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ABSTRACT

Title: Evaluation of the MR-tagged images with respect to the viability of the heart based
on the strain analysis

Assessing myocardial strain is a particularly challenging task. Of the various methods
capable of evaluating myocardial strain, they all have their own advantages and disadvan-
tages. The obstacles faced are still so great that no single method has emerged as an accepted
gold standard. MRI tagging is a much easier method to implement and obtain detailed re-
sults. However, the post-processing of the data is complex and time-consuming preventing it
from being clinically viable. Contrarily, research facilities do not have the same constraints
and are actively making use of the technique.

In this pilot study, an algorithm was developed to analyze the strain of the left ven-
tricular myocardium. To overcome the small deformation limitation of HARP, a Gabor filter
bank was implemented. This allows the algorithm to find the optimal phase of each pixel
and generate a very accurate Angle image. The process of finding the optimal phase for
each pixel identifies the optimal filter as well. The parameters used to create the filters in the
filter bank were stored in a lookup table. Once the optimal filter is identified, the optimal
parameters can then be used to estimate the strain based on the phase. This is a non-tracking
strain estimator. This algorithm has a 95% probability of successfully differentiating be-
tween physiological data and pathological data. The p-values generated from the Wilcoxon
ranksum test indicate enormous certainty in the results.

Keywords:
Cardiac resynchronization therapy, heart failure, dyssynchrony, magnetic resonance imag-
ing, magnetic resonance tagging, HARP, Gabor filtration, strain analysis, non-tracking strain
estimation
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ABSTRAKT

Název diplomové práce: Vyhodnocení MR snímků z hlediska životaschopnosti srdce na
základě analýzy namáhání

Posuzování mechanického namáhání srdečního svalu je obecně velmi náročná a kom-
plexní úloha. Všechny metody, které jsou schopné hodnotit toto namáhání, jsou charak-
teristické svými výhodami a nevýhodami a neexistuje žádná univerzální. Obecně platí, že
existuje mnoho problémů a překážek, které brání tomu, aby existoval jediný tzv. zlatý stan-
dard pro toto hodnocení. Metoda založená na prostorové modulaci přídavného magnetického
pole (MRI tagging) je relativně dostupný způsob, jak realizovat a získat podrobné výsledky.
Nicméně, následné zpracování, analýza a vyhodnocení obrazových dat je velmi složitý a ča-
sově náročný proces, který může být komplikací z hlediska používání metody pro standardní
klinické využití. Naproti tomu využití ve výzkumu je u této metody velmi značné a v posled-
ních několika letech došlo i k několika zdokonalením.
V rámci této pilotní studie byl vyvinut algoritmus s cílem analyzovat mechanické namáhání
levé komory srdce. Za účelem kompenzace nevýhod algoritmu HARP z hlediska hodno-
cení malých deformací, byla realizována Gaborova filtrace. Ta spočívala v návrhu a realizaci
banky filtrů pro jednotlivé směry. To umožňuje algoritmu najít optimální fázi každého pixelu
a generovat velmi přesný obraz úhlů (angle image). Proces hledání optimální fáze pro každý
pixel určuje právě optimální filtr z uvedené banky. Tyto parametry k vytvoření filtru v rámci
banky filtrů byly uloženy v tzv. vyhledávací tabulce (LUT). V případě identifikace optimální
filtrace jsou parametry z LUT použity pro odhad namáhání na základě související fáze. Toto
je pak tzv. odhad, který není založený na sledování superponované mřížky. Tento algorit-
mus má 95% pravděpodobnost úspěšného odlišení fyziologických dat a patologických dat.
P-hodnoty generované v rámci Wilcoxonova statistického testu naznačují relativně vysokou
jistotu v obdržených výsledcích.

Klíčová slova:
Srdeční resynchronizační terapie, srdeční selhání, dyssynchronie, zobrazování magnetickou
rezonancí, zobrazování magnetickou rezonancí s prostorovou modulací magnetického pole,
HARP, Gaborova filtrace, analýza namáhání, analýza namáhání bez prostorové modulace
magnetického pole
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1. INTRODUCTION

Figure 1.1: CRT: 1. Pacemaker generator;
2. right atrial pacer wire; 3. right ventricu-
lar pacer wire; and 4. coronary sinus (“left
ventricular”) pacer wire. [1]

Cardiac resynchronization therapy
(CRT), also known as biventricular pacing,
is the standard treatment method for symp-
tomatic patients suffering from medically
refractory heart failure (HF), electrical car-
diac dyssynchrony, and depressed left ven-
tricular (LV) function, also referred to as
mechanical dyssynchrony and intraventricu-
lar dyssynchrony. [2–4] CRT involves the im-
plantation of a special type of pacemaker. A
pacemaker is designed to reset the overall
electrical activity of the heart when either
irregular activity or no activity is detected.
The special kind used in CRT, however, is
designed to coordinate the interventricular
electrical activity between the right and left
ventricles. As can be seen in Fig. 1.1, pub-
lished in [1], the first two wires are con-
nected to the right atrium and ventricle re-
spectively. Then, the third wire is connected
to the left ventricle.

Electrical cardiac dyssynchrony is detected using an electrocardiogram (ECG). This
dyssynchrony is used as the primary criterion in selecting patients for CRT. The characteris-
tic evaluated for CRT qualification is the length of the QRS complex. The standard threshold
is a QRS duration of 120ms or more. [4–6] However, this criteria is not particularly effective
in predicting patient response to CRT. One study reported 60% to 80% of patients exhibited
a favorable response, [7] while another reported only 20% to 30%. [8] This has lead to a push
for finding novel indices and strategies for improving the selection criteria that can more
reliably predict the long-term outcome of CRT. One such index is mechanical dyssynchrony,
specifically of the left ventricle (LV), which is defined as the delay in the myocardial con-
traction between the septum and lateral walls, [8] has shown great promise in more accurately
predicting CRT patient response. [7]

However, further work needs to be completed before mechanical dyssynchrony could
be used as a clinical index. Traditionally, echocardiographic measurements using speckle
tracking (STE) imaging are used to assess mechanical dyssynchrony. [8] Most studies that
have investigated mechanical dyssynchrony evaluate the left ventricular ejection fraction
(LVEF) as one of their selection criteria. LV function is generally considered depressed when
LVEF drops to 35% or lower. [4] However, the optimal modality for assessing intraventric-
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ular dyssynchrony has yet to be identified experimentally. Similarly, as Sung and Foster [4]

point out, the benefit of considering the amount of mechanical dyssynchrony, inter- and in-
raventricular, has not been investigated and there is currently no threshold used to define
the presence of meaningful mechanical dyssynchrony. Studies would have to be carefully
designed and carried out to determine not only the sensitivity of using mechanical dyssyn-
chrony to select a patient for CRT, but also the specificity of this criterion in being able to
confidently determine that a patient would not benefit from CRT.

A problem that consistently arises when trying to compare results of these studies is
that there is no universal definition of CRT response. Some studies use hard end points such
as hospitalization, mortality, and morbidity, where as other studies use short-term, surrogate
end points such as a change in the LV end-systolic volume (LVESV) or LVEF, LV reverse
remodeling, and clinical or symptomatic improvements. [4] Identifying and establishing an
assessment index for evaluating the success of CRT is a crucial step in identifying the opti-
mal index for predicting patient response along with the ideal modality for assessing those
characteristics.

Assessing mechanical dyssynchrony is also very problematic. In pediatric cases, it is
relatively easy to assess mechanical dyssynchrony using STE because not only is the heart
small enough that the entire myocardium can be viewed within one frame, but children also
have smaller ribs, which impede the viewing range much less than in adults, and tend to have
less fat and other artifact-inducing tissue components for which there is no simple method
of compensation. On the contrary, it is much more challenging to use STE for LV strain
analysis in adults who tend to have many more artifact-inducing components that simply
cannot be compensated. Although STE is a valid method of strain analysis, there are still a
sufficient number of challenges that have prevented this modality from being accepted as the
gold standard for assessing mechanical dyssynchrony.

Using tagged cardiac magnetic resonance imaging (tMRI) is another method of assess-
ing LV myocardial strain and mechanical dyssynchrony. This modality has many advantages
over STE. The myocardium easily fits within the view frame of the MRI, which is known
for yielding very high resolution images. Tagging significantly reduces this high resolution,
but even with a 1.5T machine the results are still very useful. This method is not clinically
viable yet due to the immense and time-consuming post-processing that is required to obtain
useful data. The largest hurdles for translating this modality into clinical use are myocardial
segmentation, finding an algorithm robust enough for clinical use that can extract the motion
information from the tags, and then developing an acceptable algorithm for strain analysis.
Validating this method will also be difficult because there is no gold standard for assessing
myocardial strain and mechanical dyssynchrony.

MRI has been found to be one of those indices that is useful in selecting cadidates for
CRT [8] and potentially for assessing mechanical dyssynchrony; however, it is a very expen-
sive imaging and diagnostic modality. In order to justify using MRI, it must be proven that
there is an equivalent diagnostic significance. Although there are many things that need to be
accomplished before mechanical dyssynchrony can be translated into a clinically applicable
index, this pilot study will focus on the first step: algorithm development.
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2. STATE OF THE ART

2.1 MR Tagging

Magnetic resonance tagging was initially developed by Zerhouni et al., in 1988. [9,10]

This initial method could simultaneously generate a maximum of three parallel tagging
planes at a time. The following year, in 1989, Axel published an improved tagging method-
ology based on the idea of spatially modulating the magnetization. [10,11] This novel method,
spatial modulation of magnetization, is most commonly referred to as SPAMM. In just one
year some of the major disadvantages were improved upon. The specific absorption rate
(SAR) significantly decreased, the spatial resolution increased, and the temporal resolution
dramatically increased. Since the development of SPAMM tagging, there have been several
other tagging methodologies developed.

Since Zerhouni’s original publication, there have been many and significant improve-
ments in the field of MR tagging and the algorithms used today are much more sophisticated.
Currently there are several methods available each with their advantages and disadvantages.
There are also different versions of these methods that seek to improve upon characteristics
such as spatial and temporal resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio
(CNR), and three-dimensional capabilities.

2.2 Motion Analysis

Researchers have developed a myriad of techniques and approaches to analyze motion
in images. These techniques are all methods of optical flow analysis which seeks to assess
motion in a sequence of images. Optical flow methods can be broken down into several cat-
egories, of which two will be further elaborated: 1) Tag- and feature-based tracking methods
and 2) Phase-analysis methods.

Tag- and feature-based tracking methods take a very direct approach to motion analy-
sis and tend to follow a more traditional, or historical, thinking regarding image processing.
Examples of these methods include: active contours, template matching, B-snake grids, and
3D variants among others. Most of these methods are dependent upon the grayscale pixel
values of the images. Therefore, they are directly dependent upon the image quality. As the
MR scanners are continuously improved using higher magnetic field strengths and develop-
ing greater sensitivity, both of which enhance the spatial resolution of the images. So even
though tagged MRI has a much lower spatial resolution and image quality, this is not very
problematic at the moment and should only get better with time. The main hurdle at the
moment is tag fading. Because these techniques rely so heavily on the intensity values of the
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tags, it becomes more difficult to extract accurate measurements at later stages of the cardiac
cycle.

Phase-based optical flow analyses, the most well-known of which is HARmonic Phase
(HARP), attempt to model the tags and their deformations using information extracted from
the Fourier space. Osman and Prince developed this novel medical image analysis tech-
nique (HARP) in 1999. [12] This technique has been validated and used in countless studies
including:12–25. SPAMM tagged images are created by modulating the tissue in the field
of view (FOV) with k-space spectral peaks at multiples of the tagging frequency. HARP
exploits this fact and creates a spatial band-pass filter, based on the central frequency of the
first fundamental harmonic peak for each tag line orientation, that isolates this spectral peak
containing the tag information. Modulating the filter size can assist in fine tuning the the
filter’s effectiveness. A Fourier transform (FT) of this filtered k-space returns a complex im-
age: the real part being the magnitude, which is a low-pass filtered mask of the myocardium,
and the imaginary part being the displacement-encoded phase containing the tag line inten-
sity pattern for the respective harmonic peak. Multiplying these images together produces
the HARP image. At this point, myocardial strain estimation is just a matter of tracking the
phase of points-of-interest, PoI(s). Although this is a highly robust method, it has a serious
disadvantage. Due to being so heavily reliant on a single frequency for each tag orienta-
tion, this algorithm is incapable of coping with large deformations and is prone to losing
tags. [22,26]

Many advancements have been made with HARP since its initial publication. Ryf
et al. [27] found that by combining the phase of the positive and negative harmonic peaks
of CSPAMM images before HARP implementation, what they call "nonidealities", such as
Bo inhomogeneities, and other phase errors are accounted for and corrected. This method
also increases the signal-to-noise ratio (SNR). Mehmet Bilgen developed a method called
HARP interference. [28] Bilgen found that more information can be extracted from tMRI
by modifying the power and phase of the image. His method follows a similar logic as
structured-illumination microscopy by which a structured illumination pattern is projected
on the sample and the results of the analysis of the aliasing produces super-resolution. By
creating an image with an arbitrary but known phase and then adding the synthetic and
acquired phase-wrapped images together, a phase interference image is created. Then the
Delaunay algorithm can then be used to automatically locate the tag intersections.

Osman and Prince [18] developed a method of refining the tag pattern in tMRI. The
tag profile coefficients, determined by the Fourier series expansion, can be used to model
synthetic tag profiles. By replacing the complex harmonics with real sinusoids, the required
number of summations and the computational cost decrease. As can be observed in Fig. 2.1,
the more coefficients used, the more narrow the resulting tag lines. These coefficients are
then used to generate additional harmonics in the original image. This is done by padding the
Fourier space with zeros followed by adding the additional harmonics which results in much
crisper, more defined tag profiles and potentially enhancing the results of motion analysis
techniques further on.
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Figure 2.1: Expected tag line profiles given different numbers of Fourier expansion coeffi-
cients. The square markers indicate the profile given two coefficients. The solid line rep-
resents four coefficients. The circular markers indicate represent the profile given seven
coefficients.

