
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor Thesis

Integrated Route and Charging Planning for Electric Vehicles

Tomáš Fišer

Supervisor: doc. Ing. Michal Jakob, Ph.D.

Study Programme: Open Informatics

Specialisation: Computer and Information Science

January 10, 2017



ii



Czech Technical University in Prague 
Faculty of Electrical Engineering 

Department of Cybernetics 
 

BACHELOR PROJECT ASSIGNMENT 

Student:   Tomáš   F i š e r     

Study programme:  Open Informatics 

Specialisation:  Computer and Information Science 

Title of Bachelor Project:    Integrated Route and Charging Planning for Electric Vehicles 
 
 

 
Guidelines: 

 
1. Familiarize yourself with the existing approaches to formalize and solve the problem  
    of route planning for electric vehicles (EV) with integrated charging station selection.  
2. Select and formalize an appropriate variant of the EV routing problem that considers  
    dynamic charging prices for charging station selection. 
3. Propose and implement an algorithm for the selected variant of the EV routing problem. 
4. Evaluate the performance of the implemented EV routing algorithm on real-world data. 
5. Integrate the algorithm into an EV routing demonstration application. 
 
 
Bibliography/Sources:    
[1] Emmanouil S. Rigas, Sarvapali D. Ramchurn, and Nick Bassiliades. "Managing electric  
     vehicles in the smart grid using artificial intelligence: a survey." In IEEE Transactions on  
     Intelligent Transportation Systems,  vol. 16, no. 4,  2015. 
[2] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. "Energy-optimal  
     routes for electric vehicles." In Proceedings of the 21st ACM SIGSPATIAL International  
     Conference on Advances in Geographic Information Systems, pp. 54-63. ACM, 2013. 
[3] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas  
     Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. "Route planning in  
     transportation networks." arXiv preprint arXiv:1504.05140 (2015). 

Bachelor Project Supervisor:   doc. Ing. Michal Jakob, Ph.D. 

Valid until:   the end of the summer semester of academic year 2016/2017 

 

 

       L.S. 

 

prof. Dr. Ing. Jan Kybic 
Head of Department 

 prof. Ing. Pavel Ripka, CSc. 
Dean 

Prague, January 11, 2016 



iv



v

Aknowledgements
At first, I would like to thank my supervisor doc. Ing. Michal Jakob, Ph.D. for the guidance
and for providing the opportunity to work on this challenging topic. Then, I wish to thank
Ing. Jan Nykl for many consultations associated with implementation and writing, Ing.
Pavol Žilecký for the knowledge transfer about Open Street Map data and Tomáš Breník
for comments to a language usage. Also, I am grateful to the Open Street Map contributors
for providing geographical data for free.

Finally, the access to computing and storage facilities owned by parties and projects
contributing to the National Grid Infrastructure MetaCentrum, provided under the pro-
gramme "Projects of Large Research, Development, and Innovations Infrastructures" (CES-
NET LM2015042), is greatly appreciated.



vi



vii

Declaration
I declare that the presented work was developed independently and I have listed all sources
of information used within it in accordance with the methodical instructions for observing
the ethical principles in the preparation of university theses.

In Prague on January 9, 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



viii



Abstract
This thesis is aimed at journey planning for electric vehicles (EVs), where it is necessary to
make stops at charging stations. We minimize the travel costs of the journey in a model o
transport network where the price per unit of energy may vary due to the ’Dynamic pricing’
strategy. To avoid inappropriate detours, we consider that travel time is also included in the
travel costs. Furthermore, the significance of the time spent on the journey is determined by
the EV driver himself. We have proposed a bicriteria algorithm that computes a set of opti-
mal journeys. The set contains a journey with the minimum travel costs, a journey with the
minimum travel time and alternative journeys that are the trade-off between both criteria.
The algorithm is based on Bicriteria Shortest Path algorithm. We extended the Bicriteria
Shortest Path algorithm to satisfy the EV battery constraints and to allow recharging at
charging stations. Moreover, we proposed some techniques that speed up the algorithm at
the expense of harming the optimality of solutions. We implemented the algorithm in Java
language and tested on the real-world model of Germany road network with Tesla’s charg-
ing stations. The evaluation of our experiments shows that the computation time of the
algorithm is 622 ms on average. Finally, we developed the web application ’Charge Here’
where the same algorithm is applied.

