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Abstract

This thesis focuses on the topic of image or volume registration of data containing tree
and graph shaped structures, with a special focus on medical imaging. The geometrical
information is first extracted from the volumes or images and then used for registration.
We propose a method for the segmentation of trees in images acquired at different time
instances, by enforcing time consistency. This results in an overall improvement of the
extraction accuracy. The method was tested on medical, biological and road images.

The focus of this thesis is finding the alignment between segmented graphs and
trees. We first propose a method called Active Testing Search (ATS) that explores
partial correspondences of branching points of the structures. The method estimates the
probability of partial match correctness based on training data and incrementally grows
these partial matches. The ATS approach was able to align real data from several different
medical imaging modalities, and is robust to initial position, rotation, deformation, missing
data and noise.

The second proposed method is called Graph Matching using Monte Carlo tree search
(GMMC). The approach uses a stochastic state-space search algorithm inspired by the
Monte Carlo tree search method to build a large set of compatible curves. Further
acceleration is achieved by pruning using novel curve descriptors. The method can handle
partial matches, topological differences, geometrical distortion, does not use appearance
information and foes not require an initial alignment. Moreover, our method is very
efficient – it can match graphs with thousands of nodes, which is an order of magnitude
better than the best competing method.

Supervisor: prof. Dr. Ing. Jan Kybic
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Abstrakt

Tato disertační práce se zabývá tématem registrace 2D a 3D obrazů obsahujících
stromové a grafové geometrické struktury, zejména v oblasti lékařství a biologie.

Součástí práce je metoda pro extrakci stromových struktur z časové sekvence obrazů,
kde využití časové koherence zlepšuje přesnost.

Hlavním tématem práce je nicméně hledání korespondencí mezi dvěma geometrickými
grafy či stromy. První navrhovanou metodou je aktivní testování (Active Testing Search
(ATS)), založené na postupném prohledávání stavového prostoru částečných korespondencí.
Metoda funguji i v případech neznámé počáteční pozice, nelineární deformace, chybějících
dat, topologických rozdílů, chyb měření atp.

Druhá navrhovaná metoda je založená na stochastickém prohledávání stavového prostoru
(Graph Matching using Monte Carlo tree search (GMMC)), která je oproti ATS výrazně
efektivnější. Dalšího zrychlení je dosaženo rychlým prořezáním nevhodných dvojic hran
pomocí nově vyvinutých křivkových deskriptorů. Tímto způsobem jsme schopni registrovat
grafy s tisíci uzlů, což o řád lepší, než u jiných existujících metod.

vi



Contents

1 Introduction 1

1.1 Graph matching approach to image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Tree segmentation with time-wise consistency constraints (Chapter 3) . . . . . . 6

1.2.2 Coarse geometrical graph matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Publications related to this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the art 11

2.1 Segmentation of graph and tree structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Single frame methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Multiple frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Matching geometrical features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Point cloud matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Geometrical graph matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Curve matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



3 Tree Segmentation with Time Consistency 19

3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Reconstruction without Time Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Reconstruction in all Images Simultaneously . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Building Spatio-Temporal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Enforcing Temporal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Solving without Time Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Flow Variables and Spatial Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Flow Variables and Temporal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Fine alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.5 Speeding Up the Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Change Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Active Testing Search 43

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

viii



4.3 Coarse Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Greedy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Active Test Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Fine Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.2 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Graph Matching using Monte Carlo Tree Search 67

5.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Transformation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Monte Carlo tree search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Adding a child node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Path descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.1 Tested methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.2 Synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ix



5.5.3 Real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion 97

A Active Testing Search derivation 99

Notation and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Observation Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B Graph Matching using Monte Carlo tree search implementation 105

B.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2 Graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.3.1 Tree contents and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C Graph Matching using Monte Carlo tree search code 115

C.1 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 119

x



Chapter 1

Introduction

The focus of our work is the registration of images with tree or graph-like
structures. This type of structures is pervasive in biomedical 2D and 3D
images. Examples are blood vessels, pulmonary bronchi, or nerve fibers in
medical imaging, and also road networks, plant roots or real trees in other
fields of imaging. They can be acquired at different times and scales, or using
different modalities, which may result in vastly diverse image appearances.
For example, neuronal structures acquired using a light microscope (LM), such
as those in the upper row of Figure 1.1, look radically different when imaged
using an electron microscope (EM) that, as shown in the bottom row of
Figure 1.1. Registering these images is desirable in order to identify the same
region in both images and to combine the specific information each modality
provides, in this case large-scale connectivity from the low-resolution data and
fine details such as dendritic spines from the high-resolution data. Another
example are brain blood vessels obtained using two-photon microscopy and
bright-field optical microscopy as shown in Figure 5.17. Similarly as the
previous application, the modalities provide different information on the
observed vessels. An example of using graph shaped structures to register
information outside of the medical imaging field is aerial image localization
by matching detected roads to map networks, as showed in Figure 5.1.

We wish to propose a general method which can register very large images
containing geometrical graph structures obtained using the same or different
types of acquisition techniques. The size of the graphs in the images can be in
the range of tens of thousands of vertices, and therefore the method should be
able to efficiently match very large structures. The kind of drastic appearance
changes as listed above make it impractical to use registration techniques that
rely on maximizing image similarity [79, 110] – in particular, when the images

1



1. Introduction .....................................

(a) (b) (c) (d)

Figure 1.1: Brain tissue at different resolutions. (a) Image stack acquired
using a two-photon light microscope from live brain tissue at a 1 micrometer
resolution and a smaller area of the same tissue imaged using an electron micro-
scope, at a 20 nanometer resolution. The orange box in the top image denotes
the area from which the EM sample has been extracted. (b) Semi-automated
delineation of some dendrites overlaid in magenta and manual segmentation of
an axon overlaid in green and a dendrite in yellow. (c) The segmented structures
on a black background. Since the resolution is much higher in the EM data,
dendritic spines and synapses are clearly visible. (d) Graph representation of
the neuronal structures. The red dots represent vertices and the white dots are
sampled points along each edge.

are very different and when dealing with thin structures, such as blood vessels
or neuronal fibers. The lack of distinguishing features of individual branching
points or edges makes the use of feature-based correspondence techniques
equally impractical [110]. We therefore propose to first detect the graph-like
structures and then register the resulting graphs. Since the geometrical and
topological structure may be the only property shared across modalities,
graph or point cloud matching becomes the only effective registration means.
This also includes subgraph matching when the images have been acquired
at different resolutions with a different field of view.

Most existing techniques that attempt to match geometrical graphs rely on
matching Euclidean or geodesic distances between graph junction points [29,
45, 92]. The methods are usable when the transformation is locally close to
rigid, such as for pulmonary vessels, which undergo a smooth deformation, or
retinal fundus images that show only slight non-linearities produced when
the curved surface of the retina is viewed from different viewpoints. Also
when dealing with images acquired using distinct modalities and at different
resolutions, the acquired structures exhibit significant topology changes, for
example, due to the failure of one of the methods to display parts of the

2



..................... 1.1. Graph matching approach to image registration

structure. Similarly, large non-linear deformations may occur because we
work with a living specimen and the acquisitions are separated in time or
because the deformation is introduced by the sample preparation or handling
process. We know of no other graph matching method apart from our own
method that can simultaneously handle all issues related to this kind of data,
i.e. with the presence of

. Non-linear deformation – the difference in time and possible acquisition
technique generally causes the transformation to be non-rigid.. Unknown initial position – especially when the graphs are extracted
using different approaches, the structures may not be roughly aligned in
space and therefore the method should be rotation independent.. Lack of distinguishing local features.

Graph and point cloud matching has been used in many applications for
image registration. In retinal fundus photography, it is possible to match
the branching points [17] but also the complete vessel graphs [108, 29]. Tree
matching has been used for matching 3D lung structures [78, 49] and also blood
vascular systems [18]. Graph matching has been applied in the registration of
volumes of neuronal networks and brain blood vessels [87]. Nonetheless, there
is not a universal approach which would be able to efficiently and accurately
register all types of images independently of the application.

We propose a method which registers these images by accurately matching
the segmented graph-like structures. Our approach is scalable for graphs
with a large number of elements [51] – in the case of large volumes of brain
networks we are able to match graphs with up to 10,000 vertices.

1.1 Graph matching approach to image
registration

We propose to register images or volumes by first extracting geometrical from
both images the graph structures we assume to be present in the images
(the Segmentation step in Section 1.1.1), which we represent by graphs.
We then find matches between the graphs to obtain a coarse alignment, i.e.
a rough estimate of the alignment or transformation (the Matching and
coarse alignment step), and then finely tune the alignment to obtain the

3



1. Introduction .....................................
complete alignment of the whole graph, including individual edge points (the
Fine alignment step). If necessary, the deformation is then extrapolated to
all image points. An example of these steps is shown in Figure 1.2. We now
define each task separately.

1.1.1 Problem definition

Segmentation

Given two D-dimensional images or volumes, the task is to segment the
graph-like structures present in the images. The resulting segmented graphs
are represented by GA and GB where each of the graphs is G = (V,E) where
the vertices V are points in RD, and the edges E ⊆ V ×V are associated
with curves connecting the two incident vertices. This is a generalization of
a geometric graph [35]. For more information, see Section 3.1.

Graph matching and coarse alignment

The graphs GA and GB obtained from segmentation are assumed to be related
by a geometrical transformation T : RD → RD. Additionally, the removal
or addition of subgraphs can occur. The task of graph matching is to find
T and a matching MV ⊆ VA ×VB, ME ⊆ EA ×EB between vertices and
edges of the graphs. In fact, it is possible to estimate T from the matching
and therefore throughout this thesis we focus on finding MV and ME, while
an estimate of T will be available as a by-product.

Fine alignment

Given the graphs GA and GB and their matching MV, ME, we can infer T
and consequently obtain an approximate alignment T (GA) of GA onto GB,
which aligns all matched vertices. The task of fine alignment is to locally
align T (GA) to GB, so that also the edge points are individually aligned.

See Figure 1.2 for a depiction of the steps.

4



..................... 1.1. Graph matching approach to image registration

Original images

Segmentation

Matching

Coarse alignment Fine alignment Registered images

Figure 1.2: Simplified example of the complete steps for image registration using
graph matching. The retinal photography images are acquired with different
orientations of the eye [29].
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1. Introduction .....................................
1.2 Contributions of this thesis

This thesis contributes to the first two steps described above. Some of the
work was done in collaboration with others, see Section 1.2.3 for details.

1.2.1 Tree segmentation with time-wise consistency
constraints (Chapter 3)

We propose a new method for the segmentation of tree structures evolving
in time [44, 43]. We describe the approach in detail in Chapter 3, which is
based on the text of our submitted article [43].

For this particular work, we assume that we are given N images for the
segmentation step, and we assume our structures to be trees. Besides the
segmentation, the task is to find differences between the trees, which are
assumed to be minor.

The approach builds upon an earlier work, based on [97]. The method pro-
poses to enforce time consistency in order to improve the overall segmentation
accuracy. This is achieved by considering the various trees at different time
instances together, where connections are made between corresponding points
consistently detected in the volumes. These connections are then considered
in the optimization process to enforce these time-consistent detections.

We show experimentally that our approach successfully takes advantage of
temporal information to produce more reliable and accurate reconstructions
of tree structures. In addition, we show that the approach has the added
benefit of automatically detecting regions where significant topology change
occur in tree structures.

1.2.2 Coarse geometrical graph matching

We have developed two methods for the graph matching step – ATS and
GMMC.

6



.............................. 1.2. Contributions of this thesis

Active Testing Search (Chapter 4)

Active Testing Search (ATS) is described in detail in Chapter 4. The text of
Chapter 4 is strongly based on our article [89], where the biggest difference is
the unification of notation with the remainder of this thesis. As a baseline,
we use a method based on greedy search, described in [87]. The Active
Testing Search coarse alignment algorithm was also published as a conference
paper [77].

ATS [77, 89] prioritizes between partial matches during the search using
several match quality descriptors. It uses training data to learn distributions
of scores from true and false partial matchings. At runtime, it ranks different
matchings by calculating the likelihood of the matching being a true solution.
The method automatically gives priority to more likely matchings, expanding
them with more correspondences to find a larger set of correspondences. The
matchings with a score indicating a probably incorrect solution are kept, but
with a low priority, allowing the possibility of backtracking.

Similarly an earlier method [87], the approach for predicting a transforma-
tion T given a set of partial correspondences is based on Gaussian Processes,
and an algorithm for fine alignment is also presented. In [77] we proposed
a new search algorithm for coarse matching which speeds up significantly the
performance and in [89] we present further improvements on the approach
and also significantly extend the experiments done with the method, including
various synthetic and medical datasets.

We show that our algorithm can match graphs with neither appearance
information nor initial pose estimate being available, while allowing for partial
matches and non-linear deformations.

Graph Matching using Monte Carlo Tree Search (Chapter 5)

The second graph matching algorithm we have developed is called Graph
Matching using Monte Carlo tree search (GMMC) which is described in
Chapter 5. The text is strongly based in the text of our submission [76] –
only some notation was unified and more visual results are included. There
are two separate contributions – a new curve descriptor and a tree search
algorithm based on the Monte Carlo tree search.

7



1. Introduction .....................................
The curve descriptors are used to evaluate compatibility between edges and

sets of consecutive edges of two different graphs in order to quickly prune the
search. Our path descriptor is based on an implicit Lipschitz transformation
model. We show that our descriptor performs better than competitive curve
descriptors.

We propose a tree search algorithm inspired by the Monte Carlo tree
search to efficiently explore the search space, using the set of compatible
paths [75]. The search algorithm is restricted on growing the matching using
only adjacent edges, taking advantage of the exploration versus exploitation
balance of the Monte Carlo method to quickly obtain a solution, even when
matching large graphs with thousands of vertices. A preliminary version of
the algorithm was described in a short paper [75].

GMMC is able to match all our tests, while the competing methods fail.
It is also faster than competing methods. Particularly in the road datasets,
where the search space is considerably larger, ATS (as well as other competing
methods) is not able to obtain a solution, while GMMC quickly obtains a large
match.

1.2.3 Publications related to this thesis

Tree segmentation with time-wise consistency constraints (Chapter 3).

. Przemysław Głowacki, Miguel Amável Pinheiro, Engin Türetken, Raphael
Sznitman, Daniel Lebrecht, Jan Kybic, Anthony Holtmaat, and Pascal
Fua. Reconstructing evolving tree structures in time lapse sequences.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3035–3042, 2014. [44]
Authorship 35-35-6-6-6-6-3-3. Przemysław Głowacki, Miguel Amável Pinheiro, Agata Mosinska, Engin
Türetken, Daniel Lebrecht, Raphael Sznitman, Anthony Holtmaat, Jan
Kybic, and Pascal Fua. Reconstructing evolving tree structures in time
lapse sequences by enforcing time-consistency. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2015 (submitted). [43]
Authorship 35-20-15-6-6-6-6-3-3
Impact factor 6.077

The author of this thesis developed the contents described in Section 3.2
where a Gaussian Processes Regression is used to predict which vertices of

8



.............................. 1.2. Contributions of this thesis

the graph have correspondences in other images. The author also developed
the fine alignment algorithm to detect differences in the segmented trees,
described in 3.3.4.

Active Testing Search (Chapter 4).

.Miguel Amável Pinheiro, Raphael Sznitman, Eduard Serradell, Jan
Kybic, Francesc Moreno-Noguer, and Pascal Fua. Active testing search
for point cloud matching. Information Processing in Medical Imaging,
pages 572–583, 2013. [77]
Authorship 50-15-15-15-3-2. Eduard Serradell, Miguel Amável Pinheiro, Raphael Sznitman, Jan
Kybic, Francesc Moreno-Noguer, and Pascal Fua. Non-rigid graph
registration using active testing search. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 37(3):625–638, 2015. [89]
Authorship 40-40-8-8-2-2
Impact factor 6.077

The author of this thesis has a direct contribution in all the work described
in the conference paper introducing ATS [77]. The journal paper is the result
of the merge of the earlier paper [87] with our paper [77], and also extended
experiments, where accuracy results were produced using ATS and time
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Chapter 2

State of the art

Let us review the existing work related to the topic of this thesis, i.e. graph
structure segmentation, registration, graph matching and curve descriptors.

2.1 Segmentation of graph and tree structures

The task is to segment geometrical tree structures present in given images.
This is the first step to register images using geometrical tree or graph-shaped
structures.

2.1.1 Single frame methods

For most automatic reconstruction techniques of tree-like structures, the
process begins by estimating a local measure of tubularity, i.e. the likelihood
that a point sits along the centerline of a tubular structure [32, 54, 67].
Matched filters [2, 109], Hessian and Oriented Flux functionals [39, 56, 57, 83],
and classification scores derived from steerable filter responses [48, 52] have
all been used for this purpose.

These tubular measures are then used within a search or optimization
framework to reconstruct the tree structures image by image. In this context,
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2. State of the art....................................
the search techniques come in one of two forms, either local or global. Local
methods reconstruct the tree structure piece by piece in a greedy fashion,
making them extremely efficient [2, 5, 101] but less robust to image noise and
prone to errors when there are large gaps separating filaments. Conversely,
global methods optimize the entire tree in one shot making them more
computationally demanding but also more robust. This typically involves
connecting high tubularity points to form a weighted graph and then finding
a tree within that graph by optimizing an objective function. This last step can
be done using Minimum Spanning Trees (MST) [37, 101, 109], Shortest Path
Trees (SPT) [73], k-Minimum Spanning Trees (k-MST) [98], or Quadratic
Mixed Integer Programming (QMIP) [97].

Local search methods

This type of methods make greedy decisions about which segments of the tree
to retain based on local image evidence. They include methods that segment
and skeletonize the tubularity image [103, 58, 80], and active contour-based
methods, which are initialized from it [15, 100, 24]. Such methods have been
shown to be effective and efficient when a very good segmentation can be
reliably obtained. In practice, however, they tend to be prone to errors caused
by noise and imaging artifacts.

Another important class of local approaches involve methods that start from
a set of seed points and incrementally grow branches by evaluating a tubularity
measure [16, 2, 5]. High tubularity paths are then iteratively added to the
solution and their end points are treated as the new seeds from which the
process can be restarted. These techniques are computationally efficient
because the tubularity measure only needs to be evaluated for a small subset
of the image volume near the seeds. However, these approaches typically
require separate procedures to detect branching points. Furthermore, due to
their greedy nature, imaging artifacts and noise can produce local tracing
errors that propagate. This often results in large morphological mistakes,
especially when there are extended areas where image signal to noise ratio is
poor.

Global Search Methods

Global methods aim at greater robustness by optimizing a global objective
function over a graph of high-tubularity seed points [98] or superpixels [104].
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........................2.1. Segmentation of graph and tree structures

Typically, they compute the tubularity measure everywhere. Although this is
more computationally demanding, it can still be done efficiently in Fourier
space or using GPUs [56, 57, 31]. An example of a global method is a Markov
Chain Monte Carlo algorithm class [36, 93]. These methods explore the
search space efficiently by first sampling seed points and linking them, and
then iteratively adjusting their positions and connections so as to minimize
their objective function. However, the algorithms presented in [36, 93] while
producing smooth tree components in general, do not necessarily guarantee
spatial connectivity of these components.

Some graph-based methods use user-specified roots. The methods connect
neighboring seed points by paths that follow local maxima of the tubularity
measure. This defines a graph whose vertices are the seeds and edges are the
paths linking them. The edges of the graph are assumed to form an overcom-
plete representation of the underlying graph structures. The final step is to
build a solution by selecting an optimal subset of the candidate edges.

Many existing approaches weigh the edges of this graph and solve some
variant of a minimum-weight tree problem. Algorithms that find a Minimum
Spanning Tree (MST) [38, 109, 101] or a Shortest Path Tree (SPT) [73] belong
to this class. Although efficient polynomial-time algorithms exist for both
SPT- and MST-based formulations, these approaches suffer from the fact that
they must span all seed points, including some that might be false positives.
As a result, they produce spurious branches when seed points that are not
part of the tree structure are mistakenly detected, which happens often in
noisy data.

The structures can also be obtained locally using tracking by particle
filtering [30]. The segmentation is then obtained by global supervised seed
clustering.

The k-Minimum Spanning Tree (k-MST) formulation [98] addressed this
issue by posing the problem as one of finding the minimum cost tree that spans
only an a priori unknown subset of k seed points. It relies on a heuristic search
algorithm and two objective functions, one for searching and the other for
scoring, without guaranteeing the global optimality of the final reconstruction.
Furthermore, it requires an explicit optimization over the auxiliary variable k.
By contrast, the Integer Programming formulation introduced in [97] involves
minimizing a single global objective function that allows us to link legitimate
seed points while rejecting spurious ones by finding the optimum solution to
within a small user-specified tolerance.

All the MST and SPT approaches rely on local tubularity scores to weight
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2. State of the art....................................
the graph edges. For example, global methods that rely on geodesic distances
express this cost as an integral of a function of the tubularity values [62,
109]. Similarly, active contour-based methods typically define their energy
terms as such integrals over the paths [101, 57]. Since integrals amount to
averaging, such measures are not particularly effective at ignoring paths that
take shortcuts through the background [98]. Moreover, because the scores
are computed as sums of values along the path, normalizing them so that
paths of different lengths can be appropriately compared is non-trivial. By
contrast, the path classification approach introduced in [97] returns much
more discriminative probabilistic costs, which can be compared for paths of
arbitrary length.

