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Abstract

A geopotential model of the Earth is usually calculated using the Stokes coefficients. As com-
putational power has increased, research is focusing more on new ways of precise gravity field
modelling. The objective of this master’s thesis is to study an application of the h-p finite element
method for solving boundary value problems in physical geodesy. The brief introductions to po-
tential theory, gravity field of the Earth and h-p finite element method are in chapters 2-4. Chapters
5-8 are dedicated to my research. For the purpose of studying the method, the model boundary
value problems with the corresponding finite element discretization were formulated. The algo-
rithm for solving these boundary value problems was designed and subsequently implemented by
the program. The isoparametric reference elements with linear and quadratic shape functions is
used. We apply the h and p methodologies for increasing the rate of convergence of the weak so-
lution, discuss mesh generation for large domains and also solve linear system with various direct
methods. The methodologies for increasing the rate of convergence are applied on the computation
of the global solution of the geodetic boundary value problem, where the input data on the surface

of the Earth are prescribed using the Earth Gravitational Model (EGM2008).

Keywords: boundary value problem, geodetic boundary value problem, gravity field mod-
elling, isoparametric reference element, h-p finite element method, Poisson’s equation, physical

geodesy



Abstrakt

V dnesni dobé je geopotencidlni model Zemé obvykle pocitan pomoci Stokesovych koeficientt.
S neustdlym zvySovanim vypocetniho vykonu se vyzkum stdle vice soustiedi na nové zplisoby
presného urcovéni tihového pole Zemé. Cilem této diplomové prace je studium aplikace h-p
metody konecnych prvki na feSeni okrajovy tdloh ve fyzikalni geodézii. Kapitoly 2-4 slouzi jako
tvod do problematiky ur€ovani gravitacniho pole Zemé a metody konecnych prvku. Kapitoly 5-8
jsou pak ureny mého vyzkumu. Za ucelem studia konvergence metody jsem nejprve formuloval
modelové okrajové dlohy pro rozdilné okrajové podminky a také odpovidajici diskretizaci po-
moci metody konecnych prvki. Algoritmus pro feseni t€chto tloh byl navrZen a nasledné imple-
mentovan programem. Na feSeni uloh je pouZit isoparametricky referencni prvek s linearnimi a
kvadratickymi funkcemi. V ramci prace fesSim fadu okrajovy udloh, aplikuji h a p metodologii na
zvySeni rychlosti konvergence slabého feseni, probiram generovani siti kone¢nych prvki pro velké
domény a také fesim systémy linearnich rovnic pomoci riznorodych pifimych metod. Metody na
zvyseni rychlosti konvergence jsou pak aplikovany na vypocet globdlniho feSeni geodetické okra-
jové tulohy, kde jsou data na povrchu Zemé predepsiana pomoci Zemského Gravitatniho Modelu

(EGM2008).

Klicovaslova: okrajova uloha, geodetickd okrajova uiloha, modelovani tthového pole, isopara-

metricky referencni prvek, h-p metoda kone¢ny prvki, Poissonova rovnice, fyzikalni geodézie
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Chapter 1

Introduction

Nowadays the global solutions of the boundary value problems (BVPs) in physical geodesy are
mostly solved using the expansion into the series of spherical harmonics (Hoffmann-Wellenhof et
al. 2005). On the other hand, in regional studies other methods like the Fast Fourier Transform or
the least square collocation are also successfully used (Sanso et al. 2013).

We can also solve the BVP in a way, that we are looking for the so-called weak solution
(Rektorys 1980) and solve the BVP with some variational method. The first work published on the
application of the finite element method (FEM) in geodesy was done by Meissl (1981), followed
by Shaofeng and Dingbo (1991). Recently, Galerkin method, FEM and hp-FEM are discussed in
Holota (2000,2001,2005), Holota et al. (2007), Nesvadba et al. (2007), Faskova et al. (2010),
§prla’1k etal. (2011), Mréz et al. (2015a, 2015b) and Mréz et al. (2016). Besides that, the boundary
element method (Klees 1995; Klees et al. 2001; Cunderlik et al. 2008) and the finite volume
method in Minarechova et al. (2015) were also efficiently used. The aim of this master’s thesis
is to study the application of the h-p FEM (Babuska et al. 1990) for the different boundary value
problems on different domains and prepare the methodology for computing high resolution gravity

field model.

17
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Chapter 2

Potential theory

2.1 Fundamentals

Let us have two point masses S and P, where the mass is denoted as M and m. The point mass S
is the source body of gravitation and the point mass P is the attracted point. Let xyz is rectangular
system, where S has coordinates &,7,1 and P has coordinates x,y,z. The distance between the

point masses S and P is r and rgp is the position vector

r= =P )+ - B) eA)

According to Newton’s law of gravitation (Hoffmann-Wellenhof et al. 2005) two points S and P

attract each other with a force
Mm

F=G—, (2.2)
r

where G is Newton’s gravitational constant, see Tab. 2.1. The masses M and m attract each other

in the symmetrical way, but it is convenient to say, that the force F with the magnitude F' is exerted

Name Label Value Units
Newton’s Gravitational constant G 6.6742-107 11 mkg~1s™2
Standar gravitational parameter for Earth  GM  3.986004418(9) - 10'# m3s2
Angular velocity o 7.2921159 x 107> rad

Table 2.1: Physical constants

19



by the mass M.

Mm
FSP = —Gr—SI’SP. (23)

For simplicity consider, that the attracted mass point P has the mass m equal to unity. This function

is called intensity of the gravitational field

F M
K=—
m

= —G—Tsp. (2.4)
r

Now introduce a new scalar function, which is defined as follows

_GM
N r

1% [m%s~2). (2.5)

This scalar function is called gravitational potential or potential of gravitation and the relation

between the intensity of the gravitational field and the gravitational potential is
K=VV, (2.6)

which can be easily proofed by differentiating, see Zeman (2005) or Roy (2008). A very important
property of the potential is that for a system of n point masses M, M5, ...M,, the potential is the

sum of the individual contributions. The final potential equals to

GM; GM GM, & M,
T el 2.7)

r r I'n =l

%

In physics and geodesy we have to take into account the fact, that potential is regular at infinity
and converges to zero

lim V (x,y,z) = 0. (2.8)
r—oo

2.2 Poisson equation

If we assume that the point masses are distributed continously over a volume v of the source body

S with the surface X. For a mass of solid body M, which substitutes source point mass S, we can

20



write

M= ///G(x,y,z) dxdydz, (2.9)

where o (x,y,z) is the density of the solid body S. If we consider (2.7) and substitute (2.9) for M

the gravitational potential V can be expressed as

(x,,2)
V(x,y,2) =G ° dxdydsz. (2.10)
. /D//wx—é)%(y—n)%(z—mz N

It is well known that integration over the solid angle of the unit sphere is equal to

//Err—;' ds = 4r. 2.11)

Now for the surface X of the solid body § define the flux of K over the surface X

//K~dZ://K-ndZ, (2.12)
X X

where K is a gravitational vector field (2.4). With substituting (2.3), (2.11) to (2.12) we get

//K-ndZ - —GM// L Rdr = —4nGM. (2.13)
¥ r
x

Using the divergence theorem (Rektorys 1994) we can also write

//K dr¥ = ///VK dxdydz = —47IG/// o(x,y,2) dxdydz. (2.14)

X

Considering (2.6) we can write the relation
///V -V V dxdydz = —47[G/// o(x,y,z) dxdydz, (2.15)
v v

which is equal to the so-called Poisson’s equation

0%V 9*v 9%V
AV = 922 + PR + P —4nGo(x,y,2), (2.16)

21



where A is the Laplace’s operator

92 9* 9?

