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1. Introduction
In the quantum-mechanical framework, the elements
of an effect algebra represent quantum effects, meaning
elementary yes-no measurements that may be unsharp.
The standard Hilbert space effect algebra E(H) on a
complex Hilbert space H is the set E(H) of all positive
operators dominated by the identity operator I on H.
So called interval effect algebras form a further impor-
tant class of effect algebras. These are effect algebras
possessing an ordering set of states, which is equiva-
lent to the condition that these effect algebras can be
represented by positive linear operators densely de-
fined in an infinite-dimensional complex Hilbert space
H (see [18]). Here, by the operator representation of
effect algebras (initiated by questions of M. Znojil at
the 9th PHHQP workshop in Hangzhou, China) we
mean their isomorphism with sub-effect algebras of
the standard Hilbert space effect algebra E(H) on the
complex Hilbert space H.
In this paper we show that isomorphisms of effect

algebras inherit the partial order on them, and con-
sequently also the order convergence on them and
other important properties. However, we also show
examples of properties that need not be inherited
by isomorphisms of effect algebras (e.g., sequential
product of elements).

2. Basic definitions and some
known facts

2.1. Effect algebras and generalized
effect algebras

Definition 2.1. [3] A partial algebra (E;⊕, 0, 1) is
called an effect algebra if 0,1 are two distinguished
elements and ⊕ is a partially defined binary operation

on E which satisfies the following conditions for any
x, y, z ∈ E:
(E1) x⊕ y = y ⊕ x if x⊕ y is defined,
(E2) (x⊕ y)⊕ z = x⊕ (y ⊕ z) if one side is defined,
(E3) for every x ∈ E there exists a unique y ∈ E such

that x⊕ y = 1 (we put x′ = y and say that x′ is
a supplement of x),

(E4) If 1⊕ x is defined then x = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly
by E. On every effect algebra E the partial order
≤, binary relation ⊥ and partial binary operation 	
can be introduced as follows: x ≤ y and x ⊥ z and
y 	 x = z iff x⊕ z is defined and x⊕ z = y.

Generalizations of effect algebras (i.e. without a top
element 1) have been introduced and studied in [3],
[5], [6] and [9].

Definition 2.2. (1.) A generalized effect algebra (E,
⊕, 0) is a set E with an element 0 ∈ E and a partial
binary operation ⊕ satisfying for any x, y, z ∈ E
the conditions
(GE1) x⊕ y = y ⊕ x if one side is defined,
(GE2) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) if one side is

defined,
(GE3) if x⊕ y = x⊕ z then y = z,
(GE4) if x⊕ y = 0 then x = y = 0,
(GE5) x⊕ 0 = x for all x ∈ E.

(2.) Define a binary relation ≤ on E by

x ≤ y iff for some z ∈ E, x⊕ z = y.

The significant property of a generalized effect al-
gebra (E;⊕, 0) is that every interval [0, q], for q ∈ E,
q 6= 0, is an effect algebra with ⊕ restricted to [0, q].
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Every effect algebra E is also a generalized effect al-
gebra and a generalized effect algebra is also an effect
algebra iff it includes the top element.

Definition 2.3. A nonempty subset Q of an effect
algebra (generalized effect algebra) E is called a sub-
effect algebra (sub-generalized effect algebra) of E iff:
(1.) if at least two of the elements x, y, z ∈ E with
x⊕ y = z are in Q then all x, y, z are in Q;

(2.) 1 ∈ Q when E is an effect algebra.

We say that a finite system F = (xk)nk=1 of not
necessarily different elements of an effect algebra
(E;⊕, 0, 1) is orthogonal if x1 ⊕ x2 ⊕ · · · ⊕ xn (writ-
ten

n⊕
k=1

xk or
⊕
F ) exists in E. Here we define

x1⊕x2⊕· · ·⊕xn = (x1⊕x2⊕· · ·⊕xn−1)⊕xn suppos-

ing that
n−1⊕
k=1

xk is defined and
n−1⊕
k=1

xk ≤ x′n. We also

define
⊕

∅ = 0. An arbitrary system G = (xκ)κ∈H
of not necessarily different elements of E is called
orthogonal if

⊕
K exists for every finite K ⊆ G.