2.1.2 Multiple frames

Existing strategies generally reconstruct structures one image at a time.
Using temporal information to enforce time-consistency has not yet to be
exploited for the purpose of tree structure reconstruction, as we propose
in our approach described in Chapter 3. Nonetheless, such a technique are
commonly used in other applications such as in tracking multiple people [9],
tracking dendritic spines in time-lapse microscopy [63], or segmentation and
tracking in echocardiographic sequences [69].

2.2 Matching geometrical features

Once the geometrical features such as points, curves or graphs are detected
in the images, the task is now to match them between the images to be
registered.

2.2.1 Point cloud matching

Point clouds are sets of points in the Euclidean space. We define point
cloud matching as the task of finding a set of correspondences MX and
a transformation T between two sets of points XA and XB, where XA =
{xA1 , · · · ,xA|XA|} is a set of points in RD and similarly for XB, and T (xAi ) ≈
xBj , if (xAi ,xBj ) ∈MX.
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............................. 2.2. Matching geometrical features

If the number of degrees of freedom of the geometrical transformation
T being sought is small, its parameters can be recovered by RANSAC [37],
based on randomly sampling partial correspondences MX

C = {(xAl ,xBl )}1≤l≤C ,
where C is a small number (depending on the transformation model used)
and fitting the geometrical model to them. Many improvements to RANSAC
have been proposed [23], such as Guided-MLESAC [95] or PROSAC [26].
When appearance information is not available to reduce the number of
possible matches, more sophisticated search strategies have to be used, such
as accelerated hypothesis sampling with information derived from the residual
sorting [20]. The advantage of RANSAC-like approaches is that it does not
require initialization but its computational complexity grows sharply with
more general deformation models.

Another class of point matching algorithms is represented by the Iterative
Closest Point (ICP) [10], which alternatively identifies closest points and
updates the deformation parameters until convergence. There are variants of
ICP that increase robustness [72, 19] or employ non-linear transformations [3,
61] such as thin-plate splines [25]. The softassign algorithm [46] constraints
the types of transformations and uses a soft assigning on correspondences
to obtain a matching. Shape context [7] analyzes the local distribution
of points to obtain a matching between points. The Coherent Point Drift
(CPD) method [71] uses probabilistic assignment based on Gaussian mixture
models between point pairs. It introduces a fast algorithm based on the
expectation maximization algorithm which results on an optimization close
to linear complexity. As we see further on, in our experiments (Section 5.5)
it is the method which is the fastest and with the best time complexity of
the previously presented methods, which are tested against our approaches.
These methods are fast and can handle large number of points but nonetheless
require a good initial estimate of the transformation.

2.2.2 Geometrical graph matching

Geometrical graph extends a point cloud with edges connecting the points. By
representing the segmentation with geometrical graphs, we can use information
such as connectivity or curvature. Geometrical graphs are graphs G = (V,E)
where to each vertex vi ∈ V we associate a point in RD and where each edge
ej ∈ E is associated with a continuous curve ζej : I → RD connecting two
vertices, where I = [0, 1]. Throughout this thesis, we will occasionally refer
to geometrical graphs simply as graphs, even though we do not mean to refer
to classical graphs which do not have any geometrical interpretation. The
task of geometrical graph matching is defined in Section 1.1.
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2. State of the art....................................
Graph matching can be formulated by considering compatibilities between

edges or vertices, for example by comparing their Euclidean or geodesic
distances [92, 29] or neighborhood similarity [47]. Matching can be then
approached as finding an approximate minimum vertex cover of pairwise
consistent matches [34], or maximum weighted independent set [88], where the
cost reflects the dissimilarity between vertices or edges. The algorithms are fast
as long as the transformation can be estimated using a low number of vertex
or edge pairs, which is in practice only possible for rigid transformations
or using very discriminative appearance descriptors. The vertex or edge
compatibility criteria can be also used to prune the list of possible matches.

Binary compatibilities between vertex pairs can be relaxed to real-valued
affinities, which leads to an integer quadratic program (IQP). The problem is
formulated as follows

x∗ = arg max
x

xᵀWx, x ∈ [0, 1]|VA||VB |, (2.1)

∀j
|VB |∑
i=1

xij ≤ 1, ∀i
|VA|∑
j=1

xij ≤ 1,

where x are the correspondences between the graphs and W is an affinity
matrix where each element represents an affinity value between two pairs of
points from the different graphs. The affinity value usually try to preserve
Euclidean or geodesic distances [29], but can also include other descriptors
such as SIFT descriptors [92] when local appearance is consistent. This type
of formulation can be solved by spectral techniques [85, 59], spectral matching
with affine constraints [27], iterative projections [60], random walks [22], dual
decomposition [96] or path following algorithms [108]. These methods are
mathematically elegant but even the most advanced ones cannot handle more
than a few tens of vertices.

Topological differences are common in graphs created by segmentation of
real data. Most algorithms can only handle missing nodes or edges; more
general cases can be handled by graph edit distance minimization [68] at the
expense of increased computational complexity.

Search methods which hypothesize different partial matching between
graphs, similarly to RANSAC, were also proposed for graph matching.
A greedy search can be used by considering adjacent vertices pairs to partially
grow the matching [87]. This greedy expanding approach uses also consistency
in Euclidean and geodesic distances between the elements of the matchings
to prune the search. The matches are also checked using a Gaussian Pro-
cesses Regression [82] which parametrizes the nonlinear transformation and
evaluates the match.
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............................. 2.2. Matching geometrical features

2.2.3 Curve matching

By representing the segmented structures as curves in Euclidean space, we
can then find similarity features such as curvature or length. We use these
curve descriptors to establish whether two edges are similar or compatible in
Euclidean space, which is very useful for pairing the search space, becoming
therefore a subtask of our geometrical graph matching.

A simple but computationally demanding method consists of first aligning
the curves using a chosen family of transformations and then calculating the
residual Euclidean distance [72, 89] or the Frechet distance [14].

Descriptors of curve segments invariant to similarity transformations can
be established [64], they can be based on angle [1] or curvature [105, 28].
In [41], the authors present an affine-invariant descriptor for a curve, based
on curvature and high order derivatives. Other path descriptors use image
information such as gradient to build a descriptor [102].

Curves can be assumed to match completely or partially. In the latter case,
the match can be found by iterative closest point algorithm [72], dynamic
programming [86] or the Hungarian method for the assignment problem [89].
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Chapter 3

Tree Segmentation with Time Consistency

We propose a novel approach to reconstructing curvilinear tree structures
imaged at different points in time such as 2D aerial images of road networks
or growing plants, or 3D brain microscopy stacks. In order to utilize temporal
consistency constraints we take a global approach of processing a sequence of
images all at once, as opposed to the traditional way of reconstructing tree
structures in each image independently.

The problem can be formulated as a Quadratic Mixed Integer Program
and solved using off the shelf optimization engines. We demonstrate the
additional robustness that comes from utilizing all the available visual clues
at once as compared to single-frame oriented methods. The presented method
is also more robust and handles time-consistency in a more global way than
another multi time-frame method, to the best of our knowledge the only one
published so far. In case of datasets where the imaged structure undergoes
some local changes over time, the presented method has the added benefit of
detecting those changes in an automated way.

This chapter is strongly based on the text of the paper [43]. Several images
were enlarged and some notation was changed to unify with the rest of the
thesis.
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(a) (b) (c) (g)

(d) (e) (f) (h)

Figure 3.1: Reconstruction and automatic change detection using a time-lapse se-
quence for growing runner bean. (a, b, c) Original images. (d, e, f) Reconstructed
trees in each one of them. (g, h) The horizontal green lines represent temporal
edges between their vertices. This figure, as well as most of the subsequent ones,
is best viewed in color.

3.1 Approach

For many tree structures that evolve over time, significant changes from one
frame to the next tend to be fairly localized, while the general topology and
geometry remain relatively stable up to minor local deformations. Consider,
for example, the plant of Fig. 3.1, whose branches are growing over time.
In images taken at sufficiently long time intervals, there may be significant
changes at the tips of existing branches while the rest remains largely un-
changed. The same principle applies in the case of the neuronal network of
Fig. 3.2 captured in vivo at intervals of a week. Most of the structure is
preserved over time, except for a few branches that have either grown to form
new connections, retracted or moved to new positions. To exploit the overall
consistency while allowing some degree of change, we propose the following
approach.

Given N D-dimensional images I = {In}Nn=1 taken in sequence and showing
evolving tree structures, our goal is to reconstruct a number of trees in each
individual image such that they collectively form a temporally consistent
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sequence. By this, we mean that branches do not appear or disappear
randomly and the topology is preserved from one time frame to the other.
As a starting point, we find corresponding points across images and use them
as nodes of a graph whose edges can either connect to nodes within the
same image or to other images. As in [97], the final set of trees can then be
reconstructed by solving a QMIP problem.

In the remainder of this section, we first briefly describe the method of [97].
We then discuss how to extend it to take into account both local and global
temporal-consistency constraints.

3.1.1 Reconstruction without Time Consistency

The method of [97] was designed for reconstructing tree-like structures in
single images. For a given image I, a local scale-space tubularity measure
is computed for every pixel, in the case of 2D data, or voxel, in the case
of 3D data, using the oriented flux cross-section trace measure [56]. It
expresses how likely it is that a given spacial position lies on a centerline of
a tubular structure of a specific radius. A set of evenly distributed sample
points X = {xi} is selected by first thresholding the tubularity image and
then iteratively choosing the highest tubularity point and suppressing its
neighborhood until no non-zero tubularity points are left. A number of
tree roots are also manually annotated by a human operator. A spatial
graph, G = (X , Es), is then built taking the manually annotated roots and
automatically selected sample points as vertices. Every two vertices that are
close to each other are connected by two oppositely directed edges. For every
pair of consecutive edges eij , ejk ∈ Es in the graph a probability score pijk is
computed to assess how likely it is that the underlying tubular path is indeed
part of the solution.

The final reconstruction is then obtained by choosing a subset of edges from
the graph G that forms the most likely set of trees. Formally, the problem
is formulated as a quadratic mixed-integer program (QMIP) with binary
variables yij indicating whether the edge eij is part of the solution. A set of
constraints adapted from [33] ensures that the result truly is a set of trees
emanating from the manually annotated root vertices.
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(a) (b) (c)

(d)

(e) (f)

Figure 3.2: Key steps of the algorithm, best viewed in color. (a) Maximum
intensity projection of one of three in vivo image-stacks of a neural network
taken at one week intervals. (b) Corresponding tubularity image. (c) Maxima
of tubularity selected as graph nodes in two different stacks. Those shown in
green have been determined to correspond to the same location in both, while
those in red or blue appear in only one. (d) Connecting neighboring nodes by
high-tubularity paths produces a spatial graph in each image. High-quality paths
are shown as red while low quality ones appear as blue. (e) Connecting the
corresponding vertices across images turns the spatial graphs into a single spatio-
temporal one and solving the corresponding QMIP problem yields two temporally
consistent trees. (f) The red tree from the first image can be deformed and
superposed on the blue tree in the second one, making the changes highlighted
in red easy to detect.

3.1.2 Reconstruction in all Images Simultaneously

When dealing with sequences of images depicting the same region of inter-
est at different time points one can process them step by step using the
approach described above. This, however, ignores constraints arising from
temporal consistency. To account for them, we perform the initial sampling of
tubularity images at all time instances simultaneously while trying to match
corresponding sample points between consecutive images. We then create
a spatio-temporal graph comprising all the sample points in all time points,
such as the one depicted in Fig. 3.3. For convenience we connect all of them
to an imaginary root vertex shown in gray at the bottom of the figure. This
choice is explained in more detail in the next section. In addition to creating
spatial edges connecting neighboring vertices in specific images we also create

22



...................................... 3.1. Approach

Figure 3.3: An example spatio-temporal graph. The imaginary root vertex xr

is presented in gray at the bottom. Each of the three time points contain two
manually annotated physical roots marked in red and green. The vertices for
which correspondences where not found in adjacent time points are represented
by white circles with dashed borders. The other vertices are represented by
colored circles. The temporal edges Et are not explicitly presented to avoid
clutter. Instead, vertices for which correspondences were found are marked with
matching colors. The dotted arrows represent the imaginary edges from xr to
the physical roots. The double-sided arrows between vertices in each time point
represent the two oppositely directed spatial edges between neighboring vertices.
Spatial edges that are part of the corresponding edges set Ēt are marked with
solid lines. Other spatial edges are marked with dashed lines.

temporal edges between matching vertices in consecutive images. Instead of
searching for the most probable set of trees in every image independently,
we reconstruct them simultaneously and look for trees whose topology is
consistent across time.

In our earlier approach [44], we enforced consistency by encouraging so-
lutions in which corresponding edges in two consecutive time frames were
either both present of both absent from the final solution. This accounts for
the fact that it is unlikely for spatial edges to appear and disappear randomly
throughout a time series. However, this remains a very local constraint. Here,
we enforce a longer-range form of consistency by traversing broader vertex
neighborhoods and trying to encouraging the persistence of their topology
over time. As we will see, this can also be expressed as a QMIP and solved
using off-the-shelf optimization software. In the end, a fine alignment may be
performed to detect actual changes in the tree.

To achieve this, our approach goes through the following steps:..1. Find graph nodes in individual images as tubularity maxima and corre-
sponding nodes in other images, as in Fig. 3.2(b-c)...2. Build a spatio-temporal graph such as the one depicted in Figs. 3.2(d)
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and 3.3 by linking nodes both within images when they are close enough
and across images when they match...3. Solve an extended QMIP problem to find a set of trees whose local
topology is temporally consistent, such as those of Fig. 3.2(e)...4. Align these trees spatially to identify places where substantial changes
have occurred, as can be seen in Fig. 3.2(f).

In the following two sections, we first describe the construction of our
spatio-temporal graphs in more detail. We then define our QMIP problem
and the corresponding objective function.

3.2 Building Spatio-Temporal Graphs

The first step in building our spatio-temporal graph is to find corresponding
nodes across images, such as those shown in Fig. 3.2(c). We assume that
there may be some non-linear deformation from one image to the next but
that it is smooth.

Finding an Initial Set of Correspondences. We first use the Scale-
Space Distance Transform method of [91] to compute a tubularity measure
in each image independently.

Then, for m = 1, . . . ,M iterations, we find the point xnm that maximizes
tubularity across all images, where n refers to the image in which it was
found. Then for each of the remaining images I n̄ ∈ I\In, we compute the
Normalized Cross Correlation (NCC) score of a square or cubic patch centered
on a point xnm and a neighborhood of locations around xn̄m. Within each
evaluated neighborhood, we associate the location xn̄m with the maximum
computed NCC score provided it is above a given minimum threshold. From
this set, we keep all the consecutive pairs of points {xn′m ↔ xn′+1

m }1≤n′≤N−1
as correspondences, as illustrated by the green points of Fig. 3.2(c). Once
computed, the tubularity is set to zero in both the neighborhood of xnm and
that of the corresponding points. The procedure is then iterated until the
tubularity of the selected point xnm is below a certain value.

Enforcing Geometric Consistency. The procedure described above
relies solely on the NCC scores computed locally and does not guarantee that
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Figure 3.4: Iterating until a stable correspondence set has been found. (Ini-
tialization) A set of corresponding points with possible inconsistencies in the
transformation model is found in each image using high-tubularity locations
and NCC. (Iteration #1) A set of corresponding points (shown in green) with
the highest tubularity likelihoods has been selected, which are then used to
instantiate a GPR that maps the remaining red points in image n to the red
locations in image n+ 1. The blue points in image n+ 1 that are close enough
to these red locations and correlate well with the original red points in image n
are taken to form new correspondences. (Iterations #2 and #3) They are added
to the set of correspondences, shown in green. The process is then repeated.

the displacements of neighboring points are spatially consistent with each
other. To enforce this and remove potential mismatches, we use a Gaussian
Processes Regression (GPR) [82] to remove correspondences that are not
consistent with a non-linear but locally smooth deformation model.

Hence, to find a geometrically consistent set of correspondences Sn between
images In and In+1, we first select from our correspondences a set S0

n =
{xnl ↔ xn+1

l }1≤l≤L of the L points with the highest average local tubularity.
In the example of Fig. 3.4 (Iteration #1), the selected xnl points are shown
in green. We treat S0

n as being a reliable set and use the GPR to estimate
the mean and covariance of the location of a point xn in In+1. This can be
computed as

mS0
n
(xn) = k′Γ−1

S0
n
Xn+1
S0
n

, (3.1)

σ2
S0
n
(xn) = k(xn,xn) + β−1 − k′Γ−1

S0
n
k ,

where k is a kernel function that implicitly defines a mapping composed of
an affine and a non-linear transformation as in [87, 106], β−1 is a measurement
noise variance, ΓS0

n
is the L × L symmetric matrix with elements Γi,j =

k(xni ,xnj ) + β−1δi,j , k is the vector [k(xn1 ,xn), . . . , k(xnL,xn)]T and Xn+1
S0
n

is
the L×D matrix [xn+1

1 , . . . ,xn+1
L ]T .
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We then add all correspondences that are consistent with this GPR to S0

n.
A correspondence is considered to be consistent if the Mahalanobis distance
between corresponding points xn+1 and mS0

n
(xn) is sufficiently small. This

gives us an augmented set of correspondence S1
n, such as the one depicted by

Fig. 3.4 (Iteration #2). We then repeat the process using S1
n to compute the

regression of Eq. 3.1 and iterate until the set stabilizes, typically after 4 to 5
iterations, as shown in Fig. 3.4 (Iteration #3).

This is performed for each consecutive image pair, which yields sets of points
in each image X n = {xni } and sets of geometrically consistent correspondences
Sn across consecutive images.

Building the Graph. We treat points in all the X n as nodes of our graph
and create two kinds of edges. As in the single-image case of Section 3.1.1,
the spatial edges Ens = {enij = (xni ,xnj )} correspond to edges connecting points
within In and consecutive pairs of such edges are assigned an image-based
probability of being part of the final curvilinear structure. To these, we add
temporal edges Ent = {en,n+1

ij = (xni ,xn+1
j ) | (xni ↔ xn+1

j ) ∈ Sn} that connect
nodes in In and In+1 that belong to the set Sn of geometrically consistent
correspondences.

3.3 Enforcing Temporal Consistency

Given a spatio-temporal graph G = (X , E), where X = {
⋃N
n=1X n} and

E = Es ∪ Et = {
⋃N
n=1 Ens } ∪ {

⋃N−1
n=1 Ent } such as the one discussed in the

previous section, our goal now is to find a subgraph forming a set of trees that
evolve consistently over time. For every image in the sequence, the locations
of the tree roots are provided by an operator and are added to the set of
graph nodes. An additional imaginary root xr is created and connected to
all these root nodes for all time instants. This way, reconstructing the trees
in all images can be achieved by finding the most likely arborescence rooted
in xr.

3.3.1 Solving without Time Consistency

Reconstructing the trees of interest means making a decision which edges
of the graph G should be part of the final solution. To this end, we take
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: These six example graphs illustrate all possible temporal consistency
situations for a pair of corresponding vertices (xm,xm′) and a pair of corre-
sponding edges (eij , ei′j′) in two consecutive time instants. Situations considered
consistent are shown in figures (a) through (d). Inconsisntent cases are presented
in (e) and (f). Note that in the asymmetric cases of (c), (e) and (f) their respec-
tive reverse cases were omitted for clarity. For instance, for the inconsistent case
of figure (e), the reverse situation where the path to xm′ passes through ei′j′ and
the path to xm doesn’t pass through eij would also be considered inconsistent.

a Bayesian point of view as in [97]. Let Y n
ij ∈ {0, 1} be a binary random

variable denoting the presence or absence of the edge enij in the final solution
and Y be the set of all Y n

ij variables. Our goal is to infer the most likely tree
Y .

We could ignore the existence of the temporal edges and directly use the
algorithm of [97]. In this case, computing the optimal tree would simply
amount to solving the maximum a posteriori problem

y∗ = arg max
y∈Y

P (I,X , Es|Y = y) , (3.2)

= arg min
y∈Y

∑
enij ,enjk∈Es

wijky
n
ijy

n
jk, (3.3)

where wijk = − log pijk
1−pijk , pijk is the probability of edge pair (enij , enjk) being
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part of a tubular structure introduced in Section 3.1.1, and Y is the set of all
feasible trees with root xr.

As time consistency is not enforced, this is exactly equivalent to independent
reconstructions in all images, as described in Section 3.1.1.

However, what makes this relevant to our problem is that minimizing the
criterion of Eq. 3.3 under the constraints that the result be a tree can be
done by introducing auxiliary floating point flow variables and imposing
flow constraints that enforce spatial connectivity [33, 97]. This turns the
minimization problem into a Q-MIP, as explained below. In the following
sections, we first describe these variables and then show how can they be
used to also enforce temporal consistency.

