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Abstract. In a recent French robotic contest, the objective was to develop a multi-robot system able
to autonomously map and explore an unknown area while also detecting and localizing objects. As a
participant in this challenge, we proposed a new decentralized Markov decision process (Dec-MDP)
resolution based on distributed value functions (DVF) to compute multi-robot exploration strategies.
The idea is to take advantage of sparse interactions by allowing each robot to calculate locally a strategy
that maximizes the explored space while minimizing robots interactions. In this paper, we propose an
adaptation of this method to improve also object recognition by integrating into the DVF the interest
in covering explored areas with photos. The robots will then act to maximize the explored space and
the photo coverage, ensuring better perception and object recognition.

Keywords: Cooperative multi-robot systems, robot coordination, robot planning, multi-robot explo-
ration, active perception.

1. Introduction
Some key challenges of robotics reported in the recent
roadmap for U.S. robotics [1], e.g., planetary mis-
sions and service robotics, require mobile robots to
travel autonomously around unknown environments
and to augment metric maps with higher-order seman-
tic information such as the location and the identity
of objects in the environment. The ability of the
mobile robots that gather the necessary information
to obtain a useful map for navigation is called au-
tonomous exploration. This was the central topic of
a DGA1/NRA2 robotic challenge, in which multiple
robots have to explore and map some unknown in-
door area while recognizing and localizing objects in
this area. The scientific issues of this project involve
SLAM3, object recognition and multi-robot collabo-
ration for exploration. As a participant in this chal-
lenge, we mainly focused on multi-robot collaboration
for exploration. We were particularly interested in
multi-robot exploration strategies. We proposed a
new Dec-MDP (decentralized Markov decision pro-
cess) resolution technique based on the distributed
value function (DVF) to consider sparse interactions.
Our Dec-MDP model for exploration and its resolu-
tion based on DVF were applied for the contest. It
allowed robots to explore an unknown area coopera-
tively by reducing the overlap between the explored
areas of each robot. In a second phase, we focused on
improving object recognition by integrating into the
planning stage the interest in covering explored areas
with photos. Thus each robot will act to explore and

1Defense Procurement Agency.
2French National Research Agency.
3Simultaneous Localization and Mapping.

to perceive. The objective of this paper is to present
our interaction-sparse Dec-MDP resolution adapted
to achieve improved perception.

In the following, we first present the context of this
work, with details concerning the robotic challenge
and the system that we developed to participate in the
competition. Second, related works on multi-robot
exploration, active perception and interaction-oriented
models are introduced. Then we present our Dec-
MDP resolution, based on DVF, and its application
to multi-robot exploration. Finally, we introduce and
show experiments aimed at extending DVF to improve
photo coverage of the space. Finally, some concluding
remarks are made.

2. Context
2.1. The CaRotte Challenge
This work was carried out within the framework of
a French robotic contest called Defi CaRotte4 (Car-
tography by a Robot of a territory), which involved
exploring and mapping an unknown indoor area (an
enclosed arena made up of a set of rooms) with one
or several autonomous robots. The competition took
place in an arena of approximately 120m2, in which
objects had been laid out. The arena contained several
rooms, typically 10 or more, with variable grounds and
various difficulties to be dealt with (fitted carpet, grid,
sand, etc. ). Several kinds of objects were present,
isolated or gathered together, e.g., chairs, books, fans,
furniture, etc.
The CaRotte challenge proceeded over a period of

three years, with an increase in the level of difficulty
over the years. The required outcome was to produce

4http://www.defi-carotte.fr/
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2D, 3D and topological maps of the arena and to de-
tect, localize and classify objects present in the arena.
The trials within the framework of the competition
consisted of several missions with a time limit. Dur-
ing each mission, robots navigated autonomously to
map, detect and recognize objects. The robots were
required to return to their starting position before
the end of the mission. Five teams entered for this
challenge [2, 3], in which the goal was to maximize
the explored space, the precision of the map and the
quality of object detection.

