
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

An application programming
interface for the MORSE
simulator

Lukáš Bertl
Cybernetics and Robotics: Systems and Control
bertlluk@fel.cvut.cz

January 2017
Supervisor: RNDr. Miroslav Kulich, Ph.D.

Acknowledgement / Declaration
I would like to express my gratitude to

my supervisor RNDr. Miroslav Kulich,
Ph.D. for a great mentorship, patience
and wise comments that helped me com-
plete this project.

I would like to thank my girlfriend
and my parents for their unlimited men-
tal support throughout my whole stud-
ies.

Finally, I thank my brother and Kač-
ka Janatková for the proofreading of this
thesis.

I hereby declare that I have complet-
ed this thesis with the topic ”An ap-
plication programming interface for the
MORSE simulator” independently and
that I have listed all sources of informa-
tion used within it in accordance with
the methodical instructions for observ-
ing the ethical principles in the prepara-
tion of university theses.

In Prague, January, 2017

. .
Lukáš Bertl

iii

Abstrakt / Abstract
Práce představuje CCMorse, což je

knihovna pro komunikaci se simuláto-
rem, kterou jsem vytvořil. Práce dále
popisuje proces vývoje simulačního pro
simulátor MORSE.

Teze probírá nejprve teorii robotic-
kých middleware a robotických simu-
látorů. Dále obsahuje stručné popisy
různých simulátorů, které jsou potom
porovnány za účelem simulování mo-
bilních robotů, následované popisem
knihovny CCMorse umožňující uživateli
psát klientskou applikaci v jazyce C++
za použití rozhraní Player a spustit jí
v simulátoru MORSE. Ke konci text
popisuje začlenění simulátoru do existu-
jícího systému, ilustruje proces vytvo-
ření simulované reprezentace systému
a ukazuje praktické použití knihovny v
kurzu zaměřeném na mobilní robotiku.

Knihovna CCMorse může být díky
své vícevrstvé struktuře použita i k
implementaci jiného rozhraní než Pla-
yer rozhraní a také může být upravena
pro podporu dalšího simulátoru mimo
MORSE.

Klíčová slova: mobilní robot, simu-
lace, e-learning, výukové technologie

Překlad titulu: Aplikační rozhraní
pro simulátor MORSE

Thesis presents the CCMorse, a simu-
lator communication library, that I have
created. The thesis also describes the
development process of a MORSE sim-
ulation environment.

The thesis discusses the theory of
robotic middlewares and robotic sim-
ulators first. It contains a brief intro-
duction to various simulators which are
compared for the purposes of simulating
mobile robots, followed by a description
the CCMorse library that enables the
user to write a client application in
the C++ language using the Player
interface and run it in the MORSE
simulator. At the end, thesis illustrates
incorporation of a simulator into the ex-
isting system, it illustrates the creation
process of the simulated representation
of the system and it shows the practical
usage of the library in an introductory
course to mobile robotics.

CCMorse can be utilized to imple-
ment another API on top of the Player
and it can be also altered to support
another simulator besides MORSE,
thanks to its layered structure.

Keywords: mobile robot, simulation,
e-learning, learning technologies

iv

/ Contents
1 Introduction .1
1.1 Thesis outline .1

2 Current state .2
2.1 SyRoTek. .2
2.2 Robotic middlewares.3

2.2.1 Player .4
2.2.2 ROS .5

2.3 Robotic simulators6
2.3.1 Comparison of simulators . .7

2.4 MORSE simulator8
3 CCMorse library 11
3.1 Philosophy . 12

3.1.1 The Core layer 12
3.1.2 The Second layer. 13
3.1.3 The Third layer 14

3.2 Configuration 14
3.3 Communication 15
3.4 Application example 16

4 Practical usage of CCMorse. 18
4.1 Creating SyRoTek simula-

tion world . 18
4.1.1 Modelling of the Arena . . 20
4.1.2 Modelling of the S1R 22

4.2 Developing of a grid-map
component . 24
4.2.1 Component at the

MORSE side 24
4.2.2 Component at the CC-

Morse side 27
4.3 The Practical robotics course . 27

4.3.1 Introduction task 28
4.3.2 Path planning task 29
4.3.3 Exploration task 30

4.4 Practical experience with
MORSE . 30

5 Conclusion . 32
5.1 Ideas for future enhancements . 32
References . 34

A Specification . 37
B The contents of the CD 39
C Code listings . 40
C.1 robot.h . 40
C.2 robot.cc. 41

v

Tables / Figures
2.1. Overview of robotics simula-

tors .7
2.2. Comparison of suitability of

simulators .8

2.1. SyRoTek arena with robots2
2.2. Middleware location in system . .3
2.3. Overall system architecture

of Player .4
2.4. Concept of messages in ROS5
2.5. Indoor simulation in MORSE . . .9
2.6. Outdoor of simulation in

MORSE. .9
3.1. Diagram of libCCMorse usage . 11
3.2. Diagram of libCCMorse layers . 12
3.3. Inheritance diagram of class-

es in the second libCCMorse
layer . 13

3.4. Inheritance diagram of class-
es in the third libCCMorse
layer . 14

3.5. Diagram of communication
between CCMorse and simu-
lation . 15

4.1. SyRoTek Arena in Blender 21
4.2. Collision bounds of the S1R

model . 22
4.3. Model of the S1R robot in

Blender . 22
4.4. Rendered model of the S1R

robot . 22
4.5. On-the-ground canvas mode . . . 26
4.6. Mini-map canvas mode 26
4.7. Full-screen canvas mode 26
4.8. PAR – Introduction task. 28
4.9. PAR – Planning task 29

4.10. PAR – Exploration task 30
B.1. Contents of the enclosed CD . . 39

vi

Chapter 1
Introduction

Robotics is getting out of the laboratories and heading to become a part of everyone’s
life. Near future will bring high demand for robotics specialists across industries, so
universities are supporting its robotics study programmes by development of various
learning systems of robotics for their students. This also provides a platform for research
in this specific field. The SyRoTek system is one of them and it is used to teach and
study mobile robotics at Czech Technical University in Prague.

Because inexperienced students train their skills on such systems, the simulated copy
of the system is needed for safety of the often expensive hardware and to speed up
development of a robotic application. Students can evaluate their programs in the
simulation and then fine-tune the application in the real system.

Robotic simulators are getting faster and more realistic which corresponds with a
rapid increase of computing power of personal computers. SyRoTek has used the Stage
simulator that is no longer being developed or supported. Therefore, it has been decided
to select a new simulator. The new simulator should be actively developed, it should
provide a physically as well as visually realistic simulation in 3D and it should be easily
incorporated into the existing system.

The goal of this thesis is to show the process of developing the SyRoTek system
simulation environment, and to provide an overview of the CCMorse communication
library, that I have created. The CCMorse library has been designed to create an
application interface between the existing system and the new simulator, so the already
written algorithms will be still usable with no or with only minor changes.

1.1 Thesis outline
Chapter 2 includes multiple topics. The SyRoTek system is introduced in Section 2.1
followed by a theory around robotic middleware and two middlewares demonstrated in
Section 2.2. An introduction of several robotic simulators, their comparison and the
selection of a new simulator for SyRoTek are located in Section 2.3. Features of the
selected simulator are outlined in Section 2.4. The philosophy behind the CCMorse
library is explained in Chapter 3. The process of developing a simulation environment
is shown in Chapter 4, together with highlighted features of developed components,
and demonstration of a set of simulation templates created for the Practical Robotics
course. An evaluation of the work and the outlook for the future work are contained in
the last Chapter 5.

1

Chapter 2
Current state

This chapter looks into the current state of robotics simulation related systems and
software. The SyRoTek system is introduced first followed by an explanation of what
robotic middlewares are. Two middlewares are introduced. Several robotic simulators
are presented, and their pros and cons are discussed.

2.1 SyRoTek
SyRoTek [1] (”System for Robotic e-learning”) was developed at Czech Technical Uni-
versity in Prague (CTU), Prague, Czech Republic, and it provides the ability to test
and learn various mobile robotics algorithms created by students or scientists in a real,
but closed and safe environment (for persons as well as for robots). The whole SyRoTek
system consists of an arena, a group of mobile robots, web pages [2] with reservation,
observational and educational interfaces, cameras for positioning and observation pur-
poses and a main control server. The user can connect to the main server via Internet
to control the robot with a program while watching a live video stream from the arena
to observe if the program works in real life.

Figure 2.1. A view of SyRoTek arena with robots. Taken from [2].

The SyRoTek arena shown in Figure 2.1, provides charging docks for robots, cameras
for observation in a maze-like environment that can be dynamically changed or divided
without manual manipulation with the arena. This provides a unique and safe area
where up to 13 robots can move.

The SyRoTek robot called ”S1R” (also shown in Figure 2.1) is a two-wheel mobile
robot with differential control and can be equipped with a laser rangefinder or an
array of ultrasound sensors (sonars). It also carries an array of infra-red range sensors,
cameras, and few other sensors. The robot can use odometry or a positioning system
built in the SyRoTek arena to determine its position.

2

. 2.2 Robotic middlewares

2.2 Robotic middlewares
The following paragraphs are focused on robotic middleware, the functionalities they
provide and also introduction of the two commonly used middlewares. Next, the focus
is turned to robotic simulators. A simulator that has been used with SyRoTek is
introduced along with the description of the requirements for a new simulator. The
proper simulator is selected by comparing several available simulators and thus brings
us to the purpose of the CCMorse library.

The open encyclopedia [3] defines middleware as follows:
”Middleware is computer software that provides services to software applications beyond
those available from the operating system. It can be described as ”software glue”. ”

A more robotics related definition from [4] can be useful where middleware is defined
as follows:
”Middleware is a class of software technologies designed to help manage the complexity
and heterogeneity inherent in distributed systems. It is defined as a layer of software
above the operating system but below the application program that provides a common
programming abstraction across a distributed system. ”

Figure 2.2. Location of middleware in the system. Inspired by [5].

Middleware is used in robotics to hide the low-level implementation of each hardware
component of the robot behind it and to create a higher-level abstraction of devices.
This leads to better portability of programs, simpler software design, lower development
cost, faster testing and easier learning. In Figure 2.2 the position of the middleware
in the system can be observed. Middleware takes commands from the application
and prepares them for a specific hardware. This means that the user can change the
hardware part and their program will still work without a modification. Two different
robotics middlewares are presented in following sections.

3

2. Current state .
2.2.1 Player

As can be percieved in [1], SyRoTek implements the Player interface from the open-
source project Player/Stage [6–9], which originated at the University of Southern Cal-
ifornia, California, USA. The Player framework is based on a client-server topology
with a queue-based message system. The principal aim of the Player [5] is to provide
a development framework supporting different hardware devices and common services
needed by various robotic applications and transferring a controller from simulation to
real robots with as little effort as possible.

