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Abstract
We focus on the task of classification with
random forests trained both on fully and
on partially labeled data. Standard semi-
supervised learning approaches cannot be
applied on our problem because they usu-
ally assume that the unlabeled dataset
is sampled from the same underlying dis-
tribution as the labeled dataset. In our
case, the majority of objects in the un-
labeled dataset belongs to a class that
is not present in the labeled dataset at
all. This problem has an application in
network traffic classification, where the la-
beled dataset is made of objects that were
associated with some category of malware
and the objects in the unlabeled dataset
are mostly benign (non-malware) traffic
but there are also some malicious objects
that we were unable to detect and label
correctly. We implement and analyze sev-
eral random forest types. They are ana-
lyzed both on publicly available datasets,
that have been modified to contain im-
balanced and unlabeled data, and also
on our own network dataset that is com-
posed from proxy logs. In addition, we
adapt and implement several algorithms
that can be used together with random
forests in the above mentioned task and
we show that they significantly improve
the classification performance on public
datasets.

Keywords: random forests,
classification, semi-supervised learning,
imbalanced data, mislabeled data,
malware
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Abstrakt
Zabýváme se úlohou klasifikace s využitím
náhodných lesů trénovaných jak na plně
označených, tak i na částečně označených
datech. Standardní přístupy k učení v pří-
tomnosti neúplně označených dat nemohly
být aplikovány na náš problém. Obvykle
totiž předpokládají, že označená a neo-
značená datová sada mají stejné pravdě-
podobnostní rozdělení. V našem případě
většina objektů v neoznačené datové sadě
patří do třídy, která se v označené datové
sadě vůbec nevyskytuje. Tento problém se
objevuje při klasifikaci síťového provozu,
kde označená datová sada je tvořena ob-
jekty, které byly spojeny s některou z ka-
tegorií malwaru. Objekty v neoznačené
datové sadě jsou většinou benigní (ne ma-
lware) provoz, ale také existují škodlivé
objekty, které jsme nebyli schopni dete-
kovat a správně označit. Implementujeme
a analyzujeme několik druhů náhodných
lesů. Jsou analyzovány na veřejně dostup-
ných datových sadách, které byly upra-
veny, aby obsahovaly nevyvážená a neo-
značená data, a také na naší síťové datové
sadě, která je tvořena z proxy logů. Také
jsme adaptovali a implementovali něko-
lik algoritmů, které mohou být použity
společně s náhodnými lesy ve výše zmí-
něné úloze. Ukazujeme, že výrazně zvyšují
kvalitu klasifikace na veřejně dostupných
datových sadách.

Klíčová slova: náhodné lesy, klasifikace,
kombinace učení s učitelem a bez učitele,
nevyvážená data, chybně označená data,
malware

Překlad názvu: Modely rozhodovacích
lesů a jejich využití v úloze neúplně
anotovaných dat
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Chapter 1
Introduction

In this thesis, we focus on the task of classification by using several random
forest types and on implementing methods that improve their performance.
We use random forests because they achieve state of the art results in various
machine learning tasks and they fulfil our basic requirements such as the
natural ability for multiclass classification, fast evaluation, and reasonable
handling of imbalanced datasets. We begin with the standard supervised
learning scenario where the algorithms are provided with a labeled dataset
for training. In this scenario we compare different random forest types and
it also serves as a baseline for the methods we introduce later. Then we
focus on a more specific problem where the classes in the training dataset are
imbalanced and in addition to labeled data the training dataset also contains
unlabeled objects. The difference to the common semi-supervised learning
problem, as it is usually understood, is that in our case the unlabeled data
are not distributed in the same way as the labeled data. The majority of
unlabeled data belongs to a class we call negative which is not present among
the labeled data at all. The remaining part of the unlabeled objects belongs
to classes present in the labeled data and we call these classes positive. The
problem can also be reformulated that the data are not unlabeled but they
are assigned the negative label instead. In that case, we call the objects in
the negative class that should belong to some positive class mislabeled. We
further use both formulations of this problem because each of them is useful
in different contexts.

There are many applications of the problem above, because it occurs in
situations where it is easier or cheaper to provide labels only for a subset of
classes that are present in the data and there is a possibility that some of the
objects that should have been labeled were missed.

The problem occurs in the task of classification of network traffic data for
malware, where the training dataset is formed from proxy logs. Some of the
objects are labeled as malware traffic by a human analyst or by leveraging
various blacklists. The majority of remaining objects that are left unlabeled
is benign (non-malware) traffic, but there are still some objects which should
have been associated with a malware category but they escaped our detection.
In addition, even the positive classes alone are greatly imbalanced.

The main contributions of this thesis are:

1



1. Introduction .....................................
.We analyze the algorithms on imbalanced datasets and compare them in

terms of precision and recall rather than just in accuracy..We successfully adapt the DAS-RF algorithm [32], which was originally
proposed for standard semi-supervised learning problems, to handle the
imbalanced and unlabeled problem..We implement the PU learning spy technique [38, 35] and use random
forests internally instead of the original Naive Bayes classifier and apply
it on multiclass problems that are different from text classification for
which it was originally proposed..We perform detailed experiments with Mondrian forests [30] in super-
vised setting, comparing them to Extremely Randomized Trees [25] and
Breiman forests [9] and in addition to their accuracy we also benchmark
size of their models and discover a limitation that prevents them from
being applied to big datasets.. All of the methods are benchmarked in detail on well-known publicly
available datasets as well as on our own network dataset which is more
challenging.

The thesis is structured into several chapters. In Chapter 2 we briefly
review the necessary background about classification, that is useful in the
following chapters. We also explain the evaluation measures that are used in
chapters with experiments.

Chapter 3 is about decision trees which are the major building block of
random forests. We describe used notation and the CART algorithm [7] which
is commonly used for growing of decision trees.

In Chapter 4 we go into detail about random forests. In addition to Random
Forests that were described and analyzed by Leo Breiman [9] and are by far
the most commonly used type of random forest, we also describe random
forests known as Extremely Randomized Trees [25] and Mondrian forests [30].

Chapter 5 moves away from the supervised learning scenario, that was
the focus of previous chapters, and considers the imbalanced and unlabeled
problem. This does not prevent the application of supervised methods but
it makes them less effective. This chapter introduces various methods that
attempt to tackle this problem from different angles. The methods presented
in this chapter can be used in conjunction with any type of random forest
presented earlier or they can even be used together to increase the effect.

Chapter 6 contains experiments with different random forests and methods
for handling mislabeled data introduced earlier. The algorithms are evaluated
on various publicly available datasets. The chapter is divided to two large
sections. In the first section all random forest types are evaluated on the
datasets in their original form and compared in the supervised learning
scenario. In the second section the datasets are modified to be imbalanced
and contain mislabeled data in a similar way to our network dataset.

Chapter 7 contains the summary of experiments that we performed on our
network dataset.

2



Chapter 2
Classification

Random forests belong to a family of algorithms known as classifiers. Classi-
fiers deal with a problem of assigning data from a domain of interest to some
discrete classes. This problem is called classification and is very common.
An example is the task of classifying emails to classes SPAM or NOSPAM,
or classification of image to the class corresponding to the letter which is
in the image. If the output variable is a real number, such as in the task
of prediction of temperature, and the prediction’s penalty depends on the
magnitude of the difference between the true value and the predicted value
[42], then the problem is called regression instead of classification. Random
forests can also be used for regression but it is not the focus of this thesis.

In the context of machine learning, classifiers are general algorithms that
can be applied to multiple problems. To achieve this, classifiers do not use
some specific domain knowledge to solve each problem, but rather use training
data to learn the concepts in the domain. In this chapter we summarize
the common approaches used in machine learning to build classifiers, and
describe how classifiers are evaluated. Since this is a broad topic we restrict
ourselves only to techniques that are relevant to the rest of the thesis.

2.1 Supervised learning

Supervised learning is the most common approach used to train classifiers.
From now on, we assume that our data reside in an instance space X = Rd.
To get the raw data into this format we typically need to perform feature
extraction. In the above mentioned example of letter classification the typical
features extracted from each raw image can be: overall lightness, light pixel
count, dark pixel count, number of horizontal edges, number of vertical edges,
etc. For each image those features are then put together and they form a
vector in the instance space. Instance space is also often called feature space
and we will use these terms interchangeably. In this thesis we will not further
deal with feature extraction and selection (the process of selecting the relevant
features). If not stated otherwise, when we talk about the datasets and data
objects we mean the data residing in the feature space and not the initial raw
data.

In the task of supervised learning, our input consists of fully labeled dataset

3



2. Classification.....................................
{(x1, y1), (x2, y2), . . . , (xn, yn)} where xi are vectors from the feature space
X and the yi are their corresponding class labels from the discrete class labels
set Y . This dataset is split into training dataset and testing dataset. The
classifier is trained on the training dataset and it’s performance is evaluated
on the testing dataset. Trained classifier is formally a mapping f : X 7→ Y
and the concrete trained classifier is also sometimes called hypothesis or model
depending on the context. When talking about classifier’s parameters it is
important to distinguish if we mean the parameters of a model that are fitted
to the data from training dataset or if we mean the parameters of the method
used for training. To disambiguate, the parameters of the method are often
called hyperparameters. In the context of decision trees, a hyperparameter
can be the maximum depth of a tree and parameters of a model are the
trained nodes.

For the classifier to learn correctly, the training dataset has to be repre-
sentative of the data that the classifier will encounter in the testing dataset
and production environment. Formally, we assume that there is some under-
lying distribution PXY on X × Y [54] and that the objects in the datasets
are drawn independently from this distribution. We also assume that the
distribution will remain the same in the production environment. In practice
these assumptions may not completely hold. The more they are broken the
less likely the classifier is to work well out of the box and the classifier or the
learning process in general would require some special modifications. This is
exactly our case when we deal with the classification of network data, since
the underlying distribution probably changes in time and due to the nature of
the usage patterns of the network the single data objects both in the training
and testing datasets are also not completely independent from each other.

When evaluating classifiers we need to define a loss function L : Y ×Y 7→ R
which assigns different penalties to different errors [54]. This might be useful
in the mentioned example of email classification, when classifying clean email
as spam is way more costly than the other way round. In this thesis we
assume that all errors have equal importance and use the usual loss function
[54]:

L01(y, y′) =
{

0 if y = y′

1 if y 6= y′
(2.1)

Because we are using the zero-one loss function we can simply define the
classifier’s error on a dataset as a fraction of points on which the label from
the classifier and the true label disagree. More formally, for a dataset D with
N objects the error of a trained classifier f is:

err(f,D) =
∑N

1 L01(f(xi), yi)
N

(2.2)

The complementary metric to error is accuracy and it is defined as acc(f,D) =
1 − err(f,D). If the error is computed on the training dataset it is called
training error or empirical error. The error on the testing dataset is also
called generalization error [27] or classification error.

4



................................2.2. Semi-supervised learning

2.2 Semi-supervised learning

In semi-supervised learning our input consists of labeled dataset and an
additional unlabeled dataset. The goal is to use the unlabeled data in
training to obtain a classifier with better performance than we would get if
we only trained on labeled data. A simple reason why this might be possible
is that the classifier is provided with more information than in the supervised
learning case and it may therefore be able to make a more informed decision.
Figure 2.1 shows an example where additional unlabeled objects improve
classifier’s performance.

(a) : labeled data only (b) : unlabeled data added

Figure 2.1: Semi-supervised learning: Addition of unlabeled data to the
training phase can help the classifier make more informed decision.

The motivation for this approach is that it is often expensive and difficult
to obtain labeled data because it often requires manual work, sometimes even
from experts such as doctors or malware analysts. On the other hand, there
might be abundance of unlabeled data available that would otherwise be left
unused.

In most of semi-supervised learning algorithms, there is often an assumption
that the labeled and unlabeled data are sampled from the same distribution
and many methods are built on this assumption. This is often reasonable
but in our case this assumption does not hold. In our case, when we are
interested in identifying malware in network data, the labeled data are objects
that were identified to belong in some of the malware classes. The unlabeled
data are mostly benign, ordinary network traffic, but there might also be a
small portion of malicious data mixed in, because it might have escaped our
detection. This means that the unlabeled dataset contains a whole new class
(benign ordinary network traffic) which does not even occur in the labeled
dataset. This problem is known as positive-unlabeled learning (PU learning).
The term first appeared in [34], but some work on the problem was published

5



2. Classification.....................................
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Figure 2.2: The typical behavior of the training error and testing error as a
function of model’s complexity.

earlier. PU learning is described in detail in Chapter 5.

2.3 Model complexity

Minimizing the error on the training dataset does not guarantee that the
error on the testing dataset will also be minimal. This happens because of
several reasons. First we have to realize that most of the real world data
contains noise and maybe even some erroneous outliers. Overly complex
models will start fitting on the noise in the training data at the expense of
the underlying concepts. When this happens we say that the classifier overfits
on the data. Also, since the training dataset is always finite it is also possible
for sufficiently complex classifiers to simply memorize the correct labels for
all the training data points. In fact, this is exactly what 1-NN classifier does
and because of that, it is not a problem to have zero training error with 1-NN
classifier.

On the other hand, when the model has too few parameters and it’s
complexity is too low, it is unable to fit on the training data. This is called
underfitting and results in high training error and testing error.

In 2.2 we can see the typical behavior of the training error and testing error
based on the classifier’s complexity. We see that as we increase the complexity
both errors decrease, but only to a certain point. After that the training error
still decreases but the testing error starts to increase. We see that the error
of a classifier can have two opposing causes when considering the classifiers
complexity. This behavior is also known as bias-variance tradeoff. The exact
definitions of bias and variance, and error decomposition to bias and variance
can be found at: [18]. For the purposes of this thesis intuitive understanding
of bias and variance is sufficient.

We can imagine a scenario when we repeat the training of the classifier
many times. Each time the training dataset is randomly sampled from the

6



................................. 2.4. Evaluation measures

underlying distribution PXY . If the classifier has high bias then the trained
models from each experiment can be weak, but they will be very similar. On
the other hand, if the classifier has high variance then the trained models
will be very different from each other, because each of them will overfit to
it’s particular training set.

High variance is most problematic when the training dataset is small. As
the training dataset’s size grows we can generally allow to have more variance
in our classifier because the datasets would be less different from each other
and will more closely resemble the underlying distribution. Still, less complex
models are generally more practical and easier to reason about, so when we
have to choose from two competing models with similar generalization error
the good rule of thumb is to pick the less complex one. This rule of thumb is
an application of the well known principle known as Occam’s razor.