2.2.1 Gabor Filters

Smal et al. published a quantitative review of four different methods of motion analy-
sis: optical flow methods, HARP, B-snake grids, and non-rigid registration techniques. They
concluded that the non-rigid registration techniques were the most effective method. How-
ever, there is another method that compliments HARP and appears very promising: Gabor
filter bank.

HARP’s major limitation is that it assumes a single central frequency is valid through-
out the entire cardiac cycle. This restricts the algorithm to only being able to detect small
deformations. In order to overcome this restriction, a Gabor filter bank can be imple-
mented. [22,26,29,30]

Gabor filters, initially developed by John Daugman in 1985 [31], are band-pass filters
whose shape can be refined for various situations. The filter envelopes can be anisotropic and
have variable orientations meaning that the filters can change for different central frequen-
cies. This implementation creating very precise Angle images by optimizing the filter for
each pixel. An Angle image is defined as the phase of a single spectral peak in the Fourier
domain of a MR-tagged image. [32] By creating a bank of these filters and varying the central
frequency, a greater range of tag deformation can be detected.

2.3 Strain Analysis

Similar to motion analysis, most strain analysis methods rely on the gradient of the
displacement of identifiable landmarks. This approach encounters the same problems as the
tag- and feature-based tracking methods used in motion analysis. As the tag lines fade, so
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does the accuracy of the computed results.
As Barajas et al. explain in [26], it is far more robust to track the phase rather than

features. The Gabor filter bank is used to create a much more precise Angle image. This is
accomplished by identifying the filter which elicits the maximum magnitude response. From
there, it is simple to find and collect the corresponding phases into a single image. Know-
ing the optimal Gabor filter for each pixel indicates the optimized parameters. By using
the parameters optimized for each tag orientation, deformation geometry can be solved and
the strain can be estimated in a non-tracking manner. Qian et al. developed this method in
2008. [22]

There are still issues that must be addressed, even with this method. As Qian points
out, the radial strain is consistently underestimated while the circumferential strain is overes-
timated. Potentially this could be taken into account and compensated via correction factors
if necessary. Such correction factors would have to be based on synthetic data alone given
that there is no standardized method of strain analysis.
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3. RESEARCH OBJECTIVES

This is a pilot study to assess the viability of this algorithm with respect to myocardial
strain analysis. The primary objective of this thesis is to develop the initial version of an
algorithm that can quantify the left ventricular myocardial strain via SPAMM tagged cMR
images. If proof-of-concept is achieved, then this will aid in the future steps of establishing
a gold standard for evaluating cardiac mechanical dyssynchrony and then refining the candi-
date selection criteria for CRT.

The fundamental duties of this algorithm can be broken down into four general tasks.
Each of these tasks have some recommendations and requirements to help guide the design
and development of this work and are explained below.

Fundamental tasks:

1. Segmentation: There are no specific requirements for the segmentation process of the en-
docardial and epicardial contours of the left ventricle. Manual segmentation is the sim-
plest and most common method. Although this process may be semi-automated, but
it is not required. The segmentation process should never rely solely on a fully auto-
mated segmentation algorithm because it is necessary for experts, healthcare providers
and researchers, to have the opportunity to manually correct the contours. A man-
ual segmentation approach is recommended in the beginning because the main focus
should be on tasks 2, 3, and 4.

2. Tag deformation tracking: The traditional method of motion analysis in tagged mag-
netic resonance sequences is the HARP algorithm. The implementation of a Gabor fil-
ter bank has proven to be a beneficial improvement upon the HARP algorithm. There-
fore, with HARP as the fundamental concept, it is recommended to use a Gabor filter
bank for analyzing the myocardial deformation.

3. Strain analysis: The only requirements for strain analysis are that the radial and circum-
ferential strains must be calculated and returned. No specific method or approach is
recommended.

4. Viability Assessment: Validation is the single most important step in most research. The
strain analysis and segmentation results, if applicable, obtained from the developed al-
gorithm should be compared to at least one other validated method. A basic statistical
analysis should be used to show whether or not the algorithm is capable of differenti-
ating between the control group and the clinical data. Given that this is a pilot study,
an in-depth statistical analysis of the algorithm is not required.
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4. METHODS

Should the List of Figures [names] list the program name that produced that result, or
***a brief description of the images***?

4.1 MRI Acquisition

The MR examinations were completed using a standard 1.5 T Siemens Magnetom
Avanto (Siemens Healthcare Erlangen, Germany) with Syngo MR B17 software. The image
parameters were: matrix 208 x 256, in-plane resolution 1.3 x 1.3 mm, slice thickness 6 mm,
no inter slice gap, and a flip angle of 14o. The study used spatial modulation of magnetiza-
tion (SPAMM) as the tagging sequence and the ECG-gating used the R-peak as the trigger.

The cine sequences analyzed in this study came from anonymized data sets and there-
fore the demographics such as age and sex are unknown. In each examination, three short-
axis sequences were obtained corresponding the basal, mid, and apical regions along the
long-axis of the heart. Sequences from each region were analyzed from at least five indi-
viduals from the two groups: healthy volunteers and clinical patients. The patients were
selected according to diagnostic necessity by their physician.

The data sets used in the development of the algorithm contained 22 images. Initially
six images were selected in order to accurately represent the entire sequence. Before testing
the data sets it was discovered that even cine sequences from the same patient can have vary-
ing trigger times and between studies there were even greater variations. The trigger times
are shown in Tables 4.1 and 4.2. The first trigger time in most sequences was either 26ms
or 35ms. The first image in the sequence must be used because it has the least deformed
tag lines. All of the subsequently chosen data sets were selected to match the trigger times
of the initial data sets. As a note, even though some of the data sets included more than
22 images, the amound of time between triggers did not change accordingly. This means
that some sequences followed the cardiac cycle for a longer period of time. Secondly, this
additional information is not included because it is not present in all of the data sets.

4.2 Segmentation

A manual segmentation method was implemented in this study. However, the Seg-
mentation.m program does more than gather user-defined contours. This program is broken
down into 3 parts: 1) Finding the contours; 2) Establishing the points-of-interest (PoIs) to be
tested; and 3) Separating these PoIs into groups based on the AHA 17-segment model [33].

The contour detection algorithm follows standard methods for manually segmenting
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Table 4.1: Trigger times (ms) for all of the image sequences used in the control group.

Data Sets 1 2 3 4 5 6

1 35.80 107.40 214.80 322.20 429.60 537.00
2 26.85 107.40 214.80 322.20 429.60 537.00
3 35.80 107.40 214.80 322.20 429.60 537.00
4 35.80 107.40 214.80 322.20 429.60 537.00
5 26.85 107.40 214.80 322.20 429.60 537.00
6 26.85 107.40 214.80 322.20 429.60 537.00
7 26.85 107.40 214.80 322.20 429.60 537.00
8 35.80 107.40 214.80 322.20 429.60 537.00
9 35.80 107.40 214.80 322.20 429.60 537.00

10 26.85 107.40 214.80 322.20 429.60 537.00

Table 4.2: Trigger times (ms) for all of the image sequences used in the pathological data
set.

Data Sets 1 2 3 4 5 6

1 34.68 104.04 208.08 312.12 416.16 520.20
2 26.01 104.04 208.08 312.12 416.16 520.20
3 26.01 104.04 208.08 312.12 416.16 520.20
4 26.01 104.04 208.08 312.12 416.16 520.20
5 26.01 104.04 208.08 312.12 416.16 520.20
6 34.68 104.04 208.08 312.12 416.16 520.20
7 26.01 104.04 208.08 312.12 416.16 520.20
8 26.01 104.04 208.08 312.12 416.16 520.20
9 26.01 104.04 208.08 312.12 416.16 520.20

10 26.01 104.04 208.08 312.12 416.16 520.20
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images. Manually selected contour points are gathered for both the endocarial and epicar-
dial contours. Those coordinates are returned along with their respective masks and the final
contour mask. The plotted contours and the myocardium isolated via the myocardial contour
mask are displayed below in Fig. 4.1.
Images****

(a) (b)

Figure 4.1: a) Original input image. b) The original image masked with the binary mask
created from the manually selected contour points.

The next step is to sample the myocardium in a standardized manner. The points that
form the boundaries of the endocardium and epicardium are identified and then sorted. In
order to maintain the integrity of the contour and sort the points into a usable format, the
sorting process has two main sections. The first part calculates the polar angle θ about the
centroid of the myocardial mask. The angles are adjusted so that they fall within the range
[0, 2π]. θ is then sorted in ascending order and an index is created that sorts the corre-
sponding contour points into the same order. An For ease of use later on, the points are then
rearranged so that the list of points begin with the first point in the first segment of the AHA
17-segment model.

The following section resamples the contours into a set number of points according to
specified criteria. The algorithm considers the slice level (basal, mid-cavity, or apical) and
guidelines established by the American Heart Association [33] to determine into how many
segments the myocardium should be divided. Based on a similar, freely available software,
Segment [34] by Medviso, each segment will have 10 columns of test points each containing
5 rows spanning between the two contours. These rows of test points are linearly interpo-
lated between the endocardial contour point and the epicardial contour point. One significant
difference between Segment and the approach implemented here is that this software only
generates test points that fall within the myocardial mask for each echo time.
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(a) (b)

Figure 4.2: a) Manually selected contour points along with the resampled points. Those in
red represent the endocardial contour and those in green represent the epicardial contour. b)
The points-of-interest chosen for testing are represented by blue circles. The lines connect
the endocardial and epicardial points that have been paired together.

Next, the centroid of the myocardial contour is found. Although this is not used further
in the segmentation portion of this program, it will be used further on. The final step in the
segmentation program is to divide the test points into the AHA segments indicated by the
slice label.

4.3 Motion Analysis

4.3.1 Gabor Filter

Osman and Prince [32] showed that SPAMM-tagged images can be expressed as the
sum of several complex images:

ψ =
K

∑
k=−K

ψk (4.1)

where ψk is the complex image resulting from the inverse Fourier transform of one of the
harmonic peaks and 2K + 1 is the number of harmonic peaks. These Angle Images have a
linear relation with the true motion of the points within the myocardium meaning that the
phase of these points is actually an intrinsic property of the tissue which remains constant
over time. [26,35] Therefore, tracking the phases of these points is equivalent to tracking the

12



Figure 4.3: Each color represents a different segment. Starting from the top and moving
counter-clockwise, the segments are as follows: anterior, anteroseptal, inferoseptal, inferior,
inferolateral, and anterolateral.

points themselves. As stated before, robust methods in image processing do not rely solely
on grayscale values. The reason this method of motion analysis is so robust is because it
tracks the phase values through the cine sequence instead of the fading tag lines.

All methods used to obtain the Angles images have one common feature: at least one
ψk must be isolated. The most common method to go about this is to use HARP; however,
the main disadvantage with HARP is that due to its filter design, it is limited to small local
deformations. To get around this limitation, Qian et al. proposed in [29] to use a Gabor filter
bank which analyzes multiple frequencies to find the optimal filter.

A Gabor filter is a special band-pass filter with an envelope shaped by a Gaussian, g,
modulated by a complex sinusoid, s. A 2D Gabor filter in the spatial domain is expressed
as:

h(x,y) = g(x′,y′) · s(x,y), (4.2)

where the Gaussian is defined by:

g(x′,y′) =
1

2πσx′σy′
e
− 1

2

[(
x′

σx′

)2
+
(

y′
σy′

)2
]

(4.3)

and the complex sinusoid is defined as:

s(x,y) = exp [−i2π (Ux + V y)] (4.4)
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The Gaussian variables x′ and y′ are used to establish the rotation of the Gaussian.
They are defined as:

x′ = x cosθ + y sinθ , and y′ = − x sinθ + y cosθ . (4.5)

whereby x′ and y′ are the spatial coordinates that have been rotated by angle θ . The shape
of the Gaussian envelope is controlled by λ which is defined below in Eqn. 4.6. If σx′ and
σy′ are equal, then λ = 1 meaning that the envelope will be symmetrical. Depending on the
application this may be desirable. However, it can be modified to create an asymmetrical en-
velope. Fig. 4.4b shows the two-dimensional Fourier transform of a SPAMM-tagged image
with two tag orientations. There are harmonics in each direction corresponding to the tag
line orientations. Some of these harmonic peaks appear due to having multiple intersecting,
orthogonal tag line orientations. These additional peaks must be taken into account when
designing the shape of the Gabor filter kernel. The aspect ratio λ , as defined in Eqn. 4.6,
is the ratio regarding the length and width of the filters’ envelope. HARP generally uses a
symmetrical envelope with a radius of half the central frequency. In order to avoid acciden-
tally including information from the second harmonic peak, an ellipsoid is generally chosen
for the overall shape. In this study, as in Barajas et al.’s 2005 publication, an aspect ratio of
λ = 2 was chosen. [26]

λ =
σx′

σy′
, φ = arctan

V
U

(4.6)

where σx′ and σy′ are the standard deviations that dictate the shape and the symmetry of the
Gaussian envelope, φ is the orientation of the envelope, and U and V are the 2D frequencies
of the complex sinusoid. The envelope was designed so that the orientations of the Gaussian
and the sinusoid align, θ = ψ . [26]

The shape of the filter, the envelope, is very important in designing the band-pass filter.
There are three variables-λ , σx, and σy-that are used to define the bandwidth of the filter. As
stated above, this algorithm uses a λ of 2. σx and σy are then defined:

σx = 2σy =
1√

U2 + V 2
(4.7)

such that (U,V ) are frequencies of ψ1 of the input image. (U,V ) are also the frequen-
cies about which the Fourier transform H(u,v) of h(x,y) is centered which indicates that
the Gabor filter is capable of achieving optimal resolutions in both the spatial and frequency
domains. It should be noted that even though Barajas et al. defined the Gaussian and the
complex sinusoid on the x- and y-axes, the same equations still hold true when the tag orien-
tations are shifted because of φ . The envelope is still defined according to a horizontal and
vertical geometry and then it is rotated about the center.

