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Anotace

Schopnost najít sjízdnou cestu a zůstat na ní během pohybu je pro mobilního robota
nezbytné. V této práci se zaměřuji na vizuální detekci cesty z jednoho obrázku. Naim-
plementovala jsem metodu založenou na vnitřní vlastnosti RGB obrázku—nezávislosti
na zdroji osvětlení. Tato metoda dovolí převést barevný obrázek do odstínů šedé, ve
které nejsou stíny. Detekce cesty je udělaná na šedém obrázku, kde cesta má jednotnou
barvu nezávislou na osvětlení v původním obrázku. Druhá naimplementovaná metoda
je řez grafem založeném na směsi Gaussovských vícerozměrných rozdělení (GMM). Tato
metoda využívá barevné modely a informaci o struktuře, aby vytvořila z obrázku ohod-
nocený graf. Detekce cesty je pak řešena nalezením minimálního řezu. Kombinace obou
metod je řešena úpravou váhy hran v závislosti na výsledcích detekce cesty na obrázku
bez stínu. Implementované algoritmy byly vyzkoušeny na veřejně dostupném datasetu
a během experimentů s robotem. Metoda založená na nezávislosti na osvětlení a kom-
binace obou metod obstály dobře v testech. Metoda řezu grafem neměla tak dobré
výsledky, přesto se prokazala jako nadějná.

Klíčová slova
Nezávislost na zdroji světla, výpočet minimální entropie, obraz bez stínů, detekce ob-
lohy, chromatický prostor, směs Gaussovských vícerozměrných rozdělení, detekce cesty,
sledování cesty
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Annotation

The ability to find the drivable area and stay in it during the movement is essential
for mobile robot. In this thesis I focus on visual road detection in a single image. I
implement a method based on the intrinsic illuminant invariant feature of the RGB
image. This method allows to transform color images into the grayscale shadow free
images. The road detection is performed on the grayscale image where the road area
have a uniform gray level independent on the light conditions in the original image.
The other implemented algorithm is a Gaussian Mixture Models (GMM) based graph
cut. This method uses color models and structure information to compose a graph from
the image. The road detection is based on finding the minimum cut in the graph. The
combination of illuminant invariant and GMM based methods is performed by altering
edge weights according to results of illuminant invariant road detection. Implemented
algorithms were tested on the publicly available dataset and in experiments with real
robot. The illuminant invariant and combined method performed well in tests. The
graph cut method didn’t have such good results, nevertheless it still looks as a promising
method.

Keywords
Illuminant invariance, entropy minimization, shadow free image, sky detection, chro-
maticity space, Gaussian Mixture models, road detection, path following
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Chapter 1

Introduction

One of the most essential robot skills in the field of mobile robotics is to be able to
identify driveable area and to be able to stay in it during the movement. To perform this
task, robots are equipped with variety of sensors allowing to gain information about the
surroundings. Sensors which can be used for road detection include mostly cameras and
laser rangefinders. Many researchers focus on visual road detection because cameras are
cheap and are able to provide the robot with a lot of useful information. From a single
image it’s possible to extract region and boundary features [1]. Region-based features
include color, texture and illuminant invariance, while the boundary is defined mostly
by road borders and vanishing point. By combining two cameras it’s even possible
to use stereo vision to recover depth information [2]. Some studies rely only on one
image feature in road detection, while other combine different approaches or utilize
information from other sensors [3].

This thesis is focused on the visual path detection in a single image from a single
camera. The main approach I’ve taken is to use the illuminant invariance intrinsic
property of the image. This method is based on a physical theory of a color image
formation. According to the theory, RGB images from narrow-band cameras have a
property allowing to construct an illuminant invariant, e.g. shadow free, image. In such
image, road area would have a uniform color independent of the light conditions in the
original image.

The other approach I implement is a road detection based on the road color. It
utilizes Gaussian Mixture Models (GMMs) in order to represent road and non-road
color models. The method combines color information with edge detector to compose
a graph. The road detection task is therefore transformed into finding this graph’s
minimum cut. Furthermore, I implement a combination of both methods in attempt
to improve the results.

1.1 Thesis outline

The thesis is composed of 5 chapters. In chapter 1—Introduction—I describe the thesis
structure and present state of the art methods of road detection in section 1.2.

In chapter 2 I introduce the theory of the illuminant invariance. I describe how the
shadow free image is formed and how the invariant angle parameter is computed. I also
describe the sky detection method. Afterwards, I present the methods of road detection
in the illuminant invariant image.

In chapter 3 I describe the usage of Gaussian Mixture Models in road detection task,
present the road detection technique and propose a combination of GMM method with
illuminant invariance algorithms.

In chapter 4 I present performed experiments, explain the parameter estimation and
evaluate the results.

1



Chapter 1 Introduction

1.2 State of the Art in Visual Road Detection
The field of visual road detection is based on the usage of the characteristic road prop-
erties presented in images. The most approaches found in science literature are focused
on the color or/and structure properties of roads. Various combinations of both ap-
proaches are often used to increase robustness of the results.

One of the color-based approaches is to use Gaussian Mixture Models (GMMs), as
described in [3]. Authors use GMMs to create the road model and use it co classify
pixels in the input image. The update of road model is performed to adapt the model to
the changing environment, the approach though uses laser range finder to select pixels
for update.

Other example of GMM implementation can be found in [4], where road detection
for aerial vehicle is considered. Authors propose an interesting approach of combining
road and non-road models created using GMMs with edge detection to find the road
using min-cut/max-flow algorithm. Road detection is then combined with homography
based road tracking to speed up the overall algorithm.

Another approach was used in [5], where authors use algorithm composed of two
modules. First uses intensity image to find candidates to the road boundary. The
second module is based on the assumption, that road region color can be described by
the multivariate Gaussian distribution. Here, the color information is used to find the
road region and reinforce the best matching boundary.

A big area of visual road detection is composed of algorithms based on the illuminant
invariance theory. This theory as described in [6] allows to create shadow free grayscale
images and even reconstruct colorful shadow free images. In road detection though
the grayscale image is sufficient to find road regions and color reconstruction based on
given approach is rarely (if ever) used. In [7] authors create grayscale shadow free image
using the mentioned approach and find the road areas according to the likelihood-based
classifier. In [8] authors also create illuminant invariant image. The road classification
is performed by equalization of the grayscale image and subsequent thresholding.

Authors of [2] propose to improve the results of the illuminant invariant image for-
mation by ignoring the sky area of the image. Authors also propose another approach
to road-nonroad classification based on the use of confidence intervals. To further
improve results, algorithm utilizes the stereo-vision allowing to reconstruct the depth
information.

Authors of [9] proposed to use image boundary prior to overcome the problems as-
sociated with usage of seeds. The assumption was made in many studies that the
center-lower part of an image is a road region. In some cases this isn’t necessary true,
therefore authors proposed to use another assumption, that the road region has the
large common boundary with the bottom part of an image. The color information is
used to over-segment the image into several patches. The segmented parts are then
classified as road or non-road based on the mentioned assumption. Moreover, the illu-
minant invariant grayscale image is embedded into the algorithm to eliminate the effect
of shadows.

The approach presented in [10] proposes the method to detect unstructured roads.
Authors use texture information at every pixel to detect the vanishing point of the
main part of the road. The found vanishing point is then used to estimate two most
dominant edges and segment the road.

Different approach is described in [11]. Authors implemented the combination of
scene and pixel-based classifiers. The scene classifier uses learned road geometry mod-
els to estimate the type of the input image and create a road probability map. The

2



1.2 State of the Art in Visual Road Detection

computed map is then combined with the probability map of the pixel-based classifier
to improve the result.

The survey comparing some of the mentioned approaches and more is presented in [1].
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Chapter 2

Illuminant invariant images

One of the challenges of an autonomous robotics in the outdoor environment is the
detection of the free road space. This task is complicated by various factors, including
the variations in the road and background colors and textures, presence of obstacles,
illumination conditions. The last is responsible for the appearance of shadows, which
create the undesirable color variance on the road surface. Particularly challenging cases
are when the road contains both illuminated and shaded regions, as they tend to be
classified as different classes. One of the possible approaches to overcome this obstacle
is to create an illuminant invariant image and use it to detect the road regions. In this
chapter the method to create an illuminant invariant image using the intrinsic features
of an RGB image is described.

2.1 RGB image formation
The RGB color is defined as a triple R = (𝑅1, 𝑅2, 𝑅3) = (𝑅, 𝐺, 𝐵). The value of each
component depends not only on actual color of an object, but is also affected by various
factors such as shape and reflectance of objects, properties and location of the illuminant
and observer [12]. Description of the pixel formation, accounting all these parameters is
a complex task. Therefore to make problem simpler, researches use simplified models.
The theory of the shadow removal considers, that the world consists of Lambertian
surfaces, i.e. surfaces which reflect the light in all directions. This assumption can be
used in practice, as many real surfaces are close to Lambertian, as stated in [13]. Under
this simplification the pixel formation can be described [6] by the following formula:

𝑅𝑘 = 𝜎

∫︁
𝐸(𝜆)𝑆(𝜆)𝑄𝑘(𝜆)d𝜆, 𝑘 = 1, 2, 3, (1)

where 𝜆 is wavelength, 𝜎 is Lambertian shading. 𝐸(𝜆) is the spectral power distribution
of the illuminant, denoting the amount of power emitted at each wavelength from
the interval of the visible spectrum. 𝑆(𝜆) is the surface spectral reflectance function,
defining the amount of the incident light which was reflected from the surface at each
wavelength. 𝑄𝑘(𝜆) is the camera sensor sensitivity function, describing the proportion
of the incident light absorbed by the sensor 𝑘 at each wavelength [12, 14].

If the camera sensor sensitivity function is equal to Dirac delta function 𝑄𝑘(𝜆) =
𝑞𝑘𝛿(𝜆 − 𝜆𝑘), then equation (1) is simplified to:

𝑅𝑘 = 𝜎𝐸(𝜆𝑘)𝑆(𝜆𝑘)𝑞𝑘. (2)

In practice, camera sensors aren’t manufactured to be sensitive to one specific wave-
length. Typical camera sensor is sensitive to a range of wavelengths with one maximum.
The example sensor response is shown in figure 1 (a), where the three sensors, Red,
Green and Blue, of Sony DXC930 camera are depicted. Authors of [6] claim, that al-
though real sensors aren’t described precisely by Dirac delta function, as in figure 1 (b),

5
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Figure 1 (a): Typical RGB camera sensors—Sony DXC930 camera. (b): Theoretical narrow-
band RGB camera sensors.
From International Journal of Computer Vision, "Entropy Minimization for Shadow Re-
moval", Volume 85, Issue 1, p 41, by Graham D. Finlayson, Mark S. Drew, Cheng Lu.
©Springer Science+Business Media, LLC 2009. Reprinted with permission of Springer.

the theory can still be used if sensors are sufficiently narrow-band. Even in case, when
sensors are broad-band and described theory doesn’t apply, good results may still be
obtained if sensors are appropriately transformed. The possible approach may be spec-
tral sharpening proposed in [15]. The goal of this approach is to create new sensor
sensitivities by finding a linear combination of the given set of sensors, for which the
result is the most narrow-band. Other possible technique is to use sensor transforms
deliberately to enhance the resulting invariant image, as proposed in [16].

The next assumption is that the illumination can be described by Planck’s law in
Wien’s approximation as in [17]:

𝐸(𝜆, 𝑇 ) ≈ 𝑎1
𝑛2𝜆5 𝑒− 𝑎2

𝑛𝑇 𝜆 = 2𝜋ℎ𝑐2
0

𝑛2𝜆5 𝑒− −ℎ𝑐0
𝑛𝑘𝑇 𝜆 W/m2, (3)

where 𝑎1 ≈ 3.742 × 10−16 Wm2 and 𝑎2 ≈ 1.439 × 10−2 mK are constants, ℎ is Planck
constant, 𝑘 is Boltzmann constant, 𝑐0 is the speed of light in vacuum. 𝑛 is the refractive
index, 𝑇 is the temperature of a black-body radiator in Kelvins. Since 𝑛 = 1.0001 in air,
it can be omitted. The Wien’s approximation can be used if 𝑒(𝑎2/(𝑛𝜆𝑇 )) ≫ 1. According
to [18], temperatures up to 𝑇 = 10000 𝐾 can be expected in real applications, and the
visible spectrum consists of wavelengths in range from 400 to 700 nm. Therefore, the
minimum expected value is 𝑒(𝑎2/(𝑛𝜆𝑇 )) ≈ 7.810 and the Wien’s approximation can be
used. The authors have also compared Planck’s equation and the Wien’s approximation
of several black-body radiants expected in real-life applications, claiming the results are
similar.

