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Abstract

A geopotential model of the Earth is usually calculated using the Stokes coefficients. As com-

putational power has increased, research is focusing more on new ways of precise gravity field

modelling. The objective of this master’s thesis is to study an application of the h-p finite element

method for solving boundary value problems in physical geodesy. The brief introductions to po-

tential theory, gravity field of the Earth and h-p finite element method are in chapters 2-4. Chapters

5-8 are dedicated to my research. For the purpose of studying the method, the model boundary

value problems with the corresponding finite element discretization were formulated. The algo-

rithm for solving these boundary value problems was designed and subsequently implemented by

the program. The isoparametric reference elements with linear and quadratic shape functions is

used. We apply the h and p methodologies for increasing the rate of convergence of the weak so-

lution, discuss mesh generation for large domains and also solve linear system with various direct

methods. The methodologies for increasing the rate of convergence are applied on the computation

of the global solution of the geodetic boundary value problem, where the input data on the surface

of the Earth are prescribed using the Earth Gravitational Model (EGM2008).

Keywords: boundary value problem, geodetic boundary value problem, gravity field mod-

elling, isoparametric reference element, h-p finite element method, Poisson’s equation, physical

geodesy



Abstrakt

V dnešnı́ době je geopotenciálnı́ model Země obvykle počı́tán pomocı́ Stokesových koeficientů.

S neustálým zvyšovánı́m výpočetnı́ho výkonu se výzkum stále vı́ce soustředı́ na nové způsoby

přesného určovánı́ tı́hového pole Země. Cı́lem této diplomové práce je studium aplikace h-p

metody konečných prvků na řešenı́ okrajový úloh ve fyzikálnı́ geodézii. Kapitoly 2-4 sloužı́ jako

úvod do problematiky určovánı́ gravitačnı́ho pole Země a metody konečných prvků. Kapitoly 5-8

jsou pak určeny mého výzkumu. Za účelem studia konvergence metody jsem nejprve formuloval

modelové okrajové úlohy pro rozdı́lné okrajové podmı́nky a také odpovı́dajı́cı́ diskretizaci po-

mocı́ metody konečných prvků. Algoritmus pro řešenı́ těchto úloh byl navržen a následně imple-

mentován programem. Na řešenı́ úloh je použit isoparametrický referenčnı́ prvek s lineárnı́mi a

kvadratickými funkcemi. V rámci práce řešı́m řadu okrajový úloh, aplikuji h a p metodologii na

zvýšenı́ rychlosti konvergence slabého řešenı́, probı́rám generovánı́ sı́tı́ konečných prvků pro velké

domény a také řešı́m systémy lineárnı́ch rovnic pomocı́ různorodých přı́mých metod. Metody na

zvýšenı́ rychlosti konvergence jsou pak aplikovány na výpočet globálnı́ho řešenı́ geodetické okra-

jové úlohy, kde jsou data na povrchu Země předepsána pomocı́ Zemského Gravitačnı́ho Modelu

(EGM2008).

Klı́čová slova: okrajová úloha, geodetická okrajová úloha, modelovánı́ tı́hového pole, isopara-

metrický referenčnı́ prvek, h-p metoda konečný prvků, Poissonova rovnice, fyzikálnı́ geodézie
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Contents

1 Introduction 17

2 Potential theory 19

2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Gravity field of the Earth 23

3.1 Gravity potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Normal and disturbing potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Geodetic boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 h-p Finite element method 29

4.1 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 h-p FEM discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Software design 35

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Reference element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Mapping the reference element to global coordinates . . . . . . . . . . . . . . . . 41

5.6 Assembling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Solving linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11



6 Numerical experiments 49

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Formulations of boundary value problems from the first category . . . . . . . . . . 50

6.2.1 First problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.2 Second problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.3 Third problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Formulations of the boundary value problems of the second category (global solution) 53

7 Results 55

7.1 Solution of the linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Convergence experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Global solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Conclusion 65

12



List of Figures

4-1 Reference elements in local coordinates ψ,ϕ,ϑ a) Isoparametric reference ele-

ment with linear shape functions (IRELSF) b) Isoparametric reference element

with quadratic shape functions (IREQSF) . . . . . . . . . . . . . . . . . . . . . . 32

5-1 Simplified scheme of the potential calculation . . . . . . . . . . . . . . . . . . . . 36

5-2 Distribution of the Gauss points on each element for the computation of triple

integrals in stiffness matrices (5.6) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5-3 Mesh for model example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6-1 Finite element mesh for the first category BVPs with quadratic shape functions and

depicted boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6-2 Methodology for choosing boundary condition on the simple finite element mesh . 54

7-1 The structure of the stiffness matrix for convergence experiments (This example

is made for the mesh, where the domain is discretized by thirty elements in radial

direction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7-2 The structure of the stiffness matrix for basic example of the global solution, see

Fig. 7-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7-3 Increasing convergence with the h methodology. The linear shape functions are

used. The meshes are generated with the constant radial size of each element. The

domain is bounded with the top boundary ρTOP = ρDEMO. . . . . . . . . . . . . . 58

7-4 Increasing the convergence rate using the p methodology with 5 elements in radial

direction with linear and also quadratic shape functions . . . . . . . . . . . . . . . 59

13



7-5 The relative error for different mesh generation. The domain is bounded by ρTOP =

ρDEMO = 109. In these cases we solve the Laplace equation with the isoparametric

reference element with linear shape functions . . . . . . . . . . . . . . . . . . . . 60

7-6 a) Finding the threshold point with minimum relative error on the mesh with 30

elements b) Finding the distribution of the elements in radial direction with the

minimum relative error on the mesh with 30 elements . . . . . . . . . . . . . . . . 61

7-7 The overall absolute differences for the solution of the model BVP in Sec. 6.2.2

with the Dirichlet condition WSURF on the bottom boundary. The domain is in

radial direction bounded by ρSURF and ρSAT . The mesh was generated with the

constant radial size of the element. The isoparametric reference element with linear

shape functions is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7-8 Global solution for the gravitational potential V , where the Dirichlet boundary

conditions are prescribed on the surface and the top boundary. The domain is

discretized by 5 element in terms of radial direction and bounded by ρTOP = 109.

Reference surface is the sphere with the mean radius of the Earth. . . . . . . . . . 62

7-9 Detail on the generating mesh on the poles a) overview b) profile c) perspective.

For illustrative purpose the angle, which defines spherical trapesoid in terms of

λ and ϕ , is equal to 20 degrees. However in the computation of the geodetic

boundary value problem is the angle equal to 0.0002. . . . . . . . . . . . . . . . . 63

7-10 Computation of the gravity potential W . The problem is formulated as the geodetic

boundary value problem in Sec. 6.3. On the Surface’s of the Earth the Neumann

condition with the magnitudes of the gravity acceleration g is prescribed. The

obligue derivative effect was neglected. . . . . . . . . . . . . . . . . . . . . . . . 64

14



List of Tables

2.1 Physical constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Parameters of the WGS 84 reference ellipsoid . . . . . . . . . . . . . . . . . . . . 27

5.1 Weight of Gauss points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Parameters for the domain Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 The time elapsed for solving the linear system using the various methods. The

domain is discretized by 1000 elements in radial direction. . . . . . . . . . . . . . 56

7.2 Relative errors for different mesh generation with the dependence on the number

of elements in radial direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Example of the output from the official FORTRAN program . . . . . . . . . . . . 63

15



16



Chapter 1

Introduction

Nowadays the global solutions of the boundary value problems (BVPs) in physical geodesy are

mostly solved using the expansion into the series of spherical harmonics (Hoffmann-Wellenhof et

al. 2005). On the other hand, in regional studies other methods like the Fast Fourier Transform or

the least square collocation are also successfully used (Sansò et al. 2013).

We can also solve the BVP in a way, that we are looking for the so-called weak solution

(Rektorys 1980) and solve the BVP with some variational method. The first work published on the

application of the finite element method (FEM) in geodesy was done by Meissl (1981), followed

by Shaofeng and Dingbo (1991). Recently, Galerkin method, FEM and hp-FEM are discussed in

Holota (2000,2001,2005), Holota et al. (2007), Nesvadba et al. (2007), Fašková et al. (2010),

Šprlák et al. (2011), Mráz et al. (2015a, 2015b) and Mráz et al. (2016). Besides that, the boundary

element method (Klees 1995; Klees et al. 2001; Čunderlı́k et al. 2008) and the finite volume

method in Minarechová et al. (2015) were also efficiently used. The aim of this master’s thesis

is to study the application of the h-p FEM (Babuška et al. 1990) for the different boundary value

problems on different domains and prepare the methodology for computing high resolution gravity

field model.
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Chapter 2

Potential theory

2.1 Fundamentals

Let us have two point masses S and P, where the mass is denoted as M and m. The point mass S

is the source body of gravitation and the point mass P is the attracted point. Let xyz is rectangular

system, where S has coordinates ξ ,η ,ϑ and P has coordinates x,y,z. The distance between the

point masses S and P is r and rSP is the position vector

r =
√
(x−ξ )2 +(y−η)2 +(z−ϑ)2. (2.1)

According to Newton’s law of gravitation (Hoffmann-Wellenhof et al. 2005) two points S and P

attract each other with a force

F = G
Mm
r2 , (2.2)

where G is Newton’s gravitational constant, see Tab. 2.1. The masses M and m attract each other

in the symmetrical way, but it is convenient to say, that the force F with the magnitude F is exerted

Name Label Value Units
Newton’s Gravitational constant G 6.6742 ·10−11 m3kg−1s−2

Standar gravitational parameter for Earth GM 3.986004418(9) ·1014 m3s−2

Angular velocity ω 7.2921159×10−5 rad
s

Table 2.1: Physical constants
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by the mass M.