We say that for an orthogonal system G = (xκ)κ∈H
the element

⊕
G (more precisely

⊕
E G) exists iff∨{⊕

K | K ⊆ G is finite
}

exists in E, and then
we put

⊕
G =

∨{⊕
K | K ⊆ G is finite

}
. (Here

we write G1 ⊆ G iff there is H1 ⊆ H such that
G1 = (xκ)κ∈H1).

2.2. Topologies on ordered sets
Definition 2.4. (1.) A preordered set (Λ;≤) is
called a directed (upwards) set of indices if the
following conditions are satisfied:
(a) α ≤ α,
(b) α ≤ β, β ≤ γ implies α ≤ γ,
(c) for all α, β ∈ Λ there exists γ ∈ Λ such that
α, β ≤ γ.

A net (aα)α∈Λ is a family of not necessary different
elements which have indices from a directed set of
indices Λ.

(2.) A net (aα)α∈Λ of elements of a poset (P ;≤) is
increasingly directed if aα ≤ aβ for all α, β ∈ Λ such
that α ≤ β, and then we write aα ↑. If moreover
a =

∨
{aα | α ∈ Λ} we write aα ↑ a and we call

such a net increasing to a. The meaning of aα ↓
and aα ↓ a is dual (decreasingly directed or filtered).

(3.) A net (aα)α∈Λ of elements of a poset (P ;≤) order
converges ((o)-converges, for short) to a point a ∈ P
if there are nets (uα)α∈Λ and (vα)α∈Λ of elements
of P such that

a ↑ uα ≤ aα ≤ vα ↓ a.

We write aα
(o)−→ a in P (or briefly aα

(o)−→ a).

Definition 2.5. The order topology (denoted by τP0
or shortly τ0) on a poset (P ;≤) is the finest (strongest)

topology on P such that for every net (aα)α∈Λ of
elements of P ,

aα
(o)−→ a in P =⇒ aα

τP
0−→ a,

where aα
τP

0−→ a denotes that (aα)α∈Λ converges to
a ∈ P in the topological space (P, τP0 ).

Clearly, aα ↑ a ⇒ aα
(o)−→ a because a ↑ aα ≤ aα ≤

a ↓ a and aα ↓ a ⇒ aα
(o)−→ a, because a ↑ a ≤ aα ≤

aα ↓ a (see [7], [8], [12],[13]).

Theorem 2.6 ([11, Theorem 2.1.21]). Let (P,≤)
be a poset and F ⊆ P . Then F is τ0-closed iff for
every net (aα)α∈Λ of elements of P ,

(CS) (aα ∈ F, α ∈ Λ, aα
(o)−→ a)⇒ x ∈ F .

2.3. Morphisms, embeddings and
isomorphisms of effect algebras

Recall the following definitions, needed in what fol-
lows.

Definition 2.7 ([2, 18]). Let (E1;⊕1, 01, 11), (E2;
⊕2, 02, 12) be effect algebras. A mapping ϕ : E1 → E2
is called
(1.) a morphism, if

(a) ϕ(01) = 02, ϕ(11) = 12,
(b) for all a, b ∈ E1: if a⊕1b exists then ϕ(a)⊕2ϕ(b)
exists, in which case ϕ(a⊕1 b) = ϕ(a)⊕2 ϕ(b),

(2.) an ordering morphism, if it is a morphism and,
for all a, b ∈ E1, a ≤1 b iff ϕ(a) ≤2 ϕ(b),

(3.) an embedding (also called a monomorphism), if
ϕ is injective and
(a) ϕ(01) = 02, ϕ(11) = 12,
(c) for all a, b ∈ E1: a⊕1 b exists iff ϕ(a)⊕2 ϕ(b)
exists, in which case ϕ(a⊕1 b) = ϕ(a)⊕2 ϕ(b),

(4.) an isomorphism, if ϕ is bijective embedding,
(5.) a positive operator valued state (POVS for short)
on E1 iff ϕ is a morphism into E2 = E(H) for some
complex Hilbert space H,

(6.) a Hilbert space effect-representation of E1 iff ϕ
is an embedding into E2 = E(H) for some complex
Hilbert space H.