The above mentioned interpretation of Occam’s razor should not be con-
fused with a different stronger interpretation that states that if two models
have similar training error then the less complex one should be preferred
because it is likely to generalize better. This interpretation has been rejected
by Domingos in [17]. Empirical tests on thirty different public datasets were
performed in [53] with results confirming Domingos’ hypothesis on the 0.05
significance level that this strong interpretation of Occam’s razor is false.

2.4 Evaluation measures

In Section 2.1 we mentioned classification error and accuracy as measures
for measuring classifier’s performance. While classification error is intuitive
and common, it only offers a very high-level insight into the classifier’s
performance.

Furthermore, classification error does not work well for imbalanced datasets
where some classes are rare. For example, if we wanted to build a classifier on
patients’ symptoms to test them for disease with prevalence of 0.01 % then
the classifier could classify all of the patients as negative and it would have
classification error only 0.01 %. The situation is similar in our problem, the
classification of network data, where the data from interesting classes are also
very rare. The following measures were invented for the binary classification
problem. In binary classification there are only two classes of data. At first,
we will introduce them in the binary classification context and at the end of
this section we will show how we use them for multiclass classification.

At first, we want to calculate the confusion matrix. For now we assume that
we are doing only binary classification and there are two classes: ’positive’
and ’negative’. In the confusion matrix, the classification results are divided
into the following categories:.TP: True positives. Number of positive objects that were correctly

classified as positive..TN: True negatives. Number of negative objects that were correctly
classified as negative.

7



2. Classification.....................................
. FP: False positives. Number of negative objects that were incorrectly

classified as positive.. FN: False negatives. Number of positive objects that were incorrectly
classified as negative.

These four measures are not that interesting by themselves, but they can be
used to compute several other measures that provide greater insight into the
performance of the classifier. Also, the classification error can be computed
directly from the confusion matrix:

Classification_Error = FP + FN

FP + FN + TP + TN
(2.3)

2.4.1 Precision

Precision, also sometimes called positive predictive value, is defined as:

Precision = TP

TP + FP
(2.4)

It is the fraction of predicted positive objects that are truly positive. In
other words, it can also be interpreted as the probability that an object
predicted as positive is truly positive, so it can be used to express the
confidence of the classifier in positive predictions.

It is also interesting to note that precision is affected by the prevalence
of the positive class. If the prevalence changes then precision might change
accordingly. This follows from the observation that precision is a probability
conditioned on the predicted class label and not on the true class label. This
means that the measured precision is only meaningful if we assume that the
prevalence will not change.

2.4.2 Recall

Recall, also sometimes called sensitivity or true positive rate, is defined as:

Recall = TP

TP + FN
(2.5)

It is the fraction of truly positive objects that are correctly classified as
positive. It gives us an insight into the ability of the classifier to find positive
objects. Recall is not much useful measure by itself, because it is trivially
possible to achieve 100 % recall by simply marking all of the objects as
positive.

In contrast to precision, recall is a probability conditioned on the true class
label and it is not affected when the prevalence of the positive class changes.

If no objects are positive then recall is undefined.

8



................................. 2.4. Evaluation measures

2.4.3 Specificity

Specificity, or true negative rate, is very similar to recall, but instead of
positive objects it measures the percentage of negative objects that are
correctly classified. It is defined as:

Specificity = TN

TN + FP
(2.6)

As with recall, it is trivially possible to achieve 100 % specificity by marking
all of the objects as negative, the specificity of a classifier is not dependent
on the prevalence, and if there are no negative objects in the dataset then
specificity is undefined.

Complementary measure to specificity is called fall-out and it is defined as:

FallOut = 1− Specificity (2.7)

Fall-out measures the proportion of negative objects that are marked as
positives.

2.4.4 ROC curve

In most non-trivial settings there is usually a trade-off between recall1 and
specificity. Improvement in recall might lead to performance decrease in
specificity and otherwise. Most classifier algorithms have some way to im-
plicitly or explicitly set thresholds determining if the classifier is preferring
false positives or false negatives. The behavior of a classifier algorithm with
different thresholds is commonly expressed by the ROC curve.

ROC curve is a graphical plot with fall-out on the horizontal axis and recall
on the vertical axis. Because both fall-out and recall are independent of the
class prevalences the ROC curve is also independent of the class prevalences.
This is a nice property to have because it captures the intrinsic behavior of
the classifier and is not affected if the classifier is used in a population with
different distribution.

The curve starts at point [0; 0], is monotonously increasing and ends at
point [1; 1]. Point [0; 0] describes a classifier which classifies all of the objects
as negative and point [1; 1] describes a classifier that classifies all of the objects
as positive. The point [0; 1] is an ideal point that would describe a classifiers
that makes zero errors. The usual goal is to get as close to point [0; 1] as
possible. The overall performance of a classifier over all thresholds can also be
expressed by the area under curve (AUC) where bigger area implies that the
classifier performs better. ROC curve of a random classifier is the diagonal
and it’s AUC is 0.5. Perfect classifier that makes zero errors irrespective of
the threshold has AUC equal to 1. Most of the classifiers will be somewhere
in between.

1In the context of ROC analysis recall is almost exclusively called sensitivity.
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2. Classification.....................................
2.4.5 Precision-Recall curve

Although ROC curve is used very commonly, it is not the best tool in our
scenario. The reason is that it is not very informative when the data are
severely imbalanced. This is best demonstrated by an example:

We will need the probabilistic interpretations of precision, recall and fall-
out. In this example we denote positive sample as p and positive prediction as
p̃. Prevalence of positive objects is P (p), precision is P (p|p̃), recall is P (p̃|p)
and fall-out is P (p̃|¬p).

A classifier in our example has recall 0.99 and fall-out only 0.01. It is very
close to to ideal point [0; 1] in the ROC space and it’s AUC is almost 1. But
what happens when the prevalence of the positive class is really low? We
set the prevalence to be 0.001 and compute the precision with the Bayes’
theorem.

P (p|p̃) = P (p̃|p)P (p)
P (p̃|p)P (p) + P (p̃|¬p)(1− P (p)) =̃ 0.09 (2.8)

We see that the precision is only 9 % even though recall and specificity are
very high. Because of that we will use the precision-recall plot, where recall
is on the horizontal axis and precision is on the vertical axis. In that plot the
ideal point is [1; 1] and even thought the classifier is close to optimal in the
ROC space, we can see in the PR space that there is still very large room
for improvement. PR curve is closely related to the ROC curve. It has been
proven that if a curve dominates in ROC space it also dominates in PR space
and vice versa [14].

Precision and recall are common measures used in machine learning when
dealing with imbalanced datasets. There is some criticism of this practice in
[43]. The first major point is that precision and recall ignore performance on
the negative class. In our case, we are not that interested in precision and
recall on the negative class because the class itself is composed of multiple
classes that are unknown to us. There is no obstacle in computing precision
and recall on the negative class but we do not include it in the results of our
experiments in Chapter 6 and Chapter 7. The second major point is that
precision is often used without understanding that it is meaningful only with
the prevalences it was computed with.

2.4.6 Multiclass environment

All of the previous measures were described in the binary classification context.
In multiclass environment we compute the precision and recall for each class.
This can be done by treating the given class as positive and all of the other
classes as negative and then we can use the formulas for precision and recall
as in the binary case.

We also compute the average precision and recall over all positive classes.
These values are very informative and provide us with quick insight into the
general performance of a classifier on a given dataset. However, it is also
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important to always look at the per-class values to analyze further what is
causing the changes in the average values.

It is also worth considering how to treat classes with zero precision or
recall when computing the averages. We decided to ignore zero precision
values. That is because we assign zero precision in a case when no objects
are marked as positive and precision is undefined. This has downside that
we ignore results if they contain only false positives, because the precision is
zero too in that case. We investigated this and these results do not occur in
our experiments or they are so rare that it is not an issue.

Because we are dealing with classes that can be very rare it is not uncommon
for classes to have zero recall. There are two ways how to compute the
averages. One includes classes with zero recall and the other ignores them.
Both averages are informative. The one with zeros included provides us with
somewhat objective measure of the classifier’s performance on all classes. The
problem is that it is not as sensitive to changes in recall in already discovered
classes as we would like. The recall average with zeros ignored captures
those slight improvements in already discovered classes better but it can be
misleading. When a class that was previously discovered with low recall is
not discovered in the current evaluation then the average recall with zeros
ignored might actually increase even thought the classifier has more incorrect
predictions. Because of that, we decided to use only the version with zeros
included in Chapter 6 and Chapter 7.

Plotting PR curve (or ROC curve) in multiclass environment is not straight-
forward and we do not do it. It would theoretically be possible to plot PR
curve for each class by treating the class as positive and all of the other classes
as negative. The problem is that there is no straightforward way how to treat
objects that would be rejected for the positive class even if the confidence in
the class is maximal of all of the classes. Publications such as [15], deal with
the problem of setting the correct thresholds and decision points in multiclass
environment but it is not in the scope of this thesis.
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Chapter 3
Decision trees

In this chapter we describe decision trees which are the major building block
of random forests. Understanding single decision trees is therefore mandatory
to understand random forests. Decision trees have been around for a long
time and a lot of research has been done around them. The most defining
publication about decision trees, although not first, is probably [7] which
features the CART algorithm for growing of binary decision trees which can
be used both for classification and regression. Other algorithms for growing
decision trees that are often used are the ID3 algorithm [44] and it’s successor
C4.5 [45]. Both ID3 and C4.5 produce nonbinary trees that are usually a
bit shallower than CART trees. According to [3] there are not significant
performance differences between binary and nonbinary trees. We did not use
ID3 or C4.5 in this thesis so we do not explain those algorithms in detail.

Decision trees have tree-like structure known from graph theory. An
example of a simple decision tree is available in Figure 3.1. The evaluation
of an object starts in the root and each inner node is associated with a test
that determines which edge to follow. Each leaf is associated with the result
of classification. The result is either a class label or it can be a probability
distribution across all classes where each value reflects the confidence of the
tree that the object belongs to the given class.

The main strengths of decision trees are that they are able to handle lots
of data without a need for much preparation, intrinsically implement feature
selection and they are easily interpretable. That means that the reasoning
behind a particular decision can be easily understood by looking at the tree
structure even by a person without statistical background. This is in contrast
with methods like neural networks which act more like a black box and it is
difficult to explain their decisions. In addition decision trees usually do not
require much customisation of their hyperparameters and often work well out
of the box.

As with every method there are also several limitations of decision trees. It
is known that the problem of training an optimal (smallest possible) decision
tree on data is NP-Complete [29]. Because of that most of the algorithms
only try to approximate the best solution by some heuristic. The second
major limitation is that some patterns in data might result in very large trees
that generalize badly to unseen data.
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Figure 3.1: Decision tree trained on the data points on the left. Leafs contain
the classification results. The inner nodes contain decision rules that correspond
to the axis-aligned splits in the left image. These splits define decision boundaries
in the feature space between regions with the same classification result. Nodes
are numbered in the breadth-first order.

3.1 Notation

We use mathematical notation inspired by [3] and [41] to describe the al-
gorithms for decision trees and random forests formally. This notation is
compatible with the notation introduced in Section 2.1.

A single data point is denoted by a vector x = (x1, x2, . . . , xd) ∈ Rd where
xi are the numerical features of the data point. In general, decision trees
have no problem dealing with nonnumerical features, but in this thesis we
restrict ourselves to only numerical ones1. The data point’s label, if available,
is denoted by y. The set of all classes is denoted by C. Nodes are denoted
as ti and are numbered in the breadth-first order starting from root which
is always t0. Because we are dealing only with binary trees in this thesis,
the left child of node ti can also be denoted as tLi and the right child can be
denoted as tRi .

All of the described training algorithms build the tree by recursively
partitioning the training dataset. Because of that we denote the subset of
training samples belonging to node ti by Si. The subset belonging to the left
child of node ti is denoted as SLi and subset belonging to the right child as
SRi . It applies that Si = SLi ∪ SRi and SLi ∩ SRi = ∅ for every inner node.

As with parts of the training dataset we can also associate nodes with
regions in the feature space X defined by the decision boundaries of the given
node and all of the nodes on the path to the root. Each node ti is associated
with a region Xi and the notation XL

i and XR
i for regions associated with

left or right child of ti is also available. The identities Xi = XL
i ∪XR

i and
XL
i ∩XR

i = ∅ also hold.
1Categorical features can be converted to numerical by adding dummy variables and

using the one-hot encoding.
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Each inner node ti is associated with a split function. Although the concept
of split function is not hard to understand or implement, there are many ways
how the split function can be formalized. We use the formalization provided
in [3] which is a bit more general than what we need, but it also captures the
flexibility that is allowed in the split function:

h(x, θj) ∈ {0, 1} (3.1)

Depending on the result of the test, the data point x is either sent to the
left child or the right child of node ti. The split in node ti is characterized
by it’s parameters θi = (φ, ψ, τ)[3]. ψ defines the geometric primitive that
separates the data. In this thesis we only use axis-aligned hyperplanes as the
geometric primitives, but in general this can be anything (general oriented
hyperplane, quadratic, general surface, etc.). τ is the vector of thresholds
used in the test. In the case of axis-oriented hyperplane as a separator, there
is only need for a single threshold. φ is a filter function that selects a subset
of features from the vector x.

The following is one of more ways how the axis-aligned hyperplane separator
might look like:

h(x, θj) = [φ(x) · ψ ≥ τ ] (3.2)

[·] is the indicator function which returns zero if the argument is false and
one if it is true. We can define φ(x) = (x, 1), τ = 0 and ψ = (nj, ψj) where
nj is the normal vector of the hyperplane and ψj is it’s position on the axis.
The calculation takes place in homogeneous coordinates. The exact rule for
the node t0 in Figure 3.1 would then look like this:

h(x, θ0) = [(x1, x2, 1) · (−1, 0, 2.5) ≥ 0] (3.3)

Axis-aligned splits can be expressed by a more readable notation xi < τ ,
where i is the index of an axis and τ is the threshold on the axis. We will
prefer this shorter notation when applicable, because, as we have shown above,
it can be easily converted to the (3.2) form.

3.2 Training of decision trees

As stated earlier, training of the smallest decision tree that classifies the
training dataset without errors is an NP-Complete problem. All of the well
known algorithms mostly work in a greedy way by recursively partitioning the
training dataset. In this section we explain the induction of binary decision
trees as introduced in [7]. The algorithm described in the book is often known
as the CART algorithm, although it became such a common thing that it is
often not even mentioned by a specific name.

