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Abstract

This master thesis deals with fatigue life assessment of the H80 engine impeller

alternative design. 4 different methods of fatigue life calculation are presented and

consequently used to predict the life of the impeller. Furthermore, the thermal

and structural FEM analysis of the impeller was carried out in order to obtain the

stress-strain state of the component for the fatigue life assessment.
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1 Introduction

Nowadays, components of aircraft engines are subjected to cyclic loading caused by

their operation since they are repeatedly switched on and turned off. Frequently,

due the the high loads, high plastic strains occur in these components that usually

result in low cycle fatigue. Hence, the components can withstand only limited time

in service before a failure occurs. Fatigue can affect any component but it is usually

the most significant for rotating parts such as turbines and compressors.

There are different approaches developed that describe how to assess low cycle fa-

tigue and predict the life of the component. However, each of this approaches have

its drawbacks. 4 different methods of low cycle fatigue assessment are presented in

this thesis. Consequently, these 4 methods are applied to estimate a fatigue life of

the impeller alternative design in H80 engine produced by GE BGA Turboprops.

The aim of this thesis is to perform the low cycle fatigue calculation of H80 engine

impeller alternative design by use of these 4 methods: historical GEAC method,

SWT method, Landgraf method and method proposed by Nagode and then assess

the results. Attention is focused on the results comparison and interpretation as

well as explanation of the possible differences.

To begin with, the FEM analysis is performed in order to obtain stress-strain state

of the impeller. Then, based on the results from FEM, the SWT and Landgraf

method is used to calculate fatigue life in each node of the FEM model. Afterwards,

the most critical locations are chosen and fatigue life is estimated for them using

the historical GEAC method and method proposed by Nagode. Finally, the results

obtained from all the methods are compared.
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2 Fatigue

Fatigue is weakening of the structure caused by applied cyclic loading. The damage

appears after a certain number of load cycles at nominal stress level that is usually

far below the static tensile strength of the material. This is one of the reasons why

fatigue is one of the most frequent sources of failure of materials. Moreover, it affects

all materials, without exception. The process until the structure fails due to the

fatigue comprises 3 stages. That is: crack nucleation, crack propagation and rapid

failure. Firstly, the damage occurs on the microscopic level, then it propagates until

a crack on macroscopic level is reached. Subsequently, the macroscopic crack grows

further until it reaches a critical size. At this point the structure cannot sustain

the load any more and it fails. The number of load cycles that the structure can

sustain until the crack occurs is called fatigue life N . The variable that influences

the fatigue life the most is a stress amplitude of the load cycle that is defined as

follows:

σa =
σmax − σmin

2
(2.1)

where σmax and σmin are maximum and minimum stresses experienced during the

load cycle, respectively. However, a mean stress defined as:

σm =
σmax + σmin

2
(2.2)

has also significant influence on the fatigue life and should be taken into considera-

tion.

Usually, our load history is not defined by only one load cycle but it consists of

varying loads. In order to deal with this fact, a rainflow-counting algorithm is com-

monly used. This method transforms a spectrum of varying loads into set of simple

load cycles. Each of this cycle is defined by its amplitude σa and mean stress σm.

The advantage of this method is that it can be used as an input to Miner’s Rule.

The Miner’s rule is a cumulative damage model that combines individual load cycle

extracted from rainflow counting and determines number of equivalent load cycles

until failure.

The procedure of fatigue life evaluation can be summarized into general steps that

are usually common for all the fatigue evaluation methods. These steps are:

1. Determination of stress-strain response to our load history, usually with FEA

2. Conversion of multiaxial stress state into uniaxial stress state
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3. Elastoplastic correction of the stress and strain histories if the linear FEA in

step 1 was used

4. Rainflow counting to convert a random load history to a sequence of separate

load cycles

5. A damage parameter calculation for each load cycle extracted from the rainflow

counting

6. A fatigue life determination for each cycle extracted from the rainflow counting

using material curves

7. A number of equivalent load cycles to failure estimation based on a cumulative

damage model

Fatigue is commonly divided into 2 categories: low-cycle fatigue(LCF) and high-

cycle fatigue(HCF). This division is based on fatigue life N when the boundary

between them is not exact but it is usually of the order of 100 000 load cycles.

HCF is usually represented by low enough stresses so that only elastic strains occur,

whereas during LCF inelastic stresses are usually involved as well.

2.1 High-cycle fatigue

As already mentioned above, HCF occurs when fatigue life N exceeds certain num-

ber of cycles, it is usually approximately 105 or more. The loads are usually not

that high, thus the deformation is within an elastic range. However, the plastic

deformation can appear at the crack tip. In case of HCF, we use the Stress Life

Method that uses the Stress-Life curve for fatigue evaluation. It is curve with a

stress amplitude on y-axis against the fatigue life N on the x-axis. This curve is

utilized to determine an allowable stress amplitude for an assumed service life of the

component.

2.2 Low-cycle fatigue

Low-cycle fatigue is a result of repeated plastic deformation in the locations of the

component with stress concentrations. It is typical for the components that work

under high operation load. The fatigue life is usually determined using strain-life

approach when the Manson-Coffin equation is utilized. It is a relation between the

plastic strain amplitude and the number of load cycles to failure N described by the
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following formula:

εa,p = ε′f (2N)c (2.3)

where εa,p is plastic strain amplitude, ε′f is fatigue ductility coefficient and c fatigue

ductility exponent. While the Manson-Coffin equation describes the low-cycle high

strain regime, the Basquin equation

σa = ∆εa,eE = σ′f (2N)b (2.4)

where εa,e is elastic strain amplitude, σ′f is fatigue strength coefficient and c fatigue

strength exponent, describes the high cycle low strain regime. Summing up both

equations, we get complete ε-N that is

εa =
σ′f
E

(2N)b + ε′f (2N)c (2.5)

This equation can estimate the entire range of fatigue lives. Example of of ε-N curve

and its construction can be observed in Figure 1.

Total strain a

Plastic strain a,p

log(2N)

log( a)

Elastic strain a,e

c

b

'a

'a/E

neuber1
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NAVRHL

Figure 1: Example of ε-N curve and its construction

2.3 Thermo-mechanical fatigue

Thermo-mechanical fatigue (TMF) is caused by a combination of cyclic mechanical

and thermal loading that is typical for turbine engines. The changing temperature

during the loading can have more damaging effect on the structure than isother-

mal loading at the highest operating temperature. There are 2 types of loading:
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in-phase(IP) and out-of-phase(OP). The former takes place when the maximum

temperature and strain occur at the same time. The latter takes place when the

maximum temperature and minimum strain occur at the same time. There are 3

different sources of failure in TMF that occur according to the type of loading(IP or

OP). It is oxidation, creep and fatigue. When the structure undergoes IP loading,

the creep is a driving fatigue mechanism. Conversely, when the OP loading dom-

inates, the oxidation effects the fatigue life as it damages the component surface.

It creates irregular surface that is ideal for the crack nucleation. There are many

approaches that deal with TMF that are usually quite complex. In this thesis, one

of them proposed by Nagode described.

3 LCF calculation methods

In this section 4 different method of LCF calculation are described in detail. These

methods are historical GEAC method, SWT method, Landgrad method and Nagode’s

method.