FSP =−G
Mm
r3 rSP. (2.3)

For simplicity consider, that the attracted mass point P has the mass m equal to unity. This function

is called intensity of the gravitational field

K =
F
m

=−G
M
r3 rSP. (2.4)

Now introduce a new scalar function, which is defined as follows

V =
GM

r
[m2s−2]. (2.5)

This scalar function is called gravitational potential or potential of gravitation and the relation

between the intensity of the gravitational field and the gravitational potential is

K = ∇V, (2.6)

which can be easily proofed by differentiating, see Zeman (2005) or Roy (2008). A very important

property of the potential is that for a system of n point masses M1,M2, ...Mn, the potential is the

sum of the individual contributions. The final potential equals to

V =
GM1

r1
+

GM2

r2
+ · · ·+ GMn

rn
=

n

∑
i

G
Mi

ri
. (2.7)

In physics and geodesy we have to take into account the fact, that potential is regular at infinity

and converges to zero

lim
r→∞

V (x,y,z) = 0. (2.8)

2.2 Poisson equation

If we assume that the point masses are distributed continously over a volume υ of the source body

S with the surface Σ. For a mass of solid body M, which substitutes source point mass S, we can

20



write

M =

˚

υ

σ (x,y,z) dxdydz, (2.9)

where σ (x,y,z) is the density of the solid body S. If we consider (2.7) and substitute (2.9) for M

the gravitational potential V can be expressed as

V (x,y,z) = G
˚

υ

σ (x,y,z)√
(x−ξ )2 +(y−η)2 +(z−ϑ)2

dxdydz. (2.10)

It is well known that integration over the solid angle of the unit sphere is equal to

¨
Σ

r ·n
r3 dΣ = 4π. (2.11)

Now for the surface Σ of the solid body S define the flux of K over the surface Σ

¨
Σ

K ·dΣΣΣ =

¨
Σ

K ·ndΣ, (2.12)

where K is a gravitational vector field (2.4). With substituting (2.3), (2.11) to (2.12) we get

¨
Σ

K ·ndΣ =−GM
¨

Σ

r ·n
r3 dΣ =−4πGM. (2.13)

Using the divergence theorem (Rektorys 1994) we can also write

¨

Σ

K dΣ =

˚

υ

∇K dxdydz =−4πG
˚

υ

σ(x,y,z) dxdydz. (2.14)

Considering (2.6) we can write the relation

˚

υ

∇ ·∇ V dxdydz =−4πG
˚

υ

σ(x,y,z) dxdydz, (2.15)

which is equal to the so-called Poisson’s equation

∆V =
∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂ z2 =−4πGσ(x,y,z), (2.16)
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where ∆ is the Laplace’s operator

∆ = ∇ ·∇ =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 . (2.17)

The Poisson’s equation is partial differential equation of elliptic type (Evans L C 1998). In potential

theory the fundamental problem is the Dirichlet problem. The problem is to find a potential in

domain Ω, given its continuous restriction

V (x,y,z) = f (x,y,z), (2.18)

to the boundary ∂Ω = Γ of the domain Ω. And also with the assumption that the mass distribution

in the interior of the domain Ω is known. The Dirichlet boundary value problem is used in one of

the experiments in Sec. 6.2.2. The second boundary value problem or the Neumann problem is to

find potential in Ω with the restriction of normal derivative

∂V (x,y,z)
∂n

= f (x,y,z). (2.19)

However in geodesy arise boundary value problems with the so-called obligue derivative effect.

In the obligue derivative problem the normal derivative is replaced by derivative ∂V (x,y,z)
∂ l with

respect to an arbitrary direction l = l(x,y,z). However if the direction of the derivative is normal

to the boundary surface, the oblique derivative effect is transformed to the Neumann problem.

The last boundary value problem is the problem with Robin boundary conditions, where the linear

combination of the values of a function and the values of its derivative on the boundary of the

domain is used

α
∂V (x,y,z)

∂n
+βV (x,y,z) = f (x,y,z), (2.20)

where α,β ∈ R are constants. The Robin boundary conditions are used in the numerical experi-

ments of the first and second category, see Sec. 6.2.1, Sec.6.2.2.
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Chapter 3

Gravity field of the Earth

3.1 Gravity potential

Now assume, that we will compute gravitational potential only for an exterior of the source body S

and also consider, that the source body S is the Earth and the density of the atmosphere is neglected.

We can modify the Poisson’s equation (2.16) to the form of Laplace’s equation

∆V =

(
∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂ z2

)
= 0. (3.1)

The solutions of the Laplace’s equation are harmonic functions. The general definiton is that the

harmonic function is a twice differentiable function f : U → R, where U is an open subset of Rn.

Nevertheless the solution is harmonic only outside of the attracting masses, where the Laplace’s

equation is valid, but not inside, where the Poisson’s equation is valid. It can be also shown,

that every harmonic function is analytic in the region Ω, where satisfies the Laplace’s equation

and that is continous and has continous derivatives of any order. In order to describe positions

in space and field quantities for the Earth we introduce an Earth-fixed, orthonormal coordinate

frame. It is postulated that the origin 0 is situated near the Earth’s center of mass. Its z-axis

coincides with the Earth’s mean axis of rotation and the Grenwich meridian plane is parallel to x-

axes. The y-axes completes the orhonormal global geocentric rectangular system, which is oriented

in mathematically positive sense. The distance from the attracting mass S and potential point P has

been already defined (2.1). The longitude λ and the lattitude ϕ of the potential point P than satisfy
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the conditions 0≤ λ ≤ 2π and−π ≤ ϕ ≤ π . Now define intensity of the centrifugal force KΦ. The

magnitude than is

KΦ = ω
2
√

x2 + y2, (3.2)

where ω is the angular velocity of the Earth, see Tab. 2.1. The centrifugal intesity is generated by

the Earth’s rotation and the relationship

KΦ = ∇Φ (3.3)

is also valid for the centrifugal intesity. In the relation (3.3) we denote Φ as centrifugal potential,

which is given by

Φ =
1
2

ω
2 (x2 + y2) . (3.4)

By the differentiating of the centrifugal potential we can find, that centrifugal potential is not

harmonic. Laplacian of the centrifugal potential is 2ω2, hence Φ satisfies the Poisson’s equation

∆Φ =

(
∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 +
∂ 2Φ

∂ z2

)
= 2ω

2. (3.5)

The potential of gravity is called gravity potential W and the resultant is obtained by adding gravi-

tational potential V and centrifugal potential Φ

W =V +Φ. (3.6)

Also for gravity vector is true, that gradient of the gravity potential is equal to gravity vector

g = ∇W. (3.7)

Gravity vector g is allways normal to equipotential surface W = const. The orthogonal trajectories

are denoted as plumb lines. Gravity vector g is tangent to the plumb line at the potential point P.

If we consider, that centrifugal potential satisfies the Poisson’s equation, than for general gravity
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potential W we get

∆W =

(
∂ 2W
∂x2 +

∂ 2W
∂y2 +

∂ 2W
∂ z2

)
=−4πGσ(x,y,z)+2ω

2. (3.8)

Again we deal only with the exterior of the Earth so the Poisson’s equation can be modified as

∆W =

(
∂ 2W
∂x2 +

∂ 2W
∂y2 +

∂ 2W
∂ z2

)
= 2ω

2. (3.9)

3.2 Normal and disturbing potential

This section is intended to be more as a brief review of the basic relationships, which have to be

defined in order to obtain the data for the geodetic boundary value problem. For more detailed

information is more sufficient to read e.g. Hoffmann-Wellenhof et al. (2005). In geodesy the

normal potential for the spherically symmetrical body is defined as follows

U =
GM

r
. (3.10)

It is also true, that the gradient of the normal potential is equal to normal gravity vector

γ = ∇U. (3.11)

We can subtract gravity potential from the normal potential and obtain so-called disturbing or

anomalous potential T

T =W −U. (3.12)

Disturbing potential is harmonic, therefore satisfies the Laplace’s equation

∆T =

(
∂ 2T
∂x2 +

∂ 2T
∂y2 +

∂ 2T
∂ z2

)
= 0. (3.13)
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The geoid undulation N is expressed in a form of Brun’s theorem or Stoke’s integral. This allow

us to define relation between measurable free-air anomaly ∆g

∆g = ∇T = g− γ (3.14)

and unkown disturbing potential T . However the relation 3.10 is only the first approximation, the

second approximation is the reference ellipsoid. In this master’s thesis WGS84 ellipsoid is used.

