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Abstract
This master thesis deals with the MR im-
age processing of patients suffering from
neurodegenerative disorders, in particular
with the Alzheimer’s disease. The aim
was to explore various tools for image pro-
cessing and subsequent analysis and to
construct a transformation pipeline for
brain atrophy evaluation.

The thesis presents morphometric tech-
niques based on a non-linear image
registration, especially the tensor-based
morphometry with the SyN registration
method from the ANTs bundle.

The proposed solution allows the eval-
uation of atrophic rate of individuals,
but also to statistically assess atrophic
brain locations across the whole popula-
tion. Based on this, several algorithms
for automatic classification of atrophied
brains were proposed.

Keywords: magnetic resonance imaging,
MRI, Alzheimer’s disease, digital image
processing, registration, tensor-based
morphometry, SyN, ANTs, atrophy,
classification

Supervisor: Ing. Lenka Vysloužilová,
Ph.D.

Abstrakt
Tato diplomová práce řeší problematiku
zpracování obrazu z magnetické rezonance
pacientů s neurodegenerativními onemoc-
něními, zejména pak s Alzheimerovou cho-
robou. Cílem byl průzkum prostředků pro
zpracování obrazu a následnou analýzu a
sestavení řetězu vhodných transformací,
který by umožňoval hodnocení mozkové
atrofie.

Práce zejména představuje morfomet-
rické metody postavené na nelineární re-
gistraci MR snímků, především pak mor-
fometrii založenou na tenzorech za použití
registrační metody SyN z balíčku ANTs.

Vytvořené řešení umožňuje jednak vy-
hodnotit míru atrofie v mozku jednotlivců,
tak i statisticky stanovit atrofická místa
v celé populaci nemocných. Na základě
toho bylo navrženo několik algoritmů pro
automatickou klasifikaci mezi nemocnými
a zdravými pacienty.

Klíčová slova: magnetická rezonance,
MRI, Alzheimerova choroba, zpracovnání
digitálního obrazu, registrace,
morfometrie založená na tenzorech, SyN,
ANTs, atrofie, klasifikace

Překlad názvu: Mapování změn
lidského mozku u neurodegenerativních
onemocnění
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Chapter 1
Introduction

Magnetic resonance imaging (MRI) is an imaging technique based on nu-
clear magnetic resonance (NMR), a method to obtain spatial and structural
information about molecules. [MMGP07] Initially, this modality served for
tomographic imaging of the human body. With the advance of technology,
not only were thin slices produced, but advanced volume imaging techniques
were also introduced. These days it is a common practise to analyse slice
images, volume and tensor data among others.

In spite of the cost of an MRI examination, it is becoming increasingly
popular. The reasons might be the following: MRI does not expose the
patient to a harmful radiation as opposed to CT or conventional X-Ray. MRI
scanners do not emit any ionizing radiation and thus patients can undergo
MRI examination repeatedly without increased risk. Secondly, MRI provides
much better contrast for soft tissue examination such as brain tissue, spinal
chord, ligaments, tendons, etc. Because of this property, MRI is widely used
for capturing brain structures. It can especially help diagnose conditions such
as brain tumors, causes of epilepsy, cortical and hippocampal atrophy and
multiple sclerosis.

Various post-processing methods can be applied to observe valuable un-
derlying information. Brain morphometry is one of the most popular one
as it concerns with measurement of brain structures and their development
with the help of image data. [FFF+04] The most significant advantage of this
family of methods is the ability to compare corresponding brain structures of
different subjects even though their brains can seem to differ considerably in
size and proportions.

This theses focuses on utilization of MRI in evaluation of patients with
Alzheimer’s disease, in particular on brain morphometry. Special attention
will be paid to MRI data formats, description and evaluation of commonly
used brain MRI processing software bundles. Especially, ANTs library will be
thoroughly examined as it provides a set of powerful normalization methods
suitable for morphometry design.

Using mainly the ANTs library, a transformation pipeline for evaluation of
brain atrophy among given population of individuals will be designed and
implemented. Consequently, statistical differences in brain changes will be
evaluated.
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1. Introduction .....................................
The aim is to find the brain locations which are liable to atrophic changes

even before the disease passes on to a clinical stage and thus to provide a
powerful tool for neurologists. This could possibly lead to an early diagnosis
and with the help of correct medication, patients could live longer and with
less associated unpleasant symptoms.

This thesis is organized into several chapters. First, the introduction
presents the main theme and sets up desired aims and objectives. In the second
chapter, basic information about magnetic resonance imaging, Alzheimer’s
disease and brain morphometry is provided as well as a brief description of
several MRI processing toolboxes. The third chapter shows step by step the
creation of image processing pipeline for brain morphometry and presents
the reader with its numeric outcomes for provided data. In the last chapter,
results of the thesis are evaluated and compared to the aims set in the
introduction. Additionally, the future prospects and possible continuation of
the project are mentioned.

2



Chapter 2
Background knowledge

In the following chapter, a brief account on magnetic resonance imaging,
Alzheimer’s disease and brain morphometry is given as well as a short de-
scription of a couple of MRI processing toolboxes which are utilized in the
thesis.

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is an imaging technique used foremost
in medical settings to produce high-quality images of the inside of the human
body. This method is based on principles of nuclear magnetic resonance
(NMR), spectrographic method used to obtain chemical and physical informa-
tion about molecules. The medical modality was, however, called magnetic
resonance rather than nuclear magnetic resonance (NMRI) because of some
negative connotations of the word nuclear in the late 1970s.

Originally, MRI started out as a tomographic method, i.e., for capturing of
NMR signal in thin slices across the human body. By these days MRI has
evolved from tomography to a volume imaging technique.

In this theses, head MRI scans are used as an input for a subsequent
analysis of brain atrophy.

2.1.1 Brief History

In 1946, Felix Bloch and Edward Purcell independently discovered the mag-
netic resonance phenomenon, for which whey were awarded with the Nobel
Prize in 1952. Between 1950 and 1970, NMR was massively developed and
used for chemical and physical analysis.

In 1971, Raymond Damadian showed that magnetic resonance relaxation
times of healthy tissues and tumors significantly differ and thus he motivated
scientists to exploit magnetic resonance for disease detection. [Dam71]

Magnetic resonance imaging was demonstrated for the first time on a small
test tube by Paul Lauterbur in 1973. A back projection technique similar
to that one in CT was employed. [Lau73] In 1975, Richard Ernst proposed
MRI based on frequency and phase coding and Fourier transformation. That
forms the basis of the present MRI. [KWE75]

3



2. Background knowledge ................................
2.1.2 Tomographic Imaging

MRI started out as a tomographic modality, i.e., producing NMR slice images
across the human body. Each such slice has a certain thickness and it consists
of many volume units, so-called voxels. The volume of a 1.5 T MRI voxel can
be approximately 2 mm3. Resulting image generally consists of many image
points, which are called pixels. The intensity of a pixel is proportional to the
intensity of NMR signal from the corresponding volume element.

MRI is based on absorption and emission of energy in a radio-frequency
domain of electromagnetic field. From the attenuation spectrum of the human
body it is clear why the conventional X-Ray was commonly used for imaging.
However, why it took so long before imaging with the help of radio waves
was developed? Many scientists used to believe that it is impossible to
depict objects smaller than the wavelength of the energy, which is used for
imaging. MRI got around this limitation by spatial variation in the phase
and frequency of radio frequency energy, which the imaged object absorbs
and emits. [MMGP07]

2.1.3 Spin

The human body consists above all of water and fat that are composed of
a huge number of hydrogen atoms which in fact makes the human body
approximately 63 % hydrogen atoms. Nuclei of hydrogen are able to produce
NMR signal. On that account MRI shows predominantly NMR signal from
hydrogen nuclei. A single voxel of the image of the human body contains one
or more tissues. Each of them contains living cells, in which water molecules
are found. Each water molecule is compounded by one oxygen atom and two
hydrogen atoms. Each hydrogen atom has a nucleus consisting of a single
proton possessing a property called spin: [MMGP07]. Spin can be modelled as a very tiny magnetic field.. Spin causes the nucleus to create the NMR signal.. Not all nuclei possess non-zero spin.

2.1.4 Basic Principles of NMR

To make things easier, let’s assume the classical (non-quantum) model in
which one can interpret spin as a small magnet.

Without any external magnetic field, the orientation of spins can be de-
scribed as random and thus the net magnetization M equals zero. However, a
tissue in a MRI scanner is exposed to a very strong magnetic field (B0=1.5 T).
It is energetically favorable for spins to align parallel to the B0 field, let
call this direction z, by which means an external magnetization M arises.
Nevertheless, the net magnetization is only about 5 ppm of the maximal
possible one because of the heat motion. This phenomenon can be described
by the Maxwell-Boltzmann statistics. [Kyb]

4



............................. 2.1. Magnetic Resonance Imaging

According to the quantum mechanics, the spin is somewhat deflected from
the field B0 and thus it precess around z axis. Precession frequency is called
Larmor frequency and it equals f = γB, where γ is gyromagnetic constant.
γ = 42.58 MHz/T for hydrogen. [Kyb]

A rotating spin can absorb energy from an radio-frequency pulse with the
frequency f . It causes the magnetization axis to deflect from z axis. When
an pulse with an appropriate energy is applied, the spin will be rotating in
the xy-plane (90◦-pulse). All spins in the tissue will be rotating with the
same phase, therefore a measurable net magnetization arises which will be
rotating with frequency f in the xy-plane and which one can detect with a
suitable receive coil. This signal is usually called echo.

After the end of the pulse the magnetization is falling back to its equilibrium
(relaxation) with a time constant T1 (spin-lattice relaxation time). Another
reason for the signal intensity attenuation is the spin desynchronization due
to mutual interactions and magnetic field non-homogeneity – "spin-spin"
relaxation with a transversal relaxation time T2. T1 and T2 relaxation times
are specific for different tissues.

Only (rotating) transversal magnetization induces signal into reception
coils. Detection of longitudinal magnetization Mz requires renewed flipping
of recovered longitudinal magnetization into xy-plane by 90◦-pulse. This
sequence is called saturation recovery – recovery of longitudinal magnetization
after initial 90◦-pulse by repeated 90◦-pulse at time TR (repetition time). If
TR is set short enough, the resulting signal is T1-weighted.
Spin-echo sequence is another frequently used sequence. Its goal is the

compensation of dephasing by sequence of appropriate transversal field pulses
at time TE/2 (echo time). If the echo time is set long enough, the resulting
signal is T2-weighted. [Suc15]

For a long TR time and short TE time, the intensity of received signal
hardly depends on the time constants of the tissue. Instead, the intensity is
proportional to the proton density and thus we call this contrast PD (proton
density) contrast.

There are also another more complex sequences such as FLAIR, TSE, etc.

Figure 2.1: Axial T1-weighted, proton-density weighted, T2-weighted, and
FLAIR images (from left to right) [BFBLS11]

5



2. Background knowledge ................................
2.1.5 Spatial encoding of MRI

Reception coils acquire vector sum (or integral) over induced signal. Unam-
biguous discrimination of position along x-, y- and z-coordinates is achieved
by gradients of Bz-field.

A gradient Gz is applied during RF pulse which makes the magnetic field
intensity Bz and resonance frequency dependent on a position. Only spins in
a thin slice are flipped by transversal field pulse – slice selection. Bandwidth
of the excitation impulse determines the thickness of the slice.

Encoding of x-coordinate is carried out by gradient Gx during readout. It
causes the precession frequency to vary with x-coordinate – frequency coding.

Finally, encoding of y-coordinate is accomplished by gradient Gy applied
for a fixed interval Ty between RF pulse and readout. Now spins emit
electromagnetic waves with phase shift ϕy(y) dependent on y-position – phase
coding.

2.1.6 Tomographic reconstruction

The signal S(fx, fy, z0) received by the coils is the integral over transversal
magnetization phasor in the entire slice z = z0. This signal is demodulated in
a quadrature modulator. It holds that the demodulated signal is the Fourier
transform of the transversal magnetization at slice z0. Frequencies fx, fy
are often called wave numbers kx, ky. Therefore the MRf slice acquisition
proceeds by "sampling in k-space". kx is sampled by sampling of time with
sampling interval ∆tx. ky by sampling of gradient Gy in steps ∆Gy. [Suc15]

Once the k-space is sampled dense enough, the (weighted-)magnetization
image is recovered by inverse 2D Fourier transform.

