thesis, morphological generation is the
process of generating all possible word forms from a given lemma or from a
pair lemma + tag.

We analogously use terms lemmatiser, morphological tagger (or sim-
ply tagger) and morphological generator (or simply generator) in the
rest of the thesis.

1.2 Survey to find a suitable linguistic tool

This section describes the initial survey which has been done to find a suitable
open-source tool as required by the assignment. We are searching for a tool

3

1. PRELIMINARIES

or a combination of tools which works with natural Czech text and is capable
of lemmatisation, morphological tagging and morphological generation. We
prefer tools with high quality of lemmatisation and tagging since we suppose
that more exact information about the text will give us chance to achieve
better compression ratio. We also want that it is easy to use the tool from
within our C++ code.

Sources [2], [3] and [4] proved to be good starting points for this survey,
though not all of the discovered tools have been found using these sources.

1.2.1 MorphoDiTa

MorphoDiTa [5] is an open-source tool capable of morphological analysis,
morphological generation, tagging and tokenization. It uses linguistic models
which are distributed under CC-BY-NC-SA license.

The tool is available as a standalone tool, as a library (including a C++
version of the library) or as a web service. [6] An online demo version is available
in [7].

The publication [6] compares the tool to other Czech taggers, Featurama
and Morce, and states that “MorphoDiTa reaches state-of-the-art results for
Czech and nearly state-of-the-art results for English.” and that “The results
are very similar for the three Czech systems, Morce, Featurama and Mor-
phoDiTa, ... However, MorphoDiTa is the first end-to-end application re-
leased under a free license.” The publication also states that MorphoDiTa is
efficient and lightweight, showing comparison of speed and resource consump-
tion against the other two tools. That makes MorphoDiTa a suitable tool for
our natural language compression task; however, the survey continues.

1.2.2 Czech Morphological Analyzer

This is an online tool by Jan Haji¢, available in [8], capable of lemmatisation
and tagging. The results of lemmatisation and tagging are displayed on a
separate web page. This tool doesn’t seem to contain any morphological
generator and doesn’t seem to be open-source, it could be used only via the
online interface.

1.2.3 Flect

A tool available from [9]. It is only a morphological generator, written in
Python.

1.2.4 Morce

Morce is a software for tagging a Czech text.[I0] The software is available un-
der GPL license (both binaries and source code).[11] However, we have already

4

1.2. Survey to find a suitable linguistic tool

found a slightly better tool which, unlike Morce, contains all functionality we
need, so we are not going to analyse Morce deeper.

1.2.5 Featurama

Featurama is a C++/Perl open-source tagging software available from [12].
We already know that MorphoDiTa’s tagging and lemmatisation results are
the same (if not better) as for Featurama and that MorphoDiTa is significantly
faster and more space-efficient,[6] so we provide no detailed information.

1.2.6 LemmaGen

LemmaGen is a fast and open-source lemmatisation tool available in C++.[13]
This tool is not capable of tagging and morphological generation and the accu-
racy of lemmatisation (using an online service available in [I4]) is obviously
not very good.

1.2.7 Ajka and Majka

Ajka is a program which, for a given word form, determines its lemma, part-
of-speech and other grammatical categories.[15] Its newer version is called
Majka.[I5] According to [16], Majka is a more accurate and faster tool than
Ajka. According to download page [17], Majka is written in C++, the source
code of Majka is licensed under GPL and the tool is very fast (it is able
to process approximately one million words per second — faster than Mor-
phoDiTa, where the fastest models allow to process approx. 200 000 words
per second[I]). The tags used by Majka [18] are different from those which
are used in MorphoDiTa [19].

1.2.8 Conclusion

We decided to use MorphoDiTa, especially for the following reasons:

e We know that is has high lemmatisation and tagging accuracy.

e [t is the only found open-source tool combining all three functionalities
we need. We could still combine two tools instead of using just this
one but that seems impractical (we could, e.g., try to combine Majka’s
lemmatiser and tagger with MorphoDiTa’s generator, but we would have
to deal with differences between those two tools — some reasonable
conversion between different tag definitions of these two projects would
be required etc.).

e [t is one of the only two found tools capable of morphological generation,
the other one is Flect. If there was a good reason to do so, we probably
would be able[20] to use Python code of Flect in our C++ project and

5

1. PRELIMINARIES

thus use the generator from Flect instead of the one from MorphoDiTa;
however, working with C++ code of MorphoDiTa should be simpler and
again, merging two different tools could be challenging.

1.3 About MorphoDiTa

The main features of MorphoDiTa have already been presented, now we take
a closer look at what MorphoDiTa functionality could be useful for us. We
use MorphoDiTa version 1.3.0, which was the latest version of the software at
the start of this thesis. This MorphoDiTa version can be downloaded from
[21] (binaries or source files). Since the online manual [I] and API reference
[22] are changing with time (probably to match the most recent version of
MorphoDiTa), we usually refer to manual [23] downloaded with the version
1.3.0.

1.3.1 MorphoDiTa models

As already mentioned, MorphoDiTa works with trained linguistic models
which are available separately from the tool. The newest models (version
160310) are available in [24], older models (version 131112) are available in
[25]; the newest models have been released when this thesis was already in
progress. As apparent after unpacking the downloaded archives (and after
reading the attached readme files), both sets of models contain a part-of-
speech-only variant (producing tags containing only part-of-speech info[l]) of
the tagger. The newer version also contains a no-diacritical-marks variant
(working with text not containing diacritics[I]). The older version contains
two versions of the main tagger — a version focusing on accuracy and a version
focusing on speed.

The proposed tagger speeds and accuracies are summarized in Table
all info taken from the attached readme files; it is necessary to mention that
version 160310 was trained and tested on different data than version 131112.
In this thesis, we use only “full” taggers (131112-best_accuracy, 131112-fast
and 160310-main) since we work with texts containing diacritics and we are
not really focusing on program speed. Moreover, if not stated otherwise, we
are using model 131112-fast.

1.3.2 Lemmas

This section summarizes important details about lemmas used in MorphoDiTa.
An explicit example of lemmas is shown later in this thesis (together with a
sample tagger output).

A lemma in MorphoDiTa is a string consisting of the following three
parts:[23]

6

1.3. About MorphoDiTa

Table 1.1: Summary of MorphoDiTa taggers

version | tagger name tag lemma overall speed
accuracy | accuracy | accuracy | [words/s]

131112 | best_accuracy 95.67 % | 97.78 % | 94.97 % | 10k
131112 | fast 94.70 % | 97.64 % | 93.94 % | 60k
131112 | pos_only 99.20 % | 97.64 % | 97.60 % | 200k
160310 | main 95.57 % | 97.75 % | 94.93 % | 10k
160310 | pos_only 99.04 % | 97.62 % | 97.56 % | 200k
160310 | no_dia 94.74 % | 97.05 % | 93.83 % | 5k
160310 | no_dia-pos_only | 98.59 % | 97.04 % | 96.96 % | 130k

e raw lemma — shortest text form of the lemma;

e lemma id — raw lemma and lemma id together provide a unique iden-
tifier of the lemma;

e lemma comments — some additional comments, not needed to identify
the lemma.

An important fact is that MorphoDiTa contains methods which allow us
to determine the boundaries between the three parts of a lemma and thus
possibly cut the lemma to a shorter form.[23] For practical reasons, in the rest
of this thesis, we are using the following terms:

e full lemma is a lemma containing all three parts (raw lemma + lemma
id + lemma comments),

e the term raw lemma keeps its original meaning,

e lemma id is a full lemma without lemma comments (raw lemma + lemma
id according to the overridden definition).

A lemma returned by a tagger (which, in MorphoDiTa, serves as lemma-
tiser as well) is always a full lemma. For morphological generation, we can
use either raw lemma or lemma id (lemma comments are ignored).[23]

1.3.3 Tags

This section summarizes important details about tags used in MorphoDiTa.
An explicit example of tags is shown in Section together with a sample
tagger output.

As already mentioned, MorphoDiTa uses Czech morphological system by
Jan Haji¢ where the tags are positional with 15 positions representing e.g.
part of speech and various grammatical categories.[23] The following detailed
info is taken from [19] and [26].

1. PRELIMINARIES

Table 1.2: Brief summary of MorphoDiTa tags

position | description

1 Part of speech
Detailed part of speech
Gender

Number

Case

Possessor’s gender
Possessor’s number

Person

O 0| || U =W N

Tense

—_
]

Degree of comparison

—_
—_

Negation
Voice
Reserve
Reserve
Variant, style

—_
[\

—_
w

—_
N

—_
(@)

Each of the 15 positions has (typically) several possible values. Every
value is encoded using one ASCII character and every position contains only
one value per tag, thus the tag is a string of 15 ASCII characters. Some
values represent a set of other values and not all combinations of values are
possible within one tag. Table shows a brief summary of what each position
represents. Of course, not all grammatical categories are applicable for all
words; in such cases, value “-” appears on the corresponding position in the
tag to mark that the grammatical category is not applicable.

1.3.4 Tagging (includes lemmatisation)

In this section, we first show how tagging works using the downloaded Mor-
phoDiTa executable. This is just for simplicity; a short presentation of corres-
ponding methods from MorphoDiTa API follows, since we would like to use
MorphoDiTa rather as a library. We use a similar approach in the next section
as well.

1.3.4.1 Tagger executable

The input of the tagger is an UTF-8-encoded text (there is no need to pre-
process the text, MorphoDiTa is able to tokenize it).[23] Tagger requires path
to a tagger model as a parameter[23] (tagger models have been described in
one of the previous sections). There are also other options which can be used,
but they are not described here.

8

1.3. About MorphoDiTa

Here we present a simple example of tagger output. We run here a down-
loaded MorphoDiTa binary bin-1inux64/run_tagger which can be found in
the downloaded binaries archive. One of the previously described models (tag-
gers) is used as parameter:

command:

echo "Mé vznaSedlo je plné tdhoru."
| ./run_tagger czech-morfflex-pdt-131112.tagger-fast

output (line breaks added):

Loading tagger: done

<sentence>

<token lemma="muj_" (pfivlast.)" tag="PSNS1-S1------ 1">Mé</token>
<token lemma="vznaSedlo" tag="NNNS1----- A----">vznasedlo</token>
<token lemma="bjt" tag="VB-S---3P-AA---">je</token>

<token lemma="plny" tag="AANS1----1A----">plné</token>

<token lemma="dho¥" tag="NNMP2----- A----">dho¥u</token>

<token lemma="." tag="Z:-------—----——- ">.</token>

</sentence>

Tagging done, in 0.000 seconds.

We can see that the tagger assigned a lemma and a tag to each word
(token). An important detail is that the capital starting letter in the first
word has been lost during lemmatisation; we have to be aware of this in our
lossless compression algorithm since we cannot alter the case of any letter.

1.3.4.2 Tagger API

The tagger is represented by class tagger.[23] An instance of tagger can be
created by method

static tagger* tagger::load (const char* fname)
where fname is name of the model, or by method
static tagger* tagger::load (FILEx f)

where £ is C file pointer to an opened file with the model.[23] Tagging can be
performed using method

virtual void tagger::tag (
const std::vector<string_piece>& forms,
std: :vector<tagged_lemma>& tags

) const

where forms is a vector of input tokens and tags is a vector holding the result

9

1. PRELIMINARIES

of tagging.[23] There is also a method returning tokenizer instance, which
works with UTF-8 encoding and which we can use to tokenize an untokenized
text.[23] It’s obvious that we can use here all functionality that has been shown
with the executable example.

1.3.5 Morphological generation
1.3.5.1 Generator executable

The input of morphological generation is again in UTF-8 encoding.[23] Each
line of the input must contain a lemma, optionally followed by a tab and a
tag (the tag may contain wildcards).[23] Tag wildcard is a special replacement
of a value in the tag which can be used to filter the results of morphological
generation; ? matches any character applicable for the corresponding position
in the tag, [chars] matches any of the characters listed and [~chars] matches
any of the characters not listed.[23]
The morphological generator requires the following parameters:[23]

e path to a morphology model; we are allowed to use a tagger model here
if option --from_tagger is specified;

e an integer value (0 or 1) specifying whether guesser mode should be
used or not (according to API reference, when guesser mode is set to 1,
generator tries to guess unknown words[23]).

Here we present a simple example of morphological generation output. We
use our previously generated output of the tagger as input of the generator
and we use the morphology model associated with the tagger:

command:

printf

"muj_~ (p¥ivlast.)\tPSNS1-S1------ 1\n
vznasSedlo\tNNNS1----- A-——-\n

byt\tVB-S---3P-AA---\n
plny\tAANS1----1A----\n
Ghot\ tNNMP2---—- A----\n

| ./run_morpho_generate czech-morfflex-pdt-131112.tagger-fast
1 --from_tagger

output (whitespaces edited):
Loading dictionary from tagger: done

mé mij_~(ptivlast.) PSNS1-S1------ 1
vznaSedlo vznaSedlo NNNS1-—--- A———-

10

1.4. Introduction into data compression

je byt VB-S---3P-AA---
plné plny AANS1y----1A--—-
Ghoti Gho¥ NNMP2----- A-——-

We can see that the generator assigned a correct form to each lemma+tag
pair except the last one. It is, of course, not guaranteed that the generator
generates some form from an arbitrary lemma-+tag pair (at least because not
all tags are valid, as mentioned before), but this case might be a little bit
surprising — we were able to convert the original form (“.”) to lemma+tag
but the generator cannot make it the other way round using the same model;
we have to handle this somehow in our compression algorithm.

1.3.5.2 Generator API

There is a class called morpho which represents a morphological dictionary,
this class can be used to perform morphological generation.[23] We can use
method

virtual const morpho* tagger::get_morpho () const

to get an instance of morpho associated with a specific tagger instance.[23]
For morphological generation, we can use method

virtual int morpho::generate (
string piece lemmma,
const char* tag wildcard,
guesser mode guesser,
std::vector<tagged_lemma forms>& forms
) const

where lemmma and tag wildcard are input parameters with intuitive meaning,
guesser is an enumeration with two possible values (whether to allow using
the guesser or not) and forms is a vector holding the result of generation
(each element of the vector contains a lemma + forms generated from the
lemma with the respective tags).[23] Again, it’s obvious that we can use here
all functionality that has been shown with the executable example.

1.4 Introduction into data compression

Data compression (further just “compression”) is the process of converting
(encoding) data into some less space-consuming form.[27] Generally, data
compression is achieved by removing redundancy from the data.[27] Below
we define a few important terms that are used in the following sections and
chapters.

Definition 4. Compression is the process of transforming original data
into compressed data (encoding). Compressor (encoder) is thus a program

11

1. PRELIMINARIES

performing compression.[27]

Definition 5. Decompression is the process of transforming compressed
data into original data (decoding). Decompressor (decoder) is thus a pro-
gram performing decompression.[27]

Definition 6. Lossless compression is a compression method which in-
volves no loss of information (when the compressed data is decompressed, the
result is identical to the original data).[27]

Definition 7. A nonadaptive or static compression method is a compres-
sion method that does not modify its operations and parameters in response
to the data being compressed.[27]

Definition 8. A semi-adaptive compression method is a 2-pass compression
method that in the first pass examines the original data and sets parameters
for the compression, which is then performed in the second pass.[27]

Definition 9. An adaptive compression method is a compression method
that modifies its operations and parameters according to the original data
during the compression process.[27]

The difference between adaptive and semi-adaptive methods is that adaptive
methods are supposed to pass through the original data just once.

Definition 10. Compression ratio is a measure of compression perfor-
mance. It can be computed by the following formula:[27]

size of compressed data

compression ratio = —; —
size of original data

It is obvious that lower compression ratio means better compression perfor-
mance. In this thesis, we always express the compression ratio in percents.

Definition 11. This definition summarizes basic information about entropy
(the theory has been developed by Claude Shannon[28]).

Consider a set of source units S = {1, z2,...,z,} with probabilities P =
{p1,p2,...,pn}. Then average entropy (information content) of a source unit
from S is equal to

H(S)=- Zpl- logy pi bits [29]

=1

The set of source units is referred to as an alphabet and source units are
called symbols in this thesis.

Entropy of a source unit z; is equal to
H; = —logy p; bits [29]

12

1.5. Arithmetic coding

Entropy of a message X = x;,z;, ...z, X € ST is equal to
k
H(X)=—> log,pi bits [29]
j=1

Entropy gives us a theoretical limit for data compression — given entropy H
of the source units and the length n of the input message, we cannot compress
the message further than to nH bits on average.[27] A good compressor should
compress the input data close to its entropy. The term entropy encoders is
used for encoders which are almost optimal.[27]

Definition 12. Statistical compression method is a compression method
which assigns variable-size codes to the symbols depending on the probability
of their occurrence (symbols which appear more often in the data have shorter
codes than those which appear less often).[27]

We note here that arithmetic coding (mentioned further) is also considered a
statistical compression method; it assigns a code to the whole input (based on
the probabilities of individual symbols), however.

Definition 13. Context-based compression method is a compression
method which assigns probability to a symbol according to context of that
symbol (by context, we mean N preceding symbols).[27]

1.5 Arithmetic coding

All information about arithmetic coding contained in this section has been
taken from [27] (direct citations are explicitly marked).

Arithmetic coding is a statistical method of compression which assigns a
code to the entire input data. This is an advantage over statistical compres-
sion methods which assign codes of integer length to individual symbols; if we
consider Huffman compression method, which produces best codes for indi-
vidual data symbols, the average size of codes produced by Huffman coding
equals the entropy of input data only if the probabilities of symbols are equal
to negative powers of 2. Arithmetic coding overcomes this problem; it is an
entropy encoder.

The basic idea of arithmetic encoding is narrowing an initial interval [0, 1)
with every consecutive input symbol; symbols with higher probability narrow
the interval less than symbols with lower probability (this corresponds to the
fact that the number of bits needed to specify the interval grows as the interval
gets narrower). The output of arithmetic coding is a number from the range
[0,1), thus we only need to store the decimal part of the resulting number
(the integer part is always 0). In fact, the output can be any number from
the final interval.

This was just a brief intro; further we show the principle in detail and
together with an example taken directly from [27].

13

1. PRELIMINARIES

1.5.1 Encoding process

We summarize the whole encoding process by a direct citation of Salomon’s
book [27]:

1. Start by defining the “current interval” as [0,1).

2. Repeat the following two steps for each symbol s in the input stream:

a) Divide the current interval into subintervals whose sizes are pro-
portional to the symbols’ probabilities.

b) Select the subinterval for s and define it as the new current interval.

3. When the entire input stream has been processed in this way, the output
should be any number that uniquely identifies the current interval (i.e.,
any number inside the current interval).

Salomon also states that the probabilities used in step 2a don’t need to
be rigid during the whole encoding process — they may change all the time.
This also means that we can even encode symbols from different alphabet in
every iteration of the encoding cycle (if we have a decoder that works the same
way).

In our example, we are using semi-adaptive version of arithmetic coding
(which first inspects the input data to determine probabilities of the symbols
and then encodes using these probabilities); there is also an adaptive variant
of arithmetic coding which updates the probabilities with every consecutive
symbol read from the input, and for an alphabet of fixed size, we could also use
some fixed probabilities (with no respect to the input data). For simplicity,
we omit here the necessary step of storing the symbol ranges into the output
(so that the decoder can read them as a necessary initial info).

The input data for encoding is string SWISS_MISS. Table contains
information which is used in the encoding process — for every input symbol, it
contains its frequency in the input data, its probability (based on the number
of its occurrences in the input data) and a corresponding subrange. The
subrange is always relative to the current interval (see step 2a in the algorithm
described above). In fact, the second and third column are there just for
clarification of how subranges have been computed.

In the encoding algorithm, we can describe the current interval borders
by variables Low and High. Then, in algorithm step 2b, we can calculate the
new interval borders NewLow and NewHigh using the following formulas, where
LowRange (X) and HighRange(X) are borders of the subrange for symbol X
being encoded in the current iteration:

NewLow:=Low+ (High-Low) *LowRange (X)
NewHigh:=Low+(High-Low)*HighRange (X)

14

1.5. Arithmetic coding

Table 1.3: Table for arithmetic coding example 1

input symbol | frequency | probability | subrange
S 5 0.5 [0.5,1.0)
W 1 0.1 [0.4,0.5)
I 2 0.2 [0.2,0.4)
M 1 0.1 [0.1,0.2)
_ 1 0.1 [0.0,0.1)

To make the process clearer, we show how the variables Low and High
are changing during encoding of our example input for the first three input
symbols:

encoding symbol S:
Low=0.0+ (1.0—-0.0) «0.5 = 0.5
High = 0.0 + (1.0 — 0.0) * 1.0 = 1.0

encoding symbol W:
Low=0.5+(1.0—-0.5) %« 0.4 = 0.70
High=0.5+ (1.0 —0.5) * 0.5 = 0.75

encoding symbol I:
Low= 0.7+ (0.75 - 0.70) 0.2 = 0.71
High = 0.7+ (0.75 — 0.70) * 0.4 = 0.72

If we continued until the whole input string has been encoded, then after
encoding the last symbol, Low would be equal to 0.71753375 and High would
be equal to 0.717535. Then we could output any number from the interval
[71753375,717535) as result of the compression (a good practice is to choose
the number with shortest bit representation).

1.5.2 End-of-message problem

It’s necessary to mention that we must also add some mark for the decoder
to stop the decoding process (we don’t consider this fact in our examples for
simplicity). One possibility is to output the size of the input first (which can
then be read and remembered by the decoder), another possibility is to add
a special EOF symbol to our alphabet (this symbol should have a very small
probability and should be encoded after the last symbol of the input message;
when the decoder decodes this special symbol, it knows that the decoding
should stop).

15

1. PRELIMINARIES

1.5.3 Decoding process

In our semi-adaptive example, the decoder first reads info on input symbols
and their ranges (stored by the encoder). Then it reads the code representing
the encoded data (described as Code later in this subsection). Afterwards,
until the end of the message has been reached (this problem was discussed in
the previous subsection), it repeats the following steps:

1. Using the info on symbols and their ranges, find the range to which
the number Code belongs; this specifies the decoded symbol X (for
example, if Code equals 0.47, then we have decoded symbol W since
0.47 € [0.4,0.5)).

2. Compute the new value of Code:

Code:=(Code-LowRange (X)) / (HighRange (X) -LowRange (X))

Let’s say that the code stored by encoder in our encoding example was
71753375, thus the initial value of Code equals 0.71753375. Here we show the
decoding of first three symbols of our encoded message.

The first decoded symbol is S since 0.71753375 € [0.5,1.0). Let’s recompute
the value of Code:
Code = (0.71753375 — 0.5) /0.5 = 0.4350675

The second decoded symbol is W since 0.4350675 € [0.4,0.5). Recompute
Code again:
Code = (0.4350675 — 0.4)/0.1 = 0.350675

The third decoded symbol is I since 0.350675 € [0.2,0.4). Recompute Code
again:

Code = (0.350675 — 0.2)/0.2 = 0.753375

This way the decoder continues until whole message has been decoded.
We have described here the theoretical variant of arithmetic coding, real im-
plementations are a little bit different and more complicated. The differences
are described in the following subsection.

1.5.4 Implementation of arithmetic coding

A big disadvantage of the previously described theoretical concept of arith-
metic coding is that it requires unlimited precision of numbers Low and High.
Another disadvantage is that the number Code can be very long and dividing
such number would be slow. These problems with precision and complexity
can be solved by using integers of fixed length for computation; this requires
a slight modification of the previously described algorithm.

16

1.5. Arithmetic coding

Table 1.4: Table for arithmetic coding example 2

input symbol | frequency | CumFreq

S))
W 1 4
I 2 2
M 1 1
- 1 0

In the following text, we are explaining this modification using imaginary
integers with capacity of 4 decimal digits to keep values of Low, High and
Code. The largest digit here is thus 9; in practice, we would use for example
32-bit integers and we would work with binary digits — in that case, the
largest digit would be 1 and otherwise the approach would be the same as for
decimal digits.

The values of Low and High are initialized to 0000 and 9999, respectively
(for both encoding and decoding). When, in some moment, the leftmost digit
of Low equals the leftmost digit of High, then the leftmost digit is output and
both Low and High are shifted by one to the left (the new rightmost digit of
Low is then set to 0 and the new rightmost digit of High is set to 9).