A=V.V=— 4+ —+—.
8x2+8y2+8z2

(2.17)

The Poisson’s equation is partial differential equation of elliptic type (Evans L C 1998). In potential
theory the fundamental problem is the Dirichlet problem. The problem is to find a potential in

domain Q, given its continuous restriction

V(x,y2) = f(x,,2), (2.18)

to the boundary dQ = TI" of the domain Q. And also with the assumption that the mass distribution
in the interior of the domain € is known. The Dirichlet boundary value problem is used in one of
the experiments in Sec. 6.2.2. The second boundary value problem or the Neumann problem is to

find potential in Q with the restriction of normal derivative

IV (x,y,2)

5, =/ (x,,2). (2.19)

However in geodesy arise boundary value problems with the so-called obligue derivative effect.

IV (x,,2)
0l

In the obligue derivative problem the normal derivative is replaced by derivative with
respect to an arbitrary direction [ = [(x,y,z). However if the direction of the derivative is normal
to the boundary surface, the oblique derivative effect is transformed to the Neumann problem.
The last boundary value problem is the problem with Robin boundary conditions, where the linear
combination of the values of a function and the values of its derivative on the boundary of the
domain is used

aw + BV (x,y,2) = f(x,5,2), (2.20)

where o, B € R are constants. The Robin boundary conditions are used in the numerical experi-

ments of the first and second category, see Sec. 6.2.1, Sec.6.2.2.
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Chapter 3

Gravity field of the Earth

3.1 Gravity potential

Now assume, that we will compute gravitational potential only for an exterior of the source body S
and also consider, that the source body S is the Earth and the density of the atmosphere is neglected.
We can modify the Poisson’s equation (2.16) to the form of Laplace’s equation

v 9%v Qv
AV = (axZ + 72 + az2) =0. (3.1)

The solutions of the Laplace’s equation are harmonic functions. The general definiton is that the
harmonic function is a twice differentiable function f : U — R, where U is an open subset of R".
Nevertheless the solution is harmonic only outside of the attracting masses, where the Laplace’s
equation is valid, but not inside, where the Poisson’s equation is valid. It can be also shown,
that every harmonic function is analytic in the region €2, where satisfies the Laplace’s equation
and that is continous and has continous derivatives of any order. In order to describe positions
in space and field quantities for the Earth we introduce an Earth-fixed, orthonormal coordinate
frame. It is postulated that the origin O is situated near the Earth’s center of mass. Its z-axis
coincides with the Earth’s mean axis of rotation and the Grenwich meridian plane is parallel to x-
axes. The y-axes completes the orhonormal global geocentric rectangular system, which is oriented
in mathematically positive sense. The distance from the attracting mass S and potential point P has

been already defined (2.1). The longitude A and the lattitude ¢ of the potential point P than satisfy
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the conditions 0 < A <2x and — 7 < ¢ < . Now define intensity of the centrifugal force Kg. The

magnitude than is

Ko = 0*/x2 +y2, (3.2)

where o is the angular velocity of the Earth, see Tab. 2.1. The centrifugal intesity is generated by

the Earth’s rotation and the relationship
Ko =VO (3.3)

is also valid for the centrifugal intesity. In the relation (3.3) we denote & as centrifugal potential,
which is given by

P = %wz (*+y%). (3.4)

By the differentiating of the centrifugal potential we can find, that centrifugal potential is not

harmonic. Laplacian of the centrifugal potential is 2w?, hence P satisfies the Poisson’s equation

e 9@ I’ 5
AD = (axZ ozt 8z2) =20°. (3.5)

The potential of gravity is called gravity potential W and the resultant is obtained by adding gravi-

tational potential V and centrifugal potential

W=V+o]. (3.6)

Also for gravity vector is true, that gradient of the gravity potential is equal to gravity vector

g=VW. (37

Gravity vector g is allways normal to equipotential surface W = const. The orthogonal trajectories
are denoted as plumb lines. Gravity vector g is tangent to the plumb line at the potential point P.

If we consider, that centrifugal potential satisfies the Poisson’s equation, than for general gravity
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potential W we get

2 2 2
AW:(aW oW W

_ 2

Again we deal only with the exterior of the Earth so the Poisson’s equation can be modified as

W W W 5
AW = ( 57+ 5 +55 ) =20°. (3.9)

3.2 Normal and disturbing potential

This section is intended to be more as a brief review of the basic relationships, which have to be
defined in order to obtain the data for the geodetic boundary value problem. For more detailed
information is more sufficient to read e.g. Hoffmann-Wellenhof et al. (2005). In geodesy the

normal potential for the spherically symmetrical body is defined as follows

U=-—"-. (3.10)
r

It is also true, that the gradient of the normal potential is equal to normal gravity vector
Y= VU. (3.11)

We can subtract gravity potential from the normal potential and obtain so-called disturbing or
anomalous potential T

T=W-U. (3.12)

Disturbing potential is harmonic, therefore satisfies the Laplace’s equation

02T 9*T 9°T
AT = (ax2 + e + 8z2> =0. (3.13)
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The geoid undulation N is expressed in a form of Brun’s theorem or Stoke’s integral. This allow

us to define relation between measurable free-air anomaly Ag

Ag=VT =g—vy (3.14)

and unkown disturbing potential 7. However the relation 3.10 is only the first approximation, the
second approximation is the reference ellipsoid. In this master’s thesis WGS84 ellipsoid is used.

The cartesian coordinates can be calculated using the relations

2
X = a +h | cospcosA,
\Va2cos?@ + b2sin’ ¢

a? )
y= <\/a2cos2(p+b2sin2(p +h | cos@sini, (3.15)

b? a?
z=| = +h | sin @,
a* \/a2cos>p + b2sin2g ¢

where £ is ellipsoidical height, a is semi-major axis and b is semi-minor axis. Normal gravity

acceleration is then defined from the Somigliana-Pizzetti formula for reference ellipsoid

1 + ksin*@
=Y, (3.16)
r=r 1 —e2sin?g
where k is equal to
k= b_ 1. (3.17)
a

With substituting parameters for the W GS84 ellipsoid we get

1+0.00193185265241 sin’¢@ 5
ms~ ).

y=9.7803253359
v/1—0.00669437999013 sin¢

(3.18)

The values of parameters for WGS84 reference ellipsoid are shown in Tab. 3.2.
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Label Name Value Units
a semi-major axis 6378137.00 [m]
b semi-minor axis 6356752.3142 [m]
e first ellipsoidal eccentricity 8,1819190842622 x 10? [ ]

f flattening of WGS 84 ellipsoid 1/298.257223563 [ ]
GM  Earth’s standard gravitational parameter ~ 3.986004418 x 104 [m?s2]
0] Earth’s angular velocity 7292115 x 10~ 11 [rad |
%, normal gravity on equator 9.7803253359 [rad )

Yp normal gravity on the pole 9.8321849378 [ms—2]

Table 3.1: Parameters of the WGS 84 reference ellipsoid
3.3 Geodetic boundary value problem

The equation (3.9) is the main concern of this master’s thesis. We will focus primary on the
GBVPs, where the unknown is gravity potential W on and outside of the boundary surface dQ.
In this problem we assume, that the Earth behave like a rigid, non-deformable body, uniformly
rotating about a space and body-fixed axis in R3. The solution exists and is unique as it was
proofed in Koch (1972). All attracting mass elements are located in the interior of the closed
boundary ¥ which represents the Earth’s surface. We will assume, that the boundary surface is
smooth in terms of Lipshitzian boundary. As we discussed in Sec. 2.1 the generated attraction of
mass elements on a point mass P generates the gravitational potential V, which is regular at infinity

and fulfills (3.1).