According to Daugman et al. [31], 2D Gabor filters have eight degrees of freedom. The
first two are the coordinates of the filter in the spatial domain, (x, y). Next are the modulation
coordinates (U, V ) specifying the location of the filter in the frequency domain. These are
the parameters that are modulated in order to create the filter bank. Then there is the phase
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(a) (b)

Figure 4.4: a) Original SPAMM-tagged image with two tag line orientations; b) The loga-
rithmic spectrum of the Fourier transform of the SPAMM-tagged image

modulation component controlling the filter’s mixture of symmetry-antisymmetry and the
relative angle between the 2D Gaussian axes and the orientation of the modulating sinusoid.
And finally there is σx and σy which define the width and length of the elliptical Gaussian
envelope. Of these, the first four are the independent variables: x, y, U, and V . The previous
equations can be combined and simplified, as shown in Eqn. 4.8, so that the Gabor filter can
be defined in terms of two parameters: U and V .

h(x,y) =
U2 +V 2

2π
e

{
−
[

3
2
(x2 + y2)(U2 + V 2)

2 + j2π(Ux + V y)
]}

(4.8)

Gabor filters behave much the same way as HARP does in that they are both band-
pass filters centered about the central frequency ψk. This fact has two big implications: 1)
the phase response of the filtered images are also Angle Images and can be dealt with as
such, and 2) applying a single Gabor filter has no benefit over tradition HARP because the
filter is again assuming a single frequency for the entire image which causes the algorithm
to be incapable of dealing with large local deformations. In order to overcome the second
implication, a set of Gabor filters can be defined by a range of frequencies surrounding the
central frequency.

[30] and [36] build upon this idea of of creating a bank of filters. Looking back to Eqn.
4.8, the Gabor filters can be defined using but two input variables, (U,V ). Therefore, defining
a bank of filters can be done by modulating both U and V . In their work, they defined one
frequency range for each tag orientation by varying the central frequency according to the
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following equations:

U ′ = ℜ{(U + i ·V ) ·m · exp(i ·∆φ +ω)},
V ′ = ℑ{(U + i ·V ) ·m · exp(i ·∆φ +ω)}

(4.9)

where m, ∆φ , and ω are used to define the frequency range centered about (U,V ) of ψk. The
range of these parameters were set to:

m ∈ [0.85,1.3], ∆φ ∈ [−π/12,π/12],ω ∈ [−π,π]

A frequency range defined by these parameters and applied to the type of data used in
this study is shown in Fig. 4.5a. Certainly all of the possible frequencies are analyzed and
the true motion could be obtained. However, this is impractical for several reasons. First,
the computational cost of assessing so many frequencies is extremely high. And many of
the values tested will not return useful data as they are too far from the central frequency
and outside the range of possible tag deformation. Secondly, this method includes data from
multiple harmonics which is undesirable. A much more reasonable range was prescribed in
[26]. These ranges are much smaller, meaning they are computationally more efficient, and
have been narrowed so that only the first harmonic peak for each orientation is included. The
equations for the new ranges are:

U ′ = ℜ{(U + i ·V ) ·m · exp(i ·∆φ)},
V ′ = ℑ{(U + i ·V ) ·m · exp(i ·∆φ)}

(4.10)

where m is a linear variation of ψ1 and ∆φ is the range of angle orientations. It is useful to
consider these parameters in terms of polar coordinates where m modulates the radius,r and
∆φ modulates the angle, θ . The parameters modulating the new frequency range have the
following ranges:

m ∈ [0.81.2], ∆φ ∈ [−π/12π/12]

These ranges, visible in Fig. 4.5b, were chosen with a specific goal in mind: to create
a more precise Angle Image. A more accurate Angle Image provides more accurate infor-
mation regarding local deformation. The first step is to create Gabor filter bank. The initial
filter is centered at the first harmonic peak, (U1,V1). The remaining filters map all of the
possible frequencies that could be present in the motion of the myocardium throughout the
heart cycle. These filters are then convolved with a local image patch, I, that is centered at
pixel (x,y). In this algorithm, only certain points are chosen. These are the the points-of-
interest that were set during segmentation. As shown in Eqn. 4.11, the maximal response
for each pixel is then used to determine the optimal Gabor filter ho(Uo,Vo). The phase of this
response is treated as a local Angle Image. From here, the local deformation information can
be extracted. As long as the parameters m and ∆φ are tuned well, this should create a very
precise Angle Image.
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(a) (b)

Figure 4.5: Range of frequencies spanned in the original method and the proposed method.
a) Previous range of the definition of the Gabor filter bank; b) Current range of the Gabor
filter bank.

(Uo,Vo) = argmax
U,V

( | h(U,V )∗ I | ) (4.11)

4.4 Strain Quantification

Tagged cMR images have two inherent characteristics that prove challenging to over-
come: 1) They have tag lines that significantly interfere with LV segmentation; and 2) These
tag lines fade over time making it difficult to track them. Due to these two characteristics,
semi-automated and fully-automated segmentation of the LV are still active research topics.
When using intensity-based approaches with this imaging modality, many problems arise
due for various reasons including the problems inherent to tagging such as lower resolution.
In order to avoid these problems, it is better to use more robust, intensity-independent prop-
erties such as phase. [26]

By analyzing the local tag deformation, tracking the tag pattern can be avoided. This
methods requires some simplifying assumptions: 1) That the myocardial tissue is incom-
pressible; 2) The myocardium is subject to three types of deformations: compressive strain,
tensile strain, and local torsion; 3) The first image contains the initial, undeformed, condi-
tions. The first two assumptions are simply for the sake of simplicity. The third assumption
references initial conditions-the initial tag orientations and spacings-which are identified by
the central frequencies of the first harmonic peaks. This provides the basis for determining
the myocardial LaGrangian strains because the subsequent echo times (t2, t3, . . . , ti−1, ti) can
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(a) m = 0.8, dT heta = −π/12 (b) m = 0.8, dT heta = 0 (c) m = 0.8, dT heta = +π/12

(d) m = 1.0, dT heta = −π/12 (e) m = 1.0, dT heta = 0 (f) m = 1.0, dT heta = +π/12

(g) m = 1.2, dT heta = −π/12 (h) m = 1.2, dT heta = 0 (i) m = 1.2, dT heta = +π/12

Figure 4.6: 2-dimensional visualization of the Gabor kernels for the second orientation angle,
omega(1). The kernel size is 15x15 pixels, the aspect-ratio lambda = 2, and the coefficient
of sigma_x = 3.

18



(a) m = 0.8, dT heta = −π/12 (b) m = 0.8, dT heta = 0 (c) m = 0.8, dT heta = +π/12

(d) m = 1.0, dT heta = −π/12 (e) m = 1.0, dT heta = 0 (f) m = 1.0, dT heta = +π/12

(g) m = 1.2, dT heta = −π/12 (h) m = 1.2, dT heta = 0 (i) m = 1.2, dT heta = +π/12

Figure 4.7: 3-dimensional visualization of the Gabor kernels for the first orientation angle,
omega(1). The kernel size is 15x15 pixels, the aspect-ratio lambda = 2, and the coefficient
of sigma_x = 3.
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(a)
m = 0.8, dT heta = −π/12

(b)
m = 0.8, dT heta = 0

(c)
m = 0.8, dT heta = +π/12

(d)
m = 1.0, dT heta = −π/12

(e)
m = 1.0, dT heta = 0

(f)
m = 1.0, dT heta = +π/12

(g)
m = 1.2, dT heta = −π/12

(h)
m = 1.2, dT heta = 0

(i)
m = 1.2, dT heta = +π/12

Figure 4.8: 2-dimensional visualization of the Gabor kernels for the second orientation angle,
omega(2). The kernel size is 15x15 pixels, the aspect-ratio lambda = 2, and the coefficient
of sigma_x = 3.
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(a)
m = 0.8, dT heta = −π/12

(b)
m = 0.8, dT heta = 0

(c)
m = 0.8, dT heta = +π/12

(d)
m = 1.0, dT heta = −π/12

(e)
m = 1.0, dT heta = 0

(f)
m = 1.0, dT heta = +π/12

(g)
m = 1.2, dT heta = −π/12

(h)
m = 1.2, dT heta = 0

(i)
m = 1.2, dT heta = +π/12

Figure 4.9: 3-dimensional visualization of the Gabor kernels for the second orientation angle,
omega(2). The kernel size is 15x15 pixels, the aspect-ratio lambda = 2, and the coefficient
of sigma_x = 3.
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be compared with the initial echo time, t1.
This method, although very much rooted in simple geometry, frames the problem in

terms of a finite element. The following description is illustrated in Fig. 4.10 taken from
[22]. This finite element, also referred to as a myocardial element, is situated in an arbitrary
coordinate system X and has an initial length of dX. At echo times subsequent to the ini-
tial frame, the myocardial element deforms. The deformed element’s length in coordinate
system X is now dx. At this new position, x, the strain, which will be referred to as the
deformation gradient, is defined as F = dx/dX = ∇x.

The tMRI images used in this study have two tag orientations. Therefore, it is nec-
essary to use a 2D deformation gradient. The description of the model in Qian et al. [22],
is based on the initial state having undeformed horizontal and vertical tag lines. The exact
initial tag orientations are irrelevant when it comes to the fundamental concept because the
orientation of the filter envelopes changes with the location of the filter. This means that they
can still be defined in terms of horizontal and vertical tag lines. Justification for this claim
will be provided shortly.

Based on the previous concept, the horizontal and vertical tagging have spacings Dx

and Dy respectively. After the deformation, the new deformed spacings are Sx and Sy. The
change in tag orientations are ∆φx and ∆φy. This leads to the new two-dimensional deforma-
tion gradient tensor F, which is derived from the following equation:

F =

[Sx cos∆φy
Dx sinφ

Sy cos∆φx
Dx sinφ

Sx cos∆φy
Dy sinφ

Sy cos∆φx
Dy sinφ

]
(4.12)

where φ = π

2 −∆φx−∆φy. This equation can be solved using the geometry outlined in Fig.
4.10 and the optimized parameters identified from the Gabor filter which elicited the greatest
response. There are two additional definitions that are useful in solving this geometry. The
first is the peak-to-peak distance of the sinusoid S, which happens to be defined the same
as the standard deviations of the Gaussian. This spacing and the tag orientations change
throughout the cardiac cycle and are represented by m and ∆φ respectively:

S = 1/
√

U2 + V 2 m = S/D, and ∆φ = φ − φi

Figure 4.10: This is the graphical illustration of Eqn. 4.12. After the tag deforms, dx = Sx
cos∆φy / sinφ and dy = Sy cos∆φx / sinφ . [22]
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Figure 4.11: There are three important types of strain in myocardial analysis: radial, circum-
ferential, and longitudinal which is also referred to as axial. [39]

Once parameters (U,V ) have been optimized and F has been solved, then the La-
grangian finite strain tensor E and the local rotation matrix R can be calculated by the fol-
lowing equations:

E =
1
2
(
FT ·F - I

)
(4.13)

R = F
(
FT ·F

)−1/2
(4.14)

where I is an identity matrix and the exponent T indicates the transpose of the matrix. In
myocardial deformation research when assessing the myocardial function and wall motion,
the most useful strains are the radial and circumferential strains, and in three-dimensional
studies, the axial strain. In order to determine the radial and circumferential strains, the 2D
horizontal-vertical Lagrangian finite strain tensor can be transformed into a radial-circumferential
strain tensor Ê using a rotation matrix [19,22,37,38] Q(θ ):

Ê = QEQT (4.15)

where the rotation matrix Q is defined by an angle θ about the centroid of the myocardium
and is considered positive in the counter-clockwise direction.

Because the Lagrangian tensor is a horizontal-vertical strain tensor, this does not
provide information about the required strains. As shown in Fig. 4.11, taken from [39],
myocardial radial strains are oriented about the centroid of the myocardium. In order to
calculate this radial strain for each PoI, E must be rotated by angle θ to align with the angle
of the particular PoI about the centroid. Fig. 4.12 illustrates how a rotation of the tensor by
θ changes the outcome from the horizontal-vertical value of εX to the radial value of εX ′ .
Similarly for the circumferential strains, Fig. 4.11 shows that these strains are tangential
to the PoIs about the centroid. So following the same logic, by rotating E by θ + 90o will
produce the circumferential strain. Therefore, Eqn. 4.15 can be expanded and understood to
be Eqn. 4.16.
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Figure 4.12: In-plane strain diagrams: the original coordinate system is on the left and the
rotated coordinate system is on the right. Modified from [40].

Ê(x,y) = Q(x,y)E(x,y)QT (x,y), where

Q(x,y) = R̃
(

θR,C|(x,y)

)
=

cosθ sinθ 0
-sinθ cosθ 0

0 0 1

 (4.16)

where θR|(x,y) is the angle of the point-of-interest (x,y) about the centroid and is used to calcu-
late the radial strain, while θC|(x,y) = θR|(x,y) + 90 is used for the circumferential strain.

4.5 AHA Left Ventricular Segmentation Model

Figure 4.13: Circumferential polar plot repre-
sentation of the 17-segment myocardial model
and the recommended nomenclature. [33]

The Cardiac Imaging Committee of
the Council on Clinical Cardiology of
the American Heart Association released
a statement in 2002, written by the AHA
Writing Group on Myocardial Segmenta-
tion and Registration for Cardiac Imaging,
establishing a standardized model and its
corresponding nomenclature, to be used in
tomographic imaging of the heart, for the
segmentation of the left ventricular my-
ocardium.

