
Czech Technical University in Prague
Faculty of Electrical Engineering

Master Thesis

Network-based cloud benchmarking

Vojtěch Uhlíř

Supervisor: Dr. Lukáš Kencl

Study Programme: Electronics, Energetics and Management

Field of Study: Management of Electrical Engineering and Economics

2017

Acknowledgements
I would like to express my gratitude to my supervisor Dr. Lukáš Kencl for all advises given
and his leadership, to Ing. Ondřej Tománek for the close collaboration and his amazing help
during the whole year of my work as well as to the department of my program EEM that
allowed me to study related courses and work on this project.

I’d like to also thank to Mahshid R. Naeini, Ph.D. and Jorge E. Pezoa, Ph.D. who helped
me to work on the thesis abroad at the Texas Tech University and who also provided me a
valuable discussions and fresh ideas for the methodology.

Last but not least I would like to thank to my family and my friends who supported
me during the long journey of education at the university towards this Master Thesis and
my diploma. My work was also supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS15/153/OHK3/2T/13.

Declaration
I hereby declare that I have completed this Master Thesis independently in compliance with
Methodical guideline for adhering to ethical principles for academical theses and that I have
listed all the literature and publications used.

In Prague on Jan 5, 2017 .

Abstract

This Master Thesis proposes an innovative methodology how to benchmark global cloud
services from the network latency point of view. For this purpose, I have significantly
redesigned pre-existing CLAudit platform to perform long term measurements allowing cloud
service provider comparison research. The proposed benchmarking methodology consists of a
sequence of steps that allows to obtain a ranking value per each provider. To this end multiple
global points of presence and various metrics are used, as suits a particular application use
case.

In the experiments, two well-known providers, Amazon and Microsoft are used. I have
derived a theoretical foundation of the method and demonstrated its application with ob-
tained real measurements to get a practical cloud service provider ranking based on various
metrics.

Keywords:
Network latency, cloud, benchmarking, CLAudit, Amazon AWS, Microsoft Azure

Abstrakt

Předmětem této diplomové práce je inovativní metoda pro porovnání cloudových poskyto-
vatelů z hlediska síťové odezvy globálních cloudových služeb. K získání reálných dat byla
zasádně rozšířena a vylepšena existující platforma CLAudit. Metoda pro porovnání - tzv
benchmarking, je posloupnost několika kroků na jejímž konci je hodnocení poskytovatele na
základě různých metrik. Tyto metriky mohou být upraveny tak, aby modelovaly požadavky
aplikací nebo jejich nasazení v cloudovém prostředí.

Data jsou získána měřením dvou největších cloudových poskytovatelů, Amazon a Mi-
crosoft. V práci je odvozen teoretický a matematický základ pro danou metodu, která je
následně aplikována na data z měření reálných cloudových zdrojů. Výsledky poskytují nové
informace a hodnocení jako podklad pro rozhodnutí o výběru cloudového poskytovatele z
pohledu síťové latence.

Klíčová slova:
Síťová odezva, cloud, benchmarking, CLAudit, Amazon AWS, Microsoft Azure

1

2

Contents

1 Introduction 9

2 Cloud benchmarking 11
2.1 Cloud computing . 11
2.2 Latency-based benchmarking - State of the Art 15
2.3 Cloud services - use cases . 17

2.3.1 Financial trading . 17
2.3.2 Online gaming platforms . 18
2.3.3 Navigation systems . 19

3 Network latency measurements 21
3.1 Cloud Latency Auditing platform . 21

3.1.1 Architecture . 21
3.1.2 Testbed . 23
3.1.3 Measured variables . 25

3.2 My platform extensions for benchmarking approach 26
3.2.1 Data–center locations . 26
3.2.2 Configuration file . 28
3.2.3 File naming notation . 28
3.2.4 VP locations . 29
3.2.5 Platform code redesign . 30

3.3 Measurement dataset . 31

4 Measurement platform cost insight 35
4.1 Amazon - AWS . 35
4.2 Microsoft - Azure . 37
4.3 Infrastructure cost comparison . 38

5 Benchmarking methodology 39
5.1 Measurements terminology . 39
5.2 Data preprocessing . 39

5.2.1 Data normalization . 39
5.2.1.1 Via optimal-propagation-delay approximation 40
5.2.1.2 Via minimum-RTT latency 40

5.2.2 Data transformation . 42
5.3 CSP ranking method . 42

3

4 CONTENTS

5.3.1 Statistical metrics . 42
5.3.2 Metric vectors . 43
5.3.3 Protocol layer aggregation . 45
5.3.4 Metric weighting . 45
5.3.5 CSP rank . 45

6 Benchmarking application 47
6.1 CSP rank results . 48
6.2 CSP rank - error function . 50
6.3 Measurements summary . 51
6.4 Measurements and business analysis impact 52

7 Conclusion 55

Accomplishments 57

Bibliography 59

A List of abbreviations 65

List of Figures

2.1 A data center building example, Google Inc., Oklahoma. 11
2.2 A data center interior example, Facebook, Inc., Sweden. 12
2.3 Cloud service model differences; IaaS, PaaS and SaaS; Microsoft example. . . 14

3.1 Network interactions during CLAudit latency measurements. 22
3.2 CLAudit global deployment and points of presence. 23
3.3 CLAudit-measured variables during latency measurements 26
3.4 Microsoft Azure Data Center locations in December 2016. 27
3.5 An example of a list of files showing the naming convention. 30
3.6 Raw measurement example, TCP layer, VP in Prague - WUS front-end servers. 33
3.7 Measurement of SQL queries from Dublin front-end servers to Tokyo back-ends. 33

4.1 Amazon AWS cost calculator example. 36

5.1 Data preprocessing process. 41
5.2 End-to-end benchmarking process overview. 43
5.3 Metric vectors from CSP ranking. 44

6.1 Actual latencies to EUS front-end servers as observed by the four VPs. 47
6.1 Actual latencies to EUS front-end servers as observed by the four VPs. 48
6.2 Decreasing error with growing amount of measurements. 50
6.3 An Australian client connecting to Singapore front-end server on HTTP layer. 53
6.4 Scaled plots of measurements from Fig. 6.3. 53
6.5 Threshold at 100ms highlighted. 54
6.6 Threshold at 150ms highlighted. 54
6.7 Threshold at 200ms highlighted. 54

5

6 LIST OF FIGURES

List of Tables

3.1 An example of compute resource instance types at Amazon AWS. 24
3.2 CLAudit front-end resource instance types used. 24
3.3 CLAudit back-end resource instance types used. 25

4.1 AWS compute reserved instances; 3-year contract cost overview. 36
4.2 AWS database reserved instances; 3-year contract cost overview. 37
4.3 Azure compute instances price overview. 37
4.4 Azure Database instances price overview. 37
4.5 Total payments per month for resources at MS Azure. 38
4.6 Compute on-demand instances cost overview. 38
4.7 Database on-demand instances cost overview. 38
4.8 Platform cost for the 10 weeks measurement window. 38

6.2 Summary of vector magnitudes for front-end resources. 51
6.3 Summary of vector magnitudes for back-end resources. 51
6.4 Percentage of measurements which falls under the threshold. 53

7

8 LIST OF TABLES

Chapter 1

Introduction

Cloud computing is a major movement in IT and software engineering business nowadays.
Customers more and more consider benefits of this approach, a selection of complex cloud
services is increasing, number of providers is growing, their budgets are booming. Cloud
provides a perfect scaling feature - adding and removing resources have not been ever that
easy. This provides a substrate taking form of an underlying infrastructure - it provides a
real and flexible resource pool for more innovations, scaling option for products’ growth and
it is not limit for a company’s business.

With this infrastructure shift, different challenges are emerging. Main cloud parameters
were targeted with tests and a thorough investigation - a compute power, a memory data
throughput and some others. Somehow, cloud resource access time, or network latency, did
not get that much attention, even though such evaluation is needed. With current trend
of using personal devices and their services - like maps and a car navigation for example,
users expect results in magnitude of hundreds of milliseconds, without long access times.
In a high frequency online trading business, even single milliseconds matter when deciding
about stock trades or betting on a particular situation. Despite that, cloud providers do
not publish sufficient information in this field and application testing of different resources
would be time and money consuming. This makes businesses indecisive and gullible.

In this work, I present an innovative benchmarking methodology, based on latency mea-
surements of cloud resources, using a redesigned global measurement platform. Network
latency is specifically chosen as it is among key performance parameters for the vast major-
ity of applications. As research results show, provider selection and the application deploy-
ment location have significant impact when considering quality of service or optimizing its
performance.

To achieve the task, this thesis has two major goals. Firstly, as a practical part, it is
to significantly upgrade an existing CLAudit measurement platform [1], by extending it to
two main cloud providers - Amazon and Microsoft. This extension allows to perform and to
collect long-term network latency measurements via active probing at multiple layers of the
network protocol stack for different providers using world-wide cloud resources.

The second goal is to propose a benchmarking methodology, enabling cloud providers
comparison and resulting in a provider rank value. A theoretical background is introduced
to cover all mathematical operations for data preprocessing and provider rank calculation

9

10 CHAPTER 1. INTRODUCTION

using different metrics. The benchmarking methodology contains multiple steps enabling
to tailor the approach to a specific application needs and business use cases. The single
rank value gives an option how to evaluate a cloud provider performance from a global
network connection perspective. Demonstration of the method applicability is performed
using data from the CLAudit platform resulting in real examples relevant to different use-
cases. Discussion of the method results and measurements themselves opens ideas how these
findings can help in business negotiations or quality of service evaluations.

With these goals in mind, the content of this work is divided accordingly:

• Chapter 2 contains a cloud computing overview, current state of the art in network
latency research field and motivational use cases for this work.

• Chapter 3 introduces the CLAudit platform, its architecture, current deployment, de-
scription of my own practical work as well as a dataset which was used for the method-
ology demonstration and real data examples.

• Chapter 4 describes CLAudit measurement infrastructure cost and economical insight
to cloud resource pricing.

• Chapter 5 presents the whole benchmarking methodology, starting with terminology
introduction and data preprocessing followed by the step by step manuals how to get
the cloud service provider rank, enabling provider comparison.

• Chapter 6 contains results when applying the methodology on real data from the
CLAudit platform, and a discussion of the measurements and of the cloud resource
performance itself.

Chapter 2

Cloud benchmarking

2.1 Cloud computing

The word "Cloud" is a terminology for a technique and a technology trend, not any more as
a buzzword, but a usage set to continue. According [2], by 2020, a Corporate "No-Cloud"
Policy Will Be as Rare as a "No-Internet" Policy Is Today.

Origin of the term "Cloud" is unclear, one source [3] defines cloud computing as a style
of computing in which scalable and elastic IT-enabled capabilities are delivered as a service
using Internet technologies. According to another one [4], the "cloud" stands for a model
enabling convenient, on-demand network access to a shared pool of configurable computing
resources (e.g. networks, servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction.

Figure 2.1: A data center building example, Google Inc., Oklahoma.

11

12 CHAPTER 2. CLOUD BENCHMARKING

With application infrastructure resources in a cloud, administrators and developers can
leave management of the bare metal computing hardware to someone else and focus on
their actual work - application administration and development. For that there are different
cloud providers that offer the infrastructure as a business service for prospective customers.
In following lines I describe these and other terminology terms that are being used in this
specific field. The review proceeds bottom up, from a building with computers to a cloud
operations techniques.

A building where hardware resources, computers and a cloud underlying infrastructure
are located, is called Data Center (DC). Usually, it is a large and hi-tech building with
very solid and reliable power resources, a cooling infrastructure and an internet connectivity.
Inside, there is a complex infrastructure with high performance computers. These computers,
usually called servers, represent such physical, hardware-based computing resource. An
example of such data center building is shown in Fig. 2.1 [5], an arbitrary insight of DC
interior is depicted in Fig. 2.2 [6].

Figure 2.2: A data center interior example, Facebook, Inc., Sweden.

A firm utilizes these data centers for its own business purposes and offers various cloud
services for its customers. Therefore, related names as a cloud provider or a cloud service
provider (CSP) are being commonly used for such business units. This CSP tries to utilize
the infrastructure as much as possible to have the resources fully occupied. To do so, a
cloud provider uses different techniques that allows him to share one hardware resource for
various different clients. This is also the main approach when considering cloud - not to build
and run underutilized on-premise resources. One technique enabling this resource sharing

2.1. CLOUD COMPUTING 13

is called virtualization [7], when a power of a real server is virtualized for other purposes,
e.g. to represent a set of virtual servers. Then, each of these virtual servers are offered to
different customers for their needs and applications.