The described handling of Low and High fulfils both of the following re-
quirements (we don’t show the proof here, it can be found in [27]):

1. The initial value of Low and High is equal to 0 and 1, respectively.

2. The value of both Low and High can be interpreted as a fraction less
than 1.

Now we show how the encoding and decoding process changes when using
the fixed-length integers, as well as an example directly taken from [27]. The
coder needs information contained in Table |[1.4] which is quite similar to Table
though there is a new column containing values of CumFreq(X) (cumula-
tive frequency) for each symbol X. We can then define TotalFreq as the sum
of CumFreq(X) for all X (which equals 10 in our example), LowCumFreq(X) as
CumFreq(X) and HighCumFreq(X) as CumFreq of the symbol above X in the
table (or as TotalFreq if no such symbol exists).

The formulas for recomputing Low and High are slightly different here
when compared with the theoretical variant:

NewLow:=Low+(High-Low+1) *LowCumFreq(X) /TotalFreq
NewHigh:=Low+(High-Low+1)*HighCumFreq(X) /TotalFreq - 1

17

1. PRELIMINARIES

1.5.4.1 Implementation of arithmetic encoding

We again want to encode string SWISS_MISS in our example. Here we show
how the encoding proceeds for the first three input symbols:

encoding symbol S:
Low =10+ (9999 — 0+ 1) * 5/10 = 5000
High =0+ (9999 — 0+ 1) * 10/10 — 1 = 9999
Output: none

encoding symbol W:
Low = 5000 + (9999 — 5000 + 1) *4/10 = 7000
High = 5000 + (9999 — 5000 + 1) % 5/10 — 1 = 7499
Output: 7 (Low = 0000, High = 4999)

encoding symbol I:
Low =0+ (4999 — 0+ 1) *2/10 = 1000
High =0+ (4999 — 0+ 1) *4/10 — 1 = 1999
Output: 1 (Low = 0000, High = 9999)

Now let’s imagine that we have processed all symbols from the input string,
not just the first three symbols. After encoding the last symbol, the values
of Low and High equal 3750 and 4999, respectively. Then 3750 is output and
the encoding is finished. We again omitted the fact that in practice, we would
probably encode some special EOF symbol as last symbol of the message.

1.5.4.2 Implementation of arithmetic decoding

The values of Low and High are initialized and recomputed the same way as
during encoding. The initial value of Code is set to first 4 digits from the
compressed data (which is, in our shortened example, 7175).

When the values of Low and High are shifted (which would result in output
of the first digit during encoding), Code is also shifted (to the left by one) and
the rightmost digit of Code is set to the next digit from the compressed data.

The decoding process can be summarized as follows (partially a direct
citation from [27]; we don’t show an example calculation here):

1. Calculate index:=((Code-Low+1)*TotalFreq-1)/(High-Low+1) and
truncate it to the nearest integer.

2. Use the value of index to find the next symbol by comparing it to the
cumulative frequencies from Table

3. Update Low and High (already described).

4. Update Code if Low and High have been shifted (already described).

18

1.6. PPM

1.5.4.3 Underflow problem

The shifting of Low and High prevents the values of both variables from getting
too close to each other when the first digits of Low and High are equal. How-
ever, it could happen that they get close to each other anyway (for example
when both values converge to 500000, then Low can reach the value of 499999
and High can reach the value of 500000; then the algorithm will not output
anything for the rest of iterations, even if it should). We need to detect such
cases early and rescale the variables to avoid this situation.

Salomon’s book [27] shows a solution for case when Low has reached the
value of 49zzzx and High has reached the value of 50yyyy. Then we should
set Low to 4xzxx0 an High to Syyyy9. If we do this n times before the most
significant digits of Low and High become equal, then if the most significant
digit equals 4, we output n zeros, else the most significant digit equals 5 and
we output n nines.

1.6 PPM

All information about PPM contained in this section has been taken from [27]
(direct citations are explicitly marked).

PPM is a state-of-art, context-based compression method where the coder
maintains a statistical model and uses an arithmetic coder as a subprocedure
for the actual coding. We show here the most important motivation for using
this method for text compression (although the use of this method is, of course,
not limited to compression of texts).

e In English text, when we encounter a ‘t’ letter, there is about 30%
probability that the next symbol is ‘h’. After letter ‘q’, there is about
99% probability that the next symbol is ‘u’ etc. This means that we can
use the context to reduce the number of bits required to encode ‘h’ in
context ‘t’ (similarly for ‘v’ in context ‘q’ etc.), since we already know
that high probability symbols make the arithmetic coder output less bits
than low probability symbols.

An N-order PPM considers last N symbols when estimating the probability
that the next symbol is S. N shouldn’t be too large for the following reasons:

o We must somehow encode the first N symbols of the input before we can
encode any symbol in context of length N; encoding the first N symbols
might be a problem reducing the overall compression.

e For a given fixed-sized alphabet, the number of possible contexts grows
exponentially with N, which may make the statistical model unaccep-
tably large (too much memory-consuming).

19

1. PRELIMINARIES

e As we go through the input data, its nature may be changing signifi-
cantly. For a better compression, the context shouldn’t retain too much
information about old data.

An adaptive version of PPM builds a statistical model which is updated
with every incoming symbol. PPM may also use a static model, but we deal
only with the adaptive version in this thesis. The adaptive version is slower
and more complex, but it is generally better than the static version because
it adapts well to the nature of the input data.

Probably the fastest way to explain how PPM works is to show an actual
example of PPM coding. This example has been taken directly from [27].

1.6.1 PPM example

We have a 2-order PPM model here. Table [[.5] shows what the model looks
like at the moment when string “assanissimassa” has been encoded (notice
that the current context is then “sa”).

The model is being built and updated the same way during both encoding
and decoding; we show an encoding example here. The column f (frequency)
shows how many times we have encountered symbol S in the given context and
p is the estimated probability that symbol S appears in the given context (the
probability estimate is based on f). The probability is used when encoding
the symbols using the arithmetic encoder.

Even though we have a 2-order PPM, we keep also statistics for contexts
shorter than 2. One of the most important ideas of PPM, which stands for
“prediction with partial matching”, is to shorten the context if the model
doesn’t have any info about S in the given context.

There appears a special symbol L in the table, which is called escape
symbol. This symbol is encoded when a not-yet-known symbol (not-yet-known
in the given context) is encountered; this is necessary so that the decoder
knows when to switch to a shorter context.

If the incoming symbol S has not yet been encountered, the encoder doesn’t
find it in any order in the model (including order 0). In such case, the encoder
switches to a special order -1 where each of the possible input symbols is
assigned a fixed probability equal to 1/(size of the alphabet).

Column called “Order 0” in fact keeps statistics about how many times
each of the non-escape symbols has appeared so far (regardless of any context),
thus a 0-order PPM is in fact “just a type of adaptive arithmetic coder”.

Let’s take a look at info about context “ss” in Table The info says
that only symbols ‘a’ and ‘i’ have been encountered in this context so far; ‘a’
has been encountered twice and ‘I’ once. The escape symbol has a frequency
of 2 since the coder had to switch to a shorter context from context “ss” twice
so far (once when symbol ‘a’ was first encountered in this context and once
when symbol ‘i’ was first encountered in this context). Now the meaning of

20

1.6. PPM

Table 1.5: PPM encoding example

Order 2 Order 1 Order 0
Context S f p Context S f p Context S f p
as s 2 2/3|a s 2 2/5|¢ a 4 4/19
as L 1 1/3|a n 1 1/5|¢ s 6 6/19
a 1L 2 2/5]|¢ n 1 1/19
ss a 2 2/5 € i 2 2/19
ss i 1 1/5 s s 3 3/9|¢ m 1 1/19
ss L 2 2/5|s a 2 2/9 ¢ 1L 5 5/19
s i1 1/9
sa n 1 1/2|s L 3 3/9
sa 1L 1 1/2
n 112
an i 1 1/2|n L1 1/2
an 1L 1 1/2
i s 1 1/4
ni s 1 1/2 /i m 1/4
ni L1 o1/2 i L2 2/4
is s 1 1/2|m a 1 1/2
is L1 1/2|m L1 1/2
si m 1 1/2
si L1 12
im a 1 1/2
im L1 1/2
ma s 1 1/2
ma 1L 1 1/2

all info in the table should be clear. Here we show how the next symbol S
will be encoded — there are 4 possible situations depending on the value of S
(the current context is “sa”, as already mentioned):

1.

Imagine that S equals ‘n’. The model does contain info about symbol
‘n’ in context “sa” — the probability of ‘n’ in context “sa” is 1/2. The
info about each context in Table can be used similarly as the info in
Table the arithmetic coder thus encodes range [0.5,1).

Imagine that S equals ‘s’. There is no info about symbol ‘s’ in context
“sa”, so the escape symbol is encoded in context “sa” (the arithmetic

coder thus encodes range [0,0.5)). The context is then shortened to “a”

21

1. PRELIMINARIES

and the encoder is in order 1; in context “a”, the probability of ‘s’ is 2/5
(the arithmetic encoder thus encodes [3/5,1)).

3. Imagine that S equals ‘m’. The encoder will have to switch to order 1
and then to order 0 where ‘m’ is finally found, thus the arithmetic coder
will encode ranges [0, 0.5), [0,2/5) and [5/19,6/19).

4. Imagine that S equals ‘d’. The encoder will have to switch to order 1,
then to order 0 and then to order -1 since ‘d’ never appeared before.
The arithmetic coder will encode ranges [0,0.5), [0,2/5), [0,5/19) and
then a range in context -1 (now not citing Salomon’s book: if we have
an alphabet of size 28 including escape symbol, then this range could be
[4/28, 5/28) if we treat ‘d’ as the fifth letter of our alphabet; encoding
an escape symbol in -1 order is used to mark the end of coding, by the
way).

Here is a short information on how the model is updated with an incoming
symbol— the frequencies and probabilities are updated for every order in the
model; if S equals ‘s’, then we increment frequency of ‘s’ in contexts “sa”,
“a” and e and the probabilities of symbols in these three contexts are updated
accordingly. We take a deeper look on this when presenting the data structure

for the model in Section [1.6.4]

1.6.2 Exclusion

Exclusion is a technique which improves the compression ratio achieved by
PPM.

Consider the situation when the encoder was about to encode ‘s’ in context
“sa” in the previous subsection. According to Table there was no ‘s’
encountered in context “sa” so far, so the encoder encodes an escape symbol
and switches to order 1. Now imagine what the decoder would do here when
decoding — it would decode the escape symbol and switch to order 1 as well.
However, the decoder would now know that the encoded symbol is not ‘n’ since
otherwise it wouldn’t have been necessary to switch to shorter context (‘n’ is
already present in the table for context “sa”). This can be utilized here when
encoding in order 1 — we know that symbol ‘n’ now has zero probability
in context “a”, so we temporarily exclude it from statistics for context “a”
and thus ‘s’ can be encoded in order 1 using range [2/4,1). If we didn’t use
exclusion, this range would have been [3/5,1) which is a narrower range than
[2/4,1); we see that, thanks to exclusion, the arithmetic coder will output less
bits.

The exclusion principle can, of course, be used in any order, including -1
order. When encoding an incoming symbol, the encoder just remembers all
excludable symbols on its way to shorter contexts and excludes them appropri-

22

1.6. PPM

ately as described. For the next incoming symbol, the encoder does the same
(but it builds the list of excludable symbols again from scratch, of course).

1.6.3 PPM variants

There are several variants of PPM which differ in the way of assigning pro-
bability to the escape symbol. Let us recall that the estimated probabilities of
symbols in Table are based on their observed frequency. In our example, we
used PPMC, which, for a context X, sets the frequency of the escape symbol
to a value equal to number of distinct symbols encountered in this context
so far; this approach works good in practice since it keeps the frequency of
the escape symbol relatively high when the encoder is encountering a lot of
symbols not yet seen in the given context (in such case, it’s quite likely that
another not-yet-seen symbol will appear) and relatively low when not many
not-yet-seen symbols are being encountered.

There are another common variants of PPM: PPMA always assigns the
escape symbol a frequency of 1. PPMB is similar to PPMC, but when a
symbol is encountered for the first time in the given context, PPMB keeps the
symbol frequency on zero until it is encountered for the second time (since the
second occurrence, the frequency of the symbol is incremented as in PPMC).
Variants PPMP and PPMX treat the appearance of each symbol as a separate
Poisson process and they estimate the probability of escape symbol using this
assumption.

In practice, PPMC is slightly better than PPMA and PPMB but slightly
worse than PPMP and PPMX.

1.6.4 PPM data structure

The most important requirement on data structure holding the PPM model
is that updating the model and searching for the appropriate context should
be fast. We present here a tree-like data structure called trie. For an N-order
PPM, it reaches maximum depth of N + 1.

On Figure we show how the trie changes during encoding of the first
4 symbols of string “assanissimassa’ with an 2-order PPM. There is always
a root node which represents -1 order. The nodes in depth 1 then represent
order 0, the nodes in depth 2 represent order 1 etc. Each node except the root
stands for one symbol in the given context and holds info on how many times
we have seen this symbol in the given context; the context is specified by the
shortest path from root to a specific node (when we look at the second trie
diagram, the node a; 1 says that symbol ‘a’ has appeared once so far, the node
below says that in context “a”, symbol ‘s’ has appeared once so far etc.). For
each context, just one node is added effectively.

The grey nodes are the nodes added/updated with the current incoming
symbol. The dotted lines are pointers which we call suffix links; they point to

23

1. PRELIMINARIES

Figure 1.1: Example of PPM trie - encoding first 4 symbols of string “assanis-
simassa” with an 2-order PPM (created using Graphviz[30])

the node representing shorter context (thus, during encoding and decoding,
the context can be shortened quickly and easily); for simplicity, each of the four
diagrams shows only newly added suffix links, but the old ones still remain in
the model. The last piece of diagram to explain is the isolated vertical arrow
pointing to one of the nodes in each of the diagrams; this is a pointer called
base pointer and it points to the deepest one of the nodes added /updated with
the last incoming symbol (it tells us where to start when processing the next
incoming symbol).

The first of the trie diagrams shows what the model looks like when the
first symbol (‘a’) has been processed; we added one node saying that ‘a’ has
been encountered once (in empty context) and we set a suffix link from context
“a” to the shorter context, which, in this case, is empty context represented
by root.

Then we encountered symbol ‘s’. We added a new node for symbol ‘s’ in
context “a” and a new node for symbol ‘s’ in empty context; the suffix links
have been set similarly as in the first case. Notice that the place where to
start updating the model was specified with the base pointer (so we found it
in constant time) and that after adding the first node, we used the existing
suffix link from node “a;1” to find where to add the second node (again in
constant time).

In the third diagram, we show how the trie is updated with the third

24

1.7. Text compression

symbol, which is ‘s’. We added a new node for symbol ‘s’ in context “as” and
then a new node for symbol ‘s’ in context “s”; the existing node representing
symbol ‘s’ in empty context has been just updated (the frequency of ‘s’ in
this context has been incremented). Again, we used base pointer and existing
suffix links to update the model quickly.

In the fourth diagram, we updated the trie with the fourth symbol, which
is ‘a’ — two nodes have been added and one node has been updated since it
already existed. Notice that we didn’t increase the depth of the trie above
N + 1 — we used the base pointer to find where to start the update but we
didn’t add any child node there.

That’s how updating of the trie works. In Table [I.5] we also had info on
the frequencies of escape symbols; the frequency of escape symbol in the given
context is (in case of PPMC) equal to the number of child nodes of the node
representing the given context, so the number of child nodes is kept for each
of the nodes in the trie. The probabilities of the symbols are then calculated
the same way as in Table

1.7 Text compression

This section contains a very brief intro into text compression which may be
useful to read before we get further. Basically, the following approaches are
used:

e encoding text as a sequence of characters,
e encoding text as a sequence of words,

e other, more “exotic” approaches, like syllable-oriented compression (this
approach was used on Czech text in [31] with ambiguous results).

The first two approaches are the most common ones. Since we want to uti-
lize word-related info (lemmas and tags) during the compression, it makes no
sense to use some other method than word-based compression. The following
subsection contains a very basic comparison of word-based and character-
based compression and it also gives a very brief summary of some of the key
properties of word-based compression.

1.7.1 Word-based compression properties

As already mentioned, we focus on compression ratio rather than on speed of
the compression and decompression in this thesis. According to [32], “words
reflect the true entropy of the text much better than characters”, thus it makes
sense to use word-based compression instead of character-based compression
when compressing natural text. Another hint that the word-based approach
is better is thesis [33] where word-based methods generally achieved better

25

1. PRELIMINARIES

compression ratio than comparable character-based methods on large text
files.

Source [34] praises word-based compression as well and uses Heaps’ law
to justify two important statements about the word-based approach. We first
present this law using source [35]:

Theorem 1. Heaps’ law:
M = kT?

where M is vocabulary size (number of distinct terms in the collection), T is
number of tokens in the collection and k& and b parameters with unspecified
values (typically 30 < k < 100 and b = 0.5).

The two important statements from [34] are:

1. We have to manage a large source alphabet (alphabet of words); however,
the size of the alphabet grows slower and slower as the text collection
gets larger.

2. The size of the source alphabet is relatively large for small documents,
thus an adaptive word-based compression may not be useful for small
documents (there is not enough data to build a good model).

With the information contained in this section, we can state that word-
based compression is a good choice anyway. We should just keep in mind the
two consequences of the Heaps’ law mentioned above.

1.8 State of the art

This section contains info about what has been achieved in the field of loss-
less natural text compression using lemmatisation, tagging and morphological
generation before this thesis has started. However, it seems that with Czech
text, not much has been implemented (or published) so far and the same it is
with other languages.

1.8.1 State of the art for Czech language

According to our best knowledge, there is only a paper by Ondrej Kazik and
Jan Lansky [36] describing how part-of-speech tags can be used in compres-
sion of natural Czech text. According to this publication, the authors have
shown that “separation of coding of part-of-speech tags of a sentence (so called
sentence types) from the text and coding this sentence types separately can
improve resulting compression ratio”.

The main point in their compression algorithm is that they use sequences
of consecutive part-of-speech tags to identify a “type of sentence” (though

26

1.8. State of the art

they work here rather with pieces of sentences than with entire sentences);
the encoded type of sentence then specifies the part-of-speech tags of the next
N words. For each part-of-speech, they have a separate model of words. Last
but not least, they use an initial model in their adaptive algorithm, so that
the coder can use some pre-gathered info about natural Czech text before
reading any single byte from the text to be compressed. It’s necessary to say
that their compression algorithm works well especially with small files; when
compressing files larger than 100 kB, it is surpassed by the common bzip2
compression algorithm.

1.8.2 State of the art for other languages

We didn’t find any specific work here. There is a paper from 1992 by R. Nigel
Horspool and Gordon V. Cormack [37] stating that “the rules of grammar
strongly influence the probabilities of certain words appearing in certain con-
texts”. The document proposes following method of using part-of-speech tags:
If there is a word the part of speech of which equals X, then encode the next
word using probability estimates associated with X. Actually, this is the idea
of one of our experiments performed in scope of this thesis.

27

CHAPTER 2

Analysis

This chapter summarizes our ideas and our requirements on the final program
before the design phase. All information about MorphoDiTa in this chapter
is taken from [23] if not stated otherwise. See Section [1.3|for a brief intro into
this tool.

We should mention here once more what our priorities are: We are trying
to create a compressor with a good compression ratio and we don’t really care
about speed or memory consumption as long as speed and memory consump-
tion are acceptable. That’s why we occasionally ignore possible speed and
memory consumption improvements if this ignorance doesn’t negatively affect
the compression ratio and if it simplifies the implementation.

We want our program to be compilable and runnable on GNU/Linux; a
version for Windows may be added in the future but that is not our priority
in this thesis, since our task is just proof of the concept (MorphoDiTa works
under both GNU /Linux and Windows|[5]).

2.1 Incorporating MorphoDiTa into our project

We already know that MorphoDiTa is available in three basic forms: as a
standalone tool, as a library and as a web service.[6] Using MorphoDiTa as
a library seems to be the most convenient option for our compression expe-
riments. When we unpack the archive with MorphoDiTa 1.3.0 (downloaded
from [21], as already mentioned), we find a makefile which can be used to
easily create either static or dynamic library; using a static library should be
easier and we don’t have any special reason to use the dynamic version in our
program.

The MorphoDiTa API is defined in header file morphodita.h, thus we
should include this file into our code project to get the necessary declarations.

It seems useful to wrap all used MorphoDiTa functionality somehow so that
we have an interface separating MorphoDiTa from the rest of our program (if
the MorphoDiTa API changes a little bit in some of the future versions, it

29

2. ANALYSIS

shouldn’t be that hard to incorporate the new version into our project this
way).

2.2 Input of our compression program

In this section, we discuss how the text input of our compression program
should be processed.

2.2.1 Input encoding

A Czech text is expected to contain diacritics. Moreover, a Czech text may
contain characters from any existing alphabet (it may e.g. include some Chi-
nese characters, when the topic is China-related). Thus it makes sense to
use some Unicode encoding. Since all strings sent to MorphoDiTa should be
UTF-8-encoded, we decided that our compression program will only work with
UTF-8-encoded texts.

2.2.2 Input processing
2.2.2.1 Tokenizing the text input

As already mentioned, our compression algorithms will be word-based, so we
would like to tokenize the text into words. We use term white token for tokens
separating the words and term black token for the words themselves, thus we
can describe the input text as a stream of black and white tokens.

We can use MorphoDiTa class tokenizer to split the text into tokens (an
instance of tokenizer can be acquired from an instance of tagger or morpho).
Class tokenizer offers the following important methods:

e void set_text (string piece text, bool make_copy = false)
which accepts text to be processed by the tokenizer,

e bool next_sentence (

std::vector<string piece>* forms,

std::vector<token range>* tokens
)
which tokenizes the next sentence if there’s some text left to process
(forms holds info about token ranges in bytes, tokens holds info about
token ranges in Unicode characters — we can set either of the parameters
to NULL to prevent getting info we don’t need); we just note that it is
not clear what exactly is considered a sentence here.

The tokenizer only gives us borders of black tokens; since our compression
must be lossless, we need to encode the white tokens too, thus we have to
calculate the borders of white tokens on our own (knowing the borders of
black tokens, it is algorithmically easy though).

30

2.2. Input of our compression program

2.2.2.2 Input reading

We need to handle the file reading before passing the text to MorphoDiTa
tokenizer since no method from MorphoDiTa API processes the input file
directly. Our input reader should just be able to deliver the next piece of
input text to tokenizer when needed.

A slight problem here is that when the tagger does tagging and lemmati-
sation on a piece of sentence, it may perform differently (and maybe worse)
than when tagging the whole sentence (see experiments with “isolated tag-
ging” later in this thesis). As already mentioned, only the tokenizer class
knows what should be considered a sentence. We could use some heuristics
here to estimate what a sentence is or we could just deliver a fixed number
of lines to the tokenizer everytime and accept risk of a slight degradation of
tagging. Another possibility is to deliver the whole input text at once; this
approach sounds kind of dummy but we surely won’t accidentally split sen-
tences this way and the waste of memory is still acceptable here (we don’t
plan to work with extremely large files in this thesis). Last but not least, such
a dummy input reader is very easy to implement.

2.2.2.3 Input stream for compression

We already know that once the text has been tokenized, it is very easy to do
the tagging and lemmatisation (using just one method of MorphoDiTa class
tagger). However, we don’t want the compressor itself to deal with tagging
all the time in our compression experiments; the compressor should receive
already prepared tags and lemmas and just use them.

Similarly, we already know how to get stream of white and black tokens
from the input text but the compressor should be separated from the process of
tokenizing. If we look at a text, it is in fact a stream of regularly alternating
black and white tokens, with some white tokens possibly being empty (ha-
ving zero length): In text “Mé vznasedlo je plné thoiu.”, there are six black
tokens (according to MorphoDiTa tokenizer) and five white tokens between
them (according to our definition), including an empty white token between
“thof” and “.”. We could somehow wrap the tokenizing process so that the
compressor knows that after every black token, there is a white token and
the other way around. Moreover, we can make every input text start with
a black token to simplify things further (either the text really starts with a
black token or we add there an “artificial” empty black token, which probably
won’t happen very often).

Summarizing the two paragraphs, the custom input stream for compression
could look as follows:

e The stream starts with a black token and then the white and black
tokens alternate regularly.

31

2. ANALYSIS

e For every black token, the stream contains its lemma and tag.

We may not need lemmas and/or tags in every compression experiment, so
there could be an option to turn off automatic tagging and lemmatisation in
our input module, but we won’t implement such option unless the unneeded
tagging and lemmatisation is a big performance problem.