When evaluating the myocardium and
the LV cavity, it is recommended to use the
17-segment model. An ideal model should
have an appropriate number of segments to
adequately represent the anatomical data.
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Initially a 20-segment model was the standard; however, a more recent evaluation concluded
that this model overrepresented the apex and apical cap when compared to the anatomical
data. This model was reduced to 16 segments, but still lacked a true apical myocardial seg-
ment devoid of the ventricular cavity. Therefore, the 17-segment model was chosen as it
accurately represents each myocardial segment.

The recommended naming convention dictates that the segment name should define
both the relative location of the segment along the long-axis of the heart and its circumfer-
ential position. Keeping the recommended nomenclature in mind, the 17-segment model
divides the LV myocardium into four sections along the long-axis: basal, mid, apical, and
apex. The two most superior levels are each subdivided into six equal segments: anterior,
anteroseptal, inferoseptal, inferior, inferolateral, and anterolateral. Each segment spans 60o.
As shown in Fig. 4.13 from [33], segments 1 and 7, basal anterior and mid anterior respec-
tively, both begin at 60o and the subsequent sections start at n ·60o.

The apical layer is divided into four equal segments of 90o. These segments are called:
apical anterior, apical septal, apical inferior, and apical lateral. The apical anterior segment is
defined from [45o, 135o]. The remaining segments are defined to begin at 45o + n ·90o. The
seventeenth and final segment is the apex which is completely devoid of the left ventricular
cavity. These segmentation guidelines are clearly illustrated in Fig. 4.14 from33.

When displaying the the results of LV myocardial analyses, the heart should be di-
vided into three equal segments perpendicular to the long-axis of the left ventricle. The
resulting regions are circular SA views of the basal, mid-cavity, and apical regions of the LV
myocardium. As shown in the long-axis illustrations in Fig. 4.14, the apical short-axis view
excludes the true apex. Representative slices of each region should be selected. The slice for
the apical SA region should fall within the range between the papillary muscles and the end
of the LV cavity with the apical cap falling just outside that range. Anatomical landmarks
should be considered when selecting slices. In general, slices should have a thickness of
< 1cm, but this can vary based on the modality-specific resolution and the clinical relevance.
Only slices containing the complete myocardium in all 360o should be accepted.

The guidelines recommend that the apical cap be evaluated from the vertical and hori-
zontal LA planes for all imaging modalities. However, due to the nature of the investigations
in this study, it may prove interesting and useful to examine the apical cap in the short-axis
plane as well. These guidelines will be especially important in the future steps of the main
research project that will be utilizing this algorithm.

4.6 Viability Assessment

Given that there is no gold standard for assessing myocardial strain, there is a greater
amount of freedom in developing assessment protocols. In this study, three methods were
used to assess the ability of the algorithm to evaluate myocardial strain. The first method
employs a software called Segment [34], Version 2.0 R4596. This program was designed and
developed by Medviso AB and Lund Cardiac MR Group at Lund University and is freely
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Figure 4.14: On the left, anatomical landmarks can be seen in the short-axis segmentation
regions for each of the three regions orthogonal to the long-axis. On the right, the long-axis
views show the location of the 17th segment, the apex. This segment is completely devoid
of the left ventricular cavity. It encompasses the remainder of the apical cap not included in
the apical region of the LV cavity wall. [33]

available for academic research and has been validated in [34]. This software was used
to analyze a synthetic data set. The results were then used to evaluate the new algorithm.
This follows the convention for assessing new algorithms. This is considered a very robust
method of evaluation because synthetic data is analogous to a controlled environment. Free
of undesired artifacts, synthetic data allows one to test whether or not a theoretical concept
works by allowing it to test only the parameters of interest.

The second method uses Segment to analyze physiological data sets, the control group,
along with pathological data sets, the test group, and then to compare these results with
those from the algorithm. Actual data sets have a great range of variability from image
quality spatial resolution to contrast of the tags. This protocol, similar to the first, assess the
accuracy of the new algorithm when it comes to using real data. This is important in order
to show a high level of robustness.

The last protocol is less about accuracy and focused more on being able to differentiate
the results of healthy patients from those of the test group. The goal of this protocol is to
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quantitatively analyze the results by firstly determining the type of the data distribution and
then implementing the corresponding statistical test.

4.7 Implementation Notes

4.7.1 Remarks

As noted in Qian et al. [22], it is necessary to filter the input images. As can be seen in
Fig. 4.15a, there is some noise in the form of additional points and lines that do not corre-
spond to the tagging pattern. This is caused by the slight variations in proton density within
the tissue which changes the signal intensity between pixels in the image. To start, the input
image was smoothed using a Gaussian smoothing filter in order to eliminate these random
spikes and to make the homogenous regions more uniform. This smoothing also makes the
edges softer, which is highly undesirable. In order to compensate for this effect, the image is
then sharpened with an unsharp mask. The results are significant. As Fig. 4.15b shows, this
filtering protocol is a great improvement.

The infrastructure for some future features and options has already been included.

(a) (b)

Figure 4.15: a) The Angle Image of the original, unfiltered input image. b) The Angle Image
of the filtered input image.

This is only the initial stage of development. Therefore, it appears that some options are
available, but may elicit an error. For example, the testing was performed only on basal and
mid-cavity slices, but there is the option to select "Apical". This feature will certainly be
necessary in the future, but was not a priority during this work. Other features are in the
way arguments are passed between functions. The end-user might not know it is there, but it
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should make it easier for the next person to continue developing the algorithm.

4.7.2 Program Descriptions

Segment

Segment.m
Name = Segment
Segment is the parent file for segmenting the desired files and saving the results in a
.mat file whose name is returned.
Segment allows the user to select a DICOM file via an interactive GUI. The image
is checked to make sure the format is correct before proceeding. The slice label is
selected through a dialog. The first harmonic peaks are interactively identified before
guiding the user through the manual segmentation of the endocardium and epicardium.
The output variables of this file are:

angles: Vector containing the angles of the first harmonic spectral peaks about the
center

centroid: Centroid of the myocardial contour

contourMask: Contour of the myocardium

Im: Original SPAMM-tagged MR image

name: Name of the original input file

omega: Central frequency or frequencies of the first harmonic peak(s)

rect: Vector specifying [xmin ymin width height] of the chosen ROI

sector: Column vector indicating which PoIs in test_points are in which AHA 17-
segment model section

test_points: Chosen PoIs between the endocardial and epicardial contours

time: Trigger time of the image within the cine sequence

imageCheck.m
image = imageCheck(image)
imageCheck ensures that the input image from the DICOM file is in the correct format
for processing. It will convert 1- and 3-layer non-double class images to grayscale
images of class double.

chooseLabelDialog.m
label = chooseLabelDialog
chooseLabelDialog is an interactive dialog that requires the user to identify the long-
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axis region that the slice represents. There are three options: Basal, Mid-Cavity, and
Apical.

ROI.m
varargout = ROI(varargin)
ROI helps the user specify the region-of-interest. The first input must be an image. If
the region-of-interest has already been specified then it can be entered as the second
input argument. If only one output is specified, then the cropped image will be re-
turned. If two are specified, the second output will be ’rect’ which was returned from
imcrop and has been rounded to the nearest whole integer.

FourierPeaks.m
[omega, angles] = FourierPeaks(image)
FourierPeaks is a semi-automated approach to identify the central frequencies of de-
sired spectral harmonic peaks in the 2D Fourier space. It also returns the angles of the
peaks about the center. Both of theses values are used in creating the Gabor filter bank.

Segmentation.m
[segmentLabels, contourMask, test_points, sector, members, centroid] = Segmenta-
tion(image, AHA, nPoints, rows, sectionAngles, segmentLabels)
Segmentation finds the contours and the centroid of the myocardium, resamples the
contours, and assigns the PoIs to their respective segments according to the AHA 17-
segment model.

contours.m
[contourMask, endo_cont, epi_cont] = contours(image)
contours.m does 1 of 2 things depending on the number of inputs. If only the image
is given, then the user will be prompted to select points along the endocardial and
epicardial contours. The more points selected, the better the contours will be. If the
contours have already been identified and given as inputs, first the endocardial contour
followed by the epicardial contour, then the contour masks will be created and the
program terminates.

Centroid.m
centroid = Centroid(contourMask)
This program uses the polygon masks created in contours.m and finds the centroids of
the myocardial contour.

testPoints.m
[strain_pts, sector, combined, segmentLabels] = testPoints(centroid, epi_cont, endo_cont,
AHA, nPoints, rows, sectionAngles, segmentLabels)
Define the coordinates of the points between the contours to be analyzed. There will be
nPoints number of points in AHA number of sections depending on the slice location,
i.e. base, mid, or apical. The contours will be resampled at uniform arc lengths.

29



sortContour.m
Contour = sortContour(contour, centroid, sectionAngles)
sortContour sorts the points of a contour first according to its angle (in radians) about
the centroid, and then corrected by choosing the nearest point spatially with the lowest
angle.

resample.m
Resampled = resample(contour, noPts)
resample returns noPts number of points along the given contour spread equidistantly
along the perimeter of the contour.

SegmentFinder.m
[angNum, segmentLabels] = SegmentFinder(point, centroid, newPts, sectionAngles,
segmentLabels)
SegmentFinder assigns the POIs to the appropriate segment according to the AHA
17-segment model.

GaborFilterBank

GaborFilterBank.m
Name = GaborFilterBank(varargin)
GaborFilterBank builds a bank of Gabor filters for data sets with either 1 or 2 tagging
directions. The segmented file (*.mat) can either be passed as an input or if no inputs
are provided, the it will be selected interactively. The output variables stored in the
.mat file are the:

kernels1: Kernel values for the first orientation angle, omega(1)

lookup1: Lookup table with the parameters for every kernel in kernels1

kernels2: Kernel values for the second orientation angle, omega(2)

lookup2: Lookup table with the parameters for every kernel in kernels2

GaborKernel.m
[kernel, varargout] = GaborKernel(matrixsize, theta, omega, centerpoint, m)
GaborKernel creates a single Gabor filter. The outputs are the Gabor kernel itself along
with the U_prime, U ′, and V_prime, V ′, values associated with that kernel.

GaborStrain ** Update Optimize and Adjust (if needed)!!!

GaborStrain.m
Name = GaborStrain(GaborFilterBank)
GaborStrain uses the Gabor filter bank specified in the input to analyze the selected
*.mat files and saves the results for each in a separate output file. Each input file is
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filtered and the optimized filter paramters and Angle Image are returned. Then the
strain is calculated for the test_points for each image.

Optimize.m
[image, optiParameters, IND, contourMask, AngleImage, Filtered, FilteredMag, FilteredPhase]
= Optimize(Im, contourMask, Rect, rect, kernels, test_points, lookuptable)
Optimize.m filters the points of interest, defined in testPoints, of the input image with
the Gabor filters contained in kernels. The results are then evaluated searching for the
greatest magnitude response. The parameters that generated the maximum response
are then returned stored in a lookup table, optiParameters, and an Angle Image is cre-
ated by storing the phase responses of each pixel elicited by the optimized filters.

adjust.m
[image, test_points, contourMask] = adjust(Im, Rect, test_points, contourMask)
adjust will modify the ROIs, contours, and PoIs that were selected during the segmen-
tation process so that all of the images in the sequence use the same ROI as the first
image in the sequence. Therefore, the dicom images are cropped according to the orig-
inal region-of-interest, Rect. The coordinates in the contour mask and the test_points
vector will be adjusted by the change between Rect and rect, the original ROI of the
current image. The contour mask is also redefined to match the size of the original
ROI as indicated by Rect.

combineStack

combineStack.m
Name = combineStack(directory)
combineStack loads the desired *analyzed.mat files for an image sequence and com-
bines the results into single variables. The outputs can then be displayed in plots or
tables to visualize and assess the results.
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5. RESULTS

To assess the validity of the developed algorithm, it was tested according to three
different protocols. The first protocol required synthetic data to be analyzed by Medviso’s
Segment and the algorithm in question and then to compare the results. The second protocol
called for comparing the results of actual physiological data with that of Segment. And
finally, the results of analyzing physiological and pathological data with the algorithm were
to be compared to ensure that the algorithm is capable of differentiating between the two.
The results are described below.

5.1 Synthetic Data

As convention calls for assessing algorithms via synthetic data, the eight images in
Appendix B were assessed in Segment to establish ground truth values for comparison. The
results of this analysis are inconclusive at best and unfit for use in assessing the developed
algorithm. As can be seen in Fig. 5.1, the contours and points-of-interest that were automat-
ically generated by Segment are unsuitable for accurate analysis. Although the epicardial
and endocardial contours were drawn manually for each image before strain analysis, for
some reason they are only used when an image is selected as the initial time frame. The
greater the deformation of the synthetic myocardium, the more radical the contours become.
Likewise, one row of the chosen PoIs falls along the endocardial contour and the fifth row
falls along the epicardial contour while the remaining three rows fall in-between. This is the
same methodology as what is employed in the new algorithm as well. However, due to the
abnormal behavior of the contours, many of these points begin to fall outside of the myocar-
dial boundaries where no data exists. Whether this error is due to the deformations of the
synthetic myocardium being so large and inconsistent, it is unclear. The subsequent strain
data produced by Segment has been omitted and will not be used. This data set is not used
in any further analyses.