Clearly, every embedding ϕ is an isomorphism of
effect algebras E1 and ϕ(E1); ϕ(E1) is a sub-effect
algebra of E2; and a composition of morphisms (em-
beddings, isomorphisms) is again a morphism (em-
bedding, isomorphism). Every morphism of effect
algebras preserves supplements.
Recall that ϕ is an isomorphism of effect algebras

iff ϕ is bijective and both ϕ and ϕ−1 are morphisms
of effect algebras.

Lemma 2.8. Let (E1;⊕1, 01, 11) and (E2;⊕2, 02, 12)
be effect algebras and let ϕ : E1 → E2 be a mor-
phism of effect algebras. Then ϕ is order-preserving
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and, for any orthogonal system G = (xκ)κ∈H of
not necessarily different elements of E1, the system
ϕ(G) =

(
ϕ(xκ)

)
κ∈H is again orthogonal.

Proof. Assume that a, b ∈ E1, a ≤1 b. Then there is
an element c ∈ E1 such that a ⊕1 c = b. It follows
that ϕ(b) = ϕ(a⊕1 c) = ϕ(a)⊕2 ϕ(c) ≥2 ϕ(a).

Now, let L ⊆ ϕ(G) be finite. Then there is a finite
subset F ⊆ H such that L = (ϕ(xκ))κ∈F . Put K =
(xκ)κ∈F . Then

⊕
E1
K exists and hence

⊕
E2
L exists

and
⊕

E2
L = ϕ

(⊕
E1
K
)
. It follows that ϕ(G) =(

ϕ(xκ)
)
κ∈H is orthogonal.

Proposition 2.9. Let (E1;⊕1, 01, 11) and (E2;⊕2,
02, 12) be effect algebras and let ϕ : E1 → E2 be
a morphism of effect algebras. Then the following
conditions are equivalent:
(1.) ϕ is an ordering morphism.
(2.) ϕ is an embedding.

Proof. Assume that a, b ∈ E1. Then a ≤1 b
′ iff a⊕1 b

exists and ϕ(a) ≤1 ϕ(b′) iff ϕ(a) ≤1 ϕ(b)′ iff ϕ(a)⊕1
ϕ(b) exists. Hence ϕ is an ordering morphism iff ϕ is
an embedding.

Theorem 2.10. Let (E;⊕, 0, 1) be an effect algebra
and let H be some complex Hilbert space. For a map
ϕ : E → E(H) the following conditions are equivalent:
(1.) ϕ is an ordering positive operator valued state.
(2.) ϕ is an embedding.
(3.) ϕ is a Hilbert space effect-representation of E in
H.

Proof. The equivalence between (1.) and (2.) follows
from Proposition 2.9, the equivalence between (2.)
and (3.) follows from Definition 2.7, (2.), (5.) and
(6.).

Definition 2.11 ([2, 14, 18]). (1.) A map ω : E
→ [0, 1] ⊆ R is a state on an effect algebra E if
ω(0) = 0, ω(1) = 1 and ω(x ⊕ y) = ω(x) + ω(y)
whenever x ≤ y′, x, y ∈ E.

(2.) A setM of states on an effect algebra E is called
an ordering set of states if for any a, b ∈ E the
condition a ≤ b iff ω(a) ≤ ω(b) for all ω ∈ M, is
satisfied.

(3.) A state ω on an effect algebra E is called σ-
additive if, for every countable net (xn)n∈N of ele-
ments of E, xn ↑ x =⇒ ω(xn)→ ω(x).