The cartesian coordinates can be calculated using the relations

x =

(
a2√

a2cos2ϕ +b2sin2ϕ
+h

)
cosϕ cosλ ,

y =

(
a2√

a2cos2ϕ +b2sin2ϕ
+h

)
cosϕ sinλ ,

z =

(
b2

a2
a2√

a2cos2ϕ +b2sin2ϕ
+h

)
sinϕ,

(3.15)

where h is ellipsoidical height, a is semi-major axis and b is semi-minor axis. Normal gravity

acceleration is then defined from the Somigliana-Pizzetti formula for reference ellipsoid

γ = γe
1+ ksin2ϕ√
1− e2sin2ϕ

, (3.16)

where k is equal to

k =
b
a
−1. (3.17)

With substituting parameters for the WGS84 ellipsoid we get

γ = 9.7803253359
1+0.00193185265241 sin2ϕ√
1−0.00669437999013 sin2ϕ

[ms−2]. (3.18)

The values of parameters for WGS84 reference ellipsoid are shown in Tab. 3.2.
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Label Name Value Units
a semi-major axis 6378137.00 [m]
b semi-minor axis 6356752.3142 [m]
e first ellipsoidal eccentricity 8,1819190842622×102 [ ]
f flattening of WGS 84 ellipsoid 1/298.257223563 [ ]

GM Earth’s standard gravitational parameter 3.986004418×1014 [m3s−2]

ω Earth’s angular velocity 7292115×10−11 [ rad
s ]

γe normal gravity on equator 9.7803253359 [ rad
s ]

γp normal gravity on the pole 9.8321849378 [ms−2]

Table 3.1: Parameters of the WGS 84 reference ellipsoid

3.3 Geodetic boundary value problem

The equation (3.9) is the main concern of this master’s thesis. We will focus primary on the

GBVPs, where the unknown is gravity potential W on and outside of the boundary surface ∂Ω.

In this problem we assume, that the Earth behave like a rigid, non-deformable body, uniformly

rotating about a space and body-fixed axis in R3. The solution exists and is unique as it was

proofed in Koch (1972). All attracting mass elements are located in the interior of the closed

boundary Σ which represents the Earth’s surface. We will assume, that the boundary surface is

smooth in terms of Lipshitzian boundary. As we discussed in Sec. 2.1 the generated attraction of

mass elements on a point mass P generates the gravitational potential V , which is regular at infinity

and fulfills (3.1).

As it was mentioned for the exterior of the Earth, we have to deal with the GBVP, which

satisfies the equation (3.9). On the surface of the Earth Σ the magnitudes of gravity acceleration

g = |∇W | is prescribed as the Neumann condition (2.19). On the upper boundary, see Fig. 5-

3 is Dirichlet condition (2.18) prescribed as zero (for really large domain in terms of the radial

direction) and prescribed as gravity potential W observed from satellites for the domain, where

the upper boundary is in the height of the satellite, see Sec. 6. The boundary conditions are then

mixed (2.20). In the numerical experiments, where the shape of the domain is spherical trapezoid,

the additional Neumann conditions on the artificial planes are equal to zero. This can be used only

for spherically symmetrical body with the constant gravity acceleration or potential on the surface.

However it’s valid for studying convergence tendencies of the finite element method in the radial

direction.
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The geodetic boundary value problems, which are based on the relationship between any

boundary data and the gravity potential W are denoted fixed GBVP. In geodesy we distinguish

between several types of the GBVPs. The free nonlinear and gravimetric GBVPs were discussed

in Graffarend (1971), Bjerhammar et al. (1983), Grafarend et al. (1985), Grafarend (1989) and

Heck (1989). The other BVPs were also discussed e.g Hormander (1975). In this master’s thesis

the fixed GBVP is solved.

The problematics of the GBVPs are much more complex, for the purpose of studying h-p finite

element method the problem of the observables was simplified and the data are obtained from the

EGM2008. The problematics of the GBPV is explained more in detail in Sansò et al. (1997) or

Sansò (2013).
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Chapter 4

h-p Finite element method

4.1 Weak formulation

The formulation of the BVP was partially discussed in the description of the fixed GBVP in Sec.

3.3. In this section the BVP is formulated more precisely and also weak formulation is derived.

Denote Ω an open domain in R3. In the model problems the domain Ω is supposed to be bounded

with Lipschitzian boundary ∂Ω = ΓN ∪ΓD, where ΓN is the Neumann boundary and ΓD is the

Dirichlet boundary. Now construct the corresponding Sobolev space (Adams 2003). Let k ∈ℵ.p∈

[1,∞] and

α = (α1, · · · ,αn) , |α|=
n

∑
i=1

αi, Dα =
∂ |α|

∂xα1
1 · · ·∂xαn

n
, uα = Dαu. (4.1)

The Sobolev space is defined to be the set of all functions f defined on Ω such that for every

multi-index α with |α|, where |α| ≤ k. The mixed partial derivative exists in the weak sense and

is in Lp (Ω)

f α =
∂ α f

∂xα1
1 · · ·∂xαn

n
. (4.2)

The Sobolev space W k,p is then constructed as

W k,p (Ω) = {u ∈ Lp (Ω) : Dαu ∈ Lp (Ω)∀|α|6 k} (4.3)
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and with the Sobolev norm

‖u‖W k,p(Ω) :=


(

∑|α|6k ‖Dαu‖p
Lp(Ω)

) 1
p 1 6 p <+∞

max|α|6k ‖Dαu‖L∞(Ω) p =+∞

. (4.4)

For the purpose of the generality of the weak formulation, we consider the Poisson equation for

the potential V (x,y,z) in the general form

(
∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂ z2

)
=− f (x,y,z), (4.5)

where f ∈ L2(Ω). In our case we derive the problem with Robin boundary conditions (2.20)

V (x,y,z) = k(x,y,z) on ΓD,

∂V (x,y,z)
∂n

= l (x,y,z) on ΓN ,
(4.6)

where k(x,y,z) is a function representing values on the Dirichlet boundary ΓD and l(x,y,z) is a

function representing values on the Neumann boundary ΓN and n is a direction of the outward unit

normal with respect to ∂Ω. The existence and the uniqueness of the solution can be proofed using

the Lax-Milgram lemma e.g. Nečas (2003), Axelson (2001), Rektorys (1980) or Evans (1998).

Now consider a test function v from the Sobolev space W 1,2(Ω), which is constructed using the

definition (4.3) with the norm (4.4) for p = 2 and for the order of the Sobolev space k = 1. The

Sobolev space W 1,2 can be also denoted as the Hilbert space H1 (Ω) with the norm || · ||W 1,2(Ω). In

geodesy we can also formulate the problem for an unbounded domain Ω. In this case the weighted

Sobolev space needs to be constructed as in Sansò et al. (1997) and Holota (2007). However for

a bounded the domain we can construct space W 1,2. The potential V is assumed to be regular as

ρ → ∞. The test function v is chosen in a way, that is equal to zero on the Dirichlet boundary

ϑM = {v ∈W 1,2(Ω),v = 0 on ΓD}. (4.7)
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We multiply (4.5) by the test function v and integrate both sides of the equation we get

ˆ
Ω

(
∂ 2V
∂x2 v+

∂ 2V
∂y2 v+

∂ 2V
∂ z2 v

)
dxdydz =−

ˆ
Ω

f v dxdydz, (4.8)

using Gauss-Green theorem (Rektorys 1994)

ˆ
Ω

∂ f
∂xnk

dx =
ˆ

∂Ω

f nkdS , k = 1, · · · ,n, (4.9)

and denoting f = ∂V
∂xk

, g = v we get the relationships

ˆ
Ω

∂ 2V
∂x2 dΩ =

ˆ
∂Ω

∂V
∂x

vnxdS−
ˆ

Ω

∂V
∂x

∂v
∂x

,

ˆ
Ω

∂ 2V
∂y2 dΩ =

ˆ
∂Ω

∂V
∂y

vnydS−
ˆ

Ω

∂V
∂y

∂v
∂y

,

ˆ
Ω

∂ 2V
∂ z2 dΩ =

ˆ
∂Ω

∂V
∂ z

vnzdS−
ˆ

Ω

∂V
∂ z

∂v
∂ z

.

(4.10)

And by substituting (4.10) to (4.8) we get

−
ˆ

∂Ω

(
∂V
∂x

nx +
∂V
∂y

ny +
∂V
∂ z

nz

)
v dS+

ˆ
Ω

(
∂V
∂x

∂v
∂x

+
∂V
∂y

∂v
∂y

+
∂V
∂ z

∂v
∂ z

)
dxdydz =

=

ˆ
Ω

f v dxdydz.
(4.11)

By spliting the boundary ∂Ω we can rearrange the equation (4.11) into

ˆ
∂Ω

(
∂V
∂x

nx +
∂V
∂y

ny +
∂V
∂ z

nz

)
vdS =

ˆ
ΓD

(
∂V
∂x

nx +
∂V
∂y

ny +
∂V
∂ z

nz

)
v dS+

+

ˆ
ΓN

(
∂V
∂x

nx +
∂V
∂y

ny +
∂V
∂ z

nz

)
v dS

. (4.12)

With respect to the boundary conditions (4.7), we get the weak formulation in this form: find

V ∈W 1,2(Ω) that

ˆ
Ω

(
∂V
∂x

∂v
∂x

+
∂V
∂y

∂v
∂y

+
∂V
∂ z

∂v
∂ z

)
dxdydz =

=

ˆ
Ω

f (x,y,z)v dΩ+

ˆ
ΓN

l(x,y,z)v dS,
(4.13)
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for each v ∈ ϑM.