5.2 Physiological Data

This data set consists of 22 SPAMM-tagged cine sequences. In this data set, the my-
ocardial volume changes rather significantly throughout the cine sequence. Fig. 5.2 accu-
rately represents the results of this sequence by displaying every seventh image from the
sequence. Similar to the results from the Synthetic Data set, Segment does not adhere to the
manually drawn contours. Although more of the PoIs are inside the myocardium, there are
too many outside of the myocardium for this to be use for comparison.
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(a) SD_01 (b) SD_02

(c) SD_03 (d) SD_04

(e) SD_05 (f) SD_06

(g) SD_07 (h) SD_08

Figure 5.1: These are the analysis results of the Synthetic Data set using Segment. The
images on the left are the manually drawn contours. The images on the right have both
the manually drawn contours, the contours created by Segment, and the PoIs automatically
selected by Segment for analysis.
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(a) Normal01B_01

(b) Normal01B_08

(c) Normal01B_15

(d) Normal01B_22

Figure 5.2: These are the analysis results of one of the healthy data sets using Segment.
The images on the left are the manually drawn contours. The images on the right have both
the manually drawn contours, the contours created by Segment, and the PoIs automatically
selected by Segment for analysis.
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5.3 Quantitative Comparison

Given the relatively small amount of data, it was not possible to determine the type of
distribution. The Lilliefors test, the one-sample Kolmogorov-Smirnov test, and two distri-
bution fitting programs, inlcuding allfitdist [41] from the MathWorks File Exchange, that test
the data for a wide variety of distribution types were unable to indicate a distribution type.
Therefore, a non-parametric statistical analysis was required. The Mann-Whitney U-test was
selected as the appropriate statistical test. The hypotheses are as follows:

Null hypothesis: The two samples come from distributions with equal medians

Alternative hypothesis: The two samples come from distributions with un-
equal medians

Ten data sets, each with six trigger times, were used in the physiological group and in the
pathological group. The data sets were separated according to trigger times. The ten physi-
ological data sets were combined for each trigger point while the pathological data was kept
separate. For each trigger, each of the ten pathological data sets were compared to the phys-
iological data set for the given trigger. The results are shown below: H = 1 indicates that the

Table 5.1: Hypothesis decisions of the Wilcoxon ranksum test

Data Set

1 2 3 4 5 6 7 8 9 10

Trigger 1 1 1 1 1 1 1 1 1 1 1
Trigger 2 1 1 1 1 1 1 1 1 1 1
Trigger 3 1 1 1 1 1 1 1 0 1 1
Trigger 4 1 1 1 1 1 0 1 0 1 1
Trigger 5 1 1 1 1 1 0 1 1 1 0
Trigger 6 1 1 1 1 1 0 1 1 0 1

null hypothesis that the two data sets have an equal median is rejected while H = 0 indicates
that the null hypothesis was not rejected. The p-values, shown in Table 5.2, represent the
probability of the current data being observed if the null hypothesis were accepted. P-values
of p≤ 0.05 indicate that the null hypothesis can safely be rejected.
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Table 5.2: P-values of the Wilcoxon ranksum test

Data Set

1 2 3 4 5

Trigger 1 1.3713E−39 4.8019E−127 1.1371E−60 2.7333E−79 5.8066E−144

Trigger 2 4.2263E−46 7.8448E−229 3.0927E−74 1.0591E−56 6.4646E−47

Trigger 3 8.3865E−65 0 5.9651E−233 3.9624E−63 2.3633E−16

Trigger 4 5.2535E−73 0 1.9179E−62 1.2534E−127 2.1423E−95

Trigger 5 7.6317E−75 0 6.885E−57 4.246E−237 7.824E−178

Trigger 6 4.3801E−75 0 7.0895E−67 8.2287E−155 1.9753E−75

6 7 8 9 10

Trigger 1 2.3522E−4 1.6956E−18 2.5606E−26 3.0319E−150 5.5905E−74

Trigger 2 7.8203E−4 4.5242E−17 2.7328E−26 6.0148E−162 1.8971E−254

Trigger 3 9.1003E−4 7.1602E−06 0 1.4303E−16 1.4192E−144

Trigger 4 0.60346 2.1473E−2 0 7.4374E−06 7.916E−202

Trigger 5 0.6503 2.722E−2 1.6523E−09 6.3399E−73 0
Trigger 6 0.79162 5.0393E−3 5.9348E−10 0 4.2433E−123
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6. DISCUSSION

As can be seen in Table 5.1, there are seven instances in which the null hypothesis is
accepted. It was found that the data sets in which the null hypothesis was accepted and the
p-value is equal to zero elicited an error during processing and were therefore excluded. Of
the 55 remaining data sets, 52 of them rejected the null hypothesis indicating a significant
statistical difference between the physiological and pathological data regarding the radial
strain within the myocardium. The developed algorithm successfully differentiates between
physiological and pathological radial strain data with a probability of about 95%.

Looking at Table 5.2, the p-values indicate the level of certainty of the hypothesis
decision to reject the null hypothesis. All but six of the non-zero values, only three of which
are unable to reject the null hypothesis, range in orders of magnitude from −4 to −245. 9
of the 55 values have single-digit orders of magnitude. 25 of the 55 values have double-
digit orders of magnitude. And 14 of the 55 values have triple-digit orders of magnitude.
p = 0.05 is the required value to accept the hypothesis decision. 4 data sets produced p-
values so small, they were displayed as zero. To say these results are strong indicators is a
great understatement. Only about 5% of the pathological data was undistinguishable from
the physiological data. These results indicate great success for algorithm.

6.1 Limitations

In the end, there are more limitations to this study than expected. The two of the three
protocols for assessing this algorithm failed. the protocols that failed would have been able
to compare accepted values with the results of the algorithm. This means that the accuracy
of the algorithm could not be assessed. The remaining protocol was a preliminary statistical
analysis.

Data from the entire pathological image, including segments that may or may not ex-
hibit any signs of mechanical dyssynchrony, were compared to a larger set of data from a
similar trigger time. Segments with noticeable deformation were not isolated and compared
to the physiological data. And as can be seen in Tables 4.2 and ??, the trigger times within
each collection of data sets is relatively uniform. However, that uniformity is not matched
when comparing the two. It would better if the trigger times were matched for the control
and test group data sets to ensure accuracy. The duration of the cardiac cycle should also
have been taken into account to ensure that the strain values are being compared from the
same part of the cardiac cycle.

The statistical analysis only addresses radial myocardial strain. The rotation angle,
circumferential strain, and the axial strain have yet to be analyzed. These values are neces-
sary to accurately evaluate the success of the algorithm.

Another limitation is the relatively small sample size. Several evaluation methods
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were used on various grouping of the data sets, but no distribution type could be determined.
Significantly increasing the number of segmented data sets is necessary for a true evaluation.

Increasing the sample size requires more segmented data sets. Aside from the cost of
gathering MRI data sequences, a significant amount of time is required to segment each im-
age in a given sequence. It should be noted that the data sets used in this study were not seg-
mented by a healthcare professional. Because the only viable method of statistical analysis
was to compare the two samples to each other, the precision of the segmented contours was
not as important as consistency. In future studies this may become more important.
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7. CONCLUSION

The primary objective of this work was to create an algorithm that accepts tagged car-
diac MR images stored in DICOM format and is able to differentiate between physiological
strain and pathological strain. Typically, HARP is one of the most common methods for ana-
lyzing MR-tagged images. To overcome HARP’s limitation of small deformation, a bank of
Gabor filters was created to analyze local deformation centered at a wide variety of frequen-
cies. By finding the greatest magnitude response, a very precise Angle image is developed
using the phase response of the optimal Gabor filters. The parameters of the optimized Ga-
bor filters, (U ′,V ′), are identified and can then be used to estimate the radial strain based on
a non-tracking approach. The algorithm developed here was able to correctly distinguish be-
tween physiological and pathological strain data with 95% accuracy. This is a pilot study and
is only the first step of a much larger research project. There is still much work to be done
to complete this algorithm. Further testing is required accompanied by detailed statistical
analyses.
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8. FUTURE WORKS

8.1 Viability

Assessing this algorithm was a great obstacle and not all of the hurdles were over-
come. As previously mentioned, there is no gold standard for assessing myocardial strain.
Although ultrasound can measure myocardial strain, there are a number of factors that render
it unsuitable, at least at this point in time, to be able to assess the results from a tagged-MR
methodology. In this study, it was attempted to use the software Segment to analyze syn-
thetic images as well as images from the physiological control group because this program
has been used and validated in a variety of peer-reviewed publications. Perhaps with further
study, the problems encountered with Segment could be resolved.

Another method would be to create customized synthetic data. In this instance, the
ground truth values should be known. Alternatively, the current synthetic images could
be analyzed using a more direct method for strain analysis that has already been validated
such as B-splines or non-rigid registration. If another method can be used to establish the
"knowns" for the synthetic data, then that data set can be used to validate this algorithm. A
second benefit is that the synthetic data set can also be used to calibrate the algorithm. Qian
et al. mentioned in their 2008 publication, [22], that the non-tracking strain estimator most
accurately calculates the rotation angle, but consistently over estimates the circumferential
strain while underestimating the radial strain. Using a large set of synthetic data with known
strains and deformations would help with the development of correction factors to account
for this over- and underestimations. Potentially, improvements in tag refinement and image
quality might help reduce the estimation errors as well.

Given that this was a pilot study, only a basic statistical analysis was necessary to show
that the algorithm can differentiate between physiological and pathological data. Now that
this stage has been completed, it will be necessary to complete an in-depth statistical analy-
sis.

It would also be fruitful display the benefits of the chosen methodologies over other
comparable methods. Barajas et al. applied the concept of the Gabor filter bank to MR
tagging. [26] This idea modifies the implementation of the HARP algorithm by analyzing a
variety of frequencies that might contain information about local deformations. By analyz-
ing a greater number of frequencies, a more accurate Angle image can be developed. More
accurate Angle images represent more precise deformation information. Although generat-
ing these Angle images was a means to estimating more accurate strain values. This is a
crucial step for the success of the algorithm. Monitoring the Angle images and comparing
them to standard methods and previous versions of this algorithm will show the progress of
the algorithm over time and superiority of the methodology.
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8.2 Improvements

Currently the algorithm assumes a uniform orientation of all input images when the
contour is segmented into the 17-segment model. This should be modified so that user-input
can redefine the orientation of the image. This issue was not addressed in this pilot study
because the current object is essentially "proof-of-concept". Although this is critical in pro-
viding an accurate and detailed assessment of myocardial strain, it is not critical in proving
that the algorithm can assess myocardial strain and differentiate between physiological and
pathological data.

There are several aspects of the algorithm that can potentially be improved upon. One
such aspect is the filtering of the input images. These inputs must be filtered to eliminate
erroneous spikes in the Angle Images caused by non-homogenous proton densities in the
contractile tissue. Currently this is done by smoothing the image with a very small low-pass
Gaussian filter and then increasing the contrast using an unsharp mask. This unsharp mask
creates a low-pass filtered image of the smoothed image and then subtracts it to create the
sharpened image. However, it could be beneficial to create the low-pass filtered image of the
original input image, then subtract that from the smoothed image.

As the algorithm was developed, consideration was given to future improvements.
Some features that will be needed in the future have been planned out and some of them are
in various stages of implementation. For example, when choosing the label of the slice to
be analyzed the user can choose apical. A .mat file has been included for the apical label to
load just like the files corresponding to the labels "Basal" and "Mid-Cavity". It was simpler
to develop, debug, and test the algorithm using the basal and mid regions because they both
have six segments according the the 17-segment model. In the future, the implementation of
the "Apical" label as well as including an option to analyze the apex itself will need to be
finished.

Initially it was intended that the algorithm would calculate the radial and circumferen-
tial strains. The infrastructure to calculate this data and to handle passing it along from one
step to the next has already been built. However, the circumferential strain is not currently
working as expected. After several attempts and much consideration regarding the primary
objective, it was decided that the radial strain would suffice for this work.

Another improvement could be refining the tag lines before processing. As discussed
in the Sect. 2.2, by computing the Fourier expansion coefficients and adding additional har-
monics to Fourier spectrum, the resolution of the tag lines can increase significantly. This
would be especially beneficial when analyzing images with later trigger times. Refining the
tag lines reduces the contrast-to-noise ratio (CNR) and could improve the strain estimation.
Given the unique method of strain estimation in this algorithm, it would be very interesting
to see how this tag line refinement method affects the algorithm.

Sect. ?? explored the parameters used to create the bank of Gabor filters. While
processing various datasets, it was observed that some images, when viewed in the Fourier
domain, have the harmonic peaks that are skewed or stretched along a particular direction.
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Fig. 8.1 shows two very similar images with the same anatomical and tag line orientations.
Figures 8.1c and 8.1d show that even similar images can have significant variations with
regard to the ranges of frequencies that could possibly contain relevant motion information.
Further research is needed to determine if creating custom ranges for the Gabor filter banks
is beneficial or if the information that falls outside of the bank range for ψk is even relevant.

Initially, the code was designed to select the points-of-interest so that they are spread
out uniformly according to an arc length determined by the required number of points in
each segment. This was accomplished using a program called interparc [42] (Version 1.3)
published by John D’Errico on the MathWorks FileExchange. This is a very nice approach
because there will be a uniform distribution of the points along the circumference of the con-
tours as they become larger and larger between the endocardium and the epicardium. The
implementation is relatively straightforward as well. The two contours are sampled at the
default arc length of pi/(10 ∗ number of AHA segments which yields points that fall upon
straight rays emanating from the centroid. Then points are linearly interpolated between
those two points. A disadvantage of this method, and also the method use in thee algorith,
is that there is a decreasing gradient of the density of POIs from the endocardium to the
epicardium as can be seen in Fig. 8.2. The reason this was replaced in the algorithm is that
for reasons yet to be determined, the function began to produce inconsistent and unusable
results. Often, most of the POIs were concentrated inside the LV cavity and sometimes even
fell outside of the ROI. While this did not happen with every image, it happened enough that
it had to be replaced. Further work might should be able to resolve this issue.