Figure 2.3. Overall system architecture of Player. Inspired by [6].

As can be seen in Figure 2.3, the Player server enables multiple clients to control
multiple devices, which can be mounted on multiple robots, via a TCP socket. Player
is designed as a heavy multi-threaded server, which reflects the need for simultaneous
support for many heterogeneous devices and many heterogeneous clients. This means
that data can be obtained from and commands can be sent to each device at the highest
possible frequency, which leads to maximisation of the responsiveness of the system.

After the start of a Player server, the server listens to a given port (typically 6665),
and awaits connection from a client application. Then, the client subscribes to devices.
Subscribed devices will provide data needed by the client, or they will be ready to
accept commands from the client. After this initialization, the client application can
exchange data with devices. The Player framework introduces a triple of files that
provides an abstraction of a device for a client application – a driver, an interface and
a device [8]. The driver supports a specific piece of hardware, such as a SICK LMS200
scanning laser rangefinder. The interface provides a generalised set of tools or functions
for a piece of hardware, for example ”a laser rangefinder” and the device specifies a pair
of driver and interface, e.g. a SICK LMS200 driver and a laser interface. Because the
client application uses Player interfaces to communicate with devices, the application
can run in the simulator or on a real hardware with no changes to the client program.

Player was designed as code language independent. It provides several client libraries,
such as C++, Java, Python, and Tcl. Application programming interface (API) of these

4

. 2.2 Robotic middlewares

libraries is relatively easy to learn and use. Furthermore, Player makes no assumptions
about how the user might want to structure his/her client application. It can be a
simple loop or a highly multi-threaded program.

A Player client library implements a set of proxy classes. A proxy class offers the
functionalities of Player interfaces mentioned above to the user, in a specific program-
ming language. For example, Postion2dProxy from the Player’s C++ client library
PlayerCc can be used to control a position of a robot with a C++ client application.

One of the negatives of Player can be impossibility to determine whether the data
received from the sensor are ”fresh” or not. The user only knows, that the data are the
latest data in the sensor. This can lead to reading some of the data multiple times and
treating them as fresh. For example, the user can have the client application reading
data from sensors with a frequency of 10Hz, but the user-controlled robot has a laser
rangefinder operating on 5Hz. This will result in a situation, where the user’s program
reads same data from the laser about two times.

2.2.2 ROS
Another middleware, also called the ”meta-operating system”, is quite commonly used
ROS [10–11] (”Robot Operating System”) which consists of many small tools designed
to work together [5]. It was originally started as a part of a project at Stanford Univer-
sity, California, USA. Now, it is an open-source project with many contributors from
all around the world. ROS can be used as a middleware for controlling a real robot or
it can be utilised with many simulators, which support ROS interface (will be further
discussed in the Section 2.3). ROS is equipped with RViz (”ROS visualisation”), which
can be used for data visualisation. ROS ”provides operating system’s services such
as hardware abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management” [10].

Figure 2.4. Concept of communication between nodes in ROS. Taken from ROS Wiki1.

ROS uses peer-to-peer communication between ”nodes”, representing a system as
”a computation graph consisting of a set of nodes communicating with one another
over edges”, where nodes represent individual software packages – devices that can
communicate. For example, implementation of a proximity sensor can communicate
directly with an actuator of one of the wheels. The ROS interface consists of nodes
(software modules), messages (passed peer-to-peer), topics, and services (analogous to
web services). Each node can publish data to a specific topic by sending a message.

1 http://wiki.ros.org/ROS/Concepts

5

http://wiki.ros.org/ROS/Concepts

2. Current state .
Messages are then sent to nodes that are subscribed to that topic. Messages are pro-
gramming language independent, and a topic is simply a specification of the data. The
communication process is described in Figure 2.4.

ROS is one of the most commonly used robotic platforms because of its wide appli-
cability. The main drawback of ROS is that it has a steep learning curve1 due to its
complex and maybe confusing nature.

SyRoTek has the ability to be controlled by both Player and ROS, but using Player
interface is recommended over the ROS for beginners because Player is easier to use
and learn, which is important for students with different and often limited programming
experiences.

2.3 Robotic simulators
As with any other software, it is good to evaluate that the program does what is
expected to and does not represent a threat to the system where it is running. Robotics
is no exception. Thus, a simulator is needed.

There are several free, open-source or commercial robotics simulators on the Internet
from which we can choose from. These software packages differ in various aspects like
communication topology, abstraction level, physics engine, graphics engine or other
software needed for simulating robots.

Stage [7] is a 2D multi-robot simulator, it was developed within Player/Stage project.
It can simulate a big number of simplified robots in flat indoor environments. Stage was
used to simulate SyRoTek for several years, but the Player/Stage project is no longer
being developed (last released version is from 2010 [9]). therefore, it was decided to
find a new simulator that fits specific needs for simulation in SyRoTek.

Criteria for an optimal SyRoTek simulator that will replace Stage are listed here:.Easy incorporation to existing SyRoTek architecture.Free of charge for research purposes and students.Support of existing source codes of the algorithms with no or very small changes.Simple interface and easy-to-work with functions

Player can be also used with Gazebo [12], it is a 3D open-source multi-robot sim-
ulator. Initially, it was developed as a part of the Player/Stage project, but then
it became an independent project. Gazebo was developed as an outdoors simulator.
Gazebo uses the ODE [13] (”Open Dynamics Engine”) as physics engine, but it can be
also switched to Bullet [14] (Bullet is state-of-the-art physics engine developed in part
of Blender 3D [15] modelling software.), Simbody [16] or to DART [17] (”Dynamic An-
imation and Robotics Toolkit”). It uses OpenGL as a 3D visualisation engine. Gazebo
can accommodate around ten robots, whose bodies are constructed from boxes, spheres,
cylinders, planes, and lines, that are joined with joints. While this high-abstract robot
model might be sufficient for various robot applications, a creation of a detailed model
could be difficult. The user can control joints that can represent actuators. Gazebo
also provides a library of pre-made sensors for a robot. In the newer version, Gazebo
is operated through graphical user interface (GUI), where the user can see and edit
simulation environment and robot model.

Another simulator based on OpenGL and ODE engines is a commercial robot simu-
lation package called Webots [18], developed by Cyberbotics company founded in 1998
1 Steep learning curve means that it takes a lot of knowledge before someone is able to accomplish

something with the tool, contradictory to how the curve actually looks.

6

. 2.3 Robotic simulators

as a spin-off from the MicroComputing and Interface Lab (LAMI) of the Swiss Federal
Institute of Technology, Lausanne (EPFL), Switzerland and is still actively being de-
veloped. Webots can also serve as a middleware, and it is oriented on fast prototyping
and simulation of mobile robots. Webots provides a large robot, sensors, actuators and
environment libraries with modelling and programming GUI. However it does not allow
to create custom robots or devices with a free license. It would not be thus possible
to use Webots with the free licence because the simulation of SyRoTek’s unique S1R
robot is needed.

A next available simulator is V-REP [19] (”Virtual Robot Experimentation Plat-
form”), developed by Coppelia Robotics company, located in Zürich, Switzerland.
While V-REP is free to use for students and universities, it is not an open-source
project, so it does not grant 100% control over the simulation. V-REP is created to be
portable, flexible and versatile. V-REP also uses the ODE physics engine as Gazebo
or Webots but can be switched to Bullet [14] or Vortex [20]. V-REP is operated from
GUI, which is more user-friendly than Gazebo’s control. Because V-REP uses its own
graphic engine, it could run smoother on some machines, but it does not provide such
photo-realistic visualisation as MORSE for example.

The last considered simulator is MORSE [21–23] (”Modular Open Robots Simulation
Engine”), jointly developed at Laboratoire d’Analyse et d’Architecture des Systèmes–
Centre national de la recherche scientifique(LAAS–CNRS) and ONERA, both located
in Toulouse, France, has now over 20 contributors from the academic environment.
MORSE is based on Blender 3D [15] software using its Blender Game Engine (BGE)
for photo-realistic 3D visualisation and Bullet [14] for simulating physics. Blender is
an open-source multi-platform application focused on creating 3D models, rendering,
computer generated animation, post-production activities and last but not least creat-
ing interactive applications. Because of that, MORSE does not need GUI and it is only
operated from a command line. MORSE supports many middlewares and communi-
cation protocols, sadly for us excluding Player. Models of robots or environments are
created with Blender, and it is up to the user, how much fidelity they want to bring to
the model. Furthermore, Blender supports many formats of 3D models, so it is possible
to import almost any model. MORSE provides the ability to select a degree of realism
of the simulation, for example, the user can choose what data will be measured by a
laser rangefinder and whether data contain a signal noise.

An overview of various aspects of simulators described above is summarised in the
Table 2.1.

Simulator Licence Graphics engine Physics engine
Stage GNU GPL Internal Internal

Gazebo Apache 2.0 OGRE1 (OpenGL) ODE/Bullet/
Simbody/DART

Webots Proprietary OGRE (OpenGL) Customized ODE
V-REP Prop./GNU GPL Internal ODE/Bullet/Vortex

MORSE BSD Blender Game Engine Bullet

Table 2.1. Table comparing various attributes of robotics simulators.

2.3.1 Comparison of simulators
1 Object-Oriented Graphics Rendering Engine: http://www.ogre3d.org/

7

http://www.ogre3d.org/

2. Current state .
The new simulator for SyRoTek will be chosen in this section. In Table 2.2 virtual
”points” has been assigned for every above mentioned simulator and for the criteria set
out on page 6. As it is evident, there is no perfect solution. Yet, there are two simulators
that got three out of four points in suitability for simulating SyRoTek: Gazebo and
MORSE.

Because Gazebo started as part of Player project, it is the only simulator still sup-
porting Player communication.

When it comes to the availability, Webots received no points because it is not free,
compared to the other simulators which can be used for free, at least at the university.

While a GUI can be easy to use by many users, it requires the user to learn its
layout and general behaviour of the application. Therefore, a point was given only to
MORSE because the whole simulation environment can be prepared in a few easy-to-
edit scripts. Then the whole project can be exported with a zip archive to any machine
with MORSE. Then, it takes only one command to start the simulation.

Points were given to Gazebo, ROS and MORSE for extensibility because they all
are open-source projects, so a creation of a new component with specific needs, can
be started from an existing component just by altering its parameters, which is a nice
feature that contributes to rapid development.

Simulator Player support Free Easy usage Extendible
Gazebo Yes Yes No Yes
Webots No No No No
V-REP No Yes No No

MORSE No Yes Yes Yes

Table 2.2. Table showing suitability of simulators for simulating SyRoTek.