With respect of this cloud concept, customers of such virtualized servers are usually called
tenants. A tenant is a customer who consumes cloud provider’s infrastructure by buying
various services. These tenants are business units with own use-case. They can be large
corporate firms, fresh new start-up companies or a single person with her own motivation.
All of these can use resource offering as an arbitrary computing power for internal apps,
storage or testing machine as well as for a software which serves content for their actual end-
users, run some data analytics, business intelligence etc. Tenants can access their resources in
various different ways - using just a simple remote access, via a provider’s online management
website or with a web-based command line tool, for example.

When speaking about tenants, a term multi-tenancy [8], is also commonly used in a
cloud related discussions. Multi-tenancy is a reference to the mode of operation of software
where multiple independent instances of one or multiple applications operate in a shared
environment. The instances (tenants) are logically isolated, but physically integrated. The
degree of logical isolation must be complete, but the degree of physical integration will vary.
The more physical integration, the harder it is to preserve the logical isolation. Tenants
(application instances) are representations of units that obtained access to the multi-tenant
environment and they have applications competing for shared underlying resources.

A tenant deploys her application to a chosen data center of a particular cloud provider.
From that instance of the application, an actual content is served to end user customers.
There are also different techniques and technologies how the application can be deployed.
It is a compromise of a degree of control over the deployment and application management
simplicity. It is very common that providers offer not only infrastructure, but as well as
software, database solutions or complete software platforms to use. Main differences between
these models are described in the naming terminology. For that, it is very common to use
acronym XaaS, which stands for something-"X" As A Service. Thus, the main cloud service
models are:

• IaaS - Infrastructure As A Service

• PaaS - Platform As A Service

• SaaS - Software As A Service

But not all providers offer all of these options. Some providers offer an IaaS or PaaS
solution only, for example. Degree of virtualization and major differences between these
approaches are depicted in Fig. 2.3 [9]. This diagram comes from Microsoft cloud provider,
which offers all types of these services with its cloud solution called Azure.

Other terms widely used in cloud related discussions are a public and private cloud.
Public cloud from a cloud provider is a solution, as the name suggests, for public usage.
Anyone seeking a cloud infrastructure can open an account or make a deal with the provider
and start using the product. It is a shared environment of a computing infrastructure across
different users, business units or businesses. Usually it is an internet facing, so all connections
are coming in and out through the internet.

14 CHAPTER 2. CLOUD BENCHMARKING

Figure 2.3: Cloud service model differences; IaaS, PaaS and SaaS; Microsoft example.

However, these internet facing, shared computing environments might not be suitable
for all businesses and production usage where an isolated environment is needed to have the
infrastructure, resources or networking setup under full control.

Private cloud is a model of cloud computing that delivers similar advantages as public
cloud, including scalability and self-service, but through a logically isolated architecture.
A private cloud is dedicated to the single organization which has complete control over
the infrastructure management, especially networking. It includes selection of your own IP
address range, creation of subnets or configuration of route tables and network gateways.
Private cloud is usually offered by a cloud provider running on its infrastructure (usually
called virtual private cloud) or managed in a separate data center. There are 3rd party
companies, which offer service of managing private clouds at an arbitrary infrastructure
based on customer preference [10, 11].

Based on different studies about market share in cloud environment [12, 13], Microsoft
with its solution called Azure takes second place between the biggest public cloud providers.
The first place belongs to Amazon and its Amazon AWS cloud solution. Overall, the most
well known public cloud providers are:

• Amazon - cloud solution called Amazon Web Services (AWS)

• Google - Google Cloud Platform (GCP)

• Microsoft - Microsoft Azure

• Rackspace, Alibaba or IBM.

Cloud solutions are suitable for small applications as well as for large world-wide services
with thousands of customers. For example, Netflix service, the most popular online video
streaming portal in the USA, is running its infrastructure at AWS cloud [14, 15].

2.2. LATENCY-BASED BENCHMARKING - STATE OF THE ART 15

2.2 Latency-based benchmarking - State of the Art

Network latency is an important, yet often underestimated aspect of the nascent cloud com-
puting scenario. A cloud service based on processing in remote data centers may exhibit
latency and jitter which may be a compound result of many various components of the
remote computation and intermediate communication. The inherent delay in computer-
communication networks has been a long-standing problem and even accelerated nowadays
by the boom in distributed applications related to the Internet and cloud computing growth.
The key problem is the great demand of the new applications, both for computing resources
and for the quality of the communication networks. While the more obvious problem of
computing-resources allocation is being deeply investigated, research in improving network-
quality parameters, throughput apart, appears not to get as much attention. As a conse-
quence, end-users’ time and patience is often the price, and deployment of latency-sensitive
applications (e.g. games) in the general cloud has been slow, often favoring proprietary so-
lutions. Cloud computing customers — end users and tenants — thus still stand in wait of
satisfactory answers to their application-performance requirements.

Cloud service latency may play a role in many kinds of applications. Starting with simple
web-based solutions all the way to collaborative applications, ranging from documents shar-
ing across voice and video telepresence to haptic-operated distributed games or interactive
shared 3D worlds. There can be orders of magnitude differences between their latency re-
quirements, ranging from units of seconds to units of milliseconds. Low latency demands are
not limited to those applications, but also to the practices and designs inherent to the cloud
computing infrastructure, such as replication, task distribution, sharing, synchronization,
offload or rapid scaling [1, 16].

Latency is of the utmost importance to the cloud, but the complexity and diversity of
this environment prevent the conventional Internet measurement techniques to be easily
adjusted to fit cloud computing needs. The problem partly being the scale, because the
larger the scale the greater the impact of latency variability and the need for reliably low
latency [17, 18].

Each application with its purpose, design and an implementation is different. Customer
applications differ in QoS requirements, traffic nature, burstiness and performance parame-
ters. With CSP’s offerings homogenizing, competitive differentiation starts to take place at
the service quality level. However, CSPs only reveal insufficient amount of technical infor-
mation about their service, leaving tenants indecisive where to deploy the app resources or
which products and solutions to buy. But, in fact, as some results in this thesis show, there
are big differences in service quality among CSPs and even among single–CSP’s data cen-
ters. One technique that enables decision support for selection of CSP and cloud resources
is benchmarking [1].

The most accurate benchmarking method will always involve a trial deployment of the
actual application, but that usually comes with significant costs, extensive configurations,
setup times and need to redo everything for different CSPs. Cross-sectional studies and quick
shallow benchmarking of cloud resources via a test suite might partly solve the problem, but
have a number of limitations. Specifically, these are not in-depth and, as such, provide
a little or no explanation; restrictions imposed by CSP often lead to invalid comparisons

16 CHAPTER 2. CLOUD BENCHMARKING

and a short measurement timeframe leads to inaccuracies. Also, these often cannot answer
questions related to global distributed applications.

Miscellaneous cloud measurements and analyses were conducted [19], often on platforms
and tools designed in academia (like Fathom [20] or Flowping [21], often using Planet-
Lab [22]). Deriving traffic characteristics of flows inside a DC was a focus of [23] or [24]. Spe-
cific measurements concerning cloud performance include [25] and [26]. End-user-perceived
cloud-application performance measurements were discussed for example in [27, 28, 29].
General network delay tomography and specific blackbox latency predictions are the topic
of [30, 31], respectively.

Observations from multiple Vantage Points have been used previously [32, 33, 34], but
these do not measure back-end or latency at multiple protocol layers. Active probing of cloud
resources [35] confirms need for sophisticated measurement, but is availability-oriented and
does not document trends. The common goal of all these efforts is a fair comparison of public
CSPs using relevant metrics, as well as improving network behavior based on feedback, as
implemented in SDN (Software Defined Networking) controllers.

Despite of the wide cloud service adoption between businesses and users, there is still
ongoing research looking for a new improvements or solutions of existing cloud related issues.
For example, data transfer bottlenecks [36], performance unpredictability [37] and latency
[29] are among major obstacles to cloud growth. Benchmarking helps to reveal these, as was
shown through its many use cases [38].

A number of cross–sectional (also called breadth and snapshot) CSP benchmarking tools
considering network performance have been introduced previously: CloudCmp comparator
[39] measures computation, storage and network resources, the latter using a TCP through-
put and end-to-end response times. They developed own CloudCmp benchmarks to stress
out each of these components of the Cloud available resources at the particular field. For each
services they present different performance metrics to measure. For example for computing
part it is benchmark finishing time (to stress out the CPU, memory and I/O), monetary
cost to complete the benchmark task or scaling latency. For network measurements it is a
throughput and latency measurements. They are focused more on benchmarking a particu-
lar services and infrastructure recourses at a short period of time. They run stress tests to
measure a pure performance.

Smart CloudBench framework [40] deploys a transactional web–services benchmarking
suite and, by measuring response times and recording error codes, estimates the cost–to–
performance ratio. They have created a framework which can deploy the benchmarking ap-
plication on user selected VMs at different providers’ infrastructure. For actual performance
measurements, they use a widely used benchmarking suit (TCP-W). During the experiments,
they collect following metrics for result comparison: average response time (ART), maximum
response time (MRT), total number of successful interactions (SI) and total number of time-
outs (T) during each benchmark cycle. To offer a cost/performance ratio for a customer,
they relate these data with a running cost.

Custom–tailored benchmarking suites for testing CSPs can be created using [41]. In
contrast, CLAudit based network–latency–oriented approach works with weeks-to-months of
collected RTTs of relevant ISO/OSI layers. Throughput is not considered, to keep monetary
costs low and avoid overloading Internet and inter–Cloud links.

2.3. CLOUD SERVICES - USE CASES 17

For cloud service status verification, various online dashboards exist, either run by a
CSP itself (Amazon [42] or Microsoft [43]) or a third–party (CloudHarmony [44]). These are
insufficient, as they do not offer in–depth comparisons.

Using the benchmarking output, providers can be ranked using multi–criteria decision–
making techniques (as done by CloudGenius [45]) or utility theory and preference policies
(as done by CloudBroker [46]).

Related to benchmarking, there are various cloud network performance estimation and
prediction techniques. DNS infrastructure [31] or routing topology measurements [30] can be
exploited to estimate latency between arbitrary Internet hosts. Performance of a hypothetical
cloud service running across global DC deployment can be estimated via measurements [26].
In–house recorded usage traces can be used by CloudProphet to predict cloud response times
of web applications under migration consideration [47]. Large–scale active probing of cloud
in [35] confirms the need for sophisticated cloud measurements, but is availability-oriented
only.

The CLAudit platform uses of observations from multiple Vantage Points, which was
done in other works – mainly to measure Content Distribution Networks [32, 34] and Internet
paths [27, 33, 48].

A number of (often PlanetLab–based [22]) tools for obtaining suitable RTT measure-
ments for latency–based benchmarking exist, namely CLAudit [1], Fathom [20] or FlowPing
[21]. Measurement transformations, which the Latency–based benchmarking applies, are
described in [49]. Adaptations of different metrics and statistics used to describe application
requirements, are based on [50].

2.3 Cloud services - use cases

Network latency plays significant role when considering applications when clients need to
have a fast access to data stored at the application server. I present a few use cases when
the knowledge of network latency plays a crucial role for business or for a customer usage.
It demonstrates when a provider benchmarking can give a valuable information for decisions
about application deployments. These use cases provide an insight for understanding that
network latency research is a real issue in these days. Latency-based benchmarking will allow
a comparison of different CSPs and how to evaluate different solutions for a particular use
case. For each use case there are different metrics, which might be particularly important in
that situation.

2.3.1 Financial trading

Once upon a time, stock exchanges were packed with traders running, shouting, and el-
bowing one another on an open trading floor. Today, virtually all stock trading is done
through massive, globally interlinked computer systems [51]. In this article, author de-
scribes a phenomenon in financial business called high-frequency trading where the network
latency response is a crucial part of the communication between trader’s company and stock
exchange servers.

18 CHAPTER 2. CLOUD BENCHMARKING

Demonstration of network latency as a major factor is, that one company invested in an
installation of a new shortest route between New York and Chicago stock exchanges. The
round-trip travel time of a signal along of a new cable, 13.3 milliseconds, was 3 ms faster
than competitors were offering. Lowering it from 16.3ms, it’s an 18% improvement. From
this example, it is clear to see that even a few milliseconds matter and that it can give a
significant competitive advantage. If a customer has a business in this field, he seeks for
globally and persistently lowest possible latency.

Trading is executed continuously which means that this low latency is requested in long
period of time and in a stable manner, not just as a single minimal value. A threshold value
for such latency can be derived from standards on the market or competitor’s offers for a
particular location. Occasionally or periodically observed high latency peaks deviated from
the maximum tolerant value can result in a monetary or a business loss. If a customer has
an information earlier than the competitor, he can react on the deal better - with a lower
price, a better counter-offer etc. Long term, network latency measurements unfold such
information and provide very valuable data for businesses.