A better approach, however, would be to maintain the density of the points-of-interest
throughout the entire myocardium. That could be done by deriving a relationship between
the length of the perimeter of the contour and the number of points along said contour in
order to calculate the arc length necessary to maintain the point density established along
the endocardial contour. Maintaining a set number of rows that are evenly, although non-
uniformly, spaced between the two contours versus using a grid of points, makes it easier to
evaluate a strain gradient across myocardium.

Further development of an algorithm such as this one can help make MR-tagging a
clinically viable diagnostic tool. As previously stated, the post-processing required to obtain
useful information from tMRI is so extensive and cumbersome that it is not used clinically.
Developing a semi-automated segmentation method would make such an algorithm signif-
icantly more robust by more consistent results that are user-independent. Given the nature
of the tags in tMRI, it would be more practical to use texture analysis coupled with active
contours to identify the myocardium.

The current algorithm provides results for 2D images. It is not equipped to evalu-
ate the entire heart all at once. It would be beneficial to develop the algorithm to work
with a 3-dimensional image stack. This would allow for a more detailed localization of the
strain. Because the relationship because myocardial strain and CRT response has not been
researched, there is a possibility that location, in addition to the amount of strain, might play
an important role in predicting CRT response. This could also reduce the personnel work-
load by automating the processing of multiple slice sequences.
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(a) (b)

(c) (d)

Figure 8.1: Differences in the shape of the harmonic peaks, ψk, even between similar images.
a,b) First image in a cine sequence of a healthy patient. c,d) The 2D Fourier transforms of
the original images in a) and b) respectively.
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Figure 8.2: Points-of-interest identified by interparc.m

Finally, a graphical user interface, or GUI, should be developed if this is to be used as
a research tool. Currently files are called from the commandline, which works sufficiently
well in the initial stages of development. However, a GUI would streamline the working
environment.

8.3 Future Use

The goal of this thesis is to design an algorithm that can assess and differentiate be-
tween physiological strain and pathological strain. Once this algorithm has been perfected, it
will be used to analyze data from patients suffering from left ventricular mechanical dyssyn-
chrony. The hope is to be able to use these results to identify indicators that can be used to
diagnose LV dyssynchrony and predict the patients’ response to CRT. If this research proves
fruitful, it could potentially save time, suffering, and money for patients who more than
would not benefit from CRT.
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A. MATLAB CODE

A.1 Segment.m

1 function Name = Segment(varargin)

2 % Segment is the parent file for segmenting the desired files and saving

3 % the results in a .mat file whose name is returned.

4 % Segment allows the user to select a DICOM file via an interactive GUI.

5 % The image is checked to make sure the format is correct before

6 % proceeding. The slice label is selected through a dialog. The first

7 % harmonic peaks are interactively identified before guiding the user

8 % through the manual segmentation of the endocardium and epicardium.

9

10 id = 'MATLAB:colon:nonIntegerIndex';

11 warning('off',id);

12

13 %% Load the files and generate the image stack

14 if isempty(varargin)

15 [fileName, pathName] = uigetfile('*.dcm','Select a DICOM file');

16 name = fullfile(pathName,fileName);

17 else

18 name = varargin{1};

19 [pth, fileName, ¬] = fileparts(name);

20 pathName = strcat(pth,'\');

21 end

22 dinfo = dicominfo(name);

23 time = dinfo.TriggerTime;

24 Im = imageCheck(dicomread(dinfo));

25

26 %% Create name for output file

27 [¬,filename,¬] = fileparts(name);

28 Name = strcat(pathName,filename,'_segmented.mat');

29 name = filename;

30

31 %% Select the label - 'base', 'mid', 'apical'

32 label = chooseLabelDialog;

33

34 if strcmp(label,'Basal')

35 load('base.mat')

36 elseif strcmp(label,'Mid-Cavity')

37 load('mid.mat')

38 elseif strcmp(label,'Apical')

39 load('apical.mat')

40 end

41
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42 %% Set key variables

43 prompt = {'nPoints';'rows'};

44 dlg_title = 'Alter Default Variables';

45 num_lines = 1;

46 defaultans = {'10','5'};

47 answer = inputdlg(prompt,dlg_title,num_lines,defaultans);

48 nPoints = str2num(answer{1}); rows = str2num(answer{2});

49

50 %% Fundamental Harmonic Peaks

51 % % Define the variables to be used in generating the filter bank

52 % Identify the central frequencies of the first harmonic peaks

53 [omega, angles] = FourierPeaks(Im);

54

55 %% Select the region-of-interest and crop the stack

56 [image, rect] = ROI(Im);

57

58 %% Image Segmentation

59 [segmentLabels, contourMask, test_points, sector, members, centroid] ...

= Segmentation(image, AHA, nPoints, rows, sectionAngles, ...

segmentLabels);%segm, mx);%, status);

60

61 %% Save Output

62 save(Name, 'name', 'time', 'Im', 'rect', 'omega', 'angles', ...

'segmentLabels', 'contourMask', 'test_points', 'sector', ...

'members', 'centroid');

63

64 end

A.1.1 imageCheck.m

1 function image = imageCheck(image)

2 % imageCheck ensures that the input image from the DICOM file is in

3 % the correct format for processing. It will convert 1- and 3-layer

4 % non-double class images to grayscale images of class double.

5

6 if ¬isa(image,'double') && size(image,3)==3

7 image = double(rgb2gray(image));

8 elseif ¬isa(image,'double') && (size(image,3)==1)

9 image = double(image);

10 else

11 error('IMAGE.TYPE::','Invalid Image: Image should be either RGB ...

or a 2D matrix')

12 end

13

14 end
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A.1.2 chooseLabelDialog.m

1 function label = chooseLabelDialog

2 % chooseLabelDialog is an interactive dialog that requires the user to

3 % identify the long-axis region that the slice represents.

4 % There are three options: Basal

5 % Mid-Cavity

6 % Apical

7

8 d = dialog('Position',[300 300 250 150],'Name','Select One');

9 txt = uicontrol('Parent',d,...

10 'Style','text',...

11 'Position',[20 80 210 40],...

12 'String','Select slice level');

13

14 popup = uicontrol('Parent',d,...

15 'Style','popup',...

16 'Position',[75 70 100 25],...

17 'String',{'Basal';'Mid-Cavity';'Apical'},....

18 'Callback',@popup_callback);

19

20 btn = uicontrol('Parent',d,...

21 'Position',[89 20 70 25],...

22 'String','Select',...

23 'Callback','delete(gcf)');

24

25 label = 'Basal';

26

27 % Wait for d to close before running to completion

28 uiwait(d);

29

30 function popup_callback(popup,callbackdata)

31 idx = popup.Value;

32 popup_items = popup.String;

33 label = char(popup_items(idx,:));

34 end

35

36 end

A.1.3 predefined_segmentation_variables.m

1 label = 1;
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2 AHA = 6;

3 segmentNames = {'Basal Anterior', 'Basal Anteroseptal', 'Basal ...

Inferoseptal', 'Basal Inferior', 'Basal Inferolateral', 'Basal ...

Anterolateral'};

4 sectionAngles = [pi/3 2*pi/3 pi 4*pi/3 5*pi/3 2*pi pi/3];

5 segmentLabels = {'basalAnterior',{}, 'basalAnteroseptal',{}, ...

'basalInferoseptal',{}, 'basalInferior',{}, ...

'basalInferolateral',{}, 'basalAnterolateral',{}};

6 save('base.mat', 'label', 'AHA', 'segmentNames', 'sectionAngles', ...

'segmentLabels')

7

8 label = 2;

9 AHA = 6;

10 segment_names_mid = {'Mid Anterior', 'Mid Anteroseptal', 'Mid ...

Inferoseptal', 'Mid Inferior', 'Mid Inferolateral', 'Mid ...

Anterolateral'};

11 sectionAngles = [pi/3 2*pi/3 pi 4*pi/3 5*pi/3 2*pi pi/3];

12 segmentLabels = {'midAnterior',{}, 'midAnteroseptal',{}, ...

'midInferoseptal',{}, 'midInferior',{}, 'midInferolateral',{}, ...

'midAnterolateral',{}};

13 save('mid.mat', 'label', 'AHA', 'segmentNames', 'sectionAngles', ...

'segmentLabels')

14

15 label = 3;

16 AHA = 4;

17 segment_names_apical = {'Apical Anterior', 'Apical Septal', 'Apical ...

Inferior', 'Apical Lateral'};

18 sectionAngles = [pi/4 3*pi/4 5*pi/4 7*pi/4 pi/4];

19 segmentLabels = {'midAnterior',{}, 'midAnteroseptal',{}, ...

'midInferoseptal',{}, 'midInferior',{}, 'midInferolateral',{}, ...

'midAnterolateral',{}};

20 save('apical.mat', 'label', 'AHA', 'segmentNames', 'sectionAngles', ...

'segmentLabels')

FourierPeaks.m

1 function [omega, angles] = FourierPeaks(image)

2 % FourierPeaks is a semi-automated approach to identify the central

3 % frequencies of desired spectral harmonic peaks in the 2D Fourier

4 % space. It also returns the angles of the peaks about the center.

5 % Both of theses values are used in creating the Gabor filter bank.

6

7 % % Implementing the Gabor Filter Bank

8 % Find the first harmonic peak for m = [-1 +1]

9 log_F = log(1 + fftshift(fft2(image)));

10 s = size(log_F);
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11

12 figure('Visible','off'), imshow(real(log_F),[])

13 set(gcf, 'Position', get(0,'Screensize')); % Maximize the figure

14 title({'Fourier Transform of the input image';...

15 'Please select the first harmonic peak for both the positive and ...

negative m';...

16 'Double click the second point to submit'})

17 set(gcf, 'Visible', 'on')

18 [pts_x, pts_y] = getpts(gcf);

19

20 % Creates a window around the selected peaks and finds the maximum,

21 % central, frequencies of those peaks

22 window1 = log_F((pts_x(1) - 20):(pts_x(1) + 20), (pts_y(1) - ...

20):(pts_y(1) + 20));

23

24 % % Oragnize omega

25 % QII and QIV = -theta QI and QIII = +theta

26 test_x = (pts_x>round(s(2)/2)); % Is x positive?

27 test_y = (pts_y<round(s(1)/2)); % Is y positive?

28 if (length(pts_x)==1)

29 omega = max(max(window1));

30 angles = atan(-(pts_y(1) - round(s(1)/2))/(pts_x(1) - ...

round(s(2)/2)));

31 close gcf

32 return

33 else

34 window2 = log_F((pts_x(2) - 20):(pts_x(2) + 20), (pts_y(2) - ...

20):(pts_y(2) + 20));

35 A1 = atan(-(pts_y(1) - round(s(1)/2))/(pts_x(1) - round(s(2)/2)));

36 A2 = atan(-(pts_y(2) - round(s(1)/2))/(pts_x(2) - round(s(2)/2)));

37 if ((test_x(1)==1 && test_y(1)==1) || (test_x(1)==0 && test_y(1)==0))

38 omega = [max(max(window1)) max(max(window2))];

39 angles = [A1 A2];

40 elseif ((test_x(1)==1 && test_y(1)==0) || (test_x(1)==0 && ...

test_y(1)==1))

41 omega = [max(max(window2)) max(max(window1))];

42 angles = [A2 A1];

43 end

44 end

45

46 close gcf

47

48 end

A.1.4 ROI.m
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1 function varargout = ROI(varargin)

2 % ROI helps the user specify the region-of-interest. The first input

3 % must be an image. If the region-of-interest has already been

4 % specified then it can be entered as the second input argument. If

5 % only one output is specified, then the cropped image will be

6 % returned. If two are specified, the second output will be 'rect'

7 % which was returned from imcrop and has been rounded.

8 % rect = [xmin ymin width height];

9

10 image = varargin{1};

11 if nargin==2

12 rect = varargin{2};

13 varargout{1} = image(rect(2):rect(2) + rect(4), rect(1):rect(1) + ...

rect(3));

14 elseif nargin==1

15 figure('Visible','off');

16 iptsetpref('ImshowAxesVisible','off');

17 imshow(image,[])

18 title({'Please select a region of interest centered about the ...

left ventricular cavity.';...

19 'Be sure to leave a reasonable border around the myocardium ...

and double click when finished.'})

20 % Maximize the figure and make it visible

21 set(gcf, 'Position', get(0,'Screensize'), 'Visible','on');

22

23 [¬, rect] = imcrop;

24 rect = round(rect);

25 varargout{1} = image(rect(2):rect(2) + rect(4), rect(1):rect(1) + ...

rect(3));

26 end

27

28 if nargout==2

29 varargout{2} = rect;

30 end

31

32 close gcf

33

34 end

A.1.5 Segmentation.m

1 function [segmentLabels, contourMask, test_points, sector, members, ...

centroid] = Segmentation(image, AHA, nPoints, rows, sectionAngles, ...

segmentLabels)

2 % Segmentation finds the contourMasks and the centroid of the myocardium,

3 % resamples the contourMasks, and assigns the PoIs to their respective
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4 % segments according to the AHA 17-segment model.

5

6 [contourMask, ¬, ¬] = contours(image);

7 centroid = Centroid(contourMask);

8 [test_points, sector, segmentLabels] = testPoints(centroid, AHA, ...

nPoints, rows, sectionAngles, segmentLabels, contourMask);

9

10 m = length(sectionAngles) - 1;

11 members = arrayfun(@(x)find(sector == x), 1:m, 'uniform', 0);

12

13 end

contours.m

1 function [contourMask, endo_cont, epi_cont] = contours(image)%, mx)

2 % contours.m does 1 of 2 things depending on the number of inputs. If

3 % only the image is given, then the user will be prompted to select

4 % points along the endocardial and epicardial contours. The more points

5 % selected, the better the contours will be. If the contours have

6 % already been identified and given as inputs, first the endocardial

7 % contour followed by the epicardial contour, then the contour masks

8 % will be created and the program terrminates.