3.3.2 Flow Variables and Spatial Connectivity

Given the spatio-temporal graph G = (X , E) introduced above, solving the
minimization problem of Eq. 3.3 amounts to finding a subset E ′s ⊆ Es of edges
that form a tree rooted at node xr that minimizes the objective function.
This implies that there must be exactly one directed path from xr to every
vertex in that solution tree.

To ensure that this is the case, we introduce a set F = {fmij } of variables
called flow variables. Each of those corresponds to one vertex-edge pair
(xm, eij) ∈ X × Es in the graph. If vertex xm is not part of the solution
tree, all the flow variables fmij are set to 0. If it is part of the solution the
value of fmij indicates whether the unique path from the root vertex xr to the
target vertex xm traverses the edge eij or not. In the first case it is set to 1,
otherwise it is set to 0. This way, if the solution is a tree, there is a unit flow
from the root to every target vertex that is part of it. Fig. 3.6 depicts such
a tree.

As shown in [33], the tree connectivity constraints can therefore be enforced
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by minimizing the criterion of Eq. 3.3 subject to∑
xj∈X\{xr}

fmrj ≤ 1, ∀xm ∈ X \ {xr},

∑
xj∈X\{xk}

fmjk ≤ 1, ∀xm ∈ X \ {xr},

∑
xj∈X\{xi,xr}

fmij −
∑

xj∈X\{xi,xm}
fmji = 0, ∀xm ∈ X \ {xr},∀xi ∈ X \ {xr,xm},

fmij ≤ ynij , ∀eij ∈ E , xm ∈ X \ {xr,xi,xj},
fmim = ynim, ∀eim ∈ E ,
fmij ≥ 0, ∀eij ∈ E , xm ∈ X \ {xr,xi},
ynij ∈ {0, 1}, ∀eij ∈ E

(3.4)

where xr is the imaginary root vertex.

During the optimization the edge variables are treated as integers and the
flow variables are treated as real numbers. However, in the end their values
need to be equal to zero or one. As shown in [33], explicitly constraining
the edge variables ynij to be either zero or one is enough to achieve this goal.
This is why our initial integer program turns into a qadratic mixed integer
program (Q-MIP).

3.3.3 Flow Variables and Temporal Consistency

We now turn to enforcing temporal consistency. In our earlier work [44],
this was done by penalizing situations in which binary variables associated
to corresponding edges in different time frames had different values. More
specifically, we introduced a persistence probability q. It quantifies how likely
it is for a pair of corresponding edges (enij , en+1

i′j′ ) ∈ Ēt to both be part of the
solution or to be both excluded from it, as opposed to one being included
and the other excluded. This yields additional terms that are added to
the objective function of Eq. 3.3. Even though it does bring some level of
consistency between reconstructions in consecutive images, it remains very
localized. In the most ambiguous places of the overcomplete graph where
multiple connectivity patterns are possible, it relies heavily on correspondences
being present at crucial locations, which cannot be guaranteed as illustrated
by Fig. 3.7.

Here we show how to use the flow variables introduced in Section 3.3.2
to enforce more long-range consistency. To this end, we first show that
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3. Tree Segmentation with Time Consistency ........................

Figure 3.6: Flows in a graph rooted at vertex r. The arrows represent directed
edges. Those that are part of the solution tree are shown as solid, the others
as dashed. Note that the solution does not necessarily have to span all the
vertices. In this specific case, vertices i and j do not belong to the tree. There
are 11 vertices and 32 edges in this graph, which gives a total of 32 edge
indicator variables yn

ij and 11 · 32 = 352 flow variables fm
ij . For the tree, we have

fg
ra = fg

ac = fg
cg = 1, which creates the unit flow from r to g. All the other fg

..

variables, such as fg
ca, are equal to 0. All the f i

.. and f j
.. variables are also equal

to 0.

this long-range consistency can be expressed in terms of the flow variables
introduced above. We then show that it can be enforced probabilistically by
adding a term that is a function of these variables to the objective function
of Eq. 3.3. We will demonstrate that this significantly improves performance
in the results section.

Modeling Long-Range Consistency

Let us assume that we would like to encourage solutions where any two
corresponding vertices at two consecutive time instants are connected to
the rest of the graph in a consistent manner. In the approach of [44] this
was done in a somewhat local way by penalizing situations in which edges
adjacent to the two corresponding vertices would be included or left out of
the solution inconsistently. By this we mean situations where one of the
edges is included in the solution and the other one left out of it, even though
they both correspond to the same physical path in the underlying image.
Note, however, that we do not forbid completely such situations to allow for
potential changes over time.
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We propose a more global, long-range approach to achieving the same goal.
For any two corresponding vertices in consecutive images consider not only the
edges adjacent to them but all the edges in some larger neighborhood around
them. More specifically, we would like to favour solutions in which the two
paths from the imaginary root vertex to each one of the two corresponding
vertices both pass through corresponding edges or neither one of them does.
This way, we impose the temporal consistency of the solution’s topology
rather than only of its local connections.

Recall that temporal edges between vertices in consecutive time frames
are one of the outputs of our graph construction procedure, as described in
Section 3.2. Let us assume that for any spatially-connected pair of vertices
xni , xnj in image In and another pair of spatially connected vertices xn+1

i′ ,
xn+1
j′ in image In+1 the spatial edge enij corresponds to the spatial edge

en+1
i′j′ provided that (xni ↔ xn+1

i′ ), (xnj ↔ xn+1
j′ ) ∈ Et. In other words, if

for two spatial edges in two consecutive images both endpoints of the one
edge correspond to the endpoints of the other edge according to Et then
we assume that those edges correspond to each other. This way, we define
a set of corresponding edges Ēt. In mathematical terms, we define a set
Ēt = {(enij , en+1

kl )|enij , en+1
kl ∈ Es∧en,n+1

ik , en,n+1
jl ∈ Et} of edge correspondences.

Let xnm and xn+1
m′ be two corresponding vertices in two consecutive images In

and In+1 (i.e. (xnm ↔ xn+1
m′ ) ∈ Et). Let also enij and en+1

i′j′ be two corresponding
edges in the same two images, that is (enij , en+1

kl ) ∈ Ēt. We consider xnm and
xn+1
m′ to be connected to the imaginary root in a temporally consistent way

with respect to enij and en+1
i′j′ if any of the following four configurations arises:

c1) Both xnm and xn+1
m′ are part of the solution and the paths connecting

them to xr traverse the edges enij and en+1
i′j′ respectively, which implies

fmij = fm
′

i′j′ = 1. (See Fig. 3.5(a).)

c2) Both xnm and xn+1
m′ are part of the solution and neither of the paths

connecting them to xr traverses the edges enij and en+1
i′j′ , which implies

fmij = fm
′

i′j′ = 0. (See Fig. 3.5(b).)

c3) Exactly one of the vertices xnm and xn+1
m′ is part of the solution but the

path connecting it to xr does not traverse the respective one of the
corresponding edges enij and en+1

i′j′ , which implies fmij = fm
′

i′j′ = 0. (See
Fig. 3.5(c).)

c4) Neither of the vertices xnm and xn+1
m′ is part of the solution, which implies

fmij = fm
′

i′j′ = 0. (See Fig. 3.5(d).)
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3. Tree Segmentation with Time Consistency ........................
We introduce a temporal consistency parameter q, the probability that any
one of these four situations holds. Conversely, with probability 1− q, one of
the two following inconsistent configurations may arise:

i1) Both xnm and xn+1
m′ are part of the solution but only one of the paths

connecting them to xr traverses the respective one of the corresponding
edges enij and en+1

i′j′ , which implies either fmij = 1, fm′i′j′ = 0 or fmij =
0, fm′i′j′ = 1. (See Fig. 3.5(e).)

i2) Exactly one of the vertices xnm and xn+1
m′ is part of the solution and the

path connecting it to xr traverses the respective one of the corresponding
edges enij and en+1

i′j′ , which implies either fmij = 1, fm′i′j′ = 0 or fmij =
0, fm′i′j′ = 1. (See Fig. 3.5(f).)

Therefore, q is a key parameter of our algorithm and we will discuss its
influence in the results section. Note that the list of the four consistent and
two inconsistent cases is an exhaustive one, i.e. it covers all possible cases;
hence the q and 1− q probabilities.

Augmenting the Objective Function

The posterior distribution of Y given the spatial edges Es and the temporal
edges Et can be expressed as

P (Y = y|I,X , Es, Et) ∝ P (I,X , Es|Y = y)P (Y = y|Et) ,

assuming that the image data and the spatial edges are conditionally inde-
pendent of the temporal edges given Y . As in Section 3.3.1, we can look for
the optimal tree as the one that maximizes this probability. That amounts
to finding

y∗ = arg max
y∈Y

P (I,X , Es|Y = y)P (Y = y|Et) , (3.5)

= arg min
y∈Y

∑
enij ,enjk∈Es

wijky
n
ijy

n
jk

+
∑

(xnm,xn+1
m′ )∈Et

∑
(enij ,e

n+1
i′j′ )∈Ēt

wp
(
2fmij fm

′
i′j′ − fmij − fm

′
i′j′

)
.

where wp = − log q
1−q . Note that the connectivity constraints are the same as

before and can therefore be imposed by performing the minimization under
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the linear constraints of Eqs. 3.4, which are also expressed in terms of the
the ynij and fmil variables. The problem therefore remains a Q-MIP.

In addition to being more global than the method of [44], this approach
has the added benefit of being able to handle cases where the sampling step
returns a lot of sample points that were not assigned correspondences in
adjacent time steps. This is especially important in areas crucial to the
topology of the structure. In case of neurons in 3D brain images the most
prevalent such case would be two branches crossing very near to each other in
the z dimension. In such a setting it is difficult to tell whether they form an
actual branching or not. A simple example illustrating this extra robustness
coming from our approach is shown in Fig. 3.7. The top subfigure presents
a graph with two time steps each one consisting of eight vertices with the
imaginary root omitted for clarity. The dashed circles represent vertices
with no correspondences. The middle and the bottom subfigure represent
two different solutions. While only the one in the middle subfigure looks
temporally consistent they would both be considered consistent by the short
range consistency term due to the missing correspondences between edges
in the critical locations. The long range consistency term would penalize
the solution in the bottom subfigure as several flow variables would be
inconsistent.

In practice, for a given pair of corresponding vertices, it is neither beneficial
nor computationally efficient to include the flow consistency constraints for
every pair of corresponding edges. Imposing it for edges very distant from
the vertex in question might put too much weight on the persistency term
as compared to the image term. It would also produce a vast amount of
quadratic terms in the cost function, which would slow down the computation
considerably. Instead, for a given pair of vertices xnm and xn+1

m′ we only take
into consideration those edges whose distance from the vertex in question is
smaller than some predefined threshold r.

Note that, given the fifth constraint of Eqs. 3.4, the presented method
might be considered a generalization of the one presented in [44]. Namely,
in the extreme case of r = 1 it is completely equivalent to it. Setting the
distance parameter r to values greater than one transforms the method into
its more robust counterpart.
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3.3.4 Fine alignment

After obtaining the final delineations in all time instants, the iterative GPR
method introduced in section 3.2 can be applied once again to perform fine
alignment of the solution trees and automatically detect possible changes.
For every pair of consecutive time instants In and In+1 we take the set of
matching seed points retained in both instants to be the initial reliable set
of matchings S0

n. We also sample some additional uniformly distributed
points from the paths of the solution trees and treat them as the candidate
points for matching. We then iterate the GPR estimation and matching until
convergence. Sequences of points without correspondences are then detected
as potential differences between time instants.

3.3.5 Speeding Up the Computation

The path from the imaginary root to any vertex xnr of the spatio-temporal
graph cannot pass through edges residing at time steps different from In.
Therefore, it is easy to predict that all of the respective flow variables will be
equal to zero for any valid solution and it is unnecessary to introduce them
at all. Removing them from the problem together with any constraints that
might involve them results in an equivalent yet simpler optimization. This
usually reduces the time and memory needed to solve it and of course does
not affect the quality of the solution.

3.4 Results

We first present the three very different image datasets we used to test our
approach. We then show that enforcing time-consistency allows us to improve
overall performance.

3.4.1 Image Datasets

We evaluated our method on 3D 2-photon images of axons in the brain of
a mouse and on aerial images of the same area take in different years and
seasons.
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(a)

(b)

(c)

Figure 3.7: A small example graph with two time steps each one consisting of
eight vertices. The imaginary root is omitted for clarity. The root vertices in the
two time steps are labelled a, b and a′, b′ respectively. The solid circles represent
vertices for which correspondences have been successfully established and the
corresponding vertices are represented with matching colors. The dashed circles
represent vertices with no correspondences. (a) The full graph. The edges that
join two vertices with correspondences are represented with solid lines. Other
edges are represented with dashed lines. For clarity, every pair of edges between
two specific vertices is represented by a single double-sided arrow. (b), (c) Two
example solutions. While only the solution in (c) looks temporally consistent
they would both be considered consistent by the short range consistency term
due to the missing correspondences between edges in the critical locations. The
long range consistency term would penalize solution (b) as the following flow
variables are inconsistent: 1 = fe

ac 6= fe′

a′c′ = 0, 0 = fe
bd 6= fe′

b′d′ = 1,
0 = ff

ac 6= ff ′

a′c′ = 1, 1 = ff
bd 6= ff ′

b′d′ = 0.
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Figure 3.8: A 3D volume used for training the path classifier for the brain
datasets. The manual annotation is shown in bright colors.

Brain Structures. Long-term memory is thought to be stored in the
configuration of the synaptic wiring diagram of brain circuits. The synaptic
connections between neurons are found on tree-like dendrites and axons
through which they receive input and provide output respectively. The
complex nature of dendrites and axons allows neurons to gather and distribute
information from and to a plethora of other neurons that reside in spatially
segregated areas. The rewiring of synaptic circuits could be accomplished by
structural changes in the branches of those input and output trees, which
would thereby reprogram the circuit’s function. This may be important for
learning and memory formation.

We collaborate with neuroscientists who aim at mapping structural circuit
changes in the mouse brain during the learning processes. To this end they
acquire large-scale 2-photon laser scanning microscopy images of a sparse set
of fluorescent labeled neurons in the neocortex. Images are taken through
a permanently implanted cranial window, which lets them track specific
structures over months during which the mouse learns new tasks or undergoes
new experiences.

We used three large image stacks, labeled 1 to 3, of the same area of the
brain at three different time instants. To train the path classifier, we selected
a region from one of the stacks, asked an expert to manually annotate it,
and sampled 20000 positive and 20000 negative paths. The training stack is
depicted by Fig. 3.8. Five sequences of smaller volumes were then selected
from the three image stacks for testing. A single test sequence consists of
three volumes representing roughly the same brain area, each one taken from
a different stack. We will refer to them as BR1, BR2, BR3, BR4, and BR5.

Urban Roads. We also tested our approach on a road network delineation
task. We used a sequence of three aerial images of the same area taken at
three very different time instants. The appearance varies from one to the other
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Figure 3.9: Road images used to train the path classifier. The manual annotation
is shown in bright colors.

due to different illumination, different level of occlusion from trees captured
in different seasons etc. Six regions spanning those varying appearances were
picked to train a single classifier the same way as it was done for the brain
images. Two of them can be seen in Fig. 3.9. We also cropped one sequence
of three images for testing.

Runner Bean. We used a nine-frame time-lapse sequence of a growing
runner bean. This is relevant because monitoring the growth of a plant has
many uses. They include testing different environmental conditions, getting to
understand the influence of specific pesticides or other agricultural products,
and evaluating models of plant development and growth [81]. Again, we
picked six of the images for training the path classifier and the other three
images constituted the testing sequence.

3.4.2 Overall Performance

In Table 3.1, we compare the results of reconstructing independently in each
test image of these datasets using the method of [97], of imposing short-
range temporal constraints as in [44], and of imposing long-range constraints
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temporal constraints as discussed in this paper. To this end, we measure
the quality of the reconstructions in terms of the DIADEM metric [4]. It
measures the similarity with the ground truth in a way that is appropriate
for trees and ranges from 0.0 to 1.0, with 1.0 being best. To obtain these
results, we set of persistence probability value q, introduced in section 3.3.3,
to 0.75 in all experiments. For values close to 0.5 the consistency term
proved to be completely outweighted by the image term and the temporal
consistency would not be enforced at all. Values close to 1 tended to prevent
any differences between the graphs in different time instants. This would
sometimes cause ignoring the image term and pruning some of the branches
completely, as this of course results in a highly time-consistent solution.
Furthermore, high values of q tended to slow down the optimization.

We present some representative results in Figs. 3.11 and 3.10. They
illustrate that both the short range and the long range consistency methods
favor reconstructions consistent over time, with the long range one providing
a higher level of temporal consistency. Setting the range parameter to 4
instead of 1 also improves accuracy.

The range parameter for the long-range consistency, also introduced in
section 3.3.3, was set to 4 in all experiments. This proved sufficient to improve
robustness without unduly increasing the computational complexity. High
values of the range parameter had a tendency to slow down the optimization
and to give a very high weight to the consistency prior. Similarly as in the
case of high persistence probability values, this would sometimes result in
pruning some of the correctly delineated branches of the overcomplete graph.

As can be seen in Table 3.1, enforcing local temporal consistency improves
the overall quality of the results and imposing long-range consistency improves
them even more. However, the effect of consistency depends on the quality of
the path classifier weights. If the classifier provides reasonable scores more
often than not, temporal consistency propagates them. If it performs poorly,
combining multiple weak solutions might not help. It might even hurt by
producing solutions that are consistently wrong.

We have also tested how removing the unnecessary flow variables, as
described in section 3.3.5, influences the computation time. Due to the
nondeterministic nature of the optimization procedure we performed each of
the optimizations ten times and observed consistent behavior with only minor
differences between specific runs. In the case of the short-range consistency
the computation time turned out to be consistently lower, reduced for instance
from 16.3s to 3.9s on one small example and from 470s to 247s on a bigger
one. In the case of the long-range consistency the computation would also
complete around two to three times faster. However, it is worth noting that
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Single
[97]

Short-
range [44]

Long-
range

Image
#1

0.6303 0.3654 0.6345

BR1 Image
#2

0.4653 0.3433 0.5178

Image
#3

0.5929 0.3374 0.6325

Average
BR1

0.5628 0.3487 0.5949

Image
#1

0.4964 0.5444 0.4242

BR2 Image
#2

0.2437 0.5327 0.5884

Image
#3

0.5200 0.5771 0.6766

Average
BR2

0.4201 0.5514 0.5631

Image
#1

0.7722 0.7903 0.7903

BR3 Image
#2

0.6890 0.6890 0.6746

Image
#3

0.4761 0.4395 0.9185

Average
BR3

0.6458 0.6396 0.7945

Single
[97]

Short-
range [44]

Long-
range

Image
#1

0.3846 0.6000 0.5940

BR4 Image
#2

0.5088 0.5272 0.5677

Image
#3

0.5910 0.6118 0.6340

Average
BR4

0.4948 0.5797 0.5986

Image
#1

0.3713 0.3956 0.3952

BR5 Image
#2

0.2439 0.2915 0.3687

Image
#3

0.2060 0.2761 0.3134

Average
BR5

0.2737 0.3211 0.3591

Image
#1

0.2650 0.4630 0.4680

RD Image
#2

0.3880 0.4000 0.4150

Image
#3

0.3240 0.3330 0.4670

Average
RD

0.3257 0.3987 0.4500

Table 3.1: DIADEM scores [4] for the brain images datasets (denoted BRi)
and road images dataset (denoted RD). The scores in the first column were
obtained without time-consistency, that is, by using the method of [97]. The
scores in the second and third columns were obtained by imposing short-range
time consistency as in our earlier method [44] and long-range time consistency
as described in this paper.

for one example the average optimization time raised from 1958s to 3079s
after removing the unnecessary flow variables.

3.4.3 Change Detection

Fig. 3.1 depicts our results on the runner-bean sequence. The branch struc-
ture is correctly reconstructed and the important topological changes are
automatically found. In Fig. 3.1(g) in particular, one can see that there is
nonlinear deformation between the structures over time. Initially the plant is
partially bent and then straightens. Since the GPR allows for nonlinearity,
the correct correspondences between the tree structures are nevertheless found
and the tree reconstructions and registration are achieved accurately.
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Figure 3.10: Road data results. The first row presents the input images. The
second row presents the results computed with no temporal consistency. The
third and fourth rows present results with flow persistency set to 0.75 and range
parameter set to 1 and 4, respectively.

A similar phenomenon can be observed in Fig. 3.2(f). In the lower left
corner, a branch seems to have retracted while, in the upper right corner,
another seems to have changed orientation. Both of these areas are denoted
by a red overlay.
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Figure 3.11: Example brain data results. The first row presents the input
images. The second row presents the ground truth. The third row presents
the results computed with no temporal consistency. The fourth and fifth rows
present results with flow persistency set to 0.75 and range parameter set to 1
and 4, respectively.
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Chapter 4

Active Testing Search

We first present a new approach for matching sets of branching curvilinear
structures that form graphs embedded in R2 or R3 and may be subject to
deformations. Unlike earlier methods, ours does not rely on local appearance
similarity nor does require a good initial alignment. Furthermore, it can cope
with non-linear deformations, topological differences, and partial graphs. To
handle arbitrary non-linear deformations, we use Gaussian process regressions
to represent the geometrical mapping relating the two graphs. In the absence
of appearance information, we iteratively establish correspondences between
points, update the mapping accordingly, and use it to estimate where to find
the most likely correspondences that will be used in the next step. To make
the computation tractable for large graphs, the set of new potential matches
considered at each iteration is not selected at random as with many RANSAC-
based algorithms. Instead, we introduce a so-called Active Testing Search
strategy that performs a priority search to favor the most likely matches and
speed-up the process. We demonstrate the effectiveness of our approach first
on synthetic cases and then on angiography data, retinal fundus images, and
microscopy image stacks acquired at very different resolutions.