Equation (3) describes shapes of the power distribution, but doesn’t take into ac-
count illuminant power. Therefore the light intensity constant 𝐼 is added to Wien’s
approximation to model varying power:

𝐸(𝜆, 𝑇 ) ≈ 𝐼𝑎1𝜆−5𝑒− 𝑎2
𝑇 𝜆 . (4)

After substituting equation (4) into equation (1), components of the RGB color R
are given as:

𝑅𝑘 = 𝜎𝐼𝑎1𝜆−5
𝑘 𝑒

(︁
− 𝑎2

𝑇 𝜆𝑘

)︁
𝑆 (𝜆𝑘) 𝑞𝑘, 𝑘 = 1, 2, 3, (5)
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2.2 Chromaticity space

2.2 Chromaticity space
The chromaticity is a color specification, that isn’t dependent on its luminance [6],
i.e. "quotient of the luminous intensity and the projected area of the source in a given
direction" as defined in [14]. According to the same source, this quantity "correlates
with perceived brightness". In chromaticity specification individual pixels lose infor-
mation about their luminance. But that doesn’t mean, that such image is shadow
free, because luminance isn’t the only parameter, which affects shadow formation. As
stated in [6], the difference between non-shadowed and shadowed regions isn’t that
ones are illuminated and others aren’t. In most cases they both are illuminated, but
by different sources. For example, at daylight shadow is illuminated by sky only, while
non-shadowed areas by both sky and sun. These two illuminants have different temper-
atures, which also affect pixel formation, according to equation (5). Since temperature
information can still be present in chromaticity space, shadows don’t disappear.

The chromaticity is defined in such a way, that many different descriptors can comply
with it. In this section three of them are described, namely, L1 norm, Band-ratio log
chromaticity and Geometric mean log chromaticity.

L1 norm

One of the most known chromaticity spaces is defined using the L1 norm. Components
r of this space are created by normalizing components of a RGB pixel R according to
the formula:

r = (𝑟1, 𝑟2, 𝑟3) = (𝑟, 𝑔, 𝑏) =
(︂

𝑅1
𝑅1 + 𝑅2 + 𝑅3

,
𝑅2

𝑅1 + 𝑅2 + 𝑅3
,

𝑅3
𝑅1 + 𝑅2 + 𝑅3

)︂
. (6)

As emerged from the equation (5), the light intensity 𝐼 and the Lambertian shading
𝜎 are canceled out in each component of r:

𝑟𝑘 = 𝜎𝐼𝑎1𝜆−5
𝑘 𝑒

(︁
− 𝑎2

𝑇 𝜆𝑘

)︁
𝑆 (𝜆𝑘) 𝑞𝑘

𝜎𝐼𝑎1
∑︀3

𝑖=1

(︃
𝜆−5

𝑖 𝑒

(︁
− 𝑎2

𝑇 𝜆𝑖

)︁
𝑆 (𝜆𝑖) 𝑞𝑖

)︃ , 𝑘 = 1, 2, 3. (7)

The image formed by r is thus intensity free. Unfortunately, shadows are not removed
by this simple operation, as luminant-dependent parameter (temperature 𝑇 ) is present
in equation (7). L1 norm removes luminance, but due to its properties, it’s not use-
ful in illuminant invariance image formation, although it’s still used in color recovery
algorithms.

Band-ratio log chromaticity

Contrarily, band-ratio and geometric mean log chromaticity are defined in such a way,
that they can be used in shadow removal task. The band-ratio chromaticity space is
defined by obtaining band-ratios 𝑐 = (𝑐1, 𝑐2) as:

𝑐𝑘 = 𝑅𝑘

𝑅𝑝
, (8)

where 𝑝 is one of the channels 𝑝 ∈ {1, 2, 3} and 𝑘 = 1, 2 indexes the remaining two
channels .
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Figure 2 (a) The set of 6 patches under different Planckian lights. (b) Log-chromaticity plot
of image (a). (c) The resulting illuminant invariant image.

The created chromaticity space is free of intensity and Lambertian shading infor-
mation, since according to the equations (8) and (5), corresponding components are
canceled out:

𝑐𝑘 = 𝑅𝑘

𝑅𝑝
= 𝑎1𝜆−5

𝑘 𝑆 (𝜆𝑘) 𝑞𝑘𝑒

(︁
− 𝑎2

𝑇 𝜆𝑘

)︁
𝑎1𝜆−5

𝑝 𝑆 (𝜆𝑝) 𝑞𝑝𝑒

(︁
− 𝑎2

𝑇 𝜆𝑝

)︁ . (9)

The band-ratio log chromaticity space 𝜌 = (𝜌1, 𝜌2) is obtained by taking the logarithm
of 𝑐. The components of this chromaticity space have a form

𝜌𝑘 = log (𝑐𝑘) = log
(︃

𝑠𝑘

𝑠𝑝

)︃
+ log

(︃
𝑒(𝑒𝑘/𝑇 )

𝑒(𝑒𝑝/𝑇 )

)︃
= log

(︃
𝑠𝑘

𝑠𝑝

)︃
+ 𝑒𝑘 − 𝑒𝑝

𝑇
, (10)

where 𝑠𝑘,𝑝 = 𝑎1𝜆−5
𝑘,𝑝𝑆 (𝜆𝑘,𝑝) 𝑞𝑘,𝑝 and 𝑒𝑘,𝑝 = −𝑎2/𝜆𝑘,𝑝. Evidently, this space is still

luminance-free.
The illuminant invariant space can be obtained by extracting the last luminant-

dependent parameter 𝑇 from definition (10) of 𝜌1 and substituting it to the 𝜌2, giving

𝜌2 = log
(︃

𝑠2
𝑠𝑝

)︃
− 𝑒2 − 𝑒𝑝

𝑒1 − 𝑒𝑝
log

(︃
𝑠1
𝑠𝑝

)︃
+ 𝑒2 − 𝑒𝑝

𝑒1 − 𝑒𝑝
𝜌1. (11)

This equation shows, that projections of pixels to the band-ratio log-chromaticity space
form parallel lines with the same slope. The offsets are dependent on surfaces. The
individual points on the same line represent the difference in the illumination and
shading, according to [7].

The example of how the log-chromaticity plot is formed is shown in figure 2. In
figure (a) the set of 6 patches from the Macbeth color checker is shown under 6 different
Planckian lights in a range from 2500 K to 10000 K. Figure (b) shows where these
patches are projected in the log-chromaticity plot. Here, the straight lines formed due
to the change of the illuminant can be seen. In figure (c) the resulting illuminant
invariant image is shown.

The illuminant invariant image can be obtained by projecting points of the band-
ratio log-chomaticity space onto the direction v⊥ perpendicular to the vector v =
(𝑒2 − 𝑒𝑝, 𝑒1 − 𝑒𝑝)𝑇 . From the resulting set of scalars the grayscale shadow invariant
image can be produced.
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2.3 Obtaining the grayscale shadow invariant image

Geometric mean log chromaticity

The band-ratio log chromaticity can be used to create shadow invariant images. But
it’s necessary to choose, which channel should be used as a divisor. If an image happens
to have all pixels with small red values and the red channel is chosen as a divisor, then
outliers may occur. Various light conditions such as bright sun, clouds or shadows may
result in different colors to be more or less intense. Additionally if the camera’s color
balance isn’t properly set, then it may happen that some of the channels lack intensity.
In the changing environment it’s hard to predict what light conditions can be expected
and how would they affect the color balance. The possible method to overcome these
limitations is to divide by the geometric mean of all channels, instead of preferring one
of them. Such divisor increases the robustness to noise [19], as the small value in one
of the channels can be compensated by the remaining channels, effectively reducing the
number of the outliers.

The geometric mean chromaticity space is created using vectors 𝑐 = (𝑐1, 𝑐2, 𝑐3), where
the components are

𝑐𝑘 = 𝑅𝑘
3√

𝑅1𝑅2𝑅3
, (12)

and 𝑘 = 1, 2, 3. Such definition of c is the chromaticity, since the intensity and shading
information are canceled out:

𝑐𝑘 =
𝜎𝐼𝑎1𝜆−5

𝑘 exp
(︁
− 𝑎2

𝑇 𝜆𝑘

)︁
𝑆 (𝜆𝑘) 𝑞𝑘

𝜎𝐼𝑎1
3

⎯⎸⎸⎷∏︀3
𝑖=1

(︃
𝜆−5

𝑖 𝑒

(︁
− 𝑎2

𝑇 𝜆𝑖

)︁
𝑆 (𝜆𝑖) 𝑞𝑖

)︃ , (13)

where 𝑘 = 1, 2, 3.
The geometric mean log chromaticity space is derived from 𝑐 by taking the natural

logarithm of individual components

𝜌𝑘 = ln (𝑐𝑘) = ln

⎛⎝ 𝑠𝑘

3
√︁∏︀3

𝑖=1 𝑠𝑖

⎞⎠+ 1
𝑇

(︃
𝑒𝑘 − 1

3

3∑︁
𝑖=1

𝑒𝑖

)︃
= ln

(︂
𝑠𝑘

𝑠𝑚

)︂
+ 𝑒𝑘 − 𝑒𝑚

𝑇
, (14)

where 𝑠𝑘,𝑖 = 𝑎1𝜆−5
𝑘,𝑖 𝑆 (𝜆𝑘,𝑖) 𝑞𝑘,𝑖 and 𝑒𝑘,𝑖 = −𝑎2/𝜆𝑘,𝑖. This equation looks similar to

the equation (10). However, the pixel from geometric mean log chromaticity space is
composed from three components, not two. To obtain the illuminant invariant image
from this space, additional computations presented in the next section are necessary.

2.3 Obtaining the grayscale shadow invariant image
Due to the property of the band-ratio log-chromaticity space to form straight lines from
the RGB pixels formed on the same surface, it can be used to create shadow free images.
As will be shown below, the geometric mean log chromaticity space can be transformed
to have similar properties.

Band-ratio log chromaticity space

The situation described by the equation (11) is depicted in the figure 3. The individual
points in the log-log plot form parallel lines. The slope is dependent only on the camera
parameters and is defined by vector v = (𝑒2 − 𝑒𝑝, 𝑒1 − 𝑒𝑝)𝑇 . The offset is dependent

9
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Figure 3 Obtaining the 1D shadow invariant image from the band-ratio log-chromaticity space.
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Figure 4 The plane on which components 𝜌 of geometric mean log chromaticity space are
placed.

on the surface, but not on the shading, illumination nor temperature. Thus projecting
points on the line v⊥ perpendicular to the vector v loses the shading information, while
still distinguish individual surfaces. The slope of the line v⊥ is given by the camera
dependent parameter called illuminant-invariant angle 𝜃 [7]. With such definition of 𝜃,
the projection of the point 𝜌 = (𝜌1, 𝜌2) onto the line v⊥ can be calculated using the
formula

ℐ𝜌 = 𝜌1 cos (𝜃) + 𝜌2 sin (𝜃) . (15)

The angle 𝜃 isn’t known and has to be correctly estimated, so that the resulting
grayscale image is shadow free. The methods to find the illuminant-invariant angle are
described in section 2.4.

Geometric mean log chromaticity space

Unlike the previous case, the geometric mean log chromaticity pixels are composed of
three components. In this case the grayscale image is obtained by firstly projecting
from the 3D space onto a 2D and then to 1D.