Abstrakt
V této práci jsme se zaměřili na plánování tras pro elektromobily, kde je potřeba využít
nabíjecích stanic k dobití baterie. Minimalizujeme cestovní náklady v modelu silniční sítě,
kde cena za jednotku energie se může během dne lišit v souvislosti se strategií "Dynamic
pricing". Abychom se vyhnuli nadbytečně dlouhým trasám, započítáváme do cestovních
nákladů i dobu jízdy. Řidič si sám může určit, jaký význam pro něj má čas strávený
na cestách. Navrhli jsme bikriteriální algoritmus, který počítá množinu optimálních tras.
Množina tras obsahuje trasu s minimální dobou jízdy, trasu s minimalními cestovními nák-
lady a několik alternativních tras. Náš algoritmus vychází z algoritmu "Bicriteria Shortest
Path Algorithm". Tento algoritmus jsme rozšířili tak, aby splňoval omezení daná baterií
v elektromobilu a zároveň umožnil nabíjení u nabíjecích stanic. Dále jsme navrhli některé
techniky, které zrychlují algoritmus na úkor porušení optimality řešení. Navržený algoritmus
jsme implementovali v jazyce Java a otestovali na modelu silniční sítě Německa s nabíjecími
stanicemi od Tesla Motors. Podle výsledků evaluace je průměrný výpočení čas algoritmu 622
ms. Nakonec jsme vyvinuli webovou aplikaci "Charge Here", ve které je aplikován uvedený
algoritmus.
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Chapter 1

Introduction

The global population growth and urbanization are associated with the transport. Most
motor vehicles are propelled by petrol or diesel. These types of fuel pollute the air and
are often blamed for contributing to climate change. Regardless of the fact that petroleum
reserves are running out, there is an increasing interest in the protection of the planet, thus
the alternative fuel vehicles were developed, e.g., electric vehicles (EVs). The EVs bring
new problems to the journey planning such as recuperation or battery constraints. The
cruising range of the EV is limited because the capacity of the battery in the vehicle is
small. Therefore, it is required to count properly the energy consumed by EV during the
journey, because the EV driver does not want to get stuck in the middle of the journey. The
energy consumption is influenced by various parameters, e.g., speed, elevation or weather
conditions.

Since longer journeys are not feasible by EV per one charge cycle of the battery, it is
crucial to plan the journey via charging stations. However, recharging the EV at the charging
station lasts longer than refueling a standard petrol vehicle and the charging station has a
limited number of stalls. These differences extends the total travel time of the journey and
should be considered while planning the journey.

We assume, that the costs of the journey are also relevant to many EV drivers. Nowadays,
the costs for recharging the battery of EV are stable, more or less. Nevertheless, the number
of EV owners is growing rapidly and the EV traffic is hardly predictable. This will have
a big impact on the electrical grid. We believe, that the Dynamic Pricing strategy is a
way to balance the electrical grid. In this work, we will consider that the price per unit of
energy might update anytime, anywhere. In other words, the price per unit of energy at
charging station will be dependent on the time of a day and on the location of the charging
station. The Dynamic Pricing strategy forbids us to use several speed-up techniques that are
commonly used in journey planning. We would like to provide an algorithm that considers
the Dynamic Pricing strategy as well as the EV battery constraints and computes the
journey with minimal travel time and the journey with minimal travel costs. We found this
problem challenging and actual. The fact that nobody considered Dynamic Pricing strategy
in journey planning for EV before, is even more motivating. Also, we will develop the web
application which should help an EV driver to plan the journeys comfortably on demand.
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Chapter 2

Related Work

In this chapter, we introduce works that are closest to the subject of this thesis. Firstly, we
provide a survey of the literature relating to journey planning for electric vehicles (EVs).
Secondly, we review existing web applications.