The text in this chapter is strongly based on the text of the paper [89],
an extended version of the paper [77].
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4.1 Approach

Let us assume we are given two graphs GA = (VA,EA) and GB = (VB,EB),
such as the one of Fig. 1.1-right, extracted from two images or image-stacks
A and B. The Es denote the graphs’ edges and the Vs their nodes—shown
as red dots in the figure—that are points in RD, where we assume D ∈ {2, 3}.
The edges, in turn, are represented by dense sets of points—shown as white
dots in the figure—that form R2 or R3 paths connecting the nodes.

Our goal is to use these two graphs to find a geometrical mapping m from
A to B such that m(vAi ) is as close as possible to vBj in the least-squares
sense assuming that vAi and vBj are corresponding pixels or voxels.

If correspondences between points belonging to the two graphs were given,
we could directly use the Gaussian Process Regression (GPR) [82] to estimate
a non-linear mapping that would yield a prediction of m and its associated
variance [11]. In our case, however, the correspondences are initially un-
available and cannot be established on the basis of local image information
because the A and B are too different in appearance. In short, this means
that we must rely only on geometrical properties to simultaneously establish
the correspondences and estimate the underlying non-linear transform. Since
attempting to do this directly for all edge points would be computationally
intractable, our algorithm goes through the following two steps:..1. Coarse alignment: We begin by only matching graph nodes so that the

resulting mapping is a combination of an affine deformation and a smooth
non-linear deformation. We initialize the search by randomly picking D
correspondences, which roughly fixes relative scale and orientation, and
using them to instantiate a Gaussian Process (GP). We then recursively
refine it as follows: Given some matches between GA and GB nodes, the
GP serves to predict where other GA nodes should map and restricts the
set of potential correspondences. Among these possibilities, we select
the most promising one based on geometric or information gain criteria
we will define in Section 4.3, and use it to refine the GP. Repeating this
procedure recursively until enough mutually consistent correspondences
have been established and backtracking when necessary lets us quickly
explore the set of potential correspondences and recover an approximate
geometric mapping...2. Fine alignment: Having been learned only from potentially distant
graph nodes, the above-mapping is coarse. To refine it, we also establish
correspondences between points that form the edges connecting the nodes
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in such a way that distances along these edges, which we will refer to
as geodesic distances, are changed as little as possible between the two
graphs. Because there are many more such points than nodes, this would
be extremely expensive to do from scratch. Therefore, we constrain the
correspondence candidates to edges between already matched nodes and
rely on a Hungarian algorithm [70] to perform the optimal assignment
quickly.

In the remainder of this chapter, we first outline the GPR model that we
use. We then introduce our procedures for coarse and fine alignments.

4.2 Gaussian Process Regression

Without loss of generality, let us assume that the elements of VA and VB

have been reordered so that the set M =
{
vAl ↔ vBl

}
1≤l≤nc

denotes corre-
spondences between D-dimensional points from A and B respectively. Using
the GP approach to non-linear regression and assuming Gaussian i.i.d. noise
of precision β in all coordinate values, these correspondences can be used to
predict that a point vB in B corresponding to vA in A can be expected to
be found at a location with the following mean mM(·) and isotropic variance
σ2

M(·) :

mM(vA) = kTC−1
M VB

M , (4.1)
σ2

M(vA) = k(vA,vA) + β−1 − kTC−1
M k , (4.2)

where k is a kernel function, β−1 is the measurement noise variance, CM
is the nc × nc symmetric matrix with elements ci,j = k(vAi ,vAj ) + β−1δi,j ,
k is the vector [k(vA1 ,vA), . . . , k(vAnc ,v

A)]T , and VB
M is the nc ×D matrix

[vB1 , . . . ,vBnc ]
T .

Among the different types of existing kernel functions [82], we chose the
widely used summation of a squared-exponential, a constant term, and a linear
term

k(vi,vj) = θ0 + θ1vTi vj + θ2 exp
{
−θ3

2 ||vi − vj ||2
}
. (4.3)

Thus, the kernel of (4.3) models transformations as being rigid with non-
linear deformations. Such transformation covers a wide range of situations in
medical imaging [29, 79, 90, 92].
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Given this expression for k, the geometric mapping from Eq. (4.1) can now

be rewritten as

mM(vA) =
nc∑
i=1

aik(vAi ,vA)

=
nc∑
i=1

ai(θ0 + θ1(vAi )TvA) +

nc∑
i=1

ai θ2 exp
{
−θ3

2 ||v
A
i − vA||2

}
, (4.4)

where ai is the ith row of the matrix C−1
M VB

M. The first term of Eq. (4.4),
which contains the θ0 and θ1 hyperparameters, is a linear function of the
input coordinates while the second one, which involves the θ2 and θ3, allows
for additional non-linear deformations.

Apart from the mapping mM(·), we also need to evaluate the mapping
quality for any particular set of correspondences M. Let us define a quality
score as SM ∈ R, which is a deterministic function. We use the following two
methods to evaluate the quality of a correspondence set:

.Assigned distance: We compute the minimum possible total distance
between mM(vAi ) and points vBj ∈ VB for all 1 ≤ i ≤ nA

SM =
nA∑
i=1

nB∑
j=1

Hi,j · dist(mM(vAi ),vBj ), (4.5)

where ‘dist’ is a Euclidean distance and H is the assignment matrix
computed by the Hungarian algorithm [70] which, given the distances
between all points mM(vAi ) and vBj , iteratively calculates the optimal
assignment of correspondences between all points, by minimizing SM ..Number of inliers: We compute the proportion of edge and branching
points in VA that are mapped near a point in VB as

SM = |I|
|VA|

, (4.6)

I =
{
vBj | ∃mM(vAi ), dist(mM(vAi ),vBj ) < β−

1
2
}
.

Our experiments show that these two measures suffice to recognize good sets
of correspondences.
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4.3 Coarse Alignment

Let VA =
{
vA1 , . . . ,vAnA

}
and VB =

{
vB1 , . . . ,vBnB

}
be the nodes of our two

graphs. Our first goal is to simultaneously retrieve as many correspondences
M = {vA ↔ vB} as possible and to determine the underlying non-linear
mapping vB = mM(vA) that best aligns them.

In this section, we present two different approaches for doing this. The
first one—Section 4.3.1—relies on first assigning correspondences to nodes for
which there are few to choose from. The second—Section 4.3.2—uses a more
sophisticated strategy that ranks partial solutions and attempts to extend
the most promising ones first. We introduced the first strategy in [87] and
tested it successfully on relatively small graphs. However, as will be shown in
Section 4.5, its computational requirements grow quickly with the number of
graph nodes. The second strategy, while slightly more complex, scales better.

4.3.1 Greedy Search

Let mM(·) be a GP written using the formulation of Section 4.2, which we
instantiate by first selecting a set of D random correspondences (line 1 in
Algorithm 1) – we set the initial size of potential candidates to be the data
points dimensionality. This gives us an initial correspondence set M0. We
then iteratively construct sets of correspondences in T steps as follows...1. At iteration t, we have a set of correspondences Mt from which we com-

pute (line 3) the mapping mMt(·) and covariance σ2
Mt

(.) using Eqs. (4.1)
and (4.2)...2. For each unmatched node vAi ∈ VA, we search for potential correspon-
dences vBj ∈ VB in the bounded region Bi determined by the predicted
covariance σ2

Mt
(vAi ) (lines 6–7). We use the Mahalanobis distance to

define the boundary:

M2 =
(
mMt

(vA
i )− vB

j

)T (
σ2

Mt
(vA

i )
)−1 (

mMt
(vA

i )− vB
j

)
Bi =

{
∀vB

j ∈ VB |M2(mMt
(vA

i ),vB
j ) < 2

}..3. We choose the node vAi∗ with the smallest number of potential candidates
(line 9), and randomly pick one of them to define the match vAi∗ ↔ vBj∗ ,
which we add to the correspondence set Mt (lines 11–12). If there is no
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Algorithm 1 Greedy Alignment (GA,GB; Θ, β;T )
1: Initialize Correspondence Set:
2: M0 ← {vAi1 ↔ vBj1 , . . . ,v

A
iD
↔ vBjD}

3: for t = 0, . . . , T do
4: {mMt , σ

2
Mt
} = ComputeMapping(VA,VB,Θ,Mt)

5: SMt = QualityScore(mMt , β)
6: for i = 1 . . . nA do
7: Bi = ComputeBoundary(mMt(vAi ), σ2

Mt
(vAi ),VB)

8: PotCandi = {vBj ; vBj ∈ VB ∧ vBj ∈ Bi}
9: end for
10: i∗ = arg mini{|PotCandi|} for |PotCandi| 6= 0
11: if i∗ 6= ∅ then
12: vBj∗ = PickRandom(PotCandi∗)
13: Mt+1 ←Mt ∪ {vAi∗ ↔ vBj∗}
14: else
15: Mt+1 ←Mt−1
16: end if
17: end forreturn M∗ = arg max{1,...,T} SMt

point from VB which satisfies the conditions to be selected, we remove
the last added correspondence from Mt and continue searching (line 14)...4. We take the quality score SMt to be the number of inliers as defined in
Eq. (4.6).

As described in Algorithm 1, this process uses a depth-first search and is
repeated T times, backtracking and selecting sets of correspondences of
different sizes, unlike RANSAC which uses a fixed set size at each iteration.
We then return the correspondence set M∗ with the highest score, and its
corresponding mM∗ . We also terminate if the inlier consenus SMt becomes
large enough. An example of this process is shown in Fig. 4.1.

The process is controlled by the noise parameter β of Eq. (4.2) and the
vector Θ = {θ0, θ1, θ2, θ3} containing the kernel hyperparameters of Eq. (4.3).
To avoid having to tune these parameters for each new dataset, we center and
scale the VA and VB coordinates so that their average distance to the origin
is one and perform the computation on the scaled datasets. As a result, we
were able to use the same Θ for all experiments described in Section 4.5.

To speed up the computation, we reject matches that would produce
large changes in geodesic distances, which we define as the length of a path
connecting the edges between two graph nodes vi and vj . Given already
established correspondences M between graphs, then for each new potential
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Original Graphs Initialization it#2 it#6

it#11 it#15 it#20 Coarse Alignment

Figure 4.1: Coarse alignment steps. The initial graph structures are depicted
in the top left-most figure, the model graph in red and the target in blue.
Exploration of the search space starts by picking randomly two correspondences,
highlighted in green, thus roughly fixing scale and orientation. Then, the next
match candidate is chosen among the nodes located inside the bounded regions,
which are a function of the GP predicted covariances, shown as black ellipses.
Every correspondence added to the hypotheses set helps refining the mapping
uncertainty. The final correspondence set defines a coarse alignment of the
graphs. Best viewed in color.

match, the geodesic distances from the new corresponding points to the
already matched nodes in both graphs have to be approximately proportional.
We set the tolerance for geodesic distance variations depending on the level
of deformations we expect to recover. Proceeding in this way, the algorithm
gains robustness against outliers, while avoiding unnecessary checks, thus
keeping a low complexity. Note that geodesic distances are invariant to
rotations, to the bending of the branches, and to isometric changes.

4.3.2 Active Test Search

We have tested the algorithm described above on graphs containing up to 100
nodes, for which the computation takes more than 1000 seconds in Matlab on
an 4-Core 2.3 GHz 64-bit processor. because the computational cost grows
exponentially with the number of nodes, it becomes impractical for larger
graphs.
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(a) (b) (c)

Figure 4.2: Gaussian noise models for percentage of inliers. (a) Each
curve depicts the Gaussian noise model N (·; ωu

1 ) for a given depth u of the tree.
(b) Similarly, each curve depicts the noise models for N (·; ωu

0 ). (c) Likelihood
ratio r(·) between N (·; ωu

1 ) and N (·; ωu
0 ) for each value of u.

We have therefore developed an alternative approach that relies on the
Active Testing Search (ATS) [42, 94]. This involves progressively refining
an approximate solution by making a budgeted number of observations and
computing the posterior distribution over all potential solutions after each
test. Hence, the algorithm proceeds iteratively and selects at each step the
correspondence set expected to yield the highest information gain based on
all previous ones.

In other words, our method does not perform either a depth-first search,
such as the one described in Section 4.3.1, or a traditional breadth-first search,
but a priority search. For this purpose, as new correspondences are added to
partial solutions, it maintains a sorted list of which ones are most likely to
lead to a correct solution. It then attempts to extend these first so that less
likely candidates may never be extended at all, saving computation time.

In addition, our ATS approach is adaptive and allows for backtracking with-
out hand-tuned pruning of the search space. It is summarized in Algorithm 2
and we describe it in more details below.

ATS—Coarse Alignment

ATS maintains a list of candidate correspondence sets, where we denote the
probability that the correspondence set M is part of the correct mapping
M∗ as εM. This list of candidates is handled by means of a priority queue Q
(line 1 of Algorithm 2), whose elements are (M, εM) pairs sorted in order of
decreasing probability.
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At first, we form all possible sets of D pairs of correspondences that can
be used to initialize a mapping mM(·). We assume that each M from this
initial set has equal probability ε.

At each ATS iteration, t = 0, ..., T , we want to select the candidate set Mt

that is most likely to provide a good mapping. We therefore select the first
element (Mt, εMt) of Q, which is the one with highest likelihood and then
evaluate the quality score SMt (line 5) to verify if it is indeed a good mapping.
Given that SMt can be noisy, we consider it to be a random variable with
a known noise model, i.e. the likelihood model P (SMt |M∗) is assumed to be
explicitly known and is described in the following section.

To aggregate the information provided by the quality score, we compute
the posterior distribution of the correct correspondences given the newly
observed score. We further refine our candidates by expanding the candidate
set previously evaluated. In particular, from Mt, we generate a new set
of candidate correspondences CMt = {Mt ∪ {vAi ↔ vBj }|vBj 6∈ Mt}, which
contains all children of the current node, where vAi 6∈ Mt is an additional
element of VA.

As in [42, 94], the posterior for any element M ∈ CMt can be computed as

ε ∝ r(St)εMt

|CMt |
, (4.7)

where r(St) is the likelihood ratio (defined explicitly in the following section).
The complete derivation of this equation as well as why the normalization
constant is not needed are shown in Appendix A. Intuitively, Eq. (4.7) is
simply an application of Bayes rule, where εMt is a prior, r(St) is the data-
term and dividing by |CMt | attributes equal a priori probability to all the
expanded candidates of Mt.

This process is repeated T times or until the likelihood ratio is higher than
ψ. We then return the assignment M∗ with the best score. In Appendix A,
we give further details and describe the derivation of the proposed algorithm.

Quality Score Selection and Noise Model

To compute the quality score SM for any set of correspondences M we use the
previously described assigned distance of Eq. (4.5) and the number of inliers
of Eq. (4.6). In particular, we compute SM using the assigned distance when
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Algorithm 2 ATS Alignment (VA,VB; Θ, β;T, ψ)
1: Initialize Priority Queue:
2: Q← Push

(
{vAi1 ↔ vBj1 , . . . ,v

A
iD
↔ vBjD}, ε

)
3: for t = 1 . . . T do
4: {Mt, εt} = Pop(Q)
5: {mMt , σ

2
Mt
} = ComputeMapping(VA,VB,Θ,Mt)

6: SMt = QualityScore(mMt)
7: if r(SMt) > ψ then return M∗ = Mt end if
8: for Mz ∈ CMt do
9: Q← Push (Mt, εMtr(SMt)/|CMt | )
10: end for
11: end forreturn M∗ = arg max{1,...,T} SMt

the number of correspondences |M| is below a certain threshold γ, which we
set to 5 in all experiments. Otherwise we compute SM using the number of
inliers. We found that combining two different quality functions provides
more informative scores for small and large sets of correspondences. This is
similar to the strategies employed in [21].

We consider the quality scores to be random noisy observations and assume
the following observation model

P (SM = s|M∗) =
{
N (s; ωu

1), if δ(M,M∗) = 1
N (s; ωu

0), if δ(M,M∗) = 0
, (4.8)

where M∗ is the correct set of correspondence assignments, u is the number
of correspondences in M, N is a Gaussian probability distribution with
parameters ωu

1 , ωu
0 and δ(M,M∗) = 1 if the correspondences of M respect

M∗ and 0 otherwise. From this model, the likelihood ratio can be computed
as

r(SM) = N (SM; ωu
1)

N (SM; ωu
0) . (4.9)

To learn the parameters of the Gaussian distributions N (·; ωu
1) and N (·; ωu

0),
we proceed as follows:

.True Distribution: To estimate the parameters for N (·; ωu
1), we syn-

thetically generate L point clouds VA such that nB > nA and fit a mini-
mum spanning tree to obtain the graph representation. The point cloud
VB is generated by applying random affine transformations and a smaller
amplitude non-linear deformation to VA. This allows us to know exactly
the true correspondence M∗ and generate a set {{VA}l, {VB}l,M∗

l }Ll=1.
Then, we take subsets of the full set of true correspondences M∗ and
compute SM. Once all scores on all L generated sets are computed, we
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estimate the Gaussian distribution parameters {ωu
1}
nA
u=1 = {µu1 , σu1}

nA
u=1.

An example of the learned probability densities can be seen in Fig. 4.2(a).. False Distribution: Second, to learn the parameters for N (·; ωu
0),

we follow a similar sampling approach. Given the number of possible
incorrect correspondences, for partial assignments that include many
assignments, i.e. when u is large, we construct sets of incorrect correspon-
dences M by starting from a subset of M∗ and adding a few incorrectly
matched points. Proceeding in this manner, we take false partial assign-
ments which are close to the true correspondence M∗ because we expect
to only explore the higher depths of the search tree, that is, high values
of u, when our previous hypotheses are correct. An example of such
distribution is depicted in Fig. 4.2(b).

In practice, we have found the above the process for learning the parameters
of the observation models to be effective and robust. If enough training data
with known correspondences is available, we could learn more complex models
for the real shape of the positive and negative distributions. In addition, even
though we use synthetically generated datasets, the same learned parameters
are good enough to be used across different experiments in Sec. 4.5 and
indicate that the parameters are fairly robust and valid for different tasks.

4.4 Fine Alignment

Given two graphs GA and GB, both coarse alignment algorithms described
above in Sections 4.3.1 and 4.3.2 return a set of corresponding graph nodes
M∗, along with the corresponding mapping m(·) = mM∗ and the covariance
estimator σ2(·) = σ2

M∗ .

This set of matches M∗ relates the graph’s nodes and is therefore coarse.
Given that the nodes are connected by paths, we can refine the mapping by
establishing correspondences between edge points that lie on these paths. We
assume the node correspondences to be correct and only establish new ones
between points lying on paths linking matching nodes. We proceed iteratively
using the following steps:..1. For each pair of paths connected by corresponding graph nodes, we use

the Hungarian algorithm [70], guided by the current mappingmMr(·) and
covariance estimator σ2

Mr
(·), to establish new matches Mr+1 between
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it#1 it#2 it#3 Fine Alignment

Figure 4.3: Fine alignment steps. Once a coarse alignment of the two graphs
(model in red and target in blue) has been found, the algorithm starts matching
points lying on the edges. The assignments (depicted in green) are computed
using the Hungarian algorithm and constrained by the graph topology and GP
predictions. After a few iterations, the warped structure (top) is completely
aligned to the target graph. For each successive plot, we zoom to a smaller
region (bottom) to better show the algorithm at work. Best viewed in color.

the edge points of the two paths. We constrain all the matches to have
a consistent geodesic distance with their respective graph nodes...2. Given these new correspondences Mr+1, reestimate the values mMr+1(·)
and σ2

Mr+1
(·)...3. Compute the quality of the resulting mapping SMr+1 using the Assigned

distance function defined in Eq. (4.5)...4. If SMr+1 > SMr , iterate. Otherwise, terminate and return Mr, mMr(·),
and σ2

Mr
(·).

This yields a final expanded set of correspondences Mfine, mappingmMfine
(·),

and covariance estimator σ2
Mfine

(·). Note that we use the same GP parameters
Θ as before. The whole process is illustrated by Fig. 4.3 and summarized in
Algorithm 3.