2.2 Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of dementia, affecting over
40 million people worldwide. [SBB+16] Although the exact time course is
unknown, AD-related pathogenesis is believed to begin decades before clinical
symptoms, such as memory impairment, can be detected. As AD develops,
patients suffer from progressive decline in executive function, language, and
other cognitive and behavioral domains.

MRI is widely used in AD studies as it can non-invasively quantify gray
and white matter integrity with high reproducibility. MRI-based measures
have been used in recent clinical trials and they have been shown to correlate
with pathologically confirmed neuronal loss and with the molecular hallmarks
of AD. [HLP+08]

For these reasons, we attempt to measure and quantify brain changes in
AD on the basis of MRI data. On top of that, brain atrophy among given
population of individuals will be evaluated.

6



..................................2.2. Alzheimer’s Disease

2.2.1 The Hallmarks of AD [Rod08]

The brains of people with AD have an abundance of two abnormal structures
– amyloid plaques and neurofibrillary tangles – that are made of misfolded
proteins. This is especially true in certain regions of the brain that are
important in memory. The third main feature of AD is the loss of connections
between cells. This leads to diminished cell function and cell death.
Amyloid plaques are found in the spaces between the brain’s nerve cells.

They consist of largely insoluble deposits of an apparently toxic protein
peptide, or fragment, called beta-amyloid. We now know that some people
develop some plaques in their brain tissue as they age. However, the AD
brain has many more plaques in particular brain regions.

The second hallmark of AD is neurofibrillary tangles. Tangles are abnormal
collections of twisted protein threads found inside nerve cells. The chief
component of tangles is a protein called tau. Healthy neurons are internally
supported in part by structures called microtubules, which help transport
nutrients and other cellular components, such as neurotransmitter-containing
vesicles, from the cell body down the axon. Tau, which usually has a certain
number of phosphate molecules attached to it, binds to microtubules and
appears to stabilize them. In AD, an abnormally large number of additional
phosphate molecules attach to tau. As a result of hyperphosphorylation, tau
disengages from the microtubules and begins to come together with other tau
threads. These tau threads form structures called paired helical filaments,
which can become enmeshed with one another, forming tangles within the
cell. The microtubules can disintegrate in the process, collapsing the neuron’s
internal transport network. This collapse damages the ability of neurons to
communicate with each other.

The third major feature of AD is the gradual loss of connections between
neurons. Neurons live to communicate with each other, and this vital function
takes place at the synapse. The AD process not only inhibits communication
between neurons but can also damage neurons to the point that they cannot
function properly and eventually die. As neurons die throughout the brain,
affected regions begin to shrink in a process called brain atrophy. By the final
stage of AD, damage is widespread, and brain tissue has shrunk significantly.

2.2.2 The Changing Brain in AD

AD begins deep in the brain, in the entorhinal cortex, a brain region that is
near the hippocampus and has direct connections to it. Healthy neurons in
this region begin to work less efficiently, lose their ability to communicate, and
ultimately die. This process gradually spreads to the hippocampus, the brain
region that plays a major role in learning and is involved in converting short-
term memories to long-term memories. Affected regions begin to atrophy.
Ventricles, the fluid-filled spaces inside the brain, begin to enlarge as the
process continues, as shown in Fig. 2.2. [Rod08]

7



2. Background knowledge ................................

Figure 2.2: Mild to moderate AD [Rod08]

2.2.3 Use of MRI in Alzheimer’s disease

MRI-based measures of atrophy are regarded as valid markers of disease
state and progression for several reasons. Atrophy seems to be an inevitable,
inexorably progressive concomitant of neurodegeneration. The topography of
brain tissue loss correlates well with cognitive deficits, both cross-sectionally
and longitudinally.

Rates of change in several structural measures, including whole-brain,
entorhinal cortex, hippocampus and temporal lobe volumes, as well as ven-
tricular enlargement, correlate closely with changes in cognitive performance,
supporting their validity as markers of disease progression. [FFJ+10]

2.3 Brain Morphometry

Morphometric methods are a process of numerically identifying and char-
acterizing structural differences among populations, or for finding relation
between brain shape and, for example, disease severity.

Morphometric methods have a number of different aims. They can be
used for localising significant structural differences among populations, or for
showing that overall brain structure is related to some effect of interest. When
testing the overall brain structure, multivariate statistical methods are used to
analyse groups of parameters for the whole brain (e.g., the deformation-based
morphometry, see below). The result of the forms of morphometry that
localise structural differences would typically be a statistical parametric map
of regional differences. Statistical parametric maps (SPMs) can be derived
from uni-variate data where there is a single variable at each voxel (e.g., the

8



..................................2.3. Brain Morphometry

voxel-based morphometry, see below), or from multi-variate data, where there
are several different variables at each voxel (e.g., tensor-based morphometry,
see below).

Another use for morphometric methods is for characterising essential dif-
ferences, or for producing some form of classification. Linear methods such
as correlation analysis, or nonlinear classification methods can be used for
these purposes. [AF01]

In our case, a method of tensor-based morphometry is utilized in order
to obtain volumetric differences between corresponding locations in different
brains. Thus, one might be able to localize excessively expanding or shrinking
brain structures.

2.3.1 Voxel-Based Morphometry (VBM)

VBM is a technique for producing SPMs of volumetric differences. It performs
a voxel-wise comparison of the local concentration of greymatter between two
group of subjects.

Voxel-based morphometry of MRI data involves spatially normalising all
the subjects’ images to the same stereotactic space, extracting the grey matter
from the normalised images, smoothing, and finally performing a statistical
analysis to localise, and make inferences about group differences.

The output from the method is an SPM showing regions where grey matter
concentration differs significantly among the groups. [AF01]

2.3.2 Deformation-Based Morphometry (DBM)

Deformation-based morphometry is a characterisation of the differences in the
vector fields that describe global or gross differences in brain shape. These
vector fields are the deformation fields used to effect nonlinear variants of
spatial normalisation, when one of the images is a template that conforms to
some standard anatomical space. [AF01]

2.3.3 Tensor-Based Morphometry (TBM)

The objective of TBM is to localize regions of shape differences among
groups of brains, based on deformation fields that map points in a template
(x1, x2, x3) to equivalent points in individual source images (y1, y2, y3). In
principle, the Jacobian matrices of the deformations (a 2nd order tensor
field relating to the spatial derivatives of the transformation) should be more
reliable indicators of local brain shape than absolute deformations. Absolute
deformations represent positions of brain structures, rather than local shape,
and need to be quantified relative to some arbitrary reference position.

A Jacobian matrix contains information about local stretching, shearing
and rotation involved in the deformation, and is defined at each point by:

9



2. Background knowledge ................................

J =
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 (2.1)

A simple form of TBM involves comparing relative volumes of different
brain structures, where the volumes are derived from Jacobian determinants
at each point. Simple univariate statistics (t- or F- tests) can then be used to
make inferences about regional volume differences among populations. This
type of morphometry is useful for studies that have specific questions about
whether growth or volume loss has occurred.

Spatial normalization of a series of source images involves determining a
mapping from each point in the template image to corresponding points in the
source image. To compare image shapes, it is necessary to derive measures
of shape within the coordinate system of the template image, rather than
within the different coordinate systems of the individual source images.

Within a TBM framework, multivariate statistics would be applied to
the elements of a strain tensor in order to localize volume, area and length
differences.

Rather than basing the tests either on information at each pixel, or on
information from the whole brain, it is easy to see that forms of morphometry
could be based on regional analysis. For example, multivariate TBM could be
applied such that the tests include information from strain tensors in regions
of neighboring lattice locations. The regions could be based on pre-defined
structures on the template image. [FFF+04]

Types of Studies

There are two types of TBM studies: cross-sectional and longitudinal.
Cross-sectional TBM is based on an average brain template of healthy

subjects (control group). Then a source image, i.e., the one we want to
quantify, is registered with a highly non-linear transformation to the average
brain template.

The advantage of this approach is that it does not need follow-up images
from the same patient. Only a group of healthy subjects for the creation of
the brain template is required. However, cross-sectional TBM does not yield
such sensitive results as in case of longitudinal studies.

Longitudinal TBM relies on the comparison of follow-up MR brain images
from the same person. It usually outputs more reliable results than the cross-
sectional TBM but it often faces the problem of lack of follow-up examinations
which are usually quite costly and not always available.

2.4 TBM Pipeline

The following chapter elaborates more on the topic of the tensor-based mor-
phometry as it was chosen as the ideal technique for a precise localization
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Figure 2.3: MR Image Pre-processing Pipeline

and measurement of atrophied structures in Alzheimer’s disease. The TBM
pipeline consists of several steps. First, the data need to be preprocessed
(see Sec. 2.4.1). Then either cross-sectional TBM or longitudinal TBM is
performed. The cross-sectional TBM involves creating an average group tem-
plate and afterward, registering all individual brain images to this template.
On the other hand, the longitudinal TBM is applied in case of having several
follow-up scans from the same patient available because this method involves
aligning a brain scan not to a template but to an older brain image from the
same subject. The outcome of both of these approaches is a Jacobian matrix
field which tells which parts of the brain are expanding or shrinking and to
what extend. Usually a statistical analysis based on this field follows (see
Sec. 2.4.6). The whole process is also illustrated in Fig. 2.5.

11



2. Background knowledge ................................
2.4.1 Image Pre-Processing Pipeline

It is a good practice to pre-process the input MR images before processing
further in the TBM pipeline (see Fig. 2.3).. (for longitudinal TBM only) linear registration of follow-up scans to

adjust for linear drifts in head position and scale within the same subject.. An input image is resampled into isotropic space, e.g., with a final voxel
volume of 1 mm3. One may also down-sample the image to speed up the
entire pipeline, however, at the expenses of resolution and information
loss. Resampling also requires a sensible choice of interpolator..MRI suffers from an imaging artifact commonly referred to as intensity
inhomogeneity or bias field, which appears as low-frequency multiplica-
tive noise in the images. It rises from the imperfections of the image
acquisition process and manifests itself as a smooth intensity variation
across the image, see Fig. 2.4. Because of this phenomenon, the intensity
of the same tissue varies with the location of the tissue within the image.
Although intensity inhomogeneity is usually hardly noticeable to a human
observer, many medical image analysis methods, such as segmentation
and registration, are highly sensitive to the spurious variations of image
intensities. This is why a number of methods for intensity inhomogeneity
correction of MR images have been proposed. [VPL07]
A well-known intensity inhomogeneity correction method is known as
the N3 [LIVL14]. It is a histogram-based method with high-frequency
maximization. Its popularity is due to its high performance, automatic
image handling and no required prior information about the MRI input.
A variant of N3 algorithm, called N4ITK, has been presented in [TAC+10].
This variation couples a robust B-spline approximation algorithm with a
modified optimization strategy which includes a multiresolution option
to capture a range of bias modulation.

Figure 2.4: Intensity inhomogeneity in MR brain image. [VPL07]

. Skull stripping may be required to improve the robustness of TBM.
There are several different approaches to this problem, such as employing

12



.................................... 2.4. TBM Pipeline

deformable model operating with virtual forces or template-based method.
For particular examples, see Section 2.6.3.

2.4.2 Average Group Template (MDT)

To construct an MDT, an initial affine average template is created by taking
a voxel-wise average of globally aligned scans after intensity normalization.
Next, a non-linear average template is built after warping individual brain
scans to the affine template. The above steps are repeated until a full-
resolution image registration is achieved. Lastly, the MDT is generated
by applying inverse geometric centering of the displacement fields to the
non-linear average. [HX11] See a detailed process diagram in Fig.2.5a.

2.4.3 Warping

The above mentioned non-linear alignment of the individual images to the
MDT is often called a warping.