(4.) A state ω on an effect algebra E is called (o)-
continuous (order-continuous) if, for every net
(xα)α∈λ of elements of E, xα

(o)−→ x implies ω(xα)→
ω(x) (equivalently xα ↑ x implies ω(xα) ↑ ω(x)).

(5.) A state ω on an effect algebra E is called
completely additive if for any orthogonal system
(xκ)κ∈H of not necessarily different elements of
E such that

⊕
{xκ | κ ∈ H} exists, ω

(⊕
{xκ |

κ ∈ H}
)

=
∑
{ω(xκ) | κ ∈ H} = sup{

∑
{ω(xκ) |

κ ∈ F} | F ⊆ H, F finite set}.

It follows that states on effect algebras are exactly
morphisms from them into [0, 1]. Note that any (o)-
continuous state is completely additive and also any
completely additive state is σ-additive.
Moreover, it was proved in [18] that, for an effect

algebra E, there exists a complex Hilbert space H
such that E has a Hilbert space effect-representation
into E(H) = [0, I]B+(H), where B+(H) are positive
bounded operators on H iff there exists an ordering
setM of states on E and then H = l2(M).

3. Basic properties of
isomorphisms of effect
algebras and operator
representations

Roughly speaking, the operator representations of
abstract effect algebras (if they exist) are their isomor-
phisms with operator effect algebras in some complex
Hilbert space H. More precisely, they are their iso-
morphisms with sub-effect algebras of the standard
Hilbert space effect algebra E(H). In such a case it
may be interesting to know which properties of the ini-
tial effect algebras are inherited for those isomorphic
operator effect algebras.
Let us start our considerations with properties of

two isomorphic abstract effect algebras.

Theorem 3.1. Let (E1;⊕1, 01, 11) and (E2;⊕2,
02, 12) be effect algebras and let ϕ : E1 → E2 be
an isomorphism of effect algebras. Then
(1.) For all a, b ∈ E1, a ≤1 b if and only if ϕ(a) ≤2
ϕ(b).

(2.) For all S ⊆ E1,
∨
E1
S exists if and only

if
∨
E2
ϕ(S) exists, in which case

∨
E2
ϕ(S) =

ϕ
(∨

E1
S
)
.

(3.) For any increasingly directed net (aα)α∈Λ of el-
ements of E1 and a ∈ E1, aα ↑ a if and only if
ϕ(aα) ↑ ϕ(a).

(4.) For any decreasingly directed net (aα)α∈Λ of el-
ements of E1 and a ∈ E1, aα ↓ a if and only if
ϕ(aα) ↓ ϕ(a).

(5.) For any net (aα)α∈Λ of elements of E1 and a ∈ E1,
aα

(o)1−−→ a if and only if ϕ(aα) (o)2−−→ ϕ(a).
(6.) For subsets and nets of elements of E1 and E2
the following statements are satisfied:
• For all F ⊆ E1, F is τE1

0 -closed if and only if
ϕ(F ) is τE2

0 -closed.
• For all U ⊆ E1, U is τE1

0 -open if and only if ϕ(U)
is τE2

0 -open.
• For any net (aα)α∈Λ of elements of E1 and a ∈ E1,

aα
τ

E1
0−−→ a if and only if ϕ(aα)

τ
E2
0−−→ ϕ(a).
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Proof. (1.) Assume that a, b ∈ E1. If a ≤1 b. From
Lemma 2.8 we have that ϕ(a) ≤2 ϕ(b). Conversely,
let ϕ(a) ≤2 ϕ(b).Then again by Lemma 2.8 applied
to ϕ−1 we get a = ϕ−1(ϕ(a)) ≤1 ϕ

−1(ϕ(b)) = b.
(2.) Assume that S ⊆ E1 such that

∨
E1
S exists. Let

us put a =
∨
E1
S. Then, for all s ∈ S, s ≤ a and

we get from Lemma 2.8 that ϕ(s) ≤1 ϕ(a). Hence
ϕ(a) is an upper bound of ϕ(s) for all s ∈ S. Let
d = ϕ(c) ∈ E2, c ∈ E1 be an upper bound of ϕ(s)
for all s ∈ S. Then c ∈ E1 is an upper bound of
s for all s ∈ S by Part 1. This yields that a ≤ c.
Therefore by Lemma 2.8 we get ϕ(a) ≤ ϕ(c) = d,
i.e.