4.5 Experiments

We evaluate our approach on both synthetic and real data against state-
of-the-art methods. In the remainder of the paper we will refer to the
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Algorithm 3 Fine Alignment (GA,GB; Θ, β; M∗)
1: Initialize Correspondence Set from Coarse Alignment:
2: Mr = M∗

3: mMr = mM∗ , σ
2
Mr

= σ2
M∗ ;

4: repeat
5: Mr+1 ← OptimalAssignment(VA,VB,Θ,Mr)
6: {mMr+1 , σ

2
Mr+1
}=ComputeMapping(VA,VB,Θ,Mr+1)

7: SMr+1 = QualityScore(mMr+1)
8: until SMr+1 ≤ SMr return Mfine = Mr

methods presented in Sections 4.3.1 and 4.3.2 as Greedy-RGM (Greedy
Search for Robust Graph Matching) and ATS-RGM (Active Testing Search
for Robust Graph Matching), respectively. We will initially test all methods
on synthetically generated data with increasing levels of noise, non-rigid
deformation, missing points and different initial conditions. We will then
show the performance of the algorithms on 2D and 3D biomedical images,
including retinal images, neuronal structures and heart angiograms. The
Gaussian Process parameters β and θi should ideally be estimated from
training data. However, due to the limited amounts of available data in our
applications, we will manually select these parameters once for all experiments.
We keep the problem of estimating them from validation data as a possible
future work direction.

We will compare our algorithm to several others for non-rigid point match-
ing and shape recovery. As representative examples of point set registration
we have chosen the original Iterative Closest Point [10] (ICP), the Thin Plate
Splines-Robust Point Matching (TPS-RPM) [25], the Coherent Point Drift
(CPD) [71] and the recent Gaussian Mixture Model Registration (GMM-
REG) proposed in [53]. As examples of graph matching approaches, we have
considered Spectral Matching (SM) [59] and Integer Projected Fixed Point
(IPFP) [60], which can be combined, as well as Path Following Algorithm
(PATH) [108] 1. The results of the coarse alignment obtained by ATS-RGM
and our previous Greedy-RGM version are virtually the same, therefore only
the results for ATS-RGM are shown when comparing accuracy.

We ran all the algorithms on a 2.3 GHz 4-Core 64-bit machine with 8
GB RAM. Most of the aforementioned algorithms are implemented using
a combination of Matlab and Mex-C++ functions. Similarly, we implemented
the skeleton of our approach in Matlab and used C++ for the most time-
consuming parts: the Gaussian Process routines and the Active Testing
Search.

1 All implementations were made available by respective authors, except of ICP, which
was made available by a third party and verified to be a correct implementation of the
algorithm.
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Experiment #1

(po = 5%, pd = 0.2, φ = π
6 )

Tree Model σn = 0.01 σn = 0.02 σn = 0.03

Experiment #2
(σn = 0.005, po = 5%, φ = π

6 )

Tree Model pd = 0.5 pd = 1.0 pd = 1.5

Figure 4.4: Quantitative evaluation on synthetic data. Performance tests
of all competing methods in different configurations of noise (Exp. #1) and
deformation (Exp. #2). Curves represent the median of the correct correspon-
dences percentage achieved by each method. Below each result, we show the tree
model used in the experiments (in blue) and corrupted illustrations of how each
parameter affects the transformed graph (in green).
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Experiment #3
(σn = 0.005, pd = 0.2, φ = π

6 )

Tree Model po = 20% po = 40% po = 60%

Experiment #4
(σn = 0.005, po = 5%, pd = 0.2)

Tree Model φ = 2π
5 φ = 3π

5 φ = 4π
5

Figure 4.5: Quantitative evaluation on synthetic data. Performance tests
of all competing methods in different configurations of outliers (Exp. #3) and
rotation (Exp. #4). Curves represent the median of the correct correspondences
percentage achieved by each method. Below each result, we show the tree
model used in the experiments (in blue) and corrupted illustrations of how each
parameter affects the transformed graph (in green).
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4.5.1 Synthetic Experiments

To evaluate our approach against others, we generated pairs of trees composed
of a model tree computed as the minimum spanning tree of N = 50 randomly
selected 2D points in a 2 × 2 bounding box and target tree obtained by
deforming it. More specifically, let vi be the nodes of the model tree and v′i
those of the target tree. For all i from 1 to N , we write

v′i = R(φ)
[
Sx 0
0 Sy

]
vi +

[
Tx

Ty

]
+D(pd) + ξ(σn), (4.10)

where the deformation includes the following components.

. Rotation, scaling, and translation; The target model is rotated by an angle
φ, translated by Tx and Ty, and scaled by Sx and Sy. Non-linear deformation: We add a non-linear warping D(pd) defined as
a linear combination of B-splines whose control points are uniformly
distributed in the input space. Its magnitude is controlled by pd, which
specifies the amount of displacement of the B-spline coefficients.. Noise: We perturb the node locations of the target graph by a zero mean
Gaussian noise ξ(σn), where σn is the standard deviation.. Outliers: We produce outliers by randomly and independently removing
a percentage po of the total number N of nodes from both the model
and target trees. As a result, some branches appear in one tree and not
the other.

We use the pairs of trees created in this manner as input to all algorithms. To
ensure a fair comparison, we either set the required parameters to the values
suggested in the corresponding papers, or manually modify them in case
they did not provide good results. The exact values for these configuration
parameters are as follows: 2.

. ICP: Does not require extra parameters.. TPS-RPM: We set the initial temperature Tinit to half the maximum
Euclidean distance between the nodes of the model tree, and the final
temperature to Tfinal = 0.01 · Tinit. The remaining parameters are set
to λinit1 = 1 and λinit2 = 0.01, as suggested by the authors.

2Note that for ease of reference we are keeping the same parameter notation here as in
the original papers. While some of these parameters are also used in our algorithm (i.e. :
w, T , σd) their meaning are not necessarily the same.
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Figure 4.6: Computational Cost. Processing time required by RANSAC,
Greedy-RGM and ATS-RGM as a function of the number of nodes. We computed
the median of 20 experiments for each of the methods.

.GMMREG: We set the maximum number of iterations to 10000 with
α = 1 and β = 2.. CPD: We use a non-rigid configuration of the algorithm for all the
experiments. We set λ = 3, β = 3 and outliers = 0.2.. SM and IPFP: We build the affinity matrix using the description provided
in [59]. As we do not have appearance information, we set the label
affinity term M(a, a) to zero, making the matching score depend solely
on the pairwise geometric information. The pairwise affinity is set to
M(a, b) = 4.5− (dij−di′j′ )2

2σ2
d

if |dij − di′j′ | < 3σd and zero otherwise.. PATH: We build the graphs as suggested by the authors for the ap-
plication of “alignment of vessel images”. We connect each node vi to
all points vj within a distance r, and each edge is assigned a weight
wi,j = exp(−||vi − vj ||2), ∀vi,vj ∈ V, ||vi − vj ||2 < r. This is done for
all nodes of both model and target trees. In our case we set r = 0.3 ·dmax,
where dmax is the maximum Euclidean distance between the points of
the model tree.

Performance Evaluation

We tested all algorithms for robustness to rotation, deformation, and topology
changes by varying the geometric deformation parameters of Eq. (4.10) as
well as the percentage of missing nodes p0. We performed four different
independent experiments. For each we generated 50 pairs of model and target
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(a) (b) (c)

X: 1048

Y: 498.8

(d) (e) (f)

Figure 4.7: Retinal fundus images used in [29]. Each row contains a single
experiment. (a,b) Two images of the same retina taken from different viewpoints,
with the vascular trees overlaid in red and blue. (c) The first tree is overlaid in
red over the second image after non-linear transformation, which corresponds
to the output of the Greedy-RGM coarse alignment. (d) Final result of our
non-rigid registration: the graph from the first image is overlaid in red over
the second image. (e) Our result is superposed with the Coherent Point Drift
alignment, in yellow. (f) Detail of the rectangle in (e). Our algorithm behaves
well on this dataset, while CPD fails to recover the correct shape because there
are too many non-corresponding branches. Best viewed in color.

trees using the same set of parameters and a fixed small change in scale
and translation. In Experiment #1 we evaluated the influence of noise on
the points 2D locations by sweeping the range σn ∈ [0, 0.04] and setting
po = 5%, pd = 0.2 and φ = π

6 . In Experiment #2 we tested the behavior of
the algorithms against increasing levels of non-linear deformation, varying
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(a) (b) (c)

(d) (e) (f)
Figure 4.8: Angiography images from a beating heart. (a) Two different
images with extracted vascular trees overlaid in red. (b) Two other images taken
later in the heart cycle with extracted vascular trees overlaid in blue. (c) The
original red trees are shown after the non-linear coarse alignment of the tree
nodes, obtained using our Greedy-RGM. (d) The resulting warped trees are
overlaid in red after non-linear registration. Note that the trees —in particular
in the first example— have distinctly different topologies, which affects our
algorithm very little. (e) Comparison with the result obtained using non-linear
Coherent Point Drift, in yellow. (f) A zoom of a region of interest. Using
the graph intrinsic geometry grants us robustness against vessel bendings and
outliers, achieving a better registration of the two shapes.

61



4. Active Testing Search .................................

(a) (b)

(c) (d) (e)

Figure 4.9: Blood vessels in brain tissue. (a) Segmented two photon
microscopy data. (b) Segmented bright-field optical microscopy data. (c)
Registration of structures using Active Testing Search, in red. (d) Alignment
using CPD, in yellow. (e) A view in detail at the results of both ATS-RGM and
CPD. Best viewed in color.

the deformation parameter within the range pd ∈ [0, 2], and setting the rest of
parameters to constant values σn = 0.005, po = 5%, and φ = π

6 . Similarly, in
Experiment #3, we assessed the robustness of the algorithms to the presence
of outliers by randomly deleting a percentage po ∈ [0%, 90%] of nodes in both
trees and setting σn = 0.005, pd = 0.2 and φ = π

6 . Finally, in Experiment #4
we tested the invariance of all the methods to initial conditions by changing
the orientation of the target within φ ∈ [−π, π] and fixing the rest of the
parameters to σn = 0.005, po = 5% and pd = 0.2. To give significance to the
magnitudes of the experimental parameters we consider, the images below
each performance curve of Figures 4.4 and 4.5 show different samples of the
same model graph and different target graphs generated by varying the levels
of noise, deformation, outliers and rotation.

For each experimental parameter setting experiments and each algorithm,
we computed the average percentage of correct matches over our 50 tree
pairs and plot the results in Figures 4.4 and 4.5. Under favorable conditions,
that is, relatively small graphs with less than 50 nodes, uncorrupted data
and purely affine transformation, all methods exhibit similar performance.
However, when we progressively introduce artifacts the differences become
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(a) (b)

(c) (d) (e)

Figure 4.10: Light and electron microscopy neuronal trees. (a) Graph
structure extracted from the electron microscopy image stack, in red. (b)
Segmented light microscope neurons in blue. (c) After the non-linear registration
process using ATS-RGM, the EM segmented neuron is deformed and aligned
over the LM extracted neuron. (d) Registration using CPD, in yellow, which
falls into a local minimum. (e) A zoom over the region where the EM stack has
been extracted. The two neurons have been completely aligned. Best viewed in
color.

clear. For instance, it can be seen that CPD deals poorly when there are
missing parts or when the initial rotation is above 70 degrees, as stated
in their paper. Similarly, the rigid ICP can only find local solutions, even
when dealing with much smaller initial rotation angles. Graph methods
(PATH, SM+IPFP) are able to find global solutions as they are invariant to
initial conditions by construction. However, as shown in Fig. 4.4, they are
very sensitive to modifications in the topology of the graph. TPS-RPM and
GMMREG underperform our approach for each of the tests. In short, each
one of the competing methods can address some of the difficulties, however
only ours can handle all of them.

The results of Figures 4.4 and 4.5 also indicate the suitability of using our
approach in sub-graph matching. The robustness of our approach stems from
the randomized search strategy, that allows searching for a global minimum
and makes the algorithm insensitive to initial rotations. This is true for
both Greedy and Active Testing Search. On the other hand, the non-rigid
transformation based on Gaussian Process regression provides robustness to
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large amounts of noise and deformation.

Computational Cost

Finally, we compared the computational cost of the two versions of our
algorithm and RANSAC [37]. We generated a new set of experiments in
which the new model and target tree pairs are as before except for the fact
that we varied the number of nodes from 20 to 200 and performed an affine
transformation plus random noise of small amplitude. As illustrated in
Fig. 4.6, the computation time grows much faster for both Greedy-RGM and
RANSAC than for ATS-RGM, which remains manageable. Both versions of
our algorithm (ATS-RGM and Greedy-RGM) yield similar performance, only
differing in the time consumed to reach the global solution. Note that, since
the transformations are almost affine, the absolute run-time value is lower
than some of the real experiments we consider in the next section.

Note that the purely local methods, such as CPD and ICP, tend to be much
faster and can deal with thousands of points in reasonable amounts of time.
Yet, as we have seen in the fourth experiment of Fig. 4.4, these algorithms
require accurate initializations. On the other hand, the graph matching
methods, such as SM + IPFP or PATH, treat the problem as an Integer
Quadratic Program (IQP) and hence are limited by the construction of the
pairwise score matrix whose size grows quadratically with the number of
nodes.

4.5.2 Real Data Experiments

We next present several examples of results obtained by ATS-RGM and
Greedy-RGM on real biomedical datasets. The graphs were extracted semi-
automatically using a plugin [8] for the Fiji platform [84].

To evaluate the accuracy of the different methods in the absence of ground
truth, we assigned each node in the deformed graphs —overlaid in red for our
method and yellow for CPD on Figs. 5.14 and 4.8 (d,e,f)— to its assumed
match in the target graph overlaid in blue. To this end, we use the Hungarian
algorithm to find it by taking the Euclidean distance as the cost to minimize,
while rejecting outlier branches by setting a distance threshold defined ad
hoc for each of the datasets. We use this error measure since there is no true
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Dataset ATS-RGM Greedy-RGM CPD
[71]

ICP
[10]

TPS-
RPM [25]

GMM
REG [53]

Retina I Error (pix) 2.68 2.68 20.67∗ 20.04∗ 19.32∗ 21.30∗
(Fig. 4.7 Top) Time (s) 1293.3 + 406.4 5998.9 + 336.8 580.2 24.3 4236.8 139.7
Retina II Error (pix) 2.94 2.51 20.45∗ 20.46∗ 17.79∗ 20.84∗
(Fig. 4.7 Bot.) Time (s) 280.0 + 301.4 16353.1 + 261.2 468.5 67.9 5791.1 147.1
Angio I Error (pix) 1.16 1.05 2.95 9.77∗ 2.92 4.21
(Fig. 4.8 Top) Time (s) 307.8 + 129.4 1240.9 + 162.8 144.3 8.1 726.7 31.9
Angio II Error (pix) 1.57 1.81 3.42 4.84∗ 3.21 6.56
(Fig. 4.8 Bot.) Time (s) 167.9 + 77.2 112.0 + 95.4 68.8 5.0 327.0 21.1
Brain vessels Error (vox) 4.38 4.89 4.19 7.23 6.67 12.71
(Fig. 5.17) Time (s) 593.7 + 55.5 15029.1 + 19.9 37.1 30.9 334.8 31.2
Neuronal Error (µm) 0.05 0.07 0.25∗ 0.27∗ 0.20∗ 0.46∗
(Fig. 4.10) Time (s) 42.4 + 15.8 116.1 + 18.2 22.2 28.2 28.5 22.4

Table 4.1: Error: Geometric error on real datasets for the proposed approach
and other state of the art methods. Failed experiments (producing incorrect
alignment) are marked with an *, see Fig. 5.14(d) or Fig. 4.10(d) for examples.
Elapsed Time: Processing time for each method, in seconds. For ATS-RGM
and Greedy-RGM, we distinguish the times required for coarse and fine align-
ment.

correspondence between the sampled points along the edges of the graphs.
This error measure gives an idea of the quality of the alignment.

In Table 4.1, we show these errors and the corresponding computation
times. For ATS-RGM and Greedy-RGM, we distinguish the times required
for coarse and fine alignment. We have not provided the error for IPFP and
PATH because these methods only give correspondence hypotheses, and are
unable to define a valid transformation without an outlier rejection step.

In Fig. 5.14 we show registration results for retinal fundus vascular graphs
that are deformed from one image to the next because the camera is looking
from different viewpoints. This produces distortions of the curved retinal
surface’s projection, that are well modeled by an affine transform. Thus, there
is very little non-linearity in the deformation and these results are similar to
those of [29], even though the trees only partially overlap. However, as the
amount of spurious branches is quite large, CPD fails to recover the correct
shape. In contrast, our approach can naturally handle such artifacts.

In the 2D X-ray angiography images of Fig. 4.8 the non-linearities of the
transformation are much more apparent. As shown in the zoomed-in area,
our algorithm nevertheless does a good job of recovering this more complex
deformation and aligning the trees. Again, we assessed the performance of
the CPD on these images and observed that it could not retrieve a correct
solution unless a relatively accurate initialization was provided. Even when
we supplied with our coarse transformation estimate, CPD could only deal
with small non-linearities.
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Next, we register two 3D datasets. A blood vessels network in brain

tissue is shown in Fig. 5.17. One of the 3D image stacks is acquired using
a two-photon microscope and the other using bright-field microscopy after
excision and fixation. As the resulting segmentations are partially aligned,
the experiment’s difficulty consists in identifying the non-linearities of the
deformation. Our algorithm clearly outperforms other state-of-art methods
and provides results similar to the CPD. In the zoomed image of Fig. 5.17(e)
it is possible to appreciate it. Although CPD works well when the initial
conditions are favorable, it completely misaligns one of the branches while
our result respects the topology.

Finally, we register the 3D neuronal stacks extracted from the brain tissue
of Fig. 1.1 using light (LM) and electron (EM) microscopy, where the EM
block is a small section of the LM volume and has been non-linearly deformed
due to the extracting process. The intended application is to automatically
localize the EM volume in the corresponding part of the LM volume. Even
though the two images look extremely different, our algorithm returns a valid
deformation as shown in Fig. 4.10. No other method was able to recover the
correct alignment.
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Chapter 5

Graph Matching using Monte Carlo Tree
Search

In this chapter, we present an efficient matching method for generalized
geometric graphs. Such graphs consist of vertices in space connected by
curves and can represent many real world structures such as road networks
in remote sensing, or vessel networks in medical imaging. Graph matching
can be used for very fast and possibly multimodal registration of images
of these structures. Other applications include recognition of graph-like
patterns or camera-based localization for UAVs. We formulate the matching
problem as a single player game solved using Monte Carlo Tree Search, which
automatically balances exploring new possible matches and extending existing
matches. Our method can handle partial matches, topological differences,
geometrical distortion, does not use appearance information and does not
require an initial alignment. Moreover, our method is very efficient – it can
match graphs with thousands of nodes, which is an order of magnitude better
than the best competing method, and the matching only takes a few seconds.

This chapter is strongly based on the paper [76], which is an extended
publication of the work developed on the papers [74, 75].
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Road Pair V: Rio Mau, Portugal Road Pair X: Porto, Portugal

Road Pair XI: El Hierro, Spain Road Pair XII: Prague, Czech Republic

Figure 5.1: Localizing a small satellite image within a map. Yellow lines link
matched nodes of the road networks extracted from a satellite image (red) and
from a map (blue). Transformed version of the map network (blue) after matching
is shown overlaid on the satellite image.

5.1 Problem definition

Let us consider a graph GA = (VA,EA) where the vertices VA are points in
RD, and the edges EA ⊆ VA ×VA are associated with curves connecting
the two incident vertices. This is a generalization of a geometric graph [35].
Each edge e ∈ EA is described by a continuous function ζe : I → RD, where
I = [0, 1] is the unit interval, so that e =

(
ζe(0), ζe(1)

)
. The curve is an image

of this function, ζe(I) =
{
ζe(t); t ∈ I

}
and has length l(e) =

∫ 1
0 ‖ζ̇e(t)‖dt.

We choose a constant speed parameterization, implying ‖ζ̇e(t)‖ = l(e) for all
t ∈ I. We assume that for each edge (u,v) in EA, the graph contains also its
reverse (v,u), with the same curve reversed. The total length of all edges is
denoted l(EA) and the number of vertices is |VA|.

To handle segmentation errors, we want to allow for some vertices and
edges to be present only in one of the graphs, i.e. to perform partial matching.
Moreover, two or more edges in one graph may correspond to one longer
edge in the other graph. To handle these topological differences, we define
superedges [88] as sequences of up to K consecutive edges, s = (e1, . . . , eKs),
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Ks ≤ K. We mostly use K = 2 or 3 and give examples in Fig. 5.2. Matching
superedges instead of edges effectively allows some nodes to be skipped
in one of the graphs. The set of all superedges in the graph GA will be
denoted SA. The length of a superedge is the sum of the lengths of the
constituent edges, l(s) =

∑
i l(ei). To each superedge, we associate a curve

which is a concatenation of the curves associated with individual edges and
is described by a function ζs : I → RD.

The matching between two geometrical graphs GA and GB = (VB,EB)
can be described by a set of superedge pairs MS ⊆ SA × SB. The superedge
matching MS determines uniquely a vertex matching MV ⊆ VA ×VB, such
that matched superedge end-vertices are matched in MV but no other vertices
are matched. A matching MS is feasible only..i) if no matched superedges overlap (contain the same edges),..ii) if it is consistent with some vertex matching MV.