Warping is a highly non-linear registration process which locally deforms
source to the target image. The quality of TBM extremely depends on
the warping algorithm used. Quite popular one is the non-linear inverse
consistent elastic intensity-based registration algorithm, which optimizes a
join cost function based on mutual information and the elastic energy of the
deformation. [HX11]

In recent years a new method called Symmetric Diffeomorphic Image Nor-
malization method (Syn) [ATS09] was developed by a team led by B. B. Avants.
It is supposed to yield better results and it is implemented in a software
bundle ANTs which is heavily used in this thesis.

2.4.4 Cross-Sectional TBM

After creation of the minimal deformation target (MDT), all individual screen-
ing images are aligned (warped) to it. Then, gradients of the deformation
field are computed, from which Jacobian matrix is derived. Consequently,
the determinant of the local Jacobian matrix is derived from the forward de-
formation field to characterize local volume differences. Color-coded Jacobian
determinants are used to illustrate regions of volume expansion, i.e. those
with det J(r) > 1, or contraction, i.e. det J(r) < 1 relative to the normal
group template (see Fig. 2.5b). [HX11]

2.4.5 Longitudinal TBM

Before performing the longitudinal TBM, it is crucial to exclude skull, other
non-brain tissue and background from the input images to improve the
precision. [HX11]

First, the follow-up scan is linear registered to the baseline scan and then
non-linearly warped to it. Afterwards, a Jacobian matrix field is derived from
the gradients of the deformation field that aligns these images (see Fig. 2.5c).
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2.4.6 Morphometric measures

By the end of the TBM pipeline, a numerical analysis follows. There are two
types of measures:. Voxel-by-voxel measures – One may use such measure when asking where

are the differences between populations. Such measures produce an SPM
(statistical parametric mapping) of regional differences.. Volume-based measures – They answer the question whether there is a
difference between populations.
A common approach is to compute the measure from the Jacobian map
within a region-of-interest (ROI). There are two main definitions of ROI:
temporal lobe ROI and statistically-defined ROI.
Temporal lobe ROI, including the temporal lobes of both brain hemi-
spheres, is manually delineated on the MDT template by a trained
anatomist.
Statistically-defined ROI is defined based on voxels with significant
atrophic rates over time within the temporal lobes.

Statistical tests generally involve disproving a null hypothesis with a partic-
ular level of confidence. In morphometry, the null hypothesis is usually that
there are no significant structural differences among a number of populations,
or due to particular covariates, such as age. The objective of the tests is to
demonstrate improbability of the null hypothesis. For example, if p values of
less than 0.01 are deemed to be significant, then false positive results would
be expected only about once out of a hundred tests.

Performing comparisons at each voxel results in many statistical tests being
performed. Without any correction, the number of false-positive results would
be proportional to the number of independent tests. [AF01]

The most simple method is the Bonferroni correction which sets the alpha
value (probability of the false positive result) for the entire set of n comparisons
equal to α by taking the alpha value for each comparison equal to α/n.

However, Bonferroni correction is very conservative, i.e., it results in very
strict significance levels. In addition, it is not optimal for correlated data.
More accurate way to obtain the effective number of independent statistical
tests is determined using Gaussian Random Field (GRF) theory [AF01]. By
using GRF theory, a correction for multiple dependent comparisons can be
made to produce the appropriate rate of false-positive results.

2.4.7 Classification

After obtaining one or more morphometric measures, it is convenient to use
them for classification purposes. In the simplest case, we assume a binary
classifier which discriminates between two classes – healthy individuals and
AD subjects. For training such model, a set of records from both groups
are needed, i.e., the training set. Each record should contain one or more
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2. Background knowledge ................................
attributes, that is some morphometric measures derived by TBM, and a class
assessed by a neurologist. Classifiers used in this thesis are the following:. Naive Bayes classifier – Classification based on the Bayes’ theorem and

assuming that the attributes are independent. That is getting posterior
from prior and likelihood. See [Bis06] for more details.. Decision tree – An algorithm based on a tree-like graph whose nodes
contain a simple decision rule operating with a value of a single attribute.
According to fulfillment of this rule, the algorithm continues in one of
the two possible child subtrees. The node with no child subtrees is a leaf
specifying the classification. Also see [Bis06].

In the training phase, such attribute is chosen so that it minimizes
entropy, that is, it is the most informative attribute.. Support vector machine (SVM) – SVM seeks a hyperplane which op-
timally splits training data in an attribute space. To describe this
hyperplane only a few nearest points are needed, so called support vec-
tors.

SVM allows a non-linear classification so that not linearly separable data
are mapped into high-dimensional feature space – the kernel trick – in
which they can be linearly separated. Also see [Bis06].. Neural network – The neural network is a connection of several linear
models, perceptrons. One perceptron can classify only linearly separable
data, but according to the Universal approximation theorem a three
layered neural network is capable of approximating an arbitrary function.
Neural networks are usually trained through the backpropagation learning
algorithm. Also see [Bis06].

A model needs to be verified after training. Such evaluation proceeds on
a testing set which should be different from the training one. Sizes of these
sets are generally 70 % for the training set and 30 % for the testing set.

Based on the testing data a contingency table is filled out, see Tab 2.1.

predicted values
positives negatives

actual
values

positives true positive (TP) false negative (FN)
negatives false positive (FP) true negative (TN)

Table 2.1: Contingency table for classifier evaluation

Then, the quality of a classifier is rated among others by these criteria:. Classification accuracy tells how many samples were correctly classified.

Acc = TP + TN

TP + FN + FP + TN
(2.2)
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. Sensitivity is the probability of a positive sample being indicated as
positive.

Se = TP

TP + FN
(2.3). Positive predictivity is the probability that a sample indicated as positive

is truly positive.
PP = TP

TP + FP
(2.4)

These ratios are, however, only point estimates of true population pro-
portions. To tell the degree of uncertainty a (two-sided) confidence interval
should be added:〈

p̂− u1−α2

√
p̂(1− p̂)

n
, p̂+ u1−α2

√
p̂(1− p̂)

n

〉
(2.5)

where p̂ is the sample proportion (point estimate), n is the sample size,
u1−α2 is the quantile of a t-distribution with n − 1 degrees of freedom and
α is a significance level.

2.5 Image Registration

In several steps of the TBM pipeline it is required to align one brain image
to an another in order to obtain same structures at similar positions in both
images, a process usually called image registration. It is an iterative procedure
of finding a transformation T, which relates the position of features in one
image or coordinate space with the position of the corresponding feature in
another image or coordinate space. [HH01]

Any registration technique can be described by three components: a
transformation which relates the target and source image, a similarity measure
which measures the similarity between target and source image, and an
optimization which determines the optimal transformation parameters as a
function of the similarity measure.

Registration algorithms make use of number of different features. It can be
geometrical features such as points and various structures (surface, volumes),
or the algorithm can work directly on image intensity values.

2.5.1 Point registration

Point registration involves identifying corresponding points in the images to
be aligned. The most common approach is to find the least square rigid-
body or affine transformation that aligns the points. This transformation
can subsequently be used to transform any arbitrary point from one image
to the another. The Procrustes algorithm is used for determining such
transformation (more details in [HH01]). It has a known solution involving
computing Singular value decomposition.

This approach is very fast and robust and solves well simple practical
problems.
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2. Background knowledge ................................
2.5.2 Surface matching

Surface matching exploits high contrast boundaries or surfaces which can be
successfully located by various segmentation algorithms. This is especially
true of the skin surface.

One of the most famous algorithm is the Head and Hat algorithm. Two
equivalent surfaces are identified in the images. The first, from higher
resolution modality, is represented as a stack of disks as is referred to as
head. The second surface is represented as a list of unconnected 3D points.
The registration transformation is determined by iteratively transforming the
(rigid) hat surface with respect to the head surface, until the closes fit of the
hat on the head is found. The measure of closeness of fit used is the square
of distance between a point on the hat and the nearest point on the head, in
the direction of the centroid of the head. [HH01]

However, the most frequently applied algorithm for the registration of
surfaces is the Iterative Closest Point (ICP). The algorithm works in two
stages. Firstly, the closest model point for each data point is identified. Then,
a transformation T is calculated aiming at the minimization of the evaluation
measure D with least square error. The procedure iteratively continues until
a (local) minimum is reached.

2.5.3 Registration with intensities

Whereas results and quality of the methods described above depends directly
on the segmentation approach, this class of registrations is based on the
analysis of intensities, i.e., the similarity measures are based on voxel values.

These similarity measures can either depend on the voxel intensities directly,
e.g., SSD (Sum of Square Intensity Differences) or CC (Cross Correlation),
or they can be statistically dependent, e.g., MI (Mutual Information):. Sum of Squared Intensity Differences (SSD) works only for data of

identical modalities and it is optimal only if both images differ by
Gaussian noise. It is never used for intermodal and rarely for intramodal
registration – application predominantly for serial MRI registration.
Eq. 2.6 shows how this measure can be computed.

SSD = 1
N

∑
xA∈ΩTA,B

|A(xA)− Bτ (xA)|2 (2.6)

where xA is a voxel location in image A, within an overlap domain ΩT
A,B

comprising N voxels. Bτ denotes image B transformed into the space of
image A.. Cross Correlation (CC) assumes linear dependencies of the data. It
applies for monomodal data such as MRI + MRI. Also see Eq. 2.7.

CC =

∑
xA∈ΩTA,B

(
A(xA)− Ā

)
.
(
Bτ (xA)− B̄

)
√∑

xA∈ΩTA,B

(
A(xA)− Ā

)2
.
∑

xA∈ΩTA,B

(
Bτ (xA)− B̄

)2
(2.7)
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where Ā and B̄ are mean values of the intensities within the overlapping
area..Mutual Information enables registration of intermodal data. It is based
on information theoretic approach which interprets the voxel intensities
of the image A and image B as random numbers and describes their
statistical dependency. MI describes how well one image is described by
another image and can be written in the form of Eq. 2.8.

MI = H(A) +H(B)−H(A,B) (2.8)

where H(A) is a marginal entropy of an image A and H(A,B) is the joint
entropy of images A and B which measures the amount of information
in the combined images A and B.

Generally, the images entering the registration algorithm are referred to
as the reference image (or target image, fixed image) and moving image (or
source image). The moving image is deformed to match the fixed image.

The registration proceeds as follows:. Transformation of the moving image.. Interpolation of the voxel intensities of the moving image at grid positions
of the reference image (or vice versa).. Calculation of the similarity measure.. Abort if optimum of the similarity measure is reached.. Adjustment of the transformation – optimization. This is a standard
problem and there are standard ways to solve it (e.g. Downhill Simplex
Method, Powell’s Method, Steepest Gradient Descent, the Conjugate
Gradient Method, etc. [CHH14]). Fluid and elastic transformations that
can be described in terms of a partial differential equation (PDE) can
be obtained using existing numerical solvers.

2.5.4 Interpolation

Generally, transformed image points of the moving image do not have to fit
into the grid of the fixed image. Therefore, it is an absolute necessity to
employ some interpolation technique to obtain intensity values at the discrete
coordinates in the reference space.

A choice of appropriate interpolator must be carefully considered as many
registration algorithms interpolate images every iteration and thus interpola-
tion errors can introduce modulations in the similarity measure.

Interpolation methods can be divided into two groups:. Local interpolation methods (cell-wise). Such methods use the informa-
tion stored in the neighbor nodes (vertices). In this category belong
low-cost interpolators, such as nearest neighbor or trilinear interpolator.
Using these methods can be very time effective, however, at the expense
of quality as the result often suffers from "cusps" in the image.
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2. Background knowledge ................................
. Global interpolation methods use information of all vertices or a broader

neighborhood, e.g., cubic B-Splines interpolator. Although, the complex-
ity of such interpolators is often much higher, the resulting images are
much smoother.

2.5.5 Transformation models

Image registration strategies can be divided into several categories according
to the complexity of the transformation model used.

Rigid and affine transformations are global in nature, and thus, they
cannot model local geometric differences between images. They are suitable
for registration of datasets of one patient. However, this approach proves
itself to be inappropriate in case of registration patient – patient, registration
atlas – patient, surgery, soft tissue and moving organs.