MORSE was found to be the winner after considering all all features discussed above
and with the addition of MORSE’s easy of use interface, which is a key feature for
students working with SyRoTek. The only feature that MORSE is missing is built-in
support for Player interface. That is the essential reason why was CCMorse library
developed. CCMorse enables communication between MORSE and programs written
for Player with no or only little changes in code.

2.4 MORSE simulator
In this section, the MORSE simulator will be reviewed in more detail. MORSE [21–23]
is a generic simulator focusing on academic robotics. It is developed to simulate the
robot as whole, in target environment without the intention to replace dedicated sim-
ulators for very specific purposes. MORSE can simulate from small to large, indoors
or outdoors environments with medium to high level of abstraction. MORSE can sim-
ulate from one up to several tenths of robots, depending on the number of sensors and
actuators on each robot and their frequencies.

MORSE main design element is enabling the ability to select the level of realism (or
abstraction) of simulation to the user. For example, if the user is working on a camera
vision, he/she would need a precise model of the cameras, but because he/she does
not care about robot’s movement control, hence he/she would be happy with position
control of the robot. This also means, that when the user simulates a realistic (non-
abstract) scenario, a simulation should produce the same kind and amount of data

8

. 2.4 MORSE simulator

Figure 2.5. Screenshot of indoor simula-
tion in MORSE with Morsy.

Figure 2.6. Screenshot of outdoor simula-
tion in MORSE with two mobile and one

aerial robot.

as would the sensors on the real robot. Similarly, if a more abstraction is used, the
simulation accepts higher level commands and can produce more abstract data.

As mentioned in Section 2.3, MORSE extensively uses Blender 3D [15] for simulation.
Even though Blender is not designed for simulation, it has multiple properties, that can
support a development of a simulator. Thanks to Blender’s photo-realistic rendering,
MORSE can accurately simulate vision-based sensors, such as stereovision. Meaning
that, the user can use the same algorithm on the virtual image as on real images with
very similar results. Also, the user can place multiple cameras into the simulated scene
and observe multiple aspects or angles of the scene through them.

Every individual module for MORSE such as Pioneer3DX robot, GPS sensor, sim-
ple motion actuator, or any custom component, consists of two parts: a Blender file
and a Python script. The Blender file holds, besides a 3D model of the component,
also information about the physical properties like mass and friction of the object, its
bounding box for collision detection, component’s role relative to another object in
simulation and other analogous variables. In addition to that, a Blender file defines
so-called Logic Bricks, that allows the Python script to interact with objects in the
scene via dedicated API. This mechanism binds methods implemented in the Python
script to certain events generated in the simulation.

The Python scripts of all components are based on abstract class MorseObjectClass
that has information about a 3D position and orientation of the object relative to
the origin of the Blender world, local_data dictionary with data, which object share
with others and must implement the default_action method that determines the
functionality of the component. As indicated in the beginning of this paragraph, there
are three kinds of robotic components available in MORSE..Sensors – Gather data from the simulated world, by emulation of the behaviour of a

real sensor..Actuators – Devices that affect their own state or the state of the whole robot,
typically move the robot to a given position or with given linear/angular velocities..Robots – Robot component functions as platforms for sensors and actuators. Defines
physical properties of the robot and can define robot specific methods.

On top of those three, MORSE features another three additional simulation compo-
nents.

9

2. Current state .
.Environments – Model world, where the robot exists in a simulation, can be used

any 3D model of the environment, both artificially created or captured in the real
environment..Middleware – Represents communication channels that can be established between
simulation and user’s program..Modifiers – Special modules that alter sensor data to be more realistic, typically by
adding noise to data.

MORSE supports multitude of middlewares, namely Socket, ROS [11], YARP [24],
Pocolibs [25], MOOS [26], MAVLink [27] and HLA. For SyRoTek simulation, Socket is
the most interesting middleware. MORSE shares data through a socket as a straight
serialisation of the JSON [28] (”JavaScript Object Notation”) representation of the
component data.

10

Chapter 3
CCMorse library

In the following chapter, the CCMorse library will be discussed.
As already mentioned, SyRoTek uses Player API, a feature we want to preserve.

MORSE was chosen as the new SyRoTek simulator, but because MORSE does not
support the Player API, the creation of an interface that would allow us to try out
programs written for SyRoTek with Player API on MORSE was needed. For this
purpose, the CCMorse library was created. CCMorse library allows control of the
MORSE simulation with algorithms written as Player applications. As can be seen in
Figure 3.1, the user decides if he/she wants to compile his/her program for simulating on
MORSE or to test it in the real SyRoTek arena. CCMorse imitates the same interface
as a part of Player proxies which are needed for SyRoTek simulation. So user’s code
can be compiled for SyRoTek as well as for MORSE without the need to change the
code.

Figure 3.1. Diagram showing of CCMorse library usage. SyRoTek part taken from [1].

11

3. CCMorse library .
The CCMorse library was created mainly for use with simulated SyRoTek, but it

can serve for other simulated worlds too. Due to its purpose, CCMorse library imple-
ments only a handful of devices, and those are devices mounted on the S1R robot: laser
rangefinder, position sensor, odometric sensor, and motion controller. Possible exten-
sion of compatible devices should be relatively easy, and this topic will be discussed in
the next Section 3.1.

3.1 Philosophy
CCMorse is written in C++ and it incorporates all benefits of object-oriented pro-
gramming. Library is only dependent on Boost C++ library [29] which is used only for
managing multi-threading in client applications. The remaining of CCMorse uses only
the C++ standard library.

CCMorse is composed from three main layers: Core, MORSE-like API and Player
API. These layers are stacked, and each layer utilises methods of those layers beneath
it as Figure 3.2 shows.

Figure 3.2. Diagram showing of CCMorse’s program layers.

3.1.1 The Core layer
The core layer contains a basic set of methods for socket communication, JSON data de-
serialization, exception handling, basic data manipulation and it also defines useful vari-
able types. The Core layer further comprises of main MorseClient class, MorseRobot
class and MorseDevice base class representing a component or other entity in MORSE
simulation, that stores data and can share them.

The MorseClient class is implemented as a singleton and it stores essentially all
simulation information and data. Upon creation, the MorseClient connects to a sim-
ulation and obtains a list of all devices and all robots in the simulation. Then the
MorseRobot objects are created with their devices accordingly. To ensure that this
mechanics works properly, every device class has its set of identifiers or names, that the
client will look for in the device list. Therefore, it is convenient to include one of the
identifiers into the name of a device in the simulation.

CCMorse supports multi-robot simulation, hence the MorseClient class contains a
list of all robots in the simulation. The MorseRobot class serves as representation of
robot in CCMorse. Each instance of the MorseRobot class keeps its list of devices that
can operate and carries a list of Player’s proxies. MorseRobot provides quite a few
useful robot-oriented methods, from setting the position goal to getting robot’s weight.

12

. 3.1 Philosophy

3.1.2 The Second layer
The second layer is MORSE-like API, which uses the Core layer to implement device-
like components in a structure based on the MORSE component library. As Figure 3.3
demonstrates, there are MorseSensor and MorseActuator abstract classes that act as
base classes for sensors and actuators respectively. All devices are implemented on these
abstract classes with a similar data structure as components in MORSE. Furthermore,
each implemented device adds useful methods that are specific for a given device, for
example ”getter” or/and ”setter” functions for individual data fields or function that
looks for an angle with minimal measured range with a laser rangefinder.

Figure 3.3. Class inheritance diagram of the second program layer of CCMorse. On the
right side, there are all implementations of individual components in CCMorse, that are

inherited from abstract classes located left of them.

There is also implemented the MorseTime class that can receive simulation time and
time statistics.

The second layer can be used to control the robot in a MORSE simulation, but
because it has its unique interface, i.e. it does not use Player interface, which means that
it cannot be used simply with SyRoTek as suggesting in Figure 3.1. This functionality
is provided by the third layer. Besides this, the second layer can be used to implement
a new API if a replacement of the Player interface (the third layer) is wanted or the
CCMorse is used with another project than SyRoTek.

13

3. CCMorse library .

Figure 3.4. Class inheritance diagram of the third program layer of CCMorse. The dashed
line indicating the collaboration of classes in the orientation of arrow, i.e. SndDriver uses

instances of Position2dProxy and LaserProxy.

3.1.3 The Third layer
The third layer implements Player application interface from Player’s C++ client li-
brary. This is accomplished with proxy classes inherited from MorseProxy abstract
class, as can be observed in Figure 3.4. Each class in this set provides the same meth-
ods and functionality as proxy classes in Player’s C++ client library, but the methods
are implemented with the second CCMorse layer.

Proxy classes use typically one or more devices defined in the second layer. For
example, the Position2dProxy class incorporates the functionality of the MorsePose
position sensor, MorseOdometry position sensor and MorseMotionVW actuator into one
object.

Next Player’s feature is a driver class, that implements a specific piece of hardware
or an algorithm that can take control over the robot. Driver classes in the CCMorse
library are based on MorseDriver class. When the user starts the main method of a
driver class CCMorse creates a new thread where the task is executed. Driver classes
borrow functionality from other modules and use them to fulfil more complex algo-
rithms, for example, as Figure 3.4 suggests the SndDriver utilises Position2dProxy
and LaserProxy classes to safely navigate robot to goal position through the environ-
ment with obstacles.

The last part of Player interface is PlayerClient that manages communication
with a server in the Player. However, all its functionality is implemented in CC-
Morse’s MorseClient class. Thus the PlayerClient class just redirects commands
to MorseClient in CCMorse.

3.2 Configuration
In order to configure proxies and drivers in Player-like manner, a configurable builder-
script of SyRoTek’s MORSE simulation scene has been developed. The simulation
builder script reads a configuration file and adjusts the simulation accordingly. The
configuration file utilises the JSON notation, for which Python provides a set of powerful
tools for simple processing within the script. This script also sets default values to
missing items, which means that users can specify only those configurations they need
and the rest will be set up by the script. In this way, multiple initial scenarios of a
simulation can be arranged by setting these properties. For example, initial position,
colour, indexes of proxies available, and configuration of drivers can be specified for each
robot. Also, the behaviour of the simulation environment can be set such as placement
of the camera in the scene or simulation-time strategy.

14

. 3.3 Communication

These configurations with additional data obtained directly from Blender are then
stored in the RobotProperties, which is custom MORSE sensor component. This
component just provides a platform that enables CCMorse to read Player’s specific
configurations from the simulation and use them during initialization and runtime of
an application. MorseProperties class is implemented in the second program layer of
CCMorse (Figure 3.3). MorseProperties stores settings from RobotProperties and
provides functions for getting individual entries. With the help of this class, every
instance of MorseRobot class carries its configuration, accessible at any time during
the simulation. Thanks to this mechanism, a new property or configuration whose
value does not change during the simulation can be quickly introduced to CCMorse’s
MorseProperties class if needed.