3.1 Historical GEAC Method

Historical GEAC method is used as one possibility to predict LCF of the compo-

nents. In this calculation, it is expected that we already know the load cycles that

the component undergoes. Similarly, we expect that the stresses in the component

from the elastic FEA for each time point of the load history are known. Firstly, a

Manson-McKnight method is used for reduction of a multi-axial stress state to a

uni-axial stress state. This uni-axial stress state is then recalculated to the Neu-

ber parameter in order to include the effect of the mean stress in the calculation.

Elastoplastic state of the material is estimated by Neuber formula. The steps of the

procedure of this method are summarized as follows:

1. the reduction of a multi-axial stress state obtained from the elastic FEA to a

uni-axial stress state

2. an elastoplastic stress estimation in turning points with the Neuber formula

3. a Neuber parameter calculation in order to include the mean stress effect

4. maximum number of equivalent cycles determination
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3.1.1 Manson-McKnight Method

Once we have our load cycles defined and we performed an elastic FEA to get the

stresses in the peaks of the load cycles, the Manson-McKnight method can be used

to calculate uni-axial mean stress and stress amplitude of each cycle. Supposing

that we obtained maximum and minimum stress tensors from elastic FEA for one

load cycle:

σ̄max = [σmaxx σmaxy σmaxz τmaxxy τmaxxz τmaxyz ] (3.1)

σ̄min = [σminx σminy σminz τminxy τminxz τminyz ] (3.2)

we are able to transform these stresses to the equivalent uni-axial load cycle that

should result in the same damage effect as the original multiaxial load cycle. The

uni-axial elastic mean stress and stress amplitude are determined as:

σa,FE =

√
2

4
[(∆σx −∆σy)

2 + (∆σy −∆σz)
2 + (∆σx −∆σz)

2 (3.3)

+ 6 (∆τ 2xy + ∆τ 2yz + ∆τ 2xz)]
1
2

σm,FE = SGN

√
2

4
[(∆σx −∆σy)

2 + (∆σy −∆σz)
2 + (∆σx −∆σz)

2+ (3.4)

+ 6 (∆τ 2xy + ∆τ 2yz + ∆τ 2xz)]
1
2

where

∆σx = σmaxx − σminx , .... (3.5)

∆σx = σmaxx + σminx , .... (3.6)

Since the mean stress must always be positive, its sign is corrected according to:

SGN = SIGN [∆σx + ∆σy + ∆σz] (3.7)

The maximum and minimum stress vectors, σ̄max and σ̄min, are obtained from linear

FEA and do not take into account a plastic behavior of the material. Hence, the

elastic-plastic correction is then applied in order to obtain a real values of σa,FE and

σm,FE.

3.1.2 Neuber Correction

Neuber approximate formula is useful when stress results obtained from linear FEA

need to be adapted to the elastoplastic behavior of the material. It is an alternative

to the calculation of the elastoplastic stresses with nonlinear FEA. The main ad-

vantage of such a correction is a faster computation of the results compared to the
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nonlinear FEM analysis. The assumption for use of this method is that the plastic

stresses are concentrated only in a small area of the component.

The real stress according to the Neuber formula is located in the intersection of

two curves: Neuber hyperbola and elastoplastic curve defined by Ramberg-Osgood

relation (see Fig. 2).

E

Ramberg-Osgood curve

Neuber  hyperbola

Elastic stress from FEA

elastic

real

realelastic

neuber
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   ÚHLOVÁ:

Z. JAKOSTI

VÝROBA

SCHVÁLIL

PŘEZKOUŠEL

NAVRHL

Figure 2: Correction of elastic FEA by use of Neuber formula

Equations that define these two curves are:

σ2
elastic

E
= σreal εreal (3.8)

εreal =
σreal
E

+
(σreal
K ′

) 1
n′

(3.9)

respectively.

In our case, the calculation procedure is depicted in the plot in Figure 2 that

shows how to correct stresses while a tension is applied. However, if the compo-

nent is subjected to a large range of strains we can observe the reverse plasticity

during the unloading. In such case, we should also correct the minimum stress and

consequently also the alternating stress. The determination of the real (corrected)

alternating stress, ∆σreal, can be seen in Figure 3.
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Figure 3: Correction of alternating stress obtained from FEA by use of Neuber

formula

When calculating ∆σreal, the Neuber formula for cyclic loading is used for determi-

nation of the minimum real stress (see Fig. 3). Equation for Neuber hyperbola for

cyclic loading is defined as follows:

∆σ2
elastic

Ecyc
= ∆σreal ∆εreal (3.10)

where Ecyc is the cyclic Young’s modulus and ∆σelastic is equal to 2σa,FE. We

obtain the real stress-stain state in the point of the plot where the cyclic Neuber

hyperbola intersects the cyclic curve. The cyclic curve is described by equation:

∆εreal
2

=
∆σreal
2 Ecyc

+

(
∆σreal
2K ′

) 1
n′

(3.11)

By combination of equations 3.10 and 3.11, we get an equation with one unknown

variable which is ∆σreal:

∆σ2
elastic

Ecyc
= ∆σreal

[
∆σreal
Ecyc

+ 2

(
∆σreal
2K ′

) 1
n′
]

(3.12)
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Then, the real stress and strain amplitude and the mean stress of the cycle are:

σa =
∆σa

2
(3.13)

εa =
∆εa

2
(3.14)

σm = σreal − σa (3.15)

where σreal is determined from Neuber formula for monotonic loading. The reason

for this is that the loading starts as monotonic and begins to exhibit the cyclic

behavior after some time. Thus, σreal is derived from equation:

σ2
max,FE

E
= σreal

(σreal
E

+
σreal
K

) 1
n

(3.16)

where σmax,FE is obtained from Manson-McKnight method as σmax,FE = σm,FE +

σa,FE and K and n are parameters of the monotonic stress-strain curve.

3.1.3 Neuber Parameter

Neuber parameter is a stress amplitude that includes a mean stress effect to the

calculation of LCF. It converts general cycle to the cycle with stress ratio R =

σmin/σmax = −1. The Neuber parameter is calculated according to the following

formula:

σNeuber =
√

(σa + σm) εa (3.17)

In order to determine a number of cycles to damage, the Neuber parameter is

inserted into the equation for a curve from cyclic strain controlled fatigue testing(ε-

N curve). This curve is also converted to Neuber parameter according to the same

formula 3.17. The curve from the testing can be described by following equation:

σNeuber = M Nx (3.18)

where N is a number of cycles to damage and M and x are coefficients obtained

from the data interpolation.

3.1.4 Thermal loading effect on the LCF calculation

Thermal loading is an important point that should be taken into account during the

LCF calculation if the component is subjected to the big changes in temperature.

The prerequisite for this calculation is that we have temperature dependent S-N

curves in the required temperature range available. Most frequently we have only
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several S-N curves at our disposal and we need to use an interpolation to obtain

S-N curves for some certain required temperatures. The Figure 4 shows how to

determine fatigue life for some constant temperature if we do not have a S-N curve

for it. Supposing that we have S-N curves for temperatures T1 and T2 available we

look for S-N curve at constant temperature T so that the following statement is

valid:

T ∈< T1;T2 > (3.19)

Firstly, we compare our σNeuber with S-N curves at temperatures T1 and T2 and find

corresponding maximum numbers of cycles N1 and N2. Then we plot these values in

a plot where temperature T is on the horizontal axis and a logarithm of the number

of cycles logN is on the vertical axis. The desired fatigue life N is constructed by

interpolation according to Figure 4.
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Figure 4: Determination of a fatigue life at the certain temperature T

However, the temperature is usually not constant during the load cycle and it can

vary a lot with time. In such case we consider only temperature at maximum and

minimum peak of the load cycle Tmax and Tmin. Firstly, the number of cycles for

constant temperature Tmax is calculated and than the same calculation is done for

constant temperature Tmin. Afterwards, we simply compare these two numbers and

choose the lower one to make the life prediction more conservative.
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3.2 Smith-Watson Topper method

The Smith-Watson Topper parameter (SWT) is widely used method that includes

a mean stress correction in uniaxial loading. The SWT parameter is calculated as:

σSWT =
√

(σa + σm)εaE (3.20)

where σa and εm are stress and strain amplitudes. Once the SWT parameter for

our cycle is determined, we can find a number of cycles to crack initiation by its

insertion into equation for curve obtained from the strain controlled fatigue testing.