The points 𝜌 = (𝜌1, 𝜌2, 𝜌3) aren’t independent [6]. In fact, for each pixel, the calcu-
lated geometric mean log chromaticity is placed on the plane 𝑢⊥ depicted in figure 4.
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2.4 Obtaining the illuminant-invariant angle

This plane is constrained by equation

𝜌1 + 𝜌2 + 𝜌3 = ln
(︂

𝑅1
3√

𝑅1𝑅2𝑅3

)︂
+ ln

(︂
𝑅2

3√
𝑅1𝑅2𝑅3

)︂
+ ln

(︂
𝑅3

3√
𝑅1𝑅2𝑅3

)︂
= ln

(︂
𝑅1𝑅2𝑅3
𝑅1𝑅2𝑅3

)︂
= ln (1) = 0,

(16)

and is perpendicular to the vector 𝑢 = 1√
3 (1, 1, 1)𝑇 , since 𝜌 · 𝑢 = 0.

To characterize the 2D space, the projector 𝑃 ⊥
𝑢 onto this plane is considered [6]. The

projection of 𝜌 onto a vector 𝑢 is defined by a projection matrix 𝑃𝑢 = 𝑢𝑢𝑇

𝑢𝑇 𝑢
= 𝑢𝑢𝑇 ,

according to [20]. The projection of 𝜌 onto a space orthogonal to 𝑢 is 𝑃 ⊥
𝑢 = 𝐼 − 𝑃𝑢 =

𝐼 − 𝑢𝑢𝑇 , where 𝐼 is the identity matrix. On the other hand, the projection matrix can
be decomposed as 𝑃 ⊥

𝑢 = 𝑈𝑇 𝑈 , where 𝑈 is the 2 × 3 matrix with orthonormal rows.
Defined this way, matrix 𝑈 is used to transform points 𝜌 into the coordinate system 𝜒
on the plane 𝑢⊥:

𝜒 = (𝜒1, 𝜒2)𝑇 = 𝑈𝜌. (17)

The matrix 𝑈 can be composed in any way so that 𝑈𝑇 𝑈 = 𝐼 − 𝑢𝑢𝑇 and the conditions
above hold true. The value proposed in [6] is used in this thesis:

𝑈 =
[︃ 1√

2 − 1√
2 0

1√
6

1√
6 − 2√

6

]︃
. (18)

Deriving from the equations (14) and (17), individual points in the discussed 2D
space 𝜒 have coordinates

𝜒1 = 1√
2

(︂
ln
(︂

𝑠1
𝑠𝑚

)︂
+ 𝑒1 − 𝑒𝑚

𝑇

)︂
− 1√

2

(︂
ln
(︂

𝑠2
𝑠𝑚

)︂
+ 𝑒2 − 𝑒𝑚

𝑇

)︂
= 1√

2
ln
(︂

𝑠1
𝑠2

)︂
+ 1√

2
𝑒1 − 𝑒2

𝑇

𝜒2 = 1√
6

ln
(︂

𝑠1𝑠2
𝑠2

3

)︂
+ 1√

6
𝑒1 + 𝑒2 − 2𝑒3

𝑇
.

(19)

The equations above have similar properties to the equation (10). Similarly to the
equation (11) points 𝜒 = (𝜒1, 𝜒2) form parallel lines with slope dependent only on the
camera parameters and offsets dependent on the surfaces:

𝜒2 = 1√
2

ln
(︂

𝑠1𝑠2
𝑠3

)︂
− 1√

6
𝑒1 + 𝑒2 − 2𝑒3

𝑒1 − 𝑒2

(︂
𝑠1
𝑠2

)︂
+ 1√

3
𝑒1 + 𝑒2 − 2𝑒3

𝑒1 − 𝑒2
𝜒1. (20)

Obtaining of the grayscale image is similar to the situation in the band-ratio log chro-
maticity space, shown in the figure 3. The projection of points (𝜒1, 𝜒2) onto the 1D
space is calculated using the equation (15), where 𝜌 = 𝜒.

2.4 Obtaining the illuminant-invariant angle
Knowing the correct illuminant-invariant angle 𝜃 is essential to the creation of the
shadow free image. If 𝜃 isn’t correct, then the situation depicted in figure 5 can oc-
cur. In figure 5(a) 𝜃 is correctly estimated. Here, shading, illumination and luminant
temperature are removed, since the points forming one line have similar value in the
1D space. In figure 5(b) the illuminant-invariant direction isn’t correctly found, which

11
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Figure 5 Intuition for finding best direction via minimizing the entropy. (a): Log-ratio feature
space values for paint patches fall along parallel lines, as lighting is changed. Each patch
corresponds to a single probability peak when projected in the direction orthogonal to the
direction of lighting change. (b): Projecting in the wrong direction leads to a 1D pdf which
is less peaked, and hence of larger entropy.
From International Journal of Computer Vision, "Entropy Minimization for Shadow Re-
moval", Volume 85, Issue 1, p 37, by Graham D. Finlayson, Mark S. Drew, Cheng Lu.
©Springer Science+Business Media, LLC 2009. Reprinted with permission of Springer.

causes, that points with different illumination are projected onto different values in 1D
space, causing shadows to appear in the grayscale image.

Several methods to estimate 𝜃 are used in the literature. These methods are mostly
based on the two approaches—camera calibration and entropy minimization.

The camera calibration method is described in [6]. It’s based on the idea, that
since the illuminant-invariant angle is dependent only on the camera parameters, it can
be estimated off-line. This method requires to perform a calibration using the camera,
can’t be used on the single image made by unknown camera and isn’t robust to changes.

Therefore methods based on the entropy minimization were proposed. These meth-
ods’ main idea is that the grayscale image calculated with the correct value 𝜃 will
have smaller entropy, than images calculated with wrong value of 𝜃. The best esti-
mation of 𝜃 is found by comparing grayscale images generated with different angles.
In [6] two methods—entropy minimization and information potential maximization—
were described. The authors of [8] use entropy minimization, but differ in the detection
of outliers. Authors of [21] also use entropy minimization, but adopt different to [6]
and [8] rule for histogram bin width calculation. Authors of [7] use entropy minimiza-
tion, but propose another way to determine outliers and claim to find more stable
results of 𝜃 by minimizing the average entropy distribution of a set of input images
instead of using the single image.

2.4.1 Entropy Minimization
The main principle of entropy minimization is described in algorithm 1. The illuminant
invariant direction is found by comparing entropies of grayscale images corresponding
to all possible angles. Firstly, the 2D log-chromaticity space is computed for the given
image. Then, for each angle 𝜃 = {1, . . . , 180}, the 1D illuminant invariant image ℐ is
computed. After careful outlier detection the entropy is calculated. The angle corre-
sponding to the minimal entropy is chosen as the correct illuminant-invariant angle.
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2.4 Obtaining the illuminant-invariant angle

Algorithm 1: The main principle of the entropy minimization
Input : RGB image
Output: Grayscale image corresponding to 𝜃 with minimal entropy

1 Create 2D log-chromaticity image 𝜒
2 𝑚𝑖𝑛𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∞
3 𝑚𝑖𝑛𝑇ℎ𝑒𝑡𝑎 = 0
4 for 𝜃 = 1 . . . 180 do
5 Compute illuminant invariant image ℐ from 𝜒 with angle 𝜃
6 Choose inliers from ℐ
7 Calculate the appropriate histogram bin width
8 Create histogram from inliers
9 Calculate entropy 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 from histogram

10 if 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 < 𝑚𝑖𝑛𝐸𝑛𝑡𝑟𝑜𝑝𝑦 then
11 𝑚𝑖𝑛𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
12 𝑚𝑖𝑛𝑇ℎ𝑒𝑡𝑎 = 𝜃

13 Compute illuminant invariant image ℐ from 𝜒 with angle 𝑚𝑖𝑛𝑇ℎ𝑒𝑡𝑎

In entropy minimization algorithm the comparison of different grayscale images is
done with Shannon entropy

𝜂 =
𝑛∑︁

𝑖=1
−𝑝𝑖 lb 𝑝𝑖, (21)

where 𝑛 is the number of histogram bins, 𝑝𝑖 is the probability of the bin and lb denotes
the binary logarithm. However, such definition of entropy is sensitive to the choice
of the histogram bin width. If the bin width is too small, then algorithm is prune to
noise. On the contrary, if the bin width is too big, then the precision is lost. The
bad choice can lead images with different values and standard deviations to not being
treated equally and the wrong image ℐ𝜃 to be favored. Therefore, methods, which adapt
bin width to the individual image, are used in many studies.

In the illuminant invariance theory the most used formula to compute the appropriate
bin width ℎ is Scott’s normal reference rule for normally distributed data:

ℎ = 3.5𝜎

𝑁1/3 , (22)

where 𝑁 is the number of inliers and 𝜎 is their standard deviation. Implementation of
this rule needs careful detection of outliers. I implement this rule in my algorithm.

The other possibility is to use Freedman and Diaconis’ bin width, as proposed in [21]:

ℎ = 2 IQR
𝑁1/3 , (23)

where 𝑁 is the number of samples and IQR is the interquartile range. The above
equation can be more robust, than Scott’s reference rule, as IQR is less sensitive to the
outliers.

2.4.2 Outlier detection
Scott’s normal reference rule for bin width calculation assumes normally distributed
data, which makes it sensitive to outliers. Often outliers are pixels with very small or
large value of 𝑅, 𝐺 and/or 𝐵. Such pixels correspond to infinite or very big numbers
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in log chromaticity spaces. If not deleted from computations these pixels contribute to
calculations of mean and standard deviation. The resulting mean may shift from the
position dictated by inliers. The standard deviation may be bigger, making histogram
bin width to lose precision.

In literature different methods of outlier detection are presented. Finlayson, Drew
and Lu in [6] implement a simple rule to differentiate between inliers and outliers. They
propose to use only middle 90% of all pixels to create a histogram. This method assumes
that outliers are presented only in 5% of the lowest and 5% of the biggest values. The
problem with this method is that if the number of actual outliers is much bigger than
10% it can still be prone to errors.

Another approach is used by Krajník, Blažíček and Santos in [8]. Authors also use
a simple rule: values 𝑖 which are lower than one threshold 𝑖𝑚𝑖𝑛 or bigger than the
other 𝑖𝑚𝑎𝑥 are called outliers. Authors use values 𝑖𝑚𝑖𝑛 = 0.05 and 𝑖𝑚𝑎𝑥 = 0.95 for
normalized image. Note, that unlike the previous method the number of inliers is
variable between different histograms. This method solves the issue of the big number
of outliers. Although, it may have troubles adapting to histograms, where inliers are
shifted to one of the sides. It may not be the problem, if the shift is expected to be the
same in all of the images. Unfortunately, in my application it’s not the case—inliers
change their values from dark to light depending on the invariant angle.

Alternatively, in [7] Álvarez and López proposed a method, which addresses both
of the issues. They utilize the algorithm capable of adapting to the unique range of
values of each image. The algorithm is presented in detail in [22]. It’s based on the
Chebyshev’s inequality in a form:

𝑃 (|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
(︂ 1

𝑘2

)︂
, (24)

where 𝑋 represents the random variable, 𝜇 is the expected or mean value, 𝜎 is the
standard deviation and 𝑘 is the number of standard deviations from the mean. The
equation shows that less than 1

𝑘2 of data lies further than 𝑘 standard deviations from
the mean 𝜇. Chebyshev’s inequality assumes that data distribution isn’t known, so
authors propose two methods—to work with unknown distribution and an extension of
the algorithm to work with unimodal data. In my algorithm I don’t use the unimodal
assumption, since pixel of grayscale image may gain various values depending on the
original color R and where this color is projected onto the 1D space by invariant angle
𝜃. In outdoors applications colors R presented in the image are unpredictable. If the
distribution happens to be unimodal, algorithm will still work, but the results wouldn’t
be as precise as if dedicated algorithm was used.

The goal of the algorithm is to find an Outlier Detection Value 𝑂𝐷𝑉 . It distinguishes
between the upper value 𝑂𝐷𝑉𝑈 and lover value 𝑂𝐷𝑉𝐿, bounding the distribution.
Every value 𝑖 within the boundaries 𝑂𝐷𝑉𝐿 ≤ 𝑖 ≤ 𝑂𝐷𝑉𝑈 is an inlier, everything else is
an outlier.

The calculation of 𝑂𝐷𝑉 is divided into two stages. The first stage roughly estimates
𝑂𝐷𝑉 and determines which values aren’t outliers and should be used in calculations in
next step. In the second stage these values are used to more accurately calculate final
𝑂𝐷𝑉 .