2.2. The Robots_Malins System
We developed the Robots_Malins5 (Robots for Map-
ping And Localization, using Intelligent Navigation
and Search) system for the CaRotte challenge. Our
system uses Wifibot6 µ-trooper M robots. These
are six-wheel robots characterized by great flexibility,
which allows the robots to cover rough terrain. Each
µ-trooper embeds an Intel Core 2 Duo processor, a
2GB RAM and a 4GB flash and is equipped with a
Hokuyo LIDAR 30m 7 laser range scanner for local-
ization and mapping and a Hokuyo LIDAR 4m tilted
toward the ground, plus an ultrasonic rangefinder for
detecting nearby obstacles and glass walls. An AVT
Marlin firewire camera is used for object detection.
The software running on-board these robots is based
on a Data Distribution System (DDS) implementation
from OpenSplice8. This middle-ware allows several
programs to run concurrently, even on different com-
puters. In our architecture, this implies that various
modules can run asynchronously: Laser acquisition,
SLAM, Decision, Mobility and Object recognition.
The architecture allows the robots to exchange their
laser scans and their poses. Thus each robot knows
the areas explored by the others, and updates its local
map with local and distant scans.
In particular, the SLAM module, based on [4], re-

ceives laser readings and provides the other modules
and the other robots with the robot pose (location and
heading). So each robot knows the relative positions
of all the robots and the map of the zones explored
by the team. The mobility module implements an
advanced point and shoot algorithm, along with a
backtrack feature that prevents the robot from be-
ing stuck, reverting back on its own trajectory. The
point and shoot algorithm consists of turning to the
desired heading and then going forward for a speci-
fied distance, while correcting the heading drift. The
object recognition module uses the different pictures
taken by the camera to recognize predefined classes of
objects. Pictures are taken every 4 seconds. Objects
to be detected are known in advance and a database
has been built containing each object over different

5https://robots_malins4carotte.greyc.fr/
6www.wifibot.com
7www.hokuyo-aut.jp
8http://www.opensplice.com

points of view. Object detection was performed us-
ing a shape/template matching technique based on
Dominant Orientation Template models [5]. The de-
cision module runs asynchronously, computing a new
strategy every second on an average. In this paper,
we focus on the decision module. Details on the algo-
rithm used to compute a joint policy of the robots to
efficiently explore the arena and cover it with pictures
are given in Sections 5 and 6.

3. State of the art
3.1. Multi-robot exploration
Multi-robot exploration has received considerable at-
tention in recent years due to its obvious advantages
over single-robot systems: it is faster, robust, fault-
tolerant, etc. Most multi-robot approaches assume
that robots share the information that they have gath-
ered to build a shared map and know their locations
in this map. The robots cooperate through the shared
map, but coordination techniques are required to ex-
ploit the parallelism inherent to the team. In [6],
each robot uses the greedy approach in the shared
map, i.e., each robot chooses the nearest exploration
frontiers, defined as regions on the boundary between
open space and unexplored space. Therefore, there
is no coordination and multiple robots can be as-
signed to the same frontier. In [7–9], the coordination
is centralized. A cost-utility model is used, where
the gain expected at a target is the expected area
discovered when the target is reached, taking into
account the possible overlap between robot sensors.
Coordination is accomplished by assigning different
targets to the robots, thus maximizing the coverage
and reducing the overlap between the explored areas
of each robot. Coordination can also be decentral-
ized. In [10] robots bid on targets to negotiate their
assignments. Classically, frontiers are rated using the
distance to the robot, but Bautin et al. [11] chose to
favor a well-balanced spatial distribution of robots in
the environment: for each robot-frontier pair, the cost
function is the number of robots closer than it to the
considered frontier. Accordingly, each robot is allo-
cated to the frontier for which it has the lowest rank.
All these strategies have been devised, but few efforts
have been made to compare them. An exception is
a recent article [12] that compares some methods for
autonomous exploration and mapping using various
criteria, e.g., exploration time and map quality.

3.2. Active perception combined with
exploration

Early works on object recognition were based on pas-
sive approaches. During the last decade, some ap-
proaches have investigated the field of active object
recognition: the viewpoint of the camera can be con-
trolled to improve the recognition rate. For example,
looking at an object from different poses decreases am-
biguities in object recognition, thanks to the choice of
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different viewpoints. Several active approaches have
been proposed for planning optimal sequences of views
for a camera. An approach for viewpoint selection
based on reinforcement learning is proposed in [13].
In [14], the objective is to plan the minimum num-
ber of actions and observations required to achieve
recognition. Active perception planning is formulated
as POMDP. However, the issue of active planning
combined with exploration is not addressed in most
of these works, as the location of the object to be
recognized is known.