Algorithm 1 shows the basic high-level algorithm for the induction of a
decision tree from a training dataset. In the following subsections we examine
the specific parts of the algorithm.
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3. Decision trees ....................................
Algorithm 1 High-level overview of an algorithm for induction of a binary
decision tree from a training dataset Si. The algorithm returns a handle to
the root of the tree.
1: function BuildTree(Si)
2: if should create leaf node then
3: return CreateLeafNode(Si)
4: θi ← FindBestSplitParameters(Si)
5: SLi ,SRi ← SplitDataset(Si, θi)
6: tLi ← BuildTree(SLi )
7: tRi ← BuildTree(SRi )
8: return ti . Return node handle.

3.2.1 Deciding when to create a leaf node

At first the algorithm checks if it should create a leaf node. In practice the
following conditions are checked:. Check if the dataset Si contains samples from only one class. If so, there

is no need to split further and we can create a leaf node.. Check if there is at least one split possible. In practice, it can happen
that all of the vectors in Si are the same, but the samples do not belong
to the same class. In that case we create a leaf node.. The algorithm usually contains hyperparameter determining the min-
imum number of samples necessary to create a leaf node. In our im-
plementation this hyperparameter is called minSamplesToSplit. The
larger this hyperparameter is the greater bias and smaller variance the
algorithm has. If |Si| < minSamplesToSplit then we create a leaf node.
In random forests this parameter is usually set low because we want the
trees to grow deep.. Another hyperparameter with similar purpose is the maxDepth hyper-
parameter. Instead of limiting the number of samples in inner nodes it
limits the maximal depth of a tree. We do not use this hyperparameter
in our implementation.. Sometimes the change in the impurity measure (usually information gain)
during node splitting is used as a stopping condition. As with maxDepth
we do not use it in our implementation.

3.2.2 Creating leaf nodes

Once in a leaf node, the goal is to make the actual classification based on the
subset of samples associated with the node. In general, any classifier can be
used for this. However, by far the most common choice is to make prediction
based on the normalized histogram of classes in the subset. The node can
either return the class with maximum frequency in the histogram or it can
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return the histogram itself where each value can be interpreted as an estimate
of probability that the object belongs to the given class.

3.2.3 Finding the best split

To find the best split we need the concept of impurity measure. Impurity
measure of a node’s subset Si is a function i(Si) ∈ R. The purer the data in
the node are, the more confidence we have in it’s prediction. The goal is to
find a split θi that reduces the impurity in the node’s children the most. To
do that all of the possible splits are evaluated. The decrease in impurity due
to a split is defined as:

∆i(Si, θi) = i(Si)−
|SLi |i(SLi ) + |SRi |i(SRi )

|Si|
(3.4)

Several impurity measures are available, but only Gini impurity and entropy
are commonly used. Studies, such as [46], show that there is not much
difference in performance between Gini impurity and entropy, because most
of the time they are consistent with each other [50].

Although, the original book [7] uses Gini impurity, we decided to use
entropy2 which is defined as:

H(X) = −
n∑
c∈C

p(c) log p(c) (3.5)

The formula (3.5) sums over all classes and p(c) is the frequency of class
c in the node’s subset Si. If the frequency of a class c is zero then the
corresponding term in the sum is by definition zero. The entropy (and
therefore impurity) is maximal if the classes are equally distributed in the
subset Si. The entropy is zero if all of the objects in the dataset belong to the
same class. When entropy is used as the impurity measure then the decrease
in impurity ∆i(Si, θi) corresponds to the information gain. Because of that,
instead of decreasing impurity, we can look at the problem as information
gain maximization.

To select the best axis-aligned split, all of the possible splits along all
dimensions have to be evaluated. Algorithm 2 describes in pseudocode how
this can be done efficiently. The major trick is that before performing any
computation along dimension, the data points are grouped together to reduce
duplicities. For example, if we have 50 data points with the same coordinate
in the given dimension, we just remember the class counts of the 50 data
points with the coordinate and further work only with the class counts. If
we are working with real valued feature vectors then we should perform
quantization to allow grouping of data that are sufficiently close together
and avoid noise. Quantization can happen as a preprocessing step on the
dataset so we do not mention it further and expect that the training vectors
are quantized.

2The usage of entropy was popularized in the ID3 and C4.5 algorithms.
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Algorithm 2 Algorithm finding the best axis-aligned split on dataset Si.
1: function FindBestSplitParameters(Si)
2: max_gain∆ ← −∞
3: for all dimensions do
4: countsL ← (0, 0, . . . , 0)
5: countsR ← GetClassCounts(Si)
6: coordinates← find unique coordinates in dimension
7: Sort(coordinates)
8: for point ∈ coordinates do
9: countsL ← add class counts present on point
10: countsR ← remove class counts present on point
11: current_gain∆ = ComputeGain∆(countsL, countsR)
12: if current_gain∆ > max_gain∆ then
13: max_gain∆ ← current_gain∆
14: θi ← create split parameters from point and neighbor
15: return θi
16: function ComputeGain∆(countsL, countsR)
17: sizeL ← Sum(countsL)
18: sizeR ← Sum(countsR)
19: return − sizeL·H(countsL)+sizeR·H(countsR)

sizeL+sizeR . H is entropy. Eq. (3.5).

This trick can provide major performance boost because many features
can have only a very limited set of values. If the feature is boolean we have
to always sort only 2 values independently of the number of data points in
Si. By having the coordinates sorted we are able to add and remove the
class counts to countsL and countsR in an organized way. We do that by
iterating over all of the sorted coordinates along the dimension. In each step
we add all of the class counts that are present on the coordinate to countsL
and subtract them from countsR. In our implementation, we keep the class
counts for each coordinate in table precomputed before the iteration where
each row represents class counts for a single coordinate. In each iteration we
then just advance to the next row.

The major improvement of this approach is that time of each entropy
calculation is dependent only on the number of classes, which is constant,
instead of the number of objects in Si. Also it is interesting to note that we
only need to compute the second term in the information gain formula (3.4),
because the term i(Si) is constant and can be ignored if we only care about
maximization.

The split is created in the middle of the interval between the current point
and the following point along the dimension. This is done to maximize the
margin of the classifier and improve it’s generalization performance.

If we consider the number of dimensions and classes to be constant then
the worst case time complexity of the splitting algorithm is O(|Si| logSi).
This is because in the worst case there will be no data points with duplicate
coordinates and the dominant part of the algorithm will be the sort, which
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will sort the whole dataset. As mentioned, in practice we can expect the
performance to be better but it is highly dependent on the data.

3.3 Average weighted depth

Decision tree makes a prediction by descending from the root node to some
leaf node. The time complexity of each prediction depends on the length of
this path. For a given decision tree, we would like to know how long this
path is on average. The average path length can be computed by computing
the average depth of all leaves.

It is likely that not all of the leaves will be visited with the same frequency.
To take this into account we will weight the leaves with the number of objects
that arrived in them during the training phase. We call the result the average
weighted depth of a tree and it is an estimate of the expected length of the
path from root to leaf during a single prediction.
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Chapter 4
Random forests

Single decision trees have tendency to overfit to the training dataset. A
random forest is an ensemble of randomized decision trees. Ensemble methods
in general work by combining multiple weak classifiers to build a stronger
one. There are two main families of ensemble methods:.Boosting methods work by sequentially constructing weak classifiers

and each classifier is built to improve the performance of the previous
ones. In terms of bias-variance error decomposition, the weak classifiers
usually have large bias and the boosting method tends to reduce this
bias and introduces variance into the model. Examples of boosting
methods are the Adaboost [22] algorithm and Gradient Tree Boosting
[8, 23, 24]. Gradient Tree Boosting has proven itself to be very effective.
The downside is that it requires lots of hyperparameter tuning. It is not
in the scope of this thesis..Averaging methods on the other hand, build the classifiers indepen-
dently and average their predictions. Each of the weak classifiers usually
has large variance, which is decreased by the averaging. This is a bit
counterintuitive, because in this case, increasing the complexity of the
model by adding more weak classifiers decreases the variance instead of
increasing it. Random forests belong in this category.

Generally, there are two ways how the predictions of weak classifiers can
be aggregated. In majority voting each tree in the forest votes for one class.
The result is the class which received the majority of the votes. In soft voting
[55] the prediction of the forest is obtained by averaging the class probability
results from each tree. It was empirically shown that there is not much
difference in results between these two methods [6]. Soft voting also has an
advantage that it provides smoother class probability estimates. We use soft
voting in all our implementations of different random forest variations.

For random forests to work correctly, it is necessary, that the individual
trees in the forest are all different from each other. Each random forest
algorithm has it’s ways to inject randomness into the training process to
control the correlation of individual trees. Randomness is usually injected
either by modifying the training dataset for each tree, or by introducing
randomness to the node splitting process.
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Authors in [16] studied ensemble methods and identified three main reasons

why they work better than single models:. Statistical: If the training dataset is small compared to the size of hy-
pothesis space, then the learning algorithm can find multiple hypotheses
that have similar performance. By using these hypotheses in ensemble
the algorithm can ’average’ their votes and reduce the risk that a wrong
hypothesis is selected..Computational: Algorithms often work by performing greedy search
in the hypothesis space and variations in the training dataset can lead
the algorithm to different local minima. Because of that, an ensemble
model, where individual models have different starting points, can better
approximate the true function than any single model..Representational: Sometimes, the true function can not be represented
completely by any hypothesis in the hypothesis space. Ensembles can
expand this hypothesis space by forming weighted sums of the weak
hypotheses to create hypotheses outside of the hypothesis space.

4.1 Breiman forests

Breiman forests are by far the most commonly used random forest algorithm.
They were described and rigorously analyzed by Leo Breiman [9] and he holds
a trademark for the term "Random Forests".

Breiman forests are using the standard CART decision trees and combine
bagging and random feature subsets at each node to inject randomness into
the forest.

4.1.1 Bagging

Bagging, also called bootstrap aggregating, was first introduced and thoroughly
studied in [6]. For a forest of size m and training dataset of size n, bagging
creates m datasets of size n′ from the training dataset. The datasets are
created by randomly sampling with replacement from the training dataset.
It follows that some data objects from the training dataset are not present
in a particular sample and some might be repeated. Each tree in the forest
is trained on it’s corresponding sample and the results are aggregated as
mentioned above.

The size of the individual samples in bagging is a hyperparameter of the
forest. The most common choice, by far, is to choose n = n′. In this special
case the individual samples are called bootstrap samples [19]. The probability
that a particular object from the training dataset is not present in a particular
bootstrap sample can be expressed with the following formula:

(1− 1
n

)n = 1
e

=̃ 36.8% (4.1)
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Figure 4.1: Plot of the probability that an object from the training dataset
will occur in at least k bootstrap samples. It is assumed that each bootstrap
sample contains the same number of objects as the training dataset and therefore
equation (4.2) is used to compute the probability. The number of trees in the
forest is assumed to be 100, which is often used as a default value. We can see
that it is practically certain that the object will occur in more than 50 trees.

The probability that a particular object from the training dataset occurs
in a particular bootstrap sample is 1− 1

e =̃ 63.2%. When we have result for
the probability of object occurrence in a single bootstrap sample it is easy
to compute the probability of object occurrence in at least k of m bootstrap
samples. Since, the bootstrap samples are independent from each other this
probability can be computed using the binomial distribution as:

P (X ≥ k) =
m∑
i=k

(
m

i

)(
1− 1

e

)i (1
e

)m−i
(4.2)

When using bagging, it is possible to compute the out-of-bag (OOB) error
on the training dataset. Out-of-bag error is the mean of prediction errors
of objects in the training dataset. Each object is evaluated only on trees
that did not contain the object in their bootstrap sample. Out-of-bag error
is interesting, because it was shown that it is an accurate estimate of the
generalization error. It was shown in [51] that the result is as good or even
better than k-fold cross-validation, while it is more computationally efficient
because it is not necessary to retrain the model k times. Breiman [6] shows
that if we use the usual assumption that training dataset and test dataset
are sampled from the same underlying distribution, then out-of-bag error on
the training dataset is as accurate as using test dataset of the same size.

The standard bagging approach may not be sufficient when dealing with
imbalanced datasets. When using sampling from the whole population it is
possible that the bootstrap sample for a tree does contain very little objects
from the minority classes and in extreme cases it can even contain none. This
results in a tree with very poor performance.
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There are several approaches to bagging modifications to handle imbal-

anced data. Simple approaches include oversampling the minority classes
or downsampling the majority classes. Oversampling of minority classes
leads to increased duplication of objects in the bootstrap samples and is
therefore related to increasing the weights of the objects in classification.
Oversampling leads to more correlated trees. Interesting method that is
similar to oversampling is SMOTE [11]. SMOTE creates synthetic objects
for the underrepresented classes. Undersampling of the majority class on the
other hand may lead to bad utilization of the objects in the majority class.
This is most striking when the majority class contains thousands of times
more samples than the minority class. An example of undersampling scheme
is in [12]. A problem with all of these approaches is that they disturb the
actual distribution of the data which might be problematic and has to be
considered when using them.

Method we are using is called stratified bootstrap [12] and we will also refer
to it as balanced bagging. It is a simple method that samples adequate number
of objects from each class to keep the resulting bootstrap sample balanced.
When the number of objects in a class is so low that it would hurt too much
to ignore 36.8 % of the samples, we do not perform any sampling and add all
objects from the class. In the experiments we set this threshold to 50. This,
of course, invalidates the reasoning behind the properties of out-of-bag error
so we do not use it together with balanced bagging. The advantage of the
method is that it works naturally in multiclass classification problem, while
some of the other methods are better suited for binary classification.

4.1.2 Random feature subset sampling in nodes

The second technique that Breiman forests use to inject randomness into
individual trees is the random feature subset sampling in nodes. It was
first used in [2]. The standard algorithm for node splitting 2 uses all of the
dimensions in the training data vectors to find the best split. However, trees
in Breiman forests use only a random subset of the dimensions that is sampled
for each split node individually.

The size of these random subsets is another hyperparameter of the forest,
that we denote splitFeaturesCount. The value of this hyperparameter directly
affects the correlation between individual trees. For splitFeaturesCount = 1
each node finds the best split only along a single random dimension. This
leads to the least correlation between the individual trees, but it also increases
bias of the individual trees. For splitFeaturesCount = numberOfDimensions
there is zero randomness injected to the node splitting process. All of the
randomness comes from bagging and that is usually not enough, particularly
when the training dataset is huge. The forest as a whole is then not much
stronger than individual trees, because the individual trees are strongly
correlated. Luckily, there exists an empirically tested rule of thumb that
says splitFeaturesCount =

√
numberOfDimensions is a good default value for

classification tasks.
There is also another benefit of setting lower splitFeaturesCount and that
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is the computation cost of the training phase. The time complexity of node
splitting depends linearly on splitFeaturesCount and does not depend on
numberOfDimensions anymore. This is beneficial because it allows us to add
more features to the data without worrying about the performance impact,
because that is now decoupled into a separate hyperparameter. It also
opens doors for various performance optimisation techniques. For example,
the feature values can be computed lazily only when they are specifically
requested in the node splitting process, instead of precomputing them all
ahead of training of the forest.