2.1 Journey Planning for Electric Vehicles

Many articles, theses and papers were written about the journey planning for EVs. Most
of them are focused on minimizing energy consumption or travel time. They integrates
battery constraints into the graph algorithms that are based on the Dijsktra’s shortest
path algorithm [1]. The reason why the basic Dijkstra’s algorithm cannot be used is that
the battery could recuperate energy by braking or going downhill. Thus, the negative edge
weights describing energy consumption are present in graph. Mostly, the simplified model
of energy consumption is used, it considers the horizontal distance and the elevation change
between two vertices.

The first contribution that compute the energy-optimal paths for EV is [2]. They formu-
lated the energy-efficient path problem for EV as an instance of the constrained shortest
path problem [3], where the battery constraints are considered. Then, they provided a
label-correcting algorithm with worst case time complexity of O(n3). This work was ex-
tended in [4] where Johnson’s potential shifting [5] handles the negative weights and
A* search algorithm [6] is used. This improved the time complexity to O(n2). In [7] was in-
troduced the chaining of edges with no loss of information about energy consumed during
the path. It allowed the usage of the speed-up technique called Contraction Hierarchies,
firstly introduced in [8]. This technique computes shortcuts between vertices, it is commonly
used in large graphs. With such a pre-processing approach, [7] improved the time complex-
ity of the algorithm to O(n logn+m). They achieved average computation time of less than
a second on the road network with more than million road segments. In [9] is provided a
nontrivial bidirectional search algorithm with Customizable Route Planning technique
[10], that answer queries within 0.3 ms on average. The algorithm was implemented in C++
and evaluated on the road network of Europe.

Note that all previous studies do not contain charging stations in the road graph. The
battery switch stations are considered in [11] and the EV problem minimizes the number of

3
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battery switches during the path. This approach uses the pre-processed graph that contains
all shortest paths between charging stations. In the query time, the shortest paths from
the origin vertex to all feasible charging stations are computed (First Mile problem), as
well as the shortest feasible paths from charging stations to destination vertex (Last Mile
problem). The solutions of the First Mile and Last Mile problem are added to the pre-
processed graph. Then, the pre-processed graph is used to compute the requested journey.

The bachelor thesis [12], written by Jonas Sauer, deals with finding an energy-optimal
journey for EV, where the recharging at the regular charging stations is allowed. The energy-
optimal path problem is extended such that the number of visited chargers is minimized. The
similar approach is also in the Zündorf’s master thesis [13]. However, it aims to minimizing
the travel time considering more types of charging stations, i.e., the charging stations with
different charging speeds and the battery swapping stations. Both [12, 13] provided the
algorithm that is based on Multi-objective A* search (MOA*) [15] that returns a Pareto
sets of paths. Also the Contraction Hierarchies and the graph pre-processing is used. The
solution use the piece-wise linear convex functions to model the charging process. In [13],
the potential shifting is not used. He optimizes the travel time which has non-negative edge
weights in the graph, the energy consumption is used as the constraint only. The part of
this thesis was also published in the paper [14].

Nevertheless, the energy-efficient journeys may have disproportionate detours. In [16] is
added additional criterion besides the criterion of energy consumption, such as travel time or
length. The optimal journeys that solves their problems, probably satisfy the requirements
of the EV driver better. Unfortunately, as in [11], only the switching charging stations are
taken into account. Another approach with combined criteria is introduced in [17]. They
consider the travel time and the energy consumption as the criteria. Furthermore, they use
model with multiple speed limits for each road segment. The recharging is not allowed in
the study. Their multicriteria algorithm with several speed-ups achieve computation time
of 750 ms on average on the continental road network.

The Previous literature was focused on the grap-based algorithms only. A different
approach for EV routing is introduced by Boston University in [18, 19]. They formulated
Mixed-Integer Nonlinear Programming (MINLP) problem for EVs that minimizes
travel time considering recharging at the charging stations.

Every mentioned work that solve problems for EV, consider the recuperation effect while
driving downhill and prevents the overcharging and undercharging the battery of EV during
a journey.