Other works are interested in adding in the trajecto-
ries planned for the exploration other objectives. For
example, integrated exploration [15, 16] involves inte-
grating the path planned for exploration with SLAM
in order to plan trajectories that favour the creation
of a high-quality map. Some actions, e.g., closing a
loop or returning to precedent positions, may reduce
the uncertainty of the robot pose and the uncertainty
of the map. A utility function is used which trades off
the cost of exploring new terrain against the potential
reduction of uncertainty by making measurements at
selected positions. In these works, there is no verifica-
tion of the assumption of having an accurate position
estimate during exploration. Integrated exploration
considers the problem of acting for better localization,
but not for better recognition.

4. Interaction-oriented Models
Decision-theoretic models based on Dec-MDPs provide
an expressive means for modeling cooperative teams
of decision makers. In this section, we present this
formalism and recent advances in resolving it.

4.1. Background on Dec-MDP
Dec-MDP [17] is an extension of MDP [18] for de-
centralized control domains. A Dec-MDP is defined
with a tuple 〈I, S,A, T,R,Ω, O〉. I is the number of
agents, S is the set of joint states and A = {Ai} is
the set of joint actions9. T : S × A× S → [0; 1] is a
transition function and T (s, a, s′) is the probability
of the I robots transitioning from joint state s to s′
after performing joint action a. R : S → < is a reward
function that represents the global immediate reward
for the robots being in s. Ω is a set of joint observa-
tions that agents can receive about the environment
and O : S×A×S×Ω→ [0; 1] is an observation func-
tion giving the probability of receiving o ∈ Ω after
performing joint action a and transitioning from s
to s′. If the global state of the system is collectively
totally observable, the Dec-POMDP is reduced to a
Dec-MDP.

We can see an MDP as a Dec-MDP where I = 1. It
is defined with a tuple 〈S,A, T,R〉. The goal of MDP
planning is to find a sequence of actions maximizing
the long-term expected reward. Such a plan is called

9A state of the problem can be written with a tuple s =
(s1, ..., sI) such that sj is the state of robot j. Aj defines the
set of actions aj of robot j.

a policy π : S → A. An optimal policy π∗ specifies
for each state s the optimal action to execute in the
current step, assuming that the agent will also act
optimally in future time steps. The value of π∗ is
defined by the optimal value function V ∗ that satisfies
the Bellman optimality equation:

V ∗(s) = R(s) + γmax
a∈A

∑
s′∈S

T (s, a, s′)V ∗(s′), (1)

where γ is the discount factor. An MDP is solved
using Dynamic Programming, with polynomial time
complexity. A Dec-POMDP is solved similarly by
computing the optimal joint policy. However its time
complexity is NEXP-complete [17], which is extremely
hard.

4.2. Interaction-oriented Models
When faced with real-world applications such as multi-
robot systems, Dec-(PO)MDP models are very diffi-
cult to apply, due to their high complexity. Recent
advances in Dec-(PO)MDP resolution have allowed a
notable increase in the size of the problems that can
be solved. An interesting direction that has emerged
recently involves taking advantage of local or sparse
interactions between agents. These methods relax the
most restrictive and complex assumption which con-
siders that the agents interact permanently with all
the others. The complexity of solving Dec-(PO)MDPs
is then reduced by solving a set of interactive indi-
vidual decision making problems. The ND-POMDP
model [19] is a static interaction approach, i.e., an
agent always interacts with the same subset of neigh-
bors. However this assumption is not realistic. Models
have therefore been proposed that use dynamic inter-
actions so that each agent interacts with an evolving
set of agents. The Dec-SIMDP model assumes full
local observability, and unlimited, free communication
between agents interacting together in some specific
states [20]. DyLIM is similar but applies to partial
observation and no communications [21]. It considers
Dec-POMDPs as a set of POMDPs, and interactive
situations are solved separately by deriving joint poli-
cies. For non-interactive situations, each agent has
its local policy to behave solely. These are promising
approaches for real-world applications of decentralized
decision makers.

5. DVF for multi-robot
exploration

During the robotic contest, we were particularly in-
terested in multi-robot exploration strategies. In this
section, we present our fully decentralized approach
based on DVF and its application to multi-robot ex-
ploration.