4.2 h-p FEM discretization

Finite element method in this master’s thesis denotes the implementation of Galerkin method with

finite lement basis function. These basis function are continous, piecewise polynomials and that

have local in the sense that each function vanishes outside of a small subregion of domain Ω.

Together with the choice of nodes, makes up a finite element mesh, see Fig. 5-3. The isoparametric

reference elements with linear and quadratic shape function (Ergatoudis J 1968) are chosen, see

Fig. 4-1.
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ψ

ϑ ϑ

ψ

φ φ

Figure 4-1: Reference elements in local coordinates ψ,ϕ,ϑ a) Isoparametric reference element
with linear shape functions (IRELSF) b) Isoparametric reference element with quadratic shape
functions (IREQSF)

In the h-p FEM we find the solution V (x,y,z) as a linear combination

V (x,y,z) =
n

∑
i=1

αiϕi (x,y,z) , (4.14)
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where αi are coefficients of linear combinations and ϕi are basis functions for i = 1,2 · · · ,n.

n

∑
i=1

αi

ˆ
Ω

(
∂ϕi

∂x
∂v
∂x

+
∂ϕi

∂y
∂v
∂y

+
∂ϕi

∂ z
∂v
∂ z

)
dxdydz =

ˆ
Ω

f vdxdydz+
ˆ

ΓN

hvdS. (4.15)

Substituting (4.14) for V (x,y,z) or W (x,y,z) to general weak formulation (4.13) or to model BVPs

weak formulations in Sec. 6 and also the basis function ϕ j for the test function v for j = 1,2, · · · ,n,

we get a linear system

Au = f, (4.16)

where A is the stiffness matrix

A=


´

Ω

(
∂ϕ1
∂x

∂ϕ1
∂x + ∂ϕ1

∂y
∂ϕ1
∂y + ∂ϕ1

∂ z
∂ϕ1
∂ z

)
dxdydz · · ·

´
Ω

(
∂ϕ1
∂x

∂ϕn
∂x + ∂ϕ1

∂y
∂ϕn
∂y + ∂ϕ1

∂ z
∂ϕn
∂ z

)
dxdydz

... . . . ...´
Ω

(
∂ϕn
∂x

∂ϕ1
∂x + ∂ϕn

∂y
∂ϕ1
∂y + ∂ϕn

∂ z
∂ϕ1
∂ z

)
dxdydz · · ·

´
Ω

(
∂ϕn
∂x

∂ϕn
∂x + ∂ϕn

∂y
∂ϕn
∂y + ∂ϕn

∂ z
∂ϕn
∂ z

)
dxdydz

 ,

(4.17)

f is the right-hand side

f =


´

Ω
f ϕ1dΩ+

´
ΓN

hϕ1dS
...´

Ω
f ϕndΩ+

´
ΓN

hϕndS

 , (4.18)

u is the solution vector

u =
(

α1α2 · · ·αn

)T
(4.19)

and n is the number of basis functions or nodes. In the finite element analysis the weak solution

can be improved in several different ways. In the model problems of this master’s thesis h and p

convergence (Babuška 1982) is studied. As for h convergence the basis functions for each element

are fixed and the maximum radial size of the element hmax is approaching zero. For p convergence

the mesh is fixed and the order of the shape functions pmin is approaching p∞. In the model

problems, where the analytic solution uA is known, we evaluate result using a relative error erel

and absolute error eabs, see (Babuška et al. 1981). Let’s say, that ũi for every i = 1, · · · ,n is the

aproximated solution obtained at the node i and uA
i for i = 1, · · · ,n is the analytical solution at the
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node i. Then the relative error is given by

erel =

√
∑

n
i=1 (ũi−uA

i )
2√

∑
n
i=1 (u

A
i )

2
(4.20)

and the absolute error is given by

eabs = |ũi−uA
i |. (4.21)

It can be shown, that the error estimate of the Galerkin discretization for elliptic differential

equation satisfies the Céa’s lemma

||uA− ũi|| ≤
C
c

inf
vi∈W 1,2

||uA− vi||, (4.22)

where C
c are constants. For h-p finite element method we can also write (Babuška 1970/71)

||u− ũi||L2(Ω) 6 chp+1||u||W 1,p+1, (4.23)

which means that the convergence rate for the solution itself is O
(
hp+1) as is proven in Babuška

(1982). The hp-FEM is based on an optimal combination of h and p methodologies which leads to

exponential convergence. The problematics of error estimates of the partial differential equations

are much more complex. In this master’s thesis the validation of the solution is made using the

absolute and relative error, however the aprior and aposterior error estimates will be implemented

in the future work.
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Chapter 5

Software design

5.1 Overview

For the purpose of the numerical solution the author developed the software in C++ e.g (Stroustrup

2013). The compilation is done using the gcc (g++) compilator version 4.8.4. The software is

split into two main parts. The first part represents generation of the finite element mesh. For the

allocation of matrices and vectors the GNU Science library was used. The algorithms from the

GNU Science library for LU, Cholesky and Singular Value decomposition and finding singular

values were also used (Brian 2009). These algorithm are often based on routines from LINPACK

and LAPACK libraries. The big advantage of using the GNU Science library is the implementation

of the algorithms for linear algebra, where the sparse iterative solvers like generalized minimal

residual method (GMRES) are included and can be easily implemented in the future work. Another

advantage is also the fact, that GNU Science provides a low-level layer which corresponds directly

to the C-language BLAS standard

The second part of the software is the FEM algorithm. The FEM algorithm uses the procedures

from Bathe (1995). First, the stiffness matrices and the right-hand sides on each element are

composed. After that, the global stiffness matrix and the global right-hand side are assembled. As

is discussed in Sec. 5.7 and in Sec. 7 the linear system is solved using various direct methods. The

big advantage is that we do not have to deal with error from iterative methods and solve the system

precisely, however the time of the computation is higher, so some of the iterative methods like

conjugate gradient method or GMRES are also consider in the future work. The solution vector u
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represents the potential at each node i. A simplified diagram of the computational process is shown

in Fig. 5-1.

Loop over elements

Loop over Gauss points

Contribution to the stiffness

Contribution to the right hand

End of the loop over

End of loop over elements

Assembling

Elimination of fixed

Solving a linear system

Adding fixed variables

matrix on each element

side on each element

to the solution vector

Gauss points

variables

Figure 5-1: Simplified scheme of the potential calculation

5.2 Mesh generation

The finite element mesh is generated using the spherical or ellipsoidal coordinates. Each node

is numbered and after the computation the spherical coordinates are transformed to the cartesian

coordinates.

x = ρ cosϕ cosλ ,

y = ρ cosϕ sinλ ,

z = ρ sinϕ.

(5.1)
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Than the values of the boundary conditions are assigned to corresponding node. For the boundary

value problems of the first category Sec. 6.2.1 the values are computed using the analytical solution

(6.2) or (6.5). In contrary, for the global solution the values from the Earth gravitational model

(EGM2008) are also used (Pavlis K et al. 2012). When it comes to the global solution, the mesh

is much more complex. Therefore the matrix, where the relations of the elements are stored, is

also created. From these relations the description matrix (number of nodes for each element) is

generated. The input to the FEM algorithm are vectors of cartesian coordinates, description matrix

and prescribed values on the boundaries. It is unneccessary, that the order of nodes is the same as

in the local coordinates.

5.3 Numerical integration

For the numerical evaluation of the integrals the Gauss-Legendre quadrature with 27 Gauss points

on each element for the triple integrals and 9 Gauss points on each side of the element for the sur-

face integrals is used. Denoting the number of Gauss points as NIG, then the numerical integration

in three dimensions for general function is performed using the relation

˚

Ω

f (x,y,z) dΩ =
n

∑
i=1

wi

n

∑
j=1

w j

n

∑
k=1

wk · f (ϕ i
g,ψ

j
g ,ϑ

k
g ), (5.2)

where ϕ i
g, ψ

j
g , ϑ k

g is local coordinates of each Gauss point and is the number of Gauss points on

each interval. Analogically for surface integrals the relation is in a form as follows

¨

S

f (x,y)dS =
n

∑
i=1

n

∑
j=1
· f (ϕ i

g,ψ
j

g). (5.3)

Each weights can be subtituted by the overall weight of each Gauss point

NIG

∑
g=1

wg =
n

∑
i=1

wi

n

∑
j=1

w j

n

∑
k=1

wk,

NIG

∑
g=1

wg =
n

∑
i=1

wi

n

∑
j=1

w j,

(5.4)
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and obtain the relations

˚

Ω

f (x,y,z) dΩ =
ng

∑
g=1

wg · f (ϕg,ψg,ϑg),

¨

S

f (x,y,z) dS =
ng

∑
g=1

wg · f (ϕg,ψg).