The curve is defined as:

σSWT = σ′f
2
(2N)2b + σ′fEε

′
f (2N)b+c (3.21)

where σ′f is fatigue strength coefficient, ε′f is fatigue ductility coefficient, b is fatigue

strength exponent and c fatigue ductility exponent. N is a desired number of cycles

to crack initiation we are looking for.

3.3 Landgraf method

The Landgraf method is very similar to the determination of fatigue bz use of for-

mula 2.5. The only difference in the way the mean stress σm is included into the

fatigue life estimation. The assumption is that the mean stress influences only the

Basquin equation (2.4) so that the formula for evaluating fatigue life N is described

by equation:

εa =
σ′f − σm

E
(2N)b + ε′f (2N)c (3.22)

3.4 A method proposed by Nagode

In order to predict the life of components that undergo TMF, a model proposed by

Nagode is described. There are several factors that this model takes into consid-

eration and makes the life evaluation more precise: a multiaxiality of the loading,

elastoplastic behavior of the material, kinematic hardening and variable or constant

temperature during the loading. These factors can play a significant role when one

needs to perform proper fatigue life investigation since machine components are of-

ten subjected to multiaxial loading combined with loading beyond a yield stress.

Hence, it is suitable to use the Nagode’s model when a life evaluation of the struc-

ture with a complex stress-strain field is required.

Nagode suggested the following procedure for life estimation:
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1. Transient thermal analysis using FEA in order to obtain temperature fields

2. Structural analysis using FEA in order to obtain stress fields - linear or non-

linear

3. Conversion linear FEA results into nonlinear by use of the Neuber approximate

formula in case the linear FEA was used

4. Stress strain modeling of complete hysteresis loops by use of rheological spring-

slider model

5. Rain-flow counting of the stress history

6. Computation of equivalent cycle temperature for each cycle

7. Computation of the number of cycles to the crack initiation for each closed

hysteresis loop

8. The damage estimation utilizing the Miner linear damage accumulation rule

In the following paragraphs, individual points of the procedure are described more

in detail.

3.4.1 Transient thermal analysis

In order to obtain temperature fields at each time point of an investigated time

interval, the transient thermal analysis can be carried out. It is based on the heat

equation per unit volume which can be expressed as follows (assuming no mass

transfer):

ρcp
∂T

∂t
−∆ · (k∆T ) = q (3.23)

where ρ is the density, cp is the specific heat at a constant pressure, ∆ is the nabla

operator, k is the thermal conductivity coefficient and q is the heat generation

rate per unit volume. We need to establish initial conditions for uniqueness of the

solution. It can be done by either specifying an initial temperature distribution

at the surface nodes that is already known or conducting a steady-state thermal

analysis. This steady-state thermal analysis can be performed provided that the

boundary conditions such as temperatures, heat fluxes or convection at the surface

nodes are known. When initial conditions are set we can calculate temperatures at

all the nodes that vary over the time. These temperature histories are then used as

an input for the structural analysis.
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3.4.2 Structural analysis

Once the temperatures in all nodes are obtained, structural analysis can be con-

ducted by combining temperature and mechanical load histories. Provided that the

boundary conditions and loads acting on the structure are known we can calculate

the stress field at each time point using FEA. Linear or nonlinear analysis can be

performed, assuming that the linear results are then recalculated using the Neuber

approximated formula. If nonlinear FEA is carried out, an appropriate cyclic stress-

strain relation should be used. The Ramberg-Osgood equation can be suitable; it

describes material models that harden with rate-independent plastic deformation

and shows a smooth transition between the elastic and plastic region

ε =
σ

E(T )
+

(
σ

K ′(T )

) 1
n′(T )

= g(∆σ, T ) (3.24)

where the coefficient E is the Young’s modulus, K ′ is the cyclic hardening coefficient

and n′ is the cyclic hardening exponent. All these three parameters are functions of

temperature.

Since the stresses are multiaxial, they must be converted from a multiaxial stress

state to a uniaxial one. For this purpose it is convenient to use equivalent von Mises

stress, σe,vM . However, σe,vM does not exactly reflect the real load spectrum be-

cause it does not retain the negative stress values. In order to avoid this ambiguity

of σe,vM , Bishop [5] suggested an alternative formula. According to Bishop, σe,vM

should be modified to signed von Mises stress. Therefore, the final output from the

structural analysis is the signed Von Mises stress at each node and for each time

point that is computed as follows:

σe,svM = SGN
1√
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]
1
2 (3.25)

where the symbol SGN indicates the sign of the principal stress with the largest

magnitude. σ1,σ2 and σ3 are the principal stresses.

Next, we use Neuber formula in order to transform the signed von Mises stress,

σe,svM , gained from elastic FEA to real elastoplastic stress. The procedure can be

seen in Figure 2 and is described by equations 3.8 and 3.9.

3.4.3 Stress-strain modeling

Since during the load history the plastic strains frequently occur a hysteresis phe-

nomenon is modeled in the calculation. In addition, when temperature is changing
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with time during the loading the material parameters such as Young’s modulus and

the yield stress are changing too. This causes that material exhibits so-called cyclic

closure problem. It means that as the material is loaded and unloaded the hystere-

sis loops are no longer the same but they vary with time. In order to consider this

phenomenon into calculation a modeling by use of hysteresis operator of Prandtl

type is employed. In this approach, the play operator and the density function are

utilized in order to describe the stress-strain relationship. The play operator simu-

lates a rate-independent memory effect. It means that the output w of the operator

is characterized by the current input and a previous input extrema, but not by the

rate of the input. The operator is defined by the input function v that is equal to

stress σ in our case and the threshold r that is a fictive yield stress in our case. A

fictive yield stress is always positive. The output function of the operator w is then

the strain ε. Such a modeling when the stress is an input function and the stress

is an output function is called stress-controlled. The definition of the play operator

according to [6] can be seen bellow. In operator form, we write, for r ≥ 0,

w = Fr[v] (3.26)

Formally, the output function w = Fr[v] is for any piecewise monotone input func-

tion v : [0, tE]→ R inductively defined by

w(0) = fr(v0, 0) (3.27)

w(t) = fr(v(t), w(ti)), for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1

with

fr(v, w) = max{v − r,min{v + r, w}} (3.28)

where 0 = t0 < t1 < ... < tN = tE is partition of [0, tE] such that the function v

is monotone on each of the subintervals [ti, ti+1]. We call Fr the operator of scalar

mechanical play or simply the play operator.