5.1. Interaction Sparse Dec-MDP
with DVF

To improve the complexity for solving Dec-MDPs,
we proposed an interaction-oriented resolution based
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on distributed value functions (DVF). DVFs were
introduced by [22] as a way to distribute reinforcement
learning knowledge through different agents. Our
approach decouples the multi-agent problem into a set
of individual agent problems, and considers possible
interactions among a team as a separate layer. This
currently seems one of the main tracks for tackling
scalability in Dec-(PO)MDPs (cf. Section 4.2). We
represent a Dec-MDP with two classes:
• The global interaction class, defined as a collec-

tion of augmented MDPs {MDPAug
1 , ...,MDPAug

I }.
There is one augmented MDP per agent, which
is defined by MDPAug

i = 〈Si, Ai, Ti, Ri,Γi〉 where
〈Si, Ai, Ti, Ri〉 individually models agent i in the
absence of other agents and Γi is some additional
information. Γi can be communicated by other
agents or can be inferred locally. It provides the
agent with global information, enabling interaction
between MDPs of the global interaction class. Then,
each agent resolves solely its augmented MDP so
that interactions are minimized. The global Dec-
MDP is solved as a set of local MDPs augmented
by information from the other agents. This signifi-
cantly reduces the computational complexity: the
NEXP complexity of solving a Dec-MDP is reduced
to the complexity of solving one MDP (polynomial)
per agent.

• The local interaction class is for close interactions.
Indeed, each agent computes strategies with DVF
in its augmented MDP to minimize the interactions.
However, when situations of interaction occur, DVF
does not handle these situations and the local coor-
dination must be resolved separately with another
technique. For example, joint policies can be com-
puted off-line for the specific joint states of close
interactions, including only interacting agents.
In the exploration context, the additional informa-

tion of the augmented MDP is limited to the last
known state of other agents: Agent i knows at each
step the state sij ∈ Si of the other agents j. Then it
computes its distributed value function DVFi accord-
ing to

DVFi(si) = Ri(si) + γ max
ai∈Ai

(∑
s′∈Si

Ti(si, ai, s
′)

(
DVFi(s′)−

∑
j 6=i

fijPr(s′|sij)Vj(s′)
))

(2)

for all si ∈ Si, where Pr(s′|sij) is the probability of
agent j transitioning from state sij to state s′; Vj(s′)
is the value function of agent j, computed locally by
agent i; fij is a weighting factor that determines how
strongly the value function of agent j reduces the
value function of agent i.

The DVF technique allows each agent to choose a
goal which should not be considered by the others,
and in this way the interactions are minimized. The
value of a goal depends on the expected rewards at

Figure 1. Reward propagation mechanisms with
stars as resulting rewards. a) From frontier hexagons
at the top. An unknown hexagon (grey) propagates
its reward over a radius (dotted circle) on free neigh-
borhood hexagons (white). Propagation is stopped
if occupied (black) or unknown hexagons are encoun-
tered. White arrows show impossible propagations,
and black arrows represent active propagations. b)
From free and non-covered hexagons at the bottom.
A free and non-covered hexagon (yellow) propagates
varying rewards at a best view point distance (solid
circle).

this goal and on the fact that it is unlikely to be
selected by other agents. More details about DVF
and its extension under communication constraints
can be found in [23].

5.2. DVF applied to multi-robot
exploration

In the second year of the contest, DVF was used in our
decision module to compute multi-robot exploration
strategies in a decentralized way. Thanks to the SLAM
module (cf. Section 2.2), each robot has access to
a map updated with all explored areas and to the
position of all the robots. We can then assume that
the location of the robot and of the other robots is
known at decision time.

5.2.1. MDP Model
Each robot generates its local augmented MDP from
a four-layer grid. The first layer is the real world layer
where the robots move. The pixel layer is an occu-
pancy grid of pixels, where each pixel is initialized as
unknown and updated as free (no obstacle) or occu-
pied (something there) by the data acquisition process.
The hexagon layer is an occupancy grid of hexagons10.
Hexagons and Voronoi layers are each computed from
the pixel layer, and are used to generate the data struc-
tures of the local augmented MDP. States and rewards
are based on the hexagonal layer, while actions and
transitions are based on the hexagonal and Voronoi

10Each hexagon is composed of a set of pixels and is consid-
ered as unknown, free or occupied according to the value of its
pixels.
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(a) Simulation environment. (b) Simulation screenshots.

Figure 2. In b), areas that have been explored but not yet covered with photos are in yellow; explored areas covered
with photos are in white; non explored areas are in grey.

layers. The exploration reward function is computed
with a reward propagation mechanism based on the
expected information gain in each state as in [24]. We
propagate rewards in some radius around the frontier
hexagons, taking into account line-of-sight constraints
(see Fig. 1a). Further details about our model are
given in [25].