A solution addressing this issue is a deformable registration which uses
nonlinear (nonrigid) deformation of the grid. This category of registrations
includes (in the order of increasing degrees of freedom): polynomial, basis
functions, spline functions, elastic, fluid registration, and large deformation
models (diffeomorphisms).

The registration procedure usually proceeds in two steps. Firstly, the images
are roughly aligned using linear registration, i.e., centers alignment, orientation
alignment, accounts for any scale factors. Afterwards, fine alignments are
carried out using nonlinear registration. That means matching the internal
structure by warping the data.

Linear registration

Rigid registration is the simplest case allowing only translation and rotation.
It can be described very compactly by 3 rotation angles and 3 translations.
There are many way of parameterizing this transformation in terms of six
parameters. One possible form is:

y = TRx (2.9)

where x and y are image points in two different spaces in homogeneous
coordinates, T is a translation matrix:

T =


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

 (2.10)

where t1, t2, t3 are displacements in the corresponding axes, and R is a
rotation matrix:

R =


1 0 0 0
0 cos(φ) sin(φ) 0
0 −sin(φ) cos(φ) 0
0 0 0 1



cos(θ) 0 sin(θ) 0

0 1 0 0
−sin(θ) 0 cos(θ) 0

0 0 0 1



cos(ψ) sin(ψ) 0 0
−sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1


(2.11)
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where φ, θ and ψ are rotation angles about x, y and z axis, called pitch, roll
and yaw respectively.
Affine Registration adds to the translation and rotation also scaling and

shear. It can be described by 12 parameters in a form of matrix multiplication:

y = TRSWx = Mx =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34

0 0 0 1

x (2.12)

where T and R are translation and rotation matrices, respectively, as described
above, S is a matrix of scales which represents scaling along orthogonal axis,
and can be represented via:

S =


s1 0 0 0
0 s2 0 0
0 0 s3 0
0 0 0 1

 (2.13)

where s1, s2 and s3 are scale factors along corresponding axes, and W is a
shear matrix, transforming a cube into a general parallelepiped:

W =


1 wxy wxz 0
wyx 1 wyz 0
wzx wzy 1 0
0 0 0 1

 (2.14)

where wij are shear factors.

Nonlinear (deformable) registration

Polynomial registration is defined by a higher order polynomial. For example,
the quadratic transformation is defined by second order polynomials (30
DOF):

T(x, y, z) =


x′

y′

z′

1

 =


a00 ... a08 a09
a10 ... a18 a19
a20 ... a28 a29
0 0 0 1





x2

y2

z2

xy
...
1


(2.15)

However, this type of registration is quite limited since they can model only
global shape changes. In addition, higher order polynomials tend to introduce
artifacts such as oscillations. Therefore they are rarely used.

Instead of using a linear combination of higher order terms, one can use a
linear combination of basis functions Θi to describe the deformation field:

T(x, y, z) =


x′

y′

z′

1

 =


a00 ... a0n
a10 ... a1n
a20 ... a2n
0 ... 1




Θ0(x, y, z)
...

Θn(x, y, z)
1

 (2.16)
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A common choice is a set of (orthonormal) basis functions such as Fourier
basis functions or Wavelet basis functions.

Registration with splines is based on assumption that a set of corresponding
points or landmarks can be identified in the source and target images (control
points). Probably the most used ones are B-Splines which have the advantage
of being locally controlled functions, so that if control points change location,
only local update of cost function is necessary. The deformation is smooth
and continuous up to the second derivative.

Elastic registration technique. An elastic transformation involves computing
a mapping from image I(x) to image J(x) through a deformation field u(x).
The deformation is defined in the physical space of the image and dictates
the positional difference between corresponding features in the two images.
Thus, if a feature defined at I(x) matches a feature in J at position y then
the deformation field at x should give u(x) = y−x. Such a deformation field
may be applied to deform image J into image I by composing the mapping
Jdeformed(x) = J(x + u(x)). In a perfect world, then I(x) = Jdeformed(x),
though this is rarely the case. Gradient descent optimization of an elastic
mapping may be summarized (crudely) as [ATS09]:. Compute the similarity gradient: ∇E = ∂uΠ(I, J(x + u(x))).. Update the deformation field: u(x)← u(x) + δ∇E. Regularize the deformation field: u(x)← Gσ ? u(x)

where Π is the similarity, δ is a gradient step length and Gσ is a gaussian
smoother.

The idea is to model the deformation of the source image into the target
image as a physical process which resembles the stretching of an elastic
material such as rubber. [HH01] The principle is minimization of cost function
C:

C(T ) = −Cexternal(T ) + λCinternal(T ) (2.17)
λ is a weighting factor, Cexternal is an external force which acts on the elastic
body, Cinternal is an internal force caused by the deformation of an elastic
material, i.e., stress. As a consequence, the deformation of the elastic body
stops if both forces acting on it form an equilibrium solution. The behaviour
of the elastic body is described by the Navier linear elastic partial differential
equation:

µ∇2u(x, y, z) + (λ+ µ)∇(∇ · u(x, y, z)) + f(x, y, z) = 0 (2.18)

where u is a displacement field, µ and λ are Lamé’s elasticity constants, f is an
external force acting on the elastic body which drives the registration process.
A common choice for the the external force is the gradient of a similarity
measure such as a local correlation measure based on intensities, intensity
differences, or intensity features such as edge and curvature. Limitations
of this approach is the impossibility to model highly localized deformations
since the deformation energy caused by stress increases proportionally with
the strength of deformation. [HH01]
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In fluid registration these constraints are relaxed over time, which enables
the modeling of highly localized deformations including corners. The deforma-
tions of the fluid deformation are characterized by the Navier-Stokes partial
differential equation:

µ∇2v(x, y, z) + (λ+ µ)∇(∇ · v(x, y, z)) + f(x, y, z) = 0 (2.19)

similar to Eq. 2.18 except that the differentiation is carried out on the velocity
field v rather than on the displacement field u and is solved for each time
step. The relation between the velocity and displacement field is given by:

v(x, y, z, t) = ∂u(x, y, z, t)
∂t

+ v(x, y, z, t) · ∇u(x, y, z, t) (2.20)

On the one hand, the fluid registration is a powerful tool which enables to
trace detailed changes. On the other hand, it is computationally expensive.
Diffeomorphic registration is based on large deformation diffeomorphic

metric mapping (LDDMM) algorithms. A diffeomorphism is a differentiable
mapping with a differentiable inverse. Modeling transformations with diffeo-
morphisms ensures certain desirable topological properties that cannot be
guaranteed with other methods. [ATS09]

The map φ, over time, parameterizes a family of diffeomorphisms, φ(x, t) :
Ω × t → Ω, which can be generated by integrating a (potentially) time-
dependent, smooth velocity field, v : Ω × t → Rd, through the ordinary
differential equation:

dφ(x, t)
dt = v(φ(x, t), t), φ(x, 0) = x (2.21)

where x is an image coordinate (position), t is time and Ω is an image domain.
The deformation field provided by φ is u(x) = φ(x, 1)− x.

For mapping image I to J, by the diffeomorphic mapping, φ, the following
functional is minimized:

v∗ = arg min
v

{∫ 1

0
‖Lv‖2 dt+ λ

∫
Ω

Π(I, φ(x, t), J)dΩ
}

(2.22)

Rough explanation: The first term
∫ 1

0 ‖Lv‖2 dt can be seen as a smoothness
term, where L is a smoothing operator. In that case, a smooth velocity
field is minimized. The second term λ

∫
Ω Π(I, φ(x, t), J)dΩ is a data term

which compares the similarity between two images. λ controls exactness in
matching, Π is a similarity metric, e.g., sum of squared differences (SSD),
cross-correlation (CC), or mutual information (MI).

There are number of of LDDMM formulations, e.g., SyN (geodesic SyN,
greedy SyN, BSpline SyN) and DARTEL. Especially, SyN is a popular
and top performing algorithm. According to [KAA+09], SyN shows out
an outstanding performance in comparison to a variety of other nonlinear
registration techniques.

Fig. 2.6 compares affine, elastic and diffeomorphic transformation models
on an example of deforming the beetle (moving image) to the ford (fixed
image) under these models. Left to right increases the degrees of freedom in
the mapping and thus the registration accuracy.
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Figure 5: This example shows the degree to which the beetle (b.img) may be deformed to the ford (a.img) under
different transformation models. Left to right increases the degrees of freedom in the mapping and thus the registration
accuracy.
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(c) : Different transformation models

Figure 2.6: Comparison of different transformation models [ATS09]

2.6 Analysis tools for MRI

This chapter concerns with tools and software bundles required for tensor-
based morphometry methods (TBM) and gives a comprehensive overview of
their functions and utilization. Most of them were used for an implementation
and evaluation of the TBM pipeline.

2.6.1 MRI data formats

There are various file formats to store MR image data. DICOM and NIfTI
are, however, probably the most widespread ones.
DICOM. Nearly all neuroimaging data are produced in Digital Imaging

and Communications in Medicine (DICOM) standard which was introduced
by National Electrical Manufacturers Association (NEMA) and is in detail
described in NEMA standard PS3.121. DICOM files contain not only image
data but also embedded tags. On one hand, these tags describe the image
data (bit depth, image size, ...), but on the other, they also carry information
about patient, type of examination, etc. One DICOM file usually contains
only one image, but it can also contains a whole series of images. Files in
DICOM format are distinguishable by the .dcm extension.
NIfTI format was created as a replacement for much older Analyze for-

mat. It originated from the Data Format Working Group (DFWG) in the
Neuroimaging Informatics Technology Initiative (NIfTI). One of the main
advantages of this format is that it addresses problem of spatial orientation
as each file contains affine transformation to specify voxel coordinates. [Gro]
Images in NIfTI format are stored either in a single gzipped file (extension
.nii.gz) or separately in .img or .hdr files. Vast majority of data analysis
software bundles, such as SPM, FSL, AFNI, FreeSurfer or ANTs, support

1http://dicom.nema.org/medical/dicom/current/output/chtml/part12/PS3.12.html
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images only in this format. Some of the scanners support direct export to
NIfTI. If it is not the case there are several tools to convert DICOM and
other formats to NIfTI, e.g., dcm2nii tool (see below).

2.6.2 MRIcron

MRIcron is a multi-platform NIfTI format image viewer.2 It allows to display
single slices, render volumes, show regions of interests, show color overlays
and more.

Beside the viewer, this package contains another utilities: dcm2nii and
npm.

dcm2nii

Dcm2nii is a tool for converting DICOM files to NIfTI. It is a command line
tools as well as a GUI application.

Command line tools is pretty straightforward to use:
dcm2nii <options> <sourcenames>
There are plenty of options available. Most of them take for argument

y (yes) or n (no) The most important are the following ones:. -a anonymize (default y). -d date in filename (default y). -e events (series/acq) in filename (default y). -f source filename (default n). -g gzip output, filename.nii.gz (default y). -i ID in filename (default n). -r reorient image to nearest orthogonal. -x reorient and crop 3D NIfTI images (default n)

It is often the case that each image slice is found in a separate DICOM
file. The following command can be used to convert every DICOM file in a
directory to a single NIfTI file:
dcm2nii *.dcm
which produces 3 files:. 20130519_113546t1SAGmprp2isos007a1001.nii.gz – gzipped NIfTI

file with date and events in filename. o20130519_113546t1SAGmprp2isos007a1001.nii.gz – same as above
and reoriented

2http://people.cas.sc.edu/rorden/mricron/index.html
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. co20130519_113546t1SAGmprp2isos007a1001.nii.gz – same as above

and cropped

or
dcm2nii -a y -d n -e n -f y -g y -i n -r n -x n *.dcm
which produces only one file: 0_S006_I0000t1SAGmprp2iso.nii.gz – gzipped

NIfTI file with source filename and modality specifications in filename.

npm

NPM (Non-Parametric Mapping) is a GUI application which comes in the
MRIcron package. It provides a large variety of statistic tests for comparing
and evaluating MR images.

2.6.3 FSL

FSL (FMRIB Software Library) is an extensive library of analysis tools for
functional, structural and diffusion MRI data. Most of the tools can be run
either from command line or as a GUI application.