9

10 % Evaluate the number of inputs and collect the contour coordinates

11 s = size(image);

12 figure('Visible','off');

13 imshow(image,[])

14 set(gcf, 'Position', get(0,'Screensize')); % Maximize the figure

15 title({'Please select points along the endocardium first and then ...

select points along the epicardium.';...

16 'Please start at the top, where the blue line intersects the ...

contour';...

17 'Double click the final point to submit'})

18 hold on

19 plot([0.5*s(2) 0.5*s(2)],[0 s(1)],'b'), hold off, set(gcf,'Visible','on')

20

21 [endo_contx, endo_conty] = getpts;

22 endo_cont = [endo_contx, endo_conty];

23 % Ensure the entire contour was selected

24 prompt = {'Did you finish the endocardial contour? y/n'};

25 dlg_title = 'Endocardial Contour';

26 num_lines = 1;

27 answer = inputdlg(prompt,dlg_title,num_lines);

28 test_check = strcmp(answer,'y');

29 while ¬test_check
30 [endo_contx, endo_conty] = getpts;
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31 endo_cont = [endo_contx, endo_conty];

32 answer = inputdlg(prompt,dlg_title,num_lines);

33 test_check = strcmp(answer,'y');

34 end

35

36 [epi_contx, epi_conty] = getpts;

37 epi_cont = [epi_contx, epi_conty];

38 % Ensure the entire contour was selected

39 prompt = {'Did you finish the epicardial contour? y/n'};

40 dlg_title = 'Epicardial Contour';

41 num_lines = 1;

42 answer = inputdlg(prompt,dlg_title,num_lines);

43 test_check = strcmp(answer,'y');

44 while ¬test_check
45 [epi_contx, epi_conty] = getpts;

46 epi_cont = [epi_contx, epi_conty];

47 answer = inputdlg(prompt,dlg_title,num_lines);

48 test_check = strcmp(answer,'y');

49 end

50

51 % Create the contour masks

52 epicardium = poly2mask(epi_cont(:,1),epi_cont(:,2),s(1),s(2));

53 endocardium = poly2mask(endo_cont(:,1),endo_cont(:,2),s(1),s(2));

54 contourMask = epicardium - endocardium;

55

56 close gcf

57

58 end

Centroid.m

1 function centroid = Centroid(contourMask)

2 % This program uses the polygon masks created in contours.m and finds

3 % the centroids of the myocardial contour. If only one input and

4 % output are specified, then only the myocardial contour's centroid

5 % will be found. If 3 inputs and outputs are specified, then the

6 % myocardial, endocardial, and epicardial centroids will be returned.

7

8 CC_cont = bwconncomp(contourMask);

9 centroid = cell2mat(struct2cell(regionprops(CC_cont,'Centroid')));

10

11 end
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testPoints.m

1 function [strain_pts, sector, combined, segmentLabels] = ...

testPoints(centroid, AHA, nPoints, rows, sectionAngles, ...

segmentLabels, contourMask)%epi_cont, endo_cont, AHA, nPoints, ...

rows, sectionAngles, segmentLabels, contourMask)

2 % Define the coordinates of the points between the contours to be

3 % analyzed. There will be nPoints number of points in AHA number of

4 % sections depending on the slice location, i.e. base, mid, or apical.

5 % The contours will be resampled at uniform arc lengths.

6

7 % Resample the contours at uniform dist (arc length)

8 % There will be AHA number of sections, nPoints points per section

9 noPts = AHA*nPoints;

10

11 % Separate the endocardial and epicardial contours

12 [b,¬,N] = bwboundaries(contourMask);

13 for k=1:length(b),

14 boundary = b{k};

15 if(k > N)

16 endo_C = [boundary(:,2), boundary(:,1)];

17 else

18 epi_C = [boundary(:,2), boundary(:,1)];

19 end

20 end

21

22 %% Reorder the contours

23 Endo = sortContour(endo_C, centroid, sectionAngles);

24 Epi = sortContour(epi_C, centroid, sectionAngles);

25

26 % Resample the contours

27 sampledEndo = resample(Endo, noPts);

28 sampledEpi = resample(Epi, noPts);

29

30 % Create testing points between the resampled contour points

31 combined = []; strain_pts = []; sector = zeros([noPts*rows 1]);

32 for n = 1:length(sampledEndo)

33 start = length(strain_pts) + 1;

34 % Linearly interpolate between endocardial and epicardial points

35 x = linspace(sampledEndo(n,1),sampledEpi(n,1),rows);

36 y = linspace(sampledEndo(n,2),sampledEpi(n,2),rows);

37 strain_pts = [strain_pts; x' y'];

38 stop = length(strain_pts);

39 [angNum, segmentLabels] = SegmentFinder(sampledEndo(n,:), ...

centroid, strain_pts(start:stop,:), sectionAngles, segmentLabels);

40 sector(start:stop,1) = angNum(1);

41 end

42 strain_pts = round(strain_pts);

43
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44 end

sortContour.m

1 function Contour = sortContour(contour, centroid, sectionAngles)

2 % sortContour sorts the points of a contour first according to its

3 % angle (in radians) about the centroid, and then corrected by

4 % choosing the nearest point spatially with the lowest angle.

5

6 %% Sorting theta

7 % Sort the endocardial contour points by theta

8 [theta, ¬] = cart2pol(contour(:,1) - centroid(1), contour(:,2) - ...

centroid(2));

9

10 % Correct for theta to be within the range [0, 2*pi)

11 n = find(theta≥2*pi); theta(n) = theta(n) - 2*pi;

12 n = find(theta<0); theta(n) = theta(n) + 2*pi;

13

14 % Sort theta in ascending order in counter-clockwise direction

15 [b, ind] = sort(theta);%,'descend'); b = abs(b);

16 % Sort the contour points according to the order of the angles

17 sorted = contour(ind,:);

18

19 % Let the first point start in the first AHA segment

20 wrp = find(b<sectionAngles(1));

21 sorted = [sorted(max(wrp)+1:end,:); sorted(wrp(1:end),:)];

22 B = [b(max(wrp)+1:end,:); b(wrp(1):wrp(end),:)];

23

24 %% Looking for the next nearest point

25 % Sort according to minimal distance between points

26 L = length(sorted); Contour = sorted(1,:);

27 for n = 1:L-1

28 exclude = []; d = zeros(1,length(sorted));%L-n);

29 % Measure the distance between the current pt and all others

30 for m = 1:length(sorted)

31 % Because the previous value is always erased, the next value

32 % will alwyas be (1,:)

33 d(m) = sqrt((sorted(m,1) - sorted(1,1))^2 + (sorted(m,2) - ...

sorted(1,2))^2);

34 % Exclude the PoI and any duplicate

35 if isequal(d(m),0)

36 exclude(length(exclude)+1) = m;

37 end

38 end

39 excluded = d; excluded(exclude) = [];

40 % Find the nearest points
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41 if ¬isempty(excluded)
42 f = find(min(excluded)==d,5);

43 end

44 % Find value with the smallest polar theta

45 [¬, minT] = min(B(f));

46 Contour(n+1,:) = sorted(f(minT),:);

47 B(f(minT)) = []; sorted(1,:) = [];

48 end

49

50 end

resample.m

1 function Resampled = resample(contour, noPts)

2 % resample returns noPts number of points along the given contour

3 % spread equidistantly along the perimeter of the contour.

4

5 % Cumulative arclength along the contour's perimeter

6 t = cumsum(sqrt([0,diff(contour(:,1)').^2] + ...

[0,diff(contour(:,2)').^2]));

7

8 % Total distance = t(end)

9 tmax = t(end);

10

11 % create a piecewise linear spline for each of px and py as a dunction

12 % of the cumulative chordwise arclength.

13 splx = mkpp(t,[diff(contour(:,1))./diff(t'),contour(1:(end-1),1)]);

14 sply = mkpp(t,[diff(contour(:,2))./diff(t'),contour(1:(end-1),2)]);

15

16 % Interpolate the polygon splines, splx and sply.

17 % noPts is the number of points to generate along the contour

18 % The first and last points should be replicates

19 tint = linspace(0,tmax,noPts);

20

21 qx = ppval(splx,tint);

22 qy = ppval(sply,tint);

23

24 Resampled = [qx', qy'];

25

26 end

SegmentFinder.m
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1 function [angNum, segmentLabels] = SegmentFinder(point, centroid, ...

newPts, sectionAngles, segmentLabels)

2 % SegmentFinder assigns the POIs to the appropriate segment according

3 % to the AHA 17-segment model.

4

5 % Compute polar coordinates

6 [thetaPt, ¬] = cart2pol(point(1) - centroid(1), point(2) - centroid(2));

7 % Correct so that theta is in (0, 2pi]

8 ind = (thetaPt≤0);

9 thetaPt(ind) = thetaPt(ind) + 2*pi;

10 m = length(sectionAngles) - 1;

11 sectionAngles = -sectionAngles;

12

13 % Identify which sector it falls into by checking theta against one

14 % sector and then the next. Should be greater than one and less than

15 % the other

16 membership = zeros([1 m]);

17 for n = 1:m

18 membership(n) = (thetaPt≥sectionAngles(n) && ...

thetaPt<sectionAngles(n+1));

19 if (n==m)

20 if ¬(m==4)
21 membership(n) = (thetaPt≥0 && thetaPt<sectionAngles(1));

22 elseif (m==4)

23 membership(n) = ((thetaPt≥0 && thetaPt<sectionAngles(1)) ...

|| (thetaPt≥sectionAngles(n) && thetaPt<0));

24 end

25 end

26 end

27

28 angNum = find(membership 6=0);

29

30 for n = 1:m

31 segmentLabels{2*n} = {[segmentLabels{2*n}(:,:); newPts]};

32 end

33

34 end

A.2 GaborFilterBank.m

1 function Name = GaborFilterBank(varargin)

2 % GaborFilterBank builds a bank of Gabor filters for data sets with

3 % either 1 or 2 tagging directions. The segmented file (*.mat) can

4 % either be passed as an input or if no inputs are provided, the

5 % it will be selected interactively. The output variables stored in
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6 % the .mat file are the:

7 % kernels1 - kernel values for the first orientation angle, omega(1)

8 % lookup1 - lookup table with the parameters for every kernel in

9 % kernels1

10 % kernels2 - kernel values for the second orientation angle, omega(2)

11 % lookup2 - lookup table with the parameters for every kernel in

12 % kernels2

13

14 % Load the image to be processed with or w/out an input file

15 if isempty(varargin)

16 [fileName, pathName] = uigetfile('*segmented.mat','Select a ...

segmented file');

17 file = fullfile(pathName,fileName);

18 else

19 file = varargin{1};

20 [pathName, ¬, ¬] = fileparts(file);

21 pathName = strcat(pathName,'\');

22 end

23 load(file)

24 Name = strcat(pathName,name,'_GaborFilterBank.mat');

25

26 % Set key variables

27 prompt = {'m';'dTheta';'MatrixSize';'sigma_x coeff';'lambda'};

28 dlg_title = 'Alter Default Variables';

29 num_lines = 1;

30 defaultans = {'0.8:0.01:1.2','[pi/12 pi/96]','11','1.5','2'};

31 answer = inputdlg(prompt,dlg_title,num_lines,defaultans);

32 m = str2num(answer{1}); dTheta = str2num(answer{2});

33 matrixsize = str2num(answer{3}); sigx = str2num(answer{4});

34 lambda = str2num(answer{5});

35

36 % Initialize variables

37 ltheta = dTheta(1)/dTheta(2) + 1;

38 kernels = zeros([matrixsize matrixsize length(m)*ltheta]);

39 lookup = zeros([(length(m)*length(ltheta)) 4]);

40 x = round(matrixsize/2); y = x;

41 centerpoint = [x y]; counter = 0;

42

43 % % Create the filter bank

44 for o = 1:length(omega)

45 % Define the frequency range of the filter bank

46 theta = angles(o)-dTheta(1):dTheta(2):angles(o)+dTheta(1);

47 for n = 1:length(m)

48 for th = 1:length(theta)

49 counter = counter + 1;

50 % Create the Gabor kernels to be used in the filter bank

51 [kernels(:,:,counter), U_prime, V_prime] = ...