The first stage is divided into several steps:
1. Decide the probability 𝑝1 of pixel being a potential outlier. It is a rough estimation

and authors recommend it to be bigger than the expected probability of pixel being
an outlier. Authors propose values similar to 𝑝1 = {0.1, 0.05, 0.01} in this stage.
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Figure 6 (a) The difference between entropy plot calculated from image with sky and from
image with sky removed. (b), (c) The grayscale images corresponding to minimal entropy if
sky wasn’t removed (b) and if sky was removed (c).

2. Calculate 𝑘 from equation (24):

𝑘 = 1
√

𝑝1
(25)

3. Use the histogram ℋ𝜃 to calculate 𝜇 and 𝜎.
4. Calculate 𝑂𝐷𝑉 from equation (24):

𝑂𝐷𝑉1𝑈 = 𝜇 + 𝑘𝜎

𝑂𝐷𝑉1𝐿 = 𝜇 − 𝑘𝜎
(26)

5. Create ℋ𝜃2 from values in ℋ𝜃 within bounds of 𝑂𝐷𝑉1𝑈 and 𝑂𝐷𝑉1𝐿

The second stage is similar to the first stage. It repeats operations from the first
stage, but computations are made with other values:

1. Decide the expected probability 𝑝2 of pixel being an outlier. Authors recommend
values like 𝑝2 = {0.01, 0.001, 0.0001} in this stage.

2. Calculate 𝑘 from equation (24):

𝑘 = 1
√

𝑝2
(27)

3. Use the histogram ℋ𝜃2 to calculate 𝜇 and 𝜎.
4. Calculate 𝑂𝐷𝑉 from equation (24):

𝑂𝐷𝑉𝑈 = 𝜇 + 𝑘𝜎

𝑂𝐷𝑉𝐿 = 𝜇 − 𝑘𝜎
(28)

Values 𝑂𝐷𝑉𝑈 and 𝑂𝐷𝑉𝐿 are the final result of the algorithm. They are used on the
original histogram ℋ𝜃 for distinguishing between inliers and outliers.

2.5 Sky detection
Experiments have shown, that though entropy minimization algorithms are generally
good in finding the right invariant angle, they may (often) fail in images with large
sky area. The example is shown in figure 6 (b), where invariant angle is incorrectly
computed resulting in shadows still be visible in grayscale image. According to [2]
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Chapter 2 Illuminant invariant images

(a) (b)

Figure 7 The principle of Rayleigh scattering (a) at daylight and (b) at sunset.

the reason for these errors can be Rayleigh scattering. This phenomenon is a scatter-
ing of electromagnetic radiation by particles with dimensions smaller than radiation
wavelength [23]. The light is scattered by Earth atmosphere according to formula:

𝐼 (𝜆)𝑠𝑐 ∝ 𝐼 (𝜆)𝑖𝑛𝑐

𝜆4 , (29)

where 𝐼 (𝜆)𝑠𝑐 is the intensity of the scattered light, 𝐼 (𝜆)𝑖𝑛𝑐 is the intensity of the incident
light and 𝜆 is the light wavelength.

According to this formula, the scattering of the light is dependent on the wavelength.
Colors with smaller wavelengths (e.g. blue) are scattered more strongly than ones with
bigger wavelengths (e.g. red). Due to Rayleigh scattering individual colors in the white
light traveling through the atmosphere are not diffused equally. The intuition for this
phenomenon is shown in figure 7. During daylight the blue color is scattered in the
atmosphere, while red color travels further, as is shown in figure 7(a). The scattered
blue light reaches the observer making the sky appear blue. At sunset the distance from
the sun to the observer is bigger. The blue color is (almost entirely) scattered away
before light reaches the observer, as is shown in figure 7(b). The remaining red light
is scattered in the atmosphere from where it reaches the observer making sky appear
redder.

Rayleigh scattering also causes the color hue across the sky area, which creates the
obstacle for entropy minimization algorithms. In figure 6(a) the minimal entropy cor-
responds to the grayscale image (b) with the lowest sky color hue. Contrary, if the
sky area was found and removed from computations, the invariant angle was found
correctly, as in figure 6(c).

In this thesis an algorithm [24] based on Otsu’s thresholding method [25] is used for
horizon and sky detection.

2.5.1 Otsu’s threshold method
The Otsu’s Global thresholding method for gray-level histograms is based on the com-
parison of how each gray level performs as a threshold. The algorithm successively
chooses each gray-level to divide the histogram into two classes: background and fore-
ground. The gray-level minimizing the intra-class variance is then chosen as an optimal
threshold. Since sky is generally brighter than the rest of an image, this segmentation
method may be safely used to its identification.

Assume a grayscale image with N intensity levels. Otsu’s threshold method uses its
normalized gray-level histogram. In such histogram each bin represents the probability
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2.5 Sky detection

𝑝𝑖 of the corresponding gray-level, 𝑖 = {0, 1, . . . , 𝑁 − 1}. Each possible threshold 𝑇
divides the histogram into two classes 𝐶1 = {0, 1, . . . , 𝑇} and 𝐶2 = {𝑇 +1, 𝑇 +2, . . . , 𝑁 −
1}.

The class probabilities are

𝑞1(𝑇 ) =
𝑇∑︁

𝑖=0
𝑝𝑖 and 𝑞2(𝑇 ) =

𝑁−1∑︁
𝑖=𝑇 +1

𝑝𝑖. (30)

The class means are calculated as

𝜇1(𝑇 ) =
𝑇∑︁

𝑖=0
𝑖𝑃 (𝑖|𝐶1) =

𝑇∑︁
𝑖=0

𝑖
𝑝𝑖

𝑞1(𝑇 ) and

𝜇2(𝑇 ) =
𝑁−1∑︁

𝑖=𝑇 +1
𝑖𝑃 (𝑖|𝐶2) =

𝑁−1∑︁
𝑖=𝑇 +1

𝑖
𝑝𝑖

𝑞2(𝑇 ) ,

(31)

where 𝑃 (𝑖|𝐶𝑗) is the conditional probability of gray-level 𝑖 given class 𝐶𝑗 .
The class variance is defined as

𝜎2
1(𝑇 ) =

𝑇∑︁
𝑖=0

[𝑖 − 𝜇1]2𝑃 (𝑖|𝐶1) =
𝑇∑︁

𝑖=0
[𝑖 − 𝜇1]2 𝑝𝑖

𝑞1(𝑇 ) and

𝜎2
2(𝑇 ) =

𝑁−1∑︁
𝑖=𝑇 +1

[𝑖 − 𝜇2]2𝑃 (𝑖|𝐶2) =
𝑁−1∑︁

𝑖=𝑇 +1
[𝑖 − 𝜇2]2 𝑝𝑖

𝑞2(𝑇 ) .

(32)

The optimal threshold 𝑇𝑜 is found according to [24] by minimizing the intra-class
(within-class) variance:

𝜎2
𝑊 (𝑇𝑜) = min

0≤𝑇 <𝑁
𝜎2

𝑊 (𝑇 ), (33)

where
𝜎2

𝑊 (𝑇 ) = 𝑞1(𝑇 )𝜎2
1(𝑇 ) + 𝑞2(𝑇 )𝜎2

2(𝑇 ). (34)

Performing all of these operations for every possible threshold 𝑇 would be ineffective,
therefore I implemented the method using algorithm 2. Here, the number of compu-
tations is minimized by taking variables out of cycle in order to get rid of inner sums.
In the following calculations parameter 𝑇 is omitted even though variables are still
dependent on it. Assume, 𝑘 = 1, 2 stands for each class. Variables 𝑞𝑘, 𝜇𝑘 and 𝜎𝑘 aren’t
calculated from the beginning in every iteration for different 𝑇 . Instead, new variables
𝜇′

𝑘 and 𝜎′
𝑘 are introduced. These variables, as well as 𝑞𝑘, are set to zero for 𝑘 = 1 and to

a maximum value for 𝑘 = 2. During iterations through gray-levels, variables with 𝑘 = 1
are increased and variables with 𝑘 = 2 are decreased according to 𝑇 . The intra-class
variance 𝜎2

𝑊 calculation is changed with respect to new variables.
My calculations start on equations (34) and (32). Since 𝑞𝑘(𝑇 ) is canceled out, new

variable 𝜎′′
2 = 𝑞𝑘(𝑇 )𝜎2

𝑘(𝑇 ) is introduced so that 𝜎2
𝑊 = 𝜎′′

1 + 𝜎′′
2 . It’s equal to

𝜎′′
𝑘 =

∑︁
𝑖∈𝐶𝑘

[𝑖 − 𝜇𝑘]2 𝑝𝑖 =
∑︁

𝑖∈𝐶𝑘

[︁
𝑖2𝑝𝑖 − 2𝑖𝜇𝑘𝑝𝑖 + 𝜇2

𝑘𝑝𝑖

]︁
. (35)

Some parameters in this equation aren’t dependent on 𝑖, therefore it can be further
modified:

𝜎′′
𝑘 =

∑︁
𝑖∈𝐶𝑘

[︁
𝑖2𝑝𝑖

]︁
− 2𝜇𝑘

∑︁
𝑖∈𝐶𝑘

[𝑖𝑝𝑖] + 𝜇2
𝑘

∑︁
𝑖∈𝐶𝑘

[𝑝𝑖] . (36)
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Chapter 2 Illuminant invariant images

Algorithm 2: The algorithm finding Otsu’s threshold
Input : Normalized histogram ℋ𝜃 with 𝑁 gray-levels
Output: Otsu’s threshold 𝑇𝑜

1 𝜎2
𝑊 (𝑇𝑜) = ∞

2 𝑇𝑜 = 0
3 𝑞1 = 0.0, 𝑞2 = 1.0
4 𝜇′

1 = 𝜇′
2 = 0.0

5 𝜎′
1 = 𝜎′

2 = 0.0
6 for 𝑖 = 0 . . . 𝑁 − 1 do
7 𝜇′

2 = 𝜇′
2 + 𝑖 · 𝑝𝑖

8 𝜎′
2 = 𝜎′

2 + 𝑖 · 𝑖 · 𝑝𝑖

9 for 𝑖 = 0 . . . 𝑁 − 1 do
10 𝑞1 = 𝑞1 + 𝑝𝑖

11 𝑞2 = 𝑞2 − 𝑝𝑖

12 𝜇′
1 = 𝜇′

1 + 𝑖 · 𝑝𝑖

13 𝜇′
2 = 𝜇′

2 − 𝑖 · 𝑝𝑖

14 𝜎′
1 = 𝜎′

1 + 𝑖 · 𝑖 · 𝑝𝑖

15 𝜎′
2 = 𝜎′

2 − 𝑖 · 𝑖 · 𝑝𝑖

16 𝜎′′
1 = 𝜎′

1 − (𝜇′
1)2

𝑞1

17 𝜎′′
2 = 𝜎′

1 − (𝜇′
2)2

𝑞2

18 𝜎2
𝑊 = 𝜎′′

1 + 𝜎′′
2

19 if 𝜎2
𝑊 < 𝜎2

𝑊 (𝑇𝑜) then
20 𝜎2

𝑊 (𝑇𝑜) = 𝜎2
𝑊

21 𝑇𝑜 = 𝑖

According to equation (30), ∑︀𝑖∈𝐶𝑘
[𝑝𝑖] = 𝑞𝑘. In order to get rid of the two remaining

sums, I define
𝜇′

𝑘 =
∑︁

𝑖∈𝐶𝑘

[𝑖𝑝𝑖] and (37)

𝜎′
𝑘 =

∑︁
𝑖∈𝐶𝑘

[︁
𝑖2𝑝𝑖

]︁
. (38)

Equation (31) can be then rewritten as 𝜇𝑘 = 𝜇′
𝑘

𝑞𝑘
. Therefore, equation (36), can be

further modified:

𝜎′′
𝑘 = 𝜎′

𝑘 − 2𝜇′
𝑘

𝑞𝑘
𝜇′

𝑘 +
(︂

𝜇′
𝑘

𝑞𝑘

)︂2
𝑞𝑘 = 𝜎′

𝑘 − (𝜇′
𝑘)2

𝑞𝑘
. (39)

All of the described above calculations were made to get rid of the sums inside
of iteration through gray-levels. All of the variables present in equation (39) can be
declared outside of the cycle and modified at the beginning of every iteration. Number of
gray-levels is increasing by one in 𝐶1 and is decreasing by one in 𝐶2 in the iteration 𝑖.
Therefore, variables are changed accordingly by their increment: 𝑞1 = 𝑞1 + 𝑝𝑖, 𝑞2 =
𝑞2 − 𝑝𝑖, 𝜇′

1 = 𝜇′
1 + 𝑖 · 𝑝𝑖, 𝜇′

2 = 𝜇′
2 − 𝑖 · 𝑝𝑖, 𝜎′

1 = 𝜎′
1 + 𝑖2 · 𝑝𝑖 and 𝜎′

2 = 𝜎′
2 − 𝑖2 · 𝑝𝑖.
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2.5 Sky detection

2.5.2 Horizon detection algorithm

Otsu’s method is one of the most used segmentation techniques in computer vision [24].
One of its advantages is its universality—it can be used in histograms with any shapes:
unimodal, bimodal and multimodal. Because of this feature it is a good candidate to
be the main segmentation method for sky detection. Its weaknesses are dependency
on the size of an object in the image and sensitivity to noise, as was demonstrated in
[26]. To overcome these obstacles and to speed up the algorithm, certain preprocessing
is used.