For purposes of this project, the following tools will be used and analyses
more in detail: BET – brain extraction, FAST – segmentation tool, FLIRT –
linear registration, FNIRT – non-linear registration, FSLView – MR image
viewer.

BET

BET is an automated method for segmenting magnetic resonance head images
into brain and nonbrain. It is very robust and accurate and has been tested on
thousands of data sets from a wide variety of scanners and taken with a wide
variety of MRI sequences. The method, Brain Extraction Tool (BET), uses a
deformable model that evolves to fit the brain’s surface by the application of
a set of locally adaptive model forces. The method is very fast and requires
no preregistration or other pre-processing before being applied. [Smi02]

BET in command line is easy to use: bet <input> <output> [options],
where input and output file can be either in DICOM of NIfTI format. Al-
though, the whole process is highly automated, the program offers few options
(only selection of the most important ones):. -o generate brain surface outline overlaid onto original image. -m generate binary brain mask. -s generate approximate skull image. -f <f> fractional intensity threshold (0->1); default=0.5; smaller values

give larger brain outline estimates. -R robust brain centre estimation (iterates BET several times)

For example, a command
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bet b0.nii.gz brain\_ext -f 0.5 -R -o -m -s

outputs 4 files (also see Fig. 2.7):. brain_ext.nii.gz – extracted brain. brain_ext_mask.nii.gz – binary brain mask. brain_ext_overlay.nii.gz – brain surface outline overlaid onto origi-
nal image. brain_ext_skull.nii.gz – approximate skull image

(a) : original (b) : brain (c) : brain mask

(d) : overlay (e) : skull

Figure 2.7: Example of input and outputs of BET

FAST

FAST3 (FMRIB’s Automated Segmentation Tool) segments a 3D image of
the brain into different tissue types (Grey Matter, White Matter, CSF, etc.),
whilst also correcting for spatial intensity variations (also known as bias
field or RF inhomogeneities). The underlying method is based on a hidden
Markov random field model and an associated Expectation-Maximization
algorithm. The whole process is fully automated and can also produce a bias

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
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field-corrected input image and a probabilistic and/or partial volume tissue
segmentation. It is robust and reliable, compared to most finite mixture
model-based methods, which are sensitive to noise. [ZBS01]

FAST is both a GUI application and a command-line program. We will
investigate how the command-line version works. The basic structure is
fast [options] file(s),
where file(s) is an image to be segmented. However, it has to be a

brain-only image.
Again, several options are available:. -t <n> or –type=<n> type of image (n=1 for T1, n=2 for T2, n=3 for

PD). -o <base> or –out=<base> basename for outputs. Output images will
have filenames derived from this basename. For example, the main
output, the binary segmentation: <basename>_seg.nii.gz.. -n <n> or –class=<n> number of tissue-type classes. Default values is
-n 3 meaning Grey Matter, White Matter and CSF (cerebrospinal fluid).

For example, a command
fast -o brain b0.nii.gz

outputs:. brain_pve_[0-2].nii.gz – Partial volume maps: A (non-binary) par-
tial volume image for each class, where each voxel contains a value in
the range 0-1 that represents the proportion of that class’s tissue present
in that voxel. This is the default output. See Fig. 2.8a, 2.8b and 2.8c.. brain_seg.nii.gz – Binary segmentation (single image): This is the
"hard" (binary) segmentation, where each voxel is classified into one class
only. A single image contains all the necessary information, with the
first class taking intensity value 1 in the image, etc. See Fig. 2.8g.. brain_seg_[0-2].nii.gz – Binary segmentation (one image per class):
This is also a hard segmentation output; the difference is that there
is one output image per class, and values are only either 0 or 1. See
Fig. 2.8d, 2.8e and 2.8f.

FLIRT

FLIRT4 (FMRIB’s Linear Image Registration Tool) is a fully automated
robust and accurate tool for linear (affine) intra- and inter-modal brain image
registration.

As well as many tools from FSL package, FLIRT offers GUI application
and command-line program. We will focus mainly on the later.

4http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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(a) : PV class 0 (b) : PV class 1 (c) : PV class 2

(d) : BS class 0 (e) : BS class 1 (f) : BS class 2

(g) : binary segmentation

Figure 2.8: Example outputs of FAST (partial volumes (PV) and binary seg-
mentation (BS))

FLIRT requires quite a large number of parameters. We will list only the
most important ones:
flirt [options] -in <inputvol> -ref <refvol> -out <outputvol> -omat

<outputmatrix>
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. -in <inputvol> input image to be registered. -ref <refvol> reference image (also called target). Manual recommends

to use MNI152 template images (whole head, extracted brain, brain mask,
skull) located in /usr/share/fsl/5.0/data/standard as FLIRT is very
well tested with them.. -out, -o <outputvol> output volume. -omat <matrix-filename> output file with transformation matrix. -dof <number of transform dofs> specify number of degrees of free-
dom. For 3D to 3D mode (default) the DOF can be set to 12 (affine), 9
(traditional), 7 (global rescale) or 6 (rigid body). Default value is 12.. -searchrx <min_angle> <max_angle>, -searchry <min_angle> <max_angle>,
-searchrz <min_angle> <max_angle> set minimum and maximum search
angles in x-, y- or z- axis. Default is -90 90 for each axis. If the images
are not aligned but have the same orientation, it is a good practise to set
-90 90 to each axis. However, if the images to be registered are possibly
incorrectly oriented, it is recommended to set this option to -180 180.. -cost {mutualinfo,corratio,normcorr,normmi,leastsq,labeldiff,bbr}
This includes the within-modality functions Least Squares and Nor-
malised Correlation, as well as the between-modality functions Correla-
tion Ratio (the default), Mutual Information and Normalised Mutual
Information.. -interp {trilinear,nearestneighbour,sinc,spline},. -sincwidth <full-width in voxels> (default is 7),. -sincwindow rectangular,hanning,blackman select the interpolation
method to be used in the final (reslice) transformation (it is not used
for the estimation stage - trilinear interpolation is always used for the
estimation of the transformation). The options for this final interpolation
method are: Tri-Linear; Nearest Neighbour and Sinc. If Sinc is chosen,
further window parameters (type of windowing function and window
width) can also be specified.

For example, a command
flirt -in brain.nii.gz -ref MNI152_T1_1mm_brain \

-out brain_registered -omat brain_registered

produces 2 files:. brain_registered.nii.gz – a registered file. Figure 2.9a shows an
original volume and reference in one picture. In Figure 2.9b, the original
volume is replaced by a registered file.. brain_registered.mat file contains transformation matrix.
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(a) : before registration

(b) : after registration

Figure 2.9: Comparison of unregistered and FLIRT registered volumes (moving
image – green, fixed image – grey)
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SIENA

SIENA5 is a package for both single-time-point (cross-sectional) and two-time-
point (longitudinal) analysis of brain change, in particular, the estimation
of atrophy (volumetric loss of brain tissue). SIENA has been used in many
clinical studies. Siena estimates percentage brain volume change (PBVC)
between two input images, taken of the same subject, at different points in
time. It calls a series of FSL programs to strip the non-brain tissue from
the two images, register the two brains (under the constraint that the skulls
are used to hold the scaling constant during the registration) and analyse
the brain change between the two time points. It is also possible to project
the voxelwise atrophy measures into standard space in a way that allows for
multi-subject voxelwise statistical testing.

2.6.4 ANTs

The ANTS framework6 provides open-source functionality for deformable
normalization with large deformations. Small deformation mappings and
segmentation tools are also available. ANTS serves as both a base for
further algorithm development and also as an application-oriented toolkit.
ANTS enables diffeomorphic normalization with a variety of transformation
models, optimal template construction, multiple types of diffeomorphisms,
multivariate similarity metrics, diffusion tensor processing and warping, image
segmentation with and without priors and measurement of cortical thickness
from probabilistic segmentation. The normalization tools, alone, provide a
near limitless range of functionality and allow the user to develop customized
objective functions. [ATS09]

ANTs contains separate programs (e.g. antsApplyTransform, antsRegistra-
tion) as well as user-friendly wrappings of ANTs tools that enable higher-level
error checking and combinations of basic ANTs functions (e.g. antsRegistra-
tionSyn.sh, antsMultivariateTemplateConstruction2.sh).

Following sections will go deeper into usage of the most important ANTs’
programs and scripts:

antsRegistration

This is the core program of ANTs which serves for registration of images.
The ANTs toolkit provides a hierarchy of transformations with adjustable

levels of complexity, regularization, degrees of freedom and behavior as
optimizers. The simplest transformation model is the translation, followed by
the rigid and/or affine transform. The most complex – and most flexible – is a
symmetric diffeomorphic transformation based on optimizing and integrating
a time-varying velocity field (for more about diffeomorphic transformation
see Sec. 2.5.5). Computation time also increases with transformation model

5http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA
6http://stnava.github.io/ANTs/
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complexity. An overview of available models and similarity terms is in
Tab. 2.2.

Similarity metric acronyms: CC = neighborhood cross correlation, Mean-
Squares = mean squared difference, MI = mutual information.

Category Transformation Similarity measures Brief description

Linear
Rigid MI, MeanSquares, GC Rigid registration

Similarity MI, MeanSquares, GC Rotation + uniform scaling
Affine MI, MeanSquares, GC Affine registration

Elastic GaussianDisplacementField CC, MI, MeanSquares, Demons Demons-like algorithm
BSplineDisplacementField CC, MI, MeanSquares, Demons FFD variant

Diffeo.

Exponential CC, MI, MeanSquares, Demons min v(x)
SyN CC, MI, MeanSquares, Demons locally in time min v(x, t)

BSplineSyN CC, MI, MeanSquares, Demons locally in time min v(x, t)
TimeVaryingVelocityField CC, MI, MeanSquares, Demons min v(x, t) over all time

Table 2.2: Transformations and a subset of the similarity metrics available in
ANTs [ATS09]

ANTS supports both volumetric registration and point set registration.
The image/point set similarity metrics in ANTS are unified in the form of a
function on the images or the point sets:
Similarity[fixedImage,movingImage,weight,samplingStrategy,parameters]
The similarity type for the transformation is specified by -m option, which

contains two parts: similarity type and parameters inside the brackets. The
possible similarity metrics for volumetric images are:. Cross correlation estimate: -m CC[fixedImage,movingImage,weight,radius].

This metric works well for intra-modality image registration. For example,
-m CC[fixed.nii,moving.nii,1,5] specifies:. the fixed image: fixed.nii. the moving image: moving.nii. weight for this metric is 1 (i.e., only this metric drives the registra-

tion). the region radius for computing cross correlation is 5.Mutual information: -m MI[fixedImage,movingImage,weight,
number-of-histogram-bins, samplingStrategy,samplingPercentage].
This metric works both well for intra-modality and inter-modality image
registration. For example, the first three parameters in -m MI[fixed.nii,
moving.nii,1,32] similar to the example above in cross correlation, ex-
cept that the last parameter means that the number of bins in computing
mutual information is 32..Global correlation: -m GC[fixedImage,movingImage,weight,0,
samplingStrategy,samplingPercentage] This metric works both well
for intra-modality and inter-modality image registration. For example, -m
GC[fixed.nii,moving.nii,1,0,Random,0.1] uses 10% random sam-
pling of the image to estimate the global correlation.
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.Mean square difference: -m MeanSquares[fixedImage,movingImage,weight,0]

This metric works for intra-modality image registration. The last pa-
rameter 0 is a padding value of no real meaning. For example, -m
MeanSquares[fixed.nii,moving.nii,1,0].. Point set expectation -m PSE and Jensen-Tsallis BSpline -m JTB – simi-
larity metrics for point sets. These will not be used in this project.

antsRegistration command line program takes the following options (the
list is not exhaustive):. -d – dimensionality (2 or 3). -o Specify the output transform prefix (output format is .nii.gz ). Op-

tionally, one can choose to warp the moving image to the fixed space
and, if the inverse transform exists, one can also output the warped fixed
image.. -m metric – similarity metric. See Tab. 2.2.. -c MxNxO or
-c [MxNxO,<convergenceThreshold=1e-6>,<convergenceWindowSize=10>]
Convergence is determined from the number of iterations per level and is
determined by fitting a line to the normalized energy profile of the last
N iterations (where N is specified by the window size) and determining
the slope which is then compared with the convergence threshold.. -s MxNxO Specify the sigma of gaussian smoothing at each level. Units
are given in terms of voxels (’vox’) or physical spacing (’mm’). Example
usage is ’4x2x1mm’ and ’4x2x1vox’ where no units implies voxel spacing.. -f MxNxO Specify the shrink factor (downsampling rate) for the virtual
domain (typically the fixed image) at each level.