3.3 Communication
As was mentioned above, CCMorse uses socket messages in JSON format to commu-
nicate with MORSE simulation. This communication always starts from CCMorse,
usually to get new data from sensors and to send new commands to actuators. Sending
and reading fresh data to and from all devices is implemented in the Read() function
within MorseClient class, while execution of this function is left to the client appli-
cation. It is up to the user to decide how he/she wants to acquire the data from the
robot, for example, the user can use a simple loop with reading data in the beginning,
or he/she can create a separate thread for data reading.

Figure 3.5. Diagram shows how are fresh data obtained through CCMorse from a simula-
tion.

As can be seen in Figure 3.5, when the user calls the read function, CCMorse iterates
through each MorseDevice and sends a query to get data stored in appropriate MORSE
component in the simulation. Then it checks validity of the new data for every proxy.

15

3. CCMorse library .
Valid flag and fresh flag are then fittingly raised in proxies. The valid flag is controlled
by CCMorse, and the user cannot change its state. The fresh flag, on the other hand,
is available for the user and it is set by CCMorse only after acquisition of new data.
The user can mark the data as used with this mechanism and avoid using them twice.

3.4 Application example
In this section, an example application will be shown. The application contains robot-
control loop making use the CCMorse library. Principles for using the same program in
the simulator and in the real system will be explained using the example application.

Although CCMorse has been designed for seamless integration into Player using
scripts, some of the components provided by CCMorse need a special treatment in case
of using them in the code that will run on the real system. These components are the
WindowProxy class and the MorsePen class, because their real representation does not
exist.

Because the target platform of the program is determined during its compilation, it
can be specified which parts of the code will be compiled for which platform. Therefore,
a Makefile where the user can choose the target platform was developed. The most
interesting part of the Makefile is in the following code transcript.

1 # PLATFORM DEFINITION
2 # - SET THE FOLLOWING TO "YES" TO RUN CODE WITH MORSE,
3 # - ANYTHING ELSE TO RUN IT ON SYROTEK
4 MORSE = YES
5
6 # Building for MORSE or for SyRoTek?
7 ifeq ($(MORSE), YES)
8 CPPFLAGS += -D _MORSE
9 CPPFLAGS += $(CCMORSE_CPPFLAGS) $(BOOST_CPPFLAGS) $(IMRH_CPPFLAGS)

10 LDFLAGS += $(CCMORSE_LDFLAGS) $(BOOST_LDFLAGS) $(IMRH_LDFLAGS)
11 else
12 CPPFLAGS += $(PLAH_CPPFLAGS) $(BOOST_CPPFLAGS) $(IMRH_CPPFLAGS)
13 LDFLAGS += $(PLAH_LDFLAGS) $(BOOST_LDFLAGS) $(IMRH_LDFLAGS)
14 OBJS += $(OBJSPLAH)
15 endif

The user can add this code into his/her Makefile, and they can simply switch be-
tween compiling for MORSE or for SyRoTek by alternating the MORSE variable (on line
4). When the variable is set to YES, the application will be compiled for the use with
MORSE, otherwise the program will control the real robot inside SyRoTek. Both plat-
forms differ in libraries which are linked with the code. CCMorse has defined the include
path and path to the library itself in variable CCMORSE_CPPFLAGS and CCMORSE_LDFLAGS
respectively (lines 9–10). Similarly the Player paths are included in PLAH_CPPFLAGS
and PLAH_LDFLAGS varibles (lines 12–13).

Please note that the _MORSE variable is defined (line 8). With the help of this defini-
tion, some parts of the program code can be hidden. The user can enclose parts of code
with #ifdef _MORSE and #endif directives, so these parts will be compiled only for
MORSE platform. Alternatively, the user can use #ifndef _MORSE directive to compile
a selected code for SyRoTek. Furthermore, the #else directive can be added for the
switching behaviour, as can be seen in next code sample.

The following code is copied from the header file robot.h (code listed in Ap-
pendix C.1) which is a part of the SyRoTek template project. The template project

16

. 3.4 Application example

includes several useful modules which are preventing the reinvention of a wheel. The
robot.h and robot.cc file pair defines the CRobot class where the robot-control loop
is located.

1 #ifdef _MORSE
2 #include "libCCMorse/CCMorse.h"
3 #else
4 #include "libPlayer/Position2dProxy.h"
5 #include "libPlayer/LaserProxy.h"
6 #include "libPlayer/PlayerClient.h"
7 #define PI 3.14159265359
8 #endif

Example of an implementation of a robot-control loop can be seen in Appendix C.2.
This code implements a simple obstacle avoiding behaviour of the robot that can be
compared to the behaviour of the Braitenberg vehicle. This code can be also used to
solve the Introduction task in the Practical Robotics course, more about this experiment
will be discussed in Section 4.3.

The short commentary of the robot.cc file follows in this paragraph. All code
line numbers refer to code listing in Appendix C.2. The method getConfig stores the
configuration of the program. As can be observed, the right configuration of connection
is set by using the #ifdef _MORSE directive (lines 16–40). A PlayerClient is created
using the configured server information, followed by creation of proxies in the CRobot
constructor (lines 42–71).

The control loop of the robot is implemented in the navigation procedure (line 111).
Parts of the code where the WindowProxy is used are enclosed between directives (lines
114–118 and 161–178). The rest of the code can be used with MORSE as well as with
SyRoTek. Lines 146–181 handle the position data. The position is saved, logged and
also drawn if the application is compiled for MORSE. Lines 183–268 handle the data
from laser.

Laser data are used to compute the straight and angular velocities of the robot. The
data are split to left and right halves. It is searched through the current laser scan for
a minimal measured range. If the minimal range lies in the left half of the scan, the
opposite (right) wheel is slowed down, and vice versa. This is sufficient for a simple
collision avoidance. The computed speeds are then set to robot (line 272) and the loop
repeats.

17

Chapter 4
Practical usage of CCMorse

Now, when all the theory about robotics middlewares (Section 2.2), robotic simulators
(Section 2.3) and the simulator communication library CCMorse (Section 3) is laid
down, the practical usage of MORSE simulator (Section 2.4) in conjunction with CC-
Morse to simulate the SyRoTek system (Section 2.1) will be discussed. Additionally, the
process of a development of a new component for MORSE simulator and incorporation
of such component into the CCMorse library will be demonstrated. Finally, a set of
SyRoTek simulation tasks for students attending the Practical Robotics course taught
at the Czech Technical University in Prague (CTU), Prague, Czech Republic will be
presented.

4.1 Creating SyRoTek simulation world
First, creation of models of the S1R robot and the SyRoTek Arena is described in the
following paragraphs.

When the user has the MORSE simulator successfully installed on his/her worksta-
tion1 a new simulation (in MORSE called simulation environment) can be created. In
the terminal, the user navigates to the directory, where he/she wants the simulation
project to be located. From this location, the user instructs MORSE to create a new
simulation with the morse create <env> command, where <env> is the name of the
simulation environment. Transcript of this procedure in the terminal can be seen in
the next block.

$ mkdir Simulations && cd Simulations/

$ morse create MorseSyrotek

* A new simulation environment has been successfully created in
</home/user/Simulations/MorseSyrotek>.

* You can run it directly with "morse run MorseSyrotek" or you can start
editing it.

If the user runs a new simulation with the morse run <env> command, the MORSE
default simulation scene will appear. A Morsy robot, the mascot of MORSE, will
appear in an environment resembling a playground with several balls and chairs that
can be interacted with. This default scene can be seen in Figure 2.5. Also, if the
directory, where the simulation environment was created, is inspected, it can be found
that MORSE made a new folder with the name of the project. The simulation project
consists of a simulation builder-script called default.py in which the simulation world
is defined and three additional folders data, scripts and src are created. All Blender
1 The installation of MORSE is described on https://www.openrobots.org/morse/doc/stable/user/

installation.html.

18

https://www.openrobots.org/morse/doc/stable/user/installation.html
https://www.openrobots.org/morse/doc/stable/user/installation.html

. 4.1 Creating SyRoTek simulation world

3D models specific to this project are stored in the data directory. The scripts folder
can contain MORSE’s native client applications written in Python, which are not used
in this text. Finally, the src folder holds builder-scripts and implementation files for
components not included in the MORSE component library.

When the MORSE simulation environment is prepared, it is possible to add several
SyRoTek specific components needed in simulations. The S1R robot can be added into
the simulation environment with morse add robot <name> <env> command, where
<name> is the name of the robot and <env> is the name of a simulation environment
where the robot will be created. The process of making a new robot called ”syrotek”
is shown in the following box.

$ morse add robot syrotek MorseSyrotek

MORSE then creates corresponding template files in the data and src directories of
the project. The further development of S1R robot model for MORSE simulation is
commented in Section 4.1.2

In the next step, the robot properties sensor, first mentioned in Section 3.2, is added to
the simulation environment. For this, the morse add sensor <name> <env> command
is used, where <name> represents the name of the newly created component and <env> is
the name of a simulation environment where MORSE will create the sensor component.
The command presented in the following code block is used.

$ morse add sensor robotproperties MorseSyrotek

Finally, the last unique component is the Pen actuator which allows us to draw in
the Canvas component, both will be further examined in Section 4.2. A new actuator is
created with a familiar command morse add actuator <name> <env> as can be seen
in subsequent instruction, where <name> stands for the name of the component and
<env> is the name of the simulation environment.

$ morse add actuator pen MorseSyrotek

While the creation of all possible MORSE components was illustrated above, the
content of the builder-script is inspected in the following text1.

1 #! /usr/bin/env morseexec
2
3 from morse.builder import *
4
5 robot = Morsy()
6 robot.translate(1.0, 0.0, 0.0)
7 robot.rotate(0.0, 0.0, 3.5)
8
9 motion = MotionVW()

10 robot.append(motion)
11
12 keyboard = Keyboard()
13 robot.append(keyboard)
14 keyboard.properties(ControlType = ’Position’)
15
16 pose = Pose()
17 robot.append(pose)
18

1 The comments were erased from the code, to save space.

19

4. Practical usage of CCMorse .
19 robot.add_default_interface(’socket’)
20
21 env = Environment(’sandbox’, fastmode = False)
22 env.set_camera_location([-18.0, -6.7, 10.8])
23 env.set_camera_rotation([1.09, 0, -1.14])

According to the transcript of the builder file above, the file type is defined (line 1),
the morse.builder Python module is imported into the script (line 3) followed by the
creation of a robot object called robot (line 5). It is evident that the robot object is
an instance of a Morsy, which is a default robot in MORSE. The initial position and
rotation of the robot in 3D-space are set (line 6–7).