5.2.2. DVF
To apply DVF (2), we consider that the robots are
homogeneous. The value functions Vj of the other
robots j can therefore be computed only once by robot
i 11. Robot i computes an empathic value function
with the standard value iteration algorithm [26] in
its local augmented MDP. To evaluate the transition
probability of other robot j, i applies a wavefront
propagation algorithm from the last known state sj

of robot j.

5.2.3. Decision step
A decision step involves building the model, comput-
ing the policy from DVF, and producing a smoothed
trajectory. The agent plans continuously, executing
a decision step as it perceives changes in its environ-
ment. We can observe that exploration rewards will
never be gained by the robot. Indeed, as the robot
comes close enough to the frontier, it will gather new
information with its sensors and unknown cells will
become known before they are reached. Therefore, the
exploration rewards will disappear before the robot
can claim them and the frontier between known and
unknown areas, which is the source of the rewards,
retreats as the robot approaches it. The action plan
must then be updated quickly to react as soon as
possible to this kind of information gained en route.
However, this requires the decision step to be quick
enough for on-line use. Given that the model will
be updated at each decision step, we use the greedy
approach, which plans on a short-term horizon.

5.2.4. Experiments
Experimental results from simulation and real-world
scenarios can be found in [23, 25]. Videos12 present

11If the robots are not homogeneous we just need to compute
one value function for each type of robot

12available at http://liris.cnrs.fr/laetitia.matignon/
research.html

various exploration tasks with real robots, and some
interesting situations are underlined as global task
repartition or local coordination. The experiments
show that this method is able to coordinate a team of
robots effectively during exploration. The global in-
teraction class addresses the allocation of exploration
goals, and also minimizes close interactions between
robots. Each robot locally computes a strategy that
minimizes the interactions between the robots and
maximizes the explored space.

6. Planning to explore and
perceive

In the first two years of the contest, pictures were
taken to locate and recognize objects. This was done
separately from the decision module. Pictures taken
by the camera and analyzed by the object recognition
module were gathered along the way, i.e., the camera
took pictures at a specified rate along the trajectory
planned for the exploration. However, this led to poor
performance in terms of object recognition results,
primarily because some objects in the arena were not
photographed. Indeed, the pictures that are taken
depend on the trajectory computed for the exploration,
so some objects were not covered by photos, while
some areas without objects were photographed several
times.

To improve the coverage of the objects with pictures,
we extended the decision module so that it does not
only explore the arena but must also ensure that the
explored areas are covered by photos. Indeed, if all the
explored space has been photographed, each object
must be in at least one picture and the recognition
module will handle it. In this section, we introduce a
DVF extension to improve the photo coverage of the
space, and we also present some experiments.

6.1. DVF extension to improve photo
coverage of the space

The decision module must simultaneously combine
the interest in exploring an area with the interest in
covering it with pictures. To take into account both
the exploration criterion and the picture coverage
criterion, we modified the reward function Ri of the
augmented MDP. We introduced a specific reward for
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Figure 3. Number of objects detected and mission time (in seconds) versus coverage rate (produced from 340
simulations).

areas explored and covered with photos in addition to
the exploration reward. MDPs allow planning while
optimizing several criteria at once: in our case, the
expected information gain, the picture-taking and the
cost to reach the chosen location. During the challenge,
we also optimized the return-to-base criterion at the
end of the mission and the ball-pushing feature when
the ball was detected. These two criteria are not
considered in this paper. The DVF equation is then
adapted to: ∀si ∈ Si

DVFi(si) = (1− α)Ri,exp(si) + αRi,cov(si)

+ γ max
ai∈Ai

(∑
s′∈Si

T (si, ai, s
′)
(

DVFi(s′)

−
∑
j 6=i

fijPr(s′|sij)Vj(s′)
))

(3)

where Ri,exp(si) is the reward function for exploring a
state si and Ri,cov(si) is the reward function for taking
a photo of si. α ∈ [0, 1] is the picture coverage rate
for balancing the exploration and picture coverage
behaviors of the robots. With α = 0, the robots will
only optimize the exploration without covering the
space with photos. With α = 1, the robots will only
optimize photo coverage. Exploration then occurs
only as a side-effect.
To compute the cover reward function Ri,cov, a

cover grid of pixels counts the number of times that
each pixel has been photographed. Each time the
robot takes a picture, the cover grid is updated by
tracing a set of rays covering the optimal recognition
area of the camera. The pixels are updated with Bre-
senham’s algorithm [27]. The cover reward is then
computed with a hexagonal reward propagation mech-
anism similar to the exploration rewards, multiplied
by a bell-shaped factor to boost the rewards at the
optimal recognition distance (see Fig. 1b). This allows
the MDP to select the best viewpoint for the next
picture. Regarding communications, this new reward
implies that new data is sent: each robot needs to
know where a picture has been taken. Thus, each
robot sends the location of its photos to all the other
robots. Then they can update their coverage grid and
maintain an accurate reward function.