∨
E2
ϕ(S) = ϕ(

∨
E1
S).

The converse implication follows by the same con-
siderations as were applied above to ϕ−1 and the
assumption that

∨
E2
ϕ(S) exists.

(3.) Assume α ≤ β, α, β ∈ Λ. Then aα ≤1 aβ and
by Lemma 2.8 we obtain that ϕ(aα) ≤2 ϕ(aβ). It
follows that (ϕ(aα))α∈Λ is an increasingly directed
net. Assume now that aα ↑ a. Then by (2.) we
obtain ϕ(aα) ↑ ϕ(a).
The converse implication follows by the same con-
siderations as were applied above to ϕ−1 and
ϕ(aα) ↑ ϕ(a).

(4.) It follows by the considerations dual to them in
(3.).

(5.) Assume first that aα
(o)1−−→ a. Hence there are nets

(uα)α∈Λ and (vα)α∈Λ of elements of E1 such that
a ↑ uα ≤ aα ≤ vα ↓ a. From Lemma 2.8 and (3.)
and (4.) we obtain nets (ϕ(uα))α∈Λ and (ϕ(vα))α∈Λ
of elements of E2 such that ϕ(a) ↑ ϕ(uα) ≤ ϕ(aα) ≤
ϕ(vα) ↓ ϕ(a). It follows that ϕ(aα) (o)2−−→ ϕ(a).
The converse implication follows by the same con-
siderations as above applied to ϕ−1 and the net
(ϕ(aα))α∈Λ of elements of E2 and ϕ(a) ∈ E2 such
that ϕ(aα) (o)2−−→ ϕ(a).

(6.) Assume that F ⊆ E1. Then F is τE1
0 -closed if

and only if by Theorem 2.6 for every net (aα)α∈Λ

of elements of E1 it holds (aα ∈ F, α ∈ Λ, aα
(o)1−−→

a) ⇒ a ∈ F if and only if by (5.) for every net
(ϕ(aα))α∈Λ of elements of E2 it holds (ϕ(aα) ∈
ϕ(F ), α ∈ Λ, ϕ(aα) (o)2−−→ ϕ(a)) ⇒ ϕ(a) ∈ ϕ(F ) if
and only if for every net (bα)α∈Λ of elements of E2

it holds (bα ∈ ϕ(F ), α ∈ Λ, bα
(o)2−−→ b) ⇒ b ∈ ϕ(F )

if and only if by Theorem 2.6 ϕ(F ) is τE2
0 -closed.

Now, let us assume that U ⊆ E1. Then U is τE1
0 -

open if and only if F = E1 \ U is τE1
0 -closed if

and only if ϕ(F ) = ϕ(E1 \ U) = ϕ(E1) \ ϕ(U) =
E2 \ ϕ(U) is τE2

0 -closed if and only if ϕ(U) is τE2
0 -

open.
In what remains, we will assume that we have a

net (aα)α∈Λ of elements of E1 and a ∈ E1, aα
τ

E1
0−−→

a. Let us check that ϕ(aα)
τ

E2
0−−→ ϕ(a). Assume

that we have a τE2
0 -open set V ⊆ E2 such that

ϕ(a) ∈ V . Since V = ϕ(U) and U = ϕ−1(V ) for
some τE1

0 -open subset U ⊆ E1 we get that a ∈
U . Hence there is an index α0 ∈ Λ such that
aα ∈ U for all α ≥ α0. It follows that ϕ(aα) ∈

ϕ(U) = V for all α ≥ α0. Therefore ϕ(aα)
τ

E2
0−−→

ϕ(a). The converse implication goes the same way.