2.3 Test files

It would have been optimal to test the compression performance on a compres-
sion corpus, which would ensure that the test set is balanced and that we can
easily compare our algorithms against other compression methods. However,
as far as we know, there is no such corpus of files containing natural Czech
text, thus we had to create our own test set.

Our final test set consists of the following files:

e genesis.txt (124.2 kB) — first of the five books of Thorah, translated
by Isidor Hirsch; rather an archaic text with verse-like structure and
frequent repetitions of words (available in [3§]),

e komunikace.txt (49 kB) — O digitdlni komunikaci, a technical essay
about digital communication by Tom&s Svoboda; this text is relatively
informal, using modern language (available in [39]),

e mloci.txt (456.8 kB) — Vidlka s mloky (War with the Newts), a novel by
Karel Capek; a piece of literary art containing an extensive vocabulary
(available in [40]),

e zakonik.txt (1.3 MB) — civil code of the Czech Republic (Obcansky
zakonik) released in 2012; a structured text with frequent repetitions of
words (available in [41]).

This test set seems to be diverse enough to give us basic estimate of how
successful our compression algorithms are, since it contains texts of various
style, structure and length (the set contains no very small file though since it
makes no sense for adaptive compression methods; the selection of compression
method is described further in this thesis). Information about licensing of the
texts is available in a readme file enclosed in the test files folder.

2.4 Compression experiments

In this section, we present the main ideas of each of the experiments, discuss
possible difficulties and suggest how to overcome the difficulties. Full and
formal specification of each of the experiments is presented in Section

32

2.4. Compression experiments

We want to compress the text in a fully linear way, just as a stream of
tokens without recognizing any deeper structures. The compression of a piece
of the text will be influenced only by the preceding text. We will heavily focus
on context-based compression approach since the probability of a word or its
grammatical categories is often strongly influenced by the previous words and
their grammatical categories. PPM, a state-of-art context-based compression
method, seems to be a suitable compression method in this case when we are
focusing on compression ratio. We want to use a fully adaptive version of
PPM for the following reasons:

e A fully adaptive version of PPM adapts well on the input data.

e A static (fully nonadaptive) version of PPM would probably produce
poor results for texts with unusual structure. Moreover, creating a static
model containing all possible tokens for our word-based compression
would be challenging.

e A fully adaptive version of PPM seems to be easier to implement than
some semi-adaptive version of PPM which would first build the model
according to input data and then compress using this model (we would
have to pass through the input text twice and we would also have to store
the model in the compressed file so that the decoder can use the same
model for decompression); both versions should asymptotically produce
similar results anyway.

We could also prepare some tiny static model (as universal for different
texts as possible) and always start the adaptive compression with this initial
model. This would very likely improve the compression ratio when compared
with the fully adaptive method, but we won’t do that in this thesis to keep
things simple.

Our plan is to develop a basic word-based compression algorithm and then
to try to improve this word-based compression using the linguistic tools. In
fact, the word-based compression will be just a reference algorithm to evaluate
if a specific way of using the linguistic tools is beneficial or not. Rather than
developing a highly complex compression algorithm, we will focus on one-
dimensional improvements of the basic word-based compression to show which
approach is probably worth developing further.

2.4.1 Basic word-based compression

The proposed word-based compression algorithm surely could be improved in
many ways (for example by cleaning the model from words which haven’t been
used for a long time to increase the probabilities of more frequent words) but
we just want a reasonable reference algorithm, not a perfect one.

33

2. ANALYSIS

2.4.1.1 Handling the tokens

The main benefit of the word-based compression is that it takes entire words
(tokens) as input symbols; this means that, practically, each unique word is
assigned an identifying ID and the compression method then works with the
IDs instead of the actual words. If we, during our adaptive compression, en-
counter a not-yet-known word, we must assign it a not-yet-used ID. Moreover,
we have to encode the new word character by character so that the decoder
knows what the not-yet-known word looks like (thus our word-based compres-
sion will use a character-based compression as a subprocedure).

Since the set of black tokens appearing in a text should logically have no
intersection with the set of white tokens, we will use different models for black
and white tokens. We already suggested an input module delivering stream
of regularly alternating black and white tokens, which we can use here — the
compressor doesn’t have to encode whether the current token is black or white
(on the other hand, it will sometimes have to encode tokens of zero length).

The last idea is about the model of white tokens. We don’t expect having
many different white tokens in an average text, thus the model of white tokens
will usually be very tiny — the most frequent white tokens will be a space, a
newline and a white token of zero length (empty token), other white tokens
are expected to be much less frequent and rather unusual. Going deeper
in this analysis, we can guess that the newline-token will probably appear
frequently only after a few specific black tokens (like “.”, “?” or “I”). We
can also guess that after tokens like “” or “;”, a space-token will appear far
more frequently than any other white token. Also after token “(”, an empty
white token will follow almost always. Based on this observation, we suggest
a simple heuristics of holding an individual model of white tokens for every
character appearing at the end of a black token (thus we will have a model
for white tokens appearing after character ‘,’, another model for white tokens
appearing after character ‘s’ etc.). Because of small number of distinct white
tokens in an average text, we suggest that all the models of white tokens share
a single alphabet of white tokens, so that the few white tokens don’t have to
be encoded character by character again and again.

2.4.1.2 Handling the case of letters

Another question is how to encode case of letters; we are opening this question
for the following reasons:

e Two words which differ only in case of some letter(s) are two different
words for us. More different words generally means more bits spent to
encode a word on average (because we have larger alphabet of words);
also considering two words different just because of different letter case
may break our context model pretty much (which may result in more
bits required for encoding, again).

34

2.4. Compression experiments

e We already saw that the MorphoDiTa tools may discard some informa-
tion about letter case; since we are not allowed to alter the text in any
way, we would like to have some clever way to get over this problem and
store the information about letter case separately if we need it.

It probably makes no sense to store information about case of every letter
in the text — this would mean storing a lot of mostly unuseful information
since a very big majority of letters in a natural text is lower-case. We could
apply a heuristics here — the first word after tokens “.”, “77 “I” usually
starts with an upper-case letter, so let’s encode the letter case only for first
letters of words appearing just after “.”, “?”, “!”: this will solve most of our
lower case-upper case problems and at the same moment we won’t spend much
bits on storing information about the letter case.

After storing the case of the first letter as described, we can modify the
word so that the first letter of the word is in expected case; this will reduce
lower case-upper case duplicities of words in our alphabet of words. For exam-
ple, we will change the word “Pes” (“dog”) to “pes” since “pes” is the usual
form of this word, but for word “Alice” (name), we will keep the first letter
in upper case since if we encounter this word inside a sentence next time, it
will almost surely start with the upper-case letter too.

The heuristics in fact switches between two states (activated and deacti-
vated) depending on the current black token, as shown by Figure

2.4.2 Basic experiment using morphological generator

We start with a short motivation: As already mentioned, Czech language is
highly inflective, thus there may be many different forms of a single word. For
example, let’s consider word “maly” (“small”) — according to MorphoDiTa,
it may occur in any of the following forms:

malej malejch malejm malejma malou malym mald malé malého malém malé-
mu mali maly malych malgho malym malyma malymi malymu mensim mensi
mensdich mensiho mengim mensima mensimi mensimu nejmensim nejmensi
nejmensich nejmensitho nejmensim nejmensima nejmensimi nejmensimu

If we also include forms with a negative prefix, we get twice as many forms.
Our basic word-based compression has to treat all those forms as different
words — this increases the total size of black token alphabet and it may also
worsen our context model since the model doesn’t know that “maly” and
“malym” are in fact the same contexts, only with different grammatical case.

We have already shown how a morphological generator works: given a
lemma and a tag (possibly containing wildcards), it generates all possible
word forms for that lemma and tag. If the tag contains only ‘?’ characters
(such tag is called empty tag in the rest of this thesis), the generator generates

35

2. ANALYSIS

{IV.IV’ ”?H’ Vl!”}l non-word

niuonomn mn
{".,)

word

Figure 2.1: Diagram showing how the letter case heuristics switches between
states (activated = 1, deactivated = 0) depending on the incoming black token.
By “word” we mean a token starting with any letter of Czech alphabet. When
the heuristics switches from activated to deactivated state, the size of the first
letter of the token is encoded/decoded and the token may be modified as
described in Section [2.4.1.2] Notice that the loop in state 1 allows us to skip
quotation mark at the beginning of a sentence.

all possible forms of the given lemma; that’s the basic idea of this compression
experiment, the description of which follows.

We will alter our word-based compression (described in Section S0
that instead of real black tokens appearing in the text, it stores the correspon-
ding lemmas. As already indicated, it should bring us the following benefits
(all resulting in less bits encoded):

e It will decrease the size of black token alphabet.

e By decreasing the total number of encoded tokens, it will also decrease
the number of character-based encodings spent to encode a not-yet-
known token.

e It will possibly also improve the context model of black tokens.

2.4.2.1 Index storing

To enable decoding of the original word form, we need to store not only the
lemma; it is necessary to store an index into the list of forms generated by
the morphological generator as well to specify the form (the decoder can then
use the stored lemma and index to get the original form). One significant
problem here is that the generation process isn’t always symmetrical with the

36

2.4. Compression experiments

lemmatisation process, as already shown earlier in this thesis. We must deal
with the following special cases:

e For some lemmas, the generator doesn’t generate any forms (like for
lemma “.”, as shown in Section |1.3.5)).

e For some lemmas, the generator generates a non-empty list of forms not
including the form we expect; we show two examples here which have
been found during experiments with MorphoDiTa:

— For form “PSI” (“DOGS”), we get lemma “pes” (“dog”) but the
generator doesn’t generate form “PSI” from this lemma (problem

with letter cases is partially solved by the letter case heuristics
presented in Section [2.4.1.2) but not in this case).

— For form “vynal” ((he) “took out”), we get lemma “vyjmout”
(“take out”), but then we don’t find the form “vynal” in the long
list of forms generated from the lemma.

This means that the encoder must always examine the output of the mor-
phological generator before encoding the lemma and index to make sure that
the decoder is always able to decode the correct form. The encoder can use
the following procedure when deciding what to encode:

e Case 1: The form is successfully generated from the lemma — then we
simply store lemma + index (this case is expected to be the most typical
one).

e Case 2: The form cannot be generated from the lemma — then we store
the form itself as a “pseudolemma”. We must keep in mind that the
decoder won’t know that we stored a pseudolemma instead of a lemma
and it will trie to generate forms from it, thus the following is needed as
well:

— Case 2a: The generator generates no forms from the pseudolemma
— then we don’t have to encode any index (the decoder will know
that if nothing can be generated, then the lemma equals the original
form).

— Case 2b: The generator generates some forms from the pseudolemma
and the pseudolemma is among these forms — then we encode the
corresponding index.

— Case 2c: The generator generates some forms from the pseudolemma,
and the pseudolemma is not among these forms — now we have no
other choice than to encode some special symbol to tell the decoder
that the lemma equals the original form.

37

2. ANALYSIS

Note that, because of case 2c, we have to add one extra symbol into our
alphabet of indexes for every lemma which is not contained among forms
generated from itself.

Last thing to mention — for both lemmas and pseudolemmas, we don’t
have to encode the index if the generated list contains only one form and this
form equals the lemma/pseudolemma used for generation.

The presented way how to overcome the problems with generation is just
one of possible solutions. We could also solve these problems by storing a
flag indicating whether the stored lemma is a real lemma or pseudolemma —
then the decoder would know that it shouldn’t apply morphological generation
on the pseudolemma and we wouldn’t have to add the extra index into the
alphabet of indexes for many lemmas. However, we don’t use this simpler
solution since it may require to store up to one bit per every stored lemma,
while the effect of the extra index in the alphabet of indexes should be not
so significant (the increased size of the alphabet of indexes will affect the
compression only when the PPM encodes in order -1 and usually the size of
the alphabet is big anyway so one extra index doesn’t change much).

2.4.2.2 Lemma ids vs. raw lemmas

We already know that the morphological generator ignores any lemma com-
ments, thus it makes no sense to store full lemmas in this experiment. How-
ever, it may be interesting to inspect how the compression results will depend
on whether we are storing just raw lemmas or lemma ids (let us recall that
lemma ids uniquely identify the lemmas and may thus contain some technical
info which makes them generally longer than raw lemmas).

Using of raw lemmas may worsen the context model (the different meanings
of a word will now be no more distinguished) but it should bring the following
benefits, all possibly resulting in a better compression ratio:

e Thanks to cutting off the technical info from the lemma and to de-
creasing the number of distinct lemmas, less character encodings will be
required.

e The total number of distinct items in the model of black tokens will
(slightly) decrease.

e The number of cases when we don’t have to encode the index will increase
(this is valid for cases when only one form can be generated from the
raw lemma and this form equals the raw lemma while not being equal

to lemma id, see Section [2.4.2.1)).

38

2.4. Compression experiments

2.4.3 Experiment with part-of-speech tags (1)
2.4.3.1 Motivation

It is intuitive that in a natural Czech text, just after an adjective, there often
occurs a noun. Similarly, just after a preposition, there often appears a noun,
pronoun or adjective. On our test files, we performed an experiment showing
how the part-of-speech tag of one word in the text influences the part-of-speech
tag of the next word (now we are talking about the first position in the tag
produced by MorphoDiTa tagger, see [26] for a quick reference).

Table shows the results of this experiment, which was run on files
komunikace.txt and mloci.txt. For every value of the part-of-speech tag
(except value X which is very rare), the table shows the most typical values
of the following part-of-speech tag, together with their observed probability.

We can see that the results are very similar for both files. The table
shows that for many values of POS tag, the distribution of values of the
following POS tag is significantly biased in favour of one or a few values. We
could utilize this in our next compression experiment, the description of which
follows immediately.

2.4.3.2 Experiment description

We start with our basic word-based compression method described in Section
We extend this method with a model of part-of-speech tags — the value
of POS tag will be stored for every black token. We expect that the values of
POS tags will be highly compressible using a context model.

When the POS tag of every stored black token is specified, we don’t need
to hold all black tokens in a single model, we will thus have an individual
model for every value of POS tag. These models will not share the alphabet
of tokens since the number of words which can be correctly assigned multiple
POS tags is insignificant. We expect that this will affect the compression in
the following two ways:

e It will break our original context model of black tokens, which may
worsen the compression (in individual models, we will have a context
model for nouns only, then for adjectives only etc.).

e By dividing the black tokens into multiple models with zero or nearly-
zero intersection, the average number of bits spent to encode a black
token will decrease significantly, which could ultimately result in a bet-
ter compression ratio than the ratio achieved by the basic word-based
compression.

Notice that this way of using part-of-speech tags is very similar to the
approach used in [36].

39

2. ANALYSIS

Table 2.1: POS (part-of-speech) dependency experiment — supposing that
word X has POS tag “POS 17, the table shows which three POS tags “POS
2” are the most probable for word Y following X in the given text

POS 1 komunikace.txt mloci.txt
POS 2 | observed prob. | POS 2 | observed prob.
A (adjective) N 65.8 % N 67.9 %
Z 13.4 % Z 12.8 %
A 8.7 % A 8.0 %
C (numeral) N 52.4 % N 54.5 %
Z 17.7 % Z 13.0 %
A 11.2 % A 8.8 %
D (adverb) v 25.6 % Vv 305 %
A 17.7 % Z 14.6 %
Z 134 % A 11.9 %
I (interjection) | n/a n/a Z 91.0 %
n/a n/a N 3.6 %
n/a n/a J 1.4 %
J (conjunction) | N 22.7 % Vv 25.2 %
A% 17.5 % N 182 %
P 15.0 % P 16.4 %
N (noun) y/ 38.3 % Z 41.6 %
A% 14.5 % N 14.3 %
N 13.4 % A% 12.0 %
P (pronoun) \% 30.1 % Vv 31.8 %
N 27.7 % N 22.8 %
P 9.2 % P 10.3 %
R (preposition) | N 44.6 % N 49.8 %
A 24.8 % P 24.2 %
P 21.3 % A 20.5 %
T (particle) R 24.5 % Z 27.0 %
P 20.4 % P 14.7 %
N, D 12.2 % R 12.2 %
V (verb) Z 171 % Z 20.0 %
N 16.2 % P 16.1 %
P 12.9 % N 15.4 %
Z (punctuation) | J 21.8 % Z 19.8 %
N 16.2 % N 15.9 %
P 14.7 % J 15.7 %

40

2.4. Compression experiments

2.4.4 Experiment with part-of-speech tags (2)

Before detailed explanation of this experiment, we introduce the idea of iso-
lated tagging. By isolated tagging, we mean using the tagger to tag individual
black tokens separately (the input of the tagger is just a single black token
here).

2.4.4.1 Isolated tagging vs. default tagging

Our default tagging approach is tagging of whole sentences at one time (we call
it sentence tagging from now on). We suppose that the accuracy of tagging
(and also the accuracy of lemmatisation) is lower when we use isolated tagging
instead of sentence tagging since in case of isolated tagging, the tagger doesn’t
know the context of the word in the text. Since we are technically not able to
inspect and evaluate the accuracy of tagging, we would like to know at least
how often the results of both tagging approaches differ.

To see how big the difference is, we performed an experiment comparing
lemma ids and tags acquired by sentence tagging with lemma ids and tags ac-
quired by isolated tagging for each of the black tokens in files komunikace.txt
and mloci.txt. This experiment is summarized in Table (tag positions
12 and 13 are excluded since they have no meaning, see [20]).

Looking at the table, we can state that there really is some difference
between results of sentence tagging and isolated tagging, as expected. How-
ever, for lemmas and also for many positions in the tag, the difference is not
very significant. The most important fact here is that for part-of-speech tags
(tagl0]), the difference is just about 2 %, thus isolated tagging is a suitable
way how to estimate part-of-speech of an isolated black token.

The accuracy of isolated tagging in case of POS tags allows us to use POS
tags during compression without storing them. However, not storing the POS
tags means that the decoder will never know a POS tag of a token before it
decodes the token.

2.4.4.2 Experiment description

We again start with our basic word-based compression method described in
Section We make the following changes:

e For every black token, we acquire its part-of-speech tag using isolated
tagging (ignoring the tag delivered by the input module, which is ac-
quired using sentence tagging).

e [f the value of part-of-speech tag of a black token is X, then for encoding
of the following black token, we will use a model for black tokens after

POS X.

41

2. ANALYSIS

Table 2.2: All black tokens in the two test files have been lemmatised and
tagged using sentence tagging and then using isolated tagging (if a specific
token occurred n times in the text, it was included n times in this experi-
ment). The table shows the percentage of black tokens where different results
appeared.

percentage of different results

komunikace.txt | mloci.txt
lemma 2.55 % 3.3 %
tag (whole) | 23.4 % 19.3 %
tag0] 1.95 % 2.45 %
tag|l] 2.02 % 2.61 %
tag[2] 8.09 % 7.67 %
tag[3] 6.62 % 5.53 %
tag[4] 19.6 % 15.6 %
tag[5] 0.013 % 0.03 %
tag[6] 0.013 % 0.009 %
tag[7] 0.16 % 0.29 %
tag[8] 0.21 % 0.31 %
tag[9] 0.36 % 0.66 %
tag[10] 0.76 % 1.02 %
tag[11] 0.21 % 0.31 %
tag[14] 0.53 % 0.76 %

The presented idea means that we will have a separate model of black
tokens for every part of speech, but the individual models won’t be part-of-
speech-homogenous — the model for black tokens following adjectives, for
example, will typically hold nouns, punctuations, adjectives and also other
parts of speech, as estimated in Table Since individual black tokens can
appear in multiple models at the same time, all the models should share a
single alphabet of black tokens.

We expect that this idea will affect the compression in following ways:

e [t will break our original context model of black tokens, which may
worsen the compression.

e The average number of bits spent to encode a black token may decrease
anyway since the individual models of black tokens may reflect the text
structure better than a single black token model used in Section —
some words may appear more often after nouns than after any other
part of speech, for example.

Notice that this way of using part-of-speech tags is very similar to the
approach proposed in [37].

42

2.4. Compression experiments

2.4.5 Experiment with non-part-of-speech tags
2.4.5.1 Motivation

Let’s see the list of forms which the MorphoDiTa generator generates from
lemma “jarni” (“spring”, adjective) and an empty tag:

jarnim jarnd jarnich jarniho jarnim jarnima jarnimi jarnimu jarnéjsim jarnéj-
§7 jarnéjsich jarnéjsiho jarnéjsim jarnéjsima jarnéjsimi jarnéjsimu nejarnim
nejarni nejarnich nejarntho mejarnim mnejarnima nejarnimi nejarnimu ne-
jarnéjsim nejarnéjsi nejarnéjsich nejarnéjsiho nejarnéjsim nejarnéjsima ne-
jarné&jsimi nejarnéjsimu nejjarnéjsim nejjarnéjsi nejjarnéjsich nejjarnéjsiho
nejjarnéejsim nejjarnéjsima nejjarnéjsims nejjarnéjsimu nejnejarnéjsim nejne-
jarnéjsi nejnejarnéjsich nejnejarnéjstho nejnejarnéjsim nejnejarnéjsima ne-
Jjnejarnéjsimi nejnejarnéjsimu

We can see that the list contains a lot of rarely used forms. For example, 50%
of the forms contain negative prefix “ne-” (“non-"); although these forms are
fully valid in Czech, it is very unusual that someone uses the negative prefix
together with adjective “jarni”.

The problem is that in experiment described in Section [2.4.2] the com-
pressor expects the forms with negation the same way as the forms without
negation, thus in PPM order -1, the compressor assigns the negative forms a
50% probability in total, and the other 50% of probability are assigned to the
non-negative forms in total. This is impractical since the negative forms here
don’t have a 50% probability in total in natural Czech texts.

The value of negation is specified by the 11th position in MorphoDiTa
tags.[26] If we modify the experiment described in Section so that to-
gether with a lemma of an adjective the value of negation is stored, then

stored value of negation, instead of the empty tag “?77777777777777”. Then,
for lemma “jarni”, the generator generates only 50% of the forms which would
have been generated using an empty tag. Thus, according to the theory of
entropy (see Definition , the compressor needs one bit less to store the
index in PPM order -1 than if it used the empty tag. On the other hand, we
suppose that for storing the value of negation, less than one bit per lemma
will be needed since, according to our best estimates, the negative forms of
adjectives are not as usual as the non-negative forms in a natural text. This
may result in achieving better compression ratio than for the basic experiment
described in Section 2.4.2]

Storing the value of negation may be beneficial also for verbs an adverbs
since these parts of speech may contain the negative prefix “ne-” as well.
Moreover, we can extend this experiment to any position in the tag and test
which positions in the tag are worth storing and which are probably not.

43

2. ANALYSIS

2.4.5.2 Experiment description

As already mentioned, this experiment is based on experiment described in
Section [2.4.2] The lemmas and indexes will be stored the same way as de-
scribed there, we will just generate forms also from non-empty tags and we
will have an alphabet of indexes for every pair lemma + tag value (the non-
empty tags will be empty except exactly one position, as proposed). The input
parameters of the experiment will be selectedPOS and tagPosition; the first
one will be a list specifying for which parts of speech we want to store the tag
(adjectives 4 verbs, for example), the latter will specify which position in the
tag we want to store (e.g. position 10, which is the position where value of
negation is stored if we use zero-based indexing).

To make the approach more clear, we show the whole idea using an exam-
ple: Let’s say that selectedPOS equals {A} (adjective) and tagPosition equals
10, which is the position where the value of negation is stored. Then, if we en-
counter an adjective during encoding (the part-of-speech should be estimated
using isolated tagging so that we don’t have to store it), we may store any of
the values {-, A, N} depending on the value of negation extracted from the tag
of the adjective (the tag is delivered by the input module). We may also store
nothing if storing the value is not beneficial (this is explained further); in such
case we are virtually (but not really) storing value ‘?’ since this is the value
used for generation if no tag value is stored. The morphological generation will

encoding the index will thus be selected using lemma of the adjective 4+ one
of these four tags.

Now we need to discuss in which cases it is beneficial to store the tag value
(for many tag positions, applicability of one value disqualifies the applicability
of some other values and reserving non-zero probability for those values is thus
useless). Before storing the value, we should try to generate forms from the
lemma using each of the three tag values from set {-, A, N}. If a specific value
decreases the number of generated forms (when compared with the number of
forms generated using an empty tag) to some number greater than zero, then
we say that storing this value is useful. Otherwise, the value is not useful (we
don’t need to store a value from which the original form can’t be generated or
a value which doesn’t decrease the number of generated forms when compared
with the empty tag). Regardless of which value we want to encode, we can do
this check everytime and pre-exclude the not useful values.