Usage examples. ANTs registration options include control of iterations
(and, optionally, convergence criterion) via -c 5000x5000x5000 which speci-
fies that the registration uses a 3 level image pyramid with each level 5000
iterations at most. Multi-resolution options include -s for smoothing and -f
for "shrink factors" i.e. downsampling rates (e.g. 8 means 1/8th resolution).
MI[fixed,moving,1,32,Regular,0.1] means to use Mutual Information

as similarity metric with 32 bins and regularly spaced samples of 10% of the
image; lower sampling rates increases speed and is useful in low-dimensional
registration.

Another example of antsRegistration may be:
antsRegistration

-d 2
-r [ r64slice.nii.gz , r16slice.nii.gz ,1]
-m mattes[ r64slice.nii.gz , r16slice.nii.gz, 1 , \

32, regular,0.1]
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-t affine[ 0.1 ]
-c [500x500x50,1.e-8,20]
-s 4x2x1vox
-f 3x2x1 -l 1
-m mattes[ r64slice.nii.gz , r16slice.nii.gz, 1 , 48 ]
-t syn[ .15, 3, 0.5 ]
-c [ 50x50x50,0,5 ]
-s 1x0.5x0vox
-f 4x2x1 -l 1 -u 1 -z 1
--output [out,outWarped.nii.gz,outInverseWarped.nii.gz]

This registration aligns r16slice.nii.gz to r64slice.nii.gz (2D images). First,
an initial translation transform using the image intensities is done. Then
comes affine transformation with gradient step 0.1 using mutual information
as a transformation metric (relative weight 1, 32 bins, regular sampling
strategy of the 10% of the image). Algorithm is going to work on 3 levels
with 500, 500 and 50 iterations max.

After the affine pre-registration, SyN registration is conducted. Standard
recommended parameters are -t syn[ .15, 3, 0.5 ].

antsApplyTransforms

Once affine matrix or non-linear displacement field are generated, they
can be used to transform images. ANTs utility for this purpose is called
antsApplyTransforms.

On this place, it should be reminded how the transform application actually
works. Suppose that an affine transformation matrix has already been derived.
A naive approach would be to take all image points from the moving image
and transform their coordinates. This is, however, a very flawed way to do
this, because, firstly, two different pixels in the original image may be mapped
to the same pixel in the warped image. Secondly, some pixels in the resulting
warped image may be left without any pixel value assigned.

Therefore it it preferable to employ backward warping. That is to get each
pixel in the resulting image from its corresponding location (by the means of
inverse transformation) in the first image and to employ some interpolation
technique. This requires an inverse of a 4x4 affine transformation matrix which
is obviously no problem. For the same reason, the exact same transformation
matrix can be used for warping images from the space of the fixed image to
the space of the moving image.

The final result of a deformable registration is a deformation field. The
principle is very similar to the one above. The forward deformation field
tells where to find each pixel from the resulting image in the moving image.
However, these fields are hardly invertible therefore if one wants to do a
backward warping, a separate backward deformation field is required. For-
tunately, ANTs offers such option. As the output of a registration process,
ANTs usually returns 5 files:
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. output0GenericAffine.mat – Matlab-like file with initial affine trans-

form matrix. In case of 3D data, this will be 4x4 matrix.. outputWarp.nii.gz – displacement field of non linear transformation
(mapping moving image to the fixed image). This file contains a vector
with three components for each point in target space pointing to the
corresponding point in the source space.. outputInverseWarp.nii.gz – displacement field of non linear transfor-
mation (mapping fixed image to the moving image). This file contains a
vector with with three components for rach point in source space pointing
to the corresponding point in the target space.. outputWarped.nii.gz – the result; moving image warped to the space
of fixed image.. outputInverseWarped.nii.gz – fixed image warped to the space of
moving image.

ImageMath

Most basic scalar image operations – and some tensor operations – may be
performed with this program. Some operations output text files, some output
images and some output only to the terminal. ImageMath allows one to
multiply images together (m), to negate images (Neg), to take an image to
a power (pow), to test the invertibility of transformations (InvId), and to
compute the gradient or laplacian of an image (Gradient, Laplacian). Many
other operations are available.

N4BiasFieldCorrection

This program serves for removal of the bias field in MR images as described
in Sec. 2.4.1. A state-of-the-art N4 algorithm is used.

N4 is a variant of the popular N3 (nonparameteric nonuniform normaliza-
tion) retrospective bias correction algorithm. Based on the assumption that
the corruption of the low frequency bias field can be modeled as a convolution
of the intensity histogram by a Gaussian, the basic algorithmic protocol is to
iterate between deconvolving the intensity histogram by a Gaussian, remap-
ping the intensities, and then spatially smoothing this result by a B-spline
modeling of the bias field itself. The modifications from and improvements
obtained over the original N3 algorithm are described in [TAC+10].
N4BiasFieldCorrection takes the following arguments (the list is not

exhaustive):. -d – image-dimensionality. -i – input image filename
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. -s – shrink factor. Running N4 on large images can be time consuming.
To lessen computation time, the input image can be resampled. The
shrink factor, specified as a single integer, describes this resampling.
Shrink factors <= 4 are commonly used.. -c [<numberOfIterations=50x50x50x50>,<convergenceThreshold=0.0>]
– convergence. Convergence is determined by calculating the coefficient of
variation between subsequent iterations. When this value is less than the
specified threshold from the previous iteration or the maximum number
of iterations is exceeded the program terminates. Multiple resolutions
can be specified by using ’x’ between the number of iterations at each
resolution, e.g. 100x50x50.. -o [correctedImage,<biasField>] – output (corrected image). The
output consists of the bias corrected version of the input image. Option-
ally, one can also output the estimated bias field.

For example, a call of this utility can look similar to this:

N4BiasFieldCorrection
-d 3
-i inputImage.nii.gz
-s 2
-c [100x100x100x100,0.0000000001]
-o [correctedImage.nii.gz, biasField.nii.gz]

antsRegistrationSyNQuick.sh

antsRegistrationSyNQuick.sh is a wrapper enabling quick evaluation of
SyN algorithm. It is suitable for quick testing purposes rather than serious
data analysis since this wrapper uses some default parameter values. Of
course, they can be altered because this wrapper (as well as all other ANTs’
wrappers) is written in bash scripting language and therefore can be changed
easily.

antsMultivariateTemplateConstruction2.sh

A useful script for setting up optimal template construction. This utility will
be very useful when creating the average group template as it can do all the
work if the parameters are set correctly.

As this is the key utility in the thesis, one might look properly into the
syntax and get the grasp of its functioning:. -d – image dimension (2 or 3). -o – output prefix. -c – parallel computation
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2. Background knowledge ................................
. -g – gradient step size (default 0.25): smaller in magnitude results in

more cautious steps. -i – iteration limit (default 4). -j – number cpu cores to use locally. -k – number of modalities used to construct the template (default 1). -w – modality weights used in the similarity metric (default 1). -q – Max iterations for each pairwise registration (default = 100x100x70x20):
specified in the form ...xJxKxL where. J = max iterations at coarsest resolution (here, reduced by power

of 2ˆ2).K = middle resolution iterations (here, reduced by power of 2). L = fine resolution iterations (here, full resolution). Finer resolutions
take much more time per iteration than coarser resolutions.. -f – shrink factors (default = 6x4x2x1). -s – -smoothing factors (default = 3x2x1x0). -n – N4BiasFieldCorrection of moving image: 0 == off, 1 == on (default

1).. -r – do rigid-body registration of inputs before creating template (default
0): Only useful when you do not have an initial template.. -m – type of similarity metric used for registration (default = CC):
Options are. CC = cross-correlation.MI = mutual information.MSQ = mean square difference. DEMONS = demon’s metric

A similarity metric per modality can be specified. If the CC metric is
chosen, one can also specify the radius in brackets, e.g., -m CC[4].. -t – type of transformation model used for registration (default = SyN):
Options are. SyN = Greedy SyN. BSplineSyN = Greedy B-spline SyN. TimeVaryingVelocityField = Time-varying velocity field. TimeVaryingBSplineVelocityField = Time-varying B-spline ve-

locity field
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. -z – use this volume as the target of all inputs. When not used, the
script will create an unbiased starting point by averaging all inputs. Use
the full path.

A constructing of a template will be presented on the example found
at http://ntustison.github.io/TemplateBuildingExample/. Instead of
brains, male faces are used. We found this very illustrative as, first, this kind
of data are inherently two-dimensional and therefore well presentable and,
secondly, a reader will probably better recognise subtle changes in faces than
in brain images.

The whole process of creating the template is demonstrated in Fig. 2.10.
Ten male face images are entering the algorithm. In this case, the call of
antsMultivarieteTemplateConstruction2.sh is as follows:

antsMultivariateTemplateConstruction2.sh
-d 2
-o ${PWD}/TemplateFaces/T_
-i
-b 1
-g 0.15
-j 8
-c 2
-k 1
-w 1
-f 16x12x8x4x2x1
-s 4x4x4x2x1x0
-q 100x100x100x70x50x10
-n 0
-r 0
-m CC
-t BSplineSyN[0.1,75,0]
${PWD}/face*.nii.gz

That means, the function takes all files starting with face prefix and with
.nii.gz extension as the input. First, an unbiased starting point is created
by averaging all inputs after rigid-body registration.

Then, all images are warped to this primary template using BSplineSyN
method and CC (cross-correlation) metric. Every registration proceeds in
a multiresolution scheme: at first, only 1/16th resolution (with smoothing
sigma of 4 voxels and a maximum of 100 iterations), then 1/12th resolution
(with smoothing sigma of 4 voxels and a maximum of 100 iterations), and so
on. Afterwards, all these warped images are voxel-wise averaged to create a
(temporary) template.

In the next step, we find the average warp to the template and apply its
inverse to the template image (i.e., the inverse geometric centering of the
displacement fields). This keeps the template shape stable over multiple
iterations of template building.
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2. Background knowledge ................................
The algorithm continues through several iterations (in this case 4 iterations).

However, the original images are no longer warped to the initial affine template
but to the inverse centered average (temporary template) from the previous
iteration.

The resulting image is the average group template, described in Chap. 2.4.2,
which can be, for example, used in the cross-sectional tensor-based morphom-
etry study as it shares common features of a population.
Remark: As this procedure basically wraps many iterations of registration

processes, it usually takes quite a long time to build such a template. (Tens
of minutes in case of 2D slices to days in case of 3D volumes!)

2.6.5 ANTsR

After processing image data, one often needs to extract some attributes and
compute statistic measures based on it. For this purpose there is ANTsR7, a
package providing ANTs features in R (an open-source, cutting-edge statistical
language and environment) as well as imaging-specific data representations,
spatially regularized dimensionality reduction and segmentation tools.

There is a great advantage in this approach since both image processing and
statistics evaluation can be done under one environment. ANTsR provides
user with the antsImage class which contains all information about an image
object (dimensions, bit depth, voxel data, etc.). Its scope is not limited to
the ANTsR package though. Any other R package can also work with this
structure and thus a large variety of statistical analysis can be performed.