The stress-strain behavior is described by use of the operator of Prandtl type that

utilizes play operator Fr[v](t) as follows:

ε(t) = P [σ, t] =

∫ ∞
0

α(r, t) σαdr (3.29)

where α(r, t) is the Prandtl density function which is based on experimentally ob-

tained data. We can obtain it from the cyclically stable isothermal cyclic curves.

The argument of the operator is in square bracket to show that σ is a function of
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another function. In order to solve the problem we need to approximate the integral.

This is done by discretization, so that the equation 3.29 can be rewritten as

ε(ti) =
nr∑
j=0

αj(Ti)σαj(ti) (3.30)

The same relation can be written for the stress provided that different Prandtl

density βj(Ti) is used:

σ(ti) =
nr∑
j=0

βj(Ti)σαj(ti) (3.31)

The relation 3.30 can be represented as the serially connected spring-slider model

that can be seen in Figure 5.

Figure 5: Rheological spring-slider model [1]

The spring-slider model consists of nr segments when each of these segments rep-

resents an increment in the total elastoplastic strain. In equations 3.30 and 3.31,

σαj(ti) is determined as:

σαj(ti) = max
{
σelastic(ti)− rj,min

{
σelastic(ti) + rj,

αj(Ti−1)

αj(Ti)
σαj(ti−1)

}}
(3.32)

Equation 3.32 corresponds to the play operator decribed in equation 3.28

3.4.4 Damage parameter

The damage parameter is continuously modeled using the modified hysteresis oper-

ator described by 3.28. The equation for the damage parameter is the same as the

23



equation for the SWT parameter (3.21), the only difference is that all the members

in the equation are changing with time:

σSWT =
√

(σa(ti) + σm(ti))εa(ti)E(Ti) (3.33)

The strain life curves in this calculation are required for several temperatures, so that

they can be interpolated for each temperature in the load history of the component.

When we divide the interval (0, σSWT,max) to j members with a constant step ∆r, the

temperature dependent Prandtl densities of the discrete hysteresis Prandtl model

are defined by the following relation:

γj =
1

4∆r
[dfj+1(T )− 2dfj(T ) + dfj−1(T )] (3.34)

where df = 1/N is the cycle damage. The determination of σa, σm and εa is

done through a special algorithm that is described in [1] in detail. This algorithm

preserves the time sequence of decomposed σa, σm, εa and T. This is important

in terms of the next calculation of the cumulative damage in each time point ti.

Simultaneously, the values of σSWT are calculated in each time step. The calculation

of the damage D(ti) is carried out using the hysteresis operator as:

D(ti) =
nr∑
j=0

γj(Ti)σγj(ti) (3.35)

where the temperature dependent play operator is again defined as:

σγj(ti) = max
{
σSWT (ti)− rj,min

{
σSWT (ti) + rj,

γj(Ti−1)

γj(Ti)
σγj(ti−1)

}}
(3.36)

A cumulative damage in each time point is then:

Daccum(ti) =
i∑

n=1

|D(tn)−D(tn−1)| (3.37)

4 FEM Analysis

The scope of this section is the modal and static analysis of the impeller alternative

design in the H80 engine and its results presentation. Modal analysis is done in

order to find natural frequencies and corresponding mode shapes of the component.

We investigate the natural frequencies of the unloaded impeller, only mechanically

loaded impeller and thermally and mechanically loaded impeller. The modal ana-

lyzes are followed by a comparison of the natural frequencies for these three cases.

The static analysis of the impeller is based on results obtained from the previously

done thermal analysis. Input data for the thermal analysis are experimentally mea-

sured temperatures on the surface of the impeller.
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4.1 Material

One considered option for the material of the impeller alternative design is a titanium

alloy WL 3.7164 where the main alloying elements are aluminum and vanadium.

Due to the low specific weight of the titanium alloys, it has a very good relationship

between mechanical load-bearing capacity and weight. This material is therefore

widely used in regions where the weight savings justify the use of an expensive

material. Material properties used in the FEM analysis are shown in Figures 6, 7

and 8.

Figure 6: Young’s modulus and Poisson’s ratio of WL 3.7164 vs temperature

Figure 7: Thermal conductivity and Specific heat of WL 3.7164 vs temperature

25



Figure 8: Thermal expansion of WL 3.7164 vs temperature

Since the impeller undergoes a rapid temperature changes, we also need to know

how the material parameters change with the temperature. That is why all of them

are plotted with respect to the temperature. All the curves in the plots are related

to the reference values due to the GEAC restrictions. The density of WL 3.7164 is

4430 kg/m3.

4.2 Modal analysis of the unloaded rotor blade

Firstly, the rotor blade of the impeller was analyzed in order to investigate its natural

frequencies. The analysis was performed on the model that was not loaded.

4.2.1 Geometry

The geometry of the rotor can be seen in Figure 9. It consists of 16 main blades

and 16 splitters. In order to achieve a simplified model that is faster to calculate,

the symmetry of the rotor was utilized. So that only the sector with one blade and

one splitter was analyzed as can be seen in Figure 9.
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Figure 9: The whole impeller geometry(left) and its cyclic sector(right)

The sector angle is 22.5 degrees. Since in case of modal analysis, the behavior of the

blades is the most crucial, the middle part of the rotor is treated as rigid. Therefore,

it was removed and replaced by fixed boundary conditions. This assumption is only

used in the first task as we want to simplify the model as much as possible. In the

following part, modal analysis of the whole impeller is carried out. The material

of the model is a titanium alloy and the geometry was edited in the Hypermesh

software.

4.2.2 Mesh generation

The mesh was generated in Hypermesh software. An effort was made to use hexa-

hedral elements as much as possible in order to increase the accuracy of the analysis

and reduce the number of nodes. However, due to the complex geometry some

segments of the model were meshed with tetrahedral, prism and pyramid elements.

These segments do not include the blades that were fully meshed with the hexahedral

elements. The meshed model can be seen in Figure 10.
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Figure 10: The mesh of the impeller cyclic sector model with a detailed view of

trailing edge mesh (left) and leading edge mesh (right)

The whole model is meshed with the SOLID95 elements. This element type is

the second order element that is suitable for modeling curved boundaries like in

this model. It has 20 nodes but tetrahedral, prism and pyramid options are also

available since some nodes can overlap as depicted in Figure 11. The total number

of elements in the model is 116 375 and the hexahedral elements are filling 94% of

the model.

Figure 11: SOLID95 element geometry [4]

4.2.3 Boundary conditions

Since the modal analysis without any thermal or mechanical loads is required, only

displacement constraints are applied. The component is fully fixed in the base
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and there is applied symmetry on both sides of the sector, thus displacement in

ϕ-direction at the sides equals 0 (see Figure 12).

Figure 12: Boundary conditions for the modal analysis without loading

4.2.4 Results

Modal analysis was conducted in ANSYS software using the Block Lanczos mode-

extraction method. There were 5 modes extracted and expanded in a frequency

range from 0 to 10 000 Hz. The values of eigenfrequencies can be observed in Table 1.

The modes shapes for the frequency sets from 1 to 5 are shown in Figure 13.

Table 1: Natural frequencies of the impeller

From Figure 13, we can observe that the first mode shape that is associate with

the frequency of 3624 Hz is the first bending mode shape for the main impeller

blade. At the frequency of 4220 Hz we can find the first bending mode shape for the
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splitter of the impeller. Frequencies of 7434 and 9717 Hz indicate the second and

third bending mode shapes of the main blade. The second bending mode shape of

the splitter is at the frequency of 9966 Hz.