The matching is said to be consistent with a geometrical transformation
T : RD → RD, iff the vertices and superedges are transformed version of each
other,

(u,v) ∈MV =⇒ v = T (u), (5.1)
(r, s) ∈MS =⇒ ζs(I) =

(
T ◦ ζr

)
(I). (5.2)

We want the matching to be as large as possible, so we measure its quality
using the total length of the matched superedges, averaged over the two
graphs

l(MS) =
∑

(sA
k
,sB
l

)∈MS

l(sAk ) + l(sBl )
2 . (5.3)

Since we also want to discourage skipping nodes that exist in both graphs,
we will reward the number of matched nodes |MV|. The combined objective
function is

Q(MV,MS) = l(MS) + κ l(SA,SB) |MV|, (5.4)

where l(SA,SB) is the average length of the superedges of both graphs, and
κ is a user-defined parameter (in our experiments κ = 0.8). The task can be
now defined as follows:
Problem 1. Find a feasible matching MS between the superedges of the graphs
GA and GB, which maximizes the criterion Q (5.4), and is consistent with some
geometrical transformation T from a given class of allowed transformations
T .
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Figure 5.2: Example of a geometrical graph (top) and its superedges of length
one (bottom left) and two (bottom right).

Note that the matching may be partial, i.e. not all edges and vertices are
necessarily matched. Our choice of the class of allowed transformations T
will be defined in Section 5.2.

5.1.1 Proposed approach

The key idea of our approach is to formulate the combinatorial Problem 1 as
a single player game with the following rules:..1. Start with an empty matching MS

0 = ∅...2. The game consists of a sequence of valid moves. In each move, a superedge
pair (r, s) ∈ SA × SB is added to MS, i.e. MS

t+1 = MS
t ∪ (r, s). A move

is valid, if the resulting matching MS
t+1 is feasible and consistent with

some geometrical transformation T ∈ T , where T can vary in time...3. A move consisting of adding a pair (r, s) can be taken only if (r, s) is
adjacent to MS

t . The move is called adjacent, if there is a superedge pair
(r′, s′) ∈ MS

t , such that the first vertex of r and s is equal to the last
vertex of r′ and s′, respectively...4. The goal of the game is to find a sequence of valid moves such that the
final matching maximizes the criterion Q.
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The rules require the matching to be built incrementally (rule 2) and
contiguously (rule 3) and thus limiting the number of possibilities to consider
in each step. See Fig. 5.3 for illustration of possible moves and Section 5.3.1
for handling disconnected graphs.

To prune the search even further, we will use pre-computed path descriptors
(Section 5.4). Only compatible superedge pairs (r, s) will be considered as
possible moves. To summarize, (r, s) is a possible move, if the following
conditions are fulfilled:..a) (r, s) is adjacent to existing matches MS

t ,..b) (r, s) does not conflict with already matched superedges (i.e. no edge
overlap or conflicting vertex assignment),..c) r and s have compatible descriptors (Section 5.4),..d) (r, s) together with previous matches MS

t are consistent with the trans-
formation model (Section 5.2).

The conditions are tested in this order so that the geometrical consistency,
which is the most time consuming, is tested last.

The search space can be described as a directed acyclic graph, with nodes
being the partial matches MS and edges corresponding to possible moves.
Each node has an associated reward Q. Starting in the root MS

0 = ∅, we find
the maximum reward using the Monte Carlo Tree Search method (Section 5.3).

The superedges are considered in a default order : first the superedges with
the least number of constituent edges; in case of equality, longer superedges
are considered first. For pairs of superedges, a maximum number of edges and
a sum of the lengths is considered. This heuristic leads to quickly constraining
future matching choices while not skipping vertices unless necessary.

5.2 Transformation model

Any geometrical transformation model can be used, as long as it allows
efficient test of consistency with a set of points. We represent the curves by
a set of regularly sampled points with a sampling step ∆, so no special test
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Matched superedge
Superedge reachable 
in next move

Superedge not 
reachable in next move

GA GB

n

n + 1

Figure 5.3: Example for a possible next move (top — initial state, bottom —
next state) for a simplified case of superedges with length one. The superedges
reachable in each state are connected with already matched superedge pairs.

for curves is needed. Note that for the matching itself, the deformation does
not need to be explicitly evaluated. We shall therefore define the model only
implicitly, which is computationally advantageous.

In our applications, the scale is usually known, so we need to model mainly
a rigid body transformation with a small nonlinear component due to a tissue
deformation, optical distortion, measurement inaccuracies or perspective
distortion. We are therefore modeling the transformation as bi-Lipschitz,
which means that for any two points x,y ∈ RD, their relative distance after
applying the transformation should not change by more than some small
constant εT :

1
1 + εT

d(x,y) ≤ d(T (x), T (y)) ≤ (1 + εT )d(x,y), (5.5)

where d(x,y) is the Euclidean distance between x and y.

To check condition..d) in Section 5.1.1, i.e. whether a new superedge pair
(r, s) is geometrically compatible with already matched pairs MS

t , we should
take all pairs of points (x,y) from all edges in MS

t ∪ (r, s). However, this
would be computationally very costly. Instead, we shall only test the yet
unmatched end-vertices u ∈ VA and v ∈ VB of r and s, respectively, with
all other matched vertices so far:

1
1 + εT

d(u,p) ≤ d(v,q) ≤ (1 + εT ) d(u,p)

∀(p,q) ∈MV. (5.6)

This approximate test is very quick and on our data it rejects a sufficient
number of incorrect matches.
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5.3 Monte Carlo tree search

To find the optimum matching MS, we will use an algorithm inspired by the
Upper Confidence Bound on Trees (UCT), a variant of the Monte Carlo Tree
Search (MCTS) [13].

A search tree is built incrementally. Each node ν stores the matched su-
peredgesMS and verticesMV. It contains the node rewardQν = Q(MV,MS)
and the estimated maximum reward Q+

ν for the subtree rooted in ν; Q+
ν is

calculated in the simulation step described below. For each node, we also
calculate the urgency

Q̃ν = Q+
ν

Qnorm
+ γ

√
2 logn
nν

. (5.7)

The second term is the upper confidence bound (UCB) [13] and it balances
between exploration of yet unvisited branches and exploitation of known good
branches; γ is a user-defined parameter (in our experiments γ = 0.01), Qnorm
is an upper bound and a normalization factor for the reward Qν , i.e.

Qnorm = l(EA) + l(EB)
2 + κ l(SA,SB) min(|VA|, |VB|),

n is the current iteration number, and nν is the number of times the node ν
has been selected (see below).

A node can be expanded by performing a possible move and adding the
resulting state as a child node of the current node. We keep track of the
expandability (existence of unused possible moves) of each node.

The algorithm repeatedly performs the following four steps (Fig. 5.4), until
the computational budget is exhausted or until no nodes can be expanded:..1. Selection — The most urgent expandable node is selected by a greedy

top-down tree search. We start in the root and always select among the
expandable children the one with the highest urgency Q̃ν . We return
the expandable node with the highest Q̃ν found...2. Expansion — Nexp children of the selected node are added to the
tree. The children nodes to be expanded are taken in the default order
(Section 5.1.1). In our experiments Nexp = 2.
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ν of the

subtree rooted in the selected node by greedily and recursively adding
Nsim children in a depth-first manner, adding always the first node in
the default ordering. The greedy approach is fast, so Nsim can be set to
a large number (in our experiments Nsim = 25). We insert the added
nodes into the search tree...4. Backpropagation — We update Q+

ν in the nodes along the path from
the current node back to the root, taking the maximum of the children
values.

The algorithm stops after reaching a predefined match size Nmatch, maximum
number of iterations Nit or maximum processing time Tmax. The result is
a matching (MV,MS) between the graphs with the highest reward Qν .

When the matching is complete, we use a Gaussian process regression [66]
to fit a smooth non-linear transformation T given the matched vertices. This
step is fast and provides sufficiently good results on our data. For more
demanding applications, the iterative procedure [89] should be used, which
alternates between solving for the assignment between all points using the
Hungarian algorithm [70] and fitting the Gaussian process model.

In Appendix B, we detail the implementation of the method, giving some
extra information about the algorithm. In Appendix C, we give some details
over the publicly distributed code of the algorithm.

5.3.1 Implementation details

Several additional fields are stored for each node besides MS, MV, Qν and
Q+
ν :

.Counter nν: Number of times the node has been selected.. Skipped vertices: a list of skipped vertices in the match. Skipped
vertices are vertices which are part of superedges in MS but which are
not in MV. They are not considered for addition in the future, as they
overlap with already matched superedges.. Expandable flag: false if all elements in the subtree under the node
(including itself) have been fully expanded and true otherwise.
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Figure 5.4: Example of the GMMC algorithm exploring the search tree for
a simple pair of graphs. A node corresponding to a superedge pair is selected and
expanded and then extended greedily in the simulation step. For each pair of
graphs in blue and green, MV is represented by yellow lines connecting vertices,
matched superedges from MS are shown in yellow and the newest match is
shown in red. Below each simulation, we show the alignment such matching
would produce. The optimal solution (highlighted on the tree) was found after 6
milliseconds in 44 iterations.

To allow exploring disconnected components of the graphs GA, GB, virtual
superedges composed of a single straight edge are added between vertices closer
than a distance dc which belong to different graph components (for graphs
normalized s.t. VA,VB ∈ [−1, 1]D, we use dc = 0.15). Only superedges of
the same type (virtual and non-virtual) can be matched to each other.

If more severe topological differences are expected in a particular application,
which cannot be handled by superedges and virtual superedges, it is possible
to extend the set of possible moves even further and to allow with some
small probability a match between any yet unmatched nodes, regardless of
other constraints. This is in the spirit of Markov chain Monte Carlo (MCMC)
methods and in theory allows to explore the whole space of possible matchings
at the cost of much increased computational complexity. However, this turned
out not to be necessary in any of our datasets.

Unlike in standard MCTS, the search space is a directed acyclic graph,
not a tree, because several sequences of moves may lead to the same state.
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5. Graph Matching using Monte Carlo Tree Search......................
To save the computational effort, the nodes representing the same state are
shared. Each time a new state MS is to be added to the search tree, we check
a list of already encountered states. If the node already exists, it is shared.
The test is fast using binary search, as the list is kept sorted by defining
a topological ordering between matches.

In Appendix B, we further detail the implementation of the method,
including several pseudo algorithms for each step of the approach.

5.3.2 Adding a child node

There is a special procedure for expanding the root node, since it would be
wasteful to enumerate all possible superedge pairs. If the root is selected for
expansion, a single superedge pair is added. We start with the first superedge
in SA (in the default order, i.e. the longest edge, see Section 5.1.1) and find the
first geometrically compatible superedge in SB (Section 5.4). Only superedge
pairs with the same number of constituent edges are considered for addition.
The lists of possible superedge pairs and endpoints are then created (as for all
other nodes, see below). If the root needs to be expanded again, the search
continues where it left off.

For a non-root node, the procedure of adding a child node is the same for
both the expansion and simulation steps:

.We pick an unexplored superedge pair from the list of possible superedge
pairs, sorted in default order. This pair will automatically satisfy conditions..a) –..c) in Section 5.1.1. We then check the geometric compatibility with
previous matches (condition..d) ) using (5.6).

. The new node starts as a copy of its parent. We then add the newly matched
superedge pair to MS and the yet unmatched end-vertices to MV. The list
of skipped vertices is updated. Infeasible matches are removed.

.We search in SA and SB for superedges incident with the newly matched
vertices but with none of the already matched edges. Geometrically compat-
ible superedge pairs (condition..c) ) are added to the list of possible moves.
This can be done in linear time with respect to the number of adjacent
edges.
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Figure 5.5: Simple example of the sampling for calculating the path descritptor
hω(sk) for a superedge sk

5.4 Path descriptors

The path descriptors characterize a curve by a fixed-length real vector, in-
variant to rigid body transformations, allowing efficient curve matching.
An earlier version of the descriptors was used in [74].

Let us have a sampling vector ω = (ω0, · · · , ωnω+1) such that 0 = ω0 <
ω1 < . . . < ωnω < ωnω+1 = 1. For a given superedge s and its associated
curve ζs, we shall define a scalar value

hω(s) =
nω∑
i=0

d
(
ζs(ti), ζs(ti+1)

)
, (5.8)

where the vector t = (t0, . . . , tnω+1) is chosen such that d
(
ζs(0), ζs(ti)

)
=

ωid
(
ζs(0), ζs(1)

)
. If there are more possible ti, the smallest one is taken. In

other words, we find the first intersection of the curve with concentric circles
of relative radii given by ωi, and calculate the total length of the line segments,
connecting these points (see Fig. 5.5). A vector descriptor

hΩ(s) = (hω1 , · · · , hω|Ω|) (5.9)

is created by evaluating (5.8) for a set Ω =
(
ω1, . . . ,ω|Ω|

)
of randomly

generated sampling vectors ω. The number of sampling vectors |Ω| and their
length nω are user defined fixed parameters. In our experiments nω = 5, |Ω| =
50.

The descriptors are precalculated for all superedges. To test the compati-
bility of two superedges (r, s) ∈ SA × SB (condition..c) in Section 5.1.1), we
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take inspiration from the Lipschitz condition (5.5). We shall consider the two
superedges to be compatible iff

1
1+εh

hωi(r) ≤ hωi(s) ≤ (1 + εh)hωi(r), ∀i (5.10)

for all sampling vectors ωi from Ω. We use εh = 3εT , which has been
confirmed to be a reasonable choice in an experiment in Section 5.5.3.

5.5 Experiments

We evaluate the performance of our proposed method GMMC on synthetic
and real data and compare its performance against that of state-of-the-art
methods. We first quantify the relationship between accuracy and time
complexity given the amount of deformation and noise, the initial position
and topological differences using synthetic data (Section 5.5.2). We then show
results on real bioimaging data and on satellite images of roads (Section 5.5.3).

5.5.1 Tested methods

The methods to compare with were chosen to cover the range of known
approaches to point cloud and graph matching. We have preferred methods
that scored well in our previous experimental comparison in [89]. We have
chosen RANSAC [37] as an example of sampling methods. Active Testing
Search (ATS) [89], which uses incremental matching, is the best performing
method so far. Graph matching techniques are represented by the Integer
Projected Fixed Point method (IPFP) [60] and the Path Following Algorithm
(PATH) [108]. Local matching approaches are represented by the Coherent
Point Drift (CPD) [71].

The methods were implemented as described in their respective papers and
using provided implementation when available, with the following parameters:

. RANSAC [37]: Four points are sampled at each iteration and an affine
transform is fitted. This disadvantages RANSAC somewhat but to fit
more general transforms would not be feasible due to the exponential
time complexity.
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Deformation

· · ·

|c| = 0 |c| = 0.02 |c| = 0.04 |c| = 0.06

Rotation

· · ·

θ = 0 θ = π
6 θ = 2π

6 θ = 3π
6

Figure 5.6: Results for synthetic datasets testing deformation and rotation
in 3D showing the performance of the tested methods. The median correct
correspondence percentage of 20 realizations for each parameter value is shown.
Under each graph, we show 2D examples of the effects.

. ATS [89]: Synthetic training data (Section 5.5.2) was used to learn the
score function. The Gaussian process regression hyperparameters were
chosen as θ0 = 1, θ1 = 10, θ2 = 0.1, θ3 = 1 and β−1 = 0.05.
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Missing subgraphs

· · ·

m = 0% m = 20% m = 40% m = 60%

Noise

· · ·

n = 0 n = .01 n = .02 n = .03

Figure 5.7: Results for synthetic datasets testing missing subgraphs and white
noise in 3D showing the performance of the tested methods. The median correct
correspondence percentage of 20 realizations for each parameter value is shown.
Under each graph, we show 2D examples of the effects.

. CPD [71]: A point cloud is obtained by considering also the point
representation of the edges with a sampling step of ∆ = 0.025. We
used the non-rigid configuration with β = 3 and λ = 3. The initial
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transformation was identity.. For the proposed method (GMMC), the parameters used for all experi-
ments were K = 3, nω = 5 and |Ω| = 50.

All tested methods, with the exception of CPD, only provide a coarse
matching, i.e. a matching between the graph nodes or their subsets. For the
remaining methods, we use the same approach as in GMMC (as described in
Section 5.3).

A correspondence (x,y) is considered to be correct, if the distance d(y,y∗)
to the true match y∗ of x is smaller than the sampling step ∆.

5.5.2 Synthetic datasets

To generate a synthetic graph GA, the procedure from [89] is used — points
are randomly sampled from a uniform distribution on the [−1, 1]3 cube and
then minimum spanning tree [12] edges are added. The branching points
become vertices of GA and the edges are resampled using a sampling step
∆ = 0.025. The graph GB is obtained by transforming GA in the desired way,
as described below.

Evaluating matching accuracy

Random graphs GA with approximately |V| ≈ 40 nodes were generated as
described above and the following effects were applied to them to obtain the
graphs GB:

. Deformation: A cubic B-spline transformation [99] was applied with
random coefficients of a given standard deviation in the range [0, 0.2]..Missing subgraphs: Randomly selected branches of the graph were re-
moved so that the number of nodes is decreased by {0%, 10%, . . . , 90%}.. Rotation: The graph is rotated by a given angle from the interval [−π, π]
around a random rotation axis through the origin.

81



5. Graph Matching using Monte Carlo Tree Search......................

Figure 5.8: The processing time, precision and recall as a function of εh, where
εT = 1

3εh. For different values of εh, we calculate the processing time taken to
obtain the solution, the precision (positive predictive value) and the recall (true
positive rate). The values shown are a median over 100 synthetically generated
pairs of graphs. Nmatch was set to the size of the true match.

. Noise: A Gaussian random displacement with standard deviation in
the range [0, 0.1] was applied to each component of each point in GB,
including the edge points.

For each effect and each parameter value, 20 pairs of random graphs were
generated and matched by the tested method, and median correct correspon-
dence percentage was calculated over all vertices. The termination criteria
were set so that the number of matched vertices is 80% of the size of VA.

We see in Figures 5.6 and 5.7 that the proposed method (GMMC) is
among the best in all cases. CPD cannot handle large rotations and missing
subgraphs, RANSAC and IPFP cannot handle deformation and noise, PATH
performs badly for missing branches, deformation and noise. This leaves only
ATS and GMMC fulfilling our requirements, with GMMC performing better
than ATS in all cases except the rotation test, where their performance is
similar.
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Figure 5.9: Precision and recall as a function of the allowed processing time and
εh, where εT = 1

3εh. For this experiment, the maximum amount of time for the
algorithm to stop was the only termination criterion used. The median true εh

is shown on the horizontal axes.

Lipschitz parameters

We analyzed the performance of the algorithm with respect to the Lipschitz
parameters εh and εT , which determine the allowed deformation (5.6) and the
allowed path descriptor tolerance (5.10). The parameter εT is set according
to how much deformation can be expected in specific datasets and we take
εh = 3εT , as discussed in Section 5.5.3.

We have generated 250 pairs of graphs by combining the effects from
Section 5.5.2: a small nonlinear deformation, a random rigid motion, removal
of randomly selected 40% of the vertices. The true median value of the
Lipschitz constant εh for this dataset is approximately 0.2 and εT ≈ 0.07. We
ran the algorithm with different values of εh until either the search tree was
completely explored or until a solution with as many matched points MV as
in the true solution was found.

As we can see in Fig. 5.8, for small values of εh, the tests are very strict, the
search tree is rather small and is completely explored. The running time and
the number of true correspondences found (recall) increases with εh. Above
the optimal value of εh, which is close to the true median εh, the recall starts
to decrease slowly. Note that by experiment design, the precision equals
recall in this regime, since the number of returned correspondences is fixed.
The running time first drops sharply, as the solution is found quickly and the
search tree does not need to be fully explored; it then increases slowly with
increasing εh.

We conclude that it is important to set εh to a large enough value, so
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Figure 5.10: Experiment evaluating the complexity of methods ATS [89],
RANSAC [37], IPFP [60], PATH [108], CPD [71] and the proposed method
(GMMC). Both axes use the logarithmic scale.

that the true solution is not missed. Increasing it further will deteriorate
the performance only slightly. Note that in most realistic applications, the
Lipschitz constant εT is small, usually much smaller than 1.

To understand the performance of the algorithm with respect to the max-
imum allowed time Tmax, we generated 250 synthetic graph pairs as in the
previous experiment, only increasing the size of the undecimated graph GA
to 250 vertices to make the differences more visible. In this experiment, we
do not set the maximum number of iterations Nit nor the minimum stopping
match size Nmatch; the algorithm stops only after the time budget Tmax is
exhausted or if the search tree is completely explored. Recall and precision
for εh ∈ [0, 5] and Tmax ∈ [0.018, 5.0] s are shown in Fig. 5.9. The median
true εh for this dataset is approximately 0.42 and the median true εT ≈ 0.14.

As expected from the previous experiment, for small εh, the recall increases
sharply with increasing εh and the precision is high. After exceeding the
optimal value, which is close to the true median Lipschitz constant, false
positives start appearing and the performance decreases slowly with increasing
εh. Allowing more processing time always improves the results, as the
algorithm has the time to explore a larger part of the search tree. This effect
is more pronounced for higher values of εh.
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Time complexity

Using the procedure as described at the beginning of this Section, with
a random rotation and a small nonlinear deformation, we have generated
a synthetic dataset of graph pairs with an increasing number of vertices
|V| ∈ {101, 101.25, 101.5, 101.75, . . . , 103.75}, with 20 pairs of graphs for each
graph size. Fig. 5.10 shows the median processing time for all the tested
methods. The parameters for all methods were set so that at least 75% of the
vertices of the graphs were matched. We can see that the proposed method
is the fastest of the methods tested. For larger graphs, it is about 5 orders of
magnitude faster than ATS, the only other method meeting our requirements.
Moreover, GMMC also has a lower asymptotic complexity (see the slope of
the curve) than all other competing methods except CPD. The times are
given for the coarse matching only, while CPD matches the edge points, too.