4.2 Extremely Randomized Trees

Extremely Randomized Trees (ERT) are another random forest variant that
was introduced in [25]. In some scenarios, that are available in the original
publication, they have been shown to perform better than Breiman forests.

The defining feature of Extremely Randomized Trees is the node splitting
Algorithm 3 which randomizes both the split dimension and location. ERTs
have a hyperparameter k, which specifies how many different split candidates
in each node should be considered. The algorithm randomly samples k split
candidates, where each candidate is created by uniformly sampling random
splittable dimension1 and then also uniformly sampling threshold along this
dimension. All of the split candidates are then compared using some impurity
measure, usually information gain, and the best one is selected.

Algorithm 3 Algorithm used in Extremely Randomized Trees for finding
the best split on dataset Si.
1: function FindBestSplitParameters(Si, k)
2: max_gain∆ ← −∞
3: for j ∈ {1, 2, . . . , k} do
4: δj ← uniformly sample random splittable dimension
5: minj ← min {xδj

|x ∈ Si}
6: maxj ← max {xδj

|x ∈ Si}
7: ξj ← uniformly sample split location from interval (minj ,maxj)
8: current_gain∆ = ComputeGain∆(Si, δj , ξj)
9: if current_gain∆ > max_gain∆ then

10: max_gain∆ ← current_gain∆
11: θi ← create split parameters from δj and ξj
12: return θi

Extremely Randomized Trees do not perform bagging and use the whole
dataset for each tree. The reasoning behind this is that the splitting process
provides enough randomness and bagging is not necessary anymore.

1Splittable dimension in dataset Si is a dimension for which exist at least two objects
from Si that have different values in this dimension.
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From the bias-variance perspective, the idea is that the randomization of

the threshold in combination with the ensemble averaging should be able
to reduce the variance more than the scheme used in Breiman Forests. The
usage of the whole dataset for each tree is motivated to reduce bias [25].

In theory, Extremely Randomized Trees should be faster to train than
Breiman forests, because of simpler node splitting algorithm. In our exper-
iments we did not notice a significant difference, because Extremely Ran-
domized Trees usually contained more nodes than trees in Breiman Forests
and therefore even if the node splitting is faster it had to be performed more
times.

The hyperparameter k controls the amount of randomness injected into
the trees. [25] states that k =

√
numberOfDimensions is a reasonable default

value for classification. In a special case when k = 1 Extremely Randomized
Trees are sometimes called Totally Randomized Trees [41] or 1-ERT. Totally
Randomized Trees are interesting, because they do not need any impurity
measure and do not need to look at the class labels during the node splitting.
It can be said that the tree structure is learned in an unsupervised way.
This allows for many interesting approaches, for example, in semi-supervised
setting, the trees can be inducted by joining the labeled and unlabeled data
and it is possible to additionally provide labels for some of the unlabeled data
later, which may improve performance, without the need for the induction of
the trees again. Publications [30] have shown that Totally Randomized Trees
do not fall too short in performance when all of the features are relevant. If
however, there are some noisy, irrelevant features the performance of Totally
Randomized Trees drops dramatically.

As a stopping criterium minSamplesToSplit is used instead of maxDepth
because, in general, ERTs tend to be deeper and less balanced than Breiman
forests and maxDepth would limit them too much.

4.3 Mondrian forests

Mondrian forests [30] are an interesting class of random forests. They are
more similar to Extremely Randomized Trees than Breiman forests. The
ensemble behaves in the same way as in ERTs but the individual trees in
the ensemble represent finite restrictions of so-called Mondrian processes [48].
There exist both online and offline versions of the Mondrian Tree induction
algorithm and both versions agree with each other. Although Mondrian
forests were developed primarily because of their ability to be trained in
online fashion, we are concerned only with the offline version of the training
algorithm in this thesis.

We were interested in Mondrian forests, because their structure is uncom-
mon and they do not use data labels during node splitting, which made them
interesting candidates for possible modifications to semi-supervised learning
algorithm. However, we show that with common hyperparameter settings
they are very similar to 1-ERTs and we also present an obstacle that makes
their use on larger datasets complicated.
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Figure 4.2: Example of a difference between a decision tree in Figure 4.2a
and Mondrian tree in Figure 4.2b inducted on the same training data in two
dimensions. Note that each node ti in the Mondrian tree is associated with
a time that is shown on the vertical axis. Nodes in Mondrian trees are also
associated with blocks that are denoted by the gray rectangles and Mondrian
trees may not commit to a decision outside of these blocks. Both figures are
from [30].

In this section we assume that all of the data are normalized to [0; 1]
intervals along each dimension. This is done to simplify the algorithms. The
normalization of the training dataset is straightforward. To normalize the
training dataset along dimension j we compute values minj and maxj which
represent the minimum and maximum values along the dimension j. The
object x in the training dataset is then transformed with the formula (4.3)
along each dimension to obtain normalized object x′. For simplicity when we
refer to objects x, we actually mean the normalized objects x′ in this section.

x′j = xj −minj
maxj −minj

(4.3)

The normalization of objects in the testing dataset is performed with minj
and maxj computed on the training dataset so it is possible that values in
some dimensions can actually be outside the [0; 1] interval. This is necessary,
because we require that training and testing data are transformed with the
same formula. It also simulates the real use case, where minj and maxj
are parameters of the model trained on the training dataset and each object
during testing is normalized on the fly inside the evaluation of the prediction
of the Mondrian forest.

4.3.1 Mondrian tree

There are fundamental differences in the structure of Mondrian trees and
standard decision trees. Figure 4.2 shows Mondrian tree and decision tree
inducted on the same data. The main difference in the structure between
Mondrian trees and decision trees is that each node ti in a Mondrian tree
stores the bounding box of it’s training subset Si. This bounding box is
denoted as Bi. The stored bounding boxes are necessary both for the online
induction algorithm and also for the prediction algorithm. We will discuss
the prediction algorithm later.
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4. Random forests....................................
Algorithm 4 describes the outline of the offline induction of Mondrian trees.

The offline algorithm is simpler than the online version.
Each node ti is associated with a time τi which always increases on the

path from root to leaf. The increase of time τi from τparent(i) is sampled
from exponential distribution with rate

∑
d (uid − lid). This rate is so called

linear-dimension of the bounding box Bi. As a result, it is more probable
that large bounding boxes will further split, because the increase in time will
tend to be smaller for larger bounding boxes.

The algorithm has a hyperparameter λ which is called lifetime of the tree.
Hyperparameter λ determines the maximum time of a node in a tree and acts
as a stopping condition similar to splitFeaturesCount or maxDepth that were
discussed in Section 3.2.1. If λ is set to ∞ then the tree grows until there
are no more splits available, or all of the data in Si are from the same class.
These standard stopping conditions are not in the Algorithm 4, but they are
always present. Also, when λ is equal to ∞ the offline algorithm for tree
induction is almost similar to 1-ERTs. The only remaining difference in the
induction from 1-ERTs is that the split dimension probability is not uniform,
but is proportional to the length of the training data bounding box along
the dimension. Authors of [30] used λ equal to ∞ in all of their experiments.
In our experiments in Section 6.1.2, we show that Mondrian forests usually
achieve the best accuracy when λ is set to ∞.

Algorithm 4 Offline algorithm for the induction of Mondrian trees [30].
1: function CreateMondrianTree(Si, λ)
2: for d ∈ dimensions do . Compute bounds of Si in each dimension.
3: lid ← min {xd|x ∈ Si}
4: uid ← max {xd|x ∈ Si}
5: E ← Sample from exponential distribution with rate:

∑
d (uid − lid)

6: if τparent(i) + E < λ then
7: τi ← τparent(i) + E
8: δi ← sample split dimension, choosing d with p(d) ∝ (uid − lid)
9: ξi ← sample split location, uniformly from interval (liδi

, uiδi
)

10: θi ← create split parameters from δi and ξi
11: SLi ,SRi ← SplitDataset(Si, θi)
12: tLi ← CreateMondrianTree(SLi , λ)
13: tRi ← CreateMondrianTree(SRi , λ)
14: else
15: τi ← λ
16: create ti as leaf node
17: return ti . Return node handle.

The state stored with each node ti includes li, ui and τi. This is problematic
because the nodes occupy much more memory than in standard decision
trees. As an example, consider a case where the vectors in Si have 500
dimensions and the trained Mondrian tree contains 50000 nodes. If each
value in the training dataset has size of 8 bytes then each node has at least
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2 ∗ 500 ∗ 8 = 8000 bytes just by storing the bounding box in vectors li, ui. A
single tree with 50000 nodes will then occupy more than 400 MB of memory
space. A forest of 100 Mondrian trees would occupy over 40 GB of memory
space. Now, if we consider that certain datasets contain much more features
and that Mondrian trees usually have large number of nodes because they do
not consider labels during splitting, we can see that in some cases memory
can be a major limitation of Mondrian forests.

The prediction algorithm of Mondrian trees is much more complicated than
the prediction algorithm of normal decision trees. However, when we tried
replacing this algorithm with the standard histogram based prediction in leafs
that is used in common decision trees we did not notice a significant increase
in performance on the datasets we used. Because of that, and because we
used Mondrian forests only marginally in our implementation, we discuss the
prediction algorithm very briefly. Complete explanation can be found in the
appendix of [30].

Mondrian trees use hierarchical Bayesian approach for prediction. Each
node is associated with a probability distribution and as we descend from
the root to the leaf, we combine those distributions to arrive at the final
distribution in the leaf.

If the test point x lies in the bounding box of the leaf then we can return
result that was precomputed after the tree induction using approximation
of the Chinese restaurant process [1]. If the test point x lies outside of the
bounding box of the current node during the descend, then a possibility of
branching out into a new node is considered with a probability determined by
the sum of distances of the point from the bounding box along all dimensions.
The further the point is, the greater is the possibility of branching out.
Expected prediction in the virtual leaf node is then combined into the current
prediction state and the standard path to the leaf node is followed in the
descend.

The expected advantage is that this should produce smoother decision
boundaries than the standard histogram based approach in leafs. The pre-
diction algorithm requires to store 2 arrays in each node with length equal
to the number of classes. This effectively makes the memory complexity of
nodes linearly dependent both on the number of features and the number of
classes.
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Chapter 5
Methods for handling unlabeled data

So far, we were only concerned with the standard supervised learning scenario.
In this chapter we consider a scenario where part of the training dataset is
made of unlabeled data. The common semi-supervised learning approaches,
that are used for learning from labeled and unlabeled data together, usually
assume that the class distribution in the unlabeled data is the same as in the
labeled data. However, we consider a different problem where this assumption
does not hold. In our case the majority of unlabeled data belongs to a class
that we call negative which is not present in the labeled data. The labeled
data are made of classes that we call positive. The remaining part of unlabeled
objects should belong to the positive classes but for various reasons they were
missed when the dataset was labeled. The situation is described in Figure
5.1. Standard supervised learning methods can be applied on this problem if
we label all of the unlabeled objects with the negative label and assume that
mislabeled objects are rare enough that the performance does not suffer too
much.

In this chapter, we explain the methods we implemented to better handle
training datasets that are structured the way described above. These meth-
ods (DAS-RF [32], PU learning [38, 35] and SMOTE [11]) have the benefit
that they can be used together with the supervised learning random forest
algorithms presented in Chapter 4. In case of PU learning and SMOTE, the
methods act as a preprocessing step on the training dataset. In the case of
DAS-RF, the method acts as a wrapper around the chosen random forest
algorithm. In the end, all of the methods that are presented in this chapter
can theoretically be combined if they prove to be beneficial.

5.1 Related work

Published methods related to the positive and unlabeled problem mainly
focus on the binary case where the labeled dataset contains only single
class. Because of that, and because they often originate in the field of text
classification, it is common that they are tightly coupled to specific types of
classifiers, typically Naive Bayes [38] or SVM [37, 20].

The most common approach is the application of some two-step strategy
where the first step focuses on the identification of true negatives in the
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Positive Negative

Figure 5.1: Diagram illustrating our situation with mislabeled data. In the
training dataset we have subset marked as positive and objects in this subset
have their labels assigned correctly. There are multiple different classes in the
positive subset. The majority of the subset marked as negative indeed belongs to
the negative class (gray color), but the negative subset also contains mislabeled
objects whose true label belongs to some positive class. It might make sense to
not call the subset negative but call it unlabeled instead. We chose to call it
negative because this subset is used with negative labels when performing the
standard supervised learning.

unlabeled dataset and the second step trains a classifier of choice on the
labeled dataset joined with the objects identified in the first step. We use the
most well-known of these methods [38, 35] and it is the subject of Section 5.3.

Other class of methods views the unlabeled data as negatives and applies
different weights on the positive and unlabeled data. The popular methods
in this class are tailored to specific classifier’s and binary problems. Logistic
regression is used in [31] and weighted SVM in [20].

We decided to examine methods that were not specifically developed
to solve this problem, but are more compatible with random forests and
multiclass classification. Method DAS-RF [32] was developed for the usual
semi-supervised learning problem where the labeled and unlabeled datasets
originate from the same distribution. It is one of the few existing representative
attempts at semi-supervised learning that is applicable to random forests [39].
SMOTE [11] is a well-known method with numerous extensions [26, 28, 10]
that is used in presence of imbalanced datasets [40]. We saw potential in both
of the methods to also improve performance in the positive and unlabeled
problem.

5.2 Deterministic Annealing based
Semi-Supervised Random Forests

Deterministic Annealing based Semi-Supervised Random Forests (DAS-RF) is
a method for semi-supervised learning introduced in [32]. In addition to the
labeled dataset we now also have an additional unlabeled dataset available
for training. As usual with semi-supervised methods, DAS-RF assumes that
the class distribution in the unlabeled dataset is similar to the distribution in
the labeled dataset. As explained earlier in this chapter, our network data
do not follow this assumption. Nevertheless, we found the approach used in
DAS-RF to be interesting and promising, so we implemented them in order
to further modify them for our use case. First we explain them in the context
of standard semi-supervised learning and in the end of the section we show
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how we attempted to modify them to handle mislabeled data.
DAS-RFs are based on an optimisation method called deterministic anneal-

ing that was used for clustering in [47]. Deterministic annealing, in general,
aims to find global optima of a function. The algorithm works in an iterative
fashion. During each step it randomly perturbs the current solution in an
attempt to escape local minima. The amount of perturbation in each iteration
is controlled by a value called temperature (T). If the temperature is high
then the algorithm performs large perturbation allowing it to explore the
search space further. If the temperature is low then the perturbation is low
allowing the algorithm to optimize in a closer neighbourhood of the current
solution. The iterative procedure starts at some initial temperature and cools
down the temperature for each iteration. This allows the algorithm to explore
the search space in the beginning, but forces it gradually to settle in some
region. This is somewhat related to another global optimisation method
called graduated optimisation [5], which works by smoothing the function to
some easily optimizeable version and then iteratively making the smoothed
function more similar to the original function and using the previous solution
as a starting point for optimisation in the next iteration.