Figure 13: Mode shapes extracted for all the natural frequencies of the impeller

4.3 Thermal analysis of the rotor

The thermal analysis is carried out in order to obtain an input data for the structural

analysis. The experimentally measured temperatures at discrete point are used as an

input data for the thermal analysis. Temperatures at all nodes at each investigated

time point are calculated as an output of this analysis.

4.3.1 Geometry and mesh of the model

For the thermal analysis, the model of the rotor is extended so that the inner part

with the bolt and washer is also modeled (see Figure 14). In addition, parts of

neighboring components are attached to the model in the front and back of the

rotor. The sector angle is 45 degrees.
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Figure 14: Impeller meshed model for the thermal analysis

The impeller is meshed with hexahedral SOLID90 thermal elements which are analo-

gous to SOLID95 structural elements. The hexahedral elements fill the whole blades

again and the tetrahedral thermal elements SOLID87 are used to mesh the other

components since they are not as important as the blades. Contacts between all the

components are modelled with CONTA173, CONTA174 and TARGET170 elements

with temperature degrees of freedom.

31



Figure 15: Contacts between the components in the model

All the contacts between the components are shown in Figure 15. They are modeled

as 3D surface to surface asymmetric contacts. It means that all the contact elements

are on one surface and all target elements are on the other surface on each contact.

Flexible to flexible contact behavior is used for all the contacts. Keyoptions and real

constants are set according to Table 2. The remaining real constants are default.

Table 2: Contact settings
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In the Table 2, R10 is a real constant that specifies contact surface offset. Pos-

itive value offsets the entire contact surface towards the target surface. It can be

automatically set by keyoption 5 that is explained later. The keyoption K1 selects

degrees of freedom of the element. All the contacts have UX, UY, UZ and TEMP

degrees of freedom which means that we can use them for structural and thermal

analysis. The keyoption K2 indicates the contact algorithm. In our case, Penalty

function is selected (K2 = 1). The keyoption K5 sets the behavior of the gap be-

tween two surfaces. It can automatically adjust the value of the contact surface

offset (R10 real constant) according to the option we choose. The options are:

0 No automated adjustment

1 Close gap

2 Reduce penetration

3 Close gap/reduce penetration

The keyoption K10 sets contact stiffness update. If it is set to 2, it means that

each iteration is based on current mean stress of underlying elements. Behavior of

the contact surface is set by the keyoption K12. Only the options standard (K12 =

0) and rough (K12 = 1) are used. Standard contact surface behavior means that

normal pressure between two mating surfaces is equal to zero if separation occurs.

Rough contact is similar but there is no sliding possible so that the friction coeffi-

cient goes to infinity. Standard contact is set in the thread of the bolt with friction

coefficient 0.15.

4.3.2 Thermal loading

Temperatures are mapped on the surface of the impeller according to the experi-

mentally gained temperature fields. These temperature fields are obtained from the

testing that is conducted on the rotating impeller. The impeller was accelerated

and subsequently decelerated in the short time period. The rotational velocity was

increased from 60% to 100% of the nominal speed in approximately 7 seconds dur-

ing the acceleration. After 4 minutes the velocity was decreased back to 60% of the

nominal speed. Dependency of the rotational velocity on time during the testing is

shown in plot in Figure 16.
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Figure 16: Rotational velocity vs time during the temperature field measurement

on the impeller

The temperatures were measured using thermocouples mounted on the rotor surface

while testing. The location of the thermocouples can be seen in Figure 17.

Figure 17: Distribution of the thermocouples on the impeller surface

Corresponding measured temperatures from the thermocouples for acceleration and

deceleration are depicted in the plot in Figure 18. The onsets of acceleration and

decelerations are marked with the dashed lines in Figure 18. The dashed lines also

indicate time points with minimum and maximum temperature distributions during
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the testing. Temperatures were measured at thermocouples TC1, TC2, TC3, TC4,

TC5, TC6, TC7, TC9, TC11 and TC13. There were 6 time points chosen for the

acceleration and 6 time points chosen for the deceleration. At these time points,

temperature fields are used as an input for time - dependent thermal analysis.

Figure 18: Temperatures measured by thermocouples on the rotor surface during

the acceleration and deceleration

At each time point, measured temperatures are applied to the corresponding spots

of the model and to its close surroundings. In Figure 19, we can see thermally loaded

model in ANSYS. For the sake of simplicity, all the temperatures are loaded into

ANSYS in a form of a table.
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Figure 19: Temperature applied on the impeller model in ANSYS

4.3.3 Results

Thermal analysis is performed in three time steps. In the first step, the temperature

field associated with the speed of 60% of the nominal speed was applied on the model.

The second step corresponds with the acceleration. This step was divided into six

substeps. At each substep a new temperature field is loaded from the preprocessed.

The third step corresponds to the deceleration that is also divided into 6 substeps.

The results of the thermal analysis at the beginning of the acceleration (i.e. 60% of

the nominal speed) and at the end (i.e. 100% of the nominal speed) are shown in

Figure 20
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Figure 20: Temperature distribution on the impeller at the speed of 60% of the

nominal speed(left) and at the speed of 100% of the nominal speed

4.4 Static and modal analysis of the loaded rotor

4.4.1 Geometry and mesh of the model

For the static and modal analysis, the same mesh and geometry are used for the

thermal analysis (see Figure 14). However, the thermal elements had to be replaced

by structural elements; thus, SOLID186 and SOLID187 elements are used. Con-

tacts between the components are again meshed with CONTA173, CONTA174 and

TARGET170 elements. The settings for the contact elements are the same as for

the thermal analysis.

4.4.2 Boundary conditions and loading

Boundary conditions for the static analysis are shown in Figure 21. The pressure

caused by hot gas is acting on the rear side of the impeller in the axial direction.

In addition, the whole model is loaded by rotational velocity that varies with time

in steps according to Figure16. It means that the first and third step correspond

with the speed of 60% of the nominal speed and in the second step velocity of 100%

of the nominal speed was applied. Consequently, the corresponding temperatures

obtained from previous time-dependent thermal analysis are applied to all nodes.
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Figure 21: Applied load on the model for the static analysis

Thermal loads and rotational velocity are applied in the same steps as in the thermal

analysis. Moreover, there are applied forces and prescribed displacement on the

components attached to the impeller according to Figure 21. The cyclic symmetry

utilized for sector angle of 45 degrees. The contacts between all the components

are modelled with surface-to-surface contact option in ANSYS that includes friction

between the surfaces again. The pure penalty contact algorithm is also used for these

contacts. In order to simulate the pretension of the bolt, the PRETS179 elements

with one translation degree of freedom are utilized in the cross-section of the bolt.

4.4.3 Static analysis results

The results of the static analysis can be observed in Figures 22 and 23. We can see

the comparison of von Mises stress at the beginning and at the end of the second

step. At the beginning of the step 2, the speed is already 100% of the nominal speed

but the temperatures are still the same as in the first step. At the end of this step,

the speed remains the same and temperatures increase to their maximum. Thus, in

Figures 22 and 23, we can see the influence of the temperature change on the von

Mises stresses.
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Figure 22: Von Mises stress at the speed of 100% of the nominal speed loaded with

minimum temperature field

Figure 23: Von Mises stress at the speed of 100% of the nominal speed loaded with

the maximum temperature field

However, there is only minor change; more detailed view can be seen in the plot
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in Figure 24 where the dependency of von Mises stress at node 1461567 on time is

plotted. σref in the plot is equal to von Mises stress at speed of 100% of the nominal

speed RPM and minimum temperature field.