The motion object is created as an instance of the MotionVW (line 9). The MotionVW
component enables to control robot’s movement with linear and angular velocities.
As might be seen, the next command appends the motion to the robot (line 10),
which means that the motion belongs to the robot, thus robot can be affected by the
component. Similarly, if a sensor component is attached to a robot, the robot can read
data from the sensor. The rest of the script is much the same till the end – a component
is created and it is appended to the robot then. It can be seen that components can be
configured by changing their properties.

The last thing left is to set up the simulation environment. To do that, the env
object is created (line 21), the first argument of an environment constructor determines
the model of the simulation world. At the very end of the script, the initial location
and rotation of the camera are set (line 22–23).

4.1.1 Modelling of the Arena
In the following text, the development of the SyRoTek Arena model will be described
in more detail.

The modelling of the SyRoTek’s Arena is quite straightforward with a physical de-
scription. The length of the Arena is 3.72m, the width is 3.42m, and the height of
obstacles is about 16cm.

As it is evident from Figure 4.1, the Arena consists of a white plane serving as the
Arena floor, brown borders and dock separators, light-grey blocks representing static
obstacles, and red colour of blocks expressing that the blocks are dynamic, and they
can be thus extracted or retracted during simulation in the real Arena. In the shown
model, all dynamic obstacles are retracted.

In addition to that, the Arena model defines also the position and type of lighting.
The Arena is illuminated with a set of four spotlights, that can be seen as black dots
in Figure 4.1, and global Sunlight, which is used for casting shadows of models in a
particular direction in a simulation.

The Arena can be modelled by utilising only Blender primitive shapes. A plane is
used for the Arena ground, and it is stretched up to required dimensions. A material
is created and it is then set to the plane object. The bottom-left corner of the plane
is positioned at the beginning of the coordinate system. As mentioned above, multiple
types of obstacles are used in the Arena. All obstacles are modelled as boxes. The
procedure of building walls in the Arena model is similar to modelling of the Arena
ground – a box is created, its dimensions are set, and its material is assigned. It is then
possible to copy the object of the given type of obstacle and place it appropriately in
the model until the Arena is complete. Tutorials and more information about modelling
in Blender are available on [30–31].

20

. 4.1 Creating SyRoTek simulation world

Figure 4.1. Model of SyRoTek Arena in Blender 3D.

When the Arena model is finished, it can be set as a simulation environment in
the SyRoTek simulation project. The 3D model file is moved to project data folder.
For example, the path relative to the simulation directory is ”./data/MorseSyrotek/
environments/arena.blend”. The path to the Arena model needs to be defined in the
builder-script. Because Python uses only absolute paths, it is needed to get the path to
the project folder. The path can be obtained with a code demonstrated in the following
box:

1 import os, sys, inspect
2
3 # Getting path to this folder
4 currentFolder = os.path.realpath(
5 os.path.abspath(os.path.split(
6 inspect.getfile(inspect.currentframe())
7)[0])
8)
9 if currentFolder not in sys.path:

10 sys.path.insert(0, currentFolder)
11
12 # Setting path to environments blend file
13 environmentPath = os.path.join(
14 currentFolder, ’data’, ’MorseSyrotek’, ’environments’, ’arena.blend’
15)
16 if environmentPath not in sys.path:
17 sys.path.insert(0, environmentPath)

This code is added to the top of the builder-script. Modules that are helpful for
working with paths are imported at first (line 1). In the next segment (lines 3–10), the

21

4. Practical usage of CCMorse .
absolute path to the root directory of the simulation project is obtained. As can be
seen in the lower part of the transcript (lines 12–17), a new variable environmentPath
is introduced. It stores the absolute path to the Arena model. The constructor of the
simulation environment needs to be provided with the path to the world model. The
result can look like the command in the following code sample.

env = Environment(filename = environmentPath, fastmode = False)

4.1.2 Modelling of the S1R
The process of creating a model of the S1R robot will be described in the following
text.

When the MORSE component of S1R robot was set up in Section 4.1, a 3D
model file was created in the simulation project. The file is located on path
”./data/MorseSyrotek/robots/syrotek.blend” relative to the root of the project
folder. The file contains a model of Morsy. The Morsy model can be deleted in the
Blender editor and thus, the modelling of the S1R robot can start. A robot model
for MORSE simulation should consist of at least two parts – the collision bounds and
the body of the robot. The collision bounds wire-frame of S1R is demonstrated in
Figure 4.2. A simulation uses a collision bounds model to determine collisions with
other objects in the simulation. Therefore, the collision wire-frame should be as simple
as it gets (not including curves), but also it should match the physical dimensions of
the robot, in order to run the simulation smoothly and to correspond to the reality.
The collision wire-frame does not have to look fancy because it is not visible during
the simulation.

Figure 4.2. Visualized
collision bounds of the

S1R model in Blender.

Figure 4.3. Model of the
S1R robot with wheels in

Blender.

Figure 4.4. Rendered
model of the S1R robot
with all devices attached

in MORSE simulation.

The next part of the robot model is the body. Opposed to the collision bounds, the
body represents a visible part of the model, but it has no physical properties. The
shaping of the robot body can be started from the collision wire-frame. As can be seen
in Figure 4.3, a pair of wheels and wheel fenders are added. Also, the model of the
body is lifted about a half of a centimetre above the floor.

The modelling of the robot in Blender can be started with three boxes – a base, a
middle part and a top part. The dimensions of all parts are adjusted, and the centre

22

. 4.1 Creating SyRoTek simulation world

of gravity of the base portion is located at the beginning of the coordinate system.
Faces and edges of boxes are deleted, so only vertices are left. More vertices are added
accordingly to the model of the S1R robot. The new set of vertices is linked to create
edges and edges are then joined to create faces. More vertices can be added to create
a more realistic model of the robot. More information about modelling in Blender is
available on [30–31].

The model of the S1R robot is ready now and it can be included into the simulation
project. The inclusion is accomplished by adding the following code into the builder-
script.

1 # Setting path to S1R robot folder
2 robotFolder = os.path.join(
3 currentFolder, ’src’, ’MorseSyrotek’, ’builder’, ’robots’
4)
5 if robotFolder not in sys.path:
6 sys.path.insert(0, robotFolder)
7
8 from morse.builder import *
9 from MorseSyrotek.builder.robots import Syrotek

10
11 robot = Syrotek()

The code adds the folder with builder-scripts of robots in system paths (lines 2–6), so
the possibility of inclusion (line 9) of a Syrotek class into the simulation builder-script
is assured. It is now possible to create an S1R robot object in the script by calling a
constructor of the Syrotek class (line 11).

Because all S1R robots will have the same instrumentation in the simulations, all
components can be appended directly in the robot builder-script, it is no longer needed
to attach every single device to each robot as was indicated in Section 4.1. When the
S1R component builder-script is examined the following code can be seen1:

1 from morse.builder import *
2
3 class Syrotek(GroundRobot):
4 def __init__(self, name = None, debug = True):
5
6 GroundRobot.__init__(
7 self, ’MorseSyrotek/robots/syrotek.blend’, name
8)
9 self.properties(

10 classpath = "MorseSyrotek.robots.Syrotek.Syrotek"
11)
12
13 self.motion = MotionVW()
14 self.append(self.motion)
15
16 if debug:
17 keyboard = Keyboard()
18 keyboard.properties(ControlType = ’Position’)
19 self.append(keyboard)
20
21 self.pose = Pose()

1 The comments were erased from the code, to save space.

23

4. Practical usage of CCMorse .
22 self.append(self.pose)

It is evident from the line 5 is evident that the robot constructor takes two arguments
– a name of the robot and information whether a debug mode is enabled. The name
argument is relevant when multiple robots are simulated because two robots cannot
have the same name. If the debug argument is True, the user will be allowed to move
the robot with the keyboard during a simulation. Robot components are then set (lines
14–23).

The S1R robot has a Hokuyo laser rangefinder that can be added into the robot
builder with the following code:

Hokuyo laser scanner (freq: 10Hz, range: 5m, fov: 270deg, samples: 682)
hokuyo = Hokuyo()
hokuyo.translate(0.035, 0.0, 0.0)
hokuyo.rotate(0.0, 0.0, 0.0)
hokuyo.frequency(10)
hokuyo.properties(

Visible_arc = False,
resolution = 0.39589,
scan_window = 270,
laser_range = 5.0,
layer_offset = 0.125

)
self.append(hokuyo)

The Hokuyo laser rangefinder is available in the MORSE component library, so just
properties are set to meet the properties of the laser scanner on the real S1R robot.

An odometric sensor, the RobotProperties sensor, a waypoint actuator, and the
Pen actuator are added in a similar manner as the laser rangefinder. The model of the
S1R robot with all components attached looks in the simulation as shown in Figure 4.4.
The development of the Pen and the Canvas component will be described in the next
section.

4.2 Developing of a grid-map component
Grid-maps or occupancy grids are often used for environment mapping and path plan-
ning in the robotics. Visualisation of a grid-map in the simulation is considered to be
a useful feature for users. For example, the user can observe if his/hers mapping algo-
rithm works properly or the user can utilise such component for visualising information
such as a record of robot’s position. The development of the grid-map visualisation
component is described in the following passage. Also, incorporation of the component
into the CCMorse library is shown.

4.2.1 Component at the MORSE side
The grid-map visualisation component is made of two parts – the Canvas component
and the Pen actuator. Canvas is a custom component that can be created in a MORSE
simulation, and it is used as visualisation of grid-maps. The Pen actuator component
is used to draw on Canvas, and for that purpose, it implements a number of functions
that manage properties of the Canvas. For example, the user can draw a point or a line
on canvas with a given amount of transparency, the user can alter the resolution of the
canvas, or the user can switch the canvas between three view modes.

24

. 4.2 Developing of a grid-map component

The Canvas component

The idea behind this two-part mechanism is that there is always only one Canvas in
the simulation and any robot which owns the Pen can draw on the canvas. Therefore
the canvas is a passive component used only to display contents of the grid-map. The
transcript of the Canvas class is shown in the following code block:

1 from morse.builder import *
2
3 class Canvas(PassiveObject):
4
5 def __init__(
6 self, filename, alpha = 1, prefix = None, keep_pose = False
7):
8 PassiveObject.__init__(self, filename, prefix, keep_pose)
9

10 mat = bpymorse.get_material("CanvasMat")
11 if alpha >= 1.0:
12 mat.use_transparency = False
13 else:
14 mat.use_transparency = True
15 mat.alpha = alpha

It can be seen that all builder modules are imported (line 1) and the Canvas class
is based on the PassiveObject class provided by MORSE (line 3). The constructor of
the class takes four arguments (line 6). The filename parameter specifies the Blender
file to load. The alpha sets the transparency of the canvas. The prefix is searched in
the Blender file and only objects whose names are ”prefixed” are loaded in the scene.
Last, the keep_pose parameter defines whether the object is movable. PasiveObject
is then created with given parameters (line 8). In the end, transparency of the canvas
is set (lines 10–15). Due to features of the Blender Game Engine, transparency of the
canvas cannot be changed after scene initialization.