Quite extensive reference manual can be found at https://github.com/
stnava/ANTsR/releases/download/latest/ANTsR-manual.pdf. For the
purpose of understanding of the code listings in the next chapter, a few
key ANTsR commands is listed below:. antsImageRead(filename, dimension = NULL, pixeltype = "float")

– Read an image file into an object of class antsImage.. antsImageWrite(image, filename) – Write an image object of class
antsImage to a file.. abpN4(img) – MR image bias correction based on the N4 algorithm.. resampleImage(image, resampleParams, useVoxels = 0, interpType
= 1) – Resample image by spacing or number of voxels with various
interpolators.. resampleParams – vector of size dimension with numeric values. useVoxels – true means interpret resample params as voxel counts. interpType – one of 0 (linear), 1 (nearest neighbor), 2 (gaussian),

3 (windowed sinc), 4 (bspline)
7http://stnava.github.io/ANTsR/
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Figure 2.10: Process of creating an average group template
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2. Background knowledge ................................
. antsRegistration(fixed = NA, moving = NA, typeofTransform = "SyN",

regIterations = c(40,20,0), ...) – perform registration between
two images.. fixed – fixed image to which we register the moving image. moving – moving image to be mapped to fixed space. typeofTransform – either a one stage rigid/affine mapping or a

2-stage affine+syn mapping. Mutual information metric by default.
One of Rigid, Affine, AffineFast, SyN (mutual information as
optimization metric), SyNCC (cross-correlation as optimization met-
ric).. regIteration – vector of number of iteration at each level

This function outputs a list containing:. warpedmovout – moving image warped to space of fixed image. warpedfixout – fixed image warped to space of moving image. fwdtransforms – transforms to move from moving to fixed image. invtransforms – transforms to move from fixed to moving image. createJacobianDeterminantImage(domainImg, tx, doLog = 0) – com-
pute the jacobian determinant from a transformation file.. domainImg – image that defines transformation domain. tx – deformation transformation file name. doLog – return the log jacobian. getMask(img, lowThresh, highThresh) – get a binary mask image
from the given image after thresholding. smoothImage(img, sigma) – smooth image. imageListToMatrix(imageList, mask) – read images into rows of a
matrix. Very useful for analysis of series of images.. imageList – a character vector containing a list of image files to

read, in order - these are image objects, not file names. mask – an antsImage containing a binary mask, voxels in the mask
are placed in the matrix. If not provided, estimated from first image
in list.
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Chapter 3
Pipeline and Data Analysis

In this chapter, a TBM (tensor-based morphometry) image processing pipeline
is suggested and applied on real data using various tools and software bundles
which were introduced in the previous chapter. From the output of this
pipeline, a probabilistic map that shows which parts of the brain differ
between groups (healthy and AD patients) is constructed. Furthermore, we
present simple classifiers which should discriminate between brains of healthy
and AD individuals.

3.1 Data Overview

First, one needs to familiarize himself with the data. We were provided with a
set of 46 head MRI scans of healthy individuals and 22 head scans of patients
suffering from the Alzheimer’s disease. All of them are T1-weighted and were
acquired with Siemens Symphony or Avanti MRI scanner. The data were
carefully chosen by an experienced neurologist. However, except for the fact
that all these scans originate from elderly people no other information was
delivered.

Each scan consists of 192 or 176 sagittal slices, each in a separate dcm
file with the resolution of 512x512 pixels and 12-bit color (greyscale) depth.
Physical spacing between slices is 1 mm and pixel spacing is 0.9765625 mm
in both coordinates.

As the data set is quite small, one must carefully consider how to divide
them between training and test set. A training set serves for training the
model, whereas a test set is used for the estimate of the expected level of fit
of the model. In our case, we will use 24 healthy individuals (NC, normal
control) for creating an average template and the rest (22 NC and 22 AD)
for the purpose of classifier. As the later set is not particularly large, it is
not recommended to partition it in a conventional way (70 % training set
and 30 % test set). Is it preferable to employ the cross-validation instead.
That is to split the data into k equally sized disjoint subsets. Each subset
is then used for the validation of the model trained by all left subsets. The
validation results are averaged over all test subsets.
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3.2 Image Pre-Processing Pipeline

Before entering the main TBM pipeline, the acquired data have to undergo a
few pre-processing steps. Following transformations will be demonstrated on
an example of a head MRI scan, see Fig. 3.1.

Figure 3.1: Original head MRI scan before pre-processing

. Conversion to NIfTI format. We use the dcm2nii utility from the
MRIcron package (see Sec. 2.6.2):
dcm2nii -o brain *.dcm

which converts all dcm files in a directory and names output file with
brain prefix.. Bias field correction. For the reasons mentioned in Sec. 2.4.1, it is
necessary to remove the intensity inhomogeneity in the input MR images.
For this purpose, we make use of the ANTs’ N4BiasFieldCorrection
utility with the following call (see Sec. 2.6.4):

44



............................. 3.2. Image Pre-Processing Pipeline

N4BiasFieldCorrection
-d 3
-c [50x50x50x50,0.0000001]
-i input.nii.gz
-o repaired/repaired.nii.gz
-s 4

That means, the shrink factor is 4 and the number of iteration is 50, 50,
50 and 50 for each resolution respectively. These values were taken from
several ANTs’ examples as they prove to yield feasible results. Fig. 3.2
shows the previous scan corrected. It is worth mentioning that the color
range has changed slightly.

Figure 3.2: Head MR image after bias correction

. Resampling into isotropic space. For the convenience of all following
tools, it is necessary to resample the data in such way so that they
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3. Pipeline and Data Analysis...............................
show the same physical sampling in all tree dimensions. We use the
ResampleImage program (see Sec. 2.6.4) from the ANTs bundle:
ResampleImage

3
repaired.nii.gz
resampled.nii.gz
1.0x1.0x1.0
0
4

That is, the 3-dimensional repaired.nii.gz file will be resampled with the
spacing of 1 mm in all directions using a 3rd order B-Spline with an
output name resampled.nii.gz.
Whereas the original examined head MRI scan had a resolution of
192x256x256 pixels with 1.00x0.96x0.96 mm spacing, the resampled one
has a resolution of 192x250x250 pixels with 1.00x1.00x1.00 mm spacing.. Skull stripping. A skull and non-brain parts of an head might negatively
influence the sensitivity of the morphometric measures used. For this
reason, we use the BET utility (see Sec. 2.6.3) from the FSL package to
extract brain only from head MRI scans:
bet
intput.nii.gz
output.nii.gz
-f 0.5
-R

which calls the BET utility with a fractional intensity threshold of 0.5
and uses robust brain centre estimation (iterates BET several times).
Although, this can take some time the results show much much better
brain and non-brain separation than in case of a single iteration.
Fig. 3.3 shows the resulting bias corrected, isotropic resampled and
skull stripped head MRI scan in three orthogonal slices. In Fig 3.4
showing a surface rendering view, a brain surface and single sulci are
clearly recognizable. Therefore, we might assume that the skull stripping
algorithm works well.

3.3 Average Template

Building an average template is a crucial part in the TBM pipeline as in the
next steps, all examined brains are going to be compared to this template to
make some inferences. From the amount of total 46 control scans (healthy
scans), we reserve 24 of them for the purpose of building this template. From
the detailed description in Sec. 2.4.2 and Sec. 2.6.4, it is obvious that this task
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.................................. 3.3. Average Template

Figure 3.3: Skull stripped head MR image (orthogonal slices)

Figure 3.4: Skull stripped head MR image (surface rendering)
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3. Pipeline and Data Analysis...............................
involves many non-linear registrations which can be very time consuming.
For example, one SyN registration on an average PC (4 cores 2.20 MHz
each, 4 GB RAM) takes approximately 1.5 hour. An average template from
10 brains requires about 40 SyN registrations. That means 60 hours or 2
days and 12 hours. For 24 brain volumes it will be even more. So as to
shorten the execution time we, first, employed methods of parallel computing.
ANTs package allows this using PEXEC utility. Secondly, we have run the
computation on an high performing Xeon server with 32 cores (2.3GHz each),
64 threads and 128 GB RAM.

An average template is a part of various image processing pipelines therefore
it is directly implemented in the ANTs package (see Sec. 2.6.4). We used the
following syntax:

ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS=24
export ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS

mkdir TemplateMultivariateBSplineSyN
inputPath=${PWD}/data
outputPath=${PWD}/TemplateMultivariateBSplineSyN/

${ANTSPATH}/antsMultivariateTemplateConstruction2.sh \
-d 3 \
-b 1 \
-o ${outputPath}T_ \
-i 4 \
-g 0.25 \
-e 0 \
-j 6 \
-c 2 \
-k 1 \
-w 1 \
-f 8x4x2x1 \
-s 3x2x1x0 \
-q 100x70x50x10 \
-n 1 \
-r 1 \
-l 1 \
-m CC[2] \
-t BSplineSyN[0.1,26,0] \
${inputPath}/*.nii.gz

Explanation: First, a global number of thread which can be used is set
to 24. Then, -c 2 enables the PEXEC option and -j 6 sets the number of
cores to use to 6. The computation will proceed in 4 iterations with shrink
factors 8, 4, 2 and 1, smoothing sigmas 3, 2, 1 and 0 and a number of max
iterations 100, 70, 50 and 10. The similarity metric is set to cross-correlation
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.................................. 3.3. Average Template

with a radius of 2 voxels and the transformation model is set to Greedy
B-Spline SyN. This setting has arisen from example scripts and recommended
settings. The running time on the Xeon server described above was 70 hours
24 minutes.

Fig. 3.5 shows coronal slices (number 110) of the temporary averages in
each of the four iterations. Whereas the first iteration seems rather blurry,
the following ones show more detail and clear separation of single lobes and
sulci. The result of the last iteration is the Average Template.

(a) : 1st iteration (b) : 2nd iteration

(c) : 3rd iteration (d) : 4th iteration

Figure 3.5: Temporary average brains in the process of building an Average
Template

One can see that the 3rd and 4th iteration do not differ much, therefore
it would not probably bring any advantage to proceed with more than four
iterations. For the sake of completeness, see Fig. 3.6 which shows the resulting
Average Template in three orthogonal slices.
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(a) : sagittal view (b) : coronal view

(c) : axial view

Figure 3.6: Average Template

3.4 Jacobian Determinant Image

Jacobian determinant image is an initial point for any further analysis. There-
fore, we decided to derive it directly in the R environment (using ANTsR
package). The exact procedure is described in detail in Sec. 2.3.3. That is,
each individual image (after pre-processing) is non-linearly registered to the
Average Template. From the resulting warp field a Jacobian matrix is derived.
The following code demonstrates this procedure:

library(ANTsR)

#load the Average Template
t <- antsImageRead("template/T_template0.nii.gz")

#get AD data
files <- list.files(path="dataAD", pattern="*.nii.gz",

full.names=T, recursive=FALSE)
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..............................3.4. Jacobian Determinant Image

#lapply = nicer for-lopp
lapply(files, function(file) {
#read pre-processed image
m <- antsImageRead(file)

#warp image (m) to the template (t)
tx = antsRegistration( t, m, "SyNCC",

regIterations = c(100,50,40),
verbose = TRUE )

#create log jacobian determinant map
jac <- createJacobianDeterminantImage(t,

tx$fwdtransforms[1],
doLog = 1)

})

It is a common practice to use a logarithm on the jacobian determinant
values as this makes the values symmetric about 0. There are two ways a
jacobian map can be derived. Either from the forward warp field. Since such
field points from every point in the template space to the individual space,
the derived jacobian map also resides in the template space. Therefore this
determinant jacobian map is commonly shown as an overlay over the group
template. Another variant derives jacobian map from a backward mapping
which is consequently shown over an individual image.

Figure 3.7: Histogram and clipping of a log jacobian determinant image

Fig. 3.7 shows a standard histogram of a log jacobian determinant image
with an approximately symmetrical distribution about zero and steeply falling
to the values of -1 and 1. For these reasons we clip the data at -1 and 1.
The rest is colored according to the colormap shown in Fig 3.8. That is
expanding areas (log jacobian determinant greater than zero) are set to red
and shrinking areas are blue. Values close to zero are set to low opacity values
so that only extremely expanding or shrinking areas are visible.
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Figure 3.8: Suggested overlay colormap

(a) : sagittal view (b) : coronal view

(c) : axial view

Figure 3.9: Jacobian determinant map (in the template space)
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For demonstration purposes, an MRI scan of an AD individual was pro-
cessed by a proposed pipeline. Fig 3.9 shows log jacobian determinant map
(3 orthogonal slices) overlayed on the Average Template. Red areas are bigger
in the individual image compared to the template, blue ones are shrunk.
Probably the most obvious feature are the lateral ventricles which are fully
red meaning a particular expansion in comparison to the template. This
mapping is quite useful for further statistics as it can be computed in one
space only, regardless of an input image.