For more general insight into problems connected to EVs, we also mention [20] given by
IEEE, it is the survey of works written before 2015. It analyzes the application of artificial
intelligence to the major challenges that arise with deployment and management of EVs. It is
mainly focused on the energy-efficient EV routing, charging station selection and integration
of EVs into the smart grid.

Note that the main purpose of this work is to minimize travel costs. More precisely,
money spent for the energy charged at charging stations during the journey. In the case,
the price per unit of energy is the same for all charging stations, the problem is equivalent
to the minimization of energy consumption. However, we consider the dynamic pricing
strategy, then the prices are frequently updated. Thus, the price-optimal journey may not
be neither the energy-efficient nor the fastest. Furthermore, the prices are unknown before
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the query time and they depends on the arrival time to the charging station. It causes that
several techniques used in the studies, mentioned in this section, cannot be directly applied.

2.2 Web Journey Planners for Electric Vehicles

Journey planner is a search engine which finds the optimal journey between two points,
which is typically the shortest or the fastest journey. Several journey planners that are
focused on EVs are available online. Most of them are under development, in beta version
or area limited.

The first published web journey planner for EVs is the project of the South West College
and Action Renewables called Egomap1. This planner compares the public transport to
the EVs on CO2 emissions. According to our test, it works in Ireland and Portugal only.
The another interesting planner is the EV Trip Planner2 developed by Ben Hannel. It
predicts the energy consumption for the route. The physics based model that computes the
energy consumption considers speed, air density, elevation. The EV Route 3 application by
Controtex was developed mainly for Nissan Leaf and covers the UK, Ireland and Japan.
Both the EV Trip Planner and the EV Route use the Open Charge Map API to locate the
nearest chargers. The other planners that plan via chargers are the planner by Go Electric
Stations4 and the evRoutes5.

The last type of available web applications are planners that use the Google Maps
Directions API to compute the journeys and shows the charging stations nearby, e.g., the
journey planners by KELAG6, PlugShare7 or Chargemap8.

Nevertheless, the documentation of all these projects is unavailable, incomplete or none,
so we can only guess what algorithms and techniques were used. Note that, none of the
projects from major competitors on the market such as Google Maps9, Bing Maps10 or
HERE Maps11 provide journey planning for EVs.

1http://egomap.eu/
2http://evtripplanner.com/planner/2-7/
3http://evroute.controtex.com/
4http://goelectricstations.com/map-charging-stations.html
5http://evroutes.com/
6http://ev-charging.com/at/en/directions
7http://plugshare.com/
8http://chargemap.com/points/searchRoute
9http://maps.google.com

10http://bing.com/maps
11http://maps.here.com
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Chapter 3

Problem Specification

In this chapter, we formalize the electric vehicle routing problem with recharging. Firstly,
we recall several definitions from the graph theory that are useful for this work. Secondly,
we describe the transport network for EVs. Thirdly, we introduce the exact model of such
transport network as an extension of directed weighted graph. Finally, we specify two
problems, the Earliest Arrival Problem for EV and the Minimum General Cost Path Problem
for EV.

3.1 Preliminaries

3.1.1 Directed Weighted Graph:

The directed weighted graph is a graph G = (V,E, f), where

• V is a set of vertices,

• E is a set of oriented edges,

• f is a weight function f : E 7→ R which assigns a numeric value to an edge e ∈ E.

Note that the difference between the oriented edge e = (u, v) from a vertex u ∈ V to a
vertex v ∈ V and the non-oriented edge e′ = {u, v} = {v, u} between two vertices u, v. Only
the oriented edges are used in this work, even if it is not explicitly mentioned.

3.1.2 Path

Given a graph G = (V,E, f), the path P = (v1, . . . , vn) ∈ V n is a sequence of vertices
from a vertex v1 ∈ V to a vertex vn ∈ V such that exists an edge ei = (vi, vi+1) ∈ E for
i = 1, . . . , n − 1 where n = |P | is a number of vertices included in the path P . Then, we
define the weight of the path as w(P ) =

∑n−1
i=1 f(ei) ∈ R.