The model of the canvas is represented in Blender as a square plane with a texture
mapped on its surface using a flat projection. So the canvas object acts as a display for
the texture content. More details about textures in Blender are available in [31].

The Canvas component can be added into the simulation builder-script similarly to
obtaining the environment model path in Section 4.1.1. First, the path to Blender model
of the canvas is acquired by a conjunction of the path to the project folder and the rela-
tive path to the root of the project folder and then added to system paths, for example,
the model path can be ”./data/MorseSyrotek/components/Canvas.blend”. Also, the
path to a file where the Canvas class is defined is added in the same manner. The Canvas
class file can be located on the path ”./src/MorseSyrotek/builder/components/
canvas.py”. The Canvas class is imported into the simulation builder-script, and the
canvas object is constructed then as indicated in following code fragment.

from MorseSyrotek.builder.components import Canvas
canvas = Canvas(filename = canvasPath, alpha = 1.0)

The Pen component

The Pen component is created as an actuator for a robot in the MORSE simulation as
demonstrated in Section 4.1. The actuator provides several groups of functionalities.

The primary functionality is drawing on the canvas, for that the set_pixel and
the get_pixel methods are provided and the set_line procedure implementing

25

4. Practical usage of CCMorse .
the Bresenham’s algorithm for line drawing [32] is offered. In addition to that, the
get_image_data, set_image_data and update_image_data functions which can be
used to get or set the whole image with a JSON array serialisation consisting of RGB
pixels, or update a set of given pixels with a new RGB value.

The second group of functions provided by the Pen component consists of the fol-
lowing methods. The resize_canvas procedure changes the resolution of the canvas.
The get_cell_size function returns the size of one pixel in the map-grid in metres,
and the save_image_copy function saves the contents of the canvas in a PNG file on a
hard-drive.

Figure 4.5. On-the-ground canvas mode. Figure 4.6. Mini-map canvas mode.

Figure 4.7. Full-screen canvas mode.

The last functionality of the Pen class worth mentioning are three modes of canvas
visualisation – the canvas-on-the-ground mode (Figure 4.5), the mini-map mode (Fig-
ure 4.6) and the full-screen mode (Figure 4.7). The modes can be switched during a
simulation by the user with a combination of keys Left-CTRL + ARROW UP/DOWN.

The canvas-on-the-ground mode is the standard way of viewing the map-grid, in
which the canvas is drawn over the real scene. The user can benefit from this mode
because the map-grid can be easily checked whether his/her algorithm uses the map-

26

. 4.3 The Practical robotics course

grid correctly, or the user can display the field of view of the robot’s laser rangefinder
as the green area demonstrates in Figure 4.5.

The mini-map mode can be used for a quick overview of the scene without the
disturbance of the obstacles in the Arena.

The full-screen mode can be utilised for a detailed inspection of the map-grid during
the simulation. It can be also configured to be the only way of viewing the map-grid
in the simulation (i.e. the mode switching is off). This can be used for a testing of
path-planning algorithms, where the user does not need the robot simulation. This
scenario will be further described in Section 4.3.2.

4.2.2 Component at the CCMorse side
To control the map-grid component during a simulation, the corresponding class struc-
ture is implemented in the CCMorse library. The MorsePen class is developed in the
second layer of the CCMorse, and it is used to control the Pen component mounted on
a robot in a simulation.

The MorsePen implements the same set of functions as Pen, but there are imple-
mented many overloaded functions with various types of parameters for the ease of use.
For example, the user can set a pixel with 8-bit RGB values with a specification of alpha
(transparency) or without it, and also, the user can set the pixel with a double precision
normalized RGB values (0.0–1.0) or with an RGB string code (e.g. ”#34AAFF”), this
also applies to the line drawing function.

WindowProxy class is built on top of MorsePen class, and it implements the interface
of the Player interface. WindowProxy provides a higher-level functionality beside the
drawing on the canvas. It can store and manage a multitude of grid-maps. It enables
the user to draw several grid-maps on top of each other in layers. The name, colour,
transparency of the layer, transparent colour and priority can be set for each layer.

Usage of several grid-maps drawn in layers can be observed in Figures 4.5–4.7, where
the green grid cells represent the last scan from the laser rangefinder, the red cells store
robot positions and the blue pixels highlight detected obstacles which are inflated so it
is certain that the robot does not collide with obstacles when it follows a path planned
on the grid-map. All those layers are based on the black-grey-white occupancy grid,
where the white means a free explored area, the grey shows the yet unexplored parts
of the Arena and the black indicates certain obstacles.

4.3 The Practical robotics course
All features of the CCMorse library and SyRoTek simulation in MORSE, which has
been discussed in the preceding text, are used to prepare a set of three complex tasks
for students of the Practical Robotics course. The main objective of the course is
to increase practical skills of students in robot control and to introduce algorithms
for sensor data processing, navigation, map building, planning and intelligent decision
making to students.

A base template of a client application is prepared for each task. The template
contains a basic structure of the application but the functions implementing robot’s
behaviour are empty, waiting to be filled by students. Students usually work in pairs
and they are encouraged to invent unique solutions for problems introduced in tasks.
Students can freely create new classes, functions or other programming constructions
in the client code to solve the exercise.

To create the template, the MORSE simulation project has been combined with an
existing SyRoTek project template. The combination allows the user to compile their

27

4. Practical usage of CCMorse .
client application for the MORSE simulator or they can compile it for the use on the
real SyRoTek system.

Different scenarios are prepared for students with the help of the configurable
MORSE simulation builder-script, so the student is able to launch the simula-
tion with two commands – ”import” and ”run”. Importing is done with the
morse import <path> [name] command, where <path> is a path to the root di-
rectory of the MORSE simulation and [name] is an optional argument that specifies
the name of simulation. Example of the simulation import is shown in the following
block.

$ morse import ˜/School/PAR_INTRO

The user can run the imported simulation simply by typing the morse run <name>
command, where the <name> is the name of the simulation. The name is identical with
the name of the folder where the simulation files are located, unless the user does not
declared another name during the import. Example of the use of the run command can
be seen in next box.

$ morse run PAR_INTRO

Tasks for the Practical Robotics course are further described in the following sections.

4.3.1 Introduction task
The introduction task serves, as the name suggests, for the first encounter between
students, SyRoTek and MORSE. Students learn the basic concept of robot control and
sensor data interpretation.

Figure 4.8. Screen-shot of the simulation where the robot performs the simple obstacle
avoidance algorithm.

28

. 4.3 The Practical robotics course

Students have to implement a simple obstacle avoidance algorithm using the laser
rangefinder with a behaviour similar to a Braitenberg vehicle, or students can imple-
ment the wall-following algorithm. The screen-shot of a simulation with one robot
implementing the obstacle avoidance algorithm can be seen in Figure 4.8. The green
line shows the robot’s motion around the Arena. It is easy to see that the robot just
moves on circular path.

4.3.2 Path planning task
The second task of the course is focused on the path planning by using a grid-map. In
this task the Canvas component of the simulation is configured to be in the full-screen
mode without user’s ability to change the viewing mode. The simulator serves purely
for visualisation of grid-maps in this task.

Figure 4.9. Screen-shot of the completed path planning task.

A map of known environment is given to students. Students implement an algorithm
for map dilatation, then students interpret the grid-map as an oriented graph. Students
use a Dijkstra searching algorithm [33] to find the shortest path from the given start
point to the goal. The path found is smoothed in the next step. The results of the
path planning can be seen in Figure 4.9, where the light-blue map acts as dilated map,
the dark-blue line represents the path found by the Dijkstra’s algorithm and the orange
line is the smoothed path.

29

4. Practical usage of CCMorse .

Figure 4.10. Screen-shot of the simulation where the robot performs the exploration of
the Arena.

4.3.3 Exploration task
The last task introduces frontier-based exploration of an unknown environment. Stu-
dents utilise skills from the previous two tasks to control the robot to search the un-
known environment and to obtain its map using a multi-threaded client application.
One thread of the client is used to collect data and store them in appropriate structures,
and the other thread plans the path to the next frontier.

The screen-shot of the simulation where the robot is exploring the Arena is shown
in the Figure 4.10. In the figure, the white colour shows the free explored area, and
the black represents the certainly found obstacles. Unexplored parts of the Arena are
shown in grey. On top of that, the blue overlay indicates the dilated obstacles and the
purple shows found frontiers. Furthermore, the orange line represents the planned path
to the nearest frontier and the red line is a record of the robot’s motion.

4.4 Practical experience with MORSE
I have gained numerous experiences with MORSE during the process of developing this
project. While the most of those experiences were pleasant, I have encountered with
a few strange behaviours. In the start of the project, the MORSE was used in version
1.2. Then, I have updated to the version 1.4 which is currently the latest stable version
of MORSE. Several bugs emerged after the update. Some of the used constructors have
new parameters or have slightly different behaviour. These problems were expected and
their correction was straightforward with the help of the MORSE’s documentation.

30

. 4.4 Practical experience with MORSE

But solution of one MORSE’s problem has not been found. The MORSE’s visu-
alisation of laser scanner’s arc (field of view) started to significantly slow down the
simulation after the update, to the point where the simulation is virtually unusable.
Therefore, the use of this handy feature was abandoned and the laser’s arc visualisation
is left up to the client application which can animate it using the Canvas component.

31

Chapter 5
Conclusion

The CCMorse library has been successfully developed into a piece of software that
enables the user to write a client application in the C++ programming language for
control a robot in the MORSE simulation. The CCMorse mimics the back-end appli-
cation programming interface of the Player middleware, and so the program written
using Player interface can also be compiled for a simulation in MORSE. The portability
of code has been proven on a few specimens that were originally used for Player/Stage
simulations and the SyRoTek system.

The MORSE simulation environment representing the SyRoTek system was com-
bined with the CCMorse library and with SyRoTek’s template project to create a set
of experiments. These experiments are already being used by students of the Practical
Robotics course in the ongoing semester (Winter 2016/2017). After eliminating a few
flaws which accompany every deployment of the software to users, the CCMorse library
has been working well during the classes. The simple interface of the MORSE simu-
lator and its photo-realistic rendering contributes to a good understanding of robotic
problems by students.

The CCMorse library can be easily extended with new devices from the MORSE
component library or unique devices developed by the user. Furthermore, the library
can be used to implement communication with another interface on top of the Player
interface or it can be altered for another simulator then MORSE, because of its layered
structure.