DAS-RF applies deterministic annealing to unlabeled data to optimize
their label assignments. Each iteration of the algorithm trains a random
forest and classifies the unlabeled data. As a result of the classification we
obtain a probability distribution of labels for each unlabeled point. The
current temperature determines how this distribution is transformed. High
temperatures transform the distribution close to a uniform distribution, while
low temperatures transform the distribution to a distribution similar to
Dirac delta function that prefers the label with maximum probability in the
result from classification. In the next iteration of DAS-RF each point from
the unlabeled dataset is sampled a label from the transformed distribution.
The random forest is then trained both on the labeled data and on the
unlabeled data with assigned labels. To get the initial label distribution,
before deterministic annealing is started, DAS-RF trains a random forest just
on the labeled dataset.

Because unlabeled data might not be always helpful, DAS-RF also features
a safety mechanism called airbag. It computes the out-of-bag error of the
initial random forest on the labeled data. If the out-of-bag error of the forest
obtained from deterministic annealing is worse than the initial error then
DAS-RF returns the initial random forest instead of the optimized one. This
should guarantee that the unlabeled data do not worsen the performance.

The forests trained inside of the algorithm are Breiman Forests, but we have
also experimented with ERTs and it did not affect the results significantly.
However, when using standard ERTs it is not possible to compute the out-of-
bag error because ERTs do not perform bagging.

5.2.1 Label probability distribution

The overall DAS-RF loss function is [32]:
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LDA(g, p̂) = 1
|Xl|

∑
(x,y)∈Xl

`(gy(x))

+ α

|Xu|
∑

x∈Xu

K∑
i=1

p̂(i|x)`(gi(x))

+ T

|Xu|
∑

x∈Xu

−H(p̂)

(5.1)

The labeled training dataset is denoted as Xl and the unlabeled training
dataset is denoted as Xu. T is the current temperature value. The probability
p(i|x) denotes the probability that object x is sampled label i in the DAS-RF
relabeling step.

Vector g(x) is called amargin vector and it has to hold that ∀x :
∑K
i=1 gi(x) =

0. If the random forest classification returns probability vector of length K
then the margin vector can be obtained from this vector by simply subtracting
1
K from each value in the classification result vector.
Function `(gi(x)) is a loss function. In [32] the loss function is defined

as margin maximizing if `′(gi(x)) ≤ 0 holds for all values of gi. This is a
natural requirement, because it means that a larger margin should not have
worse loss function value than a smaller margin. A large number of margin
maximizing loss functions can be used. It is not clear from [32] which loss
function the authors used. A candidate function seems to be

`(gi(x)) = − log(gi(x) + 1
K

) (5.2)

because authors hint that the loss function used should be similar to the loss
function used in split nodes. Then they assume equality between formula for
entropy used in split nodes −

∑K
i=1 pi log(pi) and formula

∑K
i=1 pi`(pi − 1

K ).
Because gi(x) = pi − 1

K , we can come up with the formula (5.2).
DAS-RF has a hyperparameter α that can be used to balance the weight

of the second term in the overall loss function (5.1) and determine if the loss
function prioritizes labeled or unlabeled objects.

If the temperature is high, the overall loss function puts more weight on
the third term which can be minimized by increasing the entropies of the
probability distributions. As the temperature decreases, more weight is put
on the second term which forces p̂ to prioritize labels that maximize margins.

The formula for computation of label probability density inside of the
unlabeled data relabeling step in each iteration of DAS-RF is

p(i|x) = exp
(
−α`(gi(x)) + T

T

)
/Z(x) (5.3)

where Z(x) is the normalizing constant obtained by summing all p(i|x)
to normalize the values into the [0, 1] interval. Formula (5.3) minimizes the
overall DAS-RF loss function for a given value of temperature [32].
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Figure 5.2: The left figure plots how the numerator of equation (5.3) behaves
with different values of temperature. The α hyperparameter is fixated to 0.1 and
loss function (5.2) is assumed. The behavior is independent of the number of
classes because this specific loss function can be computed without computing
margin. The results are normalized into the [0, 1] interval to easily compare the
shapes of the functions. The right figure shows the resulting probabilities for
sample relabeling that are created by computing the weights from the left figure
for each label and normalizing them. This figure shows only a specific example
where we assume that there exist 150 classes, one of these classes has probability
80 % from the previous forest and there exist two other classes with probabilities
10 %. The rest of the classes has zero probability. This example was chosen
because it reflects our use case with mislabeled data.

5.2.2 Hyperparameters

DAS-RFs have several hyperparameters and some of them are not trivial to
set. In addition to the following hyperparameters which are only specific to
DAS-RF, we also have to supply hyperparameters for the underlying random
forest type.

The α hyperparameter occurs only in formula (5.2). It was set to 0.1 in all
experiments in [32]. In addition to the α hyperparameter, we also need to
supply the loss function `(gi(x)) as mentioned in the previous section.

Concerning the temperature, it is necessary to supply the initial temperature
T0 and a cooling function. There are several possible candidates for the
cooling function and they have been used in literature [52] depending on
the current requirements. The authors of DAS-RF state that they used "a
simple exponential cooling function" in their experiments. We assume that
the function they used was Ti = T0 · ri but we do not know what was the
value of the constant r which determines the rate of cooling.

Figure 5.2 shows how the label probabilities are transformed inside of DAS-
RF when different temperatures are used. We can see that as the temperature
cools down, more emphasis is put on the majority label.

We also need to specify a hyperparameter determining the maximum
number of iterations of DAS-RF. DAS-RF usually always runs for the max
number of iterations but alternatively some more sophisticated stopping
condition may be added. The authors of DAS-RF used 20 iterations.
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5.2.3 Modifications for handling mislabeled data

In the context of Figure 5.1, we want to use the positive subset as the labeled
DAS-RF dataset and the negative subset as the unlabeled DAS-RF dataset.

The original DAS-RF assumes that the unlabeled data are sampled from the
same distribution as the labeled data. In our case, the majority of unlabeled
data belongs to a class negative that does not even occur in the labeled data.
If, in the initial step, we trained the initial random forest on labeled data
only, then this initial random forest would not be able to ever assign objects
into the negative class.

To handle this, we sample a subset of the unlabeled dataset for each tree
and append it to the initial dataset with class label negative. The idea is that
majority of this subset will truly belong to the negative class and the initial
random forest will become able to represent it. Of course, the problem with
this approach is that the subset also contains small portion of mislabeled
data that may throw of the initial random forest.

Then, ideally, during the iteration of DAS-RF, the assigned labels of at
least a portion of mislabeled data should converge to their true labels, while
the truly negative data should stay in the negative class.

We also tried modifying DAS-RF, so that instead of creating random distri-
butions for each unlabeled object and sampling labels from those distributions
randomly, we assigned the object to the majority class instead. Alternatively,
we also added a threshold hyperparameter that would assign object to the
majority class only if the majority class’ margin exceeded this threshold. If the
margin was smaller than the threshold we ignored the object in this iteration
of DAS-RF. In this setting, which we internally called threshold DAS-RF, the
temperature hyperparameter and the cooling function was unused.

However, it appears that threshold DAS-RF is not much useful and it
did not improve the performance in our experiments. We believe, that the
reason is that if the labels are added deterministically in accordance with the
prediction of the previously trained random forest, we only add objects that
are already correctly classified by the previous model and it does not affect
it’s behaviour. The most valuable objects are the ones close to the decision
boundary of the classifier and these objects are ignored in threshold DAS-RF
because their margin is not large enough to exceed the threshold.

5.3 PU learning spy technique

PU learning1 spy technique is originally described in [38, 35] in the context
of text classification as part of an algorithm that the authors called S-EM.
We did not implement the whole S-EM algorithm since it is built around the
Naive Bayes classifier but we implemented the initial step – the spy technique.
In the context of this thesis, when we further refer to PU learning we always
refer to the PU learning spy technique algorithm.

1PU learning stands for Positive-Unlabeled learning.
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Algorithm 5 DAS-RF algorithm from [32] without airbag but with our
modification for handling mislabeled data.
1: function DAS-RF(Slabeled,Sunlabeled)
2: Sunlabeled_init ← SampleSubset(Sunlabeled)
3: Sinit ← Slabeled ∪ Sunlabeled_init
4: F ← TrainForest(Sinit)
5: i← 0
6: while not stopping condition do
7: Ti ← c(T0, i) . c(T0, i) is the cooling function
8: i← i+ 1
9: ∀xu ∈ Sunlabeled, k ∈ C : compute p∗(k|xu) according to eq. (5.3)

10: for j ∈ {1, 2, . . . , N} do . N is the number of trees in a forest
11: ∀xu ∈ Sunlabeled draw ŷu from p∗(k|x)
12: Sij ← Slabeled ∪ {(xu, ŷu)|xu ∈ Sunlabeled}
13: fj ← BuildTree(Sij) . retrain the tree fj
14: return F

PU learning is made exactly for the situation described in Figure 5.1. We
use PU learning as a preprocessing step before the application of random
forest in standard supervised learning setting. The goal of PU learning is to
identify the mislabeled objects inside of the negative dataset and filter them
out. The objects that remain are called real negatives.

PU learning can increase the recall of positive classes because it removes
the mislabeled objects from the negative subset and should therefore lower
the possibility that positive objects are wrongly classified as negative.

Algorithm 6 is almost similar to the algorithm proposed in [38]. The only
difference is that the original algorithm uses naive Bayes classifier inside,
while our version uses a random forest. This might possibly cause problems,
because the classifier inside PU learning tests objects from the same dataset as
it was trained on. Random forests generally have more variance and less bias
than Naive Bayes classifiers so we have to be more careful not to overfit on
the dataset. For example, if we used ERTs inside with usual hyperparameter
selection (minSamplesToSplit set to 2) then the forest would classify all of
the training objects perfectly, which would not be helpful. Luckily, if we
use Breiman forests with bagging, we can control the variance more, but
we still have to be careful to set the hyperparameters reasonably. Since we
deal with multiclass problem we also have to include an additional minor
implementation detail and join the labels of all positive classes to a common
label inside of PU learning.

The main idea behind PU learning spy technique is to sample a small
subset of the positive objects, called spies, and add them to negative dataset
in expectation that those spies will behave in a similar way to the unknown
mislabeled objects in the dataset. The ratio of positive objects sampled as
spies is a hyperparameter and authors of [38] advise to sample around 15
%. Because we are dealing with imbalanced dataset, we perform stratified
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Algorithm 6 PU learning spy technique algorithm. The algorithm returns
filtered unlabeled dataset that should contain mostly only the real negatives.
1: function PuLearning(Sinput_positive,Sinput_negative)
2: Spositive,Sspies ← Split(Sinput_positive) . sample spy set
3: Snegative ← Sinput_negative ∪ Sspies . add spies to the negative set
4: Assign every object in Spositive to class 1.
5: Assign every object in Snegative to class 0.
6: F ← BuildForest(Spositive ∪ Snegative)
7: Classify x ∈ Sspies and decide threshold t on p(1|x).
8: Sreal_negative ← {p(1|x) < t|x ∈ Sinput_negative}
9: return Sreal_negative

sampling so that the prevalences of classes in the spy set follow the prevalences
in the positive set. We then create a classifier (in our case random forest) on
the newly created positive and negative sets.

To find the threshold t, we classify all of the spies by the classifier and sort
them by p(1|x),x ∈ Sspies. There exists a hyperparameter called noiseRatio
that specifies how many of the spies should be under the threshold. This is
to avoid some possible noise in the training data. By experimentation we
discovered to set noiseRatio to 0.5 % in our experiments on network datasets.

Because we assume that the mislabeled objects behave similarly to spies,
we filter out objects in the negative set whose predicted probability that the
object is positive is above the threshold. In the ideal case, if the assumption
truly holds, we should be able to filter out 1− noiseRatio of the mislabeled
objects.

Because we have abundance of negative data in our experiments on network
data we are mostly interested only in the amount of mislabeled objects that we
correctly filter out. PU learning also filters out some real negatives incorrectly,
but we do not mind much if the number is reasonable. However, experiments
on public datasets in Chapter 6 suggest that the real negatives incorrectly
filtered out are the important objects that lie on the boundary between classes.
During our experiments on network data we did not have problems with
incorrectly filtering out real negatives but we would be happy to filter out
more mislabeled data, because we still missed a considerable portion of them.
This is because the assumption that the spies behave the same as mislabeled
data does not completely hold in our case. We elaborate more about this in
Chapter 7 with network experiments.

5.4 SMOTE: Synthetic Minority Over-sampling
Technique

SMOTE [11] is originally a technique developed for dealing with imbalanced
data. It is an interesting approach to the problem because it creates synthetic
objects of the underrepresented classes. We see a possibility to apply SMOTE
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also to the mislabeled data problem, because due to the nature how SMOTE
works it might be able to somewhat neutralize mislabeled objects, by creating
new synthetic positive objects in their neighbourhood. As with PU learning,
SMOTE is also applied as a preprocessing step on the training dataset.

Algorithm 7 SMOTE algorithm for oversampling a single data point q by
finding neighbours in Sinput. If the multiplier for the input data point is m
then the function returns set O including the input data point and m − 1
synthetic data points. This function is called repeatedly for each data point
that should be oversampled.
1: function SmotePoint(q,Sinput)
2: N ← FindKNearestNeighbours(q,Sinput, k)
3: O ← {q}
4: for i ∈ {1, 2, . . . ,m− 1} do
5: n← sample random neighbour uniformly from N
6: α← sample random number uniformly from (0, 1)
7: O ← O ∪ {q + α(n− q)}
8: return O

First, the SMOTE algorithm 7 finds k-nearest neigbours of each object that
should be oversampled. The number of neighbours is a parameter and the
authors mention that they used 5 nearest neighbors in their implementation.
Before computing the nearest neighbors, the data points’ coordinates should
be normalized so that each dimension has the same scale. The normalization
can be performed by using formula (4.3) or alternatively it can be performed
lazily inside of the formula for distance computation in k-NN algorithm. The
k-NN algorithm is a major performance bottleneck, and the standard CPU
based algorithms for computing it do not work well in high dimensions.

The second parameter of SMOTE is the multiplier for a given data point
(query point) specifying how many synthetic objects should be created from
it. This multiplier can be different for different data points.