As it was mentioned for the exterior of the Earth, we have to deal with the GBVP, which
satisfies the equation (3.9). On the surface of the Earth X the magnitudes of gravity acceleration
g = |VW] is prescribed as the Neumann condition (2.19). On the upper boundary, see Fig. 5-
3 is Dirichlet condition (2.18) prescribed as zero (for really large domain in terms of the radial
direction) and prescribed as gravity potential W observed from satellites for the domain, where
the upper boundary is in the height of the satellite, see Sec. 6. The boundary conditions are then
mixed (2.20). In the numerical experiments, where the shape of the domain is spherical trapezoid,
the additional Neumann conditions on the artificial planes are equal to zero. This can be used only
for spherically symmetrical body with the constant gravity acceleration or potential on the surface.
However it’s valid for studying convergence tendencies of the finite element method in the radial

direction.
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The geodetic boundary value problems, which are based on the relationship between any
boundary data and the gravity potential W are denoted fixed GBVP. In geodesy we distinguish
between several types of the GBVPs. The free nonlinear and gravimetric GBVPs were discussed
in Graffarend (1971), Bjerhammar et al. (1983), Grafarend et al. (1985), Grafarend (1989) and
Heck (1989). The other BVPs were also discussed e.g Hormander (1975). In this master’s thesis
the fixed GBVP is solved.

The problematics of the GBVPs are much more complex, for the purpose of studying h-p finite
element method the problem of the observables was simplified and the data are obtained from the
EGM?2008. The problematics of the GBPV is explained more in detail in Sanso et al. (1997) or
Sanso (2013).
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Chapter 4

h-p Finite element method

4.1 Weak formulation

The formulation of the BVP was partially discussed in the description of the fixed GBVP in Sec.

3.3. In this section the BVP is formulated more precisely and also weak formulation is derived.

Denote © an open domain in R3. In the model problems the domain Q is supposed to be bounded

with Lipschitzian boundary dQ = I'y UT'p, where I'y is the Neumann boundary and I'p is the

Dirichlet boundary. Now construct the corresponding Sobolev space (Adams 2003). Letk € X.p €
[1,00] and

ol
a= (o, ,0), o= Za,, D* = PR u® = D%u. (4.1)
The Sobolev space is defined to be the set of all functions f defined on  such that for every

multi-index o with |a|, where || < k. The mixed partial derivative exists in the weak sense and

isin L? (Q)

2%f
[ 4.2
! 8x?1 cee Qxn (4.2)
The Sobolev space WX is then constructed as
WhP(Q) = {u e L? (Q): D*u e LP (Q)V|a| < k} (4.3)
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and with the Sobolev norm

1
(Diwga D%l )" 1< p < +oo
[ullwerqy == @ : (4.4)

max|q|< |D%ul| =) P =00

For the purpose of the generality of the weak formulation, we consider the Poisson equation for

the potential V(x,y,z) in the general form

0’V 9*V 9%V
(ax2 + ayZ + 8z2) - —f(x,y,z), 4.5)

where f € L,(Q). In our case we derive the problem with Robin boundary conditions (2.20)

V (x,y,z) = k(x,y,z) on I'p,

IV (x,y,z)
on

(4.6)
=1(x,y,z) on T,

where k(x,y,z) is a function representing values on the Dirichlet boundary I'p and /(x,y,z) is a
function representing values on the Neumann boundary I'y and n is a direction of the outward unit
normal with respect to dQ. The existence and the uniqueness of the solution can be proofed using
the Lax-Milgram lemma e.g. Necas (2003), Axelson (2001), Rektorys (1980) or Evans (1998).
Now consider a test function v from the Sobolev space W!?(Q), which is constructed using the
definition (4.3) with the norm (4.4) for p = 2 and for the order of the Sobolev space k = 1. The
Sobolev space W+ can be also denoted as the Hilbert space H' (Q) with the norm || - ||W1.2(Q). In
geodesy we can also formulate the problem for an unbounded domain Q. In this case the weighted
Sobolev space needs to be constructed as in Sanso et al. (1997) and Holota (2007). However for
a bounded the domain we can construct space W!2. The potential V is assumed to be regular as

p — oo. The test function v is chosen in a way, that is equal to zero on the Dirichlet boundary

Sy ={veWw"(Q),v=0 on I'p}. (4.7)
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We multiply (4.5) by the test function v and integrate both sides of the equation we get

2V 9V 9%V
/Q ( ox2 v+ ayz v+ 92 V) dxdydz = — /va dxdydz, 4.8)

using Gauss-Green theorem (Rektorys 1994)

dx:/ fmdS, k=1, n, (4.9)
Q.

and denoting f = ax , &8 = v we get the relationships

9%V A% vV dv
axz —dQ = 20 ax Vl’lde ga,
% A% dV dv
—dQ = ds— , (4.10)
o 9y? 0 0y " o 9y dy
% A% dV dv
az —dQ = %0 az Vl’lZdS a—za—z
And by substituting (4.10) to (4.8) we get
av av av dVadv JdVdv JVav
_/8Q <gnx+ a—yny + a—zl’lz) v dS+/Q (35 - 5 9y + = 7z 8z> dxdydz = win
= / fvdxdydz.
Q
By spliting the boundary dQ we can rearrange the equation (4.11) into
/ 8_an + 8—Vny +5- 8V vdS = / a—vnx + 8_Vny + a—VnZ vdS+
20 \ dx dy 97" rp \ 0x dy dz @.12)

N / A% N A% N Vv p S.
—ny+—=—ny+—=—n; |v
ox © dy ’ 9z °
With respect to the boundary conditions (4.7), we get the weak formulation in this form: find

V e W2 (Q) that

/ 8V8v+8V8v+8V8v
dxdx dydy dz oz

:/f(x,y,z)de+/ I(x,y,z)v dS,
Q I'y

> dxdydz =
(4.13)
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for each v € V.

4.2 h-p FEM discretization

Finite element method in this master’s thesis denotes the implementation of Galerkin method with
finite lement basis function. These basis function are continous, piecewise polynomials and that
have local in the sense that each function vanishes outside of a small subregion of domain Q.
Together with the choice of nodes, makes up a finite element mesh, see Fig. 5-3. The isoparametric
reference elements with linear and quadratic shape function (Ergatoudis J 1968) are chosen, see

Fig. 4-1.

a) 9 b) )
8 | 8 19
\
< 7 - 7
1
\\ \\
16
S S 15
i e @ 13 P e ?
AL 4 11
e N B D P
V'S - 3 A P 3
=
\ / 1 \ %
9

Figure 4-1: Reference elements in local coordinates v, ¢, a) Isoparametric reference element
with linear shape functions (IRELSF) b) Isoparametric reference element with quadratic shape
functions (IREQSF)

In the h-p FEM we find the solution V (x,y,z) as a linear combination

V()C,y,Z) = Z%’@i (xay7Z)7 (414)
i=1
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where ; are coefficients of linear combinations and ¢; are basis functions fori =1,2--- ,n

- . a(Pi dv a(Pl dv 8(p, adv B
i_zlal o ( P 8x+ Iy 8y+ 3z 9z )dxdydz /fvdxdydz—k/r[vhvdS. (4.15)

Substituting (4.14) for V(x,y,z) or W(x,y,z) to general weak formulation (4.13) or to model BVPs
weak formulations in Sec. 6 and also the basis function @; for the test function v for j=1,2,--- ,n,

we get a linear system

Au=Hf (4.16)
where A is the stiffness matrix
I do pr dg1 |, 991 d¢ 90199 | 991 9Py | P Py
fQ ( axl 8x1 8_)113_))1+8_8_) dxdydz - fQ (8_x] dx + 0_yl dy + azl dz >dXdde
90, 99 9% 201 | 90, 99 ¢, 09, 8<pn 8<pn P 8<pn
fQ(&x &xl dy (9_y1+ dz 1>dXdde o Q(&x dy + dz >dXdde
“4.17)
f is the right-hand side
fo(pldQ+erh(p1dS
f= : : (4.18)
Jo fOudQ+ [1 hudS
u is the solution vector
T
u=(oncr-ap) (4.19)

and n is the number of basis functions or nodes. In the finite element analysis the weak solution
can be improved in several different ways. In the model problems of this master’s thesis h and p
convergence (Babuska 1982) is studied. As for h convergence the basis functions for each element
are fixed and the maximum radial size of the element A,,,, is approaching zero. For p convergence
the mesh is fixed and the order of the shape functions p;, is approaching p.. In the model
problems, where the analytic solution u# is known, we evaluate result using a relative error e,
and absolute error e, see (Babuska et al. 1981). Let’s say, that i; for every i = 1,--- ,n is the

aproximated solution obtained at the node i and uf fori=1,---,nis the analytical solution at the