Furthermore, in today’s globalisation era, such a trading company might be dispersed
over different cities to cover business hours in multiple timezones or countries. Benchmarking
of different cloud resources around the world can offer an information where to deploy an
internal system, for example, which resource will have an acceptable latency response to a
global stock exchanges.

2.3.2 Online gaming platforms

Cloud environment provides a convenient scalability of resources, for example depending on
a number of connected users. This situation was recognized by gaming studios which start
to deploy an infrastructure to a cloud. Furthermore, thin clients have become increasingly
popular in recent years, primarily because of the high penetration rate of broadband Internet
access and the use of cloud computing technology to build large-scale data centers. The
massive computation and storage resources of data centers enable users to shift their workload
from local workstations to remote servers [52].

Latest games usually come with high requirements on a computer performance to play
the game, including all new features, using of some brand new functions of the latest graphics
card generation. This can meet an anxiety of users, gamers, who are forced to upgrade their
machine or a gaming console regularly. Instead, these high intensive computations can be
shifted right to the cloud, when the traditional fat client is replaced with a thin, interactive
client.

But to meet high client expectations and ensure the same quality of experience as clients
are used to, there is a high demand on cloud computing infrastructure parameters. They
need to meet the strict network latency requirements necessary for an acceptable game play
for many end-users.

Client’s game stream should report a stable network latency for a smooth experience.
This can be addressed by statistical metrics as a variance or a standard deviation. A thresh-
old value which is still acceptable for a smooth game flow can be empirically measured. For
action games this threshold can be very high demanding (very low latency value) due to
rapid scene changes, for a turn-by-turn game on the other hand, this threshold can be more

2.3. CLOUD SERVICES - USE CASES 19

flexible. If the network latency has some extremes in values, a game player might some video
lags when she stays where she was an then jumps somewhere else. This has a strong impact
on the user experience of course.

Online gaming is usually world wide based - one massive online game is played around the
globe. This opens a demand for overall measurements and data which would represent clients
in those locations. Traffic can be also routed to one specific application server location or split
to a client nearest/best suitable server. World-wide data center latency benchmarking can
offer aggregated data for such questions and to make a decision about application deployment
easier.

2.3.3 Navigation systems

Let us consider an application deployment which serves maps and other navigation infor-
mation to the clients. This got very popular recently, due to the fact that a lot of clients
use GPS navigation systems with online data connection on their smartphones. Using a
smartphone and a data connection, it is very easy to find a map of surrounding area where
the user is and she wants to go. This comfort for smartphone users comes with a heavy load
of queries against the application provider resources. This is a perfect use case for global
latency measurements from a multiple following reasons:

• Masses of people requesting map details in a traffic peak hours are very geo-collocated
in a relatively small area. A best fit resource/data center location can be found. A
benchmarking approach can find and to propose the best fit data center for a location
where most of clients are located.

• The peak hours are not everywhere at the same time. Cloud resources can be easily
turned on and off when needed. So, for example, a central Europe can be served from
a running resources in an European data center, meanwhile in a timezone of America’s
East Cost, the resource pool in an American data center can be down. Once time passes
during the day and peak hour in Europe is over, these resources can be suppressed.
On the other hand resources in the American data center serving this region might be
extended to serve the upcoming peak hour traffic. From a long term measurements, a
median metric can answer how fast a map on the smartphone will retrieve requested
data. A 95th percentile statistic metric can answer the worst case for a loading time
for most of users.

For both these situations, a network-based cloud benchmarking can resolve concerns and
questions related to a best customer experience. With a lot of different apps and solutions
on the market, failing to fulfill customer satisfaction can result in a customer and business
loss, as she can easily switch to a competitive app.

20 CHAPTER 2. CLOUD BENCHMARKING

Chapter 3

Network latency measurements

A prerequisite for conducting the latency–based cloud benchmarking is a collection of some
amount of RTT (Round Trip Time) delay measurements between desired sources and desti-
nations. A greater accuracy is achieved with, firstly, a large amount of recent measurements
and, secondly, RTTs measured at multiple protocol layers. For such a measurement a data
collection platform was created – CLAudit [1]. Online information, near real-time data
analysis or measurements data are available at http://claudit.feld.cvut.cz [53]. Using this
collection platform resulted in a research, as [54] and [16], that has demonstrated how this
approach can bring an innovative data and results. But the platform had only one-purpose
locked original architecture and with a focus only on measurements of a single cloud service
provider (CSP), sufficient for research at that time. But for a next research areas, the latency
based benchmarking for example, the platform had to be extended. For a benchmarking ap-
proach with two CSPs, it was necessary to redesign the architecture and tune up the internal
algorithms for more thorough latency measurements and additional capabilities.

First, I introduce the platform itself and it’s architecture. Then, I describe my own work
and my improvements implemented into the platform. Also, there is a description of current
deployment and an overview of the dataset which was used to apply the benchmarking theory
from chapter 5.

3.1 Cloud Latency Auditing platform

3.1.1 Architecture

CLAudit alias Cloud Latency Auditing Platform is a system for collecting and evaluating
multidimensional measurements. By measurements are meant RTTs of individual protocol
exchanges, processing times and a query latency, as shown on a data retrieval processes in
Fig. 3.1. Multidimensional means measurements capable of being looked at from a point of
view of Vantage Points, data centers and/or protocol layers of networking stack.

The request-response nature of many existing protocols allows measuring RTTs and de-
riving latency. That is just what CLAudit does - in a continuous and large-scale distributed
manner. Several time intervals and metrics (shown in Fig. 3.1) are recorded by active probing
of protocol layers between every (VP, front-end) and (front-end, back-end) instance pairs.

21

22 CHAPTER 3. NETWORK LATENCY MEASUREMENTS

There is neither a front-end, nor a back-end selection algorithm, as all the pairwise com-
binations are measured. Thus, values of the Internet, intra-DC and inter-DC latencies are
measured. Besides protocol–layer latencies, CLAudit collects an overall latency, which is an
end–user perceived latency of the interaction. The overall latency, although most accurate
for user–experience–driven applications, is difficult to obtain, as it requires deployment of
the entire application for benchmarking purposes – something a tenant wants to avoid.

TCP SYN

TCP SYN-ACK

TCP ACK
HTTP GET

HTTP RESPONSE

tc
p2

w
s

ov
er

al
l(n

ul
l)

ht
tp

2w
s

(a) Static webpage retrieval (b) Dynamic webpage retrieval

Figure 3.1: Network interactions during CLAudit latency measurements.

The CLAudit platform consists of components, which reflect a typical cloud computing
application setups – i.e. Internet–connected client devices and DC–hosted front–end and
back–end servers. Fig. 3.2 shows a subset of CLAudit deployment. A detailed description of
the these components follows:

Vantage Points (VPs). Remotely-controlled VPs emulate real client appliances for in-
teracting with cloud-hosted applications and services. They collect, at various protocol
layers, latency measurements of what end users perceive when utilizing cloud. VPs are ge-
ographically dispersed to obtain end-user perspectives from around the globe. To maintain
comparability of the measurements, VPs are homogeneous in terms of OS and software (i686
Fedora Core 8 PlanetLab hosts). For the sake of redundancy and validation, VPs are de-
ployed in triplets in every region (two VPs in a single location and a third, backup VP in a
different location nearby).

Cloud front-end. Servers that serve client requests (e.g. in this context respond to VP
requests). Front-ends are geographically dispersed across CSP DCs. For the purpose of the
experiments, front-end servers are implemented as PaaS web applications within a shared
usage tier (a single shared instance without backup per DC). Implemented as PaaS means
that a provider’s service to deploy the code without managing an operation system/web
server resource is used. Only platform source files are provided, the whole management of
spawning a server or the web server configuration is done internally by the provider.

Web server consists a two parts. The first one is a static web web-page served for front–
end latency measurements initiated from a VP. Process is depicted in Fig. 3.1a. The second

3.1. CLOUD LATENCY AUDITING PLATFORM 23

one is a dynamic script which is executed when a back-end measurement is called, Fig. 3.1b.
Cloud back-end. Servers that provide data when front-end servers need them to compose

the client response (e.g. in a case of dynamic webpage in Fig. 3.1b). The back-end is, by
definition, not involved in every interaction, although cloud applications often consist of
both the front-end and the back-end. In the setup, several back-ends are co-located with
front-ends within a single DC, whereas other back-ends reside in DCs elsewhere. That is to
take into account scenarios like remote storage, georedundancy, data processing regulations
etc. For the purpose of the experiments, back–end servers host a MySQL database.

Monitor. Monitor is a single dedicated server, that gathers measurements from all VPs;
instructs and adjusts measurement setup, runs analytics (including benchmarking); archives
and analyzes the past and near-real-time measurements. Monitor is hosted on a high-end
server on premises of the Czech Technical University in Prague.

Figure 3.2: CLAudit global deployment and points of presence.

Part of the CLAudit infrastructure used for Latency–based benchmark-
ing demonstration. VPs are represented by laptops, front–end servers by
globe icons and back–end servers by cylinder icons. Benchmarking com-
putation is done at a central server, represented by lens icon. Continu-
ous and dashed curves depict VP to front–end and front–end to back-end
measurements, respectively (only measurements triggered by Australian
VP and Dublin front–end are shown).

3.1.2 Testbed

In a previous research and the CLAudit version, only resources from one provider were
measured. That was a Microsoft Azure cloud solution. To extend research possibilities, to
gain a new data and allow a benchmarking study, another provider was added. This brought
a lot of difficulties with the technical solution, which I describe in chapter 3.2. As MS Azure
is the 2nd biggest cloud provider, an obvious choice was to pick the biggest one and its
solution for a comparison and benchmarking - Amazon and its AWS public cloud. Services

24 CHAPTER 3. NETWORK LATENCY MEASUREMENTS

and technical details are of course different from provider to provider, I exploit services and
resources which are used for the CLAudit platform in following lines.

Front-end resources. As I already mentioned, for front-end resources, a PaaS for web
servers are being used. Each provider has a different name of such a service. In the AWS
ecosystem, the service name is Elastic Beanstalk. A more simple name, called Wep App, is
used at Microsoft Azure.

Both services spawn a web server with the actual code completely effortless. This also en-
sures a fair setup for both providers, it eliminates any possible issues with a virtual machine,
an operating system, system drivers etc. One can assume that this deployment goes with
the provider’s best knowledge of its own underlaying infrastructure. The only thing what is
configurable when requesting such a service, is to pick the right instance "power/size", the
right performance scale for the unit. There are plenty of choices for the underlying power
instances for such web-servers.

Usually, the selection of underlying server for this service matches with compute power
instances offered for virtual servers. It scales on a number of CPU cores, memory size or
storage volume attached, for a few examples. For the date of December 2016, AWS offers 54
server instance types, from a cheap, general purpose servers, up to expensive, very powerful
servers for a big scale and a production use.

An example of a list with different instances from Amazon is in Tab. 3.1.

Instance Type vCPU Memory (GB) SSD Storage (GB)
m3.medium 1 3.75 1x4
m3.large 2 7.5 1 x 32
m3.xlarge 4 15 2 x 40
m3.2xlarge 8 30 2 x 80

Table 3.1: An example of compute resource instance types at Amazon AWS.

CLAudit platform does not perform any stress tests of the resources, so no large com-
puting instances are required for the measurements. Even more, the purpose of such mea-
surements is to provide an insight for a broad spectrum of use cases and applications. It’s an
obvious fact that for benchmarking between two solutions, there is a need to pick as similar
resources as possible, to compare comparable. So the difficult part of a resource selection
was to choose instance parameters which would be similar for both providers. Even a price
is a factor which needs to be taken in account.

Based on these parameters and provider resource analysis, a following power tiers and
instances were selected. Instances with similar cost on a shared infrastructure were chosen.
The cost structure is explained in Chapter 4.

Provider Instance Type vCPU Memory (GB) Storage
Amazon t2.micro 1 1 EBS Only
Azure D1 Shared Shared 0.5 1 GB

Table 3.2: CLAudit front-end resource instance types used.

3.1. CLOUD LATENCY AUDITING PLATFORM 25

Back-end resources. As it was described in the chapter 3.1.1, MySQL databases are
used to represent back-end solution for the CLAudit application. In AWS cloud, a service
providing SQL databases is named Amazon RDS (Relation Database Service). In Azure, it
is simply SQL Database Service.

Selection approach for the right database instances was similar as in the previous case for
front-end resources. Instances need to be as similar and comparable as possible, to ensure a
fair measurements for both providers. Selected database instances are presented in Tab. 3.3.
For example, Azure’s DTU (Data Transcation Unit) metric is a complex variable so more
detailed and up to date technical information about instances can be found at providers
websites [55] and [56].