Figure 24: Von Mises stress vs time at node 1461567 during the temperature increase

in load step 2

The critical locations on the impeller are shown in Figure 25 and their description

is in Table 3.

Table 3: Nodes with the highest von Mises stress

The node 1461567 with the highest von Mises stress is located at the top of the

hole for the bolt. The increase in von Mises stress due to the temperature change at

this node is only 2.6%. Therefore, we can conclude that the stress increase caused by

growing temperatures can be neglected in this quasi-static analysis. However, care

should be taken because in case we performed transient thermal analysis results

could be different, since we would also take into account time-dependency of the

analysis.
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Figure 25: Critical locations with the highest von Mises stresses

4.4.4 Modal analysis results

Perturbed prestressed modal solution is performed on the impeller cyclic-sector

model. The perturbed modal cyclic symmetry analysis includes the initial pre-

stressed condition obtained from the previous linear static analysis. Thus, stresses

from pressure, centrifugal loading caused by rotational velocity and thermal loading

are included in the solution. The modal analysis without thermal loading is also

conducted in order to investigate the influence of the temperature on the natural

frequencies. The Block Lanczos eigensolver was used to extract 7 modes for har-

monic index 0. The results are shown in Table 4. The results for the loaded impeller

without thermal loading are shown in Table 5. Mode shapes for the first 4 natural

frequencies are depicted in Figure 26. We can see that the eigenfrequencies of the

prestressed impeller are higher than the corresponding eigenfrequencies we have got

when we analyzed only the unloaded blade. This meets our expectations since the

stiffness is getting higher during the loading. When we added the thermal loading

the natural frequencies decreased. This also corresponds to the expectation. In the

prestressed analysis, some extra eigenfrequencies occurred that are caused by two
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Table 4: Natural frequencies of

the loaded impeller (harmonic in-

dex = 0)

Table 5: Natural frequencies of

the cold loaded (harmonic index

= 0)

factors. Firstly, the model and mesh are different compare to the model in the first

task. The sector angle is two times bigger and there are additional components

attached to the impeller. Secondly, cyclic symmetry is used in this analysis instead

of symmetry boundary conditions that are used in the first task.

Figure 26: Mode shapes of the first 4 eigenfrequencies of the thermally and mechan-

ically loaded impeller
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In Figure 27, we can observe the comparison of natural frequencies belonging to the

unloaded model, loaded impeller without thermal loading and fully loaded impeller.

It can be seen that for the higher frequencies the natural frequencies of unloaded

and fully loaded impeller are comparable. It is caused by the fact that the thermal

load decreases the natural frequencies back to the initial value. Note, that there are

not all the eigenfrequencies for the unloaded rotor since some modes do not exist in

the simplified model.

Figure 27: Comparison of eigenfrequencies of unloaded, structurally loaded and both

thermally and structurally loaded impeller

5 Fatigue Life Assessment

This section describes the low cycle fatigue(LCF) calculation of the impeller based

on the FEA results. The LCF evaluation is performed by the use of three different

methods. Namely, it is the SWT method, Landgraf method and historical GEAC

method. For the fatigue life analysis we need three types of input data in order to

obtain the results. It is a load history of the component, elastic stress response to

the loading obtained from the FEA results and the material properties. All of them

are described bellow in more detail except for the FEA results that were already

described in the previous section 4.
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5.1 The loading history

The loading history of the impeller can be seen in Table 6 and plotted in Figure 28.

There are different flight operations that the engine experiences and their numbers

of occurrence stated. It is basically an output from the rainflow counting.

Table 6: The loading history of the impeller

The flight operations are always specified by the maximum and minimum rota-

tional velocity during the cycle as these two values are crucial for the fatigue life

calculation. In addition the structure is permanently subjected to a constant load

caused by the bolt pretension.

Figure 28: The loading history of the impeller
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5.2 Material Properties

In this section, the material properties requires for LCF prediction are presented. All

the material curves are related to reference values because of the GEAC restrictions.

5.2.1 Cyclic curve

For the fatigue life calculation, we need to know cyclically stable cyclic stress-strain

curves for several temperatures. The cyclically stable curves that we have were

measured at 3 different temperatures: 23oC, 240oC and 265oC . Each of them is

gained by an interpolation of 12 points. The points represent peaks of stabilized

stress-strain hysteresis loops. Such a hysteresis loop is depicted in Figure 29 where

[εalt;σalt]are the coordinates of each point that we needed for the interpolation.

  

    

Ecyc

alt

alt,p alt,e

neuber1
HMOTNOST: 

A3

LIST 4 Z 1 LISTŮMĚŘÍTKO:1:1

Č. VÝKRESU

NÁZEV:

ZMĚNANEUPRAVOVAT MĚŘÍTKO VÝKRESU

MATERIÁL:

DATUMPODPISJMÉNO

ODSTRANIT
OSTRÉ HRANY

OPRACOVÁNÍ:POKUD NENÍ UVEDENO JINAK:
JEDNOTKY JSOU V MILIMETRECH
DRSNOST:
TOLERANCE:
   LINEÁRNÍ:
   ÚHLOVÁ:

Z. JAKOSTI

VÝROBA

SCHVÁLIL

PŘEZKOUŠEL

NAVRHL

Figure 29: Example of hysteresis loop the data for cyclic curve were taken from

In order to obtain the hysteresis loops cyclic strain-controlled loadings at several

strain levels were performed. A schematic chart of such a strain loading in time is in

Figure 30. It can be observed from Figure 30 that the loading is for R = −1. The

material specimen response to the applied cyclic strain loading can be schematically

seen in Figure 31. As the specimen is loaded the alternating stress is decreasing until

the specimen fails after a certain number of cycles N . Such trend is called material

softening since the material is loosing its initial strength. On the other hand if the

process was opposite and the alternating stress was increasing the process would be

called hardening. The hysteresis loop we use for our cyclically stable curve is the

one that we measure after N/2 cycles.
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Figure 30: Example of a strain - controlled cyclic loading
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Figure 31: Example of material stress response to strain - controlled cyclic loading

Since the cyclic curve is dependent on temperature and deformation rate, all the

points were measured isothermally and with constant frequency v = 0.167Hz They

were then interpolated by a curve with an equation:

σalt = A (εalt,p)
B (5.1)

Where εap is a plastic part of the alternating strain. By comparing equation 5.1

with equation 3.9, we can determine coefficients K ′ and n′ for each temperature.

K ′ = A (5.2)

n′ =
1

B
(5.3)

These coefficients define our cyclic curves. The plot of the cyclic curve for temper-

ature 240 oC can be seen in Figure 32.
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Figure 32: The cyclic curve for temperature 240 oC

5.2.2 Strain-Life curve

The other material parameters we necessarily need for the LCF calculation are the

parameters that the ε−N curve is described with. The ε−N curve is described with

equation 3.21 thus we need to get σ′f , ε
′
f , b and c. We obtain these constants from

the same testing as for the cyclic curve. During the testing both the elastic and the

total strains are measured. The total strain εalt is measured directly by a tensometer

mounted on the specimen. Whereas the elastic strain is derived from

εalt,e =
F

A
(5.4)

provided that the load force F and cross-section A are continuously measured during

the testing. The plastic strain is then calculated as εalt,p = εalt−εalt,e. The strain life

curve is gained as a superposition of two curves. It is an elastic strain-life curve and

plastic strain-life curve. Both of these curves were gained from the interpolation.