33



node i. Then the relative error is given by

e = (4.20)

and the absolute error is given by

Caps = |ii; — 1] (4.21)

It can be shown, that the error estimate of the Galerkin discretization for elliptic differential

equation satisfies the Céa’s lemma
- C .
W — || < = inf |u —vi|, (4.22)
C v;ewl2

C

where = are constants. For h-p finite element method we can also write (Babuska 1970/71)

e =il 20 < el (4.23)

which means that the convergence rate for the solution itself is O (hl’“) as is proven in Babuska
(1982). The hp-FEM is based on an optimal combination of h and p methodologies which leads to
exponential convergence. The problematics of error estimates of the partial differential equations
are much more complex. In this master’s thesis the validation of the solution is made using the
absolute and relative error, however the aprior and aposterior error estimates will be implemented

in the future work.
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Chapter 5

Software design

5.1 Overview

For the purpose of the numerical solution the author developed the software in C++ e.g (Stroustrup
2013). The compilation is done using the gcc (g++) compilator version 4.8.4. The software is
split into two main parts. The first part represents generation of the finite element mesh. For the
allocation of matrices and vectors the GNU Science library was used. The algorithms from the
GNU Science library for LU, Cholesky and Singular Value decomposition and finding singular
values were also used (Brian 2009). These algorithm are often based on routines from LINPACK
and LAPACK libraries. The big advantage of using the GNU Science library is the implementation
of the algorithms for linear algebra, where the sparse iterative solvers like generalized minimal
residual method (GMRES) are included and can be easily implemented in the future work. Another
advantage is also the fact, that GNU Science provides a low-level layer which corresponds directly
to the C-language BLAS standard

The second part of the software is the FEM algorithm. The FEM algorithm uses the procedures
from Bathe (1995). First, the stiffness matrices and the right-hand sides on each element are
composed. After that, the global stiffness matrix and the global right-hand side are assembled. As
is discussed in Sec. 5.7 and in Sec. 7 the linear system is solved using various direct methods. The
big advantage is that we do not have to deal with error from iterative methods and solve the system
precisely, however the time of the computation is higher, so some of the iterative methods like

conjugate gradient method or GMRES are also consider in the future work. The solution vector u
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represents the potential at each node i. A simplified diagram of the computational process is shown

S

in Fig. 5-1.
-
N Loop over elements ] 6
-
— ~
— Loop over Gauss points
— _

Assembling

Contribution to the stiffness

matrix on each element

Elimination of fixed

variables

Contribution to the right hand

side on each element

End of the loop over
Gauss points

Solving a linear system

{ End of loop over elements

Adding fixed variables

to the solution vector

.

Figure 5-1: Simplified scheme of the potential calculation

5.2 Mesh generation

The finite element mesh is generated using the spherical or ellipsoidal coordinates. Each node

is numbered and after the computation the spherical coordinates are transformed to the cartesian

coordinates.

X=pCcosQcosi,

y=pcos@sini,

Z=psingQ.
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Than the values of the boundary conditions are assigned to corresponding node. For the boundary
value problems of the first category Sec. 6.2.1 the values are computed using the analytical solution
(6.2) or (6.5). In contrary, for the global solution the values from the Earth gravitational model
(EGM2008) are also used (Pavlis K et al. 2012). When it comes to the global solution, the mesh
is much more complex. Therefore the matrix, where the relations of the elements are stored, is
also created. From these relations the description matrix (number of nodes for each element) is
generated. The input to the FEM algorithm are vectors of cartesian coordinates, description matrix
and prescribed values on the boundaries. It is unneccessary, that the order of nodes is the same as

in the local coordinates.

5.3 Numerical integration

For the numerical evaluation of the integrals the Gauss-Legendre quadrature with 27 Gauss points
on each element for the triple integrals and 9 Gauss points on each side of the element for the sur-
face integrals is used. Denoting the number of Gauss points as NI/G, then the numerical integration

in three dimensions for general function is performed using the relation

=1 j=1 k=1

//” f(x,y,z) dQ:ZWiZW]ZWk f(png(g{7l9'k) (52)
Q

where (pé’;, l//gj , ﬁé‘ is local coordinates of each Gauss point and is the number of Gauss points on

each interval. Analogically for surface integrals the relation is in a form as follows
/fxy =ZZ (@e, ) (5.3)

Each weights can be subtituted by the overall weight of each Gauss point

NIG

ZWg—ZWzZWJ»

(5.4)
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and obtain the relations

ng
// f(xayaz) dQ = Z Wg'f(‘Pga‘/’g7ﬁg)»
Q §=1

y (5.5)
//f<x7yvz) ds= Z We 'f(q)gﬂ//g)-
s §=1

The distribution of the Gauss points on each element for the computation of triple integrals is

depicted in Fig 5.3. The numerical values of Gauss points coordinates and its weights for Gauss-

2 i b) }
8 | 20 8 I 19 Top layer Gauss points
S 477 7 4W 7 @ Middle layer Gauss points
6 5 ' i
ﬁ\‘ Q}S 6 @ Bottom layer Gauss points
L | 16 . |
. Iq * . . Iq * . 15
. A - 13 - e
////‘ ° ° > ///./ ].4 N
//// :/4 “““ *»—_t__ * /////'4 ‘:—\*» I'l ‘
/1/ e T 30 T T 3
2 7 2

Figure 5-2: Distribution of the Gauss points on each element for the computation of triple integrals
in stiffness matrices (5.6)

Legendre quadrature are shown in the Tab 5.1. In the numerical integration in the FEM algorithm

the three Gauss points on each interval are used n = 3. The element stiffness matrices and the

Table 5.1: Weight of Gauss points
n | Gauss point x; | Weight of inner Gauss point w;

1 0 2
2|zt 1
0 8

3 9
5

5

+

18—v/30
36
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right-hand sides are in the form

/// ON;IN; | IN;IN;  IN;ON,
dx Jdx (9y dy dz 9dz

where N are the shape functions.

5.4 Reference element

).

(5.6)

fe:/ fdeQe+/ hN;dQ,,
Q, I'y

In the numerical experiments in this master’s these we solve the BVPs with different isoparametric

elements, see Fig 4-1. Denote NELEM the number of nodes on each reference element. The first

one is 8-noded reference element with linear shape functions. The shape functions for each node

are

Ny

oo|»—noo|>—‘oo|>—~oo|»—aoo|»—‘oo|»—aoo|>—‘oo|>—~

Ny =

2222

N7 =

Ng =

—~
[S=Y
|

39

@) (1-y)(1-9),
(I+9)(1-w)(1-9),
(I1+e)(1+y)(1-6),
(1-9)(1+y)(1-9),
(1—<p><1—w><1+e>,'
(I1+¢)(1-w)(1+6),
(I1+)(1+y)(1+86),

(1-¢)(1+y)(1+6).