A synthetic data point is created by randomly selecting a neighbour from
the k-nearest neighbours of the query point and sampling the synthetic data
point uniformly on the line joining the query point and the selected neighbour.
This process is repeated as many times as many synthetic objects should be
created for the given query point.

The selection of multipliers is an important decision. In our experiments
we create synthetic objects only for greatly underrepresented classes, because
the performance cost increases linearly with the number of objects that are
being oversampled. Even then, the cost of SMOTE dominates the costs of
PU learning, training and testing of random forests combined.
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Chapter 6
Experiments on public datasets

In this chapter, we perform experiments with random forests and other
methods presented in this thesis on publicly available datasets. All of the
datasets we used are available in a common LibSVM format on site [36].
The site aggregates various well known datasets for multiclass classification.
We used datasets usps, dna, letter and satimage because they are the same
datasets that the authors of Mondrian forests used in [30]. Additionally, we
also used datasets aloi and mnist because they are considerably larger than
first four datasets. Table 6.1 compares the datasets in terms of size, number
of classes and number of features. All of the datasets are available to us in a
form of numerical feature vectors.

Train size Test size # of classes # of features
usps 7291 2007 10 256
dna 1400 1186 3 180

letter 15000 5000 26 16
satimage 3104 2000 6 36

aloi 98000 10000 1000 128
mnist 60000 10000 10 780

Table 6.1: Summary of public datasets. If there was an option to choose how
many objects to use in training, we used the same number as the authors of
Mondrian forests in [30]. In case of the aloi dataset, it was not specified how
the dataset should be split to training and testing. We shuffled the dataset and
chose the size of test set to be 10000.

Dataset usps originates from U.S. Postal service by scanning handwritten
digits on envelopes. The images were transformed by linear transformation
resulting in 16× 16 greyscale images [13].

Dataset dna is interesting because it contains high number of irrelevant
features. It therefore has higher demands on the feature selection. It is
common practice in some experiments that only 60 best features in the
dataset are used and it drastically improves results. We have always used the
original 180 features.

The dataset satimage originates from satellite images and each object in
the dataset consists of 3× 3 multi-spectral pixel neighbourhood and the goal
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is to classify the type of soil in the central pixel [49].

The letter dataset consists of images of English alphabet letters in 20
unique fonts. Each of these images was randomly distorted to produce 20000
unique images. Each distorted image was then transformed into 16 primitive
features such as edge counts or statistical moments [33].

The aloi dataset is made of images of 1000 small objects (shoe, light bulb,
socks, etc.) taken in a controlled setting with varying illumination, orientation,
etc. The goal is to correctly classify the objects. This dataset stands out
from other datasets we used with it’s size and also with number of classes it
contains. We used the version where features consist of 128 raw pixel values.

Mnist dataset is well known. It consists of images of greyscale handwritten
digits and the features are raw pixel values. The dataset has the greatest
number of features of all of the public datasets we used.

6.1 Experiments on the original datasets

None of the datasets is significantly imbalanced, so we use only accuracy as the
classification performance evaluation measure. We also compute the average
number of nodes in each tree to estimate memory requirements (although
nodes in Mondrian trees are much bigger than in the rest of forests) and
we compute average weighted depth of trees in the forests to get an insight
into how much the trees are balanced. Average weighted depth also provides
information about the time cost of prediction of the forests.

In the first experiment we compare different random forest implementa-
tions when their hyperparameters are set to default values that are com-
monly used. Each forest has 100 trees and the stopping criterium minSam-
plesToSplit is always set to 2 so we allow the trees to grow as deep as possible.
Breiman forests use

√
numberOfDimensions features in splits and the size

of bagged samples is equal to the size of training dataset. k-ERT trees use√
numberOfDimensions split candidates in each split and 1-ERT trees use

just a single candidate. Mondrian forests have the lifetime parameter λ set to
∞ and the discount parameter for their prediction algorithm is set to default
value γ = 10 · numberOfDimensions.

The results from the first experiment are available in figures 6.1, 6.2 and
6.3. Each point was computed by repeating the experiment 10 times on
subsets of training data randomly sampled from the whole training dataset
and the results were averaged. The forests were trained on the same subsets.

Mondrian forests were trained only on the first four datasets because on
the large datasets they were so big that they required more memory than we
had available. We can see on Figure 6.2 that there is a trend that Mondrian
forests require similar number of nodes as 1-ERTs. If this would hold for
the mnist dataset too then Mondrian forests would require about 60000
nodes per tree. Each node needs to keep it’s bounding box and with 780
dimensions that means that each node would require at least 780 ·8 ·2 = 12480
bytes. This means that Mondrian forest model would require more than
12480 · 60000 · 100 =̃ 75 GB of memory.
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Figure 6.1: Accuracies of different random forest types with hyperparameters
set to default values.

In terms of accuracy, we see that k-ERTs dominate across all datasets, while
Breiman forests are mostly in the second place. Still, it is remarkable how
well 1-ERTs and Mondrian forests perform, because they do not use labels
during splits in any way. An exception is the dna dataset, which contains
lots of irrelevant features and 1-ERTs and Mondrian forests can not handle
this. It is interesting that the absolute differences in accuracies between the
methods often stay more or less the same on datasets mnist, aloi or usps
irregardless of the training size.

When comparing the average number of nodes in a tree the clear winners
are Breiman forests, but k-ERTs are not much behind. As mentioned, the
number of nodes in 1-ERTs and Mondrian forests tends to be very similar, but
we have to take into account that nodes in Mondrian forests have much bigger
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Figure 6.2: Average number of nodes in trees of different random forest types
with hyperparameters set to default values.

memory footprint than nodes in other methods. Aloi dataset is interesting
because in contrast to other datasets k-ERTs tend to have the same number
of nodes as 1-ERTs. An interesting observation is that in case of 1-ERTs and
Mondrian forests, the number of nodes in a tree seems to be almost equal to
the number of nodes in the training dataset. We have also tested 1-ERTs on
our network dataset and luckily this rule does not remain true when the size
of the training dataset increases even further. When we used training dataset
with ten million training object, 1-ERTs trained to a size of approximately
ten thousand nodes per tree.

The average weighted depth of trees is often correlated to the number of
nodes. An interesting exception is the aloi dataset, because even though
1-ERTs and k-ERTs tend to have similar number of nodes, k-ERTs have much

44



.......................... 6.1. Experiments on the original datasets

0 1000 2000 3000 4000 5000 6000 7000
Train size

6

8

10

12

14

16

18

20

22
de

pt
h

usps - average weighted depths of trees

Breiman forest
1-ERT
k-ERT
Mondrian forest (6 = 1)

0 200 400 600 800 1000 1200 1400
Train size

5

6

7

8

9

10

11

12

de
pt

h

dna - average weighted depths of trees

Breiman forest
1-ERT
k-ERT
Mondrian forest (6 = 1)

0 5000 10000 15000
Train size

8

10

12

14

16

18

20

22

24

de
pt

h

letter - average weighted depths of trees

Breiman forest
1-ERT
k-ERT
Mondrian forest (6 = 1)

0 500 1000 1500 2000 2500 3000
Train size

4

6

8

10

12

14

16

18

de
pt

h

satimage - average weighted depths of trees

Breiman forest
1-ERT
k-ERT
Mondrian forest (6 = 1)

0 1 2 3 4 5 6 7 8 9
Train size #104

10

15

20

25

30

35

40

45

50

55

de
pt

h

aloi - average weighted depths of trees

Breiman forest
1-ERT
k-ERT

0 1 2 3 4 5 6
Train size #104

5

10

15

20

25

30

35

de
pt

h

mnist - average weighted depths of trees

Breiman forest
1-ERT
k-ERT

Figure 6.3: Average weighted depth of different random forest types with
hyperparameters set to default values.

more reasonable average weighted depth. This implies that k-ERTs are much
more balanced on the aloi dataset than 1-ERTs.

6.1.1 DAS-RF – semi-supervised learning

The experiment with DAS-RF was set up in a similar way to the previous
supervised experiments. The part of training dataset that was not used in
training in the supervised case was used as unlabeled training dataset for
DAS-RF. We did not use more than 50 % of labeled training data, because
semi-supervised learning is most helpful if the majority of training data is
unlabeled.

Inside of DAS-RF we used Breiman forest with default parameters. The
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number of DAS-RF iterations was set to 10 and the α hyperparameter was
set to 0.1. This left us to experiment with the temperature and the cooling
function. We used exponential cooling function and the rate was computed
so that the last iteration would have temperature 0.005. We tested several
starting temperatures T0 that we picked according to Figure 5.2. The results
are available at Figure 6.4.

The most interesting point in the graphs is the first, where the percentage
of labeled training data is 10 %. There is no significant increase in accuracy
on datasets letter and satimage, but plots for datasets usps and dna show
an accuracy increase in units of percents. We did not implement the airbag
mechanism that should ensure that DAS-RF is not worse than the default
Breiman forest. With airbag implemented, applying DAS-RF can provide
performance gain without much risk. The downside is that the computation
time required to train DAS-RF is multiple times larger than the time required
to train a single forest because, aside from other heavy computation, a new
forest is trained in each iteration of DAS-RF.
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Figure 6.4: Accuracies of DAS-RF with different starting temperature values.
Breiman forest with default hyperparameters is included for comparison.

6.1.2 Mondrian forests – hyperparameter λ

Because Mondrian forests have enormous memory footprint, we performed
experiment to determine if setting the hyperparameter λ to different values
than ∞ can reduce the forest size while retaining a reasonable accuracy. We
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Figure 6.5: Accuracies and average numbers of nodes in Mondrian trees with
different values of hyperparameter λ.
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determined the values of λ to include in the experiment by inspecting the
node times τi in nodes of forests trained with λ = ∞. Only the first four
datasets were included in the experiment and we always trained only on full
training sets. All of the other hyperparameters than λ were set as in the first
experiment.

The results are available at Figure 6.5. First of all, we can see that even
though all of the datasets are normalized to the [0, 1] interval, there is not
a single value of λ that would work well on all datasets. Also it looks like
that if we aim only for maximum accuracy, then λ = ∞ is the best choice,
because lowering the lambda seems to lower the accuracy.

For dataset letter, the results look good for λ = 2, because there is a major
drop in the number of nodes required but only a minor drop in accuracy.
Dataset usps seems to work well with λ = 0.1 where the number of nodes
is reduced by a half but accuracy still remains reasonable. The results on
dataset satimage are different in the way that the number of nodes and
accuracy reduces more gradually and there is not a single value for λ that we
would select as the best. Dataset dna is included for completeness but the
accuracy is bad even with λ =∞ and other values of λ do not improve it.

6.2 Experiments on datasets modified to contain
mislabeled data

We modified the original datasets to explore the imbalanced and mislabeled
problem. At first, the datasets were made imbalanced by joining roughly the
bottom 80 % of classes together to form a single majority class. An exception
to this rule was the dna dataset where the 3rd class was majority already
so we left the dna dataset as it was. The exact number of classes for each
dataset is shown in Table 6.2.

Total # of classes # of classes after relabeling
usps 10 3
dna 3 3

letter 26 7
satimage 6 3

aloi 1000 200
mnist 10 3

Table 6.2: Summary of the way we made the datasets unbalanced. First column
shows the original number of classes in the dataset and the second column shows
the number of classes in the modified dataset. One of these classes is always the
majority class so, for example, the dataset letter contains 1 majority class and 6
minority classes.

In addition to making the datasets imbalanced we also added mislabeled
data to make the datasets resemble Figure 5.1. This was done by randomly
sampling 10 % of objects from the minority classes and changing their label
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to the majority class. The mislabeling was performed only on the training
datasets and the testing datasets were kept clean.

We adapt the terminology here to the terminology we use when dealing
with our network data and call the majority class negative and the minority
classes positive. Because the datasets are imbalanced we are not interested
in accuracy anymore for the reasons explained in Section 2.4, but measure
average precision and recall on the positive classes. The negative class is not
included in the averages, because it is not a single class but is made of several
distinct classes and the performance on it is not that important to us.
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Figure 6.6: Comparison of perfomance between scenarios when the training
datasets were clean and when they contained mislabeled data. The reported
precisions and recalls are averages over all positive classes.

Because of the results of the experiments on the original datasets, we
decided to further use only Breiman forests and k-ERTs with the same
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hyperparameters as we used before. We always trained only on the full
training datasets and each experiment was repeated 5 times and we show the
average values.

Figure 6.6 shows the differences in performance, when the training dataset
is clean (the mislabeling was not performed) and when the training dataset
contains mislabeled data. We can see that the presence of mislabeled data
always reduced the average recalls over positive classes. This happens because
some of the positive objects that would be classified correctly are now classified
as the negative class. Interestingly, we can observe increase in precisions in
the mislabeled cases. This is understandable, because by mislabeling positives
to negatives the number of objects that are marked as positives is decreased
and some objects that would be false positives are now classified correctly. In
the following experiments, we aim to increase the recalls in the mislabeled
cases while keeping the precisions preferably as high as in the cases with clean
training datasets.

6.2.1 SMOTE

We applied SMOTE on the positive classes as a preprocessing step on the
training dataset before running training either Breiman forest or k-ERT. The
number of nearest neighbours in SMOTE was always set to 5 as in the original
publication [11]. We performed five experiments with different values of the
SMOTE multipliers. In this section, we denote the SMOTE algorithm with
the number of multipliers set to k as ’SMOTE k’. The results are available at
Figure 6.7.

From the results, it looks like there is not a single value of multiplier
that would be the best in all cases. Generally, recall increases and precision
decreases when we increase the number of multipliers. The exception to this
rule is the mnist dataset where recall slightly decreases if we use Breiman
forests. We encounter a similar phenomenon on our network dataset. Both
datasets have in common that the number of features is very large and it
might be possible that the nearest neighbour does not work well in those
cases. However, that does not explain why k-ERTs suffer as well.

When we compare the results with the best results on the clean datasets
achieved by k-ERTs in Figure 6.6, we see that we can get very close and
sometimes we can even improve the overall performance.