Provider Database Instance Type Performance note
Amazon db.t2.micro Instance with 1 vCPU and 1 GB memory
Azure Standard S1 Max transactions 20 DTU

Table 3.3: CLAudit back-end resource instance types used.

3.1.3 Measured variables

. A short overview of the CLAudit testbed measurement variables follows. In-depth de-
scription is presented in the [1]. Selected measured variables (or types) concerning the
measurement sample interaction are depicted in Fig. 3.3 and include:

1. tcp2ws. Time between the client sending a TCP SYN packet to a web server and
receiving the TCP SYN-ACK packet back from the web server.

2. http2ws. Time between the client sending a simplest HTTP request packet to a web
server and receiving the simplest HTTP response packet back from the web server.

3. tcp2db. Time between a web server sending a TCP SYN packet to a database server
and receiving the TCP SYN-ACK packet back from the database server.

4. sql2db. Time between a web server sending a simple packet containing an SQL query
to a database server and receiving a packet containing the SQL response back from
the database server.

5. overall2ws, overall2db. Total time between the client sending a TCP SYN packet
to a web server and receiving the HTTP response packet back from the web server.

Note that database interaction is mandatory in the tcp2db and sql2db types and not
present in the tcp2ws, http2ws types. Also note that data from the tcp2ws, http2ws,
tcp2db and sql2db types represent the measured lower bound of the respective protocol
RTT. Data from the overall2ws, overall2db type represent the user-perceived latency
during a web-browsing scenario, with a possible intermediate query to a database.

As previous research shows [1], [16], the platform provided a valuable long-term data when
considering a latency delay during a network communication to the cloud. These publications
present latency research and observations how to exploits such a measurement. CLAudit

26 CHAPTER 3. NETWORK LATENCY MEASUREMENTS

TCP SYN

TCP SYN-ACK

TCP ACK
HTTP GET

HTTP RESPONSE

tc
p2

w
s

ov
er

al
l(n

ul
l)

ht
tp

2w
s

2w
s

(a) Static webpage retrieval
(b) Dynamic webpage retrieval

Figure 3.3: CLAudit-measured variables during latency measurements

platform architecture providing measurements of a single provider (Microsoft Azure) was
sufficient.

But that previous platform architecture was not maintainable any more, though. It did
not provide sufficient versatility for future research neither it was suitable for multi provider
measurements, which was needed for the benchmarking approach. Even further, as an only
one-purpose written solution, almost everything was statically fixed inside of the code of
the platform, which was hard to maintain for any extension, for different provides, different
configurations etc.

3.2 My platform extensions for benchmarking approach

In this chapter, I describe my work on the CLAudit platform. First of all I had to get familiar
with the architecture, with the whole environment, the VP setup, back-ends, front-ends and
about the monitor node. This gave me an insight how the measurements work.

3.2.1 Data–center locations

As mentioned before, the previous research was based on measurements against Microsoft
Azure CSP only. For the benchmarking approach the Amazon AWS cloud was chosen as the
second provider. Naturally, a large number of prospective customers are deciding between
these two. AWS is de facto leader in cloud technologies and it is widely adopted and known,
followed by the Azure solution.

For the benchmarking use case it is necessary to measure as identical targets as possible,
though. It was necessary to find as geographically close data-centers as possible for both

3.2. MY PLATFORM EXTENSIONS FOR BENCHMARKING APPROACH 27

Amazon AWS and Microsoft Azure cloud solutions. One advantage when deciding about
Azure data centers was existence of a free map with approximate location of all Microsoft
data-centers. [57].

No similar map for Amazon data-centers existed that time (fall 2015) so I had to get an
approximate locations from different resources, as [58] for example. I matched these sources
with information from actual availability zones where one can deploy the resource in the AWS
environment within the user account. One year later update (fall 2016), an official map for
Amazon data centers also exists [59]. An example of a list containing all data centers used
in Azure is in Fig. 3.4.

Figure 3.4: Microsoft Azure Data Center locations in December 2016.

Based on these available options, the following data center locations were chosen. Very
similar locations for both providers and convenient for the research measurements are: Dublin
(Ireland), North Virginia, California (East and West coasts of USA), Singapore and Tokyo
(Japan). Once data center locations were fixed, I have created the resource pool in AWS cloud
for the future platform code deployment and measurements. Also, the existing resource pool
in Azure cloud had to be managed and reordered to be complaint with the new data center
locations. A lot of CLAudit platform upgrades and code improvements were integrated to
the platform before an actual code deployment and a real measurements launch.

28 CHAPTER 3. NETWORK LATENCY MEASUREMENTS

3.2.2 Configuration file

The previous CLAudit version was significantly focused on a single provider measurements.
To break that down I have suggested and developed a solution when all configurations, target
names and other versatile parameters are separated to a special configuration file. Then, I
have implemented functions that all parameters within in configuration file are loaded to the
application when needed. This is a recommended approach from a software engineering in
general where configuration parameters are out of the actual application.

I have decided to use a YAML [60] format for configuration files. This format is well
structured, human readable and quickly to learn. These properties are very convenient for
further upgrades or updates in the future. The configuration file example follows.

1 version: 4.00
2 measurement-data-folder : /home/cesnet_felcc/measurements/
3 measurement-providers:
4 azure:
5 ws-address-prefix: ws-azure-
6 ws-address-suffix: azurewebsites.net
7 aws:
8 ws-address-prefix: ws-aws-
9 ws-address-suffix: elasticbeanstalk.com

10 measurement-layers:
11 - http2ws
12 - tcp2ws
13 - trace2ws
14 - tcp2db
15 - sql2db
16 - overall
17 planetLab-locations:
18 cz:
19 nodes:
20 planetlab2.cesnet.cz: prim
21 planetlab3.cesnet.cz: sec
22 planetlab1.cesnet.cz: ter
23 db: dub
24 ...
25 ...

3.2.3 File naming notation

I have also proposed a new naming convention for files with the measurement data. The
original naming convention was following: {measurement type}_{VP location}_{Front-end
target location}_{Back-end target location or null}_DDMMYY. Due to a lack of information
for primary, secondary and back up of VP assignment, all files were stored separately in three
folders, accordingly.

3.2. MY PLATFORM EXTENSIONS FOR BENCHMARKING APPROACH 29

This format and file management had a few weak places. First, there was no information
about the provider. It was sufficient for the previous research with one provider, but that was
not sustainable any more. An information about provider had to be added to differentiate
files from different CSPs. Then, there was the situation with the three folders structure.
Files from same measurements (same network layer, source locations etc..) had exactly
same names in these folders. By any mistake, results could be irretrievably interchanged.
Therefore, I have advised and implemented a way with one measurement folder, but with
appropriate filename mark. The backup naming style was deprecated, a set of primary,
secondary and tertiary terms is used instead.

And for a third issue, a sequence for a date mark DDMMYY is not really convenient
from sorting and browsing point of view. Since all files in any file explorer are displayed and
sorted by comparing characters from the beginning of the file name, this approach makes
an unorganized mess when looking at a long list of such files. And with the long term
measurements nature and a pair permutation of all measurement layers, there are thousands
of files. To resolve this, I proposed a sequence YYYYMMDD in the file name notation,
which completely wipes out relates issues.

Based on all these concerns together, I have implemented to use following file name
convention within the platform: {provider name}_{measurement type}_{VP location}-{
primary/secondary/tertiary level}_{Front–end target location}_{Back–end target location
or null}_YYYYMMDD. A file list thumbnail from a file system is shown in Fig. 3.5

3.2.4 VP locations

PlanetLab nodes serving as VPs (Vantage Points) for measurements (described in the chapter
3.1.1) had to be redesigned as well. For example, measurements from two nodes deployed in
a New Mexico location (University of New Mexico (UNM)) had a unusually higher latency
through all measurements. It was around a double value what was an expected value for
USA. I have performed some trial deployments at other PlanetLab US located nodes and
observed that the higher latency is caused just by the UNM nodes. All other values were at
the similar level and performing within an expected range. This issue was resolved with new
node locations. Also, the previous version of CLAudit platform worked with nodes in a Russia
region as well. From past observations there were many inconsistent measurements, there
were a lot of traffic interrupts and other abnormalities. This was unwanted situation and
required an update of these nodes. Unfortunately, no better or more suitable PlanetLab node
was found in Russia. Therefore there is no deployment in that region and no measurements
from Russia are collected.

As a result, I performed trial deployments for all other suitable candidates at other
locations to find out the best VP nodes for the long term measurements. Based on test
results overview I have chosen final destination for the VP clients. The list is following:

1. North America region - primary and secondary nodes are in Atlanta city area, USA.
A tertiary node is at North Carolina area, USA.

2. Asia region - primary and secondary nodes are in Hiroshima city area, Japan. A
tertiary node is at Nagoya city area, Japan.

30 CHAPTER 3. NETWORK LATENCY MEASUREMENTS

Figure 3.5: An example of a list of files showing the naming convention.

3. Australia region - primary and secondary nodes are in Melbourne city area, Australia.
A tertiary node is in New Zeland area.

4. European region - primary and secondary nodes are in Prague city area, the Czech
Republic. A tertiary node is in Brno city area, the Czech Republic.

3.2.5 Platform code redesign

Alongside with the configuration file creation, I have redesigned, improved and added a new
code to the actual platform source code. I have integrated usage of that configuration file to
an appropriate places. Also, I have changed the code to a way that any other and additional
provider can be seamlessly added. I have also fixed a few bugs which were known at the
previous version, but not fixed so far. A short preview of my code follows.

3.3. MEASUREMENT DATASET 31

1 ’’’
2 Setup the measurement according parameters and
3 content of the configuration file.
4 ’’’
5

6 def setup_measurement(hostname, host_region, config, provider):
7 try:
8 host_type = config[’planetLab-locations’][host_region]/
9 [’nodes’][hostname]

10 website_domain = config[’measurement-providers’][provider]/
11 [’ws-address-suffix’]
12 ws_prefix = config[’measurement-providers’][provider]/
13 [’ws-address-prefix’]
14 webserver_regions = dict()
15 for ws in config[’ws-locations’]:
16 webserver_regions[ws]=ws_prefix+ws
17

18 database_regions=dict()
19 for pl in config[’planetLab-locations’]:
20 db = config[’planetLab-locations’][pl][’db’]
21 if db:
22 database_regions[pl]=db
23

24 output_folder = config[’measurement-data-folder’]
25 m_order = config[’planetLab-locations’][host_region]/
26 [’measurements-order’]
27 return host_type, website_domain, webserver_regions,/
28 database_regions, output_folder, m_order
29

30 except Exception, exc:
31 print "Error in the configuration file:", exc
32 sys.exit(1)
33 ...

3.3 Measurement dataset

Once the whole platform was prepared, I deployed the measurement infrastructure and
scripts to VPs and cloud resources and the measurements started. I have to tune up some
parameters in the script to obtain a smooth data retrieval. In the final state, a measurement
iteration of a single VP/front-end consists of a 5-request batch of every relevant protocol
sent and up to 5 respective responses received, repeating every 4 minutes. There is no intent
to conduct a stress test - neither PlanetLab’s, nor CSP’s acceptable user policy is violated.
Partly because a generated network traffic is low and partly because it is scattered over

32 CHAPTER 3. NETWORK LATENCY MEASUREMENTS

time due to unequal distances between VPs and DCs. Monetary cost of the measurements
collection remains thus low, as it is described in Chapter 4.

Latency RTTs are measured in milliseconds, rounded up to a nearest integer. All mea-
surement types have a reasonable 10 seconds timeout set, effectively treating timeouts and
failures to respond the same way. The platform thus collects several hundreds of samples
per (measurement_type, VP, front-end, back-end) tuple.

The following CLAudit deployment subset (depicted also in Fig. 3.2) was used to gather
a dataset for the purpose of latency–based benchmarking demonstration:

◦ L = {TCP, HTTP, SQL} - Protocols used inside application that have round trips
involved (TCP and HTTP between client web browsers and front–end web server; TCP
and SQL between front–end web server and back–end SQL database in the example of
dynamic web application)

◦ V = {AU, CZ, JP, US} - Internet Vantage Points, representing a global client base
(Australia, Czech Republic, Japan, USA)

◦ F = {DUB, EUS, SING, WUS} - AWS and Azure front-end web server DC locations
(Dublin, North Virginia, Singapore, California)

◦ B = {DUB, SING, TOK, WUS} - AWS and Azure back-end SQL database DC loca-
tions (Dublin, Singapore, Tokyo, California)

◦ P = {P1, P2}. CSPs being compared. CSP names are obfuscated and the alias
was decided by a coin toss, as I intend to demonstrate the Latency–benchmarking
methodology only.