The elastic strain- life curve extrapolates the points with coordinates [N ; εalt,e] and

the plastic strain life curve extrapolates the points with coordinates[N ; εalt,p]. N is

a number of cycles to failure of each specimen, εalt,e is an elastic alternating strain

and εalt,p is a plastic alternating strain. The equation for the final strain life curve
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is:

εalt = εalt,e + εalt,a = A Na +B N c (5.5)

Where the first member on the right side of the formula represents the elastic part

of the strain and the second member represents the plastic part of the strains.

Constants A, B, a, c are obtained from the interpolation. The parameters σ′f , ε
′
f , b

and c are obtained by comparison equation 5.5 with equation 18 as follows::

σ′f = A
Ecyc
2b+1

(5.6)

b = a (5.7)

ε′f =
B

2c+1
(5.8)

c = c (5.9)

The ε-N curve for the used material and temperature 240 oC is depicted in Figure 33.

Figure 33: ε-N curve for temperature 240 oC

5.3 Fatigue assessment using SWT method

5.3.1 The input data implementation

Fatigue assessment using SWT method is performed in the PragTic software. The

stress tensor at each node of the impeller FEM model for each time point of the

loading history is implemented to PragTic. Since the analysis was elastic the stresses

at each time points are proportional to rotational velocity squared ω2. Therefore

48



only one stress result file is uploaded to PragTic and the remaining stress tensors

are only multiples of the original stress file. This simplification can be only used

considering that the loading of the impeller is controlled mainly by the rotational

velocity and that the change in stress caused by the temperature influence is in-

significantly small. In addition care should be taken because there are also stresses

caused by bolt pretension present. So that we need to subtract these stresses from

the stresses obtained from the stress analysis and upload them as a separate load

channel into PragTic. Thus, the loadings are set into PragTic in form of two load

channels that are then superimposed: the constant load caused by the bolt preten-

sion and the load cycles that are described in Table 6. The material parameters are

implemented into PragTic if form of cyclic curve and strain life curve coefficients.

The curves for the temperature 240oC are chosen. The cyclic curve parameters are

taken from relations 5.2 and 5.3 and the strain life curve parameters are taken from

relations 5.6, 5.7, 5.8 and 5.9. In Figure 34, the settings of the method can be seen.

Figure 34: SWT method settings in PragTic

5.3.2 The results

The results from PragTic are obtained in form of a text file in which a damage index

D is assigned to each node. The damage for each load cycle was also exported, its

comparison can be observed in Figure 35 where damage for nodes 1484141, 1492079,

1484055 and 1491993 is plotted.

49



Figure 35: Damage according to SWT method for nodes 1484141, 1492079, 1484055

and 1491993

The first 2 nodes (1484141 and 1492079) have the highest damage according to SWT

method. However, we can see in Figure 35 that for these 2 nodes the portion of the

damage corresponding to the load cycle 2 is significantly higher compared to the

other 2 nodes. This is caused by the influence of the signed von Mises stress. There

are several methods how to calculate the sign of the signed von Mises stress and

these methods can produce different results. Figure 34 shows that von Mises (signed

I1) reduction was used for the calculation. It means that the sign of the von Mises

stress is equal to the sign of the first invariant of the stress tensor I1

I1 = σ1 + σ2 + σ3 (5.10)

Nevertheless, the calculation according to formula 3.25 (SPmax) can be also utilized.

This formula uses the sign of the principal stress whose magnitude is the highest.

In such case we get different results for stress amplitude and consequently damage

caused by the load cycle 2 for nodes 1484141 and 1492079. Table 7 shows maximum

and minimum stress tensors in load cycle 2 for nodes 1484141 and 1484055. While

in case of node 1484055 signed von Mises stress determined by I1 and SPmax is

the same, it differs in case of node 1484141. If we use SPmax method, the sign

of the minimum stress in the load cycle 2 is opposite and the stress amplitude is

significantly lower. So that we should be careful which method is used.
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Table 7: Maximum and minimum stress tensors in load cycle 2 for nodes 1484141

and 1484055

As we want to keep consistency of the method the same signed von Mises reduction

(I1) is applied to all the load cycles. However, the results should be handled with

caution because of this fact.

In order to see the damage distribution on the whole component, the output file

from PragTic is exported to Ansys and the damage is mapped on the impeller. So

that we can see the locations with the highest probability of failure. The damage

parameter distribution can be seen in Figures 36 and 37.
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Figure 36: The damage parameter distribution from the front side of the impeller

according to the SWT method
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Figure 37: The damage parameter distribution from the back side of the impeller

according to the SWT method

For better visualization, a common logarithm of D, log (D), is plotted in all the

figures that show the damage distribution. We can see that the critical location

from the fatigue life point of view is again the bolt hole. Figure 38 shows the

damage parameter distribution in the bolt hole in more detail and in a different

scale so that the critical nodes can be observed.
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Figure 38: The damage parameter distribution in the bolt hole of the impeller

according to the SWT method

The 3 nodes with the highest damage are marked with the black circle. The results

from PragTic for these 3 nodes including their ID numbers are summarized in Fig-

ure 35. Maximum damage index is 3.38 × 10−4 that corresponds to node number

1484141 and 2959 cycles. Hence, the life of the impeller determined by use of SWT

method is 2959 equivalent cycles.

5.4 Fatigue assessment using Landgraf method

5.4.1 The input data implementation

Fatigue assessment using Landgraf method is also performed in the PragTic software.

The loading history, material parameters, the method settings and FEA results are

the same as in case of the SWT method. The only difference is in an assumption

how the means stress affects the final solution.
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5.4.2 The results

The results from Pragtic can be observed in Figure 39. The bolt hole is again the

most critical location.

Figure 39: Damage according to Landgraf method for nodes 1484141, 1492079,

1484055 and 1491993

The highest damage is again in node number 1484141. It is 1.88 × 10−4 which

corresponds to 5319 cycles to crack initiation. The damage parameter distribution

can be seen in Figures 40 and 41.
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Figure 40: The damage parameter distribution from the front side of the impeller

according to the Landgraf method

Figure 41: The damage parameter distribution from the back side of the impeller

according to the Landgraf method
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5.5 Fatigue assessment using historical GEAC method

Based on the results from PragTic software, we consider nodes with numbers 1484141,

1492079 and 1484055 as the most critical ones in terms of the fatigue life. Therefore,

the historical GEAC method is employed to determine the fatigue life only for these

nodes. Stress tensors in these nodes obtained from the FEM analysis are shown in

Table 8. They are selected for rotational velocity 0% and 100% as having these two

tensors we are able to calculate stress tensor for any other rotational velocity since

the FEM analysis is linear.