On dataset usps k-ERTs achieved 97 % precision and 87 % recall on the
clean dataset. SMOTE 4 with k-ERTs achieved 97 % precision and 90 %
recall. SMOTE also did get close in performance to the benchmark on clean
datasets on datasets letter (SMOTE 4 with k-ERTs) and aloi (SMOTE 8
with k-ERTs). There is a 2 % drop in precision on dataset satimage with
SMOTE 3 and k-ERTs but on the other hand there is a 4 % increase in recall.
On mnist and dna the results on clean datasets are slightly better but the
best results with SMOTE are still better than the results without SMOTE
on mislabeled datasets.
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Figure 6.7: SMOTE applied as a preprocessing step on mislabeled datasets.
The number of nearest neighbours in SMOTE was always fixed to 5. We tested
SMOTE with several number of multipliers i.e. SMOTE 2 means that after
SMOTE the positive classes contain twice the number of objects, SMOTE 3
means that they contain three times the number of objects etc. The reported
precisions and recalls are averages over all positive classes. The horizontal lines
refer to values in Figure 6.6 with clean and mislabeled data. Breiman forest
results are drawn with full lines and k-ERT results with dashed lines. Recalls on
clean dataset are blue, recalls on mislabeled dataset are red, precisions on clean
dataset are green and precisions on mislabeled dataset are black.
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6.2.2 PU learning

PU learning aims to identify the mislabeled objects in the negative class and
filter them out. Before evaluating the performance of PU learning together
with random forests, we performed experiment to identify reasonable values
for the algorithm’s hyperparameters. The only hyperparameter we did not
experiment with was the spies ratio which we always set to 15 % as did the
authors of the PU learning algorithm in [35]. We always used Breiman forest
inside of the PU learning algorithm because they work better on network data.
For other hyperparameters we selected base values that we found reasonable.
Base value of the bagging ratio of the forest inside of PU learning was set
to 100 %, minSamplesToSplit was set to 20 because we intended to give the
forest inside slightly more bias, number of trees in the forest was set to 100
and the noise ratio which determines the threshold inside of PU algorithm
was set to 1 %.

Then we performed several experiments. In each experiment, we modified
value of a single hyperparameter and the rest was set to their base values.
We hoped that this approach, although it was naive because it assumed inde-
pendence between the hyperparameters, would provide us with some insight
into the behaviour of PU learning with different hyperparameter settings
and help us identify the important hyperparameters. In each experiment
we measured recall (true positive rate) of the mislabeled objects that were
correctly identified in the negative class and filtered out by the PU learning
algorithm. We also measured the fall-out (false positive rate) which tells us
about the ratio of true negatives that the algorithm filtered incorrectly. Each
experiment was performed five times and we report the average numbers.
The results are available in Table 6.3.

When we repeated the same experiment five times, TPRs were stable but,
on the other hand, the standard deviation of FPRs is often around 5 % and in
some rare cases it is even more. Because of that, it is not possible to make any
conclusions when FPRs are different by single units of percents, because that
can be attributed to random noise. After studying the results, we came to
conclusion that the only hyperparameter that we will modify in the following
experiment where we perform classification after PU learning is the noise
ratio. Noise ratio looks like it can control the tradeoff between TPRs and
FPRs most effectively. In fact it is directly related to TPR, because it sets
the ratio of spies that will not be identified as positives. We decided to set
the rest of hyperparameters to their base values because there is not apparent
any consistent significant improvement in Table 6.3 when their base values
were modified.

In the following experiment we performed PU learning with different noise
ratios and then we trained either k-ERT or Breiman forest as in the previous
experiment with SMOTE. Each experiment was repeated 5 times and we
report the averages. The results are available at Figure 6.8.

When compared with SMOTE, PU learning behaves a bit differently. In
contrast to SMOTE there is more often visible a significant drop in precision
for each increase in recall, but sometimes this is in situations where PU
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PU hyperparams usps dna letter
TPR (%) FPR (%) TPR FPR TPR FPR

Bagging 100 % 97.3 5.6 98.8 15.4 97.8 8.4
Bagging 75 % 98.8 6.8 98.2 14.4 98.4 14.8
Bagging 50 % 97.8 8.5 100.0 31.1 98.4 19.3
Min. split 20 97.8 5.3 96.1 8.2 98.0 8.7
Min. split 10 97.8 5.6 98.2 20.4 98.4 7.4
Min. split 2 98.3 7.1 99.1 47.7 98.3 11.3

100 trees 99.2 7.9 97.6 10.6 98.5 12.0
50 trees 97.6 6.7 98.2 15.4 98.3 14.0
10 trees 99.5 59.7 98.5 31.8 97.8 15.9

Noise 10 % 91.5 0.7 87.6 4.7 89.4 0.6
Noise 5 % 93.4 1.5 93.6 6.5 93.6 1.6
Noise 1 % 98.5 5.1 100.0 14.1 98.7 14.3

Noise 0.5 % 97.6 6.8 99.7 23.0 98.4 13.0

PU hyperparams satimage aloi mnist
TPR (%) FPR (%) TPR FPR TPR FPR

Bagging 100 % 99.3 16.9 99.0 9.8 99.2 7.4
Bagging 75 % 99.0 17.0 99.2 11.6 99.2 7.8
Bagging 50 % 98.8 18.2 99.1 17.3 99.3 10.5
Min. split 20 98.3 13.2 99.1 9.4 99.0 6.7
Min. split 10 98.8 17.9 99.2 8.1 99.3 8.2
Min. split 2 98.3 30.4 99.5 18.0 99.3 12.1

100 trees 99.3 15.5 99.3 11.4 99.2 7.6
50 trees 99.0 18.4 99.3 12.1 99.4 10.7
10 trees 99.3 38.8 98.8 28.1 99.4 26.5

Noise 10 % 88.7 2.7 89.6 0.4 90.0 0.5
Noise 5 % 95.9 6.7 94.6 1.4 95.1 1.4
Noise 1 % 98.6 15.8 99.1 10.3 99.2 7.4

Noise 0.5 % 97.8 12.5 99.7 18.0 99.5 10.4

Table 6.3: Results of experiments with different values of hyperparameters of
the PU learning algorithm. TPR is the true positive rate (recall) and it tells how
many of the mislabeled positives that were mixed into negatives were discovered
by PU learning and removed from the dataset. FPR is the false positive positive
rate (fall-out) and it tells how many of the true negatives were falsely removed
by PU learning. Rows where we modified the noise ratio are highlighted because
we decided that we would only modify noise ratio in the experiment where we
perform classification after PU learning.

learning already outperformed SMOTE.
It is sometimes difficult to convincingly infer that one method behaves better

than the other because we did not explore the full space of hyperparameters.
This is the case on datasets letter, aloi and mnist. PU learning achieved
similar performance to SMOTE and then with lower noise ratios it was able
to score considerably higher in recall than what we see in the SMOTE results.
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Figure 6.8: PU learning applied as a preprocessing step on mislabeled datasets
before training either Breiman forest or k-ERT. We tested PU learning with
different values of the hyperparameter noiseRatio. The reported precisions and
recalls are averages over all positive classes. The horizontal lines refer to values
in Figure 6.6 with clean and mislabeled data. Breiman forest results are drawn
with full lines and k-ERT results with dashed lines. Recalls on clean dataset are
blue, recalls on mislabeled dataset are red, precisions on clean dataset are green
and precisions on mislabeled dataset are black.

On dataset usps SMOTE is actually better than PU learning because when
PU learning achieves the same recall (90 %) it has 3 % less precision. On
dataset satimage PU learning is also unable to achieve as high precision as
SMOTE did with the same recalls. Performance on dataset dna is comparable.

Table 6.3 shows that on all datasets, PU learning is able to filter out almost
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every mislabeled object. An interesting observation is that PU learning
sometimes achieves better recall than the recall that was achieved on clean
dataset in Figure 6.6. This is not only because of correctly identified mislabeled
objects but also because of those true negatives that are removed from the
negative class. This effectively achieves undersampling which is commonly
used when dealing with mislabeled data. The removed true negatives tend
to be more important than random negative objects, because they tend to
be closer to the boundary between classes. This increase in recall is paid for
by the decrease in precision and also by the fact that the undersampling is
somewhat hidden and it can be too easy to forget about it. The nice thing
about PU learning is that if we settle with smaller recall of the mislabeled
objects then the fall-out can be tuned by hyperparameters to an extent and
the amount of undersampling can be made insignificant. In that case, PU
learning can almost provide a net benefit, because in the worst case it does
nothing and it can potentionally remove at least some mislabeled objects.

Compared to SMOTE the time cost of PU learning is much smaller. The
defining part of the cost is the training of the inner forest so PU learning
requires similar amount of time as the actual training of the random forest
after.

6.2.3 DAS-RF

In the experiments with DAS-RF we used only the small datasets because
the datasets aloi and mnist would require too much computation time. We
used the same hyperparameters as in the experiment on original datasets in
Section 6.1.1. As a starting temperature we always used value 0.1, because it
performed well in the first experiment.

To be able to handle mislabeled data, original DAS-RF requires modification
that is described in Section 5.2.3. In short, we sampled a part of the negative
class to the initial training dataset which would otherwise consist only of
positive data. This allows the forest inside of DAS-RF predict negative
labels. The percentage of the negative class that is sampled to the initial
dataset is an additional hyperparameter. We performed experiments with
different values of this ratio. Each experiment was repeated 5 times and the
averages are available in Figure 6.9. The results should be compared mainly
with the results using Breiman forests in previous experiments because our
DAS-RF implementation uses only Breiman forests inside. Breiman forest is
used because it performs better on the network dataset and we designed the
algorithm primarily for that.

While not ignoring the results achieved by k-ERTs in previous experiments
it is reasonable to primarily compare DAS-RF results with the results achieved
by Breiman forests. By analysing the results we can see that they are greatly
influenced by the negative ratio hyperparameter. When the negative ratio
is really small, DAS-RF achieves recalls that are higher than in all of the
previous results. This is however compensated by very poor precision. As
the negative ratio increases the results stabilize at values that are closer to
results of SMOTE and PU learning.
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Figure 6.9: DAS-RF applied on mislabeled datasets. We tested different per-
centages of the negative class sampled to the initial training dataset in DAS-RF.
The reported precisions and recalls are averages over all positive classes. The
horizontal lines refer to values in Figure 6.6 with clean and mislabeled data.
Breiman forest results are drawn with full lines and k-ERT results with dashed
lines. Recalls on clean dataset are blue, recalls on mislabeled dataset are red,
precisions on clean dataset are green and precisions on mislabeled dataset are
black.

On dataset letter DAS-RF achieves 99 % precision and 92 % recall which
is actually better than the results of both SMOTE and PU learning. On
dataset usps, Breiman SMOTE achieves almost 97 % recall with 88 % recall.
DAS-RF has worse results than that but the result with 30 % negative ratio
achieves 96 % precision and 86 % recall which is also reasonable. On dataset
dna the results of DAS-RF are comparable with the results of SMOTE and
PU learning. We would again pick the result with negative ratio 30 % which
achieves 94 % precision and 90 % recall. On dataset satimage, again with
negative ratio 30 %, DAS-RF achieves precision 91 % and almost 86 % recall.
This result is also comparable maybe even better than SMOTE.

In overall it looks like setting the negative ratio to 30 % could be a
reasonable default choice, because all of the reported results above were
achieved with that value.
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Chapter 7
Experiments on network data

In this chapter, we present summary of the experiments we performed on our
network datasets with the aim to identify and classify malware. Contrary to
the experiments in Chapter 6, these datasets are not publicly available. The
following description of the datasets is inspired by [4].

The datasets have the form of proxy logs. Objects in these datasets are
HTTP flows, where each flow represents a single communication between
user and a server. Although we had HTTPS flows available too, we did
not use them, because their features were too noisy therefore we restricted
ourselves only to HTTP flows. Flows from proxy logs are bidirectional so
both directions of the communication are included in a single flow. Each flow
contains fields like: URL, referer, source and destination IP addresses and
ports, HTTP status, number of bytes transferred, etc. [4]

Features Features on all URL parts + referer
duration length
HTTP status digit ratio
is URL encrypted lower case ratio
is protocol HTTPS upper case ratio
number of bytes uploaded vowel changes ratio
number of bytes downloaded has repetition of ’&’ and ’=’
is URL in ASCII starts with number
client port number number of non-base64 characters
server port number has a special character
user agent length max length of consonant stream
MIME-Type length max length of vowel stream
number of ’/’ in path max length of lower case stream
number of ’/’ in query max length of upper case stream
number of ’/’ in referer max length of digit stream
is second-level domain raw IP ratio of a character with max occurrence

Table 7.1: List of features extracted from proxy log [4]. The features in the
right column are extracted from each part (protocol, second-level domain, tld,
path, filename, query, fragment) of URL and referer.

In total, 357 features were extracted from each flow and the most informative
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features originate from the URL. For illustration, some of the features are
available in Table 7.1.

Initially all of the flows were unlabeled. Positive labels were added to
some flows by using available blacklists, other malware feeds from Collective
Intelligence Framework (CIF) [21] or they were created by a human analyst.
The labeling was performed at the domain level and not per individual flows.
Nevertheless, the majority of objects in the datasets remains unlabeled. Most
of these unlabeled objects belong to the innocent negative traffic and they are
therefore assigned label negative. Still, there are some malicious objects for
which we did not have labels at the time when we labeled the datasets and
they are assigned the negative label incorrectly as a result. This makes the
structure of the datasets similar to the datasets we used for the experiments
on public datasets containing mislabeled data in Section 6.2.

Newly obtained labels were not retrospectively applied on the training
dataset but they were used for evaluation of methods like PU learning.

There are 86 classes of malware available in the datasets. Each of the
classes is related to a traffic associated with different malware categories, such
as ransomware, exploit kit, exfiltration, ad-injector, etc.
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Figure 7.1: Size of the positive classes in the training and testing datasets. For
each class the smaller bar is in the front and the larger bar is in the back. The
Y axis uses log scale.

We decided to use dataset originating from proxy logs recorded during 3
days in October and November 2015 for training and dataset from proxy
logs originating in January 2016 for testing. The training dataset contains
3, 359, 466 objects and the testing dataset contains 10, 895, 786 objects. Not
all classes that are available in the testing dataset are available in the training
dataset and vice versa. Figure 7.1 shows the distribution of positive classes
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both in the training and testing datasets. It is apparent that even the positive
classes alone are are highly imbalanced and the distributions of classes are
different between the two datasets.

There are several ways how to evaluate the results. First, they can be
evaluated on a per-flow basis. This is the most straightforward way, where
each flow is evaluated in isolation and measures like precision and recall are
computed for all classes.

Each flow is associated with a user to which it belongs. If, for example,
there are 1000 flows in the testing dataset and each of them belongs to the
same class and user and each is classified as the same class, it might make
sense to include the result only once instead of including it thousand times.
This way, the recall of a class does not represent the fraction of flows that
were correctly identified to belong in this class, but it represents the fraction
of users which had flows correctly identified.

The previous per-user evaluation might report the same class for a user
to be a true positive and false positive at the same time. This might happen
if there exist both a positive flow belonging to the user that was classified
correctly and negative flow that was classified positive by mistake. We decided
to also perform evaluation which we call benevolent user statistics, because the
standard per-user evaluation is possibly unnecessarily strict. In benevolent
user statistics, we do not include false positives and false negatives if there
exists a single true positive for a given class-user combination, because the
user was identified correctly to be infected by the given malware class.