For a practical demonstration of the benchmarking methodology introduced in Chapter 5
presented in Chapter 6, a fragment of the continuous measurements was used. A timeframe
from January 10th 2016 to March 19th 2016 was selected (exactly 10 weeks). The main
reason is the relatively good stability of PlanetLab nodes during that time and no abnormal
demand across the world.

Examples of measurements and findings are in Fig. 3.6 and in Fig. 3.7. These examples
show raw latency measurements, collected over 10 weeks at CSP1 and CSP2. As there are
number of outliers and timed-out measurements (RTT = 10 000 ms), there are presented full
scale graphs as well as scaled plots to encompass majority of measurements and highlight
interesting differences in measurement timelines of the two CSPs.

Fig. 3.6 presents measurements on TCP layer between Prague VP (CZ) and front-end
servers located in California region (WUS). In Fig. 3.7, there are examples showing SQL
queries issued by a front-end web server hosted in Dublin (DUB) and answered by a back-
end database server hosted in Tokyo area (TOK).

3.3. MEASUREMENT DATASET 33

(a) Full scale view (b) Scalled view

Figure 3.6: Raw measurement example, TCP layer, VP in Prague - WUS front-end servers.

(a) Full scale view (b) Scalled view

Figure 3.7: Measurement of SQL queries from Dublin front-end servers to Tokyo back-ends.

34 CHAPTER 3. NETWORK LATENCY MEASUREMENTS

Chapter 4

Measurement platform cost insight

Infrastructure cost is one of the main reasons behind a decision to move from on-premise so-
lution to a cloud-based deployment. But to choose the best fit resources for the infrastructure
or an application comes with significant cost and a work time consumption as well. With
the CLAudit platform data from the long term measurements, obtained results can save
money and time significantly. With multiple points of presence of data centers and clients,
benchmarking results can give a first insight without an actual trial application deployment.
In this chapter, I present cost of the CLAudit measurement infrastructure.

For a general cloud spending calculations, there are online calculators available, where
it is possible to make a rough estimate for an overall deployment cost. Amazon calculator
thumbnail is in Fig. 4.1 [61]. There is a similar web page for Azure cost estimate as well [62].
Both pages have limitations within the functionality and requires a deep knowledge of the
deployment and service offering. Cloud cost structure is very wide topic, since there are tens
or hundreds of different parameters, metrics or calculation approaches. It is beyond of the
scope of this work. Here, I present only cost to run CLAudit platform and measurements.

4.1 Amazon - AWS

As it was described in Chapter 3.1.2, service called Elastic Beanstalk for all front-end de-
ployments is used. For a back-end database servers, instances of Amazon RDS are being
used.

When calculating the service cost, the Elastic Beanstalk service does not come with
any additional fee of itself. When a service is used, tenant pays only for computing in-
stances that power the application. There are four options related to payment and cost for
Amazon EC2 (Elastic Compute Cloud) instances. There are On-Demand, Spot instances,
Reserved instances and Dedicated hosts. For Back-end instances, there are only two options:
On-Demand and Reserved database instances. From a nature of the CLAudit long term
measurements, only On-Demand and Reserved instances were really relevant and interesting
for consideration. They are suitable for applications that have steady state or predictable
usage and targeting general public usage. Reserved Instances provide a significant cost dis-
count compared to On-Demand instance. For long-term measurements what CLAudit does,
it comes with significant savings [63].

35

36 CHAPTER 4. MEASUREMENT PLATFORM COST INSIGHT

Figure 4.1: Amazon AWS cost calculator example.

When deploying the CLAudit infrastructure, a reserved instances for a three years con-
tract were bought. Cost structure for front-end, EC2 server instances is shown in Tab. 4.1.
Cost structure for back-end, database resources is in Tab. 4.2. The presented prices were
paid at the moment of reserved instances purchase, the November 30th, 2015.

Instance Type Data center zone and location Term Cost (including VAT)
t2.micro eu-west-1; Dublin 3 years $200.86
t2.micro us-east-1; North Virginia 3 years $182.71
t2.micro ap-southeast-1; Singapore 3 years $350.90
t2.micro us-west-1; California 3 years $252.89

Table 4.1: AWS compute reserved instances; 3-year contract cost overview.

4.2. MICROSOFT - AZURE 37

Instance Type Data center zone and location Term Cost (including VAT)
db.t2.micro eu-west-1; Dublin 3 years $261.36
db.t2.micro ap-southeast-1; Singapore 3 years $471.90
db.t2.micro ap-northeast-1; Tokyo 3 years $389.62
db.t2.micro us-west-1; California 3 years $343.64

Table 4.2: AWS database reserved instances; 3-year contract cost overview.

Based on cost shown in Tables 4.1 and 4.2 a total cost is $2453,88 for 3 years. That
means $68.17 per month.

4.2 Microsoft - Azure

At Azure cloud, services used for running experiments are Web Apps for front-end servers and
SQL databases as back-ends. There is similar situation as with AWS with cost delegation.
PaaS services are free of charge and customer pays only for the underlying instances which
power up the web server instances.

But there is one significant difference. Azure cloud does not offer any long-term prepaid
plans. All costs are Pay-as-you-Go, which means that customer pays every month what
she consumed. In another words, all resources are on-demand instances. Official prices
per instance and location for front-end and a back-end instances are in Tables 4.3 and 4.4.
Monthly price estimates are based on 744 hours per month.

Instance Type Data center zone and location Term Cost (including VAT)
D1 shared North Europe; Dublin 1 month $9.67
D1 shared East US 2; N. Virginia 1 month $9.67
D1 shared Southeast Asia; Singapore 1 month $9.67
D1 shared West US; California 1 month $9.67

Table 4.3: Azure compute instances price overview.

Instance Type Data center zone and location Term Cost (including VAT)
Standard S1 North Europe; Dublin 1 month $29.98
Standard S1 Japan East; Japan 1 month $33.93
Standard S1 Southeast Asia; Singapore 1 month $29.98
Standard S1 West US; California 1 month $29.98

Table 4.4: Azure Database instances price overview.

Based on presented prices Tables 4.3 and 4.4 a total cost per 1 month is $146.6. This
result from the online price list is actually more than real month payments. Total payments
per month are shown in Tab. 4.5. Although instances with similar standard on-demand cost
were chosen, the difference between cost at AWS and Azure is the fact of significant discount
at AWS when contracting instances for the 3 years long window.

38 CHAPTER 4. MEASUREMENT PLATFORM COST INSIGHT

Month Type Actual payment (including VAT)
January $137.77
February $127.42
March $138.09
April $132.40
May $137.62
June $132.85
July $136.67

Table 4.5: Total payments per month for resources at MS Azure.

4.3 Infrastructure cost comparison

To get rid of the bias caused by the long-term discount, there are comparisons for both CSPs
with an hourly rate for on-demand pricing plans in Tables 4.6 and 4.7 as well. These prices
are not discounted and show official numbers from providers’ websites. Cost structure does
not include cost of outbound traffic which is also paid, but with a small volume of data
transfered using CLAudit platform, this cost is negligible (less than 5$ per month). All
prices are valid in September 2016 and of course are subject to change anytime.

Data center zone and location Term Azure D1 shared
instance (per hour)

AWS t2.micro instance
(per hour)

North Europe; Dublin area 1 hour $0.013 $0.013
East US 2, N. Virginia 1 hour $0.013 $0.012

Southeast Asia; Singapore 1 hour $0.013 $0.015
West US; California 1 hour $0.013 $0.015

Table 4.6: Compute on-demand instances cost overview.

Data center zone and location Term Azure Standard S1
instance (per hour)

AWS db.t2.micro
instance (per hour)

North Europe; Dublin area 1 hour $0.0403 $0.018
Tokyo area, Japan East 1 hour $0.0456 $0.026

Southeast Asia; Singapore 1 hour $0.0403 $0.026
West US; California 1 hour $0.0403 $0.022

Table 4.7: Database on-demand instances cost overview.

For data used in this work, a 10 weeks long window with dataset of continuous mea-
surements mentioned in Section 3.3 was used. In Tab. 4.8, there is an actual cost of the
platform for this period of time. Again, it reflects the significant savings of AWS discount
on a prepaid plan.

Provider 10 weeks window cost
Amazon AWS $170.408
Microsoft Azure $288,312

Table 4.8: Platform cost for the 10 weeks measurement window.

Chapter 5

Benchmarking methodology

5.1 Measurements terminology

I have presented the CLAudit platform which executes measurement processes, measures a
cloud resource access-time latency and collects measurement data in Chapter 3. In this part
I describe a methodology how to get a cloud service provider rank (CSP rank) from measured
values using a new benchmarking approach. This methodology has two major parts, first is
a measurements data preprocessing and then an actual CSP ranking process to get the CSP
rank. I propose following terminology for further methodology explanation:

A dataset fileX contains |X| single RTT latency data measurements xm. A measurement
xm is described by the following (for definition of measurement categories, see Section 3.3):

• Measured protocol l ∈ L (e.g. TCP);
• Internet Vantage Point location v ∈ V (e.g. Planetlab host in Prague);
• Cloud front-end resource location f ∈ F (e.g. Web server in Dublin DC);
• Cloud back-end resource location b ∈ B (e.g. SQL database server in Singapore DC);
• Cloud Service Provider p ∈ P (e.g. Microsoft).

Parameters v and b are mutually exclusive, reflecting that a measurement can only be con-
ducted between v and f or f and b (i.e. Internet VP cannot directly reach a back–end
resource). Using the above terminology, an input dataset for the Latency–based benchmark-
ing is described as follows:

XL,V,F,B,P = {xl,v,f,b,pm }, m ∈ [1, 2, . . . , |X|]

5.2 Data preprocessing

5.2.1 Data normalization

Global CLAudit-like distributed measurement platform obtains measurements from diverse
network locations worldwide. Recorded latency values largely correspond to the geographical
distances between souce and destination locations, resulting in varying scale that makes
any direct comparisons impossible. Thus, there is a need to normalize the values to a
new standard range. Two approaches are feasible for selection of the baseline used for
normalization of the raw measured values:

39

40 CHAPTER 5. BENCHMARKING METHODOLOGY

5.2.1.1 Via optimal-propagation-delay approximation

This approach normalizes using an approximation of the optimal signal propagation delay
between the measurement source and destination. Path length is given by the Great–circle
distance - the shortest distance between two points on the WGS84 ellipsoid calculated using
geod library, measured along the surface and ignoring differences in elevation [64]. An abso-
lute ideal propagation delay is then calculated as this round trip distance divided by speed
of the light. This is a theoretical lower propagation-delay bound that cannot be superseded.
[1]. Resulting path length then gets divided by the speed of light in fiber. The optimal RTT
delay is twice the resulting one-way delay approximation:

optimal_rtt(src, dest) =
2.gcd(src, dest)

cfiber

There are two downsides to normalizing using this value. First, it might prioritize
longer distances to shorter ones – in case of long distances, fiber is usually employed (e.g.
transoceanic submarine cables), as opposed to short distances, where copper is common and
a relative number of network hops is higher. This might result in inaccuracies.

Second, based on different experiments, resulting values are poorly normalized (mainly
clustered around 150%, 170%, and 190% of the ideal value), which is not suitable for further
measurements processing.

5.2.1.2 Via minimum-RTT latency

This approach starts with a step when it searches through the dataset for a minimum recorded
latency value across all providers for one particular tuple (measured layer, source and desti-
nation):

xl,v,f,bmin = min
m,p
{xl,v,f,b,pm }, m ∈ [1, 2, . . . , |X|] , p ∈ P

As this is a real measured value, it is feasible for normalization use. Minimum–latency–
based normalization only suffers from clustering (addressed in 5.2.2) and, as such, is rec-
ommended for the latency benchmarking. Using the minimum latency, each dataset value
(belonging to the same tuple) gets normalized using the following formula:

x̂ l,v,f,b,p
m = 1−

xl,v,f,bmin

xl,v,f,b,pm

, m ∈ [1, 2, . . . , |X|]

The measurements are now normalized to the standard [0, 1] range, as shown on example
in Fig. 5.1c. Subtraction from 1 is to retain the logical order, where the minimum value
becomes 0 and outliers appear close to the other end of the range. The latency values are
now comparable across different locations.

5.2. DATA PREPROCESSING 41

(a) Unscaled view of raw measurements (b) Scaled and trimmed view of raw measurements

(c) Normalized measurements (d) Transformed measurements

(e) P1 - Normalized (f) P2 - Normalized (g) P1 - Transformed (h) P2 - Transformed

Figure 5.1: Data preprocessing process.