When pre-excluding the values, it may happen (because of the already
discussed asymmetry of lemmatisation and tagging vs. generation) that the
value which we want to encode gets pre-excluded (we suppose that this will
not happen often). In such case, we just store the first non-pre-excluded value
from the set of possible values (the decoder does the pre-exclusion the same
way as the encoder so we really cannot store any pre-excluded value here).

44

2.5. Utilizing UTF-8 encoding

Another special case is when all values get pre-excluded — then we don’t store
the tag value and an empty tag is used for generation.

When we finally know which value from set {-, A, N, 7} should be stored,
we are again facing the problem of index storing which is discussed in Section
[2.42.1] Basically, the problem is solved the same way as described there,
just the empty tag used for generation is updated with a value from set
{-, A, N, ?}. If the original form can be generated using lemma + tag, it
is case 1 (see Section , if not, it is the second case. In the second case,
we use the original token instead of lemma and we must repeat the whole
process of estimating POS, pre-excluding values and selecting which tag value
should be stored.

2.5 Utilizing UTF-8 encoding

As already mentioned, our compression program will work only with UTF-
8-encoded text. The MorphoDiTa class tokenizer shows us on which bytes
in the text each black token starts and also the length of each black token
in bytes, but that’s all we can use here regarding the conversion between a
sequence of bytes and a sequence of Unicode characters. If we want to do such
conversion, we need to implement it on our own.

The conversions will be useful for the letter case heuristics presented in
Section [2.4.1.2] so that we are able to recognize multibyte-characters and do
the upper case-lower case conversion if needed. Another point of use is for
models of white tokens — in Section [2.4.1.1| we proposed that there should be
an individual model for each character appearing at the end of black tokens,
thus we want to recognize the multibyte-characters at the end of black tokens
as well.

However, we won’t work with Unicode characters in the character by cha-
racter encoding of not-yet-known tokens. Encoding the tokens byte by byte is
very simple and it should work well in most cases for Czech texts. Encoding
the tokens Unicode-character by Unicode-character would be more perfect but
we would have to deal somehow with the large Unicode alphabet so that the
size of the alphabet doesn’t negatively affect the compression ratio. Since this
is not the topic we should be focusing on in this thesis, we decided to use the
simple byte by byte coding.

2.6 Compression method

As already mentioned, our experiments will use the PPM compression method.
Summarizing the previous analysis, we have the following requirements on the
implementation of PPM:

45

2. ANALYSIS

e The implementation must allow us to select a different trie in every
coding step, the structure of the trie must thus be independent from
the coder. In Section describing the compression experiments, we
are using the term model for what will be represented by an individual
PPM trie in the implementation.

e We must be able to choose an individual size of the alphabet for every
trie. The upper limit on the alphabet size should be at least several tens
of thousands distinct symbols (among our test files, file mloci.txt has
the most extensive vocabulary with about 17700 distinct black tokens;
with respect to the Heaps’ law, we don’t expect that this number is
much greater for any natural Czech text up to several megabytes long).

e There must be a possibility to use a dynamic-size alphabet since when
compressing the natural text using an adaptive compression, we don’t
know the number of distinct tokens at the start of the compression (new
symbols should be added on the fly during the compression).

e We would like to use the exclusion principle, extended by the possibility
of pre-exclusion (manually selecting some symbols to be excluded as
early as in the longest context of PPM, which is not a standard PPM
functionality).

e We would like to be able to set the order of PPM to any small integer
starting at 0. Zero-order PPM is in fact an arithmetic coder, thus by
setting the order to 0, we can use the PPM as a statistical compression
method instead of context-based compression method if needed.

We decided to take an existing implementation of PPM (including an arith-
metic coder) and modify it to match our requirements instead of implementing
the PPM from scratch. We chose implementation done by Jiti Krotil within his
master’s thesis [42], which was originally developed for ExCom [43], a library
of compression algorithms maintained by the Prague Stringology Club. More
exactly, we took what is called “basic implementation” in the thesis as our
starting point. A brief summary of key features of the basic implementation
together with a summary of required changes follows.

2.6.1 Kirotil’s basic implementation of PPM

The program is written in C programming language. The implementation
includes four variants of PPM: PPMA, PPMB, PPMC and PPMD (PPMD is
a version of PPM which increases the frequency of the escape symbol by % for
every new symbol in the given context, while PPMC increases the frequency
by 1). The exclusion principle is not used in the basic implementation.

46

2.6. Compression method

2.6.1.1 Trie structure

The trie is built from two types of nodes — internal nodes and leaf nodes which
are represented by different C structures (internal nodes represent contexts
and thus they don’t appear in the deepest layer of the trie structure, while
leaf nodes only appear in the deepest layer).

The main feature of the trie structure is that the list of child nodes of a
node is represented by a linked list; this means that the time needed to search
for a symbol in the given context is O(n) where n is the length of the list.

If the sum of symbol frequencies in some context exceeds a specific limit,
the stored frequencies are rescaled to lower values.

2.6.1.2 Memory management

To make the allocation (or deallocation) of nodes fast and easy, there is a
special module called memory manager which allocates the nodes in groups;
when a new node is needed, it is taken from the most recently allocated group
if there is some not-yet-used node, otherwise a new group of nodes is allocated.

The memory manager also checks the size of the model; if the amount of
allocated memory exceeds a specific limit, the model is deallocated and then
reconstructed using last 2000 encoded (or decoded) symbols.

2.6.2 Required changes

We definitely need to modify the implementation to fulfil the requirements
summarized at the beginning of Section This includes:

e separating the trie structure from the coder,

e climinating the fixed size of the alphabet (originally set to a fixed value
of 256),

e implementing the exclusion and pre-exclusion,

e changing the trie structure so that the searching for symbols in a given
context is faster (only needed if the implementation is unacceptably slow
for large alphabets).

Other desirable changes include:

e changing the declaration of integer variables to use fixed-length integers
where needed (this is especially important in the arithmetic coder so
that the coding works exactly the same on every platform),

e converting the whole implementation to C++ (e.g. replacing C-like
memory allocation by C++-like memory allocation),

47

2. ANALYSIS

e reorganizing the code and introducing an object-oriented architecture,
so that the code is more readable and easily maintainable.

We plan to use only the PPMC version since it is the most common version
of PPM with good compression results. Utilizing the model reallocation, which
is done by memory manager to keep the memory consumption below a specific
limit, is not our priority, thus this functionality will not be used (otherwise we
would need to modify the memory manager so that it is able to work correctly
with multiple tries at the same time).

Once the modification of Krotil’s implementation is finished, the imple-
mentation of PPM can be incorporated into the ExCom library, thus it be-
comes an important by-product of this thesis.

2.7 'Trie statistics

We are not able to analyze the performance of the compression experiments
properly if we know only the achieved compression ratio. The proposed com-
pression experiments always use multiple models and we already know that
each of the models is represented by an individual trie in the PPM algorithm.
We want that, at the end of the encoding process, a summary of compression
performance for each trie is printed to the standard output. The summary
should contain the following for each of the tries:

e name of the trie (we should assign a unique name to each trie for an
easy identification),

e number of encodings carried out using this trie (in fact the number of
symbols encoded using this trie; here we mean how many times the PPM
encoder was asked to encode a symbol using this trie, thus this number
shouldn’t include escape symbols which are encoded by the PPM encoder
when switching to shorter contexts),

e entropy of the encoded message in bits (see Definition this number
should be very close to the real size of the output since arithmetic coder
encodes the message close to the entropy),

e bits per encoded symbol — this number should be acquired by dividing
the entropy of the encoded message by the number of encodings,

e how many percents of the overall output have been output by this trie
(we will first need to calculate a sum of entropy of the encoded message
for all tries used during the compression).

This should give us a good knowledge of which tries affect the compression
ratio the most, which tries are or are not efficient etc.

48

2.8. Formal specification of experiments

2.8 Formal specification of experiments

As the whole analysis is finished, we can finally present the full and formal
specification of each of the compression experiments proposed in Section
(for more info about the individual models and algorithm steps, please refer to
that section). We only show the encoding algorithms here, since the decoding
algorithms are just inverse to the encoding algorithms. We remind that each
of the models mentioned below is represented by an individual PPM trie.
When we use a variable k, in connection with any model M, in the following
text, then k, is order of the trie which represents model M, (the orders are
specified later in this thesis).

2.8.1 Basic word-based compression

Used models and their properties:

1. model of black tokens M pr; this model is used for prediction of the next
black token based on previous kpr black tokens encoded/decoded by
this model;

e the model uses dynamically growing alphabet App (the initial size
of the alphabet is 1, containing only a special symbol signalizing a
not-yet-known token);

2. models of white tokens My, for every Unicode character c¢ that has
appeared as last character of any black token; these models are used for
prediction of the next white token based on the last character ¢ of the
preceding black token and kw7, white tokens that have most recently
appeared after a black token containing c¢ as the last character;

e all models M7, use a shared, dynamically growing alphabet Ay
(there is again a special symbol signalizing an unknown token);

3. model of black token characters M p¢; this model is used for prediction of
the next character based on previous kpc characters encoded/decoded
by this model; we remind that this model is used to encode/decode
not-yet-known black tokens;

e the model uses alphabet Apc of size 257 (one symbol for every
possible value of a byte and one special symbol to signalize end of
the string);

4. model of white token characters Myy¢; this model is used for prediction
of the next character based on previous k¢ characters encoded/decoded
by this model; we remind that this model is used to encode/decode not-
yet-known white tokens;

49

2.

ANALYSIS

5.

e the model uses alphabet Ay of size 257 (one symbol for every
possible value of a byte and one special symbol to signalize end of
the string);

model of letter cases M, (used by the letter case heuristics); this model
is used for prediction of the case of the first letter of the following black
token based on k¢ previous cases encoded by this model;

e the model uses alphabet Ay ¢ of size 2 (one symbol represents the
upper case, one symbol the lower case).

Algorithm description (encoding loop):

1.

If no black token can be read from the input, encode an EOF using Mpr
and terminate the loop.

. Read black token BT from the input.

. If the letter case heuristics is in activated state and BT allows transi-

tion to deactivated state, modify BT as needed (BT is the result of
modification).

. Encode BT using Mpr (known token) or Mpr + Mpc (not-yet-known

token).

. Encode case of the first character of BT using My ¢ if the letter case

heuristics switched from activated state to deactivated state in step 3.

. Set ¢ to last Unicode character of BT.

If no white token can be read from the input, encode an EOF using
My, and terminate the loop.

. Read the white token WT from the input and encode it using My, or

Mwr, + Mwc.

An important thing to mention is that an EOF can be decoded only using
Mpr and My, thus decoding EOF with any other model indicates an error
(we don’t point this out in description of the other experiments; if EOF is
decoded by a model which never encodes EOF during encoding, it always
means an error).

2.8.2 Basic experiment using morphological generator

Used models and their properties:

1.

20

all models and their alphabets specified in Section m (models Mpp
and Mpc are in fact used to encode/decode lemmas and pseudolemmas
instead of real black tokens during this experiment);

2.8. Formal specification of experiments

2. model of indexes My, for each lemma or pseudolemma L; each of the
models M7, is used for prediction of the next form generated from lemma
or pseudolemma L based on previous kj, indexes encoded/decoded by
this model (we remind that each index specifies a unique word form);

o the size of the alphabet A;, of each model is equal to number
N of forms generated from L and an empty tag if L is among the
generated forms, or to N 41 if L is not among the generated forms;

Algorithm description (encoding loop):

1. The same as step 1 in Section [2.8.1
2. The same as step 2 in Section [2.8.1
3. The same as step 3 in Section [2.8.1
4. Get the lemma L of BT.

5. Strip L to either raw lemma or lemma id depending on the algorithm
settings (Lj is the stripped lemma).

6. Decide whether to store L; (lemma) or BT; (pseudolemma) (Lo is the
result of this choice).

7. Encode Ly using Mgy or Mgy + Mpc.

8. Encode index using M Ip, if needed to identify BT; among the forms
generated from L.

9. The same as step 5 in Section [2.8.1
10. The same as step 6 in Section [2.8.1
11. The same as step 7 in Section [2.8.1

12. The same as step 8 in Section [2.8.1

2.8.3 Experiment with part-of-speech tags (1)

Used models and their properties:

1. all models and their alphabets specified in Section[2.8.1]except the model
of black tokens MpT;

2. model of POS tags Mppg; this model is used for prediction of the POS
tag of the next black token based on POS tags of previous kppg black
tokens;

51

2.

ANALYSIS

3.

e the model uses alphabet Appg containing 12 symbols (this is the
number of distinct values which may appear on the first position
in MorphoDiTa tags);

model of black tokens Mpr, for every value X of POS tag (i.e. 12
distinct models); each of the models Mpr,, is used to estimate the next
black token with POS tag equal to X based on previous kpr, black
tokens with POS tag equal to X;

e cach of the models Mp7, uses dynamically growing alphabet Apr,
(the initial size of the alphabet is 1, containing only a special symbol
signalizing a not-yet-known token);

Algorithm description (encoding loop):

1.

If no black token can be read from the input, encode an EOF using
Mpog and terminate the loop.

. The same as step 2 in Section [2.8.1

. Get the POS tag of BT and encode the value X of the POS tag using

Mpos.
The same as step 3 in Section [2.8.1

Encode BT using Mpr, or Mpr, + Mpc.

. The same as step 5 in Section [2.8.1]

The same as step 6 in Section [2.8.1

. The same as step 7 in Section [2.8.1

The same as step 8 in Section [2.8.1

2.8.4 Experiment with part-of-speech tags (2)

Used models and their properties:

02

1.

all models and their alphabets specified in Section [2.8.1]except the model
of black tokens Mpgr;

. model of black tokens Mpr, for every value X of POS tag (ie. 12

distinct models); each of the models Mpr, is used for prediction of the
next black token appearing after a black token with POS tag equal to
X based on previous kpr, black tokens encoded by the model;

2.8. Formal specification of experiments

e all these models share a single alphabet of black tokens App (the
initial size of the alphabet is 1, containing only a special symbol
signalizing a not-yet-known token).

Algorithm description:

Before entering the encoding loop, set variable X (previous part-of-speech tag)
to value ‘Z’ (at the start of the text, we simulate this way that there was some
preceding sentence, since part-of-speech of “.” is ‘Z’).

Encoding loop:

1.

If no black token can be read from the input, encode an EOF using
Mpr, and terminate the loop.

The same as step 2 in Section [2.8.1
The same as step 3 in Section [2.8.1]
Encode BT, using Mpr, or Mpr, + Mpc.
The same as step 5 in Section [2.8.1

Update the value of X: Use isolated tagging to get the part-of-speech
tag of BTy and set X to this value (we don’t use BT here since the first
letter of BT is in expected case, which may not be true for BT).

The same as step 6 in Section [2.8.1
The same as step 7 in Section [2.8.1

The same as step 8 in Section [2.8.1

2.8.5 Experiment with non-part-of-speech tags

We remind that this experiment has two input parameters: list selectedPOS
specifying for which parts of speech we want to store the tag, and number
tagPosition specifying which position in the tag we want to store. We define
the following variables and symbolic notation:

e TAG_VALS is the set of values which may occur in the tag at position

tagPosition;

e VAL_COUNT is the size of set TAG_VALS;

e Trac is an empty tag where the position tagPosition has been set to

value TAG.

93

2.

ANALYSIS

Used models and their properties:

1. all models and their alphabets specified in Section except My, ;

2. model M4 for storing the tag values appearing on position tagPosition;

this model is used for prediction of the next tag value from set TAG_VALS
based on previous k14 values stored by the model;

e this model uses alphabet A7ag containing VAL_.COUNT symbols;

. model of indexes M, L Tpag for each lemma or pseudolemma L and tag

Trac (TAG is any value from set TAG_-VALS U ‘?’); each of the mo-
dels is used for prediction of the next form generated from lemma or
pseudolemma L and tag T7ag based on previous kILvTTAG indexes en-
coded/decoded by this model (we remind that each index specifies a
unique word form);

e cach of the models uses alphabet A 1L T the size of the alphabet
is equal to number N of forms generated from L and Tpaq if L
is among the generated forms, or to N + 1 if L is not among the
generated forms).

Algorithm description:

o4

. The same as step 1 in Section [2.8.1
. The same as step 2 in Section [2.8.1
. The same as step 3 in Section [2.8.1
. The same as step 4 in Section [2.8.2

. Strip L to raw lemma L; (we don’t strip to lemma id since a lemma

id may contain some technical info which would ruin the accuracy of
isolated tagging).

. If the POS tag of Ly (acquired by isolated tagging) is among values in

selectedPOS, then decide (using L) which tag value TAG from set
TAG_VALS U ‘7’ should be stored as described in Section also
determine the set of pre-excluded values PREEXCLUDED.

. Using T'raq for generation, decide whether to store L; (lemma) or BT

(pseudolemma) (L is the result of this choice); this step is similar to

step 6 in Section [2.8.2]

. If Ly is not equal to Lj, repeat step 6 using Lo instead of Ly to get new

values of TAG and PREEXCLUDED.

. The same as step 7 in Section [2.8.2

2.8. Formal specification of experiments

10.

11.

12.
13.
14.
15.

If TAG is not equal to ‘?’; then encode the value of TAG using model
M 146 (the encoder pre-excludes symbols contained in PREEXCLUDED).

Encode index using M Iy Trac if needed to identify BT} among the forms
generated from Lo and T'p4¢ (this step is similar to step 8 in Section
2.8.2).

The same as step 5 in Section [2.8.1
The same as step 6 in Section [2.8.1
The same as step 7 in Section [2.8.1

The same as step 8 in Section [2.8.1

95

CHAPTER 3

Design

This chapter describes the design of our compression program, which is based
on the previous analysis.

The architecture of the program is mostly object-oriented. Moreover, our
program is logically divided into the following parts:

e MorphoDiTa static library and MorphoDiTa header file (an interface
between MorphoDiTa and our program),

e language tools — various tools for processing the text files (this includes
conversion from or to UTF-8 encoding and wrappers of MorphoDiTa
tools),

e input/output — classes responsible for managing input and output of the
program (including classes for preprocessing of text files as described in

Section [2.2.2)),

e range coder — arithmetic coder used by PPM,
e PPM structure — data structures used within the PPM algorithm,
e PPM coder — the PPM algorithm itself,

e language compression — classes implementing the compression algo-
rithms specified in Section [2.8

e main file — an entry point of the program, parsing the command line
arguments and launching the implemented algorithms accordingly.

In the following sections, we give a more detailed description of each of the
parts (except MorphoDiTa library and MorphoDiTa header file, which have
already been described). We focus here on general description of functiona-
lity of individual classes and on description of public methods of the classes;

o7

3. DESIGN

for an even more detailed description, please refer to the attached Doxygen-
generated[44] documentation of the whole program. Additionally, we show
much of the program architecture on three class diagrams: Figure shows
the most important classes related to range coder, PPM coder and PPM
structure, Figure shows some of the most important classes related to
input and language tools and Figure shows classes representing the so-
called compression units which are described further in this chapter.

The design of PPM coder, PPM structure and range coder is heavily in-
fluenced by the original implementation by Jiti Krotil, although a big number
of important changes has been introduced, as proposed.

When an error occurs during the execution of the program, immediate ter-
mination of the program and displaying a brief error message is an acceptable
behaviour for us.

To make the debugging easier, all compression experiments first compress
the specified file and then immediately decompress it to verify there is no
error in the compression program (the content of the decompressed file must
be equal to the content of the original file). Moreover, during encoding, the
encoded symbols are being stored in a special array. When decoding, the
decoded symbols are being stored in another array and compared with the
symbols stored in the first array to discover any mismatch as early as possi-
ble. We decided to keep this mechanism in the final implementation; if any
mismatch between the original and the decompressed file occurs (which is not
expected to happen with any of the implemented algorithms), it is always
detected and the program is terminated with an error.

3.1 Language tools

3.1.1 Class UTF8Helper

This class is used for processing UTF-8-encoded text as described in Section
all methods of this class are static (no instances of this class should be
created). Instead of enumerating all the methods of this class, we show here
just a general description of which methods are contained in this class:

e methods for recognizing Unicode characters in an UTF-8-encoded string;

e methods for generating UTF-8-encoded byte sequences for given Unicode
characters;

e methods for converting Unicode characters to upper/lower case (these
methods only know how to convert letters with diacritics which are con-
tained in Czech alphabet).

o8

3.1. Language tools

3.1.2 Class TokenizerWrapper

This is an interface (abstract class) for tokenizer classes. It includes the fol-
lowing methods:

e virtual void setText (string& text) = 0O
— sets text to be tokenized;

e virtual bool tokenizeNext (
vector<token_byte_range>& tokenByteRanges
) =0
— fills the parameter array with a new bunch of tokens; returns false if
the text has already been fully tokenized (no more tokens to process);
token byte_range is a simple structure holding byte range of a token.

3.1.3 Class BasicTokenizer

Child class of TokenizerWrapper, implementing its abstract methods. This
class uses MorphoDiTa class tokenizer to tokenize the text (with each call
to BasicTokenizer: :tokenizeNext, tokenizer: :next_sentence is called).
Apart from the inherited methods, the class contains the following public
method:

e BasicTokenizer (ufal::morphodita::tokenizer* tknzr)
— constructor accepting a pointer to MorphoDiTa tokenizer.

3.1.4 Class TaggerWrapper

This is an interface (abstract class) for tagger classes. It includes the following
method:

e virtual void tag (

const vector<string>& tokens,

vector<tag_and_lemma>& taggedLemmas
) const = 0
— method which assigns a tag and a lemma to every token in parame-
ter tokens, parameter taggedLemmas then holds the result of tagging
(tag-and_lemma is a simple structure holding tag and lemma of a single
token).

3.1.5 Class BasicTagger

Child class of TaggerWrapper, implementing its abstract method. This class
uses MorphoDiTa class tagger to tag the tokens (with each call to BasicTag-
ger: :tag, tagger: :tag is called). Apart from the inherited method, the class
contains the following public methods:

99

3. DESIGN

e BasicTagger (ufal::morphodita::tagger* tgr)
— constructor accepting a pointer to MorphoDiTa tagger;

e ufal::morphodita::tokenizer* loadTokenizer () const
— loads instance of MorphoDiTa tokenizer associated with the Mor-
phoDiTa tagger (using MorphoDiTa method tagger: :new_tokenizer);

e const ufal::morphodita::morpho* loadMorpho () const
— loads instance of MorphoDiTa generator associated with the Mor-
phoDiTa tagger (using MorphoDiTa method tagger: :get_morpho).

3.1.6 Class MorphoWrapper

This is an interface (abstract class) for generator classes. It includes the
following methods:

e virtual string stripLemmaToUniqueld (const string& lemma)
const = O;

e virtual string stripLemmaToRawLemma (const string& lemma)
const = 0;

e virtual void generateForms (

const string& lemma,

const string& tag,

vector<string>& forms
) const = 0
—method generating forms from the given lemma and tag; if lemma is not
a unique identifier (e.g. a raw lemma) and the generator finds multiple
corresponding lemmas, the generation results are merged to a single
array (notice that multiple corresponding lemmas may occasionally be
found even if using a lemma id); the result of generation forms doesn’t
contain duplicate items.

3.1.7 Class BasicMorpho

Child class of MorphoWrapper, implementing its abstract methods. This
class uses MorphoDiTa class morpho to strip the lemmas and to generate the
forms (with each call to BasicMorpho: :generateForms, morpho: :generate
is called with guesser mode enabled — MorphoDiTa ensures that the guesser
mode is not used if at least one lemma is found in the dictionary). Apart from
the inherited methods, the class contains the following public method:

e BasicMorpho (const ufal::morphodita::morpho* m)
— constructor accepting a pointer to MorphoDiTa generator.

60

3.1. Language tools

3.1.8 Class LanguageToolsWrapper

This is an interface (abstract class) for classes holding all the linguistic tools.
It contains the following methods:

e virtual const TaggerWrapper* getTagger () const = 0;
e virtual TokenizerWrapper* getTokenizer () const = O;
e virtual const MorphoWrapper* getMorpho () const = 0;

e virtual bool toolsSuccesfullyLoaded () const = 0
— returns true if all three tools (tagger, tokenizer and generator) are
ready for use, false otherwise.