The noise reduction in the image is often performed by smoothing. In this thesis I
use Gaussian blur, which is achieved by convolving the image with a Gaussian function.

It’s safe to assume, that sky area in images intended for road detection is in an
upper part of the image. Therefore, only approximately upper 50% of the image were
considered in the implemented algorithm.

Otsu’s threshold method was designed to work on gray-level histograms, therefore
transformation is required in color images. In this thesis the grayscale image is formed
by the most dominant color channel, according to formula [24]:

𝐶𝑐ℎ = arg max
{𝑅,𝐺,𝐵}

(𝑁𝑅, 𝑁𝐺, 𝑁𝐵), (40)

where 𝐶𝑐ℎ is the chosen color channel and 𝑁𝑖, 𝑖 = 𝑅, 𝐺, 𝐵 means the number of pixels
in which the corresponding channel was dominant.

In the implemented algorithm I use Otsu’s global threshold method on upper half of
an image to find the optimal threshold 𝑇 separating sky and non-sky areas. Pixel is
classified as sky if its value is bigger than threshold and it’s located in upper 5% of an
image. Such pixels are called seeds. Alternatively, pixel is classified as sky if its value
is bigger than threshold and it can be reached from seeds by continuous curve of sky
pixels.

Depending on camera position and orientation sky area can have various sizes in
different images. Its size can be much smaller in comparison to ground, but also much
bigger, especially after cropping image to upper 50%. According to [24], Otsu’s seg-
mentation algorithm works better when sizes of both background and foreground are
similar. It’s stated in [26], that error rate increases rapidly if object size is smaller
than approximately 30%. To address this issue authors of [24] use the modification
of global Otsu’s threshold method. They divide the potential sky area into 10 parts
𝑖 = {1, . . . , 10}. The optimal threshold 𝑇𝑖 is calculated for each part using Otsu’s
method. The percentage of foreground pixels is then calculated in every image 𝑖 for
each threshold 𝑇𝑖, and the sum ∑︀

𝑖 of percentages is computed for every image 𝑖. The
horizon is obtained by finding the biggest percentage difference between sums ∑︀𝑖−1
and ∑︀𝑖 of two consecutive parts 𝑖 − 1 and 𝑖. This estimation of horizon is combined
with the Hough transform, and the final result is based on the weighted average of both
algorithms.

In my experiments, the Otsu’s global threshold method has shown good results in
sky detection even without usage of the described modification. In rural areas with
forest cover the bright sky was accurately determined even in images where it occupied
only approximately 0.33% of potential sky area (at the time upper 60% of an image).

Urban environment was a greater challenge for the algorithm. Some light colored
as well as glass covered buildings were occasionally classified as sky in addition to
actual sky area. In my opinion, despite the fact that results aren’t entirely accurate,
such behavior may be rather beneficial. Light colored buildings would have been likely
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Chapter 2 Illuminant invariant images

(a) (b)
Figure 8 (a) An example of the image with road. (b) An example of the shadow free image.

deleted with outliers in succeeding algorithms. Therefore the stage at which the building
is deleted makes a little difference for outlier detectors with variable threshold, but can
be crucial for algorithms based on fixed parameters. Glass buildings can be dangerous
for entropy minimization algorithms, as these aren’t Lambertian surfaces and they
mostly reflect non desirable sky. If glass buildings are detected and deleted on this
stage, they won’t create an additional disruption for entropy minimization algorithms.

The other problem typical but not exclusive to urban environments appears, when
mobile robot is turned towards a tall object nearby, such as building or dense forest. In
such composition, image visible by robot can entirely lack sky area. The proposed sky
detection algorithm would still classify the most bright part of an image as sky. This
issue wasn’t addressed in the thesis, since this situation isn’t very common. Moreover,
in some cases it may be beneficial for above mentioned reasons. In worst case scenario,
algorithm would classify as sky less than 50% of image pixels, all located in upper half.
This way the most critical part of the road can never be wrongly classified as sky and
road detection can still be safely performed.

2.6 Road detection on illuminant invariant image

The shadow-free image obtained using the theory of illuminant invariance is grayscale.
An example of such image is shown in figure 8(b) next to the original colorful image in
figure 8(a). It can be seen in figure 8(b), that thanks to the illuminant invariance the
road region has pixels of the similar values in both shadowed and illuminated areas.
This is the property on which this type of road detection algorithms is based.

Since the whole road is of the same color it’s expected of its values histogram to be
unimodal with low dispersion and skewness [7]. Under the assumption, that the bottom
part of the image is always road, it can be used to build the road model. In this thesis
I use 9 regions with the size of 21 × 21 pixels, placed as depicted in figure 8(b). From
these pixels’ values ℐ𝑟𝑜𝑎𝑑 I create a normalized histogram ℋ (ℐ𝑟𝑜𝑎𝑑) and use it to classify
the remaining pixels in the image.

Authors of [7] take the normalized histogram ℋ (ℐ𝑟𝑜𝑎𝑑) as a probability distribution
p (ℐ (𝑥) |𝑟𝑜𝑎𝑑). For each unclassified pixel value ℐ(𝑥) they determine its probability of
being road and compare it to the fixed threshold 𝜆. Their classification rule looks like
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(a) (b)
Figure 9 (a) An example of the classification rule result performed on figure 8(b). (b) An

example of the combination of morphological operations used on (a).

following: {︃
𝑥 is road, if p (ℐ (𝑥) |𝑟𝑜𝑎𝑑) ≥ 𝜆

𝑥 is non road, otherwise.
(41)

The parameter 𝜆 is set using the training dataset, the optimal value is the one which
maximizes the average effectiveness.

Authors of [2] use confidence intervals to find the range of values considered road.
They calculate two thresholds 𝜆1 = 𝜇 − 1.86 𝜎√

𝑛
and 𝜆2 = 𝜇 + 1.86 𝜎√

𝑛
, where 𝑛 is

the number of pixels in histogram. Every value ℐ (𝑥) which lies within the interval
[𝜆1, 𝜆2] is considered to be road. Authors state, that this method has no need in the
training dataset. However, in my experiments, this thresholds seemed to be too strict.
According to my calculations, they would classify as road only values lying at maximum
distance of 1.86 𝜎√

9·10·10 = 0.062𝜎 from the mean value 𝜇. In my case, where the number
of the pixels in ℋ (ℐ𝑟𝑜𝑎𝑑) is bigger, the distance would be 0.030𝜎.

My classification algorithm is in principle the same as in [7], but visually it resem-
bles [2]. I calculate two thresholds

𝜆1 = 𝜇 − 𝑘𝜎, and
𝜆2 = 𝜇 + 𝑘𝜎

(42)

where 𝑘 is a parameter estimated using the training dataset. The pixel is classified as
road if its value lies within the interval [𝜆1, 𝜆2], according to the classification rule:{︃

𝑥 is road, if 𝜆1 ≤ ℐ (𝑥) ≤ 𝜆2

𝑥 is non road, otherwise.
(43)

The proposed algorithms may result in some pixels misclassified [2], as is depicted
in figure 9(a). The false-negatives classifications, i.e. road pixels classified as back-
ground, may be the result of the road color variations or noise. This type of mis-
classification is mostly resolved by morphological operations filling the holes between
positively classified pixels.

The false-positives are the pixels from the background, which were classified as road.
This can be caused by objects in the background, which have the color similar to road.
The other possible reason is the illuminant invariant projection to 1D itself. In RGB
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image with 24-bit—8 bits for each RGB channel—color representation the amount of
different values which individual pixel can have is equal to 224, while in 8-bit grayscale
it’s only 28 = 256 different gray levels. Therefore, the projection of such RGB pixel to
grayscale results in losses in color diversity. The example of such behavior can be seen
in figure 2 (a) and (c), where most of green colors is projected to the same values as
yellow, approximately 150–152. The false-positives which are far away from road region
may be filtered out by taking only positively classified connected neighboring pixels.
The starting point may be set to patches ℐ𝑟𝑜𝑎𝑑 from which the road model was created.
The result of such algorithm with the combination of several morphological operations
performed to fill most of the holes is shown in figure 9(a). Here, many false-positively
classified pixels far from road were removed. However, a big part of bushes near the
road in the center of the image wasn’t removed. Due to this limitation the algorithm
works best in terrains, where road and non-road regions have distinguishable colors.
As an example, parks with different types of road coverage and grass in background,
or asphalt roads in rural areas. The solution to this problem may be the combination
of this classifier with other methods. Authors of [2] use stereo vision to address this
issue. I propose the combination with color model based classifier described in the next
chapter.

2.7 Discussion

In this chapter the road classifier based on the illuminant invariance was presented.
The method uses the physical theory of the RGB image formation in order to create a
shadow free image.

The illuminant invariance image is obtained from an RGB image by firstly trans-
forming it into the special 2D chromaticity space, where pixels from the same surfaces
form straight parallel lines independently on the illuminant. The projection of these
values onto the perpendicular line results in the illuminant invariant space. Since, the
invariant direction is expected to have the smallest diversity of gray levels, entropy
minimization algorithms are used to find the angle characterizing this direction. The
shadow free image is grayscale. Different surfaces in this image, e.g. road, grass, build-
ings, gain different gray levels, although variations in illumination on these surfaces are
gone. The road is therefore expected to be of a uniform gray level. The road detection
is performed by classifying pixels according to the road model created from patches in
the bottom part of the image, considered to be a safe road area.

In ideal conditions entropy minimization works well for the invariant angle estimation.
The incorrect angle calculation may occur mostly in images with big illuminated/shad-
owed area ratio. In such images shadows can be not present, can be very small in
comparison to the illuminated area or occupy most of the image. In these cases shadow
area isn’t sufficient to make a reasonable difference in entropy. The algorithm may find
incorrect invariant angle minimizing another image quality. Such errors bring the risk,
that the road area and background may come out to be of similar gray levels, resulting
in big amount of false-positives. Moreover, if the shadow is small enough to be ignored
by entropy minimization, but big enough to cover the critical part of the road, false-
negatives may occur. If such shadow is located where the road model is created, the
resulting road model may not fit the rest of the road. If it is a long line across the road,
the algorithm taking continuous road may not pass it and the road above the shadow
would be misclassified as a background. To address this issue, authors of [7] consider the
results of few consecutive frames to find the most appropriate value. I, to speed up the

22



2.7 Discussion

algorithm, performed entropy minimization computation of the invariant angle offline
on the training dataset containing only images with appropriate-sized shadows. The
mean value of the invariant angles was then set as a fixed value in other experiments.
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Chapter 3

Gaussian Mixture Models

Alternatively to illuminant-invariant road detectors, some authors base their approach
on creating color models of the road and then using this information in the road detec-
tion. Authors of [3] and [4] propose to use Gaussian Mixture Models (GMMs) for this
purpose. In the scene shown in figure 10 it’s obvious to a human, that the road has gray
color. But in computer vision this gray color is composed of a big number of different
but at the same time similar RGB triples R. The human-perceived gray color can be
learned by a computer as a three dimensional multivariate Gaussian distribution. Nor-
mally, the road may consist of different colors, as well as have shadows represented by
other colors. Each of them can be defined by a different Gaussian distribution. There-
fore, the Gaussian Mixture Model is introduced as a weighted combination of several
Gaussian distributions.