(5.7)



And the second one is 20-noded reference element with quadratic shape functions

Mi=g(1-0)(1-y)(1-9),
No=g(1+0)(1-w)(1-9),
Ny= 5 (1+9)(1+y)(1-9),
M= (1= 9) (1 +y) (1-9),
Ns=5(1-0)(1- ) (1+9),
No=g(1+9)(1-y)(1+9),
Ny= 5 (1+0) (14+¥) (1+9),
Ny=g(1=0)(14+¥) (1+9),
No= (1= ) (15 9)(1-w)(1-9),
Nm—%a+wu+wxuwou—m, .
Ni=700-9)(1+¢)(1+y)(1-9),
Ni=3(1-9)(1+y) (1-y) (1-9),
Nis= (1= @) (1) (1= 9) (1+9),
M= (1+0) (1) (1-9) (1+9),
Nis= 3 (149)(14y)(1-8)(1+9),
Nig= 5 (1=9)(1+y)(1-9)(1+9),
Nip=5(1-9)(1+0) (1 =) (1+9),
Nig= 3 (159) (1+v) (1= y) (1+9),
Nig= 4 (1= 0)(1+9) (1) (1+9),
Moo= (1= 0) (1 +w) (1= ) (1+9).
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In the second case the shape functions in corner nodes 1-8 has to be corrected, so that the shape

functions are connected to other shape functions. Relations of these corrections are

1
N1 =N — E(Ng + N2 +Ni3),

1
Ny =N, — §(N9 +Nio+Nia),

—

N3 =N3 — =(Njo+Ni5+Ni1),

ol A\

Ny=Ny— §<N12 +Nig+Ni1),
1 (5.9
N5 = N5 — §(N13 + Nyo+Ny7),

1

Ne = Ng — §(N17 +Nig+Nia),
1

N7 =N;— §(N19 +Nig +N15),

1
Ng = Ng — §(N16 + Naog + Npo).

Shape functions are chosen in a way, that value of the shape function at assigned node is 1 and 0

JdN; JIN; IN;

at each other node. For every shape function are also computed its partial derivatives 5 00 du> I

where i =1,2,--- NELEM.

5.5 Mapping the reference element to global coordinates

Now denote global coordinates as x,y,z. General function for mapping can be expressed as

= (x(Q,¥,9),y(0,¥,9),2(0,v,9)), (5.10)

Element stiffness matrices A, are given by

_///” aN (pgulllgv )aN (‘ngWg719) aN ((Pg,llfg, )aN (¢gan719g)+
Ae dx dy dy
(5.11)

i a ?
+a ((Pgézll/gvﬁg) N (q)g;l/g ‘Jq) (Pgan7 )‘ d‘Pdllfd19
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and element right-hand side f,

fez/Q fNj{Jd>((Pga‘l’g»ﬁg)| dedyd?d, (5.12)

where Jo (¢, ¥, ¥) is Jacobian in a form

ox(e,v,8) dx(e.y,®) Ix(@,y.8)

L) dy a9
22(e.y,0) Iz, ¥) Iz (9., B)
e oy 29

Members of Jacobian matrix can be computed using derivatives of the shape functions with respect

to local coordinates

NELEM NELEM NELEM
j—j;z Y xlg—];j, %Z ) Yig_](:)’, 3_;: Y Zig_](\;,
i=1 i=1 i=1
NELEM NELEM NELEM
aa—::/ = Y Xig_]l:]/ , aa—l);/ = Y yig_i/\j , aa_j/ =Y Zig—]l:[/,- (5.14)
i=1 i=1 i=1
&x NELEM aN ay _NELEM aN az NELEM aN

35- X Yagc 5= L Vggc  a9- X Gy

- - - : IN; N; oN;
Derivatives of the shape functions with respect to global coordinates ==, ==, == can be computed
dx’ dy’ dz

from the system of linear equations

a]Vi (x((P,W,ﬁ),y((P,l[/,ﬁ'),Z((P,l//,ﬁ)) _ aZ\II Jx aA’l ay aNvl Jz

20 _8x%+ 8y%+ 9z 09’
ONi (x(9. ¥, 8),y(9, ¥, ) ,2(@, ¥, B)) _ oNi dx | ONi dy | INi dz (5.15)
oy ox dy  dy dy  dz dy’ '
a]Vz (x((P,W,ﬁ),y((P,W,ﬁ)7Z((P,1I/,19>) _ a]Vi Jx aNi ay a]Vi Jz
00 T ox O dydv 9z 9V
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Figure 5-3: Mesh for model example

The global coordinates of each Gauss point can be also computed using these relations

NELEM
Z xiN (pgall/g7 )7
NELEM
Yo=Y YiNi (@5, W, D), (5.16)
i=1
NELEM

Z Zl (Pg7ll/g7 )

Finally we can compute contribution to the element stiffness matrix for each node

Nl\f; Ni (Qq, W, O )aNj«Pga‘//g?ﬁg)+8Ni((Pganaﬁg) aNj(‘Pga‘//@ﬁg)_i_
dx dx dy dy CGa17)
L ONi(@e: Vg, Bg) ON; (g Ve, B
%Z £ gz g ‘JdD (Pg7ll/g7 )’
and also the contribution to the right-hand side
NIG
fo="Y wef (xg: Y02 )N} (@, Ve ) [Jo (P, Wy B (5.18)
g=1
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5.6 Assembling

The process of the global stiffness matrix composition and the right-hand side is demonstrated on
the basic example with three elements. The simple mesh for these elements with the numbering
are depicted in Fig. 5-3. In the assembling example we denote A,A;,A3 and the right-hand sides

as f1, /2, /3

ajl a2 ajz ais S
a1 ax ax ax fiz
A= , fi= ,
a1 azx ass a4 f13
as1 A as3 a4 f1a
b3z b3s b3s bsg f23
b4z bas bss bag Sfoa
Ay = , Hh= , (5.19)
bsz bss bss bse f2s
bez bes bes bee a6
C44 Ca6 C47 C48 S34
C64 C66 C67 C68 f36
A3 — s f3 -
c74 €76 €77 €78 f37
Cg4 Cg6 C87 (€88 /38

Indexes of each element stiffness matrices are assigned according to the finite element mesh (5-
3). The basic principle of the assembling proccess is in addition of the matrix member. In global

stiffness matrix are adding these matrix members, which belong to nodes which are on the same
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element boundary. Base on this principle we obtain the global stiffness matrix

ayy ap az a4 0 0 0 O
a1 axn a3 a4 0 0 0 O
az1 ax az3+by azmtby bis b3 0 0
A as1 a4y ag3+baz asa+baa+cas bas bag+cae ca7 Cag ' (5.20)
0 O bs3 bsq4 bss bse 0 O
0 O be3 bes + co4 bes bes+co6 Co1 Co8
0 O 0 C74 0 76 c77 €78
0 O 0 84 0 86 cg7 €88
And the right-hand side
Jfu
Ji2
J13+ /23
Fe S1a+ foa+ f34 ‘ 5.21)
fas
Ja6+ f36
137
/38
With the solution vector
041
"= sz . (5.22)
og

The system of linear equations are then in a form

ap ap - a o fi
axi ap - aym ||| |f (523)
apl dp2 -+ App Oy fn
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or

Au=f.

(5.24)

However we cannot solve the global linear system directly. First, we have to eliminate fixed vari-

ables. Denote variables with index fix, where the dirichlet condition is assigned, we obtain for

example
fix
app
fix fix
ar 4y

an

fix

anpl dz

After elimination we get

air a3

asy dass

apl dp3

Now we can solve the linear system with various methods, see Sec. 5.7

ain (04 S
a,’ O‘szix _| 2 " (5.25)
Ann 0/ Jn
aiy o J1— a{ixa{?
as | | os | f3— ‘X{ ixagéx ' (5.26)
Ann (oM Jn— 0‘{ ixaﬁx
091
L] (5.27)
oy

However the solution vector is not complete, so it is neccessary to add fixed variable back to the

solution vector

o
a{ix
o3 |- (5.28)

On
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5.7 Solving linear system

First the condition number of the stiffness matrix is computed. For the normal matrices the condi-

tion number with respect to L? norm is given by

A’max A
c(A) = [[A])-Jja) = e A1 (5.29)

|Amin(A)]

where A,q(A) is maximal eigenvalue of the matrix A and A,;;;(A) is minimal eigenvalue of the
matrix A. The eigenvalues were computed using the GNU Scientific library. The library uses
symmetric bidiagonalization and QR reduction method. In order to study convergence precisely
it is more sufficient to solve the system accurately with the direct methods, where the error from
iterations can be avoided. The brief overview of used direct methods is mentioned in this chapter,
nevertheless the more detail view on the methods can be found in Golub et al. (1996) and LAPACK
(1999). First we discuss the LU decomposition.