(5.5)

The distribution of the Gauss points on each element for the computation of triple integrals is

depicted in Fig 5.3. The numerical values of Gauss points coordinates and its weights for Gauss-
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Figure 5-2: Distribution of the Gauss points on each element for the computation of triple integrals
in stiffness matrices (5.6)

Legendre quadrature are shown in the Tab 5.1. In the numerical integration in the FEM algorithm

the three Gauss points on each interval are used n = 3. The element stiffness matrices and the

Table 5.1: Weight of Gauss points
n Gauss point xi Weight of inner Gauss point wi
1 0 2

2 ±
√

1
3 1

3
0 8

9

±
√

3
5

5
9

4
±

√(
3−2

√
6
5

)
7

18+
√

30
36

±

√(
3+2

√
6
5

)
7

18−
√

30
36
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right-hand sides are in the form

Ae =

˚

Ωe

(
∂Ni

∂x
∂N j

∂x
+

∂Ni

∂y
∂N j

∂y
+

∂Ni

∂ z
∂N j

∂ z

)
dΩe,

fe =

ˆ
Ωe

f N jdΩe +

ˆ
ΓN

hN jdΩe,

(5.6)

where N are the shape functions.

5.4 Reference element

In the numerical experiments in this master’s these we solve the BVPs with different isoparametric

elements, see Fig 4-1. Denote NELEM the number of nodes on each reference element. The first

one is 8-noded reference element with linear shape functions. The shape functions for each node

are

N1 =
1
8
(1−ϕ)(1−ψ)(1−θ) ,

N2 =
1
8
(1+ϕ)(1−ψ)(1−θ) ,

N3 =
1
8
(1+ϕ)(1+ψ)(1−θ) ,

N4 =
1
8
(1−ϕ)(1+ψ)(1−θ) ,

N5 =
1
8
(1−ϕ)(1−ψ)(1+θ) ,

N6 =
1
8
(1+ϕ)(1−ψ)(1+θ) ,

N7 =
1
8
(1+ϕ)(1+ψ)(1+θ) ,

N8 =
1
8
(1−ϕ)(1+ψ)(1+θ) .

. (5.7)
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And the second one is 20-noded reference element with quadratic shape functions

N1 =
1
8
(1−ϕ)(1−ψ)(1−ϑ) ,

N2 =
1
8
(1+ϕ)(1−ψ)(1−ϑ) ,

N3 =
1
8
(1+ϕ)(1+ψ)(1−ϑ) ,

N4 =
1
8
(1−ϕ)(1+ψ)(1−ϑ) ,

N5 =
1
8
(1−ϕ)(1−ψ)(1+ϑ) ,

N6 =
1
8
(1+ϕ)(1−ψ)(1+ϑ) ,

N7 =
1
8
(1+ϕ)(1+ψ)(1+ϑ) ,

N8 =
1
8
(1−ϕ)(1+ψ)(1+ϑ) ,

N9 =
1
4
(1−ϕ)(1+ϕ)(1−ψ)(1−ϑ) ,

N10 =
1
4
(1+ϕ)(1+ψ)(1−ψ)(1−ϑ) ,

N11 =
1
4
(1−ϕ)(1+ϕ)(1+ψ)(1−ϑ) ,

N12 =
1
4
(1−ϕ)(1+ψ)(1−ψ)(1−ϑ) ,

N13 =
1
4
(1−ϕ)(1−ψ)(1−ϑ)(1+ϑ) ,

N14 =
1
4
(1+ϕ)(1−ψ)(1−ϑ)(1+ϑ) ,

N15 =
1
4
(1+ϕ)(1+ψ)(1−ϑ)(1+ϑ) ,

N16 =
1
4
(1−ϕ)(1+ψ)(1−ϑ)(1+ϑ) ,

N17 =
1
4
(1−ϕ)(1+ϕ)(1−ψ)(1+ϑ) ,

N18 =
1
4
(1+ϕ)(1+ψ)(1−ψ)(1+ϑ) ,

N19 =
1
4
(1−ϕ)(1+ϕ)(1+ψ)(1+ϑ) ,

N20 =
1
4
(1−ϕ)(1+ψ)(1−ψ)(1+ϑ) .

(5.8)
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In the second case the shape functions in corner nodes 1-8 has to be corrected, so that the shape

functions are connected to other shape functions. Relations of these corrections are

N1 = N1−
1
2
(N9 +N12 +N13),

N2 = N2−
1
2
(N9 +N10 +N14),

N3 = N3−
1
2
(N10 +N15 +N11),

N4 = N4−
1
2
(N12 +N16 +N11),

N5 = N5−
1
2
(N13 +N20 +N17),

N6 = N6−
1
2
(N17 +N18 +N14),

N7 = N7−
1
2
(N19 +N18 +N15),

N8 = N8−
1
2
(N16 +N20 +N19).

(5.9)

Shape functions are chosen in a way, that value of the shape function at assigned node is 1 and 0

at each other node. For every shape function are also computed its partial derivatives ∂Ni
∂ϕ

, ∂Ni
∂ψ

, ∂Ni
∂ϑ

,

where i = 1,2, · · · ,NELEM.

5.5 Mapping the reference element to global coordinates

Now denote global coordinates as x,y,z. General function for mapping can be expressed as

Φ = (x(ϕ,ψ,ϑ) ,y(ϕ,ψ,ϑ) ,z(ϕ,ψ,ϑ)) , (5.10)

Element stiffness matrices Ae are given by

Ae =

˚

Ωe

(
∂Ni (ϕg,ψg,ϑg)

∂x
∂N j (ϕg,ψg,ϑg)

∂x
+

∂Ni (ϕg,ψg,ϑg)

∂y
∂N j (ϕg,ψg,ϑg)

∂y
+

+
∂Ni (ϕg,ψg,ϑg)

∂ z
∂N j (ϕg,ψg,ϑg)

∂ z
)
∣∣JΦ (ϕg,ψg,ϑg)

∣∣ dϕdψdϑ

(5.11)
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and element right-hand side fe

fe =

ˆ
Ωe

f N j
∣∣JΦ (ϕg,ψg,ϑg)

∣∣ dϕdψdϑ , (5.12)

where JΦ (ϕ,ψ,ϑ) is Jacobian in a form

JΦ (ϕ,ψ,ϑ) =

∣∣∣∣∣∣∣∣∣
∂x(ϕ,ψ,ϑ)

∂ϕ

∂x(ϕ,ψ,ϑ)
∂ψ

∂x(ϕ,ψ,ϑ)
∂ϑ

∂y(ϕ,ψ,ϑ)
∂ϕ

∂y(ϕ,ψ,ϑ)
∂ψ

∂y(ϕ,ψ,ϑ)
∂ϑ

∂ z(ϕ,ψ,ϑ)
∂ϕ

∂ z(ϕ,ψ,ϑ)
∂ψ

∂ z (ϕ,ψ,ϑ)
∂ϑ

∣∣∣∣∣∣∣∣∣ . (5.13)

Members of Jacobian matrix can be computed using derivatives of the shape functions with respect

to local coordinates

∂x
∂ϕ

=
NELEM

∑
i=1

xi
∂N
∂ϕ

,
∂y
∂ϕ

=
NELEM

∑
i=1

yi
∂N
∂ϕ

,
∂ z
∂ϕ

=
NELEM

∑
i=1

zi
∂N
∂ϕ

,

∂x
∂ψ

=
NELEM

∑
i=1

xi
∂N
∂ψ

,
∂y
∂ψ

=
NELEM

∑
i=1

yi
∂N
∂ψ

,
∂ z
∂ψ

=
NELEM

∑
i=1

zi
∂N
∂ψ

,

∂x
∂ϑ

=
NELEM

∑
i=1

xi
∂N
∂ϑ

,
∂y
∂ϑ

=
NELEM

∑
i=1

yi
∂N
∂ϑ

,
∂ z
∂ϑ

=
NELEM

∑
i=1

zi
∂N
∂ϑ

.

. (5.14)

Derivatives of the shape functions with respect to global coordinates ∂Ni
∂x ,

∂Ni
∂y ,

∂Ni
∂ z can be computed

from the system of linear equations

∂Ni (x(ϕ,ψ,ϑ) ,y(ϕ,ψ,ϑ) ,z(ϕ,ψ,ϑ))

∂ϕ
=

∂Ni

∂x
∂x
∂ϕ

+
∂Ni

∂y
∂y
∂ϕ

+
∂Ni

∂ z
∂ z
∂ϕ

,

∂Ni (x(ϕ,ψ,ϑ) ,y(ϕ,ψ,ϑ) ,z(ϕ,ψ,ϑ))

∂ψ
=

∂Ni

∂x
∂x
∂ψ

+
∂Ni

∂y
∂y
∂ψ

+
∂Ni

∂ z
∂ z
∂ψ

,

∂Ni (x(ϕ,ψ,ϑ) ,y(ϕ,ψ,ϑ) ,z(ϕ,ψ,ϑ))

∂ϑ
=

∂Ni

∂x
∂x
ϑ

+
∂Ni

∂y
∂y
∂ϑ

+
∂Ni

∂ z
∂ z
∂ϑ

.