Table 8: FEA stress results for the selected nodes 1484141, 1492079 and 1484055

Due to the multiaxial stress state of the structure, we use Manson-McKnight

method for reduction to the uniaxial stress state. The results below are for the

sake of simplicity presented only for the most critical node 1484141. The elastic

equivalent mean stress and amplitude according to this method for the most critical

node 1484141 are:

σm,FE = 341.2MPa (5.11)

σa,FE = 328.9MPa (5.12)

These stresses are calculated for load cycle that starts when the engine is subjected

to 0% of nominal speed, then is accelerated to 100% of nominal speed and then

decelerated back to 0%. From these two values, maximum and minimum stress of

this cycle are:

σmax,FE = 670.1 MPa (5.13)

σmin,FE = 12.2 MPa (5.14)

However, we do not have only one load cycle. It is needed to consider all the

load cycles in the load history of the component (see Table 6). If the stresses
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induced by temperature in the structure are neglected, the resulting stress state

can be considered as proportional to the centrifugal force caused by the rotational

velocity. Hence, we determine the uniaxial stress σ at the certain rotational velocity

ω according to the following formula since the centrifugal force is proportional to

ω2:

σ =
(σmax,FE − σmin,FE)ω2

1002
+ σmin,FE (5.15)

Using this formula, we are able to obtain the uniaxial maximum and minimum

stresses for all the load cycles. For the cycle 1 in the loading history(from 0% to

100.4% of the nominal speed), the maximum and minimum uniaxial stresses are:

σmax,FE = 675.4 MPa (5.16)

σmin,FE = 12.2 MPa (5.17)

However, this should be handled with caution because the stresses determined

by 5.15 are elastic stresses. In order to determine the real stress state we need

to use elastic-plastic correction. This is carried out according to Figure 42, where

we can see the correction for the maximum stress in the load cycle 1..

Figure 42: Neuber correction of the maximum stress in node 1484141

The maximum real stress in the first cycle, σreal, is then determined from the Neuber

hyperbola that is given by equation:

(σmax,FE)2

E
= σrealεreal (5.18)
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where σmax,FE is determined from equation 5.16 and εreal is obtained from the

Ramberg-Osgood curve as:

εreal =
σreal
E

+
(σreal
K

) 1
n

(5.19)

By combination of relations 5.18 and 5.19,the maximum real stress is reduced to:

σreal = 585.8 MPa (5.20)

Next, we need to find the real stress and strain amplitudes for the load cycle 1. The

Neuber correction is used again but now it is for the cyclic loading. The neuber

hyperbola is defined by:

∆σelastic
Ecyc

= ∆σreal∆εreal (5.21)

where

∆εreal =
∆σreal
Ecyc

+ 2

(
∆σreal
2K ′

) 1
n′

(5.22)

Using relations 5.21 and 5.22, the stress and strain amplitudes are:

εa = 6.5× 10−3 (5.23)

σa = 329.0 MPa (5.24)

Eventually we need to determine a mean stress of the first load cycle, σm, that is

according to 3.15:

σm = 256.8 MPa (5.25)

The Neuber parameter for the first load cycle is then:

σNeuber = 442.4 MPa (5.26)

The Neuber parameter is then used for a determination of maximum number of

cycles for maximum and minimum temperature during the cycle. The lower number

is considered as the final result. The same procedure is used for all the cycles from

Table 6. The damage from each load cycle for all the investigated node can be seen

in Figure 43.
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Figure 43: Damage distribution for nodes 1484141, 1492079 and 1484055 determined

by historical GEAC method

The final results for all nodes from Table 8 are in the Table below:

Table 9: Fatigue life for nodes 1484141, 1492079 and 1484055

5.6 Fatigue assessment using the method proposed by Nagode

5.6.1 The input data implementation

The input data required for this method are: load history and material parameters

for several temperatures. The load history is implemented into the calculation as

a sequence of signed von Mises stresses that the component repeatedly experience.

For this reason, the load history defined in Table 6 is simplified in this case. Only

the first two cycles are considered as it would be complicated to implement the cycle

3 a 4 because their occurrence per equivalent cycle is much lower than 1. The load

history for the critical node 1484141 is depicted in Figure 44 where the stresses are

corrected by Neuber formula(3.8).
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Figure 44: The load history for node 1484141

The corresponding strain response to the load history is also shown in Figure 44. It

was calculated only in the turning points by using 3.9. Stress and strain history is

summarized in Table 10.

Table 10: Stress and strain history for node 1484141

For this method, we need a strain-life curve for each temperature that is in the

load history. Since only strain-life for 3 temperatures are available, the remaining

curves for the other temperatures from the load history are piecewise cubic Hermite

interpolated.

The LCF calculation is performed by use of a set of functions in a c++ library

that was developed in CTU. The input data were read in a form of text files and

compiled through the Windows command line.
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5.6.2 The results

In Figure 45, we can see how the SWT parameter, σSWT , is changing with time

according to Nagode’s method.

1 1.5 2 2.5 3 3.5 4 4.5 5

Time points

-500

0

500

1000

<
S
W

T
[M

P
a
]

<SWT
<

-500

0

500

1000

<
[M

P
a]

Figure 45: σSWT and σ vs time for node 1484141

Figure 46 shows how the damage D develops with time when the load history is

applied.
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Figure 46: Damage D and σ vs time for node 1484141

The total damage according to the formula 3.37 is

Daccum = 0.000681704 cycle−1 (5.27)

It corresponds to 1467 equivalent cycles until crack initiation appears.

5.7 Fatigue life results comparison

The results from the LCF methods are compared at 2 critical nodes 1484141 and

1484055. Table 11 shows the comparison of the SWT method, Landgraf method and

the historical GEAC method. The critical node in terms of fatigue is node 1484141

for all the methods. The highest life is estimated by the historical GEAC method

while SWT method predicts the lowest life. As discussed before, the main reason

for that is the different method of the signed von Mises stress calculation. On the

other hand, the estimated life from the SWT and historical GEAC method for node

1484055 is comparable. This is caused by the fact that the signed von Mises stress is

the same for both methods during the whole load history in this node. Besides, the

fatigue life obtained from the Landgraf method is generally higher than the fatigue
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Table 11: The results comparison for the SWT, Landgraf and historical GEAC

method

life obtained from the SWT method. This is caused by the different way of mean

stress inclusion into the calculation.

The method proposed by Nagode was applied only to the most critical node

1484141. The result is the most conservative as the fatigue life determined by

Nagode’s method is only 1467 cycles.
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6 Conclusion

The impeller alternative design of the H80 engine has been analysed. The thermal

and structural analysis was performed using FEM software Ansys 17. The FEM

analysis was done for the acceleration to the maximum speed and the consequent

deceleration. This mission was divided into 10 time steps. Each time step is charac-

terized by different velocity, temperature and aero gas loads therefore in each time

step the corresponding loads were applied. From the FEA results, we could see that

the temperature influence on the stress state of the impeller is negligible as the in-

crease in von Mises stress in the critical node was within 3% during the acceleration

to the maximum speed.

Modal analysis was performed for:

• the unloaded impeller

• only mechanically loaded impeller

• thermally and mechanically loaded impeller

Seven natural frequencies and corresponding modes shapes have been obtained. Nat-

ural frequencies were the lowest in case of the unloaded impeller. It corresponds to

the assumptions since the unloaded component has the lowest stiffness. However,

these frequencies are similar to the eigenfrequencies of the thermally and mechani-

cally loaded impeller since temperature decreases the stiffness of the component.

Based on the FEM analysis, the fatigue life calculation has been carried out. Four

different methods were used to evaluate the low cycle fatigue of the impeller and

the results were presented. The calculation was performed in software developed

at Czech Technical University. The critical location in terms of fatigue is in the

bolt hole of the impeller. The most conservative result 1467 cycles is predicted by

the method proposed by Nagode. This method takes into account the temperature

change in every time point of the mission. On the other hand, the highest life 10821

cycles was determined by the historical GEAC method.

This analysis is a demonstrative case conducted to compare different lifing methods,

therefore results will not be used for real purposes.
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