Latency measurements preprocessing for Latency–based benchmarking.Values get nor-
malized using minimal recorded value xmin and transformed using square root, as
shown in respective steps (a-d) and histograms (e-h). This example shows RTTs of
SQL request–response interactions between Dublin DC front–end servers and Tokyo
DC back–end server of both CSPs (P1 and P2), as recorded over 10 weeks.

42 CHAPTER 5. BENCHMARKING METHODOLOGY

5.2.2 Data transformation

Minimum–latency–based normalization results in highly–clustered measurements with
different positions of central points across CSPs, locations and even protocol layers.
This property is not desirable and, for the purpose of the subsequent benchmarking
calculations, the values need to be spread out such that big latency values represent
one end of the interval and small values the other end. The following square root
transformation has the desired properties [49], as shown on transformation outcome
in Fig. 5.1d. The entire preprocessing formula is as follows:

x̃ l,v,f,b,p
m =

√
1−

xl,v,f,bmin

x l,v,f,b,p
m

, m ∈ [1, 2, . . . , |X|]

Such a transformation changes the distribution of measurements. But, when
applied consistently, it does not affect validity of the methodology.

5.3 CSP ranking method

The task of the benchmark is to report how well different systems perform under
the given constraints. In practice, benchmarks are used to guide decisions about the
most economical provisioning strategy as well as to gain insights into performance
bottlenecks [38]. The specific need for benchmarking is given by concrete use cases
such as financial trading or gaming systems. Whereas the former mandates very low
latency with no tails, the latter allows for latency values below a certain psychological
threshold. Such requirements are expressed via metrics, which are used throughout
the benchmarking process.

As per the Latency–based benchmarking, application requirements are expressed
using metrics, indicating needs such as low latency (e.g. interactive applications) or
stable latency (e.g. media players). The benchmarking works in both forward and
backward directions, i.e. a set of Internet clients may seek the optimal cloud server
deployment or cloud servers need to locate clients they serve best. The same can be
done for cloud front-end servers, who are the clients of cloud back-end servers.

A measurement source s ∈ S and a destination d ∈ D can be any of the v, f, b,
but not all combinations are valid (as noted in 5.1). For simplicity, I use d is a CSP
DC (i.e. f or b). The whole benchmarking process is outlined in Fig. 5.2. Raw data
from the source-destination measurements are biased by its own location, when all
measurement are affected by distance and routes between each other. These data can
not be directly compared. As it was described in Section 5.2, the very first step is
data preprocessing. Once data are normalized and transformed to a standard range,
a CSP ranking process to obtain a performance rank for a provider (CSP rank) can
be applied.

5.3.1 Statistical metrics

Given the transformed measurements with desired characteristics (5.2.2), the first
step is a metric calculation. A metric m ∈ M expresses latency–related application

5.3. CSP RANKING METHOD 43

Selec%on	of	metrics	

Normaliza%on	

Transforma%on	

Crea%on	of	vectors	

Layer	aggrega%on	

Metric	weigh%ng	

Magnitude	calcula%on	

CSP	ranking	

Pr
e-
pr
oc
es
sin

g	

Raw	measurements	

Be
nc
hm

ar
ki
ng
	

CS
P

ra
nk

in
g

CSP rank

Figure 5.2: End-to-end benchmarking process overview.

requirements such as low or stable latency. Arbitrary set of metrics M ′ can be used
that reflects application requirements well and for that I use basic metrics adopted
from descriptive statistics [50]. The following examples show the Sample arithmetic
mean X ∈ M ′, simple standard deviation or Coefficient of variation, which are used
to express requirements related to the latency average value or latency stability:

Sample Arithmetic Mean

X
l,v,f,b,p

=
1

m

|X|∑
m=1

x̃ l,v,f,b,p
m

Sample Variance

s2X l,v,f,b,p =
1

m

|X|∑
m=1

(
x̃ l,v,f,b,p
m −X

l,v,f,b,p
)2

Sample standard deviation

sX l,v,f,b,p =
√

s2
X l,v,f,b,p =

√√√√ 1

m

|X|∑
m=1

(
x̃ l,v,f,b,p
m −X

l,v,f,b,p
)2

Coefficient of variation
C.O.V =

sX l,v,f,b,p

X
l,v,f,b,p

5.3.2 Metric vectors

Given a |M ′| metrics of interest, the next step is a creation of |M ′| · |P | · |L| vectors ~v
in a |S|-dimensional space, where |S| is a number of measurement sources s (see the
example in Fig. 5.3).

44 CHAPTER 5. BENCHMARKING METHODOLOGY

The vector components are metric values, calculated per source location si for a
provider p’s destination d using a protocol l:

~v l,d,p

X
= (X

l,d,p,s1 , X
l,d,p,s2 , .., X

l,d,p,s|S|)

In this example, there is a vector consisting of |S| Sample arithmetic means of la-
tency of protocol l between |S| sources and provider p’s destination d. The magnitude
of such resulting vector, calculated as Euclidean norm, summarizes the performance
under the actual metric over all measurement source locations S:

‖~v l,d,p

X
‖ =

√
(X

l,d,p,s1)2 + (X
l,d,p,s2)2 + ..+ (X

l,d,p,s|S|)2

The metrics, under which a CSP is performing well, have a vector magnitude
close to 0. A magnitude close to 0 also occurs in the case of co-located resources,
where latency is often around 1 ms (e.g. front-end and back-end in the same DC).
When this happens, co-located deployment usually dominates the comparison, which
is desired.

Note that an outstanding source does not influence the resulting CSP rank, as it
hurts all CSPs the same way. Thus, there is no need to limit the set of considered
sources only to clients of target application’s interest.

0.40.3
Australia

0.20.100
0.2USA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.45

0.4

0.35

0.4

Ja
pa
n

vHTTP, EUS, P2

X
vHTTP, EUS, P1

X

Figure 5.3: Metric vectors from CSP ranking.

Example metric vectors of providers P1 and P2 in a 3–dimensional space;
Sample arithmetic means of HTTP latency measurements of similarly–located
EUS front-end servers from 3 vantage points (Australia, USA, Japan) were
used. The magnitude of P1’s vector is smaller and, as per the methodology,
benchmarking methodology favors P1 in the subsequent comparisons.

5.3. CSP RANKING METHOD 45

5.3.3 Protocol layer aggregation

As per the methodology, CSPs are benchmarked using requirements of an application,
whose deployment is under consideration. Such an application is usually built on
top of the standard network protocol stack, consisting of a hierarchy of protocol
layers. Different protocol layers take turns in issuing round trips between application
endpoints (as shown in Fig. 3.1). As such, every involved protocol l ∈ L′ is essential
and needs to perform well. To reflect this in the ranking, an magnitude aggregation
of the per–protocol–layer vectors using the following multiplication is applied, which
ensures that all involved protocols perform well.

‖~v d,p
m ‖ =

∏
l∈L′

‖~v l,d,p
m ‖

This approach can be extended to prioritize some layers over others, which cer-
tain use cases may require. Also, because network protocol stack is less coherent in
the cloud environment (e.g. TCP connections are terminated at TCP proxies, but
application protocols at load balancers), a disagreement between layers is common
[35] and penalization of misbehaving layers can be applied.

5.3.4 Metric weighting

Depending on tenant and its application needs, some metrics are of a higher priority
than other. Weights are assigned from a range [1,MAX]. Weight is proportional
to the metric’s influence on application - i.e. weight 1 is assigned to a metric that
stand for application requirements, which, if not satisfied, does not impact applica-
tion significantly; and weight MAX is assigned to a metric having a strong impact.
Given metrics of interest M ′, the |M ′| weights wi ∈ 〈1;MAX〉, i ∈ [1, 2, . . . , |M ′|] are
assigned. Weights heavily depend on use cases, tenant business and application. As
such, the selection of number MAX and assignment of weights are based on one’s
needs. Weights get normalized as follows:

ŵi =
wi∑|M ′|
i=1 wi

5.3.5 CSP rank

The resulting number f , used as a CSP rank, is then calculated as a weighted sum
of vector magnitudes:

fd,p = ŵ1‖~v d,p
m1‖+ ŵ2‖~v d,p

m2‖+ · · ·+ ŵ|M ′|‖~v
d,p
m|M ′|‖

Once the value f is calculated for each provider, CSPs can be ordered by the
magnitudes of their CSP ranks and compared:

fd,p1 ≤ fd,p2 ≤ .. ≤ fd,pp

The recommended CSP is the one with the lowest f value.

46 CHAPTER 5. BENCHMARKING METHODOLOGY

Chapter 6

Benchmarking application

In this section, I apply the Latency–based benchmarking on a small–scale example
of latency–sensitive application (approach used also in [39]).

This TCP/HTTP application is a web container serving only static web pages.
A hypothetical tenant wants to migrate it from its premises and leverage the cloud
environment. She considers the public CSPs P1 and P2 for the deployment on the
US East Coast. The nature of the application requires low-to-moderate latency and
preferably a stable latency in a sense of the following weights: median = 5 = MAX,
standard deviation = 1, coefficient of variation = 1. I assume comparable provider
prices.

(a) HTTP (Australia VP) (b) HTTP (Czech VP)

(c) TCP (Australia VP) (d) TCP (Czech VP)

Figure 6.1: Actual latencies to EUS front-end servers as observed by the four VPs.

47

48 CHAPTER 6. BENCHMARKING APPLICATION

(e) HTTP (Japan VP) (f) HTTP (US VP)

(g) TCP (Japan VP) (h) TCP (US VP)

Figure 6.1: Actual latencies to EUS front-end servers as observed by the four VPs.

Provider P2’s DC has a lower median latency observed by all VPs. Provider P1’s DC
on the other hand provides a more stable latency in some cases. These observations
are quantified throughout various stages of benchmarking process.

6.1 CSP rank results

Given the transformed normalized measurements, benchmarking can now proceed
according to the steps described in Chapter 5. First, a metric vector is created for
median latency of HTTP protocol for CSP P1:

~vHTTP,EUS,P1
med =

= (medHTTP,EUS,AU ,medHTTP,EUS,CZ ,medHTTP,EUS,JP ,medHTTP,EUS,CZ) =

= (0.306, 0.368, 0.421, 0.433)

‖~vHTTP,EUS,P1
med ‖ =

√
(0.306)2, (0.368)2, (0.421)2, (0.433)2

‖~vHTTP,EUS,P1
med ‖ = 0.771

Analogically, such vector is also created for CSP P2 with the resulting magnitude:

‖~vHTTP,EUS,P2
med ‖ = 0.518

6.1. CSP RANK RESULTS 49

From results, P2 has around 25% better median metric vector magnitude, i.e.
it has lower latency. This particular comparison can visualized as two points in 4-
dimensional vector space, analogically to Fig. 5.3. The same steps are now done for
TCP protocol, with the resulting magnitudes:

‖~v TCP,EUS,P1
med ‖ = 0.997

‖~v TCP,EUS,P2
med ‖ = 0.726

Again, a notable difference in TCP latencies between the providers can be ob-
served, suggesting that provider P2 provides lower latency across the network protocol
stack. Next, I calculate vector magnitudes for a coefficient of variation:

‖~vHTTP,EUS,P1
cov ‖ = 0.302, ‖~v TCP,EUS,P1

cov ‖ = 0.230

‖~vHTTP,EUS,P2
cov ‖ = 0.774, ‖~v TCP,EUS,P2

cov ‖ = 0.836

In the case of coefficient of variation for both TCP and HTTP, P1 scored no-
tably better, i.e. it provides a more stable latency. Next, standard deviation vector
magnitudes is calculated – another measure of latency stability:

‖~vHTTP,EUS,P1
std ‖ = 0.122, ‖~v TCP,EUS,P1

std ‖ = 0.092

‖~vHTTP,EUS,P2
std ‖ = 0.195, ‖~v TCP,EUS,P2

std ‖ = 0.130

Once again, because of P1’s better stability, its standard–deviation vector magni-
tudes are lower than P2’s. Tab. 6.1 shows magnitudes of the selected metric vectors.

P L med std cov
P1 HTTP 0.771 0.122 0.302

TCP 0.997 0.092 0.230
P2 HTTP 0.518 0.195 0.774

TCP 0.726 0.130 0.836

Table 6.1: Calculated metric vector magnitudes ‖~v‖.

Next, I aggregate the layers via multiplication (Section 5.3.3) and calculate the
weighted sum using the following weights:

ŵ1 =
5

7
, ŵ2 =

1

7
, ŵ3 =

1

7

The weights reflect the primary need for low latency and a secondary need for
stable latency. Weights are plugged into the weighted sum formula:

fEUS,p = ŵ1‖~vEUS,p
med ‖+ ŵ2‖~vEUS,p

std ‖+ ŵ3‖~vEUS,p
cov ‖

That brings resulting marks: fEUS,P1 = 0.56 and fEUS,P2 = 0.36.