(5.15)
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Figure 5-3: Mesh for model example

The global coordinates of each Gauss point can be also computed using these relations

xg =
NELEM

∑
i=1

xiNi (ϕg,ψg,ϑg) ,

yg =
NELEM

∑
i=1

yiNi (ϕg,ψg,ϑg) ,

zg =
NELEM

∑
i=1

ziNi (ϕg,ψg,ϑg) .

(5.16)

Finally we can compute contribution to the element stiffness matrix for each node

Ae ≈
NIG

∑
g=1

ωg(
∂Ni (ϕg,ψg,ϑg)

∂x
∂N j (ϕg,ψg,ϑg)

∂x
+

∂Ni (ϕg,ψg,ϑg)

∂y
∂N j (ϕg,ψg,ϑg)

∂y
+

+
∂Ni (ϕg,ψg,ϑg)

∂ z
∂N j (ϕg,ψg,ϑg)

∂ z
)
∣∣JΦ (ϕg,ψg,ϑg)

∣∣, (5.17)

and also the contribution to the right-hand side

fe =
NIG

∑
g=1

wg f (xg,yg,zg)N j (ϕg,ψg,ϑg)
∣∣JΦ (ϕg,ψg,ϑg)

∣∣ . (5.18)
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5.6 Assembling

The process of the global stiffness matrix composition and the right-hand side is demonstrated on

the basic example with three elements. The simple mesh for these elements with the numbering

are depicted in Fig. 5-3. In the assembling example we denote A1,A2,A3 and the right-hand sides

as f1, f2, f3

A1 =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , f1 =


f11

f12

f13

f14

 ,

A2 =


b33 b34 b35 b36

b43 b44 b45 b46

b53 b54 b55 b56

b63 b64 b65 b66

 , f2 =


f23

f24

f25

f26

 ,

A3 =


c44 c46 c47 c48

c64 c66 c67 c68

c74 c76 c77 c78

c84 c86 c87 c88

 , f3 =


f34

f36

f37

f38

 .

(5.19)

Indexes of each element stiffness matrices are assigned according to the finite element mesh (5-

3). The basic principle of the assembling proccess is in addition of the matrix member. In global

stiffness matrix are adding these matrix members, which belong to nodes which are on the same
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element boundary. Base on this principle we obtain the global stiffness matrix

A =



a11 a12 a13 a14 0 0 0 0

a21 a22 a23 a24 0 0 0 0

a31 a32 a33 +b33 a34 +b34 b35 b36 0 0

a41 a42 a43 +b43 a44 +b44 + c44 b45 b46 + c46 c47 c48

0 0 b53 b54 b55 b56 0 0

0 0 b63 b64 + c64 b65 b66 + c66 c67 c68

0 0 0 c74 0 c76 c77 c78

0 0 0 c84 0 c86 c87 c88



. (5.20)

And the right-hand side

f =



f11

f12

f13 + f23

f14 + f24 + f34

f25

f26 + f36

f37

f38



. (5.21)

With the solution vector

u =


α1

α2
...

α8

 . (5.22)

The system of linear equations are then in a form
a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...

an1 an2 · · · ann




α1

α2
...

αn

=


f1

f2
...

fn

 . (5.23)
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or

Au = f . (5.24)

However we cannot solve the global linear system directly. First, we have to eliminate fixed vari-

ables. Denote variables with index f ix, where the dirichlet condition is assigned, we obtain for

example 
a11 a f ix

12 · · · a1n

a f ix
21 a f ix

22 · · · a f ix
2n

...
... . . . ...

an1 a f ix
n3 · · · ann




α1

α
f ix

2
...

αn

=


f1

f f ix
2
...

fn

 . (5.25)

After elimination we get
a11 a13 · · · a1n

a31 a33 · · · a3n
...

... . . . ...

an1 an3 · · · ann




α1

α3
...

αn

=


f1−α

f ix
2 a f ix

12

f3−α
f ix

2 a f ix
32

...

fn−α
f ix

2 a f ix
n2

 . (5.26)

Now we can solve the linear system with various methods, see Sec. 5.7

u =


α1

α3
...

αn

 . (5.27)

However the solution vector is not complete, so it is neccessary to add fixed variable back to the

solution vector

u =



α1

α
f ix

2

α3
...

αn


. (5.28)
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5.7 Solving linear system

First the condition number of the stiffness matrix is computed. For the normal matrices the condi-

tion number with respect to L2 norm is given by

κ (A) = ||A|| · ||A−1||= |λmax (A) |
|λmin(A)|

≥ 1, (5.29)

where λmax(A) is maximal eigenvalue of the matrix A and λmin(A) is minimal eigenvalue of the

matrix A. The eigenvalues were computed using the GNU Scientific library. The library uses

symmetric bidiagonalization and QR reduction method. In order to study convergence precisely

it is more sufficient to solve the system accurately with the direct methods, where the error from

iterations can be avoided. The brief overview of used direct methods is mentioned in this chapter,

nevertheless the more detail view on the methods can be found in Golub et al. (1996) and LAPACK

(1999). First we discuss the LU decomposition.

LU decomposition or LU factorization creates a matrix as the product of a lower triangular

matrix and an upper triangular matrix. In our case the product includes permutation matrix as

well. The LU decomposition can be also viewed as the matrix form of Gaussian elimination and

can be used for square systems of linear equations. In the algorithm in the FEM software the LU

factorization with partial pivoting is used. This can be written in a form

PA = LU, (5.30)

where P is permutation matrix, L is unit lower triangular matrix and U is upper triangular matrix.

After decomposition we solve the system

Ly = P f (5.31)

for y. And use the y vector to obtain the solution u

Uu = y. (5.32)

A symmetric, positive definite square matrix A has also Cholesky decomposition into a product of
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a lower triangular matrix L and its transpose LT

A = LLT . (5.33)

The Cholesky decomposition can only be applied when all the eigenvalues of the matrix are posi-

tive, which is satisfied in our case. First the system with y vector is solved

Ly = f . (5.34)

After that we obtain the solution vector u from the system

LT u = y. (5.35)

A general rectangular M-by-N matrix A has a singular value decomposition (SVD) into the prod-

uct of an M-by-N orthogonal matrix U , an N-by-N diagonal matrix of singular values S and the

transpose of an N-by-N orthogonal square matrix V ,

A =USV T . (5.36)
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Chapter 6

Numerical experiments

6.1 Overview

The numerical experiments in this master’s thesis are divided into two main categories. In each

model BVPs the Earth’s surface is represented by a sphere. The first category are the model bound-

ary value problems, where the convergence of the h-p finite element method is studied. The bottom

boundary is in these cases in a shape of spherical trapezoid, see Fig. 6-1. The second category of

the numerical experiments are different versions of the fixed geodetic boundary value problem for

gravity potential (3.9). In these experiments the methodologies for increasing convergence rate,

which have been found using the numerical experiments from the first category, are applied. In

these cases the domain is defined as a space between two concentric spheres with radius ρSURF

and ρTOP, see Fig. 6-2.
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α
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3. BVP ΓNSURF = gSURF

2. BVP ΓDTOP =WTOP
3. BVP ΓDTOP =WTOP

Figure 6-1: Finite element mesh for the first category BVPs with quadratic shape functions and
depicted boundary conditions

6.2 Formulations of boundary value problems from the first

category

6.2.1 First problem

In the first case the boundary value problem for the gravitational potential V (x,y,z) with the Robin

boundary conditions (2.20) is solved. The problem leads to the Laplace’s equation, see (3.1)

(
∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂ z2

)
= 0. (6.1)

The shape of the domain is in a spherical trapezoid shape. The Earth is represented by a sphere

with the radius ρSURF equal to the mean radius of the Earth, see Tab. 6.1. On the Earth’s surface

and also on the top boundary the Dirichlet conditions have been chosen. The Dirichlet condition on

the top boundary is prescribed as VTOP. On the artificial boundaries ΓNA the Neumann conditions

are prescribed as zero, see Fig. 6-1. The analytic solution for the gravitational potential of the
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spherically symmetrical body is

V (x,y,z) =
GM⊕

ρ
, (6.2)

where GM⊕ is the standard gravitational parametr for the Earth, see Tab. 2.1. For the purpose of

studying convergence of the method the conditions have been chosen constant and the values have

been calculated from the relation 6.2. Considering (4.13), we get the weak formulation for the

BVP ˆ
Ω

(
∂V
∂x

∂v
∂x

+
∂V
∂y

∂v
∂y

+
∂V
∂ z

∂v
∂ z

)
dxdydz = 0. (6.3)

The discretization is made using the reference element with quadratic and linear shape func-

tions, see Sec. 4.