Recall that Theorem 3.1 can be stated and proved
entirely for posets. Theorem 3.2 has to be stated
and proved for effect algebras. Effect algebras are
suitable algebraic structures to be carriers of states or
probability measures (σ-additive states) also in cases
when events may be unsharp or some pairs of events
are noncompatible.

Theorem 3.2. Let (E1;⊕1, 01, 11) and (E2;⊕2,
02, 12) be effect algebras and let ϕ : E1 → E2 be
an isomorphism of effect algebras. Then, for any map-
ping ω : E2 → [0, 1],

(1.) ω is a state on E2 if and only if ω ◦ ϕ is a state
on E1.

(2.) ω is an (o)-continuous state on E2 if and only if
ω ◦ ϕ is an (o)-continuous state on E1.

(3.) ω is a σ-additive state on E2 if and only if ω ◦ ϕ
is a σ-additive state on E1.

(4.) ω is a completely additive state on E2 if and only
if ω ◦ ϕ is a completely additive state on E1.

Proof. (1.) Let ω be a state on E2. Then the compo-
sition ω ◦ ϕ is a morphism from E1 to [0, 1], hence
a state. Conversely, let ω ◦ ϕ be a state on E1.
Then ω = (ω ◦ ϕ) ◦ ϕ−1 is a morphism from E2 to
[0, 1].

(2.) Let ω be an (o)-continuous state on E2. Assume
that (aα)α∈Λ is an increasingly directed net of el-
ements of E1 and that a ∈ E1 such that aα ↑ a.
From Theorem 3.1 we obtain that ϕ(aα) ↑ ϕ(a)
in E2. Since ω is (o)-continuous we have that
ω
(
ϕ(aα)

)
↑ ω
(
ϕ(a)

)
. Hence, by (1.), ω ◦ ϕ is an

(o)-continuous state on E1.
The converse implication follows by the same con-
siderations as above applied to ϕ−1 and the (o)-
continuous state ω ◦ ϕ on E1.

(3.) It follows by literally the same considerations
as in (2.) applied to any countable increasingly
directed net.

(4.) Let ω be a completely additive state on E2.
Assume that (xκ)κ∈H is an orthogonal system
of not necessarily different elements of E1 such
that

⊕
E1
{xκ | κ ∈ H} exists. Then by Lemma

2.8 we get that
(
ϕ(xκ)

)
κ∈H is an orthogonal

system in E2 and by Theorem 3.1 we obtain
that ϕ

(⊕
E1

{
xκ
∣∣κ ∈ H}) =

⊕
E2

{
ϕ(xκ)

∣∣κ ∈ H}.
Since ω is a completely additive state on E2 we
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have that

(ω ◦ ϕ)
(⊕
E1

{xκ | κ ∈ H}
)

= ω
(⊕
E2

{
ϕ(xκ)

∣∣κ ∈ H})
=
∑{

ω
(
ϕ(xκ)

) ∣∣κ ∈ H}
= sup

{∑{
(ω ◦ ϕ)(xκ)

∣∣κ ∈ F} ∣∣∣F ⊆ H,
F finite set

}
.

The converse implication follows by the same con-
siderations as above applied to ϕ−1.

4. Some properties of operator
effect algebras that need not
be preserved by effect
algebraic isomorphisms

We see, in Section 3, that isomorphism of effect al-
gebras preserves those properties of effect algebras
which depend only on the ⊕-operation or on the par-
tial order that is derived from ⊕. On the other hand,
there are properties of effect algebras for which the
preservation of the ⊕-operation by isomorphisms is
not substantional. For operator effect algebras it is,
e.g., boundedness or self-adjointness of operators (ele-
ments of operator effect algebras).