5.5.3 Real datasets

The algorithm was also tested on real datasets. All segmented graphs were
normalized such that VA,VB ∈ [−1, 1]D. The ground truth correspondence
between the graph vertices was obtained manually. For all methods except
CPD, the Gaussian process regression as described in Section 5.5.1 was used
to obtain the fine alignment. Then, we calculated the alignment error as
the mean Euclidean distance between the corresponding vertices, once the
graphs were aligned. We also show the precision and recall of identifying the
true matches between vertices, which were annotated manually, as well as
the total processing time. As in the synthetic case, we choose εT according
to how much deformation we expect to find in the dataset and set εh = 3εT .
The chosen value of εT is reported for each dataset.

Roads

We matched a segmented road network from an aerial view image to a graph
extracted from a road map. The map was obtained from OpenStreetMap [50]
and we semi-automatically segmented [65, 97] roads from satellite images
obtained from Google Maps1. The satellite image corresponds to only a small
subset of the graph obtained from the map.

1http://maps.google.com
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Road Pair II: Rokytnice nad Jizerou, Czech Republic

Road Pair III: Brookhaven, New York

Road Pair IV: Ilha do Faial, Portugal

Figure 5.11: Examples of results for the roads dataset. On the left the graph
extracted from the map is shown overlaid on a map image. On the right the
graph extracted from the road network is shown (in red) aligned with the graph
extracted from the map (in blue). The correspondences are depicted by the
yellow lines connecting vertices of the graphs.
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Road Pair VI: Prague, Czech Republic

Road Pair VIII: Porto Santo, Portugal

Road Pair IX: Porto, Portugal

Figure 5.12: Examples of results for the roads dataset. On the left the graph
extracted from the map is shown overlaid on a map image. On the right the
graph extracted from the road network is shown (in red) aligned with the graph
extracted from the map (in blue). The correspondences are depicted by the
yellow lines connecting vertices of the graphs.
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Dataset GMMC ATS IPFP CPD(Proposed)

Road Pair I Error 0.004 0.005 0.305 0.239
|VA| : 32 Precision (%) 100.0 100.0 0.0 3.1
|VB| : 38 Recall (%) 83.3 33.3 0.0 8.3

Time (s) 0.03 55.17 9.16 0.92

Road Pair II Error 0.005 0.011 0.252 0.070
|VA| : 25 Precision (%) 92.9 71.4 0.0 0.0
|VB| : 199 Recall (%) 61.9 23.8 0.0 0.0

Time (s) 0.00 30306.50 137.90 0.01

Road Pair III Error 0.003 0.005 0.403 0.358
|VA| : 19 Precision (%) 90.9 100.0 0.0 0.0
|VB| : 306 Recall (%) 76.9 23.1 0.0 0.0

Time (s) 0.01 10946.63 1679.98 0.01

Road Pair IV Error 0.009 – 0.447 0.388
|VA| : 20 Precision (%) 100.0 – 0.0 0.0
|VB| : 1344 Recall (%) 71.4 – 0.0 0.0

Time (s) 0.96 – 1606.86 0.01

Road Pair V Error 0.004 – 0.429 0.303
|VA| : 29 Precision (%) 73.3 – 0.0 0.0
|VB| : 711 Recall (%) 61.1 – 0.0 0.0

Time (s) 0.00 – 509.53 0.02

Road Pair VI Error 0.005 – 0.782 0.790
|VA| : 49 Precision (%) 70.0 – 0.0 0.0
|VB| : 1989 Recall (%) 42.4 – 0.0 0.0

Time (s) 10.95 – 83619.15 0.17

Table 5.1: Results for road datasets: alignment error (graphs were normalized s.
t. VA,VB ∈ [−1, 1]D), percentage of correct matches in the solution (precision),
percentage of ground truth matches retrieved (recall) and processing time in
seconds. For each dataset, we present the number of vertices of each graph |VA|
and |VB |.

We tested 10 different pairs of map graphs with up to 6000 vertices, 7500
edges and 75000 superedges, which were matched to templates with up to 60
vertices and 600 superedges. We used εT = 0.1.

The alignment error, precision, recall and elapsed time are presented in
Tables 5.1 and 5.2 and a few visual examples are shown in Figures 5.1, 5.11
and 5.12. Some methods could not process all datasets as they exhausted the
available 256GB of RAM memory in our computer. These cases are marked
with ’—’. We see that the proposed GMMC method is the best in almost
all criteria (shown in bold). The ATS method has a better precision but
a much lower recall and much higher computational complexity. The tradeoff
between precision and recall can be influenced by parameter setting but the
computational complexity remains. The other tested methods simply do not
find any correct matches.
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Dataset GMMC ATS IPFP CPD(Proposed)

Road Pair VII Error 0.007 – – 0.377
|VA| : 47 Precision (%) 73.7 – – 0.0
|VB| : 6050 Recall (%) 43.8 – – 0.0

Time (s) 363.74 – – 0.29

Road Pair VIII Error 0.009 – 0.464 0.363
|VA| : 24 Precision (%) 85.7 – 0.0 0.0
|VB| : 803 Recall (%) 60.0 – 0.0 0.0

Time (s) 0.02 – 824.31 0.05

Road Pair IX Error 0.002 – 0.526 0.675
|VA| : 67 Precision (%) 96.3 – 0.0 0.0
|VB| : 1693 Recall (%) 57.8 – 0.0 0.0

Time (s) 414.36 – 36056.12 0.20

Road Pair X Error 0.002 – 0.268 0.577
|VA| : 51 Precision (%) 95.8 – 0.0 0.0
|VB| : 2576 Recall (%) 71.9 – 0.0 0.0

Time (s) 0.05 – 45758.20 3.08

Road Pair XI Error 0.006 – 0.489 0.571
|VA| : 41 Precision (%) 100.0 – 0.0 0.0
|VB| : 2479 Recall (%) 78.0 – 0.0 0.0

Time (s) 0.66 – 21431.36 0.02

Road Pair XII Error 0.004 – – 0.668
|VA| : 36 Precision (%) 95.2 – – 0.0
|VB| : 6050 Recall (%) 83.3 – – 0.0

Time (s) 549.41 – – 0.23

Table 5.2: Results for road datasets: alignment error (graphs were normalized s.
t. VA,VB ∈ [−1, 1]D), percentage of correct matches in the solution (precision),
percentage of ground truth matches retrieved (recall) and processing time in
seconds. For each dataset, we present the number of vertices of each graph |VA|
and |VB |.

Medical images

We tested our method on five types of datasets of medical images or volumes.
The datasets are examples of different applications in medical imaging and
were obtained using different acquisition techniques.

Tem aim of the registration of retinal fundus images [29, 55] (Fig. 5.14
and 5.15, εT = 0.25) is to combine images with limited fields of view or to
detect changes in time. In this case the segmented graphs are two-dimensional.

Images of brain circuits (Fig. 5.18 εT = 0.2) are sparse sets of fluorescently
labeled neurons in the neocortex in 3D, which were obtained using large-
scale 2-photon laser scanning microscopy at two time instances in a living
mouse [51]. Registration is needed to detect and quantify the differences [44].
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Figure 5.13: (a) top: Brain tissue acquired using two-photon light microscopy
from live brain tissue at a 1µm resolution and bottom: a smaller area of the
same tissue imaged using electron microscopy, at a 20 nm resolution. (b): The
neuronal fibers are segmented. (c): The segmentation is converted to graphs
GA = (VA,EA) and GB = (VB ,EB). (d): The alignment of the two structures
after matching using the proposed method.

Multimodal registration is demonstrated on two 3D datasets. The EM/LM
(Fig. 5.13, εT = 0.35) dataset shows brain tissue at two different scales
using electron microscopy (EM) and light microcopy (LM). Brain vessels
(Fig. 5.17, εT = 0.35) are blood vessels acquired using optical and 2-photon
microscopy. In both cases the registration is needed to fuse images from the
two modalities.

Finally, heart images from the angiography dataset are two-dimensional
angiograms taken at different time instances (Fig. 5.19, εT = 0.25). The aim
of this application is to track the displacement of the heart vessels over time.

The alignment error, precision, recall and elapsed time for these datasets is
shown in Table 5.3. Both the proposed method (GMMC) and ATS are able
to successfully match all the graphs, however GMMC is much faster. CPD
can solve some of the tasks but fails when large parts of the graph are missing
(EM/LM) or when the deformation is large (angiography). CPD sometimes
presents a high recall since it tries to match all points. However, the precision
is lower, as many of these points are incorrect, resulting in a higher alignment
error in most cases.
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Dataset GMMC ATS IPFP CPD(Proposed)

Error 0.026 0.030 0.669 0.027
Brain Circuits Precision (%) 72.0 100.0 2.4 45.2
|V̄| : 124 Recall (%) 29.5 8.2 4.9 91.8

Time (s) 0.16 1104.41 59.42 0.11

Error 0.016 0.016 0.179 0.128
EM/LM Precision (%) 77.8 100.0 4.5 4.5
|V̄| : 22 Recall (%) 70.0 50.0 10.0 10.0

Time (s) 0.00 97.14 0.78 0.01

Error 0.045 0.041 0.409 0.048
Brain Vessels Precision (%) 71.4 100.0 21.4 29.7
|V̄| : 37 Recall (%) 41.7 41.7 50.0 91.7

Time (s) 0.01 4.84 3.26 0.01

Error 0.031 0.052 0.057 0.078
Angiography Precision (%) 70.1 70.0 24.7 19.1
|V̄| : 24 Recall (%) 80.6 47.2 66.7 61.1

Time (s) 0.58 2.84 4.03 0.15

Error 0.017 0.030 0.128 0.070
Retina Precision (%) 88.2 86.7 61.9 66.4
|V̄| : 141 Recall (%) 77.9 4.7 76.4 84.1

Time (s) 0.66 330.56 182.40 0.09

Table 5.3: Results for medical images: average distance between true matches of
aligned graphs (graphs were normalized s. t. VA,VB ∈ [−1, 1]D), percentage of
correct matches in the solution (precision), percentage of ground truth matches
retrieved (recall) and processing time in seconds. For each dataset, we also give
the average number of vertices ¯|V|.

Discussion — what should be matched

Let us comment on several aspects, which are well illustrated on the medical
datasets. First, if the deformation is smooth, as for the retinal dataset, it is
faster and sufficiently accurate to match just a part of the graph for example
by reducing the desired number of matched vertices Nmatch. Second, it is
up to the user to provide the parameters εh or εT , determining how much
deformation is allowed between the two input graphs. If this parameters are
set conservatively, strongly deformed parts will not be matched. In Fig. 5.16,
we show that by increasing εT and εh, a large part of the graph can be
matched at the expense of computation time.

Finally, note that leaf nodes are sometimes not matched, as they do not
correspond to well defined physical points in the tissue, but rather to points
where the annotator or the segmentation algorithm decided to stop the edge
(see the angiography or retinal datasets), and these points may not coincide
in the two graphs. If desired, leaf edge matches can be treated specially,
allowing partial matches by shortening the longer superedge to the length of
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Figure 5.14: Examples of results on the retinal dataset. The first and second
columns are the input images with the extracted geometrical graphs superimposed.
Matched superedges are shown in red. The third column depicts the resulting
alignment of the first graph onto the second.

the shorter one [88], at the expense of more false matches.
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Figure 5.15: Examples of results on the retinal dataset. The first and second
columns are the input images with the extracted geometrical graphs superimposed.
Matched superedges are shown in red. The third column depicts the resulting
alignment of the first graph onto the second.
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εT = 0.05, Recall 39.1% εT = 0.15, Recall 81.8%
t = 0.03s, Precision 100% t = 0.06s, Precision 100%

εT = 0.35, Recall 84.8% Ground truth
t = 0.12s, Precision 84.8%

Figure 5.16: The recall increases with increasing εT (with εh = 3εT ) when
matching two retinal fundus images. Consequently, the precision decreases
and the processing time t increases. The graphs are drawn in green and blue,
transformed based on the matched superedges (shown in red for both graphs),
and overlaid on the original image. The same graph pair is visible as the left-most
result in Fig. 5.14. The ground truth is shown in yellow in the right-most pair of
images. Only entire edges are matched.

Figure 5.17: Example of medical applications results for blood vessels acquired
using (left) two-photon microscopy and (middle) bright-field optical microscopy.
Only segmentation is shown for better visualization. The first and second volumes
are the initial images with the extracted geometrical graphs superimposed. The
third depicts the alignment of the proposed method of the first graph onto the
space of the second.
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Figure 5.18: Example of medical applications results for a neuronal network
acquired at different time instances using 2-photon microscopy. The first and
second volumes are the initial images with the extracted geometrical graphs
superimposed. The third depicts the alignment of the proposed method of the
first graph onto the space of the second.

Figure 5.19: Example of medical applications results for angiography images
from a beating heart taken at different time instances. The first and second vol-
umes are the initial images with the extracted geometrical graphs superimposed.
The third depicts the alignment of the proposed method of the first graph onto
the space of the second.
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Figure 5.20: ROC curve comparing the performance of the curve descriptors. in
all medical datasets of different methods. For each point of the proposed method
in the ROC curve, we show the used εh values. We also show a histogram of
the true εh of the superedges in the data. The mean value of εh in this data is
approximately 0.06.

Path descriptors

We have tested the proposed path descriptors from Section 5.4 against four
other methods: Similarity of Deformable Shapes [6], Curve Matching using
the Fast Marching Method [40] and Similarity Invariants for 3D Space Curve
Matching [64]. We have used all medical datasets from Section 5.5.3.

We took all possible superedge pairs and tried to determine whether two
superedges matched. ROC curves were calculated by thresholding a provided
curve distance measure for [6] and [40], thresholding a Euclidean distance
between the descriptors for [64], and varying εh in (5.10) for our method. We
can see in Fig. 5.20, that our path descriptors outperform all other methods.

The points on the ROC curve are annotated with the Lipschitz constant εh
and we also show a histogram of the true εh values for all matching superedge
pairs. We can see that the equal error rate point is reached for εh = 0.16,
which corresponds to the 93.5% percentile of the histogram while εT = 0.05,
corresponds to a 95.17% percentile of its respective histogram. We observe
similar behavior in other datasets, including synthetically generated. Hence
our choice of εh = 3εT , with εT sufficiently large to allow the expected
deformation.
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Chapter 6

Conclusion

Throughout this thesis we focused on the problem of image registration
using graph matching. We proposed to match images by first extracting the
geometrical information of graph shaped structures present in the images,
and consequently matching them to obtain an alignment between the images.

We proposed a segmentation approach that enforces time consistency con-
straints to improve the extraction of the structures. The method successfully
segments trees from neuronal data and aerial images of road networks. We
showed that applying these constraints improves the segmentation accuracy
as opposed to considering the images individually.

We then proposed two different algorithms for matching of geometrical
graphs. The first, Active Testing Search (ATS) uses learning to estimate the
likelihood to determine whether a partial matching is correct, given several
matching quality features. The transformation is obtained by a Gaussian
Processes Regression given a partial matching between points. We showed
the method is able to accurately match real datasets from different medical
applications. The approach is faster than other search methods, however it is
still slower than several point matching techniques when matching sets with
a large number of points with high deformation.

Second, we proposed an approach to considerably improve the time com-
plexity of the graph matching, called Graph Matching using Monte Carlo
Tree Search (GMMC). The method aggregates adjacent compatible edges
using a search algorithm inspired in the Monte Carlo tree search algorithm.
Compatible edges are obtained using a curve descriptor to compare the geo-
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metrical curves. As stated as an objective in the introduction of this thesis,
the approach is able to match graph structures with unknown initial posi-
tion, presenting non-linear deformation and disregarding appearance features.
Although ATS is also capable of matching most of this type of structures,
it uses significantly more processing time, as GMMC presents the best time
complexity from the tested methods. We show that the method is accurate in
all tested real datasets in medical imaging and aerial image localization, and
that the time complexity is the lowest considering other competitive methods.

The method is fast also thanks to the curve descriptors which we have
introduced and which allow efficient pruning. We show experimentally that
these descriptors outperform other previously known curve descriptors.

Our method is modular and could be extended in various ways. For example,
we do not use any appearance information at the moment but it would be easy
to add an appearance comparison to the superedge pair compatibility check.
Alternative transformation models could be used to improve robustness and
for a further speedup. The subtree match quality criterion could be estimated
more efficiently from the properties of the partial matches using machine
learning, similar to [89]. The search could be parallelized to yield further
speedup. The challenge remains how to perform the matching of truly large
geometrical graphs, of millions of vertices or more.
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Appendix A

Active Testing Search derivation

In this appendix, we first introduce some notations and then derive our Active
Testing Search (ATS) algorithm, mentioned in Section 4.3.2.

Notation and Assumptions

Let nA and nB be the number of nodes, respectively, in XA and XB and
assume that nA ≤ nB. We impose a fixed ordering for all the points in XA

and denote Zi ∈ {−1, 1, . . . , nB} to be the index of the node xBZi that matches
xAi , where Zi = −1 if there is no such match. Let M =

{
xAl ↔ xBZl

}
1≤l≤L

be a candidate set of correspondences where the first L points in XA are
assigned. Let Z = (Z1, ..., ZnA) ∈ Z, where Z is the space of all possible
solutions that map XA to XB be a discrete random vector with probability
distribution P (Z) = P (Z1, ..., ZnA).

To organize the space of solutions, we construct a hierarchy over the
space of Z by means of decomposition tree Λ, whose nodes are taken to
be Λu,v = (Z1 = z1, ..., Zu = zu), v ∈ {1, ..., Vu}, where Vu is the number of
assignments of length u. Note that each Λu,v corresponds to a unique set of
correspondences M. The children of Λu,v are formed by adding one more
assignment

CΛu,v =
{
(Z1 = z1, . . . , Zu = zu, Zu+1 = z) | ∀z 6∈ {z1, . . . zu}

}
(A.1)
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and note that because the elements of CΛu,v are disjoint then

P (Λu,v) =
∑

c∈CΛu,v

P (c). (A.2)

We define a quality score SM ∈ R+ to be a random observation of the
quality of the mapping defined by a set of correspondences M and assume
that it is normally distributed

P (SM = s|Z) =
{
N (s; ωu

1), if δ(M, Z) = 1
N (s; ωu

0), if δ(M, Z) = 0
, (A.3)

where u is number of correspondences in M, N is a Gaussian probability
distribution with parameters ωu

1 = (µu1 , σu1 ), ωu
0 = (µu0 , σu0 ), i.e. the mean

and variance of each of the Gaussian distribution, and δ(M, Z) = 1 if the
correspondences of M are compatible with a given Z and 0 otherwise. In
addition, we assume that

P ({SΛu,v ; Λu,v ∈ Λ}|Z) =
∏

Λu,v∈Λ
P (SΛu,v |Z). (A.4)

which, together with (A.3) allows for a computationally tractable solution
without compromising the quality of the solution too much.

Finally, the likelihood ratio is

R(s) = N (s; ωu
1)

N (s; ωu
0) , (A.5)

and T is the number of iterations of the ATS optimization.

Objective

Our objective is to infer Z from some set of observations {SM1 , ..., SMT }. To
do this, we consider solving the MAP

Z∗ = arg max
z∈Z

P (Z|SM1 , . . . , SMT ) (A.6)

= arg max
z∈Z

{P (Z)P (SM1 , . . . , SMT |Z)}

= arg max
z∈Z

{
P (Z)

T∏
t=1

P (SMt |Z)
}
. (A.7)
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.............................A. Active Testing Search derivation

The ATS approach approximates the MAP by iteratively making obser-
vations SMt . If at time step t, the correspondence set Mt, associated with
Λu,v, is evaluated and St = {SM1 = s1, . . . , SMt = st} then for any set of
correspondences Z = z

P (Z = z|St) = P (SMt = st|Z = z)P (Z = z|St−1)
P (SMt = st)

= B(st, z)P (Z = z|St−1)
P (SMt = st)

where B(st, z) = N (st; ωu
1)δ(Mt,z) +N (st; ωu

0)1−δ(Mt,z). Using the likelihood
ratio, we can therefore write

P (Z = z|St) = 1
C
R(st)δ(Mt,z)P (Z = z|St−1), (A.8)

where C = R(st)P (Z = z|St−1) + P (Z = z|St−1)− 1.

Using the property of Eq (A.2), we can further specify that

P (Λu,v|St) = 1
C
R(st)δ(Mt,Λu,v)P (Λu,v|St−1), (A.9)

which describes the posterior probability of any nodes in Λ and allows the
ATS to grow the tree dynamically as iterations proceed in a top-down manner.