6.2.2 Second problem

In the second case the BVP for the gravity potential W . This problem leads to the Poisson’s

equation, where the Laplacian is equal to 2ω2. Using the general form (4.5), we get

(
∂ 2W
∂x2 +

∂ 2W
∂y2 +

∂ 2W
∂ z2

)
= 2ω

2. (6.4)

Choosing the analogical boundary conditions as in the first case, we prescribe the Dirichlet con-

diton as WSURF for the bottom boundary and WTOP for the top boundary. However the analytic

solution for spherically symmetrical body is now

W (x,y,z) =
GM⊕

ρ
+

1
2

ω
2
ρ

2 cosϕ. (6.5)

Parametr Value Units
ρSURF 6 371 000 [m]
ρSAT 6 671 000 [m]

ρDEMO 109 [m]
ρ∞ 1017 [m]
α

π

180 [rad]
Longitude λ <−α;α > [rad]
Lattitude ϕ <−α;α > [rad]

ρT HR 0.55×108 [m]

Table 6.1: Parameters for the domain Ω
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The Neumann boundary conditions are again equal to zero from the definition of the equipotential

surface for the spherically symmetrical body. In the analogical way as in the first case, we obtain

the weak formulation

ˆ
Ω

(
∂W
∂x

∂v
∂x

+
∂W
∂y

∂v
∂y

+
∂W
∂ z

∂v
∂ z

)
dxdydz =

=

ˆ
Ω

2ω
2v dΩ.

(6.6)

The discretization was again made with the reference element with quadratic and linear shape

functions.

6.2.3 Third problem

In the third case the BVP is also based on solving Poisson’s equation (6.9), but the boundary

conditions were chosen in a way, that the model BVP is more similar to the fixed GBVP for

gravity potential, see Sec. 3.9. Instead of using the Dirichlet condition WSURF , we prescribe the

Neumann condition on the bottom boundary as the magnitude of the gravity vector, see Sec. 3.1

g = |g|= |gradW |. (6.7)

The Neumann boundary ΓN was split into two boundaries ΓNA for the artificial sides and ΓNSURF

for the bottom boundary. The surface integral, which refers to ΓNA is again equal to zero. The

Neumann condition on the Earth’s surface was again chosen as constant and calculated from the

analytical solution (6.5). The formulation of the BVP is in the form

ˆ
Ω

(
∂W
∂x

∂v
∂x

+
∂W
∂y

∂v
∂y

+
∂W
∂ z

∂v
∂ z

)
dxdydz =

=

ˆ
Ω

2ω
2v dΩ+

ˆ
ΓNSURF

|g|vdS.
(6.8)
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6.3 Formulations of the boundary value problems of the second

category (global solution)

In the numerical experiments from the second category the so-called global solution of the geodetic

boundary value problem is solved. The domain is in this case chosen as two concentric spheres

with radius ρSURF and ρTOP, see Fig. 6-2. Hence we do not have to put boundary conditions on

the artificial sides. The boundary conditions are prescribed only on the Earth’s surface and on the

upper boundary. The fixed geodetic boundary value problem is formulated in Sec. 3.9. This GBVP

is formulated by Poisson’s equation

(
∂ 2W
∂x2 +

∂ 2W
∂y2 +

∂ 2W
∂ z2

)
= 2ω

2. (6.9)

On the surface of the Earth is prescribed Neumann condition as magnitude of the gravity accel-

eration g. On the top boundary is the Dirichlet condition prescribed. The weak formulation is

analogical to the (6.8) and is in the form

ˆ
Ω

(
∂W
∂x

∂v
∂x

+
∂W
∂y

∂v
∂y

+
∂W
∂ z

∂v
∂ z

)
dxdydz =

=

ˆ
Ω

2ω
2v dΩ+

ˆ
ΓNSURF

|g|vdS.
(6.10)
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Figure 6-2: Methodology for choosing boundary condition on the simple finite element mesh
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Chapter 7

Results

7.1 Solution of the linear system

The number of equations in the linear system is equal to the number of nodes N with the substrac-

tion of the number nodes, where the Dirichlet boundary conditions are assigned. As for the time

of the computation, solving the linear system is the biggest concern in the finite element method.

The solution of the finite element method mostly leads on the linear system with a sparse banded

matrix. The numerical experiments in this master’s thesis also lead on the linear system with the

symmetrical banded matrix, althought the width and the sparcity of the stiffness matrix vary. The

number of nodes for the experiments, where the domain is in the shape of spherical trapesoid and

discretization is done only in radial direction, is N = 4NEL+4 for the linear shape functions and

N = 12NEL+ 8 for quadratic shape functions. The width of the matrix is equal to 12 for linear

shape functions. The structure of the stiffness matrix for the numerical experiment with 30 ele-

ments is depicted in Fig. 7-1. When it comes to the stiffness matrix of the global solution, see

Fig. 7-8, the stiffness matrix is also banded matrix, however the width is larger and depends on

the discretization in terms of λ and ϕ . The structure of the stiffness matrix is shown in Fig. 7-2.

As it was mentioned, all numerical experiments in this thesis lead to banded stiffness matrix. In

Sec. 5.7 different direct methods for solution of the linear system were discussed. The algorithms

are implemented using the GNU Science library. The Cholesky decomposition exploits the best

symmetric band structure of the matrix as is also proofed by the numerical experiments in Tab.

7.1. The elapsed time follows theoretical complexity and as it shown the Cholesky decomposition
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Figure 7-1: The structure of the stiffness matrix for convergence experiments (This example is
made for the mesh, where the domain is discretized by thirty elements in radial direction)

is the best also for the global solution, even if the sparcity of the stiffness matrix is lower and the

width of the band is higher. All calculation of the numerical experiments were done on Ubuntu

14.04 with the Intel(R) Core(TM) i5-3570k with two 4 GiB Kingston DIMM DDR3 Synchronous

with clock 1333 MHz and little endian byte order. As the result of these findings all the numerical

experiments in Sec. 7.2 and Sec. 7.3 are solved using the Cholesky decomposition.

Method 3996 eq. (spherical trapesoid) 12012 eq. (global solution)
LU 20s 562.479s

SVD 864s −
CHOL 10s 266s

Table 7.1: The time elapsed for solving the linear system using the various methods. The domain
is discretized by 1000 elements in radial direction.
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Figure 7-2: The structure of the stiffness matrix for basic example of the global solution, see Fig.
7-8

7.2 Convergence experiments

The convergence numerical experiments are mostly based on the experiments computed in Mráz

et al. (2015a;2015b) and Mráz et al. (2016). The convergence experiments are only solved with

constant Dirichlet and Neumann condition. The values of these conditions are obtained from the

analytical solutions, so that it is possible to compare the weak solution with the analytical solution.

Then the results are much more valuable for studying radial convergence and it is also much easier

to compute the relative and absolute error. Although the analytical solution is known only for some

special cases, we can use the convergence tendencies for solving the real GBVP with the measured

or synthetic data, see 7.3.

A geometry of the domain is similar for every numerical experiment. The shape of the domain

is defined by the values of the radial distance ρ , the longitude λ and the latitude ϕ , see Tab. 6.1.

The size of the domain for each numerical experiment differs only in the radial direction. The sur-

face of the Earth is represented by a sphere with the mean radius of the Earth, see Tab. 6.1. Upper

and lower boundaries are of spherical shape and the rest artificial boundaries are of plane shape, see
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Fig. 5-3. For the purpose of studying radial convergence the domain is only discretized in radial

direction by NEL elements, where NEL is the number of elements in the domain. Discretization is

done by the isoparametric elements with linear or quadratic shape functions (Ergatoudis 1968), see

Fig. 4-1. In the first model BVP the Laplace equation (6.1) is solved. The mesh is only discretized

in radial direction with 30, 60, 120, 240 and 480 elements. The size of each element in radial

direction is constant. The differences between different discretizations and analytical solution are

in Fig. 7-3.
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Figure 7-3: Increasing convergence with the h methodology. The linear shape functions are used.
The meshes are generated with the constant radial size of each element. The domain is bounded
with the top boundary ρTOP = ρDEMO.

The reference element is 8-noded with linear shape functions, see Fig. 4-1a. Size of the

domain in radial direction is bounded by ρSURF and ρDEMO. The value VTOP can not be in this

height represented by real data, but for the ilustrative purpose is computed from the analytical

solution (6.2). Nevertheless the h methodology is not the only method for increasing the rate

of convergence as it stated in Sec. 4. With p methodology we increase the order of the shape

functions. The results for the domain discretized by 5 elements in radial direction with linear and

quadratic shape function are shown in Fig. 7-4.

In the first set of meshes the radial size of each element is constant, but the meshes, where the
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Figure 7-4: Increasing the convergence rate using the p methodology with 5 elements in radial
direction with linear and also quadratic shape functions

radial size of the element is dependent on the rate of change of the potential, are also generated.

The principle of the mesh generation for the model BVP (6.9) is, that we substitute ρSURF and

ρTOP into the relation for the magnitude of the gravity acceleration (6.7). From this relation we

obtain the values gSURF and gTOP. By these values the interval for radial discretization is defined

and we can compute the values

gi = gSURF + i
gTOP−gSURF

NEL
, (7.1)

where i = 0, · · · ,NEL. By rearranging (6.7) and substituting values gi into this relation, we obtain

the radial distance ρi for each nodal point. The relative error eE
rel for the h methodology with

the same radial size for each element and the relative error for the h methodology with the mesh

generation dependent on the potential change eD
rel is depicted in Fig. 7-5. The numerical values are

in Tab. 7.2.

This method of mesh generation is not suitable for the type of the domain, where the radial size
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Figure 7-5: The relative error for different mesh generation. The domain is bounded by ρTOP =
ρDEMO = 109. In these cases we solve the Laplace equation with the isoparametric reference
element with linear shape functions

of the domain is too large, ρTOP ≥ 108, see Fig. 7-6.