3.1.9 Class MorphoditaToolsWrapper

Child class of LanguageToolsWrapper, implementing its abstract methods.
This class wraps the MorphoDiTa tools used in this thesis (tagger, tokenizer
and generator). Apart from the inherited methods, the class contains the
following public method:

e MorphoditaToolsWrapper (const char* pathToTagger)
— constructor accepting a path to MorphoDiTa tagger model (the toke-
nizer and generator are loaded from the tagger instance).

3.1.10 Class TagHelper

This class supports working with MorphoDiTa tags. The most important
responsibility of this class is to ensure that a tag is valid (containing only
known values specified in [26]) and giving info on values available on a specific
position in the tag. The class contains following public methods (all methods
of this class are static, no instances of this class should be created):

e static uint8_t getNthPositionVal (

unsigned int n,

const string& tag,

bool failIfUnknown
)
—returns the n-th value in the tag; the main purpose of this method is to
make sure that the value is known; parameter failIfUnknown specifies
whether the method should fail if an unknown value is encountered (if
set to true, the program is terminated, if false, the function returns ‘7’,
which is a wildcard);

61

3. DESIGN

e static void setNthPositionVal (
unsigned int n,
string& tag,
uint8_t val
)
— sets the n-th position in the tag to the given value (the program is
terminated if the value is unknown);

e static string getEmptyTag ()
— returns an empty tag;

e static unsigned int
getNumberOfValuesAtPos (unsigned int pos)
— returns how many distinct values may appear on the given position in
the tag;

e static vector<uint8. t> getNthPositionValues (unsigned int n)
— returns the list of values which may appear on the n-th position in the
tag;

e static unsigned int getTagLength ()
— returns the length of MorphoDiTa tags.

3.2 Input/output

3.2.1 Class ByteInputModule

This class is used for reading the input file byte by byte. It contains the
following methods:

e ByteInputModule (FILE* i)
— constructor accepting a pointer to the input file;

e uint8_t getByte ()
— returns the next byte from the input file; after this method has been
called, method isEnd0fInput() must always be called to check for
EOF /error;

e bool isEndOfInput ()
— returns true if the end of input has been reached, false otherwise; the
program is terminated if the end of input is caused by some error.

3.2.2 Class ByteOutputModule
This class is used for writing the output byte by byte to a file. List of methods:

62

3.2. Input/output

e ByteOutputModule (FILE* o)
— constructor accepting a pointer to the output file;

e void putByte (uint8_t byte)
— outputs the given byte; the program is terminated if some error occurs.

3.2.3 Class InputReaderWrapper

This class is an interface (abstract class) wrapping the input readers used to
read the text file before delivering the text to a tokenizer (see Section |2.2.2.2)).
It contains just one, abstract method, which is to be overridden by the child
classes:

e virtual bool getNextTextBlock (string& buffer) = 0
— reads the next piece of text; returns false if EOF has been reached.

3.2.4 Class DummylInputReader

This is a child of class InputReaderWrapper. It reads the whole input text at
once. Public methods of this class include:

e DummyInputReader (const char* inputPath)
— constructor accepting path to the input file which should be opened
an read; if the argument is null, standard input is used;

e bool getNextTextBlock (string& buffer)
— implementation of the abstract method inherited from parent (the
first call of the method delivers the whole input text, the following calls
return false).

3.2.5 Class FeedingModule

This is an interface (abstract class) for classes which deliver the input text as a
sequence of tokens (with tag and lemma for every black token) without adding
any “artificial” empty tokens (see Section where the idea of adding
empty tokens is described). Such classes are intended to work in steps — in
each step, a new token from the input is read and processed. Class methods:

e virtual bool stepForward () = 0
— prepares the next token from the input (also lemma and tag, if the
token is black); returns false if end of input has been reached;

e virtual string getLastToken () const = 0
— returns token which was acquired in the last step;

63

3. DESIGN

e virtual bool isLastTokenWhite () const = 0
— returns true if the current token is white, false otherwise;

e virtual string getLastLemma () const = 0
— returns lemma of the current token (returns a valid value only if the
current token is black);

e virtual string getLastTag () comst = 0
— returns tag of the current token (returns a valid value only if the
current token is black).

3.2.6 Class BasicFeedingModule

This is a child class of FeedingModule implementing its abstract methods. It
uses DummyInputReader to read the input text, TokenizerWrapper to tokenize
the text and TaggerWrapper to do the tagging and lemmatisation. Apart from
the inherited methods, the class contains the following public method:

e BasicFeedingModule (
const TaggerWrapper* tgr,
TokenizerWrapper* tknzr,
const char* inputPath
)
— constructor accepting pointers to tagger and tokenizer which should
be used to process the text and path to input file (standard input is used
if the path equals null).

3.2.7 Class TokenStreamNormalizer

This class uses FeedingModule to get the stream of tokens, lemmas and tags
and modifies the stream as needed to ensure that the stream always starts
with a black token and that the white and black tokens alternate regularly
(see Section [2.2.2.3). The class contains the following public methods:

e TokenStreamNormalizer (FeedingModule* fm)
— constructor accepting a pointer to FeedingModule which should be
used to process the text;

e string getToken () const
— returns token which was acquired in the last step;

e string getLemma () const
— returns lemma of the current token (returns a valid value only if the

current token is black and non-empty);

64

3.3. Range coder

e string getTag () const
— returns tag of the current token (returns a valid value only if the
current token is black and non-empty);

e bool stepForward ()
— prepares the next token + lemma + tag from the input; returns false
if there is no more input.

3.3 Range coder

3.3.1 Class RangeCoder

This class holds the functionality and member variables common for both
encoder and decoder. It holds the variables Low and High which are initialized
to values of 0 and UINT64_MAX >> 16, respectively (both values are stored as
unsigned 64-bit integers, while the effective size of the numbers is 48 bits). The
class also implements methods for recomputing and rescaling Low and High,
this includes outputting the common leftmost digits and underflow prevention.
No instances of this class should be created.

3.3.1.1 Coder limits

The arithmetic coder, of course, has some numerical limits — the values of
Low and High must not cross during the coding so that they always represent
a valid interval (the value of High must always be greater than the value of
Low).

According to [45], to prevent Low and High from crossing, the value of
TotalFreq must be less than 2V =2 when we are using N bits to hold the values
of Low and High; this condition is fulfilled in our coder, since TotalFreq is
stored in an unsigned 32-bit integer and we are using 48 bits for Low and High.

However, when recomputing the values of Low and High as described in
Section the 64-bit integer holding the value of High may overflow if the
value of HighCumFreq is greater than 65535. Since HighCumFreq is lower than
or equal to TotalFreq, this limit is also valid for the value of TotalFreq.
Using this restriction, we also prevent another possible overflow when calcu-
lating the index during decoding (described in Section .

Since the frequencies of symbols are stored as integers, this gives us a limit
on the size of the alphabet used during coding — it cannot be greater than
65535 (in PPM, this includes also the escape symbol). This is acceptable for
us, as proposed in Section

3.3.2 Class RangeEncoder

This class is a child of RangeCoder, representing the arithmetic encoder. The
class contains the following public methods:

65

3.

DESIGN

e RangeFEncoder (ByteOutputModule *o)

— constructor accepting an instance of byte output module, which is used
to output the compressed data;

e void encodeRangeOfSymbol (

const INTERVAL* interval,

uint32_t totalCount
)
—method which encodes a symbol specified by range interval (INTERVAL
is a structure holding LowCumFreq and HighCumFreq of a symbol); the
second parameter specifies TotalFregq;

e void flushOutputOfRangeCoder ()

— flushes the rest of code and pending underflow bits to the output (used
after EOF has been encoded).

3.3.3 Class RangeDecoder

This class is a child of RangeCoder, representing the arithmetic decoder. The
class contains the following public methods:

e RangeDecoder (BytelInputModule *i)

— constructor accepting an instance of byte input module, which is used
to read the compressed data;

e uint32_t computelndex (uint32_t totalCount) const

— returns a number from the range corresponding to the decoded sym-
bol (see computing of index in Section [1.5.4.2); totalCount specifies
TotalFreq;

e void decodeRangeOfSymbol (

const INTERVAL* interval,

uint32_t totalCount
)
—updates Low and High after decoding the symbol specified by its range
(interval); the second parameter specifies TotalFreq.

3.4 PPM structure

3.4.1 Class PPMNode

This abstract class represents a node in the trie. It holds the variables and
functionality common for both inner (internal) and leaf nodes of the trie (as
already stated earlier in this thesis, inner nodes represent contexts and thus

66

3.4. PPM structure

they don’t appear in the deepest layer of the trie structure, while leaf nodes
only appear in the deepest layer — if the order of PPM is N, then leaf nodes
only appear in depth N + 1).

An instance of class PPMNode holds info about symbol, count and suffix
link (see Section [I.6.4). Moreover, as the child nodes of a node are held in
a linked list, an instance of PPMNode also holds a pointer to its right sibling
node in the list.

The most important methods among the public ones are getters of symbol
(getSymbol), count (getCount) and the target node of a suffix link (getSuf-
fixContextNode); otherwise, the real structure of the trie (e.g. storing the
child nodes in a linked list) is hidden from the PPM coder and the coder
doesn’t directly modify the nodes (this is to separate the coder from the trie
structure as proposed in Section .

3.4.2 Class PPMLeafNode

This class represents a leaf node of the trie, it is a child class of PPMNode. The
class adds no variables or functionality when compared with the parent class,
it just identifies itself as a leaf node.

3.4.3 Class PPMInnerNode

This class represents an inner node of the trie, it is a child class of PPMNode.
Apart from variables inherited from the parent, it holds info on number of child
nodes, sum of counts in the child nodes, order (depth) of the node within the
trie and pointers to the start and end of the linked list of child nodes.

Important public methods include getters of order (getOrder), number of
childs (getNumber0fChilds) and sum of counts in the child nodes (getSum0f-
ChildCounts); again, the PPM coder doesn’t directly modify the nodes nor
it knows the real structure used for storing the trie.

3.4.4 Class ExclusionList

This class represents a list of symbols excluded during the PPM encoding or
decoding (when using the exclusion principle). It contains methods for reini-
tialization of the list, setting an symbol excluded, getting number of excluded
symbols and getting info on whether a specific symbol is excluded or not.

3.4.5 Class InnerNodeBackupForExclusion

We were thinking about two different ways how to implement the symbol ex-
clusion in a given context — either to temporarily modify the context node
(so that its list of child nodes doesn’t include nodes representing the excluded
symbols) or to keep the trie structure unmodified and force the coder to skip

67

3. DESIGN

the excluded symbols. We chose the first way since it seemed easier to imple-
ment.

Class InnerNodeBackupForExclusion is used to backup the member vari-
ables of an instance of PPMInnerNode when the node gets temporarily modified
because of exclusion; once the exclusion in the node is no more needed, the
node is restored from the backup. Apart from a trivial constructor, the class
contains the following public methods:

e void backupAndExclude (
PPMInnerNode* nodeToBackup,
const ExclusionList* list
)
— a method which backups the member variables of the specified node
and then modifies the node to exclude the symbols specified by the
exclusion list;

e void restoreFromBackup ()
— sets the previously backed-up node to its original state.

3.4.6 Memory manager

This class is used for allocating nodes of the trie structure; the nodes are
allocated in groups, which makes the memory allocation efficient. Original
functionality of reallocating the model if it gets too big has been disabled by
setting the memory limit to 4 GB; if the memory limit is exceeded anyway,
the program terminates with an error (this is not expected to happen in our
experiments unless the order of some PPM trie is set to some extremely big
value). The class contains the following public methods:

e MemoryManager ()
— constructor; allocates the first portion of leaf nodes and inner nodes
(the next portion is always allocated when the previous portion has been
exhausted);

e void freeAllocatedMemory ()
— deallocates all nodes allocated so far;

e PPMInnerNode* getNewNode ()
— returns a new instance of PPMInnerNode;

e PPMLeafNode* getNewLeafNode ()
— returns a new instance of PPMLeafNode;

e void checkModelSize (PPMCoder* ppmCoder)
— a method intended to check the size of the model (trie structure) and

68

3.4. PPM structure

to do the reallocation of the model if it gets too big; the functionality of
this method is currently disabled as mentioned above.

3.4.7 Class PPMTrieConfig

Class holding info about some of the parameters of a trie, namely order of the
trie, current size of the alphabet used by the trie and current limit on sum
of symbol frequencies in a context (see Section [3.4.9.1| for description of this
limit).

3.4.8 Class PPMTrieStatistics

Class holding info proposed in Section for a specific trie, namely number
of encodings carried out using this trie and entropy of the encoded message
in bits (the name of the trie is held by class PPMTrie). The class variables are
updated by classes PPMEncoder and PPMCompressionSupport (see further)
during encoding.

3.4.9 Class PPMTrie

Class representing a trie used by the PPM algorithm. An instance of this class
holds an instance of PPMTrieConfig, an instance of PPMTrieStatistics, a
pointer to the root node of the trie, a pointer to memory manager (used to
allocate new nodes), a string specifying the name of the trie (see Section
and a pointer serving as base pointer (described in Section .

While classes representing the nodes just hold the necessary values, class
PPMTrie implements also some intelligence which is utilized by the PPM coder
so that the PPM coder doesn’t need to know all details about the actual
implementation of the trie structure. Apart from trivial getters of member
variables, the class implements the following public methods:

e PPMTrie (
MemoryManager* mm,
PPMTrieConfig& config,
string name
)
— constructor accepting a pointer to memory manager, a trie config and
desired name of the trie;

e void updateAfterSymbolRead (SYMBOL_ID symbol)
— method updating the trie with an incoming symbol;

e PPMNode* findSymbolInContextSimple (
const PPMInnerNode* context,

SYMBOL_ID symbol

69

3. DESIGN

)
— method which, for the given context node, returns its child node re-
presenting the given symbol or null if no such child node exists;

e PPMNode* findSymbolInContext (
const PPMInnerNode* context,
SYMBOL_ID symbol,
uint32_t& lowCum,
uint8_t& position
)
— an extended version of findSymbolInContextSimple which also cal-
culates LowCumFreq of the given symbol and its position in the linked
list (the position is used by PPM variants B and D);

e PPMNode* getNodeUsingIndex (
const PPMInnerNode* context,
uint32_t index,
uint8_t variant,
uint32_t& lowCum
) const
— method which, using index calculated by the range decoder, finds the
corresponding node in the given context and calculates its LowCumFreq
for the given PPM variant;

e void incrementAlphabetSize ()
— method which extends the current size of the trie alphabet by one
(used to increase the size of the alphabet when encountering new tokens
in the word-based compression);

e static void excludeSymbols (
const PPMInnerNode* context,
ExclusionlList* excluded
)
— method which fills excluded with all symbols that have appeared in
the given context.

3.4.9.1 Rescaling symbol frequencies

With every update of the trie, the corresponding context node is inspected
to verify that the current limit on sum of symbol frequencies in a context
has not been exceeded for this context node. If the sum has reached the limit
(specified by the instance of PPMTrieConfig held by PPMTrie), the frequencies
are rescaled by dividing all symbol counts by 2 (if a symbol count reaches the

70

3.5. PPM coder

value of 0 this way, it is set to 1). This ensures that the sum doesn’t grow
over technical limits of the coder.

The initial value of the limit, which is specified when the trie is created,
may be increased over time so that the model doesn’t get too flat (this is
done by a simple heuristics: the limit is doubled when the number of different
symbols in some context reaches one quarter of the limit). However, the limit
is being increased only until it reaches the value of 65535, because TotalFreq
in the range coder cannot exceed this value (see Section [3.3.1.1)); if the limit
is already equal to 65535 and the number of different symbols in the context
reaches 90% of the limit, the program is terminated to warn the user that the
model is getting too flat (i.e. the observed frequencies of distinct symbols are
mostly held on similar low values due to the rescaling).

3.5 PPM coder

3.5.1 Class PPMCoder

This is a class holding functionality and member variables common for both
PPM encoder and PPM decoder, such as accepting a trie instance which
should be used for the next encoding or decoding, updating the trie with
the incoming symbol after the symbol is encoded/decoded, holding the list
of excluded symbols etc. No instances of this class should be created. The
coder supports all four PPM variants implemented by Jifi Krotil (A, B, C,
D); however, the variant is currently not selectable and variant C is selected
by default. Similarly, exclusion principle is used by default and we currently
don’t allow the user to turn it off.

We don’t show any list of methods here since all methods of this class
are rather technical, supporting the PPM algorithm which has already been
described.

3.5.2 Class PPMEncoder

This class is a child class of PPMCoder, it is responsible for the encoding part
of PPM algorithm. The class contains the following public methods:

e PPMEncoder (RangeEncoder* re, MemoryManager* mm)
— constructor accepting an instance of range encoder (which is used
as subprocedure by the PPM algorithm) and an instance of memory
manager which is responsible for reallocation of the PPM model (trie)
if the model gets too big (this functionality is currently disabled);

e void encodePPMSymbol (
SYMBOL_ID symbol,
PPMTrie* trie,

71

3. DESIGN

const vector<SYMBOL_ID>* preexcludedSymbols
)
— method encoding the given symbol using the given trie (which is up-
dated with the symbol after encoding) and a list of pre-excluded symbols;

e void encodePPMEOF (
PPMTriex trie,
const vector<SYMBOL_ID>* preexcludedSymbols
)
— method encoding an end-of-file symbol using the given trie (should be
called after the last symbol from input has been encoded).

3.5.3 Class PPMDecoder

This class is another child class of PPMCoder, it is responsible for the decoding
part of PPM algorithm. The class contains the following public methods:

e PPMDecoder (RangeDecoder* rd, MemoryManager* mm)
— constructor accepting an instance of range decoder (which is used
as subprocedure by the PPM algorithm) and an instance of memory
manager (the functionality of reallocating the model is disabled);

e SYMBOL_ID decodeNextPPMSymbol (
PPMTriex trie,
const vector<SYMBOL_ID>* preexcludedSymbols
)
— returns a symbol from the trie alphabet if not EOF (after calling this
method, method hasEOFBeenDecoded must be used to check whether
the returned symbol is a valid symbol from the trie alphabet);

e bool hasEOFBeenDecoded ()
— returns true if the EOF symbol has been decoded (this means that the
whole decoding process is finished).

3.5.4 Class PPMEncoderWrapper

This class wraps the whole PPM encoding process. It holds a pointer to an
instance of ByteOutputModule, an instance of RangeEncoder, an instance of
PPMEncoder and an instance of MemoryManager, which are all needed during
encoding. The class contains the following public methods:

e PPMEncoderWrapper (ByteOutputModule* outputModule)
— constructor accepting a pointer to an instance of byte output module
which should be used to output the compressed data (the instances of

72

3.5. PPM coder

range encoder, PPM encoder and memory manager are created within
this constructor);

e void encodeNextSymbol (
PPMTriex* trie,
SYMBOL_ID symbol,
const vector<SYMBOL_ID>* preexcludedSymbols
)
— calls PPMEncoder: : encodePPMSymbol with the given parameters;

e void encodeEQF (
PPMTriex trie,
const vector<SYMBOL_ID>* preexcludedSymbols
)
— calls PPMEncoder: : encodePPMEQF with the given parameters;

e MemoryManager* getMemoryManager ()
— returns the instance of memory manager (we need this to enable allo-
cating new tries from the outside since all tries are currently allocated
using a single instance of memory manager).

3.5.5 Class PPMDecoderWrapper

This class wraps the whole PPM decoding process. It holds a pointer to an
instance of ByteInputModule, an instance of RangeDecoder, an instance of
PPMDecoder and an instance of MemoryManager, which are all needed during
decoding. The class contains the following public methods:

e PPMDecoderWrapper (ByteInputModule* inputModule)
— constructor accepting a pointer to an instance of byte input module
which should be used to read the compressed data (the instances of
range decoder, PPM decoder and memory manager are created within
this constructor);

e bool decodeNextSymbol (
PPMTrie* trie,
SYMBOL_ID& decodedSymbol,
const vector<SYMBOL_ID>* preexcludedSymbols

)

— this method calls PPMEncoder: :decodeNextPPMSymbol, the return
value of which is used to set the value of decodedSymbol, and returns
true if end of file has not yet been reached;

e MemoryManager* getMemoryManager ()
— analogous to PPMEncoderWrapper: : getMemoryManager.

73

3. DESIGN

3.6 Language compression

In this section we describe classes which have been designed to support the
compression experiments and then the experiments themselves. A special sub-
section is dedicated to so-called compression units which are used as building
blocks of the proposed compression experiments.

The order of many tries used in the compression experiments is preset to
some reasonable value which has been acquired experimentally and the user
cannot set it manually (we don’t show the experiments here since this is not
what we should be focusing on in this thesis). If we don’t allow setting the
order for a specific trie, it is set to some default value as described. Moreover,
the values of initial limits on sum of symbol frequencies in a given context are
always preset. It is ensured that a specific model always has the same default
values across all word-based compression experiments, so that the experiments
are comparable.

To be more specific, the orders are preset to the following values:

e The order of models of black tokens (e.g. Mpr) is preset to 1 in all
experiments.

e The order of models of white tokens M7, is preset to 0 in all experi-
ments.

e The order of models of black token characters Mp¢ is preset to 4 in all
experiments.

e The order of models of white token characters Mpc is preset to 1 in all
experiments.

e The order of models of letter cases My ¢ is preset to 0 in all experiments.

Otherwise, the order is selectable by the user or the order is specified in
the following text.

3.6.1 Support classes
3.6.1.1 Tiny support classes
We briefly summarize here five support classes with simple functionality:
e class AllocationManager<T>
— class used to store pointers to dynamically allocated data structures

of any type T (e.g. tries); the main purpose of this class is making the
deallocation of these structures easy and automated;

74

3.6. Language compression

class MappingToID<T>

— class mapping data structures of any type T to symbol IDs (the main
purpose of this class in our experiments is to map tokens to IDs during
the compression since the PPM algorithm only works with IDs);

class MappingFromID<T>

— class mapping symbol IDs to data structures of any type T (the main
purpose of this class in our experiments is to map IDs to tokens during
the decompression);

class CustomContext<A,B>

— class used for mapping data structures of any type A to data structures
of any type B (this class is used for example when we want to keep
different models for different contexts and it’s impossible to achieve this
using a single trie, e.g. when we want to have different models of black
tokens depending on stored part of speech);

class SharedSymbolsManager

— class used when multiple tries share the same dynamic alphabet; it
manages the alphabet size and updates the tries so that all the tries
have the same alphabet when the size of the alphabet is incremented.

3.6.1.2 Class PPMSupport

This class holds various variables and methods which are commonly used
during compression/decompression. The class is responsible e.g. for opening
and closing input and output files (except files used by input readers described
in Section and for allocating and deallocating PPM tries used during
the compression. No instances of this class should be created (we create only
instances of child classes). Public methods of this class include:

e void closeFiles ()

— method closing all files opened by this class;

e uint8_t readOrder (),

void writeOrder (uint8_t order)
— methods reading/writing order of a trie from/to a file;

e uint8_t readByte (),

void writeByte (uint8_t byte)

— methods reading/writing a byte from/to a file
using a ByteInputModule/ByteOutputModule;

e bool isEnd0fInput ()
— method returning true if end of the input file has been reached;

75

3. DESIGN

e PPMTriex* createNewTrie (PPMTrieConfig cfg, string trieName)
— method creating a new trie with the given configuration and name
(class PPMSupport is responsible for deallocation of this trie);

e static off_t getFileSize (const char* fileName)
— method returning size of the specified file;

e static double getCompressionRatio (
const char* origFile,
const char* compressedFile
)
— calculates achieved compression ratio (returns size of the compressed
file divided by the size of the original file);

e static bool filesEqual (
const charx filel,
const charx file2

)

—returns true if the specified files have identical content (a debug method).