3.1 The creation of a GMM

The road detection method based on Gaussian Mixture Models works with offline
learned models. For this purpose, a training dataset—some number of sample images—
is need to be collected and prepared in advance. In these images, road and non-road
regions should be manually selected. Pixels from the training dataset are used to create
GMMs. In some literature only GMM for road regions is created. I, same as Zhou et
al. in [4], create two GMMs: 𝐺𝑀𝑀0 for road and 𝐺𝑀𝑀1 for non-road, with 𝐾0 and
𝐾1 components respectively.

The RGB color of a pixel is a random vector 𝑥 = R = [𝑅1, 𝑅2, 𝑅3]T. The multivariate
Gaussian (normal) distribution 𝒩 (𝜇, Σ) of this vector can be defined by two of its
parameters: mean value 𝜇 and 3 × 3 covariance matrix Σ = E

[︁
(X − 𝜇) (X − 𝜇)T

]︁
.

The model of the road or non-road region is represented by a GMM with 𝐾 triples
GMM = {(𝜇1, Σ1, 𝑤1) , (𝜇2, Σ2, 𝑤2) , . . . , (𝜇𝐾 , Σ𝐾 , 𝑤𝐾)}, where 𝑤𝑖 is the weight of the
Gaussian component 𝑖. The weight is calculated as a ratio of pixel count 𝑁𝑖 in the
component 𝑖 to a pixel count in the model GMM as 𝑤𝑖 = 𝑁𝑖/

∑︀
𝑗∈{1,...,𝐾} 𝑁𝑗 .

The training pixels are divided into different GMM components by data clustering
algorithm. In this thesis I implemented Orchard and Bouman binary splitting algo-
rithm [27], which is described in algorithm 3. The basic principle of the method lies
in dividing of the cluster with the biggest variance into two, until the desired number
of clusters is reached. Authors claim, that the direction of the biggest variation is de-
termined by the eigenvector 𝑣𝑘 corresponding to the largest eigenvalue 𝜆𝑘 of cluster’s
𝑘 covariance matrix Σ𝑘. The decision about which cluster to split next is made by
comparison of 𝜆𝑘, 𝑘 = {1, . . . , 𝐾}. The cluster 𝐶𝑚 with the largest eigenvalue 𝜆𝑚 is
chosen as a best current candidate. The split is made along the plane perpendicular to
the direction 𝑣𝑚 of the biggest variation and passes through the mean value 𝜇𝑚 of the
cluster.
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Chapter 3 Gaussian Mixture Models

Figure 10 An example of the image with road.

Algorithm 3: The creation of a GMM from the set of pixels
Input : The number of componets 𝐾, set of pixels 𝑃𝑥 with 𝑁𝑥 pixels
Output: GMM with 𝐾 components

1 Create the first cluster from all the pixels: 𝐶𝑚 = 𝑃𝑥, 𝑚 = 1
2 Calculate 𝜇𝑚, Σ𝑚

3 𝑁𝑚 =: number of pixels in the component
4 𝜆𝑚 =: the largest eigenvalue of Σ𝑚

5 𝑣𝑚 =: the eigenvector corresponding to 𝜆𝑚

6 Create GMM component 𝐺𝑚 = (𝜇𝑚, Σ𝑚, 𝑁𝑚/𝑁𝑥)
7 for 𝑘 = 2, . . . , 𝐾 do
8 for 𝑥 ∈ 𝐶𝑚 do
9 if 𝑣𝑚𝑥 ≤ 𝑣𝑚𝜇𝑚 then

10 Add 𝑥 to 𝐶𝑘

11 Remove 𝑥 from 𝐶𝑚

12 Calculate new 𝜇𝑚, Σ𝑚, 𝑁𝑚, 𝜆𝑚, 𝑣𝑚

13 Calculate 𝜇𝑘, Σ𝑘, 𝑁𝑘, 𝜆𝑘, 𝑣𝑘

14 Update 𝐺𝑚 = (𝜇𝑚, Σ𝑚, 𝑁𝑚/𝑁𝑥)
15 Create 𝐺𝑘 = (𝜇𝑘, Σ𝑘, 𝑁𝑘/𝑁𝑥)
16 𝑚 = arg max{1,...,𝑘} {𝜆1, . . . , 𝜆𝑘}
17 Return 𝐺𝑀𝑀 = {𝐺1, . . . , 𝐺𝐾}

According to [28], the probability of an individual pixel value 𝑥 fitting the model
described by a 3 dimensional multivariate Gaussian distribution 𝐺𝑘 is

𝒫𝐺𝑘 (𝑥) = 1(︁√
2𝜋
)︁3√︀

|Σ𝑘|
𝑒− 1

2 (𝑥−𝜇𝑘)𝑇 Σ−1
𝑘

(𝑥−𝜇𝑘). (44)

In my algorithm I, same as Zhou et al. in [4], omit the constant
(︁√

2𝜋
)︁3

from the
equation to simplify the computations.

The probability of an individual pixel value 𝑥 fitting the model 𝐺𝑀𝑀 with 𝐾 com-
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ponents is

𝒫𝐺𝑀𝑀 (𝑥) =
𝐾∑︁

𝑘=1
[𝑤𝑘𝒫𝐺𝑘] . (45)

3.2 Road detection
It’s possible to directly employ GMMs for road detection. Authors of [3] propose to
compute Mahalanobis distance [28]

𝐷𝑀 (𝑥, 𝑘) =
√︁

(𝑥 − 𝜇𝑘)𝑇 Σ−1
𝑘 (𝑥 − 𝜇𝑘) (46)

between the pixel value 𝑥 and the mean value 𝜇𝑘 of each GMM component 𝐺𝑘. The
minimal distance 𝐷𝑀 (𝑥, 𝑙) is then taken as a score of how likely 𝑥 is fitting the road
model. Authors use only road model 𝐺𝑀𝑀0 and compute distances for the most
promising components according to their weight.

Authors of [4] propose to combine GMMs representing the color information in image
with its structural information. They construct a weighted graph out of both of these
terms. They use a min-cut/max-flow algorithm to split the graph into two parts: road
and background.

The min-cut/max-flow algorithm is based on the work of Boykov and Jolly [29]. They
assume an image with a size 𝑁 × 𝑀 pixels. From this image they compose a graph
𝒢 with 𝑁 × 𝑀 + 2 nodes. While, most of the nodes correspond to pixels, the graph
also contains two special nodes: source—object terminal, in my case road—and sink—
background terminal. Nodes are connected with each other by weighted edges. Authors
define two types of nodes: n-links and t-links. N-links are the type of edges connecting
neighboring pixels with each other. T-links connect pixel nodes with terminal nodes.
The weights of t-links are defined by color term, while weights of n-links are defined by
a structural term.

The initial t-link costs 𝑤𝑝,𝑡, where 𝑝 is the pixel node and 𝑡 ∈ {0, 1} is a terminal
node, are assigned according to a negative log-likelihood:

𝑤𝑝,0 = − ln 𝒫𝐺𝑀𝑀0

𝑤𝑝,1 = − ln 𝒫𝐺𝑀𝑀1.
(47)

The probability itself wasn’t suitable, as edge cost is suppose to be smaller at more
desirable pixels. Since negative log-likelihood in my implementation may result in big
values if 𝒫𝐺𝑀𝑀 was small, I normalized the result and introduced the trade-off factor:

𝑤′
𝑝,0 = 𝜉0𝑤𝑝,0,norm

𝑤′
𝑝,1 = 𝜉1𝑤𝑝,1,norm + 𝜁.

(48)

Constants 𝜉0 and 𝜉1 are used to prioritize one set of data over the other. If 𝜉0 > 𝜉1,
the min-cut algorithm is less likely to choose low probability values from 𝐺𝑀𝑀0 as
non-road. Parameter 𝜁 ≥ 0 was introduced, when I discovered in my experiments, that
algorithm performed better if it was present.

The example of how the probabilities are distributed in the image is shown in fig-
ure 11. The probability of pixel value 𝑥 fitting the road model 𝐺𝑀𝑀0 is displayed in
(a) and its normalized log-likelihood in (b). Similarly, the probability of pixel value 𝑥
fitting the non-road model 𝐺𝑀𝑀1 is displayed in (d) and its normalized log-likelihood
in (e). Greater values are represented by lighter colors, while lower values by darker
colors.
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(a) (b) (c)

(d) (e)

Figure 11 Probability maps of figure 10. (a) Probability of 𝑥 matching a road model 𝒫𝐺𝑀𝑀0.
(b) Negative log-likelihood of (a) 𝑤𝑝,0,norm. (c) The illustration of a structural term. (d)
Probability of 𝑥 matching a non-road model 𝒫𝐺𝑀𝑀1. (e) Negative log-likelihood of (d)
𝑤𝑝,1,norm.

To define n-link costs 𝑤𝑝,𝑞, where 𝑝 and 𝑞 are neighboring pixels, Zhou et al. propose
to use the following formula:

𝑤𝑝,𝑞 = 𝑒
− ‖𝑥𝑝 − 𝑥𝑞‖

2E [‖𝑥𝑝 − 𝑥𝑞‖2] ,

𝑤′
𝑝,𝑞 = 𝛾𝑤𝑝,𝑞

(49)

where ‖. . .‖ denotes L2 norm, E [. . .] denotes the expected value over the image and 𝛾 is
the trade-off between color and structure components. They also propose to use local
geometric structure to adjust 𝑤𝑝,𝑞 to different regions varying contrasts, but I don’t use
it in my work. The illustration of how the structural term is spread through the image
is shown in figure 11(c). Since 𝑤𝑝,𝑞 defines 8 neighbors for most of the pixels, it isn’t
represented in the image directly. Instead, each pixel is representing the mean value of
L2 norms ‖𝑥𝑝 − 𝑥𝑞‖ between pixel value 𝑥𝑝 and its neighbors’ values 𝑥𝑞 in the original
RGB image.

The transformation of image features into graph changes road detection problem into
the problem of finding the appropriate graph cut. Authors propose to use min-cut/max-
flow method described in [30] in order to find the cut with the minimum cost. This
algorithm is time consuming [4]. Therefore in images with large resolution downsam-
pling is advised to speed up the computations, especially in real-time applications.

3.3 Combination of illuminant invariance theory and GMMs
The presented graph cut method for road detection has a potential to provide good
results by combining color models with structure information. One of its disadvantages
can be that it’s strongly dependent on the quality of the training dataset. The illumi-
nant invariance methods on the other hand don’t need a training dataset to provide
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results. As was stated in the previous chapter, illuminant invariant algorithms may
have problems with false positives, if background near the road area happen to have
similar gray levels. I propose to combine both of the methods in order to verify if it
brings any improvements.

In my implementation, I firstly perform road detection based on the illuminant in-
variance, including morphological operations and road continuity. The result is in-
corporated into GMM based graph cut algorithm by simply setting parameter 𝜁 in
equation (48) to a positive value in pixels classified as road. This action should in-
crease the cost of t-link from these pixels to sink, making it less probable to them being
connected.
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Chapter 4

Experimental results

In my first experiments I used publicly available dataset DS1 used by Álvarez et al.
in [7]. The dataset contains RGB images from the camera installed on a windshield of
a car. Photos were taken at noon of a sunny day. The dataset contains images of an
asphalt road in rural area. In my experiments I used only first 279 images, because the
rest was corrupted by lens flare.

The second dataset DS2 I used was created by me and my thesis supervisor during
the first experiment with the robot. This dataset was created as a training dataset for
GMM based methods. The images containing shadows were used for invariant angle
estimation. During this experiment illuminant invariant method was firstly tested and
PID controller parameters were estimated. The experiment took place before noon
in a small park on Evropská street in Prague. The park is surrounded by buildings,
therefore I consider it an urban environment.