LU decomposition or LU factorization creates a matrix as the product of a lower triangular
matrix and an upper triangular matrix. In our case the product includes permutation matrix as
well. The LU decomposition can be also viewed as the matrix form of Gaussian elimination and
can be used for square systems of linear equations. In the algorithm in the FEM software the LU

factorization with partial pivoting is used. This can be written in a form
PA=LU, (5.30)

where P is permutation matrix, L is unit lower triangular matrix and U is upper triangular matrix.

After decomposition we solve the system

Ly=Pf (3.31)
for y. And use the y vector to obtain the solution u

Uu=y. (5.32)

A symmetric, positive definite square matrix A has also Cholesky decomposition into a product of
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a lower triangular matrix L and its transpose LT
A=LL". (5.33)

The Cholesky decomposition can only be applied when all the eigenvalues of the matrix are posi-

tive, which is satisfied in our case. First the system with y vector is solved

Ly=f. (5.34)
After that we obtain the solution vector u from the system

LTu=y. (5.35)

A general rectangular M-by-N matrix A has a singular value decomposition (SVD) into the prod-
uct of an M-by-N orthogonal matrix U, an N-by-N diagonal matrix of singular values S and the

transpose of an N-by-N orthogonal square matrix V',

A=USVT. (5.36)
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Chapter 6

Numerical experiments

6.1 Overview

The numerical experiments in this master’s thesis are divided into two main categories. In each
model BVPs the Earth’s surface is represented by a sphere. The first category are the model bound-
ary value problems, where the convergence of the h-p finite element method is studied. The bottom
boundary is in these cases in a shape of spherical trapezoid, see Fig. 6-1. The second category of
the numerical experiments are different versions of the fixed geodetic boundary value problem for
gravity potential (3.9). In these experiments the methodologies for increasing convergence rate,
which have been found using the numerical experiments from the first category, are applied. In
these cases the domain is defined as a space between two concentric spheres with radius psyrr

and prop, see Fig. 6-2.
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Propr

PSURF

Top boundary

1.BVPIp, ., = Vrop

2. BVPI'p,,, = Wrop

3. BVPI'p,,, = Wrop

Bottom boundary (Surface)
1. BVP I'pgr = Vsurr

2. BVP I'pg . = Wsurr

3. BVP FNSURF = 8SURF

Artifical side planes

1.BVPITy =0
Y 2.BVPIy =0
3.BVPIy, =0

Figure 6-1: Finite element mesh for the first category BVPs with quadratic shape functions and
depicted boundary conditions

6.2 Formulations of boundary value problems from the first

category

6.2.1 First problem

In the first case the boundary value problem for the gravitational potential V (x,y,z) with the Robin

boundary conditions (2.20) is solved. The problem leads to the Laplace’s equation, see (3.1)

6.1)

0’V 9V 9%V

((9)62 * dy? T (9Z2) =0
The shape of the domain is in a spherical trapezoid shape. The Earth is represented by a sphere
with the radius psygr equal to the mean radius of the Earth, see Tab. 6.1. On the Earth’s surface
and also on the top boundary the Dirichlet conditions have been chosen. The Dirichlet condition on
the top boundary is prescribed as Vrop. On the artificial boundaries I'y, the Neumann conditions

are prescribed as zero, see Fig. 6-1. The analytic solution for the gravitational potential of the
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spherically symmetrical body is

GM,
V3= °, (6.2)

where GM, is the standard gravitational parametr for the Earth, see Tab. 2.1. For the purpose of
studying convergence of the method the conditions have been chosen constant and the values have
been calculated from the relation 6.2. Considering (4.13), we get the weak formulation for the
BVP
/ (8V dv dVdv JV v
Q

§£+8_y8_y+8_z3_z) dxdydz = 0. (6.3)

The discretization is made using the reference element with quadratic and linear shape func-

tions, see Sec. 4.

6.2.2 Second problem

In the second case the BVP for the gravity potential W. This problem leads to the Poisson’s

equation, where the Laplacian is equal to 2w?. Using the general form (4.5), we get

(6.4)

9°W N 9°W N AN 5’

ox2 2 92 ) .
Choosing the analogical boundary conditions as in the first case, we prescribe the Dirichlet con-
diton as Wsyrr for the bottom boundary and Wrpp for the top boundary. However the analytic

solution for spherically symmetrical body is now

W(x,y,2) = G]:)/[@ + %(ozpzcos ®. (6.5)

Parametr Value Units
PSURF 6 371 000 [m]
Psar 6 671 000 [m]
PDEMO 10° [m]
[ 10" [m]

o %0 [rad]

Longitude A < —o;00> [rad]

Lattitude ¢ < —o;00 > [rad|
PTHR 0.55 x 108 [m]

Table 6.1: Parameters for the domain Q
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The Neumann boundary conditions are again equal to zero from the definition of the equipotential
surface for the spherically symmetrical body. In the analogical way as in the first case, we obtain

the weak formulation

[ (2 e ova
o\ dxdx dydy dzdz

= / 202 dQ.
Q

The discretization was again made with the reference element with quadratic and linear shape

) dxdydz =
(6.6)

functions.

6.2.3 Third problem

In the third case the BVP is also based on solving Poisson’s equation (6.9), but the boundary
conditions were chosen in a way, that the model BVP is more similar to the fixed GBVP for
gravity potential, see Sec. 3.9. Instead of using the Dirichlet condition Wsygr, we prescribe the

Neumann condition on the bottom boundary as the magnitude of the gravity vector, see Sec. 3.1
g = |g| = |gradW|. (6.7)

The Neumann boundary I'y was split into two boundaries I'y, for the artificial sides and D'y,
for the bottom boundary. The surface integral, which refers to I'y, is again equal to zero. The
Neumann condition on the Earth’s surface was again chosen as constant and calculated from the

analytical solution (6.5). The formulation of the BVP is in the form

[ (2w owon
o\ dxdx dydy Jdz dz

:/2w2vd9+/ |g|vdS.
Q Iy

SURF

) dxdydz =
(6.8)
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6.3 Formulations of the boundary value problems of the second

category (global solution)

In the numerical experiments from the second category the so-called global solution of the geodetic
boundary value problem is solved. The domain is in this case chosen as two concentric spheres
with radius psygr and prop, see Fig. 6-2. Hence we do not have to put boundary conditions on
the artificial sides. The boundary conditions are prescribed only on the Earth’s surface and on the
upper boundary. The fixed geodetic boundary value problem is formulated in Sec. 3.9. This GBVP

is formulated by Poisson’s equation

2 2 2
(8W oW &W):2w2. 69)

ox2 * dy? * 072
On the surface of the Earth is prescribed Neumann condition as magnitude of the gravity accel-
eration g. On the top boundary is the Dirichlet condition prescribed. The weak formulation is

analogical to the (6.8) and is in the form

[ (2 awar owan
o\ dxdx dydy dzdz

:/2w2vd9+/ |g|vdS.
Q Iy

SURF

) dxdydz =
(6.10)
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—— Dirichlet condition

Neumann condition

x107
15

Z[m]

Figure 6-2: Methodology for choosing boundary condition on the simple finite element mesh
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Chapter 7

Results

7.1 Solution of the linear system

The number of equations in the linear system is equal to the number of nodes N with the substrac-
tion of the number nodes, where the Dirichlet boundary conditions are assigned. As for the time
of the computation, solving the linear system is the biggest concern in the finite element method.
The solution of the finite element method mostly leads on the linear system with a sparse banded
matrix. The numerical experiments in this master’s thesis also lead on the linear system with the
symmetrical banded matrix, althought the width and the sparcity of the stiffness matrix vary. The
number of nodes for the experiments, where the domain is in the shape of spherical trapesoid and
discretization is done only in radial direction, is N = 4NEL + 4 for the linear shape functions and
N = 12NEL + 8 for quadratic shape functions. The width of the matrix is equal to 12 for linear
shape functions. The structure of the stiffness matrix for the numerical experiment with 30 ele-
ments is depicted in Fig. 7-1. When it comes to the stiffness matrix of the global solution, see
Fig. 7-8, the stiffness matrix is also banded matrix, however the width is larger and depends on
the discretization in terms of A and ¢. The structure of the stiffness matrix is shown in Fig. 7-2.
As it was mentioned, all numerical experiments in this thesis lead to banded stiffness matrix. In
Sec. 5.7 different direct methods for solution of the linear system were discussed. The algorithms
are implemented using the GNU Science library. The Cholesky decomposition exploits the best
symmetric band structure of the matrix as is also proofed by the numerical experiments in Tab.