50 CHAPTER 6. BENCHMARKING APPLICATION

As 0.56 ≥ 0.36, CSP P2 is a recommended provider for hosting web–based appli-
cation front–end in East USA region.

Fig. 6.1 confirms that the tenant gets a better service performance with CSP
P2. Importantly, CSP P2 had a sufficiently lower latency and thus scored better
overall, despite the more stable–latency environment at CSP P1. In Fig. 6.1, a lower
median latency at P2 can be seen through order of tens milliseconds of difference at
all VPs. Higher latency–stability at P1 is caused mainly by Australian and Czech
VP’s observations at both application and transport layers. In contrast, Japan VP
experienced a higher–stability with P2. US VP’s observations were least significant,
owing to a physical proximity of this VP to the EUS DCs.

6.2 CSP rank - error function

The amount of measurements needed for accurate CSP benchmarking depends on
the particular CSP’s stability. Fig. 6.2 shows changing error in CSP rank (from
the case study in this Chapter 6) with growing amount of the measurements. The
error was ≤ 4.1% at 3 weeks and ≤ 2.2% at 6 weeks of measurements. In general
case, stabilization may not arise even with a greater amount of measurements –
due to changing CSP and network conditions. On the other hand, the long–term
measurements of major public CSPs indicate that an amount of measurements smaller
than 3 weeks is insufficient due to week–of–month and day–of–week distortions.

weeks
0 2 4 6 8

er
ro

r i
n

C
SP

 m
ar

k
[%

]

0

1

2

3

4

5

6
P1
P2

ra
nk

Figure 6.2: Decreasing error with growing amount of measurements.

Error function of benchmarked–CSP mark with growing dataset. The case
study indicates that at least 3–6 weeks of measurements are recommended for
the Latency–based benchmarking.

6.3. MEASUREMENTS SUMMARY 51

6.3 Measurements summary

To give an overview of the major public CSP–latency behavior, Tables 6.2 and 6.3
show a summary of computed magnitudes of descriptive–statistics–based metric vec-
tors. In Tab. 6.2, it can be seen that the largest differences in both mean and median
front–end latency between the providers are observed at US data centers. The highest
latency variability and deviations were observed at Singapore DC, again with a big
relative difference between providers (over 50% in the case of TCP latency variance).
P2 also has an excess variance in HTTP latency at Virginia DC.

front–end summary front–end DC location

(vector magnitudes) California Dublin Singapore Virginia
P1 P2 P1 P2 P1 P2 P1 P2

M
et
ri
c

Mean HTTP .823 .556 .544 .684 .689 .634 .780 .562
TCP .853 .514 .545 .590 .718 .596 .998 .736

Median HTTP .809 .531 .511 .668 .693 .604 .771 .518
TCP .842 .491 .564 .585 .723 .571 .998 .727

Variance HTTP .009 .014 .013 .008 .023 .031 .008 .024
TCP .009 .013 .014 .008 .016 .033 .005 .011

Std. deviation HTTP .127 .155 .148 .125 .201 .230 .123 .195
TCP .126 .143 .152 .124 .171 .239 .093 .131

COV HTTP .305 .754 .587 .440 1.810 .810 .303 .773
TCP .295 .789 .625 .524 .628 .902 .231 .836

Table 6.2: Summary of vector magnitudes for front-end resources.

Back–end results (Tab. 6.3) are heavily influenced by the DC and inter–DC net-
work design. Big differences in latency deviation and relative variance were observed
at Dublin DC (TCP and SQL latency) and Singapore DC (TCP latency). At Cali-
fornia DCs of both providers, there was a big disagreement between SQL and TCP
average latency and also the latency variability.

back–end summary back–end DC location

(vector magnitudes) California Dublin Singapore Tokyo
P1 P2 P1 P2 P1 P2 P1 P2

M
et
ri
c

Mean SQL 1.130 1.015 1.106 1.272 .422 .677 .447 .513
TCP .653 .768 1.114 1.301 .858 .986 .488 .640

Median SQL 1.136 1.018 1.107 1.258 .347 .680 .429 .534
TCP .551 .997 1.114 1.299 .797 1.149 .450 .636

Variance SQL .014 .012 .033 .003 .039 .049 .011 .023
TCP .153 .169 .035 .007 .026 .154 .013 .020

Std. deviation SQL .140 .140 .233 .066 .252 .242 .136 .167
TCP .414 .447 .245 .097 .205 .408 .153 .174

COV SQL .613 1.613 .880 .340 4.522 3.337 .751 .738
TCP 1.249 1.016 .893 .418 .706 .781 .754 .567

Table 6.3: Summary of vector magnitudes for back-end resources.

The magnitudes, listed in these Tab. 6.2 and Tab. 6.3, allow to assign arbitrary
weights to metrics and observe changing benchmarking results. Another use is to
benchmark an application distributed across DCs with multiple front–ends or back–
ends. And locate clients that such a deployment serves best.

52 CHAPTER 6. BENCHMARKING APPLICATION

6.4 Measurements and business analysis impact

In the previous sections of this chapter I have presented results from the benchmarking
method evaluating the performance of each provider. Using that, an arbitrary subset
of end-to-end measurements can be chosen to compare latency performance for each
provider.

The CLAudit based, long term measurements can be also used for a real overview
if a CSP satisfies quality of service which he promises to a customer- in a SLA (Service
Level Agreement) document for example. In the chapter 2.3, I have described three
use cases which require different parameters for a particular business case. For a
high-frequency trading, there is a need for low values of network latency with as little
outliers as possible, for an online-gaming use case it would be a standard deviation
metric the small as possible and for an online map provider, an information about
average cases using a median metric, among others. Values for these performance
thresholds always depend on the particular situation, on the application which is
under consideration and other parameters important for the business.

Let us consider CLAudit latency measurements as values for a real communication
which was perceived by a client. In Fig. 6.3, there is a communication on HTTP
layer between an Australian VP and a front-end application web server located in
the Singapore DC for two providers, P1 and P2. For a simplicity of this example, I
consider a latency threshold which would be enforced by the use case. Overcoming this
threshold value might result in a trade loss for the trading or undesired disadvantage
for a game player, for example.

First, in Fig. 6.3 and Fig. 6.4, there are measurement results in a full scale as well
as in a scaled view to show the major and interesting part of the latency measurements
on this path. I choose this particular example, because the latency time series have
a similar values, it is thus not easy to differentiate between these two. Therefore an
analysis for a threshold can give interesting results.

For this measurement and the example, 100ms threshold was chosen. To have
a complete picture and an analysis, two other thresholds, 150ms and 200ms were
added. These values were chosen to encompass the vast majority of the measurement
and to study differences on these consecutive levels. As mentioned, for each use-case
or an app, the threshold is different. Thresholds are highlighted in measurements in
Fig. 6.5 for 100ms, in Fig. 6.6 for 150ms and in Fig. 6.7 for 200ms.

Let us consider a condition which could appear in a SLA agreement between the
customer and a provider about a level of quality of the service. This condition re-
quires that a 95% of the network latency communication must be below the requested
threshold value (100ms, 150ms and 200ms accordingly). In Tab. 6.4, I calculated a
percentage which represents how many measurements satisfies this condition and to
which extent was the threshold violated in the measurement window. Any other
metric or parameter which can be calculated can be used for similar comparison.

For provider P1, results exceed the 95% condition and it satisfies the requirement.
In case of provider P2, it does not meet the criteria for the first two threshold values.
Even more, the differences are around 5-15%, which is a significant agreement viola-
tion. To this end, important fact is that data are of a long-term nature. It is not just
a short-term sample, data are collected in uniform manner over 10 weeks.

6.4. MEASUREMENTS AND BUSINESS ANALYSIS IMPACT 53

Figure 6.3: An Australian client connecting to Singapore front-end server on HTTP layer.

Figure 6.4: Scaled plots of measurements from Fig. 6.3.

Presented values might have a significant impact on the customer business, as it
was already mentioned - a trade loss, a bad user experience etc. As such, this might
have an influence on the customer-provider relationship and other business aspects.
Customer can ask for some sort of price discounts or other service usage negotiation
etc. For example, Amazon gives a Service Credit points to customer when SLA is not
met. This credit is used as a compensation when billing the service [65].

Provider threshold 100ms threshold 150ms threshold 200ms
P1 0.96273 0.97113 0.99642
P2 0.79710 0.89606 0.99696

Table 6.4: Percentage of measurements which falls under the threshold.

This was just a short insight how such long term measurements might help in a
business, using a simple performance threshold. Similar analysis might use advanced
metrics, as well as more complex data (different layers) for more thorough evaluation.

54 CHAPTER 6. BENCHMARKING APPLICATION

Figure 6.5: Threshold at 100ms highlighted.

Figure 6.6: Threshold at 150ms highlighted.

Figure 6.7: Threshold at 200ms highlighted.

Chapter 7

Conclusion

The aim of this work was to measure network latency to global cloud resources of
different providers and to propose a method that evaluates and compares their per-
formance - network based cloud benchmarking. As current trend shows, network
latency is getting more and more important. A customer who is seeking the best fit
cloud infrastructure for his applications remains indecisive due to lack of information
from providers themselves or by lack of his own general measurements. For the pur-
pose of this work I have extended an existing measurement infrastructure to measure
the two largest cloud providers (Amazon and Microsoft) and proposed an innovative
benchmarking methodology, resulting in a cloud provider performance rank.

In the more practical part, I have completely redesigned an existing CLAudit
platform to allow measurements of the two cloud providers. I have chosen similar
data center locations for both clouds and then deployed the infrastructure to the
Amazon AWS cloud to run the measurements as well. Existing solution at Microsoft
Azure cloud was updated for this purpose accordingly. The whole new testbed allows
fully autonomous, continuous and provider fair latency-based cloud measurements of
both providers. With the structural changes like a usage of configuration file, code
improvements and measurements tuning, the platform is extended and prepared even
for measurements of other cloud providers in the future.

For performance comparison, I present a benchmarking methodology, which has
two parts. Firstly, data preprocessing normalizes and transforms raw data from
word-wide measurements to a standard range, suitable for further processing. The
subsequent CSP ranking part contains multiple steps and different metrics that can
be applied to tailor the evaluation according to the use-case or the application under
consideration. With such parametrization one metric can be more stressed with a
stronger weight than another. All these steps are applied equally on data of both
providers, so the final rank is a fair evaluation.

I have applied the introduced theory on the real data from the CLAudit measure-
ment platform to demonstrate the applicability of such approach. It reveals inter-
esting results for different metrics and various data center locations. These findings
can be used for provider selection using diverse application requirements, provider
performance estimations without any actual test deployments, traffic load balanc-
ing or identifying best-fit data center locations for a global client base, front-end or

55

56 CHAPTER 7. CONCLUSION

back-end resources and vice versa. Also, I present a cost overview of the platform
and an insight to a cloud provider pricing plans. Surprisingly, this approach discovers
significant differences, even though cloud resources at similar power level were chosen.

This study clearly shows that selection of the best fitting cloud service provider
is not straightforward. Detailed application quality-of-service requirements must be
known to obtain a clear picture, as different services outperform others in different
aspects or locations. An advantage of this work is that it is a demonstration of
introduced theory on real data and measurements, as opposed to simulation-based
approaches with assumptions.

Another strong contribution of this work is the fact, that the research is already
accredited in the cloud computing community. The benchmarking methodology and
the work results from this Master Thesis were used for a research paper named La-
tency–based Benchmarking of Cloud Service Providers authors Vojtech Uhlir, Ondrej
Tomanek and Lukas Kencl. This paper was accepted to internationally well recog-
nized conference - 9th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC 2016), Shanghai, China. Myself, Vojtech Uhlir, I had the honor
to attend the conference in person and present the paper’s findings to the conference
auditorium.

Clearly, improvement of the methodology is possible - for example by integrating
other measurable parameters such as network throughput or a service cost. Including
the pricing plans to the algorithm could reveal an interesting cost/performance ratio.
But the cloud cost structure is a large and complex issue, with a high number of
different cloud instances, services or payments plans. Because of that I did not
include this parameter to the calculations in this work, as it requires a more thorough
research and providers’ offerings evaluations. More cloud providers can be included
to the platform as well, to cover even more of the market.

Furthermore, despite the practical application demonstrated, to fully confirm find-
ings in this work a comparative test is needed. Since there are no similar studies yet,
there are no data to measure improvement or a result precision. All these are open
opportunities for the future or an extension of this work. CLAudit measurements
data are published and freely accessible online at http://claudit.feld.cvut.cz and can
be used by the research community. This also leaves a space for other research groups
to use this data for further investigation and processing of the measured values.