The second and the last experiment with the robot was intended to test all of the
methods of road detection. It resulted in dataset DS3. It was conducted in the same
area as DS2.

The main evaluations in this thesis were conducted by comparing results of road
detection algorithms with ground truth. From both of these data true positives 𝑇𝑃 ,
false positives 𝐹𝑃 , true negatives 𝑇𝑁 and false negatives 𝐹𝑁 were computed. The
evaluations were made using two measurements [4]: precision and error rate.

Precision

𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(50)

is the ratio of correctly determined road pixels to the total number of pixels classified as
road. Precision reacts to the number of 𝐹𝑃 in the detected road, decreasing with bigger
number of misclassified background. However, it can’t differentiate a good example of
road detection with big number of 𝑇𝑃 from the one with low number of 𝑇𝑃 if 𝐹𝑃 = 0—
in both cases 𝑃𝑅 = 1. The range of values of this measurement is from 0 to 1, since
𝑇𝑃 ≤ 𝑇𝑃 + 𝐹𝑃 .

Error rate

𝐸𝑅 = 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(51)

gives the ratio of false detections to the total ground truth road area. This measurement
solves the problem with precision’s lack of sensitivity to 𝐹𝑃 = 0 by taking the total
false detection number.

By combining both of the measurements it’s possible to identify good road detection
results with low error number. The results with low 𝐸𝑅 and high 𝑃𝑅 are preferred.
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Figure 12 Road detection (based on the illuminant invariance) quality depending on parameters
𝑝1 and 𝑝2 in entropy minimization algorithm 1.
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Figure 13 Continuous road detection (based on the illuminant invariance) quality depending
on parameters 𝑝1 and 𝑝2 in entropy minimization algorithm 1.

4.1 Parameter estimation

4.1.1 Entropy minimization 𝑝1 and 𝑝2

Parameters 𝑝1 and 𝑝2 from equations (25) and (27) were estimated on the shorter
version of DS1, containing 52 manually selected images with shadows. I compared
the results of the road classification rule described by equation (43) computed with
different combinations of 5 𝑝1 and 5 𝑝2 values. I also made a test of how the same
values would perform in the final road detection result after performing morphological
operations and finding the continuous road area from the seeds. In these experiments
I calculated precision and error rate for values 𝑝1 ∈ {0.5, 0.2, 0.1, 0.075, 0.05} and 𝑝2 ∈
{0.05, 0.02, 0.01, 0.005, 0.001}. Precisions of the classification rule results are listed in
table 1, error rates are in table 2. The illustration of how these values are distributed in
comparison with each other is shown in figure 12. Similarly, the results of the continuous
road detection are listed in tables 3 and 4. The illustration is in figure 13. The value
for 𝑝1 = 0.05 and 𝑝2 = 0.05 wasn’t calculated, since parameters should be 𝑝1 > 𝑝2.
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Table 1 Precision of road classification rule based on illuminant invariance, depending on
parameters 𝑝1 and 𝑝2.

𝑝1

𝑝2 0.05 0.02 0.01 0.005 0.001

0.5 0.755 0.758 0.773 0.770 0.786
0.2 0.745 0.777 0.769 0.776 0.772
0.1 0.766 0.761 0.770 0.764 0.782

0.075 0.761 0.770 0.780 0.766 0.768
0.05 0.765 0.779 0.763 0.779

Table 2 Error rate of road classification rule based on illuminant invariance, depending on
parameters 𝑝1 and 𝑝2.

𝑝1

𝑝2 0.05 0.02 0.01 0.005 0.001

0.5 0.569 0.549 0.512 0.539 0.491
0.2 0.580 0.506 0.501 0.493 0.499
0.1 0.526 0.520 0.497 0.511 0.480

0.075 0.530 0.506 0.475 0.512 0.511
0.05 0.510 0.481 0.516 0.498

Table 3 Precision of road detection (continuous) based on illuminant invariance, depending on
parameters 𝑝1 and 𝑝2.

𝑝1

𝑝2 0.05 0.02 0.01 0.005 0.001

0.5 0.894 0.890 0.896 0.900 0.922
0.2 0.895 0.897 0.893 0.891 0.895
0.1 0.900 0.897 0.888 0.894 0.890

0.075 0.898 0.899 0.901 0.892 0.889
0.05 0.906 0.895 0.894 0.892

Table 4 Error rate of road detection (continuous) based on illuminant invariance, depending
on parameters 𝑝1 and 𝑝2.

𝑝1

𝑝2 0.05 0.02 0.01 0.005 0.001

0.5 0.322 0.306 0.285 0.316 0.282
0.2 0.311 0.281 0.269 0.269 0.266
0.1 0.287 0.272 0.270 0.258 0.259

0.075 0.282 0.268 0.250 0.273 0.282
0.05 0.254 0.260 0.267 0.277

In figure 12 and figure 13 I labeled the most promising results of low 𝐸𝑅 and high
𝑃𝑅 with letters. Labels correspond to tuples [𝑝1, 𝑝2] and are following:

A [0.075, 0.01],
B [0.1, 0.001],
C [0.05, 0.01],
D [0.5, 0.001],
E [0.05, 0.02].
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Table 5 The precision and the error rate of road classification rule in illuminant invariance
method, depending on the parameter 𝑘.

𝑘 0.1 0.2 0.3 0.4 0.5 0.6 0.7
𝐸𝑅 0.890 0.837 0.786 0.738 0.694 0.653 0.616
𝑃𝑅 0.813 0.812 0.811 0.809 0.806 0.803 0.800

𝑘 0.8 0.9 1 1.1 1.2 1.3 1.4
𝐸𝑅 0.583 0.554 0.528 0.507 0.488 0.473 0.461
𝑃𝑅 0.796 0.793 0.788 0.784 0.780 0.775 0.770

During these experiments the decision on parameters 𝜆1, 𝜆2 and final order of mor-
phological operations was not yet made, therefore the results may differ from the final
implementation. Due to this fact, the choice of [𝑝1, 𝑝2] was based mostly on the results
of the classification rule with 𝜆1, 𝜆2 empirically estimated. Although, the continuous
road results were also considered, as they give a rough idea of how parameters would
perform in future tests.

In classification rule test, values A, B, C and D have shown similar results with
low 𝐸𝑅 from 0.475 to 0.491 and high 𝑃𝑅 from 0.779 to 0.786. The difference between
individual values was less than 2% for 𝐸𝑅 and less than 1% for 𝑃𝑅. In continuous road
test shown in figure 13, A and B have shown similar results with about 0.5% difference
in 𝑃𝑅 and 1% difference in 𝐸𝑅. The point C had roughly 2% worse error rate than A,
and more than 1% worse precision than A. The point D has shown approximately 2%
better 𝑃𝑅 but almost 3.5% worse 𝐸𝑅. In this experiment point E had good 𝑃𝑅 and
𝐸𝑅, but in figure 12 with classification rule results it performed worse, than A, B, C
and D in both of measurements. Parameters A [0.075, 0.01] were chosen for following
experiments, because they’ve shown the lowest error rate and acceptably high precision
in both classification rule and continuous road tests.

Invariant angle 𝜃

This shorter version of DS1 was used to estimate the invariant angle 𝜃𝐷𝑆1 of the used
camera. The entropy minimization algorithm was used on each image to estimate the
angle. From the results I’ve manually chosen only ones where the angle wasn’t incorrect,
which resulted in 32 values. From these values I calculated the mean value 𝜃𝐷𝑆1 = 153,
which was used in some of further experiments as a fixed value.

4.1.2 Illuminant invariance road detection 𝜆1 and 𝜆2

For this test I used every 10th image from dataset DS1 with fixed invariant angle
𝜃𝐷𝑆1 = 153. The thresholds 𝜆1 and 𝜆2 are calculated using the equation (42). Therefore
the experiment was focused on finding the parameter 𝑘𝐷𝑆1. The precisions and error
rates of classification rule (43) are shown in table 5 and illustrated in figure 14. This
figure illustrates how with increasing 𝑘 both 𝐸𝑅 and 𝑃𝑅 are decreasing. The difference
in error rate between the best and the worst result is approximately 43%, the difference
in precision is smaller: approximately 4%. Even the smallest 𝐸𝑅 = 0.461 corresponding
to 𝑘 = 1.4 mean that a lot of pixels are being misclassified. Precision values mean, that
on average more than 76.5% of pixels classified as road are truly road.

Figure 15 and table 6 illustrate the precision and error rate of continuous road detec-
tion depending on the parameter 𝑘. In this figure error rate is naturally decreasing with
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Figure 14 The precision and the error rate of road classification rule in illuminant invariance
method, depending on the parameter 𝑘.
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Figure 15 The precision and the error rate of continuous road found using illuminant invariance
method, depending on the parameter 𝑘.

the increasing 𝑘, and at some point starts to increase back. The initial decrease in 𝐸𝑅
can be explained by the increasing number of true positives, as bigger interval between
threshold 𝜆1 and 𝜆2 means more pixels are classified as road. The successive increase in
error rate may be due to the excessive enlargement of the interval causing more pixels
to be false positively classified. The precision is decreasing, which can indicate the
increasing number of false positives.

The minimal average error rate with value 𝐸𝑅 = 0.292 was corresponding to 𝑘 = 0.5,
the respective precision 𝑃𝑅 = 0.900 was acceptable. Therefore, the parameter 𝑘𝐷𝑆1 =
0.5 was chosen in following experiments to calculate thresholds.

The still high error rate can be caused by a large number of false negatives present
in the found road. The reason is that used morphological operations doesn’t fill all the
holes in the road area, as can be seen in figure 9(b).

The precision and error rate on the whole dataset DS1 using parameter 𝑘𝐷𝑆1 = 0.5
were 𝑃𝑅 = 0.803 and 𝐸𝑅 = 0.697 for classification rule. The results of the road
detection were 𝑃𝑅 = 0.891 and 𝐸𝑅 = 0.308.
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Table 6 The precision and the error rate of continuous road found using illuminant invariance
method, depending on the parameter 𝑘.

𝑘 0.1 0.2 0.3 0.4 0.5 0.6 0.7
𝐸𝑅 0.480 0.386 0.343 0.303 0.292 0.300 0.309
𝑃𝑅 0.994 0.977 0.942 0.922 0.900 0.871 0.846

𝑘 0.8 0.9 1 1.1 1.2 1.3 1.4
𝐸𝑅 0.312 0.324 0.347 0.366 0.387 0.404 0.426
𝑃𝑅 0.831 0.815 0.787 0.771 0.753 0.740 0.726

Used
web camera

Figure 16 The mobile robot used in my experiments.

4.2 Experiments with robot
The experiments were conducted on Intel® Core™ i7-4700MQ CPU with 2.40 GHz fre-
quency. The implementation of algorithms was in C++ language with optimization and
without parallelization. The mobile robot Pioneer used in my experiments is depicted
in figure 16. The USB web camera Logitech® c920 was mounted on top of the robot
and connected to the laptop. The communication between the computing laptop and
steering onboard computer was performed over Wi-Fi using ROS—Robot Operating
System.

During experiments I encountered an issue with two web cameras I used: Microsoft®
LifeCam HD-3000 and Logitech® c920. Both of them had produced images with the
ring of the distorted colors in the middle of the image. In HD-3000 it was noticeable
even in RGB image, as can be seen in figure 17, therefore it wasn’t suitable for exper-
iments. In c920 the ring wasn’t visible to human eye on an RGB image, but it had
considerable effect on the entropy minimization algorithms. It was present in grayscale
illuminant invariant images. The problem seems to be isolated to web cameras, as I
didn’t encounter it in images from other digital cameras, mobile phones nor in datasets
available on the Internet.

Due to compatibility issues I had to use the second web camera in my experiments.
Due to its defect I had to use entropy minimization algorithms with big caution. I used
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Figure 17 A photo of a white sheet of paper made by HD-3000 web camera.

images with shadows and empirically evaluated the shadow removal quality. I used the
entropy plot over the angles to estimate the most appropriate value of the invariant
angle.

Unfortunately, the experiments took place in late December, when the weather wasn’t
sunny. Therefore, I was unable to test how illuminant invariance part of the algo-
rithm performed in experiments with robot. But I believe, that experiments I made on
datasets available on the Internet, were sufficient to test the validity of the theory in
my implementation.