5.1 Ideas for future enhancements
Because the CCMorse library is a new software, the development of the library will
presumably continue in future. Few suggestions worth mentioning are described in the
following paragraphs.

All the time developing the CCMorse library, I have kept an idea for the ”Arena
controller” on my mind. The arena controller would be a MORSE component allowing
to control the dynamic obstacles in the SyRoTek’s Arena. The controller would be
configured with a set of predefined obstacle positions, timers for actions of obstacles
and traps based on the position of a robot in a simulation. This functionality will bring
more control over the simulation and the user would be able to simulate more complex
experiments.

Another thought to be considered is to implement a different communication protocol
between the MORSE simulator and the CCMorse library or to find more efficient way
of using the Socket. Although the Socket communication is sufficient for majority of
single robot experiments, it appears to be a bit time consuming when transmitting a
larger amount of data, e.g. an update of data in the whole canvas. Larger sets of
data must be sent over multiple messages, which slows down the execution of a client
application.

32

. 5.1 Ideas for future enhancements

The last idea suggests a creation of a mode where the client application would run
simultaneously on both the simulation and the real system. The simulator would be
used as a visualizer of the data collected by a robot in the real environment.

33

References
[1] Kulich, M., J. Chudoba, K. Kosnar, T. Krajnik, J. Faigl, and L. Preucil.

SyRoTek—Distance Teaching of Mobile Robotics. IEEE Transactions on Educa-
tion. feb, 2013, Vol. 56, No. 1, pp. 18–23. ISSN 0018-9359. Available from DOI
10.1109/TE.2012.2224867.

[2] SyRoTek Web [online].
https://syrotek.felk.cvut.cz/.

[3]
[4] Bakken, David. Middleware. In: Encyclopedia of Distributed Computing. Do-

drecht, Netherlands: Kluwer Academic Publishers, 2001.
http://www.eecs.wsu.edu/˜bakken/middleware.pdf.

[5] Elkady, Ayssam, and Tarek Sobh. Robotics middleware: A comprehensive
literature survey and attribute-based bibliography. Journal of Robotics. Hin-
dawi Publishing Corporation, jan, 2012, Vol. 2012, pp. 15. Available from DOI
10.1155/2012/959013.

[6] Gerkey, B. P., R. T. Vaughan, K. Støy, A. Howard, G. S. Sukhatme, and M.
J. Mataric. Most Valuable Player: A Robot Device Server for Distributed Control.
In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Expanding the Societal Role of Robotics in the the Next Millennium
(Cat. No.01CH37180). Wailea, Hawaii, 2001. pp. 1226–1231. Available from DOI
10.1109/IROS.2001.977150.

[7] Gerkey, Brian P., Richard T. Vaughan, and Andrew Howard. ”The
Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems”.
In: In Proceedings of the 11th International Conference on Advanced Robotics.
University of Coimbra, Portugal, 2003. pp. 317–323.
http://robotics.usc.edu/publications/288/.

[8] Player Manual [online].
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/.

[9] The Player/Stage Web [online].
http://playerstage.sourceforge.net/.

[10] Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Op-
erating System. In: Proceedings of the Workshop on Open Source Software (ICRA).
2009.
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf.

[11] ROS: Robot Operating System Web [online].
http://www.ros.org.

[12] Koenig, N., and A. Howard. Design and use paradigms for Gazebo, an open-
source multi-robot simulator. In: 2004 IEEE/RSJ International Conference

34

http://dx.doi.org/10.1109/TE.2012.2224867
https://syrotek.felk.cvut.cz/
http://www.eecs.wsu.edu/~bakken/middleware.pdf
http://dx.doi.org/10.1155/2012/959013
http://dx.doi.org/10.1109/IROS.2001.977150
http://robotics.usc.edu/publications/288/
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/
http://playerstage.sourceforge.net/
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.ros.org

. .
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). 2004.
pp. 2149–2154. Available from DOI 10.1109/IROS.2004.1389727.

[13] Open Dynamics Engine [online].
http://www.ode.org.

[14] Bullet: Real-Time Physics Simulation [online].
http://www.bulletphysics.org/.

[15] Blender 3D [online].
http://www.blender.org/.

[16] Simbody: Multibody Physics API [online].
http://simtk.org/projects/simbody.

[17] DART: Dynamic Animation and Robotics Toolkit [online].
http://dartsim.github.io.

[18] Michel, Olivier. Cyberbotics Ltd. Webots: Professional Mobile Robot Simula-
tion. International Journal of Advanced Robotic Systems. dec, 2004, Vol. 1, No. 1,
pp. 39–42. Available from DOI 10.5772/5618.
http://arx.sagepub.com/content/1/1/5.abstract.

[19] Rohmer, E., S. P. N. Singh, and M. Freese. V-REP: A versatile and scalable
robot simulation framework. In: 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems. 2013. pp. 1321–1326. ISSN 2153-0858. Available from
DOI 10.1109/IROS.2013.6696520.

[20] Vortex Dynamics [online].
http://www.vxsim.com/.

[21] Echeverria, G., N. Lassabe, A. Degroote, and S. Lemaignan. Modular
OpenRobots Simulation Engine: MORSE. In: 2011 IEEE International Confer-
ence on Robotics and Automation. 2011. pp. 46–51. ISSN 1050-4729. Available
from DOI 10.1109/ICRA.2011.5980252.

[22] Echeverria, Gilberto, Séverin Lemaignan, Arnaud Degroote, Simon
Lacroix, Michael Karg, Pierrick Koch, Charles Lesire, and Serge Stinckwich.
Simulating Complex Robotic Scenarios with MORSE. In: Itsuki Noda, Noriaki
Ando, Davide Brugali, and James J. Kuffner, eds. International Conference
on Simulation, Modeling, and Programming for Autonomous Robots. Berlin, Hei-
delberg, Germany: Springer Berlin Heidelberg, 2012. pp. 197–208. SIMPAR’12.
ISBN 978-3-642-34326-1. Available from DOI 10.1007/978-3-642-34327-8 20.

[23] The MORSE Simulator Documentation [online].
https://www.openrobots.org/morse/doc/stable/morse.html.

[24] YARP Documentation [online].
http://www.yarp.it/.

[25] Pocolibs [online].
http://pocolibs.openrobots.org.

[26] MOOS Documentation [online].
http://www.robots.ox.ac.uk/˜mobile/MOOS/wiki/.

[27] MAVLink: Micro Air Vehicle Communication Protocol [online].
http://qgroundcontrol.org/mavlink/start.

[28] JSON: JavaScript Object Notation [online].
http://www.json.org/.

35

http://dx.doi.org/10.1109/IROS.2004.1389727
http://www.ode.org
http://www.bulletphysics.org/
http://www.blender.org/
http://simtk.org/projects/simbody
http://dartsim.github.io
http://dx.doi.org/10.5772/5618
http://arx.sagepub.com/content/1/1/5.abstract
http://dx.doi.org/10.1109/IROS.2013.6696520
http://www.vxsim.com/
http://dx.doi.org/10.1109/ICRA.2011.5980252
http://dx.doi.org/10.1007/978-3-642-34327-8unhbox voidb@x kern .06em vbox {hrule width.3em}20
https://www.openrobots.org/morse/doc/stable/morse.html
http://www.yarp.it/
http://pocolibs.openrobots.org
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/
http://qgroundcontrol.org/mavlink/start
http://www.json.org/

References .
[29] Boost C++ Libraries [online].

http://www.boost.org.
[30] Blender Tutorials [online].

https://www.blender.org/support/tutorials/.
[31] Blender Manual [online].

https://www.blender.org/manual/.
[32] Bresenham’s line algorithm [online].

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm.
[33] Dijkstra’s algorithm [online].

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.

36

http://www.boost.org
https://www.blender.org/support/tutorials/
https://www.blender.org/manual/
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Appendix A
Specification

České vysoké učení technické v Praze
Fakulta elektrotechnická

katedra řídicí techniky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Bertl Lukáš

Studijní program: Kybernetika a robotika
Obor: Systémy a řízení

Název tématu: Aplikační rozhraní pro simulátor MORSE

Pokyny pro vypracování:

1. Seznamte se se systémem Player/Stage (http://playerstage.sourceforge.net), simulátorem
MORSE (https://www.openrobots.org/wiki/morse/) a modelovacím nástrojem Blender
(https://www.blender.org).

2. Seznamte se s výukovým systémem SyRoTek (https://syrotek.felk.cvut.cz) a úlohami
řešenými v kurzu Praktická robotika.

3. Vytvořte model robotu S1R a Arény SyRoTek pro simulátor MORSE.
4. Navrhněte a implementujte aplikační rozhraní v C++ pro ovládání robotu v simulátoru

MORSE.
5. Nad implementovaným rozhraním realizujte další rozhraní, které plně nahradí rozhraní

Playeru používané v kurzu Praktická robotika.
6. Kód vyzkoušejte jak v simulátoru MORSE, tak s reálným robotem systému SyRoTek.
7. Implementovaná rozhraní důkladně zdokumentujte.

Seznam odborné literatury:
[1] Kulich, M.; Chudoba, J.; Košnar, K.; Krajník, T.; Faigl, J.; Přeucil, L., "SyRoTek-Distance

Teaching of Mobile Robotics," Education, IEEE Transactions on , vol.56, no.1, pp.18,23, Feb.
2013

[2] A. Kelly: Mobile Robotics: Mathematics Models and Methods, Cambridge University Press,
2014, ISBN: 9781107031159

Vedoucí: RNDr. Miroslav Kulich, Ph.D.

Platnost zadání: do konce letního semestru 2017/2018

L.S.

prof. Ing. Michael Šebek, DrSc.
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 30. 11. 2016

37

Appendix B
The contents of the CD

Figure B.1. Diagram showing the folder structure of the CD.

The Figure B.1 shows the contents of the enclosed CD. The thesis is in the file named
thesis.pdf and source files of the thesis are stored in the thesis directory. The codes
directory contains the source files of the CCMorse library and two implementations of
each task from the Practical robotics course. Directories images and videos contain
additional media files.