Definition 4.1. [4] A sequential effect algebra is a
partial algebra (E; ◦,⊕, 0, 1) such that (E;⊕, 0, 1) is
an effect algebra and ◦ is another binary operation
(called a sequential product) defined on E satisfying:

(SEA1) The map b 7→ a ◦ b is additive for each
a ∈ E, that is, if b ⊥ c, then a ◦ b ⊥ a ◦ c and
a ◦ (b⊕ c) = a ◦ b⊕ a ◦ c.

(SEA2) 1 ◦ a = a for each a ∈ E.
(SEA3) If a ◦ b = 0, then a ◦ b = b ◦ a.
(SEA4) If a ◦ b = b ◦ a, then a ◦ b′ = b′ ◦ a and
a ◦ (b ◦ c) = (a ◦ b) ◦ c for each c ∈ E.

(SEA5) If c ◦ a = a ◦ c and c ◦ b = b ◦ c, then
c ◦ (a ◦ b) = (a ◦ b) ◦ c and c ◦ (a⊕ b) = (a⊕ b) ◦ c
whenever a ⊥ b.

Assume that (E1; ◦1,⊕1, 01, 11) and (E2; ◦2,⊕2, 02, 12)
are sequential effect algebras. A mapping ϕ : E1 → E2
is called a sequential effect algebraic morphism if
ϕ is a morphism of the effect algebra E1 into the
effect algebra E2 and, for all a, b ∈ E1, ϕ(a ◦1 b) =
ϕ(a) ◦2 ϕ(b).

In what follows we will assume that H is an infinite-
dimensional complex Hilbert space, i.e., a linear space
with inner product (· , ·) which is complete in the
induced metric. The term dimension ofH is defined as
the cardinality of any orthonormal basis of H (see [1]).

Moreover, we will assume that all considered linear
operators A (i.e. linear maps A : D(A) → H) have
a domain D(A) that is a linear subspace dense in

H with respect to the metric topology induced by
the inner product on H (i.e., D(A) = H). Recall
that a linear operator A is called positive (denoted
by A ≥ 0) iff (x,Ax) ≥ 0 for all x ∈ D(A), hence A
is also symmetric, meaning that (y,Ax) = (Ay, x) for
all x, y ∈ D(A) (see [1] for more details).
Recall that A : D(A) → H is called a bounded

operator if there exists a real constant C ≥ 0 such
that ‖Ax‖ ≤ C‖x‖ for all x ∈ D(A).
Gudder [4] showed that, for any standard Hilbert

space effect algebra E(H) on a complex Hilbert space
H, there is a binary operation ◦ defined by B ◦ C =
B

1
2CB

1
2 for all B,C ∈ E(H) such that it satisfies

conditions (SEA1)–(SEA5), and so it is a sequential
product of E(H). Liu Weihua and Wu Junde in [10,
Theorem 4.3] proved that there is a binary operation
◦i on E(H) such that it satisfies conditions (SEA1)–
(SEA5) and ◦i 6= ◦. This yields the following.

Theorem 4.2. Let H be a complex Hilbert space.
Then there are sequential operator effect algebras(
E(H); ◦,⊕, 0, 1

)
and

(
E(H); ◦i,⊕, 0, 1

)
that are iso-

morphic as effect algebras but the respective effect
algebraic isomorphism does not preserve the sequential
product.

Proof. Evidently, idE(H) is an effect algebraic isomor-
phism. From [10, Theorem 4.3] we know that there
are A,B ∈ E(H) such that A ◦ B 6= A ◦i B. Hence
idE(H)(A ◦ B) = A ◦ B 6= A ◦i B = idE(H)(A) ◦i
idE(H)(B).