Consider that at iteration t of the ATS algorithm we have computed the
score SMt = st after evaluating the set of correspondences Mt (associated with
Λu,v). We must now compute the posterior distribution for each node in the
queue. Hence, in one case the node to update is the one evaluated at iteration
t (i.e. δ(Mt,Λu,v) = 1) and in the other it is not (i.e. δ(Mt,Λu,v) = 0). In
the former, the posterior can be computed as

P (Λu,v|St) = 1
C ′
R(st)P (Λu,v|St−1) (A.10)

while in the latter, the posterior is computed as

P (Λu′,v′ |St) = 1
C ′
P (Λu′,v′ |St−1), (A.11)

where
C ′ = R(st)P (Λu,v|St−1) + P (Λu,v|St−1)− 1. (A.12)

In conclusion, the exact posterior distribution of each node in the tree can
be computed at each iteration using Eq. (A.10) and Eq. (A.11): the former
for the node Λu,v which has been queried at that iteration and the later for
all other nodes in the tree. Therefore at each iteration each node must be
normalized by C ′ and only Λu,v (or equivalently it’s children) is multiplied
by R(st).
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A. Active Testing Search derivation ............................
Observation Selection

In our ATS algorithm we avoid computing the normalization constant of
Eq. (A.12) for the evaluated candidates and all other elements of the queue
Q. We now show why this is appropriate.

At each time step of the ATS process, the queue Q maintains a set of
candidates which are frontier nodes from the tree Λ expended thus far. That
is, at time step t, the queue maintains tuples of Λu,v and P (Λu,v|St), where
none of the Λu,v nodes have any ancestors in the queue.

The ATS selects the next node to evaluate (and expand from the queue)
by selecting the node which maximizes the information gain,

Mt = arg max
M∈Q

MI(Z;SM|M,St−1)

= arg max
M∈Q

H(Z|M,St−1)−H(Z|SM,M,St−1)

(A.13)

where H(·) is the Shannon entropy and MI(Z;SM|M,St−1) is the mutual
information between the true correspondences and the observation to make
when evaluating the set M and having already observed St−1. Recall that M
is associated with unique tree node Λu,v and by letting εu,v = P (Λu,v|St−1),
Eq. (A.13) can be rewritten as

Mt = arg max
M∈Q

{H (εu,vN (s; ωu
1) + (1− εu,v)N (s; ωu

0))

−εu,vH (N (s; ωu
1))− (1− εu,v)H (N (s; ωu

0))}.
(A.14)

Solving this optimization exactly is non trivial and in [42, 94] the Gini Index
was used to approximate the Shannon entropy, leading to

Mt ≈ arg max
M∈Q

{εu,v(1− εu,v)δu} (A.15)

where δu is a constant which only depends on the depth of node evaluated,
u. Using the result of [107], this optimization can be further approximated
without great impact on accuracy by

Mt ≈ arg max
M∈Q

{εu,v} , (A.16)

suggesting that the node with the highest posterior distribution be queried
during the following iteration and can be achieved by selecting the element
at the top of the queue.
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Finally, given that we select nodes using Eq. (A.16), whether the queue
has elements whose values sum to 1 or not does not affect the order in
which the nodes are organised, since all elements in the queue have the same
normalization constant, C ′. For this reason, we can avoid normalizing each
node at each iteration, which would be otherwise computationally intractable
in large trees.
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Appendix B

Graph Matching using Monte Carlo tree
search implementation

In this appendix, we describe in detail the implementation of the approach
Graph Matching using Monte Carlo Tree Search (GMMC), proposed in
Chapter 5.

B.1 Input

The assumed input is two graphs GA = (VA,EA) and GB = (VB,EB) seg-
mented from 2D or 3D images. These graphs are the result of a segmentation
of graph-like structures performed pixel or voxel-wise, where their branching
points and endpoint of the structure are represented by vertices V connected
by edges E. These edges are not only connections between vertices, but also
have a specific path in the Euclidean space, and which can be mapped into
this space in a continuous way.

B.2 Graph representation

We represent the graphs mentioned in the previous section by calculating the
parameters described in Table B.1 for both GA and GB . We define superedges
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B. Graph Matching using Monte Carlo tree search implementation...............
Parameters Description

V Position of the nodes on RD
fV Type of node
E Edges

path Projection of the edge onto RD as a continuous function
length Geodesic length of the edge

S Superedges of the graph
{e1, · · · em} Edges which compose the superedge
length Geodesic length of the superedge
hΩ(sk) Descriptor of each superedge

dA Adjacency matrix of the graph with size |V| × |V|
H Hop matrix of the graph with size |V| × |V|

Table B.1: Information kept for the graph GA and similarly for GB. All the
information for each graph can be calculated independently.

as sets of at most K consecutive edges. For each superedge in SA and SB , we
calculate its respective path descriptor hΩ(sk) with the user-input parameters
nω and |Ω|.

We consider virtual superedges composed of a single straight edge connects
two vertices of a graph, when these two graphs belong to two independent
subgraphs and are separated by an Euclidean distance of less than dc. This
allows for the matching of all the graph, when the graph is composed by
multiple independent subgraphs. Only superedges of the same type can be
matched to each other.

This representation is done for each graph independently and can therefore
be done offline.

In order to obtain a continuous function ξsk : [0, 1]→ RD for each superedge
sk ∈ S, we maintain a discrete path of the edge, obtained from the original
segmentation, and linearly interpolate to obtain continuous information in
RD.
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......................................B.3. Algorithm
B.3 Algorithm

B.3.1 Tree contents and parameters

The search tree T introduced in the algorithm is explored using an algorithm
inspired in the Monte Carlo tree search approach as introduced in Section 5.3,
and here we further describe its implementation. The parameters for the
algorithm are listed in Table B.2.

Each node ν of the tree T is composed by the values listed in Table B.3. We
refer to a specific reward Q of a node ν as Qν and similarly for the remaining
fields. The root ν0 is a node with empty MV and MS. Each node ν has the
information of Q̃ν and Q+

ν , where Q+
ν is the greatest value Qν in the branch

below ν and

Qν =
∑

(sA
k
,sB
l

)∈MS
ν

l(sAk ) + l(sBl )
2 + κ l(SA,SB) |MV

ν |, (B.1)

where l(SA,SB) is the average length of the superedges and

Q̃ν = Q+
ν

Qnorm
+ γ

√
2 lnn
nν

, (B.2)

where n is the current iteration number and γ ∈ [0, 1] is a tunable parameter
and Qnorm is the maximum possible reward calculated as

Qnorm = l(EA) + l(EB)
2 + κ l(SA,SB) min(|VA|, |VB|). (B.3)

The children of the root will have precisely one element (one mapping)
in MS and a pair of matches in MV correspondent to the endpoints of the
superedges of the match in MS. The nodes in the all depths except the root
(d = 0) will have |MS| = d and |MV| = d + 1, for a depth d of the search
tree. The superedge pairs represented in the mapping MS have a direct
relationship with MV as the endpoints of the edges or superedges in MS

have their endpoints matched in MV.

For each node ν, we keep only the compatible superedge pairs in Sν , which
have common endpoints with the elements in MS

ν or have endpoints at the
vertices of MV

ν . However, their compatibility with the transformation model
(see Section 5.2) is only checked if the superedge pair is selected to be expanded
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B. Graph Matching using Monte Carlo tree search implementation...............
Parameters Description

K Maximum number of edges in each superedge
nω Number of elements of ω
|Ω| Number of vectors ω in hΩ(sk)
εT Maximum deformation of the transformation

(see Eq. (5.5))
εh Maximum deformation between path descriptors

(see Eq. (5.10))
κ Factor in the calculation of the reward Q

for the number of matched nodes
γ Factor in the calculation of the reward Q̃

for the importance of the number of times visited
dc Maximum distance for which two vertices in different

graphs may be considered as a virtual superedge
Nsim Number of iterations in the Simulation step
Nexp Number of children to add in Expansion step
Nit Maximum number of iterations

Table B.2: Summary of parameters used in the implementation of the Monte
Carlo tree search algorithm, using graphs parameterized with superedges and
path descriptors.

into the search tree. This check can be computationally expansive depending
on the transformation model, and ignoring doing so for the superedge pairs
that are never selected for expansion results on speeding up the algorithm.
For simplicity we keep a list of variables Fν indicating whether each element
of Sν has been yet explored.

We call ν expandable if the size of Sν is higher than zero (there are
compatible superedges which can be added to MV

ν and MS
ν ) and if there is at

least one element of Fν equal to zero (not all superedge pairs were explored
and can be added as children of the node).

Algorithm 4 Graph matching using Monte Carlo Tree Search
n← 0
while n < Nit and t < Tmax and |MV

νE
| < Nmatch do

νE ← Select(ν0, n) // select most urgent node (see Alg. 5). ν0 is the
root

if νE = ∅ or x(ν0) = 1 then break // nothing to expand
{νB} ← Expand(T , νE , Nexp) // (see Alg. 6). {νB} are expanded nodes
Simulate(T , {νB}, Nsim) // simulate node (see Alg. 7)

end while
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Variables Description

MV
ν Nodes matched

MS
ν Superedges matched

Qν Reward for node ν
Q+
ν Best reward reachable from node

Q̃ν see eq. (B.2)
Sν expandable superedge pairs connected with MV in both graphs

Fν f iν =
{

1 if corresponding element of Sν is expanded
0 otherwise

,∀f iν ∈ Fν

Vν endpoint vertices of S
Kν skipped nodes in both graphs GA and GB
nν number of times the node has been visited

x(ν)
{

1 if ν if fully expanded
0 otherwise

Cν children of ν in the search tree

Table B.3: Information kept in each node ν of the search tree T used in the
proposed algorithm.

Steps

The search algorithm loops through four steps: Selection, Expansion,
Simulation and Backpropagation. The algorithm is described in the
following paragraphs and is also is pseudocode in Algorithms 4–9.

Selection. In each iteration, we want to select the most promising node to
explore. We recursively select the node with the highest Q̃ from the children
of each node, starting from the root. We greedily descend the tree to the
leaf with highest Q̃, and backtrack to the highest expandable Q̃ in case the
resulting node is not expandable. We keep a flag (expanded) to indicate nodes
which do not have expandable nodes under them, so that we can exclude
them in step in future iterations. The pseudo-code of this step is presented
in Algorithm 5.

Expansion. In the Expansion step, we add children to the selected node.
The number of children added in this step is bounded by either the number
of expandable superedge pairs of the node or the parameter Nexp.

In the selection of which superedge pair to expand into the search tree
(function selectSuperedgePair(SA,SB) in the pseudocode), the compatibility
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B. Graph Matching using Monte Carlo tree search implementation...............
Algorithm 5 ν ← Select(νp, n)
if |Cνp | = 0 or ∀ci ∈ Cνp , x(ci) = 1 then // Cνp are the children of νp in
the tree

x(νp) ← 1 // νp is fully expanded
return ∅

end if
for νi ∈ Cνp do

Q̃νi ←
Q+
νi

Qnorm
+ γ

√
2 logn
nνi

end for
for νi ∈ Cνp in desc. order of Q̃νi , where x(νp) = 0 do

νcur ← Select(νi)
if νcur 6= ∅ then

if Q̃νcur ≥ Q̃νp or νp fully expanded then return νcur
else return νp

end if
end for
if ∃ci ∈ Cνp , x(ci) = 0 then // there are expandable children but Q̃νp is
larger

return νp
else

x(νp)← 1
return ∅

end if

of the superedge pair with the global transformation model is checked. In
the proposed method that corresponds to checking Eq. 5.5 for all elements of
MV together with the new endpoints of the considered superedge pair i.e.

1
1 + εT

d(vAi ,vAc ) ≤ d(vBj ,vBc ) ≤ (1 + εT )d(vAi ,vAc ), ∀(vAi ,vBj ) ∈MV,

(B.4)
for a new match (vAc ,vBc ). The order in which the possible superedge pairs
are considered is referred as default order defined in Section 5.1.1.

To create the new node based on the selected superedge pair, we take
the parent node νE as basis for the node’s children. The creation of this
child node is described in Algorithm 8. The fields MV and ME are updated
based on the selected superedge pair and using MS the algorithm checks
whether there exist any nodes which already consider the same MS. To
optimize this duplicate search, the MS is kept in an index ascending order.
The adjacent and non-overlapping superedge pairs are updated, where some
may be removed, which are incompatible with the chosen pair (because
of overlapping, containing of the chosen superedges or one of the skipped
vertices). The set of skipped nodes is also updated, based on previously and
new skipped nodes.
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......................................B.3. Algorithm
Algorithm 6 S ← Expand(T , νE , Nexp)
S ← ∅ // The expansion is different depending if νE is the root or not
if νE = ν0 then

for k ∈ {1, Nexp} do
Siν0 = (sAk , sBl )← selectSuperedgePairFromRoot(SA,SB) // in

default order
ν ← cloneNode(ν0) // new child based on parent
MV
ν ← endpoints of the pair Siν0

MS
ν ← Siν0

nν ← 1
ν ← updateAdjacentPaths(ν) // update paths adjacent to

superedges in MS

skippedν ← getSkippedNodes(MS
ν ,GA,GB) // refresh skipped

nodes
Qν ← l(MS)

2 + κ l(S) |MV
ν |

Q+
ν ← Qν

Q̃ν ← Q+
ν

Qnorm
+ γ

√
2 logn
nν

n← n+ 1
T ← add(T , ν)
T ← Backpropagate(T , ν)
S ← {S, ν} // nodes to be used in Simulation step

end for
else

for k ∈ {1, Nexp} do
SiνE = (sAk , sBl )← selectSuperedgePair(SνE , eνE ) // in default order
eiνE ← 1 // explored superedge pair
ν ← cloneNode(νE) // new child based on parent
ν ← CreateChild(T , ν, sAk , sBl ) // defined in Alg. 8
if |Cν | = 0 then x(ν)← 1 // avoid future selection if not

expandable
if not duplicate then T ← add(T , ν)
T ← Backpropagate(T , ν)
n← n+ 1
S ← {S, ν} // nodes to be used in Simulation step

end for
end if

We then calculate Q(ν) associated to each child and set the number of
times the node has been visited to 1, and add the node to the search tree.
A list of the nodes added to the search tree is saved, so that the next step
(Simulation) is performed on each of the expanded nodes.

The pseudocode of this step is presented in Algorithm 6.
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B. Graph Matching using Monte Carlo tree search implementation...............
Simulation. This step is done to obtain an estimate of the value of Q̃ for the
selected search node. This is done in a greedy way, by iteratively (Nsim times)
selecting the superedge pair in default order, creating the corresponding new
child and recursively repeating the procedure with the new node. This results
in a greedy depth-first search exploration of the initial node, so that an
estimate of Q̃ can be obtained.

The procedure the new node is added to the search tree is similar to the
procedure in the expansion step, and it is described in Algorithm 8.

The pseudocode of this step is presented in Algorithm 7.

Algorithm 7 Simulate(T ,S,Ps, Nsim) – Creates nodes in depth first fashion
from νE

for ν ∈ S do
for k ∈ {1, Nsim} do

if x(ν) = 1 then break // no superedge pairs available for
expansion

Siν = (sAk , sBl )← selectSuperedgePair(sν , eν) // longest pair with
least number of edges in superedges

ν ← CreateChild(T , ν, sAk , sBl )
eiν ← 1 // explored superedge pair
if not duplicate then T ← add(T , ν)
T ← Backpropagate(T , ν)
n← n+ 1

end for
end for

Algorithm 8 ν ← CreateChild(T , ν, sAk , sBl )

vAs ,vBt ←remainingEndpoints(sAk , sBl )
MV
ν ←MV

ν ∪ (vAs ,vBt ) // append the endpoints of the pair s
MS
ν ←MS

ν ∪ (sAk , sBl )
if νD ← alreadyInTree(T ,MV

ν ) then return νD // checks for duplicate
nodes
ν ← updateAdjacentPaths(ν) // update paths adjacent to superedges in
MS

skippedν ← getSkippedNodes(MS
ν ,GA,GB) // refresh skipped nodes

Qν ←
∑

(sA
k
,sB
l

)∈MS
ν

l(sAk )+l(sBl )
2 + κ l(S) |MV

ν |

Q+
ν ← Qν

nν ← 1
Q̃ν ← Q+

ν
Qnorm

+ γ
√

2 logn
nν

Backpropagation. This step done when adding a node in both expansion
and simulation steps consists in simply replacing Q+ in the nodes in the path
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from the new node to the root, when the value is below the new node’s Q.
The pseudocode of this step is presented in Algorithm 9.

Algorithm 9 Backpropagate(T , ν)
Q+
ν ← Qν

νP ← Parent(ν)
while νP 6= ∅ do

if Q+
νP
< Qν then

Q+
νP
← Qν

end if
νP ← Parent(νP )

end while

The algorithm loops through Selection, Expansion and Simulation until
either all nodes have empty list of available expandable superedge pairs,
after reaching a predefined match size Nmatch, or the maximum number of
iterations Nit or maximum processing time Tmax is reached. The output is
the node corresponding to the highest reward Q obtained.

113



114



Appendix C

Graph Matching using Monte Carlo tree
search code

In this appendix, we describe in detail the available code for the approach
Graph Matching using Monte Carlo Tree Search (GMMC), proposed in
Chapter 5.

The code is available at https://gitlab.fel.cvut.cz/amavemig/gmmc_
code. To clone the repository, use the command

git clone git@gitlab.fel.cvut.cz:amavemig/gmmc_code.git

The implementation is written in C++, with a wrapper in MATLAB.

C.1 Compilation

The only dependency of the code is the Eigen library. The library is used for
matrix operations.

To compile the code use the script compile_gmmc_mex .m . The vari-
able eigen_dir must be changed to the path pointing to the location of
the Eigen headers.
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C. Graph Matching using Monte Carlo tree search code ...................
C.2 Usage

An example of how to run the function is provided in the script run_gmmc_mex .m .

The current code loads the graphs from SWC files with a single tree in
each file. SWC files are commonly used in medical imaging. They define tree
structures, usually neuronal data. Different implementations must be created
if the input is from a different format. The internal graph representation is a
MATLAB structure with the following fields:

. nodes : n×D matrix with vertices of the graph. edges : 1× |E| array of structures with the following format:. endpoints : 1 × 2 array with indices of respective endpoint
vertices. path : D ×m matrix with path of the edge. cumd : 1×m array with cumulative distance of the path. length : total length of the path. dA : n× n sparse adjacent matrix of the graph. fnodes : n× 1 array with labels for each vertex. hm : n× n hop matrix of the graph. sdA : n×n matrix with the superedge which connects the vertices with

given indices. superedges : 1× |S| array of structures with the following format:. path : 1× (s+ 1) array with indices of the vertices through which
the superedge has its path. edgeid : 1× s array with indices of the respective edges of the
superedge. length : total length of the superedge. desc : 1× |Ω| path descriptor

where n is the number of vertices of the graph, D is the number of dimensions,
m is the length of a given path of an edge and s is the number of edges of a
given superedge.
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Parameter
name

Corre-
sponding
variable

Description

Graph pre-processing
n_w nω Number of sampling points on a superedge
Omega Ω Number of descriptor elements

K K
Maximum size of superedge (number of
edges)

sr — Sampling rate for input data

d_c dc
Maximum virtual edge size (graphs are
normalized)

interpolfun — Interpolation function of the superedges
(linear recommended)

kappa κ Weight on reward or objective function

gamma γ
Weight on urgency (for number of times
node is visited)

N_exp Nexp Number of children added in Expansion

N_sim Nsim
Number of search tree nodes added in
Simulation

epsilon_T εT Allowed deformation in transformation model
epsilon_h εh Allowed deformation between superedges
N Nit Maximum number of iterations

termDepth Nmatch
Number of matches at which the method
stops

timeLimit Tmax
Maximum time in seconds for the method to
stop

simulateAll — Simulate each of the expanded nodes

modelcheck —

0 – Check model for each possible superedge
pair
1 – Check model only when selecting node to
explore

transfmodel — Transformation model considered (0 for the
proposed method)

verbose — Verbose of the method (0 for reduced
verbose, 1 for more details)

Table C.1: List of parameters which can be changed in the implementation of
the GMMC algorithm. For more details on each parameter, refer to Chapter 5.

The parameters of the algorithm can be tuned, using the structure params .
The list of available parameters including the respective descriptions is avail-
able in Table C.1.
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C. Graph Matching using Monte Carlo tree search code ...................
C.3 Implementation

The core of the implementation of GMMC is done in C++. Below is an
overview of the functions and classes implemented with each file:

. Graph.h : Class for the graph structure.. MatrixOp .h : Implements several matrix operations.. MCT.h : Class for the search tree and for the nodes in the search tree.. mex_run_gmmc .cpp : Interface between MATLAB and the core code.. Superedge .h : Class for a superedge and a single edge. Also imple-
ments the code for edge interpolation.. TransModel .h : Implements several functions with respect to the
transformation model: checking whether a new match is compatible,
updating the model and removing incompatibilities. Some functions are
only used depending on the value of modelcheck of the parameters
(see Table C.1).. TreeSearch .h : Implements the main functions of the Monte Carlo
tree search: Selection, Expansion, Simulation and Backpropagation, as
well as the main loop in the function runTreeSearch .. UniqueMv .h : Functions handling a unique matching, so that the
algorithm easily detects duplicates.

The files are also commented, so that further details can be obtained for each
function and variable used in the code.
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