3.6.1.3 Class PPMCompressionSupport

This is a child class of PPMSupport, specialized on the encoding process. Apart
from the inherited variables, it includes an instance of PPMEncoderWrapper.
The public methods of this class include:

e PPMCompressionSupport (
const char* inputFileName,
const char* outputFileName
)
— constructor accepting path to input/output file (either of the two pa-
rameters can be null if the file is not needed);

e void encodeSymbol (

PPMTriex*x trie,

SYMBOL_ID symbol,

const vector<SYMBOL_ID>* preexcludedSymbols = NULL
)
— this method calls PPMEncoderWrapper: : encodeNextSymbol with the
given parameters; moreover, it stores the encoded symbol into a debug
array and updates the trie statistics, namely the number of encoded
symbols (entropy of the encoded message is updated by PPMEncoder);

e void encodeEQF (
PPMTriex* trie,

76

3.6. Language compression

const vector<SYMBOL_ID>* preexcludedSymbols = NULL
)
— calls PPMEncoderWrapper: : encodePPMEQF with the given parameters;

e void printFinalSummary ()
— this method prints the trie statistics at the end of the encoding process
as proposed in Section

3.6.1.4 Class PPMDecompressionSupport

This is a child class of PPMSupport, specialized on the decoding process. Apart
from the inherited variables, it includes an instance of PPMDecoderWrapper.
The public methods of this class include:

e PPMDecompressionSupport (
const char* inputFileName,
const char* outputFileName
)
— constructor accepting path to input/output file (either of the two pa-
rameters can be null if the file is not needed);

e void initDecompression ()
— method initializing the decoding process (all additional info from the
input file, e.g. stored orders of tries, have to be read before calling this
method, otherwise it is wrongly read by the range decoder);

e bool decodeNextSymbol (

PPMTrie* trie,

SYMBOL_ID& decodedSymbol,

const vector<SYMBOL_ID>* preexcludedSymbols = NULL
)
— method which calls PPMDecoderWrapper: :decodeNextSymbol with
the given parameters and returns its return value; moreover, it stores
the decoded symbol into a debug array (the program is terminated if
there is any mismatch between the debug array for decoding and the
debug array for encoding);

e void writeString (const string& str)
— writes the specified string to the output (useful when decoding tokens).
3.6.2 Compression units
3.6.2.1 BasicCompressionUnit
This is the simplest compression unit, wrapping a single trie. It includes the

following public methods:

7

3. DESIGN

e BasicCompressionUnit (PPMTriex trie)
— constructor accepting the trie which the unit should work with;

e void encodeSymbol (
SYMBOL_ID symbol,
PPMCompressionSupport* cs,
const vector<SYMBOL_ID>* preexcludedSymbols = NULL
)
— calls PPMCompressionSupport: :encodeSymbol with the given para-
meters;

e bool decodeSymbol (
SYMBOL_ID& decodedSymbol,
PPMDecompressionSupport* ds,
const vector<SYMBOL_ID>* preexcludedSymbols = NULL
)
— calls PPMDecompressionSupport: :decodeSymbol with the given pa-
rameter and returns its return value;

e void incrementAlphabetSize ()
— increments size of the alphabet used by the wrapped trie;

e void encodeEQF (
PPMCompressionSupport* cs,
const vector<SYMBOL_ID>* preexcludedSymbols = NULL
)
— calls PPMCompressionSupport: :encodeEOF with the given parame-
ters.

3.6.2.2 StringCompressionUnit

This compression unit is used to encode/decode strings. A string is en-
coded/decoded byte by byte using an instance of BasicCompressionUnit,
the end of the string is marked by a special terminating symbol. The public
methods of this class include:

e StringCompressionUnit (PPMTrie* charTrie)
— constructor accepting the trie which should be used to encode/decode
the strings;

e void encodeToken (
const string& token,
PPMCompressionSupport* cs
)

— encodes the given string;

78

3.6. Language compression

e bool decodeToken (
string& decodedToken,
PPMDecompressionSupport* ds
)
— decodes the encoded string; if the string isn’t properly decoded (in-
cluding the terminating symbol), returns false.

3.6.2.3 BlackTokenCompressionUnit

This compression unit is used to encode/decode black tokens. It holds an
instance of StringCompressionUnit (string compressor) to encode/decode
not-yet-known black tokens (i.e. the black tokens with no ID assigned) and
an instance of BasicCompressionUnit (token compressor) to encode/decode
the IDs of known black tokens; ID equal to 0 is reserved to mark that the
token should be encoded/decoded by the string compression unit. Classes
MappingToID<T> and MappingFromID<T> are used to map the tokens to IDs
and vice versa. The class includes the following public methods:

e BlackTokenCompressionUnit (
PPMTrie* tokenTrie,
PPMTrie* charTrie
)
— constructor accepting tries which should be used by the token com-
pressor and string compressor, respectively;

e void encodeToken (
const string& token,
PPMCompressionSupport* cs
)

— encodes the given token;

e bool decodeToken (
string& decodedToken,
PPMDecompressionSupport* ds

)
— decodes the encoded token; returns false if EOF has been decoded;

e void encodeEOF (PPMCompressionSupport* cs)
— encodes EOF using the token compressor.
3.6.2.4 TokenCompressionUnitWithSharedAlphabet<T>

This class is used for encoding/decoding token IDs using multiple different
tries. A trie for encoding/decoding a token ID is selected using a key of any
data type T; if there is no trie yet for the given key, a new trie is automatically

79

3. DESIGN

created. The mapping of keys to tries is done using an instance of class
CustomContext.

Similarly as BlackTokenCompressionUnit, this class uses MappingToID<T>
and MappingFromID<T> to map the tokens to IDs and vice versa. While tries
for encoding/decoding token IDs are selected by a key, there is only one in-
stance of StringCompressionUnit to encode tokens with no ID assigned. All
tries holding token IDs share the same alphabet (SharedSymbolsManager is
used to manage the alphabet), otherwise the mechanism of encoding/decoding
tokens is basically the same as for BlackTokenCompressionUnit

The class contains the following public methods:

e TokenCompressionUnitWithSharedAlphabet (

PPMTriex charTrie,

PPMTrieConfig cfg,

string (xgetName) (T)
)
— constructor accepting a trie which should be used by the string com-
pressor, a trie config which should be used for tries holding token IDs
and a pointer to function which generates name of the token tries based
on the given key;

e void encodeToken (
const string& token,
PPMCompressionSupport* cs,
T key
)

— encodes a token (the trie for encoding is selected using the given key);

e bool decodeToken (
PPMDecompressionSupport* ds,
T key,
string& decodedToken
)

— decodes a token (the trie for decoding is selected using the given key);
returns false if EOF has been decoded;

e void encodeEOF (PPMCompressionSupport* cs, T key)
—encodes an EOF (the trie for encoding is selected using the given key).

3.6.2.5 WhiteTokenCompressionUnit

This class is used to encode/decode white tokens. It is a child class of
TokenCompressionUnitWithSharedAlphabet<uint32_t>, (Unicode symbols
are used as keys for selecting token tries). The class contains the following
public methods:

80

3.6. Language compression

e WhiteTokenCompressionUnit (
PPMTriex charTrie,
PPMTrieConfig cfg
)
— constructor accepting a pointer to trie which should be used by the
string compressor and a config which should be used for tries holding
the token IDs;

e static uint32_t getLastBlackChar (const string& token)
— method returning the last Unicode character of the UTF-8-encoded
string (used to select a proper key to encode/decode a white token).

3.6.2.6 LemmalndexCompressionUnit

This class is used for encoding/decoding positions (indexes) of forms in the
list of forms generated from a lemma (see Section [2.4.2.1)). For each lemma,
the class holds an individual model (trie) of indexes (mapping is done using
class CustomContext). The class contains the following public methods:

e LemmaIndexCompressionUnit (
const MorphoWrapper* mrph,
uint8_t order
)
— constructor accepting pointer to an instance of morphological genera-
tor and desired order of the index trie;

e static bool beforelndexEncoding (
const string& lemmald,
const string& origToken,
const string& tag,
const MorphoWrapper* mrph
)
— method returning true if it’s possible to generate origToken from the
given lemmald and tag;

e void encodeIndex (
const string& lemmald,
const string& origToken,
PPMCompressionSupport* cs,
const string& tag
)
— method encoding index of origToken in the list of forms generated
from lemmald + tag;

81

3. DESIGN

e string decodeIndex (
const string& lemmald,
PPMDecompressionSupport ds,
const string& tag
)
— method decoding index of original token in the list of forms generated
from lemmaId + tag (the original token is returned).

3.6.2.7 LargeFirstLetterCompressionUnit

This class is an implementation of the letter case heuristics described in Sec-
tion It holds a basic compression unit for encoding the case and an
indicator whether for the next word the case of the first letter should be en-
coded/decoded (i.e. whether the heuristics is in activated state or not, as
shown by Figure . The class includes the following public methods:

e LargeFirstLetterCompressionUnit (PPMSupport* support)
— constructor using the pointer to PPMSupport to create the trie for basic
compression unit;

e bool willEncodeFirstLetterCase (

string& blackToken,

const string& lemma
)
— returns true if the unit is prepared to encode the first letter case (then
method encode must be called before calling this method again), false
otherwise; the method inspects the black token; if it is an “activating
token” (e.g. “.”), the unit just sets the state to activated and returns
false; else if the state is activated and the case of the first character
of the black token can be changed (i.e. it is a standard letter of Czech
alphabet), the token is possibly changed (the decision whether to change
it or not is done using parameter lemma, see Section and true is
returned; else, false is returned;

e void encode (PPMCompressionSupport* cs)
— sets the state to deactivated an encodes the symbol (“lower” or “up-
per”) prepared by willEncodeFirstLetterCase;

e bool willDecodeFirstLetterCase (string& blackToken)
— sets the state to activated if the black token specified in parameter is
an activating token (e.g. “.”); returns true if decodeIfNeeded should be
called before the next calling of this method (in fact it returns whether
the state is activated or not)

82

3.6. Language compression

® bool decodeIfNeeded (

string& tokenToEdit,

PPMDecompressionSupport* ds
)
— this method can be called only if the state is activated (i.e. the pre-
vious calling of willDecodeFirstLetterCase returned true); if the to-
ken specified in parameter is a token starting with a letter with known
lower-case and upper-case variant, then the case is decoded, the token
is updated as needed to restore the original case of the first letter and
state is set to deactivated; method returns false if the decoding fails
(that means a serious error which is not expected to happen in our final
implementation).

3.6.3 Compression experiments
3.6.3.1 SimplePPMCompressor

This class represents basic byte-oriented compression method where the file is
compressed as a sequence of bytes (using a single model M with alphabet A
containing one symbol for every possible value of a byte). It is a relic from the
original PPM implementation by Jifi Krotil [42] which has been redesigned
and kept in the program for comparison purposes. The class contains the
following public methods:

e static void compress (
uint8_t order,
const char* inputFile,
const char* outputFile
)
—method which encodes the specified input file; the order of model (trie)
M is set to the specified value;

e static void decompress (
const char* inputFile,
const char* outputFile
)
— method which decodes the specified input file; the order of the model
is read from the input file.

3.6.3.2 WordBasedCompressorConfig

Class WordBasedCompressorConfig is used to hold the orders and also initial
limits on sum of symbol frequencies in a given context for some of the tries
used in basic word-based compression. Namely, WordBasedCompressorConfig

83

3. DESIGN

holds configuration info for models of white and black tokens and for models
used to encode white and black tokens byte by byte.

3.6.3.3 WordBasedCompressor

This class implements the experiment described in Section The public
methods of this class include:

e static void compress (

FeedingModulex*x fm,

const char* outputFile,

const WordBasedCompressorConfig& cfg
)
— encodes the input delivered by the feeding module, using the speci-
fied config to set the initial configuration of some of the tries; since
the described parameters are used the same way in every word-based
experiment, we don’t comment their purpose in the rest of the design
specification;

e static void decompress (
const char* inputFile,
const char* outputFile,
const WordBasedCompressorConfig& cfg
)
— method for decoding.

3.6.3.4 LemmaPlusIndexCompressor

This class implements the experiment described in Section The public
methods of this class include:

e static void compress (

FeedingModulex fm,

const char* outputFile,

const WordBasedCompressorConfig& cfg,

const MorphoWrapper* mrph,

bool useRawlLemmas,

uint8_t order
)
— encoding method; useRawLemmas specifies whether the stored lemmas
should be stripped to raw lemmas (true) or lemma ids (false); order
specifies the desired order of index tries M7, ; mrph is pointer to generator
which should be used to generate forms;

84

3.6. Language compression

e static void decompress (
const char* inputFile,
const char* outputFile,
const WordBasedCompressorConfigk cfg,
const MorphoWrapper* mrph
)

— decoding method; the order of index tries is read from the input file.

3.6.3.5 POSCompressorl

This class implements the experiment described in Section The public
methods of this class include:

e static void compress (
FeedingModule* fm,
const char* outputFile,
const WordBasedCompressorConfig& cfg,
uint8_t order

)
— encoding method; order is the desired order of POS trie Mppg;

e static void decompress (
const char* inputFile,
const char* outputFile,
const WordBasedCompressorConfigk cfg

)
— decoding method; the order of POS trie is read from the input file.

3.6.3.6 POSCompressor2

This class implements the experiment described in Section The public
methods of this class include:

e static void compress (
FeedingModulex* fm,
const char* outputFile,
const WordBasedCompressorConfig& cfg,
const TaggerWrapper* tgr
)
— encoding method; tgr is pointer to tagger which should be used to
perform isolated tagging;

e static void decompress (

const char* inputFile,
const char* outputFile,

85

3. DESIGN

const WordBasedCompressorConfig& cfg,

const

)

TaggerWrapper* tgr

— decoding method.

3.6.3.7 LemmaPlusIndexPlusTagCompressor

This class implements the experiment described in Section The order of
index tries My, 5, . is set to an optimal value discovered when experimenting
with LemmaPlusIndexCompressor. The public methods of this class include:

e static void compress (
FeedingModule* fm,

const
const
const
const

char* outputFile,
WordBasedCompressorConfig& cfg,
MorphoWrapper* mrph,
TaggerWrapper* tgr,

set<uint8_t> selectedP0S,

uint8_t tagPosition,

uint8_t order)
— encoding method; mrph is pointer to generator which should be used to
generate forms, tgr is pointer to tagger which should be used to perform
isolated tagging, order is the desired order of tag trie Mp4¢q; meaning
of selectedP0S and tagPosition has already been described;

e static void decompress (

const
const
const
const
const

char* inputFile,

char* outputFile,
WordBasedCompressorConfig& cfg,
MorphoWrapper* mrph,
TaggerWrapper* tgr,

set<uint8_t> selectedP0S,
uint8_t tagPosition

)

— decoding method; the order of tag trie is read from the input file.

Notice that the variables selectedP0S and tagPosition must be specified
for both encoding and decoding, they are not being stored in the compressed
file. We decided not to implement storing of these values since it is not needed
for demonstration purposes in this thesis.

3.7 Main file

The main file contains procedures responsible for processing command line
arguments and launching the experiments accordingly. Apart from the six

86

3.7. Main file

compression experiments described in Section [3.6.3] it allows launching five
other experiments:

e tokenizing experiment — experiment for verifying that the tokenizing
works correctly;

e tagging and lemmatization experiment — experiment showing basic
functionality of tagger and tokenizer;

e morphological generation experiment — experiment showing basic func-
tionality of morphological generator;

e POS dependency experiment — the experiment which was used to pro-
duce data shown in Table 2.1}

e isolated tagging experiment — the experiment which was used to pro-
duce data shown in Table 2.2

There is a help info which can be displayed by the user to know how to
launch each of the experiments.

87

CHAPTER 4

Implementation

The whole program has been implemented as proposed in the previous chap-
ters. In this chapter, we present some additional info about the final imple-
mentation, not-yet mentioned technical details etc.

4.1 Code properties and compiling

The code of the program complies with standard C4++11 of the C++ pro-
gramming language. The program is intended to be run on GNU/Linux as
mentioned before (we may improve the portability in the future, now this
thesis is just a proof of concept).

CMake software [46] is used to generate a makefile on the target plat-
form (instructions on how to generate the makefile are attached to the source
files). The makefile is generated using file CMakeLists.txt created with help
of CLion IDE [47]. Minimum version 2.8 of CMake is required. The generated
makefile also automatically creates the MorphoDiTa static library from Mor-
phoDiTa source code. The code is compiled using a high level of optimization.

4.2 Handling of errors

When an error is encountered during execution of the program, the program is
typically terminated by a fail of assertion. In such case, a brief error message
is printed, telling the user which line in the source code contains the failed
assertion to allow further inspection of the error.

4.3 Performance

The speed of the compression and decompression proved to be acceptable;
however, we used program gprof [48] to identify the most time-consuming
parts of code anyway. The PPM algorithm (mainly the exclusion mechanism)

89

4. IMPLEMENTATION

and MorphoDiTa tools are the most time-consuming parts of our program;
using the data generated by the profiler, we managed to speed up the PPM
algorithm significantly but it is still relatively slow (which is not a problem in
this thesis, though).

4.4 Running the program

When the program is compiled, a binary called NLC is created. When running
the binary without any parameter, a help info is shown telling the user how to
set the necessary command line parameters. For all compression experiments,
path to the original file, compressed file and decompressed file is required. For
experiments using MorphoDiTa, path to a tagger model is required.

90

CHAPTER 5

Testing and evaluation

This chapter summarizes the testing and evaluation of all compression algo-
rithms defined in Section We compare our compression algorithms not
only with each other, but also with simple byte-oriented PPM compression
implemented by SimplePPMCompressor and with common compression pro-
grams gzip, bzip2 and lzma pre-installed in Ubuntu 15.10, a distribution of
GNU/Linux.

For some of the implemented experiments, there is a handicap of storing
one extra byte into the compressed file to specify order of some of the tries
used by the coder (see Section ; we consider this handicap negligible.

In Table we summarized which tagger models we can use during the
compression. We also stated that we will use only taggers 131112-best_accu-
racy, 131112-fast or 160310-main. To simplify the names of the taggers, we
use name “BEST” for tagger 131112-best_accuracy, name “FAST” for tagger
131112-fast and name “NEW?” for tagger 160310-main; we also renamed the
taggers on the attached CD so that it’s easier to use a specific tagger in our
program.

When presenting the trie statistics (see Section in this chapter, the
legend is as follows:

e # — number of encoded symbols;
e H — bit entropy of the encoded message;
e bps — bits per encoded symbol;

e % — how many percents of the estimated file size have been produced
by the specific trie.

All testing is done on our set of test files, which is specified in Section
The sizes of the test files are summarized once again in Table

91

5. TESTING AND EVALUATION

Table 5.1: Summary of test files

file name size (bytes)
genesis.txt 124 194
komunikace.txt | 49 027
mloci.txt 456 808
zakonik.txt 1 290 540

Table 5.2: Compression results of algorithms gzip, bzip2 and lzma (the cells
contain size of the compressed file in bytes 4+ compression ratio).

gzip

bzip2

lzma

genesis.txt

44196 (35.57 %)

37 301 (30.03 %)

40 367 (32.50 %)

komunikace.txt

19 226 (39.22 %)

16 696 (34.05 %)

18 141 (37.00 %)

mloci.txt

187 163 (40.97 %)

147 355 (32.26 %)

161 253 (35.30 %)

zakonik.txt

346 143 (26.82 %)

252 793 (19.59 %)

270 754 (20.98 %)

5.1 Algorithms gzip, bzip2 and lzma

First we compressed our test files using the common compression programs
gzip, bzip2 and lzma. The compression ratios achieved by these programs
are shown in Table 5.2l

5.2 Byte-oriented PPM compression

This algorithm, represented by class SimplePPMCompressor, can be run using
the following command (the command shows how to run it on file mloci.txt
using a trie of order 2):

./NLC -e 0 -o 2 -c compressed
-d decompressed.txt -i testfiles/mloci.txt

The achieved compression ratio largely depends on the selected order. We just
show the compression ratios for best order setting for each of the test files:

e genesis.txt: best results for order 5 (36 903 bytes, 29.71 %);

komunikace.txt: best results for order 4 (16 196 bytes, 33.03 %);

e mloci.txt: best results for order 5 (144 946 bytes, 31.73 %);

zakonik.txt: best results for order 7 (256 884 bytes, 19.91 %).

We can see that the achieved results are better than for any of the three
algorithms from Table (except bzip2 on zakonik.txt). However, we want
to achieve even better results using word-based compression.

92

5.3. Basic word-based compression

5.3 Basic word-based compression

This algorithm, represented by class WordBasedCompressor, can be run using
the following command:

./NLC -e 1 -c compressed -d decompressed.txt
-t morphodita models/FAST -i testfiles/mloci.txt
| tee output.txt

We strongly recommend to store the output to some file as shown, so that it
can be read and analyzed easily (this applies to all word-based compression
algorithms in this chapter).

5.3.1 Effect of different tagger models

We ran the algorithm on test file mloci.txt to show how the selection of
a specific tagger model influences the compression ratio. We achieved the
following results for the three taggers:

o tagger FAST: 143 143 bytes (31.34 %);
e tagger BEST: 143 137 bytes (31.33 %);

e tagger NEW: 143 141 bytes (31.34 %).

It’s obvious that the selection of tagger model has just a negligible influ-
ence on the compression ratio in case of our basic word-based compression
algorithm, thus we decided to keep using model FAST by default.

5.3.2 Results for different test files

Using tagger model FAST, we ran the algorithm on each of our test files. The
achieved compression ratios are summarized in Table We added a column
containing number of distinct black tokens contained in each of the files, so
that we can see how the size of vocabulary influences the compression ratio.

Using the trie statistics, we also prepared Table to show how each of
the tries performed (results of models of white tokens My, have been merged
for each c).

5.3.3 Summary

For all test files, the achieved compression ratio is better than compression ra-
tios achieved with other compression algorithms tested earlier in this chapter.
We observe the following:

e Most of the encoded data is output by models Mo and Mpr.

93

5. TESTING AND EVALUATION

Table 5.3: Compression results of basic word-based compression (the cells in
the second column contain size of the compressed file in bytes + compression
ratio).

compression results | number of distinct black tokens
genesis.txt 36 175 (29.13 %) 4260
komunikace.txt | 15 899 (32.43 %) 2652
mloci.txt 143 143 (31.34 %) 17720
zakonik.txt 246 496 (19.10 %) 15328

Table 5.4: Basic word-based compression — trie statistics.

model (trie) | # H bps %
Mwyco 22 93 4.235 | 0.03
Mpc 34091 110161 3.231 | 38.07
genesis.txt Mpr 24561 160991 6.555 | 55.63
Mo 1151 449 0.390 | 0.16
My, 24561 17699 0.721 | 6.12
Mo 18 81 4.506 | 0.06
Mpc 24355 74399 3.055 | 58.49
komunikace.txt | Mpgr 7737 46554 6.017 | 36.60
Mo 371 200 0.539 | 0.16
My, 7737 5957 0.770 | 4.48
Mo 29 80 2.767 | 0.01
Mpc 161875 | 495281 3.060 | 43.25
mloci.txt Mpr 82224 590297 7.179 | 51.55
My 5256 1116 0.212 | 0.10
My, 82224 58367 0.710 | 5.10
Mo 20 87 4.359 | 0.00
Mpc 140593 | 353529 | 2.515 | 17.93
zakonik.txt Mpr 210270 | 1469693 | 6.990 | 74.53
My 9229 4946 0.536 | 0.25
Mwr, 210270 | 143708 0.683 | 7.29

94

5.4. Basic experiment using morphological generator

e It seems that Mpc has highest impact on the compression ratio (see
column %) in short files (komunikace.txt) and in files with rich vo-
cabulary (mloci.txt); this is because in both files, relatively a lot of
not-yet-known black tokens has to be encoded.

e The impact of My on the compression ratio is negligible (there obvi-
ously are only a few distinct white tokens in each file, as expected).

e The direct impact of Mc on the compression ratio (see column %) is
nearly negligible (but it surely decreases the number of distinct black
tokens; we don’t show an empirical proof in this thesis, though).

e The impact of M7, on the compression ratio (see column %) is mo-
derate (and similar for all test files).

We expect that our other algorithms are able to push the compression
ratios even lower.

5.4 Basic experiment using morphological
generator

This algorithm, represented by class LemmaPlusIndexCompressor, can be run
using the following command (-x specifies whether the stored lemmas should
be stripped to lemma id (0) or raw lemma (1), -o specifies order of tries M,):

./NLC -e 2 -c compressed -d decompressed.txt
-t morphodita models/FAST -x 0 -o 0 -i testfiles/mloci.txt
| tee output.txt

We first inspect the influence of parameters -x and -o on the compression
ratio, then we inspect how the compression ratio is influenced by selection of
tagger model. Finally, we present detailed results for each of the test files and
compare the results with the basic word-based compression.

5.4.1 Influence of parameters -x and -o

First, we inspect the influence of parameter -x (with -o being set to 0), which
is summarized in Table We can see that with parameter -x set to 1, we
achieved slightly better compression ratios, and the number of distinct lemmas
recognized by our algorithm decreased slightly (this is what we supposed in
our analysis). This means that for further testing, we set -x to 1.