Let V(H) be the set of all positive linear operators
densely defined in an infinite-dimensional complex
Hilbert space H and the domain D(B) = H for every
bounded operator B. To every such linear operator
with D(A) = H there exists the adjoint operator A∗
of A such that D(A∗) =

{
y ∈ H | there exists y∗ ∈ H

such that (y∗, x) = (y,Ax) for every x ∈ D(A)
}
and

A∗y = y∗ for every y ∈ D(A∗). If A∗ = A then A is
called self-adjoint.
An operator A : D(A) → H is called closed if

for every sequence (xn)n∈N, xn ∈ D(A), such that
xn → x ∈ H and Axn → y ∈ H as n → ∞ one
has x ∈ D(A) and Ax = y. Since every A ∈ V(H)
is symmetric there exists a closed operator A such
that A ⊂ A and A ⊂ B for every closed operator
extending A. Moreover A is again symmetric and
it is called the closure of A. A symmetric operator
A is called essentially self-adjoint if

(
A
)∗ = A and

then A is a unique self-adjoint extension of A (see
[1, p. 96]). Finally, recall that every A ∈ V(H) has
a positive self-adjoint extension Â called Friedrichs’
extension of A (see, e.g., [16]). Moreover, Â extends
all symmetric extensions A′ of A. It was shown in [15,
Theorem 1] that, for any infinite-dimensional complex
Hilbert space H, there are positive unbounded A and
B such that A is not essentially self-adjoint and B is
not closed.
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Furthermore, let V(H) be equipped with the partial
sum ⊕ such that for any A,B ∈ V(H) the sum A⊕B
is defined iff either one of A,B is bounded or D(A) =
D(B). Then we set A⊕B = A+B (the usual operator
sum). In [17] it was proved that

(
V(H);⊕, 0

)
is a

generalized effect algebra.
Theorem 4.3 ([17, Theorem 2], [18, Theo-
rem 7]). For every infinite-dimensional complex
Hilbert space H and every Q ∈ V(H), Q 6= 0
it holds:
(1.) The interval

(
[0, Q]V(H);⊕Q, 0, Q

)
where A ⊕Q

B = A + B iff A + B ≤ Q, for any A,B ∈
[0, Q]V(H), is an effect algebra and MQ ={
ωx | x ∈ D(Q), (x,Qx) > 0

}
is an order-

ing set of states on [0, Q]V(H); here the map-
ping ωx : [0, Q]V(H) → [0, 1] ⊆ R is de-
fined for every A ∈ [0, Q]V(H) by ωx(A) =
(x,Ax)
(x,Qx) .

(2.) The effect algebra
(
[0, Q]V(H);⊕Q, 0, Q

)
can be embedded into the standard
Hilbert effect algebra E

(
l2(MQ)

)
. We

denote the respective embedding by
ϕQ.
Therefore we obtain the following theorem that

boundedness (self-adjointness, closedness, essential
self-adjointness, Friedrichs’ extension) of operators
need not be preserved by effect algebraic isomor-
phisms.
Theorem 4.4. For every infinite-dimensional com-
plex Hilbert space H and every Q ∈ V(H), Q 6= 0
unbounded (unbounded and non self-adjoint, un-
bounded and non closed, unbounded and non essen-
tially self-adjoint, unbounded and with Q̂ 6= Q re-
spectively) we have an effect algebraic isomorphism
ϕ−1
Q : ϕQ

(
[0, Q]V(H)

)
→ [0, Q]V(H) such that ϕ−1

Q does
not preserve bounded operators (self-adjoint operators,
closed operators, non essentially self-adjoint operators,
Friedrichs’ extension, respectively).
Proof. Clearly, ϕQ(Q) = Il2(MQ) ∈ ϕQ

(
[0, Q]V(H)

)
.

Note that Il2(MQ) is bounded and positive. It fol-
lows that it is also self-adjoint, closed, essentially
self-adjoint and it coincides with its Friedrichs’ exten-
sion. Hence ϕ−1

Q

(
Il2(MQ)

)
= Q, Il2(MQ) is bounded

(self-adjoint, closed, essentially self-adjoint and it co-
incides with its Friedrichs’ extension respectively) in
l2(MQ) and Q is unbounded (unbounded and non
self-adjoint, unbounded and non closed, unbounded
and non essentially self-adjoint, unbounded and with
Q̂ 6= Q, respectively).
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