Accomplishments

• Vojtech Uhlir, Ondrej Tomanek, and Lukas Kencl. Latency-based benchmarking of
Cloud Service Providers. In Proceedings of the 9th IEEE/ACM International Confer-
ence on Utility and Cloud Computing - UCC2016. Association for Computing Machin-
ery (ACM), 2016.

• Ondrej Tomanek, Pavol Mulinka, Vojtech Uhlir and Lukas Kencl. Cloud Performance
Analysis and Improvement. Project report for the Grant Agency of the Czech Tech-
nical University in Prague, grant No. SGS15/153/OHK3/2T/13. Czech Technical
University in Prague, 2017.

57

58

Bibliography

[1] Ondrej Tomanek and Lukas Kencl. Claudit: Planetary-Scale Cloud Latency Auditing
Platform. 2nd IEEE International Conference on Cloud Networking (IEEE CloudNet),
San Francisco, CA, USA, 2013.

[2] Gartner. By 2020, a corporate "no-cloud" policy will be as rare as a "no-internet" policy
is today. [online], http://www.gartner.com/newsroom/id/3354117, 2016.

[3] Gartner. Cloud Computing Definition. [online], http://www.gartner.com/it-
glossary/cloud-computing/, 2016.

[4] National Institute of Standards and Technology, Informa-
tion Technology Laboratory. Cloud Computing. [online],
https://www.nist.gov/sites/default/files/documents/itl/cloud/cloud-def-v15.pdf,
2016.

[5] Datacenterfrontier. Scaling Up: Google Building Four-Story Data Centers. [online],
http://datacenterfrontier.com/google-building-four-story-data-centers/, 2016.

[6] DPR Construction. Facebook Sweden Data Center. [online],
http://www.dpr.com/projects/sweden-data-center, 2016.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM,
2003.

[8] Gartner. Multitenancy. [online], http://www.gartner.com/it-glossary/multitenancy/,
2016.

[9] Microsoft. When to move biztalk to Azure IaaS. [online],
http://social.technet.microsoft.com/wiki/contents/articles/35800.when-to-move-
biztalk-to-azure-iaas.aspx, 2016.

[10] Amazon. Amazon VPC. [online], https://aws.amazon.com/vpc/, 2016.

[11] Rackspace. Managed cloud. [online], https://www.rackspace.com/cloud/private, 2016.

[12] Barb Darrow. Amazon and microsoft are running one and two in two-cloud race, 2016.

[13] David Ramel. Microsoft no. 2 behind amazon in cloud market share, 2016.

59

[14] Amazon. Netflix Case Study. [online], https://aws.amazon.com/solutions/case-
studies/netflix/, 2015.

[15] Alex Casalboni. Aws re:invent 2015 nettflix and aws, 2015.

[16] Ondrej Tomanek, Pavol Mulinka, and Lukas Kencl. Multidimensional Cloud Latency
Monitoring and Evaluation. Computer Networks, 2016.

[17] Luiz Andre Barroso. Warehouse-scale Computing: Entering the Teenage Decade. ACM
SIGARCH, 2011.

[18] Luiz André Barroso, Jimmy Clidaras, and Urscc Hölzle. The datacenter as a com-
puter: An introduction to the design of warehouse-scale machines. Synthesis lectures
on computer architecture, Morgan & Claypool Publishers, 2013.

[19] Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-Laung
Lei. Measuring the latency of cloud gaming systems. In ACM international conference
on Multimedia, 2011.

[20] Mohan Dhawan, Justin Samuel, Renata Teixeira, Christian Kreibich, Mark Allman,
Nicholas Weaver, and Vern Paxson. Fathom: A Browser-based Network Measurement
Platform. In ACM IMC, 2012.

[21] Ondrej Vondrous, Peter Macejko, and Zbynek Kocur. FlowPing-The New Tool for
Throughput and Stress Testing. Advances in Electrical and Electronic Engineering,
13(5):516, 2015.

[22] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using Planetlab for network
research: myths, realities, and best practices. In ACM SIGOPS, 2006.

[23] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the ACM IMC, pages 267–280, 2010.

[24] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. The Nature of Datacenter Traffic: Measurements & Analysis. In ACM IMC,
2009.

[25] Abhinav Pathak, Y Angela Wang, Cheng Huang, Albert Greenberg, Y Charlie Hu,
Randy Kern, Jin Li, and Keith W Ross. Measuring and Evaluating TCP Splitting for
Cloud Services. In PAM, 2010, Springer.

[26] Y Angela Wang, Cheng Huang, Jin Li, and Keith W Ross. Estimating the Perfor-
mance of Hypothetical Cloud Service Deployments: A Measurement-Based Approach.
In INFOCOM, IEEE, 2011.

[27] Atef Abdelkefi, Yuming Jiang, Bjarne Emil Helvik, Gergely Biczok, and Alexandru Calu.
Assessing The Service Quality of an Internet Path Through End-to-end Measurement.
Elsevier Computer Networks, 2014, 2014.

[28] Marik Marshak and Hanoch Levy. Evaluating Web User Perceived Latency Using Server
Side Measurements. Elsevier Computer Communications, 2003.

60

[29] Robert Minnear. Latency: The Achilles Heel of Cloud Computing, 2011. Cloud Com-
puting Journal.

[30] Harsha V Madhyastha, Thomas Anderson, Arvind Krishnamurthy, Neil Spring, and
Arun Venkataramani. A Structural Approach to Latency Prediction. In SIGCOMM,
ACM, 2006.

[31] Krishna P Gummadi, Stefan Saroiu, and Steven D Gribble. King: Estimating Latency
Between Arbitrary Internet End Hosts. In ACM SIGCOMM Workshop on Internet
measurement, 2002.

[32] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra Padhye.
Analyzing the Performance of an Anycast CDN. In ACM IMC, 2015.

[33] Yi-Ching Chiu, Brandon Schlinker, Abhishek Balaji Radhakrishnan, Ethan Katz-
Bassett, and Ramesh Govindan. Are We One Hop Away from a Better Internet? In
ACM IMC, 2015.

[34] K.L Johnson, J.F Carr, M.S Day, and M.F Kaashoek. The Measured Performance of
Content Distribution Networks. Elsevier Computer Communications, 2001.

[35] Zi Hu, Liang Zhu, Calvin Ardi, Ethan Katz-Bassett, Harsha V Madhyastha, John Hei-
demann, and Minlan Yu. The Need for End-to-end Evaluation of Cloud Availability. In
Passive and Active Measurement. Springer, 2014.

[36] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, and Ion Stoica. Above The Clouds: A Berkeley
View of Cloud Computing. UCB/EECS, 2009.

[37] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards Pre-
dictable Datacenter Networks. In ACM SIGCOMM Computer Communication Review,
volume 41, pages 242–253. ACM, 2011.

[38] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl, and
Cafer Tosun. Benchmarking in the Cloud: What it Should, Can, and Cannot be. In
Technology Conference on Performance Evaluation and Benchmarking, pages 173–188.
Springer, 2012.

[39] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: Comparing Public Cloud
Providers. In Proc. of Conference on Internet Measurement (IMC), 2010.

[40] Mohan Baruwal Chhetri, Sergei Chichin, Quoc Bao Vo, and Ryszard Kowalczyk. Smart
CloudBench - Automated Performance Benchmarking of the Cloud. Proc. of Sixth
International Conference on Cloud Computing (CLOUD2013), 2013.

[41] Alexander Lenk, Michael Menzel, Johannes Lipsky, Stefan Tai, and Philipp Offermann.
What Are You Paying For? Performance Benchmarking for Infrastructure-as-a-Service
Offerings. In Cloud Computing (CLOUD), 2011 IEEE International Conference, pages
484–491. IEEE, 2011.

61

[42] Amazon. AWS Service Health Dashboard. [online], http://status.aws.amazon.com/,
2016. http://status.aws.amazon.com/.

[43] Microsoft. Microsoft Azure Status. [online], http://status.azure.com, 2016.

[44] CloudHarmony Inc. Cloud Harmony. [online], http://cloudharmony.com/, 2016.

[45] Michael Menzel and Rajiv Ranjan. CloudGenius: Decision Support for Web Server
Cloud Migration. In Proceedings of the 21st international conference on World Wide
Web, pages 979–988. ACM, 2012.

[46] Mohan Baruwal Chhetri, Quoc Bao Vo, Ryszard Kowalczyk, and Cam Lan Do. Cloud
Broker: Helping You Buy Better. In International Conference on Web Information
Systems Engineering. Springer, 2011.

[47] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. Cloud-
Prophet: Towards Application Performance Prediction in Cloud. ACM SIGCOMM
Computer Communication Review, 41, 2011.

[48] Mosharaf Chowdhury, Rachit Agarwal, Vyas Sekar, and Ion Stoica. A Longitudinal and
Cross-Dataset Study of Internet Latency and Path Stability. Technical report, 2014.

[49] J Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research
and Evaluation, 9(1):42–50, 2005.

[50] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
1991.

[51] D. Schneider. Financial trading at the speed of light.
http://spectrum.ieee.org/computing/it/financial-trading-at-the-speed-of-light, 2011 23
Sep.

[52] Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-Laung
Lei. Measuring the latency of cloud gaming systems. Proceedings of the 19th ACM
international conference on Multimedia, 2011.

[53] Ondrej Tomanek, Pavol Mulinka, Vojtech Uhlir, and Lukas Kencl. CLAudit. [online],
http://claudit.feld.cvut.cz, 2016.

[54] Pavol Mulinka and Lukas Kencl. Learning from cloud latency measurements. 3rd Inter-
national Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA)
at IEEE International Conference on Communications (ICC15 - Workshops05), Lon-
don, UK, 2015.

[55] Amazon. Amazon RDS. [online], https://aws.amazon.com/rds/details/, 2016.

[56] Microsoft Azure. SQL Databases, 2016. https://azure.microsoft.com/en-
us/pricing/details/sql-database/.

[57] Azure. Azure Regions. [online], https://azure.microsoft.com/en-us/regions/.

62

[58] DataCenterResearch. Amazon data center map. [online],
http://www.datacentermap.com/cloud/amazon-ec2.html, 2016.

[59] Amazon. Amazon Global Infrastructure. [online], https://aws.amazon.com/about-
aws/global-infrastructure/, 2016.

[60] YAML.org. Yaml language. [online], yaml.org, 2016.

[61] Amazon. Simple monthly calculator. [online],
https://calculator.s3.amazonaws.com/index.html, 2016.

[62] Azure. Pricing calculator. [online], https://azure.microsoft.com/en-
us/pricing/calculator/, 2016.

[63] Amazon. Amazon EC2 Service. [online], https://aws.amazon.com/ec2/, 2016.

[64] Gerald Evenden. Proj. 4–Cartographic Projections Library, 1990. Source code and
documentation available from trac. osgeo. org/proj.

[65] Amazon. Amazon EC2 Service Level Agreement. [online],
https://aws.amazon.com/ec2/sla/, 2016.

63

64

Appendix A

List of abbreviations

• AUS - location Australia

• CSP - Cloud Service Provider

• CZ - location Czech Republic

• DC - Data Center

• DUB - location Dublin

• EUS - location East of United States of America

• EBS - Elastic Block Store

• HTTP - Hyper Text Transport Protocol

• IaaS - Infrastructure As A Service

• JP - location Japan

• PaaS - Platform As A Service

• RTT - Round Trip Time

• SaaS - Software As A Service

• SING - location Singapore

• SLA - Service Level Agreement

• SQL - Structured Query Language

• TOK - location Tokyo

• TCP - Transport Control Protocol

• US - location United States of America

• VP - Vantage Point

• WUS - location West of United States of America

65

	Introduction
	Cloud benchmarking
	Cloud computing
	Latency-based benchmarking - State of the Art
	Cloud services - use cases
	Financial trading
	Online gaming platforms
	Navigation systems

	Network latency measurements
	Cloud Latency Auditing platform
	Architecture
	Testbed
	Measured variables

	My platform extensions for benchmarking approach
	Data–center locations
	Configuration file
	File naming notation
	VP locations
	Platform code redesign

	Measurement dataset

	Measurement platform cost insight
	Amazon - AWS
	Microsoft - Azure
	Infrastructure cost comparison

	Benchmarking methodology
	Measurements terminology
	Data preprocessing
	Data normalization
	Via optimal-propagation-delay approximation
	Via minimum-RTT latency

	Data transformation

	CSP ranking method
	Statistical metrics
	Metric vectors
	Protocol layer aggregation
	Metric weighting
	CSP rank

	Benchmarking application
	CSP rank results
	CSP rank - error function
	Measurements summary
	Measurements and business analysis impact

	Conclusion
	Accomplishments
	Bibliography
	List of abbreviations