7.1. The elapsed time follows theoretical complexity and as it shown the Cholesky decomposition
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index of stiffness matrix j

0 L L L 1 L
0 20 40 60 80 100

index of stiffness matrix i

Figure 7-1: The structure of the stiffness matrix for convergence experiments (This example is
made for the mesh, where the domain is discretized by thirty elements in radial direction)

is the best also for the global solution, even if the sparcity of the stiffness matrix is lower and the
width of the band is higher. All calculation of the numerical experiments were done on Ubuntu
14.04 with the Intel(R) Core(TM) 15-3570k with two 4 GiB Kingston DIMM DDR3 Synchronous
with clock 1333 MHz and little endian byte order. As the result of these findings all the numerical

experiments in Sec. 7.2 and Sec. 7.3 are solved using the Cholesky decomposition.

Method 3996 eq. (spherical trapesoid) 12012 eq. (global solution)
LU 20s 562.479s
SVD 864s —
CHOL 10s 266s

Table 7.1: The time elapsed for solving the linear system using the various methods. The domain
is discretized by 1000 elements in radial direction.
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- T " Positive
" Negative ||

80 B = . T IR

60

index of stiffness matrix j

40

20 e = . TN

0 20 40 60 80 100
index of stiffness matrix i

Figure 7-2: The structure of the stiffness matrix for basic example of the global solution, see Fig.
7-8

7.2 Convergence experiments

The convergence numerical experiments are mostly based on the experiments computed in Mraz
et al. (2015a;2015b) and Mraz et al. (2016). The convergence experiments are only solved with
constant Dirichlet and Neumann condition. The values of these conditions are obtained from the
analytical solutions, so that it is possible to compare the weak solution with the analytical solution.
Then the results are much more valuable for studying radial convergence and it is also much easier
to compute the relative and absolute error. Although the analytical solution is known only for some
special cases, we can use the convergence tendencies for solving the real GBVP with the measured
or synthetic data, see 7.3.

A geometry of the domain is similar for every numerical experiment. The shape of the domain
is defined by the values of the radial distance p, the longitude A and the latitude ¢, see Tab. 6.1.
The size of the domain for each numerical experiment differs only in the radial direction. The sur-
face of the Earth is represented by a sphere with the mean radius of the Earth, see Tab. 6.1. Upper

and lower boundaries are of spherical shape and the rest artificial boundaries are of plane shape, see
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Fig. 5-3. For the purpose of studying radial convergence the domain is only discretized in radial
direction by NEL elements, where NEL is the number of elements in the domain. Discretization is
done by the isoparametric elements with linear or quadratic shape functions (Ergatoudis 1968), see
Fig. 4-1. In the first model BVP the Laplace equation (6.1) is solved. The mesh is only discretized
in radial direction with 30, 60, 120, 240 and 480 elements. The size of each element in radial
direction is constant. The differences between different discretizations and analytical solution are

in Fig. 7-3.

x 107
7 T T T T
——— Discretization with 15 elements
———— Discretization with 30 elements
6 Discretization with 480 elements |
Analytical solution

5 ]
=
I
5\1% 4 H -
£
s
T3H -
\%%/
SN

2k ]

1k ]

il — 1
0 1
0 2 4 6 8 10

p[m] x10%

Figure 7-3: Increasing convergence with the h methodology. The linear shape functions are used.
The meshes are generated with the constant radial size of each element. The domain is bounded
with the top boundary prop = Ppemo-

The reference element is 8-noded with linear shape functions, see Fig. 4-la. Size of the
domain in radial direction is bounded by psyrr and ppgao. The value Vrop can not be in this
height represented by real data, but for the ilustrative purpose is computed from the analytical
solution (6.2). Nevertheless the h methodology is not the only method for increasing the rate
of convergence as it stated in Sec. 4. With p methodology we increase the order of the shape
functions. The results for the domain discretized by 5 elements in radial direction with linear and
quadratic shape function are shown in Fig. 7-4.

In the first set of meshes the radial size of each element is constant, but the meshes, where the

58



7 T T T T T T T T T
Linear shape function

6 —+— Quadratic shape functions | |
Analytic solution

0 1 2 3 4

5 6 7 8 9 10
p [m] x10°

Figure 7-4: Increasing the convergence rate using the p methodology with 5 elements in radial
direction with linear and also quadratic shape functions

radial size of the element is dependent on the rate of change of the potential, are also generated.
The principle of the mesh generation for the model BVP (6.9) is, that we substitute psyrr and
prop into the relation for the magnitude of the gravity acceleration (6.7). From this relation we
obtain the values gsygr and grop. By these values the interval for radial discretization is defined

and we can compute the values

.8TOP — 8SURF

8i = &SURF +1 NEL , (7.1)

where i =0,--- ,NEL. By rearranging (6.7) and substituting values g; into this relation, we obtain
E

the radial distance p; for each nodal point. The relative error e,

for the h methodology with
the same radial size for each element and the relative error for the h methodology with the mesh
generation dependent on the potential change egl is depicted in Fig. 7-5. The numerical values are

in Tab. 7.2.

This method of mesh generation is not suitable for the type of the domain, where the radial size
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——+—— Mesh with constant radial size for each element eﬁ,l
——+— Mesh with the size of the element dependent on the change of potential e,

Combined approach with the threshold point e

20 E
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Crel [pcﬂ

10 - —

o
T

0 1 1 1 L H
1530 60 120 240 480
Number of elements in radial direction

Figure 7-5: The relative error for different mesh generation. The domain is bounded by prop =

ppemo = 10°. In these cases we solve the Laplace equation with the isoparametric reference
element with linear shape functions

of the domain is too large, prop > 108, see Fig. 7-6.

As seen in Fig. 7-7, the better way to generate the mesh is to combine the both approaches.
We split the domain into two parts. In the first part, where the rate of change is fast, use the mesh
generation with the dependence on the potential change and in the second part generate a mesh with
the constant radial size of the element. The threshold point for splitting the domain should be close

to the saddle point. It was found, that the best point for splitting the domain is przg =~ 0.55 x 103

NEL | &, [pct] | €2, [pct] | €907 [pct]
15 21.09 16.09 5.97
30 18.11 10.57 2.56
60 12.61 6.85 0.88
120 6.51 4.35 0.25
240 2.44 2.68 0.066
480 0.73 1.58 0.017

Table 7.2: Relative errors for different mesh generation with the dependence on the number of
elements in radial direction
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2.66 3.4
6.9911
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2.62 _
2.6 —_ 2,
3 3 =
3 = 2.8 =
ks) s} &l
2.58 < 25362
2.56 26 L5
0.6371
2.54 2.4 0.024 !
475 5 525 55 6 6 7 10 15 0.550.975 1.4 2.1 2.59
p [m] x107 Number of elements, where p > pryp Threshold points [m] x10°

Figure 7-6: a) Finding the threshold point with minimum relative error on the mesh with 30 el-
ements b) Finding the distribution of the elements in radial direction with the minimum relative
error on the mesh with 30 elements
and also the distribution of the elements in the ratio %NEL, where p < prgg and %NEL, where
P > PTHR, 1s optimal. These values are found by running a number of numerical experiments for
different thresholds and for different distributions of the elements. In these experiments relative
error as a determining parameter for choosing optimal threshold and optimal distribution of the
elements is used, see Fig. 7-6.