As seen in Fig. 7-7, the better way to generate the mesh is to combine the both approaches.

We split the domain into two parts. In the first part, where the rate of change is fast, use the mesh

generation with the dependence on the potential change and in the second part generate a mesh with

the constant radial size of the element. The threshold point for splitting the domain should be close

to the saddle point. It was found, that the best point for splitting the domain is ρT HR ≈ 0.55×108

NEL eE
rel [pct] eD

rel [pct] eOPT
rel [pct]

15 21.09 16.09 5.97
30 18.11 10.57 2.56
60 12.61 6.85 0.88

120 6.51 4.35 0.25
240 2.44 2.68 0.066
480 0.73 1.58 0.017

Table 7.2: Relative errors for different mesh generation with the dependence on the number of
elements in radial direction
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Figure 7-6: a) Finding the threshold point with minimum relative error on the mesh with 30 el-
ements b) Finding the distribution of the elements in radial direction with the minimum relative
error on the mesh with 30 elements

and also the distribution of the elements in the ratio 2
3NEL, where ρ ≤ ρT HR and 1

3NEL, where

ρ ≥ ρT HR, is optimal. These values are found by running a number of numerical experiments for

different thresholds and for different distributions of the elements. In these experiments relative

error as a determining parameter for choosing optimal threshold and optimal distribution of the

elements is used, see Fig. 7-6.

To solve the problem, which is similar to the geodetic boundary value problem, we have to

solve the model boundary value problem (6.8), where the input data are equal to magnitude of

gravity acceleration g. Absolute errors are depicted in Fig. 4.21.
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Figure 7-7: The overall absolute differences for the solution of the model BVP in Sec. 6.2.2 with
the Dirichlet condition WSURF on the bottom boundary. The domain is in radial direction bounded
by ρSURF and ρSAT . The mesh was generated with the constant radial size of the element. The
isoparametric reference element with linear shape functions is used.
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7.3 Global solution

For the purpose of validation of the global solution a simple model problem is solved. The solu-

tion demonstrates the principle of the global solution and is depicted in Fig. 7-8. The boundary

conditions are constant in this case. On the Earth’s surface the Dirichlet condition as gravitational

potential is prescribed. The singularities on the poles are modelled in a similar way as in Meissel

Figure 7-8: Global solution for the gravitational potential V , where the Dirichlet boundary condi-
tions are prescribed on the surface and the top boundary. The domain is discretized by 5 element
in terms of radial direction and bounded by ρTOP = 109. Reference surface is the sphere with the
mean radius of the Earth.

(1981). Detail of the solving the pole singularity is depicted in Fig. 7-9. The part of the domain

on the poles is in terms of λ and ϕ defined by very small angle e.g. 0.0001 [deg]. As it was

expected the potential is constant on each layer. The body has the same property as the point mass

and converges to the analytic solution of the spherical symmetrical body. In radial direction the

62



-1
1

0

Z
 [

m
]

×106

1

Y [m]

×106

a)

0 1

×106

X [m]

0
-1 -1

-1

-0.5

0

0.5

1

×106

Z
 [

m
]

b)

10

×106X [m]
-1 -1 0 1

X [m] ×106

-1

-0.5

0

0.5

1

Y
 [

m
]

×106 c)

Figure 7-9: Detail on the generating mesh on the poles a) overview b) profile c) perspective. For
illustrative purpose the angle, which defines spherical trapesoid in terms of λ and ϕ , is equal to 20
degrees. However in the computation of the geodetic boundary value problem is the angle equal to
0.0002.

ϕ [deg] λ [deg] Gravity anomaly ∆g [mGal]
89.9583333333 0.0416666667 3.25491
89.9583333333 0.1250000000 3.24581
89.9583333333 0.2083333333 3.23676

Table 7.3: Example of the output from the official FORTRAN program

equipotential surface has the same value as it was computed in the model problems, where the

convergence was analyzed.

In the second global solution the geodetic boundary value problem, where the data on the

surface are obtained from the Earth gravitational model (EGM2008), is solved. The geodetic

boundary value problem is discussed in Sec. 3.3 and formulated more precisely in Sec. 6.3. The

EGM2008 data are in a form of binary file with small or big endian byte order. The binary files

with small endian byte order are used. The data are available in grids 2,5′× 2,5′ and 5′× 5′. In

these binary files the gravity anomalies, deflections of the vertical and geoid undulation at each

node of the grid are stored. Example of the output is shown in Tab. 7.3. The geoid undulation are

with the respect to WGS84 reference elipsoid. Parameteres for the WGS84 elipsoid are shown in

Tab. 3.2. The magnitude of the gravity vector on the poles and equator are defined by the free-air

gravity anomaly (3.14) with the addition of the magnitude of the normal gravity vector, which is

calculated from the Somigliana-Pizzetti formula (3.18). As it is previously mentioned the obligue

derivative effect was neglected, therefore the deflections of the vertical were not used. Solving the
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geodetic boundary value with all the data will lead to large linear system, where the computer with

higher computational power has to be used. Therefore the computation of the basic model geodetic

boundary value problem was performed.
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Figure 7-10: Computation of the gravity potential W . The problem is formulated as the geodetic
boundary value problem in Sec. 6.3. On the Surface’s of the Earth the Neumann condition with the
magnitudes of the gravity acceleration g is prescribed. The obligue derivative effect was neglected.
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Chapter 8

Conclusion

The main aim of this master’s thesis was to study the application of the h-p FEM in the problems

of physical geodesy. For that purpose the weak formulations for the model BVPs were derived

and the h-p FEM algorithm for solving these model BVPs was implemented by the FEM software

writen in C++. For the high preformance computations the GNU Scientific library with BLAS

support is used. Two kinds of numerical experiments have been performed. In the experiments of

the first category the rate of convergence of the h-p finite element method in radial direction has

been studied. The main goal of these experiments was to study the rate of convergence for h and p

methodology and also to find the optimal ways for the mesh generation. In the second kind of the

experiments the methodology for the computation of the so-called global solution is researched.

A number of numerical experiments with different meshes and differently sized domains has been

computed. As is mentioned in Mráz et al. (2016), the best way to generate meshes is to split the

domain into two parts. In the first part we can use the mesh generation dependent on the potential

change. In the second part we can use the mesh generation with the same radial size for each

element.

In order to decide, which methodology to choose, we have to take into account the difficulty

of the programming for the p methodology and also the fact, that the computation with the linear

shape functions is more efficient. In the case, where the mesh is discretized only in radial direc-

tion, the linear system for quadratic shape functions has 12NEL+8 equations and only 4NEL+4

equations for linear shape functions. In general, the improvement with the p methodology in radial

direction is not worth the increased computational power. We can obtain much better results if we
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use the h methodology with the mesh generation using the threshold point. If we use this com-

bined approach, the linear system has the same amount of equations as with the h methodology

with the constant radial size of the element, but the rate of convergence increases much faster than

with the p methodology. However the advantage of using the isoparametric reference element with

quadratic shape is in approximating source of the gravitation. These aspects of approximation and

application of these methods for modelling terrain deformations will be studied in future. In my

opinion is not worth to apply elements with higher order shape functions in the remote zones in

terms of radial direction, but it is valid to apply these elements for zone, which are closer to the

Earth’s surface. For solving the linear system the LU decomposition, Cholesky decomposition and

singular value decomposition have been used. In every numerical experiment the stiffness matrix is

symmetrical and banded. It has been proven by the numerical experiments, that the most efficient

way to directly solve the linear system is to use Cholesky decomposition, which is approximately

twice as fast as LU decomposition. Computing the system using the singular value decomposition

takes much more time, than with other methods. This was assumed due the theoretical complexity

of the algorithm. However the singular value decomposition has its application in the cases, where

the distribution of the surface data are in special configurations and the linear system becomes

unstable.

The second type of the experiments are the computation of the global solution. The author

suggests to apply discussed methodology of the mesh generation for modelling the singularities on

the Earth’s pole. A few experiments have been performed. In these experiments the gravitational

potential and gravity potential using the constant data and the data from the EGM2008 have been

computed.

The FEM algorithm and convergence tendencies will be applied for the precise local and global

gravity field modelling. I want to also solve not only fixed geodetic boundary value problem for

gravity potential W , but also the geodetic boundary value problem for disturbing potential T (fixed

gravimetric boundary value problem). The other challenges are to implement a priori and a poste-

riori error estimates, adaptive mesh refinement, Gauss-Konrod rules for the numerical integration,

to solve the geodetic boundary value problem on the supercomputer, apply sufficient algorithm for

solving the obligue derivative effect and also to study the effect of the terrain deformations on the

weak solution. The results of these efforts can be the set of methodologies and software published
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as open source, where the local and global gravity field models can be computed with high reso-

lution. The goal is to compute the geodetic boundary value problem with 1 cm accuracy in terms

of computation. Opposed to the classical solution computed using the spherical harmonics, the

application of the h-p FEM offers much more genericity. It is more suitable for the areas, where

the big changes in terms of gravity are and in my opinion the more precise solution can be also

obtained using the right methodologies.
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