In order to keep the computing complexity low,
we chose not to add an action for taking a picture.
When the policy brings the robot to a location where
a picture must be taken, the robot will stop there and
face the reward. When a picture is taken, the reward
disappears and the new policy drives the robot farther.
In order to avoid having blurred pictures where the
recognition process will fail, we specify that photos
must be taken only when the robot velocity is low.

6.2. Experiments
6.2.1. Simulated robots
Stage13 simulator was used with an architecture that
mimics the real robots. DDS is replaced by an In-
ter Process Communication shared memory segment.
Laser acquisition is simulated by a “ranger” virtual
sensor. A “position” virtual device simulates both
the SLAM module by providing odometric data and
the mobility module by executing the point and shoot
algorithm. The Stage blobfinder model is used to
simulate (poorly) the camera and object detection, as
it can track areas of color in a simulated 2D image,
giving the location and the size of the color blobs.
Thanks to this architecture, the decision module of
the real robots can be used with the simulator without
modification.

6.2.2. Results
We conducted a set of experiments in the autolab
environment (see Fig. 2a). Figure 2b shows successive
screenshots of one simulation. The robots are initially
in the starting zone and objects are regularly posi-
tioned in the environment. For each coverage rate,
we compute the number of objects detected and the
mission time (see Fig. 3). With α = 0, the mission
is fastest, given that the robot does not care about
taking pictures. The only goal of the robot is to map
the entire arena, and it only takes few pictures when
it stops between two actions. Few objects are there-
fore detected. With α > 0, all objects are detected
but the mission time varies over α. Indeed α mod-
ifies the priority of the two tasks. When α is low,
pictures are taken at the end of the mission, if there
is sufficient time remaining time. This is illustrated

13http://playerstage.sourceforge.net/
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Figure 4. Percentage of objects detected versus percentage of exploration.

in Fig. 4, with α = 0.0001, where the number of de-
tected objects increases and 100% of the arena has
been explored. With such a low α, the robot takes
pictures once the exploration has been finished, so it
travels the arena twice and the mission time is high.
When α is high, pictures are taken throughout the
mission, and the robot deals with both tasks at the
same time. With α = 1, we obtain the second fastest
mission time and all the objects are detected. So
this new approach, based on exploration and photo
coverage of the space, allows tall of the objects to
be photographed. The α factor must be chosen to
balance priority of exploration versus object detection.
For example, if the time is limited and α is high, the
robot may not explore the whole map, since taking
pictures is time consuming, but it will photograph all
objects in the explored area.

7. Conclusion and Perspectives
We have shown a new algorithm for coordinating mul-
tiple robots that explore some unknown area. DVF
enables the expensive Dec-MDP to be solved as a set
of augmented MDPs in a distributed way. The versa-
tile reward function can be adapted so that the robots
explore the whole area, but also so that they choose
the right positions to take meaningful pictures. As a
result, we can observe that the robots take longer to
explore, but that they also take many more pictures,
efficiently covering the whole space. We can then
expect a better detection rate, as any object should
be in at least one picture. An immediate perspective
is therefore to compare object recognition results with
different parameters on real robots to confirm through
a real experiment that our method provides improved
perception.
Another perspective of our work is to plan to per-

ceive by interlacing detection and decision modules to
achieve more robust object recognition. The idea is
not to take more pictures, but to take better pictures.
The objective would be to plan viewpoints where the
recognition process would be more reliable. To achieve
this kind of active perception planning, the decision
module should use information from the recognition
module. In our work, the recognition module is based
on the Dominant Orientation Template method [5].
For each object, a set of views is defined, and the

method gives a weighting for each view that is equiva-
lent to its precision14. A positive detection is reliable
when the point of view has a high weighting. For each
object detected, the module also gives the location of
the object and scores (matching results) for each view.
Thus the decision module could manage a set of hy-
potheses about the probability of the presence of each
object. These hypotheses could then be confirmed
or discarded by taking pictures of the object from
viewpoints that maximize the precision. This could
be done easily by generating specific high rewards
at these viewpoints, so that the decision module will
adapt the planned trajectory to ensure that the robots
take pictures from there.
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