Still, if for example, there are two flows belonging to the user where one is
positive and the other is negative and the classifier classified both of them
incorrectly, we do not classify the user to be a true positive in the given class
but it remains counted both as a false positive and false negative.

The evaluation schemes considering users have a slight problem that it is a
bit random which user’s traffic was successfully labeled and which remained
unlabeled. This makes the results not as transparent as the straightforward
results computed over all flows. The interpretation of the per-user statistics
requires deeper knowledge of the datasets. For that reason we mainly focus
on the evaluation per-flow when comparing results.

Based on the experiments on public datasets and also on some prior
experiments on other smaller network datasets, we decided to evaluate only
Breiman forests and k-ERTs on these two network datasets. The following
hyperparameters are used in all experiments in this chapter.

The datasets contain 357 features and therefore the hyperparameter k
in k-ERTs, as well as the number of features used in Breiman forest split
nodes, was set to 19 because

√
357 =̃ 19 which is a common value for these

hyperparameters as described in Chapter 4. We also experimented with other
values for these hyperparameters but that did not lead to any significant
performance increase.

Based on prior experiments on smaller network dataset we set the hyper-
parameter minSamplesToSplit to 20 because it led to minor performance
increase over the default value 2 that was used in Chapter 6. In these prior
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experiments we also discovered that 20 trees in Breiman forests is enough to
achieve similar performance as with 100 trees. Because of that we always
used 20 trees in Breiman forests for experiments reported in this chapter.
This allowed us to compute the experiments faster. The k-ERTs still use 100
trees because their drop in performance with only 20 trees was big.

Additionally, because the datasets are significantly imbalanced we used
balanced bagging instead of standard bagging in Breiman forests. If the
number of objects in a class was lower than 50, then no sampling was
performed on the class during the training process of each tree, but all objects
belonging to the class were included. That way it is guaranteed that all of
the trees in the forest can classify all classes in the training dataset. However,
when experimenting on smaller network datasets we discovered that the
difference between balanced bagging and normal bagging is only minor if
there is any. This might be explained by Figure 4.1 which shows that it is
highly probable that a given object will be included in the majority of trees
even if normal bagging is used.

Method Flows Users Benevolent users
Prec. (%) Rec. (%) Prec. Rec. Prec. Rec.

Breiman 97.4 62.8 93.0 59.5 94.2 66.8
k-ERT 97.5 57.8 93.2 58.0 94.5 64.1

Table 7.2: Comparison of results on the network datasets between just Breiman
forests and k-ERTs without any additional methods. Reported precisions and
recalls were averaged over all positive classes.

As a first experiment, we decided to compare just plain Breiman forests
and k-ERTs on the described network datasets. The results are available in
Table 7.2. We report average precisions and recalls over all positive classes
in the three possible evaluation schemes mentioned earlier. Contrary to the
experiments on public datasets Breiman forests achieve better recalls than
k-ERTs here. The precisions are similar for both methods.

An interesting note about precision is that it is possible that some of the
false positives are in fact true positives but we have not received correct labels
for them yet. The reported results are therefore lower bounds on precision.
When we analyzed the errors further we discovered that the vast majority of
errors is between the negative class and some of the positive classes. It was
very rare when positive classes were misclassified between each other.

The reported precisions have estimated standard deviation under 0.5 %
and the reported recalls have standard deviation around 1 %.

7.1 PU learning

In the following experiment we applied PU learning on the training dataset
and then we trained Breiman forest and k-ERTs on it with the same hyper-
parameters as in the first experiment.
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We followed the standard setup of PU learning parameters that was used
in public experiments, but after some experimentation we decided to set the
PU learning parameters a bit differently because it did not work well with
the standard values. The number of trees of the forest inside PU learning
was set to 10, baggingRatio was set to 60 %, noiseRatio to 0.5 %, spiesRatio
to 15 % and minSamplesToSplit to 20. The most important parameter is
the noiseRatio and we needed to set it lower than it was necessary in case of
the public datasets, to be able to filter out a reasonable number of positive
objects inside of the negative class. This might have been caused by the size
of the network dataset which is incomparable to the public datasets and even
0.5 % is a sufficient number of objects here.

As mentioned earlier in this chapter, we possess additional positive labels
that were not provided to the algorithms. Concretely, we possess positive
labels for 7103 objects that were marked as negative in the training dataset.
In the ideal case PU learning would be able to filter out all of these objects.
To test this ideal case, we include result where these 7103 objects are manually
removed from the training dataset and then Breiman forest is trained. Table
7.3 shows the results of the experiments with PU learning.

Method Flows Users Ben. users
Prec. (%) Rec. (%) Prec. Rec. Prec. Rec.

Clean 97.7 69.4 93.4 65.2 94.7 71.2
PU + Breiman 96.9 64.4 92.1 61.4 93.5 68.2
PU + k-ERT 97.3 62.3 93.1 59.5 94.5 66.0

Table 7.3: Comparison of results on the network datasets between PU learning
followed by Breiman forests and PU learning followed by k-ERTs. The method
’Clean’ denotes the experiment that is described in the text where 7103 known
positive objects in the negative class are manually removed before training the
Breiman forest. Present precisions and recalls were averaged over all positive
classes.

PU learning on average filtered out 1460 of the positive objects for which
we possess labels and it filtered out 1761 objects on average. It is possible
that some of those filtered objects for which we do not have labels might
also be positive but we did not perform any additional analysis of the these
objects.

When compared with how well PU learning performed on the public
datasets, particularly when considering the very high recall of the positives
in the negative class, the results on the network dataset are not as strong.
Still, PU learning provides a benefit over the baseline case when it was not
used in Table 7.2, because when using it we are consistently able to achieve
higher recalls while precisions remain close to the baseline.

The experiment with the known mislabeled objects removed (’Clean’ in
Table 7.3) shows that there is still potential to increase the recall by 5 % if
PU learning were more successful.
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7.2 SMOTE

After we have established, both in the previous section and in Chapter 6 with
public experiments, that PU learning is beneficial to the performance, we
decided to always use PU learning in all further experiments. In this section,
we describe experiments with PU learning and SMOTE combined. We always
used 5 nearest neighbours in SMOTE which is the same value as in the
experiments with SMOTE on public datasets in Section 6.2.1. We performed
SMOTE only on positive classes with less than 2000 objects because it is
supposed to be used on the underrepresented classes and it also made the
computation faster. As in Section 6.2.1, we denote the SMOTE algorithm
with the number of multipliers set to k as ’SMOTE k’.

Method Flows Users Ben. users
Prec. (%) Rec. (%) Prec. Rec. Prec. Rec.

PU only 96.9 64.4 92.1 61.4 93.5 68.2
SMOTE 10 + PU 96.2 62.3 90.8 59.4 92.3 66.0
PU + SMOTE 10 96.8 60.6 91.9 57.8 93.1 63.6
PU + SMOTE 3 96.9 63.9 91.8 61.7 93.2 67.8

Table 7.4: Comparison of results on the network datasets with SMOTE and
PU learning combined. Breiman forest was trained in all of the experiments to
perform classification so it is not explicitly mentioned. The first row ’PU only’
is the results from Table 7.3 which serves as a baseline. Reported precisions and
recalls were averaged over all positive classes.

The results of our experiments are available in Table 7.4. The results are a
bit surprising because we observe an actual decrease in recall when SMOTE is
used which is certainly counterintuitive considering the way SMOTE works.

We suspected that it was possible that by oversampling the positive classes
we now made more classification errors across positive classes. However,
by inspecting the individual errors we discovered that it was not the case
and that the vast majority of errors were still positive objects classified as
negative.

Still, it is possible that oversampling of positive classes may cause negative
prediction that would not otherwise happen. Consider a simple example
where the result of classification of object x is that x belongs to class A
with probability 60 % and it belongs to the negative class with probability
40 %. This would result in classification of x as A. Now, if we apply SMOTE
on class B, the result of classification may be that with probability 25 %
x belongs to class B, with probability 35 % it belongs to class A and with
probability 40 % it belongs to the negative class. Result of this would be
classification of x as negative even though no synthetic negative objects were
added to the training dataset.

We attempted to counter this scenario by implementing a simple method
which we internally called two-stage prediction. When using two-stage pre-
diction we do not assign the result of classification simply to the class with
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NNN AA B NNN AA BBBB

Figure 7.2: Example how SMOTE can expand the decision region of negative
class during node splitting when SMOTE is applied on positive class. The figure
on the left shows how decision tree would split three classes based on entropy. If
the child nodes were leaves the left leaf would classify objects as negative (N)
and the right leaf would classify objects as positive class A. In the right figure, 3
synthetic samples were created by SMOTE to positive class B. This forces the
decision boundary to move and as a result the region which classifies objects as
negative is larger than in the left figure.

maximum classification probability but we perform two stages of evaluation.
In the first stage we sum the probabilities of all positive classes and compare
the grouped probability to the probability of the negative class. If the prob-
ability of the negative class is larger we classify the object as negative and
if the summed probability of positive classes is larger, we go to the second
stage and classify the object as the maximum of all positive classes. When
using two stage prediction, x in the previous example would still be classified
as class A.

Two-stage prediction however did not fulfil it’s purpose and did not improve
the recalls of positive classes. This implies that the suggested scenario we
described in the previous example is not the root cause of the decrease in
recall with SMOTE. Figure 7.2 shows an example how SMOTE can make the
region in feature space which classifies objects as negative larger during node
splitting in decision trees. When considering more classes and dimensions
than in the example then the situation gets even more complicated. We did
not further explore this problem and did not perform any experiments to
determine if situation similar to Figure 7.2 happens on our data. A simple
approach how to handle this problem could be inspired by the two-stage
prediction method that was mentioned earlier. The idea is that if the node
contains both positive and negative objects during splitting then the positive
objects would be treated as a single class when calculating the entropy. This
would solve the situation with the expansion of negative region in Figure 7.2.

One of the main drawbacks of SMOTE is it’s computation time. While
each experiment with PU learning required around 5 hours of computation
time on the hardware1 we had available, each experiment with SMOTE in
Table 7.4 required around 30 hours of computation time even if the algorithm
was partially optimized.

7.3 DAS-RF

We tested DAS-RF that was executed after PU learning to see if it can further
increase recall. The hyperparameters of the Breiman forest inside DAS-
RF were that same as the hyperparameters of Breiman forests in previous

1Intel R©Xeon R©CPU E7- 4860 @ 2.27GHz, 32 cores, 252 GB RAM
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experiments.

The DAS-RF parameters were also the same as in the experiments on
mislabeled public datasets in Section 6.2.3. We performed 10 iterations, the
hyperparameter α was set to 0.1, starting temperature was set either to 0.3
or 0.1 and the final temperature in the last iteration was 0.005. We set the
negative ratio to 10 %, even though the most promising candidate ratio, in
terms of tradeoff between precision and recall, from experiments in Section
6.2.3 was 30 %, because, after experiments with SMOTE, we wanted to test
if it is possible to increase recall with DAS-RF even if it meant that precision
would temporarily suffer.

The result of experiments compared to the result where only PU learning
was used from Table 7.3 is available in Table 7.5.

Method Flows Users Ben. users
Prec. (%) Rec. (%) Prec. Rec. Prec. Rec.

PU only 96.9 64.4 92.1 61.4 93.5 68.2
PU + DAS-RF 0.1 96.9 64.6 92.0 62.4 93.7 68.2
PU + DAS-RF 0.3 90.5 68.1 85.7 64.6 87.5 69.7

Table 7.5: Results of DAS-RF experiments compared to the result of PU learning
from Table 7.3 which serves as a baseline. Row ’PU + DAS-RF 0.1’ represents
the experiment where the starting temperature was set to 0.1 and ’PU + DAS-RF
0.3’ represents the experiment where the starting temperature was set to 0.3.
Reported precisions and recalls were averaged over all positive classes.

The number of objects from the negative class that were assigned positive
label in the last iteration of DAS-RF was 835 when the starting temperature
was set to 0.1 and 2416 when the starting temperature was set to 0.3. These
are not small numbers when compared to the 1460 objects filtered by PU
learning on average.

Since the standard deviation estimate of recalls is around 1 %, the slight
improvement in recall in case of DAS-RF with starting temperature 0.1 is
not significant.

DAS-RF with starting temperature 0.3 achieves more interesting results.
The increase in recall is significant but it is also compensated by a significant
drop in precision. Still, it is interesting that DAS-RF was able to increase
recall, when SMOTE could not achieve it even with multiplier parameter set
to 10 which is a very large value.
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Chapter 8
Conclusion

In this thesis, we focused on various types of random forest classifiers and
methods that can be used together with random forests to handle imbalanced
and unlabeled data in the training dataset.

From different random forest types, we implemented Breiman forests as
well as Extremely Randomized Trees and Mondrian forests and tested them
in various scenarios both on well-known publicly available datasets and on our
own network dataset created from proxy logs where we performed classification
of individual network flows for malware.

Extremely Randomized Trees consistently outperformed both Breiman
forests and Mondrian forests in experiments on public datasets when they
performed better in almost all of the experiments. This is an interesting results
given that Breiman forests are de facto the default choice among random forest
types when performing classification. However, Breiman forests performed
better in experiments on our network dataset which was the main motivation
for this thesis. Additionally, we discovered that Mondrian forest model’s
memory requirements scale both with the dimension of vectors in training
dataset and the number of classes which is a major obstacle when they are
trained on bigger training datasets such as mnist or aloi.

We adapted DAS-RF, PU learning spy technique and SMOTE for use
together with random forests on the imbalanced and unlabeled problem.
All three methods were successful in experiments on public datasets when
they were able to significantly and consistently outperform random forests
that were used alone as a baseline. It is not clear which one performed
the best because the results vary across different datasets. However, PU
learning has the advantage that it behaves more transparently than the other
two methods and it is the fastest. SMOTE has the potential to have the
strongest effect when there is great imbalance in the data, because it is an
oversampling method that was originally developed to handle imbalanced
data. Theoretically all of the methods can be combined together.

On the network dataset, PU learning spy technique consistently significantly
improved performance. DAS-RF combined with PU learning was able to
achieve a significant increase in recall on positive classes at the cost of decrease
in precision. However, SMOTE applied in combination with PU learning
caused a slight drop in recall of positive classes instead of increasing it.
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Appendix A
Enclosed CD contents

The root directory on the enclosed CD contains the following items:. thesis.pdf: The PDF file of this thesis.. [source]: Directory containing source codes written in Java. The project
can be built with Gradle.
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