The inspection of influence of parameter -o follows. We already know the
compression ratios for -o set to 0. Here we show sizes of the compressed files
and compression ratios for -o 1:

95

5. TESTING AND EVALUATION

Table 5.5: Compression results of Basic experiment using morphological gen-
erator for different setting of parameter -x.

-x 0 x 1
lemmas | file size & ratio lemmas | file size & ratio
genesis 2666 36 360 (29.28 %) | 2636 36 130 (29.09 %)
komunikace | 1768 15 887 (32.40 %) 1753 15 718 (32.06 %)
mloci 10797 144 053 (31.53 %) | 10669 143 204 (31.35 %)
zakonik 8404 250 602 (19.42 %) | 8336 249 929 (19.37 %)

e genesis.txt: 36 151 (29.11 %);

e komunikace.txt: 15 747 (32.12 %);
e mloci.txt: 143 297 (31.37 %);

e zakonik.txt: 250 077 (19.38 %).

We can see that increasing the order of tries M, doesn’t help, thus para-
meter -o is set to 0 in all the following testing of LemmaPlusIndexCompressor
(and for LemmaPlusIndexPlusTagCompressor, we use this order settings by

default for models M Iy 38 proposed in Section [3.6.3.7)).

5.4.2 Influence of different tagger models

We ran the algorithm on test file mloci.txt with the three different models.
We achieved the following results:

e tagger FAST: 143 204 bytes (31.35 %);
e tagger BEST: 143 174 bytes (31.34 %);
e tagger NEW: 143 206 bytes (31.35 %).

It’s obvious that the selection of tagger model has just a negligible influence
on the compression ratio as it was in case of the previous algorithm, thus we
keep using model FAST by default.

5.4.3 Detailed results for different test files

We use -x 1, -o 0 and tagger model FAST here, thus we already know the
achieved compression ratios (see the right half of Table [5.5)).

Using the trie statistics, we also prepared Table to show how each
of the tries performs on each of the files (results of models of indexes M,
have been merged for each L). We don’t show the statistics for models My ¢,
My, and Mo — the compression algorithms have been designed in such a
way that the statistics of these models are the same in each algorithm (except
column %, which depends also on size of the compressed file).

96

5.4. Basic experiment using morphological generator

Table 5.6: Basic experiment using morphological generator — trie statistics.

model (trie) | # H bps %
Mpo 20957 71335 3.404 | 24.68
genesis.txt Mpr 24561 155199 | 6.319 | 53.70
My, 16675 44252 2.654 | 15.31
Mpo 15647 51240 3.275 | 40.75
komunikace.txt | Mg 7737 50813 6.567 | 40.41
My, 5449 17442 3.201 | 13.87
Mpo 94730 312181 3.295 | 27.25
mloci.txt Mpr 82224 612299 7.447 | 53.45
My, 54503 161578 2.965 | 14.10
Mpo 66537 191410 2.877 | 9.57
zakonik.txt Mpr 210270 | 1371533 | 6.523 | 68.60
My, 150589 | 287731 1.911 | 14.39

5.4.4 Summary

Our task in this subsection is to summarize the experiment and compare it
with our basic word-based compression tested in Section

For two test files, the compression ratio improved slightly. For file mlo-
ci.txt, the compression ratio worsened negligibly. For file zakonik.txt,
which contains the most unnatural text of our test set, the disimprovement is
more significant. Looking at the trie statistics, we can state the following:

e Index tries Mj, produce approximately 14-15% of the total output.
They are most efficient (see column bps) on the longest text with rela-
tively small vocabulary (zakonik.txt) and least efficient on short texts
or texts with an extensive vocabulary (this is probably because there
are frequent encodings in PPM order -1).

e The main improvement can be observed for models Mpc, where the
number of encodings decreased significantly for all files (this is exactly
what we supposed in the analysis).

e For models Mpr, the results are ambiguous — in two cases (files komuni-
kace.txt and mloci.txt), the efficiency (see column bps) decreased
slightly, for the two other files we observe a slight improvement.

e In case of file zakonik.txt, the amount of data encoded by index tries
M, is so big that it overbalanced all improvements of Mpc and Mpr
(even though M, has a very good value of bps here).

As a conclusion, we can state that this algorithm is at least fully com-
petitive with the basic word-based compression algorithm, if not better. We

97

5. TESTING AND EVALUATION

Table 5.7: Compression results of Experiment with part-of-speech tags (1) for
different setting of parameter -o.

00 01 -0 2 -0 3
genesis.txt 32.30 % | 31.45 % | 31.26 % | 31.35 %
komunikace.txt | 34.66 % | 34.10 % | 34.18 % | 34.37 %
mloci.txt 33.92 % | 33.23 % | 33.16 % | 33.25 %
zakonik.txt 22.79 % | 22.00 % | 21.60 % | 21.46 %

expect that algorithm implemented as LemmaPlusIndexPlusTagCompressor,
which is a direct extension of the algorithm tested in this section, is able to
achieve even better compression ratios.

5.5 Experiment with part-of-speech tags (1)

This algorithm, represented by class POSCompressorl, can be run using the
following command (-o specifies order of trie Mpog):

./NLC -e 3 -c compressed -d decompressed.txt
-t morphoditamodels/FAST -o 1 -i testfiles/mloci.txt
| tee output.txt

We first inspect the influence of parameter -o and influence of individual
tagger models on the compression ratio, then we present trie statistics for all
test files in similar way as for the previous algorithms.

5.5.1 Influence of parameter -o

We have run the algorithm on all test files with different setting of -o, the
results (compression ratios) are summarized in Table The table shows
that for compressing POS tags, a context-based compression method is better
than a statistical one (i.e. zero-order PPM), as expected. It seems that,
on average, best compression ratios are achieved when parameter —o is set
to 2, we thus use this setting by default in the following experiments with
POSCompressorl.

5.5.2 Influence of different tagger models

We ran the algorithm on test file mloci.txt with the three different models.
We achieved the following results:

e tagger FAST: 151 485 bytes (33.16 %);

e tagger BEST: 151 444 bytes (33.15 %);

98

5.5. Experiment with part-of-speech tags (1)

Table 5.8: Experiment with part-of-speech tags (1) — trie statistics.

model (trie) | # H bps %
Mpc 34532 | 111174 | 3.219 | 35.80
genesis.txt Mpry 24561 120799 | 4.918 | 38.89
Mpos 24561 | 60365 2.458 | 19.44
Mpe 24454 | 74667 3.053 | 55.70
komunikace.txt | Mpr, 7737 31867 4.119 | 23.77
Mpos 7737 21275 2.750 | 15.87
Mpc 163291 | 499249 | 3.057 | 41.20
mloci.txt Mpry 82224 | 437004 | 5.315 | 36.06
Mpos 82224 | 216053 | 2.628 | 17.83
Mpc 141337 | 355191 | 2.513 | 15.93
zakonik.txt Mpry 210270 | 1229224 | 5.846 | 55.13
Mpos 210270 | 496680 | 2.362 | 22.27

e tagger NEW: 151 463 bytes (33.16 %).

Again, it’s obvious that the selection of tagger model doesn’t significantly
affect the compression ratio.

5.5.3 Detailed results for different test files

We use -o 2 and tagger model FAST here, thus we already know the achieved
compression ratios (see the corresponding column in Table . Detailed info
about performance of each of the tries is contained in Table (results of
models of black tokens Mpr, have been merged for each X). We don’t show
statistics for models Mw¢c, Mwr, and M since they perform here exactly
the same as in the previous two algorithms.

5.5.4 Summary

We can state that the compression ratio achieved by this algorithm is defi-
nitely worse than for the basic word-based compression. Looking at the trie
statistics, we can state the following:

e For models Mg, the amount of encoded information increased slightly
for all test files. This is probably because some of the tokens are incor-
porated in more than one of the models Mpr, and each of the models
Mpr, has an individual alphabet of tokens, thus the same token has to
be encoded repeatedly by Mpc.

e For models of black tokens Mpr,, there is a significant decrease in
amount of encoded information for all test files. This is what we expected
in the analysis.

99

5. TESTING AND EVALUATION

Table 5.9: Compression results of Experiment with part-of-speech tags (2).

file size (compression ratio)
genesis.txt 37 594 (30.27 %)
komunikace.txt | 16 098 (32.83 %)
mloci.txt 146 731 (32.12 %)
zakonik.txt 274 011 (21.23 %)

e Storing the value of POS tag takes approximately 2.5 bits per encoded
black token; this is quite a big amount of information which overbalances
the positive effect of this approach on models Mp7, , making the com-
pression ratio worse than if the basic word-based compression was used.

5.6 Experiment with part-of-speech tags (2)

This algorithm, represented by class POSCompressor2, can be run using the
following command:

./NLC -e 4 -c compressed -d decompressed.txt
-t morphodita models/FAST -i testfiles/mloci.txt
| tee output.txt

We first briefly show how the compression ratio is affected by the selection of
tagger model, then we present detailed results for all test files.

5.6.1 Influence of different tagger models

We ran the algorithm on test file mloci.txt with the three different models.
We achieved the following results:

e tagger FAST: 146 731 bytes (32.12 %);
e tagger BEST: 146 688 bytes (32.11 %);

o tagger NEW: 146 725 bytes (32.12 %).

We can see that there is no big difference between the three models, so we
keep using model FAST.

5.6.2 Detailed results for different test files

Table summarizes achieved compression ratios and Table shows the
trie statistics (results of models Mpr, have been merged for each X); we
don’t include models Mwec, Mwr,, Mrc and Mpc, since they perform here
exactly the same as for the basic word-based compression.

100

5.7. Experiment with non-part-of-speech tags

Table 5.10: Experiment with part-of-speech tags (2) — trie statistics.

model (trie) | # H bps %
genesis.txt Mpr, 24561 172346 | 7.017 | 57.31
komunikace.txt | Mpr, 7737 48144 | 6.223 | 37.38
mloci.txt Mpr, 82224 618996 | 7.528 | 52.73
zakonik.txt Mpr, 1689813 | 496680 | 8.036 | 77.09

5.6.3 Summary

The achieved compression ratio is worse than compression ratio achieved by
the basic word-based compression for all test files, this is caused by more
bits spent to encode a black token on average than for the basic word-based
compression. Thus we can state that for Czech text, this way of using POS
tags is probably not beneficial.

5.7 Experiment with non-part-of-speech tags

This algorithm, represented by class LemmaPlusIndexPlusTagCompressor,
can be run using the following command (-o specifies order of the tag trie
Mrtag, —x specifies the list of selected parts of speech selectedPOS, -y speci-
fies the selected position in the tag tagPosition; notice that parameter -y uses
zero-based indexing):

./NLC -e 5 -c compressed -d decompressed.txt
-t morphodita models/FAST -i testfiles/mloci.txt
-0 0 -x AV -y 10 | tee output.txt

We remind that this algorithm is a direct extension of the algorithm tested
in Section For index tries M It Ty the order is always set to 0, which
proved to be an optimal setting.

We want to test the influence of parameters -x, -y and -o, as well as the
influence of selection of tagger model, on the compression ratio. However,
this experiment is far more extensive than the previous ones, so we must
choose wisely what is worth testing (the number of possible configurations of
this algorithm is really huge). First, we test the influence of different tagger
models.

5.7.1 Influence of different tagger models

We ran the algorithm on test file mloci.txt with the three different models
for two selected configurations. We achieved the following results:

e configuration -x N -y 4 -o 0

101

5. TESTING AND EVALUATION

— tagger FAST: 145 811 bytes (31.92 %);
— tagger BEST: 145 801 bytes (31.92 %);
— tagger NEW: 145 838 bytes (31.93 %).

e configuration -x A -y 10 -0 0

— tagger FAST: 142 922 bytes (31.29 %);
— tagger BEST: 142 888 bytes (31.28 %);
— tagger NEW: 142 922 bytes (31.29 %).

The results show that the selection of a specific tagger model makes just
a negligible difference, thus it’s acceptable to keep using model FAST.

5.7.2 Selecting useful configurations

In this subsection, we summarize which combinations of values of parameters
-x, -y and -o should be tested in detail.

Our main goal is to decrease the amount of data that needs to be encoded
by index tries, this should be achieved by storing a specific grammatical cate-
gory for some selected part(s) of speech. It’s obviously not worth storing
gender for prepositions or number for adverbs; here we present a summary of
configurations we want to test (for each tested -y, there is a list of values of
-X):

e -y 2 (gender): N (nouns), A (adjectives), P (pronouns), C (numerals),
V (verbs);

e -y 3 (number): N, A, P, V;

e -y 4 (case): N, A, P, C;

e -y 5 (possessor’s gender): A, P;

e -y 6 (possessor’s number): A, P;

e -y 7 (person): P, V, J (conjunctions);
e -y 8 (tense): V;

e -y 9 (grade): A, D (adverbs);

e -y 10 (negation): N, A, V, D;

e -y 11 (voice): V.

102

5.7. Experiment with non-part-of-speech tags

Table 5.11: Experiment with non-part-of-speech tags — trie statistics for file
mloci.txt.

configuration model (trie) | # H bps %

eN oy 4 oo | Mmo 16163 | 42156 | 2.608 | 3.61
My, | 53846 | 140275 | 2.605 | 12.02
Mrag 6328 1350 0.213 | 0.12

x A -y 10 0 0 54503 | 157970 | 2.898 | 13.82

R

It’s possible to set -x and -y to any applicable value, but we don’t expect
that configurations not contained in the presented list are useful. We test all
the values of -x separately first, then we combine all the values of -x for each
-y (i.e. configuration -y 3 -x NAPV, for example).

Each of the configurations has been tested with —o 0 and then with -o 1 to
see if the context model helps when storing the tag values or not. The testing
has been performed only on test filemloci.txt, which should be representative
enough anyway since this file is long and it contains a more natural text than
most of the other test files.

The results are shown in Tables and We can state the following:

e In most cases, the compression ratio wasn’t improved.
e Storing the tag for multiple parts of speech is often not beneficial.

e For some positions in the tag, a context model is better than a statistical
model (zero-order trie).

Before we go further, we show detailed trie statistics for two configurations,
-x N -y 4 -o 0 (one of the worst configurations) and -x A -y 10 -o 0 (one
of the best configurations), in Table The results of models Mw¢, Mwr,,
My are the same as in algorithm tested in Section this is true also for
models M pc and Mpp, which is not guaranteed by the algorithm though. The
results of index tries M It Tppc have been merged for all pairs {L, T'rag}.

We can state that the amount of data encoded by index tries decreased
in both cases, as expected. It’s the tag trie M74c what makes the biggest
difference — for the first case, the trie encodes 2.6 bits per symbol, while
in the second case it’s only 0.2 bits per symbol. It seems that storing some
positions in the tag is not useful, mostly because of too many possible values
with similar probability (compare 9 possible values on position 4 with just 3
possible values on position 10).

For further testing on other files from our test set, we reduce the set of
configurations. The final set is specified in the following subsection.

103

5. TESTING AND EVALUATION

5.7.3 Main testing with the selected configurations

From our previous set of configurations, we keep only those configurations
which have positive or neutral effect on the compression ratio in case of file
mloci.txt (when the results are similar for both settings of -o, we prefer
setting -o to 1; we also exclude the configurations where multiple parts of
speech are used). We check here whether these configurations are helpful in
general or not, testing the configurations on all files from our test set. The
selected configurations and compression results are summarized in Table

5.7.4 Summary

Looking at the results, we can state the following;:

e Storing the value of the 10th position in the tag (negation) seems gene-
rally beneficial (except for adverbs).

e Storing the value of the 9th position (grade) seems generally beneficial
as well (if we consider zakonik.txt an untypical text, which it really
is).

e Improvement can be also achieved by storing the 7th position (person)
for pronouns.

e Other configurations don’t improve the compression ratio or they have
ambiguous results.

We have shown that the algorithm is really able to improve the compression
ratio as expected (when compared with algorithm tested in Section , but
the improvement happens only for specific configurations of the algorithm.
It’s also necessary to mention that the improvements are relatively small and
insignificant. We remind that there is a big number of configurations not
tested here, this summary is thus just a proof of concept.

The algorithm could be improved by storing several positions of the tag
alongside, so that the number of forms generated from the lemma gets even
smaller; this may be implemented and tested in some future work. We also
saw that for some selections of -y, the compression results worsen when we use
multiple parts of speech; this means that it could be useful to split tag models
Mrag to multiple tag models M7ag,g for each value POS of part-of-speech
tag.

5.8 Summary of experiments

In this section, we summarize the whole testing once more. We already know
how each of the implemented algorithms performs and we can also compare

104

5.8. Summary of experiments

Table 5.12: Summary of compression ratios (in percents) for all tested algo-
rithms and programs for each of the test files (see legend below). Best results

are

marked in bold.

g7 bz2 lzma EQ E1 E2 E3 E4 E5

fy
fa
f3
fa

35.57 | 30.03 | 32.50 | 29.71 | 29.13 | 29.09 | 31.26 | 30.27 | 29.04
39.22 | 34.05 | 37.00 | 33.03 | 32.43 | 32.06 | 34.18 | 32.83 | 31.97
40.97 | 32.26 | 35.30 | 31.73 | 31.34 | 31.35 | 33.16 | 32.12 | 31.29
26.82 | 19.59 | 20.98 | 19.91 | 19.10 | 19.37 | 21.60 | 21.23 | 19.35

Table legend:

f1 = genesis.txt
fo = komunikace.txt
f3 = mloci.txt

f4 = zakonik.txt

gz = gzip

bz2 = bzip2

Eo = byte-oriented PPM (mixed configurations)

E1 = basic word-based compression

E2 = basic experiment using morphological generator
E3 = experiment with part-of-speech tags (1) with -o 2
E4 = experiment with part-of-speech tags (2)

Es = exp. with non-part-of-speech tags (final testing only, mixed configurations)

them to common compression programs which have not been implemented in
this thesis. Table shows the best compression ratios achieved by each

of t

he tested algorithms and programs for each of the test files (using tagger

model FAST in the word-based algorithms). Looking at the table, we can
state the following:

e For all test files, some of our word-based compression algorithms achieved
better compression ratios than any non-word-based algorithm or pro-
gram.

e For all test files except one (zakonik.txt), we were able to improve
the compression ratio using lemmatisation, tagging and morphological
generation. It is necessary to mention that the text in file zakonik. txt
is largely structured and less natural than the texts contained in other
test files, thus we can state that using the linguistic tools really improves
the compression ratio of natural texts in general.

e The improvements have been achieved using the idea of storing lemmas
(or lemmas + tags) and generating the word forms using the stored lem-

105

5. TESTING AND EVALUATION

mas (or lemmas + tags); we didn’t manage to improve the compression
ratio of the basic word-based compression using other approaches.

e None of the improvements achieved by our algorithms can be considered
significant; we just proved the concept of utilizing the linguistic tools to
improve the compression ratio.

e Although we proposed that we don’t care about the speed of the al-
gorithms, we admit that our word-based algorithms (especially when
MorphoDiTa is used frequently) are significantly (but acceptably) slower
than the tested non-word-based algorithms and programs.

106

Conclusion

We have designed and implemented several algorithms for lossless compression
of natural Czech text in the C4++ programming language. All the algorithms
are based on adaptive PPM compression method. First we created a basic
word-based compression algorithm (a reference algorithm) and then we tried
to improve it using lemmatiser, morphological tagger and morphological gene-
rator from open-source software MorphoDiTa (four improving algorithms have
been designed and implemented). MorphoDiTa has been chosen as a suitable
tool based on previous survey.

Each of the four algorithms is typically based on different idea, this way
we wanted to verify which ideas are useful and which are not. First of the
algorithms uses lemmatiser to get lemma of each token in the text; the lem-
mas are stored instead of the real tokens and morphological generator is used
to generate the original token. The second algorithm stores part-of-speech
tags delivered by morphological tagger to take advantage of the structure of
a natural text; the probability of a certain word is estimated by the stored
part-of-speech tag. The third algorithm uses part-of-speech tags in a different
way, without storing them — the probability of a certain word is estimated
using part-of-speech tag of the previous word. The fourth algorithm is an
extension of the first algorithm, where a part of morphological tag is stored
alongside the lemma (the original token is acquired using the morphological
generator, again).

The testing on our set of test files has shown that the second and third
algorithm achieve worse compression ratios than the basic word-based refe-
rence algorithm, while the first algorithm is at least fully competitive with the
reference algorithm and the fourth algorithm slightly but generally surpasses
the reference algorithm for some configurations. Although the improvements
are not significant, we proved this way that the linguistic tools can be suc-
cessfully used to improve the compression ratio when compressing a natural
Czech text.

We also created an important by-product in this thesis — a highly univer-

107

CONCLUSION

sal implementation of PPM compression algorithm with detailed compression
statistics, which can be incorporated into ExCom [43] compression library
maintained by the Prague Stringology Club and/or used in any future work.
The implementation of PPM is based on an implementation by Jifi Krotil,
which has been modified and improved to match our needs in this thesis.

At the very end of this thesis, we suggest possible future work:

108

All of our compression algorithms use a purely adaptive compression,
building the compression model from scratch. We suppose that our
algorithms would achieve better compression ratios with some reasonable
initial model. The future work may thus include the task of creating such
model.

We didn’t run our algorithms on any text written in some other language
than Czech and we don’t guarantee that the algorithms work flawlessly
with other languages; however, it could be interesting to test some of
the approaches and ideas on English texts (MorphoDiTa works also with
English models, as mentioned).

The fourth one of the four algorithms mentioned in this section could be
improved to store multiple tag positions at the same time, as proposed
earlier in this thesis (we focused only on one-dimensional experiments,
storing just single tag positions).

There are many features of Czech language which have not been utilized
in the algorithms (we didn’t utilize the fact that a specific preposition
strongly determines the case of the following noun, adjective, pronoun
or number, for example); new algorithms utilizing these features can be
designed and evaluated.

A possible goal of the future work is to search for more useful ideas and
then to create a complex algorithm utilizing all those ideas.

When this thesis was already in advance, we discovered a new open-
source linguistic tool — dependency parser Parsito [49]. When some
models for Czech language are issued, this tool might be used to in-
spect the structure of individual sentences during the compression, which
could result in new compression algorithms.

The speed of the implemented PPM algorithm could be improved. This
may be a complex task though, since there is a trade-off between algo-
rithm speed and memory efficiency, including the time needed to allocate
the memory.

Another PPM-related task is to reimplement the memory manager used
in PPM, which is currently not able to reallocate a too big model if
multiple models are used.