(a) : sagittal view (b) : coronal view

(c) : axial view

Figure 3.10: Jacobian determinant map (in the individual space)

Now, it is also possible to overlay the log jacobian map over the original
image. This is useful when it is needed to see the original underlying structures.
Fig. 3.10 shows the same map as the previous example, however, transformed
to the individual space. It is quite interesting to notice that the coloring is
roughly inverted. That is because in the previous case the original image was
compared to the template, in this case, however, the template is compared to
the original images. What was seen as expanding in one direction, is seen as
shrinking in the opposite direction.
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In principle, these maps are the main and essential output for the utilization

in a medical set-up. A doctor can use them to easily locate brain locations
which undergo some neurodegenerative changes and probably could make a
fairly accurate diagnosis.

3.5 Statistical studies

However, this study can be taken further. To this point only individual brains
were assessed, i.e., the question, how does one particular brain differ from
the template, was answered. But we might ask whether and where do AD
brains differ from healthy brain in general? What are the typical locations of
atrophy in AD?

3.5.1 Statistical Parametric Mapping

First, we should address the question which parts of a brain are different at
AD patients in comparison to normal controls. Basically, jacobian determi-
nant maps of individuals from each population (AD and NC) are voxel-wise
compared using the t-test. Then, a p-value map is overlayed over the Average
Template to see where the brains of these two populations differ.

To make the method more robust, smoothing of the data before testing is
required. This restricts the influence of noise and artifacts which can lead to
false results.

After the t-test, a correction for multiple comparison should be performed
as it is explained in Sec. 2.4.6. For this purpose, we use an R function
p.adjust(pvals,’BH’) which uses Benjamini–Hochberg (BH) correction
that is much less restrictive than the Bonferroni correction.

This method does not take into account the inherited spatial correlation of
voxels. Bearing this in mind, we believe that this technique is satisfactory for
the visualization of approximate locations of differences between groups.

We performed this procedure with 22 NC scans (the ones which were not
used for the template construction) and 22 AD scans. First, the log jacobian
determinant maps were computed. Then they were Gauss-smoothed with
σ = 4 and a voxel-wise t-test was used. Afterwards, the resulting p-values
(false negative rate) were adjusted with the BH correction.

Fig 3.11 shows the resulting p-value map on the Average Template. Red
color stands for voxels with p < 0.05. Areas which are significantly different
between groups are ventricles (fluid-filled spaces within the brain), temporal
lobe, hippocampus, cerebellum and some parts of cortex.

3.5.2 Classification

Approximately knowing which parts of a brain are shrinking or expanding, a
simple classifier could be built. We do not possess any additional information
such as patient’s gender, age, degree of AD, etc., therefore the following
models might not be as sensitive as they could be.
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(a) : sagittal view (b) : coronal view

(c) : axial view

Figure 3.11: p-value map

Average atrophic rates within some region of interests (ROIs) are taken as
attributes, i.e., a ROI is manually delineated on the Average Template and
an average log jacobian determinant is computed in this area. Candidates for
the ROIs were taken from the analysis above: cerebellum, temporal lobes,
ventricles. Their segmentation was carried out in a software bundle ITK-
SNAP which is a perfect tool for both viewing MR images and segmentation.
The results can be seen in Fig. 3.12.

Another possible segmentation would be into white matter, grey matter
and cerebrospinal fluid (CSF). To achieve this, there is an ANTsR command
kmeansSegmentation(). The result of this segmentation is in Fig. 3.13

In the next step, an average log jacobian determinant of every ROI from
every individual is computed. Results were recorded into a table, where
columns are single attributes (average shrinkage rates) and each row (total
44) represents one individual, see Tab. 3.1. Last column is the known
classification.

Such table could be quite useful for a neurologist to monitor patients with

55
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(a) : sagittal view (b) : coronal view

(c) : axial view

Figure 3.12: Manual segmentation of cerebellum (red), temporal lobes (green)
and lateral ventricles (blue)

multiple scans. He could compare these atrophic summaries between single
visits and tell, for example, whether the prescribed medication is taking affect
or whether the atrophy worsens considerably.

However, we use this data set to train a few classifiers whose task is to tell
NC and AD apart. For this purpose we use the following classifiers (also see
Sec. 2.4.7):. Naive Bayes classifier – Although the condition of the independence of

attributes is obviously violated, it is a common practice to use Bayes
classifier anyway.. Decision tree – This kind of classifier is also used in order to detect which
attributes contribute to the classification.. Support vector machine – For the sake of simplicity a first-order polyno-
mial kernel is used.
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(a) : sagittal view (b) : coronal view

(c) : axial view

Figure 3.13: Automatic segmentation of white matter (blue), grey matter (green)
and cerebrospinal fluid (red)

. Neural network – Number of units in the hidden layer is set to 3 to make
the model more flexible but no more to avoid overfitting.

As described in Sec. 3.1, for the reason of a very limited data set, the
classifiers are evaluated with a cross-validation. The data set is randomly
divided into 4 subsets (4 is a divisor of a number of records in the data set) and
each of them is used for testing of a model created from the remaining ones.
Thus, every classifier is executed four times. Afterwards, a total classification
accuracy, sensitivity and positive specificity is evaluated. Nevertheless, these
ratios are only estimates of population proportions and they should be
accompanied by confidence intervals. For random samples of sufficiently large
size a Student t-distribution can be used. Unfortunately, this is not our case
since the testing set contains only 11 samples and therefore we do not present
confidence intervals because they would be very imprecise. By all means, it
has to be kept in mind that these intervals are relatively wide for such small
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cerebellum temporal

lobes
lateral

ventricles CSF grey
matter

white
matter class

1 -0.0623 0.0333 0.2491 0.1893 0.0472 -0.0491 AD
2 -0.0492 0.0215 0.2412 0.1095 0.0099 -0.0513 AD
3 -0.0432 -0.0041 0.4482 0.1463 0.0088 -0.0571 AD

4-21 ... AD
20 -0.0516 0.0244 -0.1204 0.0651 0.0105 -0.0420 AD
21 -0.0050 -0.1881 -0.0422 0.0670 0.0202 -0.0588 AD
22 0.0057 -0.2064 -0.0569 0.0867 0.0371 -0.0527 AD
23 0.0318 0.0209 -0.7730 -0.0895 -0.0107 0.0065 NC
24 0.0190 0.0105 -0.7610 -0.0921 -0.0229 -0.0011 NC
25 0.0063 -0.0818 -0.0728 0.0100 -0.0394 -0.0291 NC

26-41 ... NC
42 -0.0108 -0.0021 0.6150 0.0760 -0.0314 -0.0658 NC
43 0.0519 0.0244 -0.1897 -0.0280 -0.0108 0.0054 NC
44 -0.0243 -0.0659 -0.1251 -0.0084 -0.0339 -0.0570 NC

Table 3.1: Classification attributes

number of samples.
An R code for the above described cross-validation follows:

#att - data frame
n_train <-dim(att)[1]
n_folds <- 4
folds_i <- sample(rep(1:n_folds, length.out = n_train))

class_err <- matrix(0, nrow = n_folds, ncol = 4)
formula <- class ~ .

for (k in 1:n_folds) {
test_i <- which(folds_i == k)
#train set
train <- att[-test_i, ]
#test set
test <- att[test_i, ]

#NAIVE BAYES
model <- naiveBayes(formula, train)
class_err[k,1] <-

sum(predict(model,test) == test$class)/dim(test)[1]

#DECISION TREE
model <- rpart(formula, data = train,

control = rpart.control(minsplit = 5))
class_err[k,2] <- sum(

predict(model,newdata=att, type=’class’)
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== att$class)/dim(att)[1]

#SUPPORT VECTOR MACHINE
model <- svm(formula, data=train, kernel=’poly’,cost=0.001,

gamma = 10000, degree = 1, scale=FALSE)
class_err[k,3] <- sum(

predict(model,newdata=att, type=’class’)
== att$class)/dim(att)[1]

#NEURAL NETWORK
model <- nnet(formula, train, size=3, skip=TRUE,

maxit=10000)
class_err[k,4] <- sum(

predict(model,newdata=att, type=’class’)
== att$class)/dim(att)[1]

}

The numeric outcome of this script is summarized in Tab. 3.2. The best
classifiers for this kind of data are the Bayesian classifier and a neural network.
They both show similar accuracy, sensitivity and positive predictivity. Around
80 % of data was correctly classified. If the image is of an AD patient, the
algorithms will find it out with the probability of approx. 90 %. From all
individuals classified as AD, only 79 % are indeed AD. These percentages are
probably not the highest possible but we consider this result as satisfactory
bearing in mind that we were given data of a mixed gender, age and AD
severity.

Bayes Decision tree SVM Neural network
Accuracy 81.82 % 77.27 % 70.45 % 81.82 %
Sensitivity 86.36 % 81.82 % 77.27 % 90.91 %
Positive

predictivity 79.17 % 75.00 % 68.00 % 76.92 %

Table 3.2: Evaluation of classification

Another useful piece of information would be to know which attributes
contributed the most to the classification. A method to find this out is to
utilize the way a decision tree is constructed. Each node in such tree is
assigned an attribute with the most informative value, i.e., the one with the
lowest entropy. Thus, the nodes near to the trunk of a tree are the most
informative and contribute the most to the classification and the ones at the
bottom of a tree or not even used are not so important.

Fig. 3.14 shows a tree diagram of the decision tree created by the script
mentioned above. It is obvious that white matter and CSF attributes have
the most discriminative power. Then, grey matter and temp attributes are
far less discriminative and the other attributes have not even contributed
to the model. That is, an average shrinkage of cerebellum seems not to be
so important for the classification. On the other hand, expansion of lateral
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ventricles might be important, however, it is certainly a subset of CSF which
apparently carries even more information and therefore the ventricles were
omitted in our model.
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Chapter 4
Conclusion

The aim of this thesis was to give an account on evaluating neurodegenerative
diseases, Alzheimer’s disease in particular, with the help of magnetic resonance
diagnostics, to introduce basic utilities for processing of MR images and to
design a simple transformation pipeline for an assessment of brain atrophy
among given populations.

The first part starts with a background knowledge of magnetic resonance
imaging and Alzheimer’s disease. Then, an essential method for image pro-
cessing – brain morphometry – is thoroughly examined. Since this technique
heavily depends on image registration, the next part addresses this topic as
well. The last section of the theoretical chapter presents several analysis tools
for MRI with short snippets of code to show their capabilities.

The seconds part is concerned with the very data analysis. First, an image
pre-processing pipeline is presented accompanied with various illustrations of
the outcomes of single steps. Afterwards, an average template was created
and used for deriving of jacobian determinant images, i.e., showing which
parts of the brain have expanded or shrunk. We can claim that the graphical
results fit well the general model of an atrophied brain in Alzheimer’s disease
(AD). We took the analysis further and statistically examined where brains
of healthy individuals and AD patients differ in general. The output of this
process is a probability map telling which parts of the brain are likely to
be impaired in AD. Based on this, we were able to identify and delineate
several brain sections, such as lateral ventricles or temporal lobes, which
prove to distinguish healthy and AD brain. These findings led to creation
of a few classifiers, which should be able to discriminate between these two
populations. Without any prior knowledge we were able to train a classifier
(3-layer neural network) with the accuracy of 80 % and sensitivity of 90 %
which we find it to be a very satisfactory result.

Methods and outcomes presented in this thesis could be developed further.
It would be advisable to recompute the average template with a larger input
data set and, consequently, to test classifiers in order to obtain more accurate
estimates of their performance.

Furthermore, we believe that the color overlay maps of shrinkage and
the numerical summaries of atrophy could find their place among standard
neurological diagnostic tools. Both of these have a great potential to provide
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valuable information about atrophic changes of the brain and even easily
allow to track its development in time.
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