4.2.1 Invariant angle estimation

The estimation of 𝜃𝐷𝑆2,𝐷𝑆3 was complicated by weather and used camera. Unfortu-
nately due to weather, I managed to obtain only 3 photos containing shadows during
creation of dataset 𝐷𝑆2. These images are img_1, img_2 and img_3, they are depicted
in the first row of figure 18. To compensate the lack of images for the angle estimation
I’ve made several photos at home. Two of them are also depicted in figure 18 as img_4
and img_5. These images were made in a dark room with candle being the only source
of light. Candle flame is a Planckian light, therefore the theory of illuminant invariance
should stand. On the other hand, candle produce light of low intensity, therefore img_4
and img_5 are very noisy, which interferes with entropy minimization algorithm.

Running entropy minimization algorithms on these 5 images resulted in several differ-
ent values of 𝜃 listed in table 7. According to entropy plots depicted in the second row
of figure 18, each of these angles is located on the only considerable peak and therefore
is the only candidate for being invariant angle in corresponding image. Nevertheless
the third row of figure 18, where the grayscale images corresponding to the minimal
entropy are depicted, illustrates that 4 of 5 angles are evidently incorrect. Only angle
𝜃 = 152 estimated in image img_3 had value that resulted in shadow free image. I
chose it to be a fixed invariant angle for datasets DS2 and DS3 𝜃𝐷𝑆2,𝐷𝑆3 = 152. The
value isn’t perfectly accurate, as shadows can still be visible in fourth row of figure 18,
however they are vague relatively to the original image. Ideally the angle would be
estimated on a bigger set of images and the value would be calculated as mean. Due
to the small number of images it was my only estimate.
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Table 7 The calculated invariant angle 𝜃𝐷𝑆2 found in different images.
Image img_1 img_2 img_3 img_4 img_5

𝜃 113 112 152 12 105

img_1 img_2 img_3 img_4 img_5

Figure 18 The illustration of the invariant angle estimation on web camera c920. First row:
original images. Second row: entropy plots. Third row: grayscale images corresponding
to the minimal entropy. Fourth row: grayscale images corresponding to alngle 𝜃 = 152.

4.3 Road Following Algorithm

In order to test road detection algorithms on the mobile robot, I needed to implement
a path following algorithm. Since, its main purpose was to be a mean in testing, I
decided to keep it simple. The input to the algorithm is a black and white mask image
distinguishing road and background. The forward speed is set to one of two fixed values,
while the angular velocity is controlled by a PID controller.

In this algorithm I consider the coordinate system of an image as depicted in figure 19.
The origin is placed in the center of a bottom row, x axes is pointing to the right and y
axes is pointing up. The reference vector 𝑣𝑟 is placed alongside y axes, its length was set
so that all the patches used for creation of a road model had y coordinate smaller than
|𝑣𝑟|. The approximate direction 𝑣𝜇 where the robot is suppose to move is calculated as
a mean value of road pixels. This way if there’s a turn, most of the road pixels would
be located in its direction and their mean value would be shifted along the x axes.

The forward speed is set to 0.3 ms−1. If y coordinate of mean vector 𝑣𝜇 is lower than
the reference, robot is stopped. In this case, the angular velocity is set to 0.1 ms−1, so
robot starts to turn right, until 𝑣𝜇 is appropriate to start moving forward.

When forward speed is set to 0.3 ms−1 the angular speed is controlled by a PID
controller

𝑢(𝑡) = 𝐾𝑃 𝑒(𝑡) + 𝐾𝐼

∫︁ 𝑡

0
𝑒(𝜏) 𝑑𝜏 + 𝐾𝐷

d𝑒(𝑡)
dt , (52)
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𝑣𝑟
𝑣𝜇

y

x

Figure 19 Vectors used to calculate the error value for PID controller.

Figure 20 The results of the illuminant invariance based road detection in experiments with
robot. Figure contains 10 evenly distributed images from DS3 and corresponding found paths.

where 𝑢(𝑡) is a control value and 𝑒(𝑡) is an error value. In my case, integral 𝐾𝐼 and
derivative 𝐾𝐷 terms were set to zero, because proportional 𝐾𝑃 was sufficient. The error
value is computed as a sinus of an angle 𝛼 between 𝑣𝑟 and 𝑣𝜇. Angles −𝜋

2 ≤ 𝛼 ≤ 𝜋
2

are expected in my application. In this interval both 𝛼 and sin 𝛼 are monotonically
increasing, therefore both functions could be used to produce a signed control value.

4.3.1 Experiments with robot and evaluation

The aim of the final experiment was to test if presented road detection techniques are
sufficient for robot path following. The dataset DS3 is comprised of this experiment
results.

The illustration of the illuminant invariance based road detection testing is shown
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Figure 21 The results of the combined method of road detection in experiments with robot.
Figure contains 10 evenly distributed images from DS3 and corresponding found paths.

in figure 20. In this experiment parameters were 𝜃𝐷𝑆3 = 153 and 𝑘 = 0.6. During
experiments with dataset DS2 I’ve noticed that cobblestone coverage was a difficulty
to morphological operations and continuous road extraction. The amount of dilations
suitable for distant part of the road wasn’t enough to deal with holes created by gaps
between stones in the nearer areas. Moreover the number of dilations suitable to fill
these gaps created many false positives in more sensitive parts. Gaps are more visible
in the bottom part of an image. I estimated that the border line can be drawn at
approximately 0.79 of the height of the image. Therefore in this experiment I used
different number of morphological operations on the top and on the bottom parts of
the image.

Images in figure 20 illustrate that illuminant invariant road detection can successfully
distinguish the road from the background. In these images the border between the road
and the grass is clearly seen in the classification results. The algorithm may misclassify
some background objects if they have similar to road color and no strong border between
them, as is seen in the 4th image in the first row.

The images taken from camera had resolution 640 × 480. The algorithm managed to
process one frame, e.g. find the road, calculate error value for PID controller and send
the command to steering computer, on average in 0.45 s. In images downsampled to
resolution 320 × 240 it processed one image for an average of 0.25 s.

The illustration of the combination of illuminant invariance and GMM graph cut
based road detections testing is shown in figure 21. In this experiment parameters were
𝜃𝐷𝑆3 = 153, 𝑘 = 0.6, 𝜉0 = 200, 𝜉1 = 50, 𝛾 = 50, numbers of GMM components were
𝐾0 = 5, 𝐾1 = 5. Parameter 𝜁 = 25 was set only in pixels that were classified as road
by illuminant invariance road detector. Due to the time consumption of the graph cut
algorithm this experiment used images downsampled to resolution 320×240. One frame
was processed on average in 0.92 s.

The results of the road detection look better than ones from illuminant invariance
based method. The road border near grass is more precise, detected road area has less
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Figure 22 The results of the GMM based road detection in experiments with robot. Figure
contains 5 evenly distributed images from DS3 and corresponding found paths.

holes. But the problem with false positives still remains.
In my opinion, the combination doesn’t bring much improvement to the illuminant

invariance method. False negative holes may be reduced by simpler algorithms. False
positives are still present, although can sometimes be reduced. Overall result doesn’t
seem to compensate for the overcomplexity and time consumption.

The results of GMM based graph cut road detection in experiments with robot are
shown in figure 22. This experiment ran with the same parameters as combined road
detection method, with the exception of 𝜁, which was set to 𝜁 = 8 in all pixels. The
algorithm also ran on downsampled images. In this experiment the crop of 50% of the
image was used instead of sky detection, which was an attempt to reduce the number
of false positives. The method processed one image on average for 0.6 s.

During this short experiment the robot failed to navigate along the road, due to
incorrect road detection. It can be seen in figure 22, that algorithm classifies the
road and the grass properly. The border between each of them is precise. However
background buildings and gray colored street lighting poles were also classified as road.
This can be caused by the variety of reasons.

Firstly, due to badly determined parameters. The number of different parameters
in this algorithm is large. All of 6 parameters—𝜉0, 𝜉1, 𝛾, 𝐾0, 𝐾1 and 𝜁—have to be
tuned in order to algorithm to work properly. I managed to try only a small number
of possible combinations and could just not find the appropriate one.

Secondly, colors of road and buildings may be too similar. The training dataset was
created in the same park few days earlier. I chose several images evenly distributed
through bigger set of data, but also manually picked ones with unique color distribution.
It’s possible, that in some images the road color was similar to the building color in
other images. For example, in the first row of figure 21, the road and the building may
seem to have similar colors. The probability of them having the same color is increased
if compared in different images. In this case GMM0 and GMM1 may contain similar
components, resulting in incorrect classifications.

Despite the fact that GMM based graph cut didn’t perform well in my experiments,
it looks like a promising method. Unlike illuminant invariance based method it doesn’t
use seeds from the bottom part of the image. Therefore it’s capable of correct road
classification even if the robot is positioned outside of drivable area. The indication can
be seen in the last image in figure 22.
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Conclusion

I presented in this thesis three methods of road detection. I mainly focused on the
method based on the illuminant invariance theory, but also described Gaussian Mixture
Models based graph cut technique and proposed the combination of both methods.

Firstly, I described the principle of illuminant invariance theory. Assuming Planck-
ian light sources, Lambertian surfaces and narrow-band cameras, it allows to create a
simple model of an RGB pixel. Using this model it’s possible to project the pixel onto
chromaticity space, i.e. color specification independent on luminance. Pixels from same
surfaces form parallel lines in the log-chromaticity space, independently on their illu-
mination conditions. The illuminant invariant (or simply shadow free) grayscale image
can be produced by projecting pixels onto the perpendicular line.

The slope of this line can be found using entropy minimization algorithm. It’s prin-
ciple lies in searching through all possible angles. For each angle the grayscale image
is computed and entropy is calculated. The image with the minimal entropy is shadow
free. The found invariant angle is dependent only on camera parameters. The advan-
tage of this method is that it can be used on an unknown camera. On the other hand,
it may fail if ratio of shadow to non-shadow area isn’t adequate. The method is also
sensitive to noise, outliers and non-Lambertian surfaces such as sky. I describe methods
used in literature to overcome all of these problems. The implemented outlier detector
is based on the Chebyshev’s inequality, which should allow it to adapt to the unique
distribution in each image. The sky detection algorithm is based on Otsu’s threshold-
ing method. The principle lies in finding the minimum intra-class variance among all
possible threshold values.

The road detection algorithm based on the illuminant invariance method assumes,
that in grayscale image the road area have a uniform gray level. The road model
is created from the pixels located in the bottom part of the image. Afterwards, the
remaining pixels are classified as a road or as a background according to it. The set
of morphological operations is applied to close the gaps between true positives and cut
out false positives.

The second implemented method of road detection uses Gaussian Mixture Models
to create color models of road and non-road areas from training dataset. The road
detection is performed by finding the minimum cut in a weighted graph created from
the image. In this graph pixels correspond to nodes. Two additional terminal nodes
corresponding to road and background are present. Edges’ weights are defined using
trained color models and structural term.

The combination of both methods firstly detects road using illuminant invariant
method. The results of this detection are then used in creation of weighted graph for
graph cut method.

Finally, I describe my parameter estimation, conducted experiments and the results.
In my experiments it seems that illuminant invariant method have outperformed the
graph cut methods. It was much faster: 0.25 s in comparison to 0.6 s and 0.92 s. The
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road detection was more accurate than in GMM based graph cut.
The future work may be focused on combining the illuminant invariant road detector

with other techniques in order to reduce the number of false positives near the road
area. Good gap closing algorithms increasing the number of true positives can also
improve results. While I don’t see the combination of illuminant invariant and graph
cut methods as perspective, standalone graph cut may be enriched in variety of ways.
For example, by finding better parameters, by using adaptive structure term and by
updating trained color models.

44



Appendix A

CD content

The content of the attached CD is described in table 8.

Table 8 The content of the attached CD.
File or directory Description
text/ Source files of the thesis text
tracking/ The ROS node for road detection and tracking
diploma.pdf This thesis in PDF format
DS2.zip Dataset DS2
DS3.zip Dataset DS3 with results
training.zip Training dataset created from DS2
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