Bibliography

MorphoDiTa User’s Manual | UFAL. 2016, Institute of Formal and Ap-
plied Linguistics, Charles University in Prague. Available from: http:
//ufal.mff.cuni.cz/morphodita/users-manual

Services. 2015, LINDAT /CLARIN digital library at Institute of Formal
and Applied Linguistics, Charles University in Prague. Available from:
https://lindat.mff.cuni.cz/en/services/

Project pages | UFAL. 2015, Institute of Formal and Applied Lin-
guistics, Charles University in Prague. Available from: https://
ufal.mff.cuni.cz/projects

Sikora, R. Vyhleddvani v éeskiyjch dokumentech pomoci Apache Solr [on-
line]. Master’s thesis, Masarykova univerzita, Fakulta informatiky, Brno,
2012 [cit. 2016-05-30]. Available from: http://is.muni.cz/th/256499/
fi_m/

MorphoDiTa | UFAL. 2016, Institute of Formal and Applied Lin-
guistics, Charles University in Prague. Available from: http://
ufal.mff.cuni.cz/morphodita

Strakova, J.; Straka, M.; Haji¢, J. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Pro-
ceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, Johns Hopkins University, Balti-
more, MD, USA, Stroudsburg, PA, USA: Association for Computational
Linguistics, 2014, ISBN 978-1-941643-00-6, pp. 13-18. Available from:
http://www.aclweb.org/anthology/P14-5003

MorphoDiTa. 2016, Institute of Formal and Applied Linguistics, Charles
University in Prague. Available from: http://lindat.mff.cuni.cz/
services/morphodita/

109

http://ufal.mff.cuni.cz/morphodita/users-manual
http://ufal.mff.cuni.cz/morphodita/users-manual
https://lindat.mff.cuni.cz/en/services/
https://ufal.mff.cuni.cz/projects
https://ufal.mff.cuni.cz/projects
http://is.muni.cz/th/256499/fi_m/
http://is.muni.cz/th/256499/fi_m/
http://ufal.mff.cuni.cz/morphodita
http://ufal.mff.cuni.cz/morphodita
http://www.aclweb.org/anthology/P14-5003
http://lindat.mff.cuni.cz/services/morphodita/
http://lindat.mff.cuni.cz/services/morphodita/

BIBLIOGRAPHY

8]

[12]

[13]

[14]

[18]

[19]

110

Haji¢, J. Czech Morphological Analyzer v1. 2014, LINDAT/CLARIN
digital library at Institute of Formal and Applied Linguistics, Charles
University in Prague. Available from: https://lindat.mff.cuni.cz/
services/morph/index.html

Flect | UFAL. 2015, Institute of Formal and Applied Linguistics, Charles
University in Prague. Available from: https://ufal.mff.cuni.cz/flect

Morce - Czech morphological tagger: Introduction. Institute of Formal
and Applied Linguistics, Charles University in Prague. Available from:
http://ufal.mff.cuni.cz/morce/index.php

Morce - Czech morphological tagger: Download. Institute of Formal and
Applied Linguistics, Charles University in Prague. Available from: http:
//ufal.mff.cuni.cz/morce/download.php

Spousta, M. Featurama download | SourceForge.net. Available from:
https://sourceforge.net/projects/featurama/

LemmaGen. 2010, Jozef Stefan Institute. Available from: http://
lemmatise.ijs.si/

LemmaGen - Online Services. 2010, Jozef Stefan Institute. Available
from: http://lemmatise.ijs.si/Services

Lingware. 2001-2016, Natural Language Processing Centre, Faculty of In-
formatics Masaryk University. Available from: https://nlp.fi.muni.cz/
cs/Lingware

Smerk, P. ajka vs. majka. Available from: https://nlp.fi.muni.cz/
czech-morphology-analyser/majka.html

Free natural language morphology for Czech, Slovak, Polish, Swedish,
German, French, Italian, English, Portuguese, Catalan, Welsh, Spanish,
Galician, Asturian and Russian. Natural Language Processing Centre,
Faculty of Informatics Masaryk University. Available from: https://
nlp.fi.muni.cz/czech-morphology-analyser/

Jakubicek, M.; Kovéi, V.; Smerk, P. Czech Morphological Tagset
Revisited. Natural Language Processing Centre, Faculty of Infor-
matics Masaryk University. Available from: http://raslan2011.nlp-
consulting.net/program/paper05.pdf

2.2.1. Positional tags. Institute of Formal and Applied Lin-
guistics, Charles University in Prague. Available from: |http:
//ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/
ch02s02s01.html

https://lindat.mff.cuni.cz/services/morph/index.html
https://lindat.mff.cuni.cz/services/morph/index.html
https://ufal.mff.cuni.cz/flect
http://ufal.mff.cuni.cz/morce/index.php
http://ufal.mff.cuni.cz/morce/download.php
http://ufal.mff.cuni.cz/morce/download.php
https://sourceforge.net/projects/featurama/
http://lemmatise.ijs.si/
http://lemmatise.ijs.si/
http://lemmatise.ijs.si/Services
https://nlp.fi.muni.cz/cs/Lingware
https://nlp.fi.muni.cz/cs/Lingware
https://nlp.fi.muni.cz/czech-morphology-analyser/majka.html
https://nlp.fi.muni.cz/czech-morphology-analyser/majka.html
https://nlp.fi.muni.cz/czech-morphology-analyser/
https://nlp.fi.muni.cz/czech-morphology-analyser/
http://raslan2011.nlp-consulting.net/program/paper05.pdf
http://raslan2011.nlp-consulting.net/program/paper05.pdf
http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/ch02s02s01.html
http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/ch02s02s01.html
http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/ch02s02s01.html

Bibliography

[20]

[21]

22]

1. Embedding Python in Another Application - Python 3.5.1 documen-
tation. 2001-2016, Python Software Foundation. Available from: https:
//docs.python.org/3/extending/embedding.html

Release MorphoDiTa 1.3.0 - wufal/morphodita - GitHub. 2016,
GitHub, Inc. Available from: https://github.com/ufal/morphodita/
releases/tag/v1.3.0

MorphoDiTa API Reference | UFAL. 2016, Institute of Formal and Ap-
plied Linguistics, Charles University in Prague. Available from: http:
//ufal.mff.cuni.cz/morphodita/api-reference

Institute of Formal and Applied Linguistics, Charles University in Prague.
MorphoDiTa: Morphological Dictionary and Tagger. 2014, version 1.3.0.

Straka, M.; Strakova, J. Czech Models (MorfFlex CZ 160310 + PDT
3.0) for MorphoDiTa 160310. 2016, LINDAT /CLARIN digital library at
Institute of Formal and Applied Linguistics, Charles University in Prague.
Available from: http://hdl.handle.net/11234/1-1674

Straka, M.; Strakova, J. Czech Models (MorfFlex CZ + PDT) for Mor-
phoDiTa. 2013, LINDAT/CLARIN digital library at Institute of Formal
and Applied Linguistics, Charles University in Prague. Available from:
http://hdl.handle.net/11858/00-097C-0000-0023-68D8-1

Haji¢, J. Positional Tags: Quick Reference (Czech "HM” Morphology).
2000. Available from: http://ufal.mff.cuni.cz/pdt/Morphology_and_
Tagging/Doc/hmptagqr.html

Salomon, D. Data Compression: The Complete Reference. Springer, 2006,
ISBN 1846286026.

Shannon, C. E. A mathematical theory of communication. The Bell Sys-
tem Technical Journal, volume 27, no. 3, 1948: pp. 379-423.

Holub, J. Introduction (lecture notes for Data Compression subject).
2016. Available from: https://edux.fit.cvut.cz/courses/MI-K0OD/
_media/lectures/01/mi-kod-01-intro.pdf

Welcome to Graphviz. Available from: http://www.graphviz.org/

Lansky, J.; Zemlicka, M. Text Compression: Syllables. Charles Univer-
sity, Faculty of Mathematics and Physics. Available from: |ceur-ws.org/
Vol-129/paper6.pdf

Martinez-Prieto, M. A.; Adiego, J.; de la Fuente, P. Natural Lan-
guage Compression on Edge-Guided text preprocessing. Information Sci-
ences, volume 181, no. 24, 2011: pp. 5387 — 5411, ISSN 0020-0255.

111

https://docs.python.org/3/extending/embedding.html
https://docs.python.org/3/extending/embedding.html
https://github.com/ufal/morphodita/releases/tag/v1.3.0
https://github.com/ufal/morphodita/releases/tag/v1.3.0
http://ufal.mff.cuni.cz/morphodita/api-reference
http://ufal.mff.cuni.cz/morphodita/api-reference
http://hdl.handle.net/11234/1-1674
http://hdl.handle.net/11858/00-097C-0000-0023-68D8-1
http://ufal.mff.cuni.cz/pdt/Morphology_and_Tagging/Doc/hmptagqr.html
http://ufal.mff.cuni.cz/pdt/Morphology_and_Tagging/Doc/hmptagqr.html
https://edux.fit.cvut.cz/courses/MI-KOD/_media/lectures/01/mi-kod-01-intro.pdf
https://edux.fit.cvut.cz/courses/MI-KOD/_media/lectures/01/mi-kod-01-intro.pdf
http://www.graphviz.org/
ceur-ws.org/Vol-129/paper6.pdf
ceur-ws.org/Vol-129/paper6.pdf

BIBLIOGRAPHY

[33]

[35]

[36]

112

Available from: |http://www.sciencedirect.com/science/article/
pii/S0020025511003781

Prochazka, P. Word-based Statistical Data Compression Methods. Mas-
ter’s thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering, 2008. Available from: https://dip.felk.cvut.cz/browse/
pdfcache/prochp5_2008dipl.pdf

Brisaboa, N. R.; Farina, A.; Navarro, G.; et al. Efficiently decod-
able and searchable natural language adaptive compression. In Pro-
ceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, 2005, pp. 234—
241. Available from: http://lbd.udc.es/Repository/Publications/
Drafts/Effdecandsea.pdf

Manning, C. D.; Raghavan, P.; Schiitze, H.; et al. Introduction to
information retrieval. Cambridge university press Cambridge, 2009,
online edition available from http://nlp.stanford.edu/IR-book/pdf/
irbookonlinereading.pdf.

Kazik, O.; Lansky, J. Linguistic Text Compression. In ICDT
2011: The Sizth International Conference on Digital Telecommunica-
tions, 2011, pp. 64-73. Available from: https://www.thinkmind.org/
download.php7articleid=icdt_2011_3_40_20041

Horspool, R. N.; Cormack, G. V. Constructing Word-Based Text Com-
pression Algorithms. In Data Compression Conference, 1992, pp. 62-71.
Available from: http://webhome.cs.uvic.ca/~nigelh/Publications/
wordCompression.pdf

Wikizdroje. Pét knih Mojzisovych/Na pocatku. 2015. Available from:
https://cs.wikisource.org/w/index.php?title=P%C4%9Bt_knih_

Mo j%C5%BE}%C3%AD%C5%A10vY,C3%BDch/Na_po7C4/8D%C3%Altku&oldid=
110176

Wikizdroje. O digitdlni komunikaci. 2014. Available from:
https://cs.wikisource.org/w/index.php7title=0_digit/C3%A11ln%
C3%AD_komunikaci&oldid=76435

Karel Capek | Méstskd knihovna v Praze. Municipal Library of
Prague. Available from: https://www.mlp.cz/cz/projekty/on-line-
projekty/karel-capek/

Wikizdroje. Obcansky zdkonik (2012). 2016. Available from:
https://cs.wikisource.org/w/index.php?title=0b}C4%8Dansk,
C3%BD_z%C3%A1konC3%ADk_(2012)&o01did=115913

http://www.sciencedirect.com/science/article/pii/S0020025511003781
http://www.sciencedirect.com/science/article/pii/S0020025511003781
https://dip.felk.cvut.cz/browse/pdfcache/prochp5_2008dipl.pdf
https://dip.felk.cvut.cz/browse/pdfcache/prochp5_2008dipl.pdf
http://lbd.udc.es/Repository/Publications/Drafts/Effdecandsea.pdf
http://lbd.udc.es/Repository/Publications/Drafts/Effdecandsea.pdf
http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://www.thinkmind.org/download.php?articleid=icdt_2011_3_40_20041
https://www.thinkmind.org/download.php?articleid=icdt_2011_3_40_20041
http://webhome.cs.uvic.ca/~nigelh/Publications/wordCompression.pdf
http://webhome.cs.uvic.ca/~nigelh/Publications/wordCompression.pdf
https://cs.wikisource.org/w/index.php?title=P%C4%9Bt_knih_Moj%C5%BE%C3%AD%C5%A1ov%C3%BDch/Na_po%C4%8D%C3%A1tku&oldid=110176
https://cs.wikisource.org/w/index.php?title=P%C4%9Bt_knih_Moj%C5%BE%C3%AD%C5%A1ov%C3%BDch/Na_po%C4%8D%C3%A1tku&oldid=110176
https://cs.wikisource.org/w/index.php?title=P%C4%9Bt_knih_Moj%C5%BE%C3%AD%C5%A1ov%C3%BDch/Na_po%C4%8D%C3%A1tku&oldid=110176
https://cs.wikisource.org/w/index.php?title=O_digit%C3%A1ln%C3%AD_komunikaci&oldid=76435
https://cs.wikisource.org/w/index.php?title=O_digit%C3%A1ln%C3%AD_komunikaci&oldid=76435
https://www.mlp.cz/cz/projekty/on-line-projekty/karel-capek/
https://www.mlp.cz/cz/projekty/on-line-projekty/karel-capek/
https://cs.wikisource.org/w/index.php?title=Ob%C4%8Dansk%C3%BD_z%C3%A1kon%C3%ADk_(2012)&oldid=115913
https://cs.wikisource.org/w/index.php?title=Ob%C4%8Dansk%C3%BD_z%C3%A1kon%C3%ADk_(2012)&oldid=115913

Bibliography

[42]

[43]

Krotil, J. Kompresni metody PPM. Master’s thesis, Czech Technical Uni-
versity in Prague, Faculty of Electrical Engineering, 2012. Available from:
https://dip.felk.cvut.cz/browse/pdfcache/krotijir_2012dipl.pdf

The ExCom Library. 2013, The Prague Stringology Club, Depart-
ment of Theoretical Computer Science, Faculty of Information Tech-
nology, Czech Technical University in Prague. Available from: http:
//www.stringology.org/projects/ExCom/

Doxygen: Main Page. 2015, Doxygen. Available from: http://
www.stack.nl/~dimitri/doxygen/

Dipperstein, M. Arithmetic Code Discussion and Implementation. 2014.
Available from: http://michael.dipperstein.com/arithmetic/

CMake. 2016. Available from: https://cmake.org/

A cross-platform IDE for C and C++ :: JetBrains CLion. 2016, JetBrains.
Available from: https://www.jetbrains.com/clion/

GNU gprof. Available from: https://sourceware.org/binutils/docs/
gprof/

Straka, M. Parsito. 2015, LINDAT/CLARIN digital library at Institute of
Formal and Applied Linguistics, Charles University in Prague. Available
from: http://hdl.handle.net/11234/1-1584

113

https://dip.felk.cvut.cz/browse/pdfcache/krotijir_2012dipl.pdf
http://www.stringology.org/projects/ExCom/
http://www.stringology.org/projects/ExCom/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://michael.dipperstein.com/arithmetic/
https://cmake.org/
https://www.jetbrains.com/clion/
https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/gprof/
http://hdl.handle.net/11234/1-1584

APPENDIX A

Design — class diagrams

115

A. DESIGN — CLASS DIAGRAMS

PPMDecoderWrapper
RangeCoder PPMEncoderWrapper
-ppm Decoder\ [\ \/
RangeDecoder RangeEncoder | _re
-ppmEncoder

PPMDecoder \

\ 4,/‘ PPMEncoder

PPMCoder

#exclusions
#nodeBackup

InnerNodeBackupF orExclusion|

ExclusionList

#currentTrie

PPMTrie
-longestActualContext

-lastChildAdded
-leftChildNode \ -trie Statistics

PPMNode -root

PP MTrieStatistics

-cfg

-leftChildNode
-backedUpNode -lastChildAdded PPMTrieConfig

PPMinnerNode PPMLeafNode

Figure A.1: Class model containing a selection of classes which are related to
range coder, PPM coder and PPM structure.

116

InputReaderWrapper

<]7 DummyinputReader

-reader
BasicFeedingModule _|> FeedingModule
-fm
MorphoWrapper t TokenStreamNormalizer
- gr
TaggerWrapper
BasicMorpho -tknzN
TokenizerWrapper
-morphoWrapper
BasicTagger
-tgrWrapper,

-tknzrWrapper BasicTokenizer

MorphoditaToolsWrapper

v

LanguageToolsWrapper

Figure A.2: Class model containing a selection of classes which are related to

input processing and linguistic

tools.

117

‘syrun worsseIxdwod o1} juesardol YOIYM Sasse[d SUrurejuod [opou sse[) ¢y 2Insrq

junuoissaidwogxapujewwa]

A. DESIGN — CLASS DIAGRAMS

<yzewine-| >
junuoissaidwoyuayo 1aNYM “v_mnmsa_eﬁo._me_m::;::::o_wwo._nEoo:wv_o._.
aweuadfy: |
junuoissaidwogiapaisiiabie junuoissaidwoguayo |yoe|g
Jossaidwo)buuys#
Jossaidwonbuuys- &\
J0ssaidwo)uay0)- nunuoissaidwoybuuyg

yunJossaidwoo- \

junuoissaidwogoiseg

JyunJossaidwoieyo-

118

APPENDIX B

Evaluation of algorithms —
tables

119

B. EVALUATION OF ALGORITHMS — TABLES

Table B.1: Experiment with non-part-of-speech tags — initial testing on file
mloci.txt with —o 0. Improvements of algorithm which has been tested in
Section 5.4l are marked in bold.

-y -X file size (compression ratio)
N 143 317 (31.37 %)
A 144 486 (31.63 %)
P 143 703 (31.46 %)
2 (gender) C 143 289 (31.37 %)
A 143 482 (31.41 %)
NAPCV | 146 778 (32.13 %)
N 143 897 (31.50 %)
A 143 637 (31.44 %)
3 (number) p 143 748 (31.47 %)
A% 143 267 (31.36 %)
NAPV | 145 766 (31.91 %)
N 145 811 (31.92 %)
A 144 221 (31.57 %)
4 (case) P 144 200 (31.57 %)
C 143 349 (31.38 %)
NAPC | 148 176 (32.44 %)
A 143 204 (31.35 %)
5 (possessor’s gender) | P 143 224 (31.35 %)
AP 143 224 (31.35 %)
A 143 204 (31.35 %)
6 (possessor’s gender) | P 143 234 (31.36 %)
AP 143 234 (31.36 %)
P 143 173 (31.34 %)
7 (person) v 143 308 (31.37 %)
J 143 215 (31.35 %)
PVJ 143 539 (31.42 %)
8 (tense) Vv 143 349 (31.38 %)
A 143 104 (31.33 %)
9 (grade) D 143 218 (31.35 %)
AD 143 129 (31.33 %)
N 143 193 (31.35 %)
A 142 922 (31.29 %)
10 (negation) \Y% 142 957 (31.29 %)
D 143 304 (31.37 %)
NAVD 142 862 (31.27 %)
11 (voice) Vv 143 288 (31.37 %)

120

Table B.2: Experiment with non-part-of-speech tags — initial testing on file
mloci.txt with —o 1. Improvements of algorithm which has been tested in
Section are marked in bold. Improvements against —o 0 marked by an
asterisk.

-y -X file size (compression ratio)
N 143 326 (31.37 %)
A 144 480 (31.63 %) *
P 143 720 (31.46 %
2 (gender) C 143 287 (31.37 %3 «
\ 143 397 (31.39 %) *
NAPCV | 146 704 (32.11 %)
N 143 883 (31.50 %) +
A 143 616 (31.44 %) +
3 (number) p 143 739 (31.47 %) *
\ 143 223 (31.35 %) *
NAPV | 145 341 (31.82 %)
N 145 821 (31.92 %)
A 144 162 (31.56 %) +
4 (case) P 144 208 (31.57 %)
C 143 349 (31.38 %)
NAPC 147 527 (32.30 %) *
A 143 204 (31.35 %)
5 (possessor’s gender) | P 143 225 (31.35 %)
AP 143 224 (31.35 %)
A 143 204 (31.35 %)
6 (possessor’s gender) | P 143 234 (31.36 %)
AP 143 234 (31.36 %)
P 143 174 (31.34 %)
7 (person) \ 143 322 (31.37 %)
J 143 217 (31.35 %)
PVJ 143 545 (31.42 %)
8 (tense) \Y% 143 333 (31.38 %) *
A 143 104 (31.33 %)
9 (grade) D 143 218 (31.35 %)
AD 143 125 (31.33 %) =
N 143 195 (31.35 %)
A 142 923 (31.29 %)
10 (negation) \Y% 142 958 (31.29 %)
D 143 304 (31.37 %)
NAVD 142 867 (31.28 %)
11 (voice) v 143 288 (31.37 %)

121

B. EVALUATION OF ALGORITHMS — TABLES

(% €¥'61) €FL 05T (% L£'1€) 88T €71 (% 01°2€) 9€L ST (% T1°62) 69T 9¢ | A | 1T
(% 8€°6T) 00T 06T (% L€°1€) T0€ €F1 (% L0°2E) €TL ST (% 60°62) TET 9¢ | A
(% L£6T) 196 67 | (% 62°1€) 826 ¢TI | (% 66°1€) €89 ST | (% ¥0°62) 090 9€ | A o1
(% L€°61) 8€0 09 | (% 63°1€) €26 THT | (% L46°T€) €29 ST | (% L0°6T) ¥OT 9€ | V
(% L£61) 800 05z | (% s€'1¢) 96T €F1 | (% ¥0°TE) 60L ST (% 01°62) €1 9¢ | N
(% 8€°61) SOT 0S¢ (% se1¢) 81T €71 | (% S0°Te) STL ST (% 01°62) G€1 9¢ | A 6
(% 6£°61) 721 092 | (% €8°1€) ¥OT €71 | (% 20°2E) 669 ST (% 60°62) 0€1 9¢ | V
(% €¥'61) 8GL 06T (% 8e'1¢) €€ €71 (% 80°2€) 6TL ST (% <1°62) 802 9¢ | A | 8
(% L€°6T) L26 6¥C (% ge'1e) L1C €71 (% 90°2€) STL ST (% 01°0T) GET 9¢ | I
(% 1¥°61) 0L¥ 06T (% LETE) Tae €hT (% 90°2€) STL ST (% 0z'62) 992 9¢ | A | L
(% <£'6T) 8SL 6¥T | (% ¥E'1€) VLT €FT (% 80°ze) 85, ST | (% #0°6T) 490 9¢ | d
(% L£°6T) 210 06T (% ge'1e) veT eFT (% L0°2€) TTl ST (% T1°62) SF1 9¢ | d 0
(% LE6T) 636 67T (% ge'1€) Y0T €71 (% 90°2€) STL ST (% 60°62) 06T 9¢ | V
(% L£°6T) 900 06T (% ge'1e) STT €71 (% L0°2€) 1Tl ST (% 01°62) €71 9¢ | d ¢
(% LE'61) 656 67C (% ge18) ¥0g £71 (% 90°2€) STL ST (% 60°62) 01 9¢ | V
(% 8¢'61) 891 04 (% 8¢'1¢) 6¥¢ €71 (% 60°2€) €L ST (% 2r6z) GL19¢ | D | ¥
(% 1¥°61) L6V 05T (% ge'1e) €2T €71 (% L0°2€) 1Tl ST (% 11°62) 06T 98 | A | €
(% TF'6T) €5G 06T (% 6¢71¢) L6€ €FT | (% 90°2€) LIL ST (% L1°62) 1€ 9¢ | A
(% 8€°6T) 290 06T (% L€°1€) L8T €V1 (% 80°2€) 8TL ST (% 2162) 79T 9¢ | D | ©
(% 6£°61) TLT 05T (% 8¢'1¢) 9z¢€ €71 (% 80°2€) 6TL ST (% 21'62) 69T 9¢ | N
X} U0 eZ X} O X} 90BN TUTLULOY 1X)'sIsouad | x- | A-

‘o1peI UoIssexduiod oY) pue o[y passorduiod o) JO 9z MOYS S[[90 Y], 'P[O] UI pay[Iew o1e[¢l U01100g Ul Pajsa)
uo9q Sy YPIYM WIILIoFe Jo sjuawesoldul] ‘T o- [im UI}se) [euy — sde) yooads-jo-jred-uou yym juewirtodxy :¢ g o[qe],

122

APPENDIX C

API Application Programming Interface
EOF End-of-file

IDE Integrated Development Environment
GPL GNU General Public License

POS Part of Speech

PPM Prediction by Partial Matching

123

Acronyms

APPENDIX D

Contents of enclosed CD

o)== A
doc....... the directory containing Doxygen-generated documentation
NLC..oviieeiiieeennn the directory containing the whole code project
| readme.txt.......... the file with building and usage instructions

| thesis.........c...... the directory containing source code of the thesis

| DP_Navara_J an 2016.pdf the thesis text in PDF format
| README.txt................. the file with description of the CD contents

125

	Introduction
	Preliminaries
	Linguistic definitions
	Survey to find a suitable linguistic tool
	About MorphoDiTa
	Introduction into data compression
	Arithmetic coding
	PPM
	Text compression
	State of the art

	Analysis
	Incorporating MorphoDiTa into our project
	Input of our compression program
	Test files
	Compression experiments
	Utilizing UTF-8 encoding
	Compression method
	Trie statistics
	Formal specification of experiments

	Design
	Language tools
	Input/output
	Range coder
	PPM structure
	PPM coder
	Language compression
	Main file

	Implementation
	Code properties and compiling
	Handling of errors
	Performance
	Running the program

	Testing and evaluation
	Algorithms gzip, bzip2 and lzma
	Byte-oriented PPM compression
	Basic word-based compression
	Basic experiment using morphological generator
	Experiment with part-of-speech tags (1)
	Experiment with part-of-speech tags (2)
	Experiment with non-part-of-speech tags
	Summary of experiments

	Conclusion
	Bibliography
	Design — class diagrams
	Evaluation of algorithms — tables
	Acronyms
	Contents of enclosed CD