39

Appendix C
Code listings

C.1 robot.h
1 #ifndef __ROBOT_H__
2 #define __ROBOT_H__
3
4 #ifdef _MORSE
5 #include "libCCMorse/CCMorse.h"
6 #else
7 #include "libPlayer/Position2dProxy.h"
8 #include "libPlayer/LaserProxy.h"
9 #include "libPlayer/PlayerClient.h"

10 #define PI 3.14159265359
11 #endif
12
13 #include "imr-h/imr_config.h"
14 #include "imr-h/thread.h"
15 #include "robot_types.h"
16
17 namespace imr { namespace robot {
18
19 class CRobot : public imr::concurrent::CThread {
20 typedef imr::concurrent::CThread ThreadBase;
21
22 public:
23 static imr::CConfig& getConfig(imr::CConfig& config);
24 CRobot(imr::CConfig& cfg);
25 ˜CRobot();
26 void stop(void);
27
28 protected:
29 void threadBody(void);
30 void navigation(void);
31
32 private:
33 imr::CConfig& cfg;
34 CCMorse::PlayerClient *client;
35 bool quit;
36 bool alive;
37 SPosition pos; // current robot position
38 CCMorse::LaserProxy *laser;
39 CCMorse::Position2dProxy *position2d;
40 Mutex mtx;

40

. C.2 robot.cc

41
42 }; // class CRobot
43 } } // namespace imr::robot
44 #endif

C.2 robot.cc

1 #include <unistd.h> //usleep
2 #include <fstream>
3
4 #include "imr-h/logging.h"
5 #include "imr-h/imr_exceptions.h"
6 #include "robot_types.h"
7 #include "robot.h"
8 #include "libCCMorse/MorseError.h"
9

10 using namespace imr::robot;
11 using namespace CCMorse;
12
13 typedef unsigned char uchar;
14
15
16 imr::CConfig& CRobot::getConfig(imr::CConfig& config)
17 {
18 #ifdef _MORSE
19 config.add<std::string>(
20 "host", "morse server hostname", "localhost"
21);
22 config.add<int>("port", "morse server port", 4000);
23 #else
24 config.add<std::string>(
25 "host", "syrotek server hostname", "syrotek.felk.cvut.cz"
26);
27 config.add<int>("port", "syrotek server port", 38000);
28 #endif // _MORSE
29 config.add<int>("laser-index", "laser index", 0);
30 config.add<int>("position2d-index", "position2d index", 0);
31 config.add<bool>(
32 "coords",
33 "enable/disable settings of initial coords of the robot",
34 false
35);
36 config.add<double>("x", "initial x position of the robot", 0.0);
37 config.add<double>("y", "initial y position of the robot", 0.0);
38 config.add<double>("yaw", "initial yaw of the robot ", 0.0);
39 return config;
40 }
41
42 CRobot::CRobot(imr::CConfig& cfg) : ThreadBase(), cfg(cfg), client(0),
43 quit(false), laser(0), position2d(0)
44 {
45 client = new CCMorse::PlayerClient(

41

C Code listings .
46 cfg.get<std::string>("host"), cfg.get<int>("port")
47);
48 laser = new LaserProxy(
49 client, cfg.get<int>("laser-index")
50);
51 position2d = new Position2dProxy(
52 client, cfg.get<int>("position2d-index")
53);
54
55 #ifdef _MORSE
56 CCMorse::WindowProxy::GetInstance(client, 172, 186);
57 #endif // _MORSE
58
59 assert_argument(laser, "Can not create laser proxy");
60 assert_argument(position2d, "Can not create position2d proxy");
61
62 // check laser
63 while (!laser->IsFresh()){ // laser init retry
64 client->Read();
65 while(client->Peek(0)) {
66 client->Read();
67 }
68 }
69
70 DEBUG("CRobot: Done.");
71 }
72
73 CRobot::˜CRobot()
74 {
75 stop();
76 join();
77
78 if (client) {
79 #ifdef _MORSE
80 delete &CCMorse::WindowProxy::GetInstance();
81 #endif // _MORSE
82 delete laser;
83 delete position2d;
84 delete client;
85 }
86 }
87
88 void CRobot::stop(void)
89 {
90 ScopedLock lk(mtx);
91 quit = true;
92 }
93
94 void CRobot::threadBody(void)
95 {
96 try {
97 navigation();
98

42

. C.2 robot.cc

99 } catch (CCMorse::MorseError& e) {
100 ERROR(
101 "Morse error: " << e.GetErrorStr() << " function: "
102 << e.GetErrorFun()
103);
104
105 } catch (imr::exception& e) {
106 ERROR("Imr error: " << e.what());
107 exit(-1);
108 }
109 }
110
111 void CRobot::navigation(void)
112 {
113 bool q = false, laserFirst = true;
114 #ifdef _MORSE
115 WindowProxy& window = CCMorse::WindowProxy::GetInstance();
116 ImagePoint_t last, current;
117 bool poseFirst = true;
118 #endif // _MORSE
119
120 /// user variables --
121 double const VMAX = 0.3, WMAX = 1.0, RNG_ANGL_REACTION = 0.5,
122 HALF_FOV = (40 * (PI/180)), MIN_OBSTACLE_RANGE = 0.20,
123 SAFE_OBSTACLE_RANGE = 0.50;
124
125 unsigned LASER_INDEX_FROM_CENTER_TO_EDGE = 340,
126 LASER_CENTER_INDEX = 340, LASER_LEFT_INDEX = 0,
127 LASER_RIGHT_INDEX = 681;
128
129 double v = 0.0, w = 0.0, MAX_RANGE = 5.0, lMin = 5.0, rMin = 5.0,
130 range = 5.0, lMinAngle = 0.0, rMinAngle = 0.0, angle = PI;
131
132 int direction = 1;
133 /// end of user variables ---------------------------------
134
135 DEBUG("Navigation started.");
136
137 position2d->SetMotorEnable(true);
138
139 do {
140 client->Read();
141 while(client->Peek(0)) {
142 client->Read();
143 }
144
145
146 if (position2d->IsFresh() && position2d->IsValid()) {
147 // Get and save current robot position.
148 pos.x = position2d->GetXPos();
149 pos.y = position2d->GetYPos();
150 pos.yaw = position2d->GetYaw();
151 // Log robot position.

43

C Code listings .
152 DEBUG(
153 "POSITION " << pos.x << " " << pos.y << " " << pos.yaw
154);
155 DEBUG(
156 "SPEED " << position2d->GetXSpeed() << " "
157 << position2d->GetYSpeed() << " "
158 << position2d->GetYawSpeed()
159);
160 // First init
161 #ifdef _MORSE
162 if(poseFirst){
163 poseFirst = false;
164 last = ImagePoint_t (
165 window.GetX(pos.x), window.GetY(pos.y)
166);
167 current = last;
168 }
169 // Drawing robot trajectory for last cycle.
170 current = ImagePoint_t (
171 window.GetX(pos.x), window.GetY(pos.y)
172);
173 window.SetLine(
174 last.x, last.y, current.x, current.y, 0, 255, 0
175);
176 window.SetPixel(current.x, current.y, 255, 0, 255);
177 last = current;
178 #endif // _MORSE
179 // Flaging this data as not fresh.
180 position2d->NotFresh();
181 }
182
183 if (laser->IsFresh() && laser->IsValid()) {
184 // Log laser data.
185 DEBUG(
186 "laser " << laser->GetMinAngle() << " "
187 << laser->GetMaxAngle() << " " << laser->GetCount()
188);
189 // First init
190 if(laserFirst){
191 MAX_RANGE = laser->GetMaxRange();
192 LASER_INDEX_FROM_CENTER_TO_EDGE = (unsigned)
193 (HALF_FOV / laser->GetScanRes());
194 LASER_CENTER_INDEX = (unsigned) (laser->GetCount() / 2);
195 LASER_LEFT_INDEX = (LASER_CENTER_INDEX -
196 LASER_INDEX_FROM_CENTER_TO_EDGE);
197 LASER_RIGHT_INDEX = (LASER_CENTER_INDEX +
198 LASER_INDEX_FROM_CENTER_TO_EDGE);
199 lMin = MAX_RANGE, rMin = MAX_RANGE, range = MAX_RANGE;
200 laserFirst = false;
201 }
202 // Calculate new velocities from new laser data
203 lMin = MAX_RANGE;
204 rMin = MAX_RANGE;

44

. C.2 robot.cc

205 unsigned lId = 0;
206 unsigned rId = laser->GetCount();
207
208 for(
209 unsigned i = LASER_LEFT_INDEX;
210 i < LASER_CENTER_INDEX;
211 i++
212){
213 if((*laser)[i] < lMin){
214 lMin = (*laser)[i];
215 lMinAngle = laser->GetBearing(i);
216 lId = i;
217 }
218 }
219 for(
220 unsigned i = LASER_RIGHT_INDEX;
221 i > LASER_CENTER_INDEX;
222 i--
223){
224 if((*laser)[i] < rMin){
225 rMin = (*laser)[i];
226 rMinAngle = laser->GetBearing(i);
227 rId = i;
228 }
229 }
230
231 if(lMin < rMin){
232 range = lMin;
233 angle = lMinAngle;
234 direction = 1;
235
236 } else {
237 range = rMin;
238 angle = rMinAngle;
239 direction = -1;
240 }
241
242 if(range > MIN_OBSTACLE_RANGE){
243 if(range < SAFE_OBSTACLE_RANGE){
244 v = ((range - MIN_OBSTACLE_RANGE)/(
245 SAFE_OBSTACLE_RANGE-MIN_OBSTACLE_RANGE
246)) * VMAX;
247 w = ((
248 (RNG_ANGL_REACTION * (
249 MIN_OBSTACLE_RANGE / range
250))
251 +
252 ((1-RNG_ANGL_REACTION) * (
253 HALF_FOV*2 - angle /HALF_FOV*2
254))
255) * WMAX * direction);
256
257 } else {

45

C Code listings .
258 v = VMAX;
259 w = 0.0;
260 }
261 } else {
262 v = 0.0;
263 w = WMAX;
264 }
265
266 // Flaging this data as not fresh.
267 laser->NotFresh();
268 }
269
270 /// command the robot -------------------------------------
271
272 position2d->SetSpeed(v, w);
273
274 /// end of commands ---------------------------------------
275
276 ScopedLock lk(mtx); // check quit request
277 q |= quit;
278 } while (!q);
279
280 position2d->SetMotorEnable(false);
281
282 INFO("Main loop has been left");
283 }

46

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	/Contents
	Tables/Figures
	Introduction
	Thesis outline

	Current state
	SyRoTek
	Robotic middlewares
	Player
	ROS

	Robotic simulators
	Comparison of simulators

	MORSE simulator

	CCMorse library
	Philosophy
	The Core layer
	The Second layer
	The Third layer

	Configuration
	Communication
	Application example

	Practical usage of CCMorse
	Creating SyRoTek simulation world
	Modelling of the Arena
	Modelling of the S1R

	Developing of a grid-map component
	Component at the MORSE side
	Component at the CCMorse side

	The Practical robotics course
	Introduction task
	Path planning task
	Exploration task

	Practical experience with MORSE

	Conclusion
	Ideas for future enhancements

	References
	Specification
	The contents of the CD
	Code listings
	robot.h
	robot.cc