GaborKernel(matrixsize, theta(th), omega(o), ...

centerpoint, m(n), sigx, lambda);

52 % Generate a lookup table of the optimized parameters

53 lookup(counter,:) = [U_prime V_prime m(n) theta(th)];
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54 end

55 end

56

57 if (o==1)

58 counter = 0;

59 kernels1 = kernels;

60 lookup1 = lookup;

61 theta = angles(2)-dTheta(1):dTheta(2):angles(2)+dTheta(1);

62 clear kernels lookup

63 elseif (o==2)

64 kernels2 = kernels;

65 lookup2 = lookup;

66 end

67

68 end

69

70 save(Name,'kernels1','lookup1','kernels2','lookup2','name');

71

72 end

GaborKernel.m

1 function [kernel, varargout] = GaborKernel(matrixsize, theta, omega, ...

centerpoint, m, sigx, lambda)

2 % matrixsize - Size of matrix (odd values are desirable -> center point)

3 % theta - orientation angle (in radians)

4 % omega - circular frequency of sin part (in spatial domain)

5 % centerPoint - center point of filter [x y]

6

7 pointX = centerpoint(1);

8 pointY = centerpoint(2);

9

10 maxX = matrixsize - pointX;

11 maxY = matrixsize - pointY;

12

13 % Ensure that the matrix size is odd

14 if(mod(matrixsize, 2)==0)

15 maxX = maxX - 1;

16 maxY = maxY - 1;

17 end

18

19 [x, y] = meshgrid(-maxX :1: maxX, -maxY :1: maxY);

20 x = double(x); y = double(y);

21

22 % % Create Kernel

23 e = exp(1);
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24

25 % % % R1 and R2 are actually x and y from download_Gabor.pdf

26 x_prime = x.*cos(theta(1)) + y.*sin(theta(1));

27 y_prime =-x.*sin(theta(1)) + y.*cos(theta(1));

28 U = cos(omega);

29 V = sin(omega);

30 U_prime = real((U + 1i*V) * m(1) * exp(1i * theta(1)));

31 V_prime = imag((U + 1i*V) * m(1) * exp(1i * theta(1)));

32

33 % Define sigma

34 sigy = sigx / lambda;

35 sigma = [sigx*1/sqrt(U^2+V^2) sigy*1/sqrt(U^2+V^2)];

36

37 expFactor = -1/2 * ((x_prime/sigma(1)).^2 + (y_prime/sigma(2)).^2);

38

39 gauss = 1 / (sqrt(lambda*pi)*sigma(1)*sigma(2));

40 gauss = (gauss + 1) .* e.^expFactor;

41

42 % Complex sinusoid used in generating the gabor filter

43 sinusoid = exp(-1i*2*pi.*(U_prime.*x + V_prime.*y));

44

45 % kernel = gaborReal + gaborImag*1i;

46 kernel = gauss .* sinusoid;

47 kernel = kernel'; % Set kernel(y,x); y=row; x=column;

48

49 varargout{1} = U_prime;

50 varargout{2} = V_prime;

51

52 end

A.3 GaborStrain.m

1 function Name = GaborStrain(varargin)

2 % GaborStrain uses the Gabor filter bank specified in the input to

3 % analyze the selected *.mat files and saves the results for each in a

4 % separate output file. Each input file is filtered and the optimized

5 % filter paramters and Angle Image are returned. Then the strain is

6 % calculated for the test_points for each image.

7

8 % Load the files and generate the image stack

9 if isempty(varargin)

10 [fn, pth] = uigetfile('*GaborFilterBank.mat','Select the Filter ...

Bank');

11 GaborFilterBank = fullfile(pth,fn);

12 else
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13 GaborFilterBank = varargin{1};

14 end

15 load(GaborFilterBank)

16

17 %% Choose segmented files to be analyzed

18 if ¬isempty(varargin)
19 [pth, ¬, ¬] = fileparts(varargin{1});

20 pth = strcat(pth,'\');

21 end

22 [fileName, pathName] = uigetfile(strcat(pth,'*segmented.mat'), ...

'MultiSelect', 'on', 'Select the segmented files to be processed');

23

24 %% Process the selected files

25 if ¬iscell(fileName)
26 l = 1;

27 elseif iscell(fileName)

28 l = length(fileName);

29 end

30 for n = 1:l

31 % n = 2;

32 if ¬iscell(fileName)
33 load(fullfile(pathName,fileName));

34 FileName = fileName;

35 else

36 load(fullfile(pathName,fileName{n}));

37 FileName = fileName{n};

38 end

39 if n == 1

40 Rect = rect;

41 end

42

43 %% Apply the Gabor filters

44 [image, optimized1, IND, contourMask, AngleImage1, Filtered1, ...

FilteredMag1, FilteredPhase1] = Optimize(Im, contourMask, ...

Rect, rect, kernels1, test_points, lookup1);

45 [ ¬ , optimized2, ¬ , ¬ , AngleImage2, Filtered2, ...

FilteredMag2, FilteredPhase2] = Optimize(Im, contourMask, ...

Rect, rect, kernels2, test_points, lookup2);

46

47 %% Analyze the strain for values inside the myocardium

48 F = zeros(2,2,length(optimized1)); E = F; R = F;

49 for i = 1:length(IND)

50 % Calculate F

51 % % Parameters along the x-direction

52 U_maxx = optimized1(IND(i),1); V_maxx = ...

optimized1(IND(i),2);

53 S_x = 1/sqrt(U_maxx^2 + V_maxx^2);

54 dPhi_x = atan(V_maxx/U_maxx);

55

56 % % Parameters along the y-direction

57 U_maxy = optimized2(IND(i),1); V_maxy = ...
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optimized2(IND(i),2);

58 S_y = 1/sqrt(U_maxy^2 + V_maxy^2);

59 dPhi_y = atan(V_maxy/U_maxy);

60

61 ind = ceil(length(lookup1)/2) + 1;

62 D = 1/sqrt(lookup1(ind,1)^2 + lookup1(ind,2)^2);

63 psi = pi/2 - dPhi_x - dPhi_y;

64 F(:,:,i) = [(S_x*cos(dPhi_y)/(D*sin(psi))) ...

(S_y*sin(dPhi_x)/(D*sin(psi))); ...

(S_x*sin(dPhi_y)/(D*sin(psi))) ...

(S_y*cos(dPhi_x)/(D*sin(psi)))];

65

66 % E is the Lagrangian finite strain tensor

67 E(:,:,i) = 0.5*(F(:,:,i)'.*F(:,:,i) - eye(size(F(:,:,i))));

68

69 % R is the local rotation matrix

70 R(:,:,i) = F(:,:,i)*(F(:,:,i)'.*F(:,:,i))^-0.5;

71

72 % Radial-circumferential strain tensor rotation matrices

73 [theta, ¬] = cart2pol(IND(i,1) - centroid(1), IND(i,2) - ...

centroid(2));

74 Q_R = [cos(theta) -sin(theta);

75 sin(theta) cos(theta)];

76 Q_C = [cos(theta+90) -sin(theta+90);

77 sin(theta+90) cos(theta+90)];

78

79 % Radial and circumferential strain tensors

80 E_dotR(:,:,i) = Q_R*E(:,:,i)*(Q_R.');

81 E_dotC(:,:,i) = Q_C*E(:,:,i)*(Q_C.');

82

83 end

84

85 %% Combine all of the data

86 % Find the magnitude of theh strain

87 for i = 1:length(E_dotR)

88 EdR(i) = norm(E_dotR(:,:,i));

89 EdC(i) = norm(E_dotC(:,:,i));

90 end

91

92 % Combine the PoI data for each segment

93 for j = 1:max(sector)

94 index = find(sector==j);

95 for k = 1:length(index)

96 strainR(k) = EdR(:,index(j));

97 strainC(k) = EdC(:,index(j));

98 end

99 StrainRseg(j) = {strainR};

100 StrainCseg(j) = {strainC};

101 StrainR(j) = mean(strainR);

102 StrainC(j) = mean(strainC);

103 end
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104

105 % Combine data for grand totals

106 TotalR = mean(EdR);

107 TotalC = mean(EdC);

108

109 %% Save the results variables for the current image to a .mat file

110 filename = strcat(pathName,name,'_analyzed.mat');

111 Name{n} = {filename};

112 save(filename,'image','segmentLabels','test_points',...

113 'sector','members','centroid','contourMask','time','Im',...

114 'rect','EdR','EdC','StrainR','StrainC','TotalR',...

115 'TotalC','AngleImage1','AngleImage2','Filtered1',...

116 'Filtered2','FilteredMag1','FilteredMag2',...

117 'FilteredPhase1','FilteredPhase2','StrainRseg',...

118 'StrainCseg');

119

120 %% Clear dynamic variables to prevent probelms

121 clear image optimized1 optimized2 U_maxx V_maxx S_x dPhi_x U_maxy ...

122 V_maxy S_y dPhi_y ind D psi F E R theta Q_R Q_C E_dotR E_dotC ...

123 strain avg_strainF avg_strainE avg_strainR avg_strainE_dotC ...

124 avg_strainE_dotR EdR EdC StrainR StrainC TotalR TotalC ...

125 AngleImage1 AngleImage2 name

126

127 end

128

129 end

A.3.1 Optimize.m

1 function [image, optiParameters, IND, contourMask, AngleImage, ...

Filtered, FilteredMag, FilteredPhase] = Optimize(Im, contourMask, ...

Rect, rect, kernels, test_points, lookuptable)

2 % Optimize.m filters the points of interest, defined in testPoints, of

3 % the input image with the Gabor filters contained in kernels. The

4 % results are then evaluated searching for the greatest magnitude

5 % response. The parameters that generated the maximum response are then

6 % returned stored in a lookup table, optiParameters, and an Angle Image

7 % is created by storing the phase responses of each pixel elicited by

8 % the optimized filters.

9

10 % lookuptable = lookup1; kernels = kernels1;

11 % % Adjust the inputs according to the change in ROI

12 [image, test_points, contourMask1] = adjust(Im, Rect, rect, ...

test_points, contourMask);

13 [IND(:,1), IND(:,2)] = find(contourMask1==1);

14
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15 % % Apply the Gabor filters

16 for n = 1:length(kernels)

17 % Smooth to eliminate erroneous peaks, and then sharpen

18 im = imsharpen(imgaussfilt(image,1),'Radius',2,'Amount',10);

19 Filtered(:,:,n) = conv2(im, kernels(:,:,n), 'same');%image, ...

kernels(:,:,n), 'same');

20 FilteredMag(:,:,n) = abs(Filtered(:,:,n));

21 FilteredPhase(:,:,n) = angle(Filtered(:,:,n));

22 end

23

24 % Create the "more precise" Angle Image

25 [¬, index] = max(FilteredMag,[],3);

26 s = size(FilteredMag);

27 for r = 1:s(1)

28 for c = 1:s(2)

29 AngleImage(r,c) = FilteredPhase(r,c,index(r,c));

30 % Store the optimized parameters

31 n = sub2ind(s,r,c);

32 optiParameters(n,:) = lookuptable(index(r,c),:);

33 end

34 end

35

36 % Mask the Angle Image to only display the myocardial information

37 AngleImage = AngleImage .* contourMask1;

38

39 % Improve image display with a gray background

40 ind = find(contourMask1==0);

41 AngleImage(ind) = max(max(AngleImage))/2;

42

43 end

adjust.m

1 function [image, test_points, contourMask1] = adjust(Im, Rect, rect, ...

test_points, contourMask)

2 % adjust will modify the ROIs, contours, and PoIs that were selected

3 % during the segmentation process so that all of the images in the

4 % sequence use the same ROI as the first image in the sequence.

5 % Therefore, the dicom images are cropped according to the original

6 % region-of-interest, Rect. The coordinates in the contour mask and

7 % the test_points vector will be adjusted by the change between Rect

8 % and rect, the original ROI of the current image. The contour mask

9 % is also redefined to match the size of the original ROI as indicated

10 % by Rect.

11

12 % Crop the input image
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13 image = Im(Rect(2):Rect(2) + Rect(4), Rect(1):Rect(1) + Rect(3));

14

15 % Correct the test_points for the shift of rect(1:2)

16 test_points = [test_points(:,1) + rect(1), test_points(:,2) + rect(2)];

17 dc = Rect(1) - rect(1); dr = Rect(2) - rect(2);

18 test_points = [test_points(:,1) - Rect(1), test_points(:,2) - Rect(2)];

19

20 % Correct the displacement of the contour

21 [X, Y] = find(contourMask==1);

22 X = X + dr; Y = Y + dc;

23 X = round(X); Y = round(Y);

24

25 % Redefine the size of the contour mask to fit the region-of-interest

26 contourMask1 = zeros(size(image));

27 for n = 1:length(X)

28 if (X(n)≤0), X(n) = 1; end

29 if (Y(n)≤0), Y(n) = 1; end

30 contourMask1(X(n), Y(n)) = 1;

31 end

32

33 end

A.4 combineStack.m

1 function Name = combineStack(varargin)

2 % combineStack loads the desired *analyzed.mat files for an image

3 % sequence and combines the results into single variables. The

4 % outputs can then be displayed in plots or tables to visualize

5 % and assess the results.

6

7 if isempty(varargin)

8 % [fileName, pathName, ¬] = uigetfile( ...

9 files = uigetfilename('extension','*analyzed*.mat');

10 if ¬ischar(files)
11 l = length(files);

12 else

13 l = 1;

14 end

15 if isequal(files,0)

16 disp('User pressed cancel')

17 return

18 end

19 else

20 files = varargin{1};

21 l = length(files);
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22 end

23

24 Time = []; Strain_R = []; Strain_C = []; Total_R = []; Total_C = [];

25 for n = 1:l

26 load(files{n}, 'StrainR', 'StrainC', 'TotalR', 'TotalC', 'time', ...

'StrainRseg', 'StrainCseg')

27 % Mean strains for each segment

28 Strain_R = [Strain_R; StrainR];

29 Strain_C = [Strain_C; StrainC];

30

31 Time = [Time time];

32

33 % Combine data for grand totals

34 Total_R(n) = TotalR;

35 Total_C(n) = TotalC;

36 segStrainR(n) = {cell2mat(StrainRseg)};

37 segStrainC(n) = {cell2mat(StrainCseg)};

38

39 end

40

41 Strain_R = Strain_R'; Strain_C = Strain_C';

42 exportr = [Time;Strain_R;Total_R]; exportc = [Time;Strain_C;Total_C];

43

44 %% Save results

45 [pathName, fileName{1}, ¬] = fileparts(files{1});

46 [¬, fileName{2}, ¬] = fileparts(files{n});

47 Name = fullfile(pathName, strcat(char(fileName{1}),'_to_', ...

48 char(fileName{2}), '_stacked.mat'));

49 save(Name, 'Total_R', 'Total_C', 'Strain_R', 'Strain_C', 'n',....

50 'Time', 'exportr', 'exportc', 'segStrainR', 'segStrainC');

51

52 end
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B. SYNTHETIC DATA

Figure B.1: Synthetic data image 01

Figure B.2: Synthetic data image 02
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Figure B.3: Synthetic data image 03

Figure B.4: Synthetic data image 04
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Figure B.5: Synthetic data image 05

Figure B.6: Synthetic data image 06
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Figure B.7: Synthetic data image 07

Figure B.8: Synthetic data image 08
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