To solve the problem, which is similar to the geodetic boundary value problem, we have to
solve the model boundary value problem (6.8), where the input data are equal to magnitude of

gravity acceleration g. Absolute errors are depicted in Fig. 4.21.

140 T T T T T

480 elements
1000 elements

120

100
80

60 -

! * j |

[a; — u!|[m*s?]

‘
6.55 6.6 6.65 6.7
[m] x10°

[
i

0
6.3

\

| ’\ ﬁ |

il
1| ' | ‘

6.45 bl5

P
Figure 7-7: The overall absolute differences for the solution of the model BVP in Sec. 6.2.2 with
the Dirichlet condition Wsygr on the bottom boundary. The domain is in radial direction bounded

by psurr and psar. The mesh was generated with the constant radial size of the element. The
isoparametric reference element with linear shape functions is used.
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7.3 Global solution

For the purpose of validation of the global solution a simple model problem is solved. The solu-
tion demonstrates the principle of the global solution and is depicted in Fig. 7-8. The boundary
conditions are constant in this case. On the Earth’s surface the Dirichlet condition as gravitational

potential is prescribed. The singularities on the poles are modelled in a similar way as in Meissel

%107

6

%107

: 5
0.5 4/—\
™
E 0 3 N
N .-
= =
05 2 D

1

0

Y [m] A1 X [m]

Figure 7-8: Global solution for the gravitational potential V, where the Dirichlet boundary condi-
tions are prescribed on the surface and the top boundary. The domain is discretized by 5 element
in terms of radial direction and bounded by prop = 10°. Reference surface is the sphere with the
mean radius of the Earth.

(1981). Detail of the solving the pole singularity is depicted in Fig. 7-9. The part of the domain
on the poles is in terms of A and ¢ defined by very small angle e.g. 0.0001 [deg]. As it was
expected the potential is constant on each layer. The body has the same property as the point mass

and converges to the analytic solution of the spherical symmetrical body. In radial direction the
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Z[m]

Figure 7-9: Detail on the generating mesh on the poles a) overview b) profile c¢) perspective. For
illustrative purpose the angle, which defines spherical trapesoid in terms of A and ¢, is equal to 20
degrees. However in the computation of the geodetic boundary value problem is the angle equal to
0.0002.

¢ [deg] A [deg] Gravity anomaly Ag [mGal|
89.9583333333 | 0.0416666667 3.25491
89.9583333333 | 0.1250000000 3.24581
89.9583333333 | 0.2083333333 3.23676

Table 7.3: Example of the output from the official FORTRAN program

equipotential surface has the same value as it was computed in the model problems, where the

convergence was analyzed.

In the second global solution the geodetic boundary value problem, where the data on the
surface are obtained from the Earth gravitational model (EGM2008), is solved. The geodetic
boundary value problem is discussed in Sec. 3.3 and formulated more precisely in Sec. 6.3. The
EGM?2008 data are in a form of binary file with small or big endian byte order. The binary files
with small endian byte order are used. The data are available in grids 2,5’ x 2,5 and 5’ x 5. In
these binary files the gravity anomalies, deflections of the vertical and geoid undulation at each
node of the grid are stored. Example of the output is shown in Tab. 7.3. The geoid undulation are
with the respect to WGS84 reference elipsoid. Parameteres for the WGS84 elipsoid are shown in
Tab. 3.2. The magnitude of the gravity vector on the poles and equator are defined by the free-air
gravity anomaly (3.14) with the addition of the magnitude of the normal gravity vector, which is
calculated from the Somigliana-Pizzetti formula (3.18). As it is previously mentioned the obligue

derivative effect was neglected, therefore the deflections of the vertical were not used. Solving the
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geodetic boundary value with all the data will lead to large linear system, where the computer with
higher computational power has to be used. Therefore the computation of the basic model geodetic

boundary value problem was performed.

x10

Figure 7-10: Computation of the gravity potential W. The problem is formulated as the geodetic
boundary value problem in Sec. 6.3. On the Surface’s of the Earth the Neumann condition with the
magnitudes of the gravity acceleration g is prescribed. The obligue derivative effect was neglected.
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Chapter 8

Conclusion

The main aim of this master’s thesis was to study the application of the h-p FEM in the problems
of physical geodesy. For that purpose the weak formulations for the model BVPs were derived
and the h-p FEM algorithm for solving these model BVPs was implemented by the FEM software
writen in C++. For the high preformance computations the GNU Scientific library with BLAS
support is used. Two kinds of numerical experiments have been performed. In the experiments of
the first category the rate of convergence of the h-p finite element method in radial direction has
been studied. The main goal of these experiments was to study the rate of convergence for h and p
methodology and also to find the optimal ways for the mesh generation. In the second kind of the
experiments the methodology for the computation of the so-called global solution is researched.
A number of numerical experiments with different meshes and differently sized domains has been
computed. As is mentioned in Mréz et al. (2016), the best way to generate meshes is to split the
domain into two parts. In the first part we can use the mesh generation dependent on the potential
change. In the second part we can use the mesh generation with the same radial size for each
element.

In order to decide, which methodology to choose, we have to take into account the difficulty
of the programming for the p methodology and also the fact, that the computation with the linear
shape functions is more efficient. In the case, where the mesh is discretized only in radial direc-
tion, the linear system for quadratic shape functions has 122NEL + 8 equations and only 4NEL+ 4
equations for linear shape functions. In general, the improvement with the p methodology in radial

direction is not worth the increased computational power. We can obtain much better results if we
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use the h methodology with the mesh generation using the threshold point. If we use this com-
bined approach, the linear system has the same amount of equations as with the h methodology
with the constant radial size of the element, but the rate of convergence increases much faster than
with the p methodology. However the advantage of using the isoparametric reference element with
quadratic shape is in approximating source of the gravitation. These aspects of approximation and
application of these methods for modelling terrain deformations will be studied in future. In my
opinion is not worth to apply elements with higher order shape functions in the remote zones in
terms of radial direction, but it is valid to apply these elements for zone, which are closer to the
Earth’s surface. For solving the linear system the LU decomposition, Cholesky decomposition and
singular value decomposition have been used. In every numerical experiment the stiffness matrix is
symmetrical and banded. It has been proven by the numerical experiments, that the most efficient
way to directly solve the linear system is to use Cholesky decomposition, which is approximately
twice as fast as LU decomposition. Computing the system using the singular value decomposition
takes much more time, than with other methods. This was assumed due the theoretical complexity
of the algorithm. However the singular value decomposition has its application in the cases, where
the distribution of the surface data are in special configurations and the linear system becomes

unstable.

The second type of the experiments are the computation of the global solution. The author
suggests to apply discussed methodology of the mesh generation for modelling the singularities on
the Earth’s pole. A few experiments have been performed. In these experiments the gravitational
potential and gravity potential using the constant data and the data from the EGM2008 have been

computed.

The FEM algorithm and convergence tendencies will be applied for the precise local and global
gravity field modelling. I want to also solve not only fixed geodetic boundary value problem for
gravity potential W, but also the geodetic boundary value problem for disturbing potential 7" (fixed
gravimetric boundary value problem). The other challenges are to implement a priori and a poste-
riori error estimates, adaptive mesh refinement, Gauss-Konrod rules for the numerical integration,
to solve the geodetic boundary value problem on the supercomputer, apply sufficient algorithm for
solving the obligue derivative effect and also to study the effect of the terrain deformations on the

weak solution. The results of these efforts can be the set of methodologies and software published
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as open source, where the local and global gravity field models can be computed with high reso-
lution. The goal is to compute the geodetic boundary value problem with 1 cm accuracy in terms
of computation. Opposed to the classical solution computed using the spherical harmonics, the
application of the h-p FEM offers much more genericity. It is more suitable for the areas, where
the big changes in terms of gravity are and in my opinion the more precise solution can be also

obtained using the right methodologies.
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