Shortest Path: Given a graph G = (V,E, f), the shortest path P ∗u,v ∈ G is a path
P = (u, . . . , v) from a vertex u ∈ V to a vertex v ∈ V with the smallest weight w(P ∗u,v) =
min(w(P )) ∈ R of all possible paths P ∈ G from u to v.

7
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Constrained Path: Given a graph G = (V,E, f) and a set of constraints C, the con-
strained path Pu,v,C ∈ G is a path P = (u, . . . , v) from a vertex u ∈ V to a vertex v ∈ V
such that every constraint c ∈ C is satisfied.

Constrained Shortest Path: Given a graph G = (V,E, f) and a set of constraints C,
the constrained shortest path P ∗u,v,C ∈ G is a constrained path from a vertex u ∈ V to a
vertex v ∈ V with the smallest length w(P ∗u,v,C) = min(w(P )) ∈ R of all possible constrained
paths Pu,v,C ∈ G from u to v.

3.2 Transport Network

The transport network is a system of locations and ways used for transporting objects
or people. Various types of transport are included in the transport network, for example
aviation, ship transport or land transport. Traveling by vehicles refers to a road transport
which is a part of the land transport.

3.2.1 Road network

The road network is represented by junctions and roads between them. It is divided into
road categories, where every road category (e.g. motorways or primary roads) has different
restrictions for the transportation. The road network could be expressed as a graph structure
where junctions are vertices and roads are edges.

3.2.2 Filling stations

Filling stations is a set of locations where it is possible to refill a vehicle with a fuel, e.g.,
gasoline, diesel fuel or electric energy. Petrol vehicles are refueled at the fueling stations
and EVs are recharged at the charging stations. Considering a time, a driver of petrol
vehicle does not bother to stop for refueling petrol because the process takes a few minutes.
Whereas for a driver of EV, recharging is less pleasant. Grid of charging stations is sparse
and recharging a vehicle takes at least half an hour. The EV driver has a choice of several
types of charging stations. A lot of charging stations provide very slow charging. One of
the fast charging station is the Tesla supercharger1, where recharging to the 80 % of battery
capacity takes approximately 40 minutes. Superchargers are placed carefully such that the
recharge to 80 % of battery capacity should suffice to reach another supercharger. A Special
type of charging station is the swapping station, where the battery of EV is replaced with
another fully charged battery and it is possible to continue the journey without recharging.

3.2.3 Dynamic Pricing

Dynamic pricing is a business strategy that sets a price to products based on the current
state of the market. We consider dynamic pricing strategy to determine the price per unit
of energy on the charging station. Prices may be affected by various external influences,

1http://tesla.com/supercharger
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e.g., situation of the electrical grid. In rush hours, energy could cost more than at night.
We take into account that the price is dependent on the location of the charging station and
the exact time of visit.

3.2.4 Time Monetization

As Benjamin Franklin mentioned the phrase "Time is money" in his "Advice to a Young
Tradesman" [21], we are convinced that travel time is crucial for drivers. Optimizing the
amount of money spent for recharging could lead to finding a journey with a big detour. To
give a balance between time and the amount of money spent during a journey, we add the
parameter Φ that could include the value of travel time to the travel costs. The parameter
is set by the EV driver. If the driver likes driving, there is also the opportunity to turn off
this feature by setting the parameter to zero.

3.3 Model of Transport Network for Electric Vehicles

Our transport network model is a graph which contains junctions and chargers as vertices
and roads as edges. Junctions and chargers are described by a pair of GPS coordinates
and its elevation. The road is an oriented connection from one junction to another. Road
description, e.g., the road length or energy consumption, is expressed by functions.

Road Graph: The Road Graph Gr = (Vr, Er,Mr, g, δ, ν, Rr, %) is a directed weighted
graph, where

• Vr is a set of vertices describing the junctions, where a vertex v ∈ Vr is defined by its
latitude latv ∈ R, longitude lonv ∈ R and elevation elevv ∈ R,

• Er is a set of edges describing the roads between junctions,

• Mr is a set of supported EV models in the graph,

• a function g : Er ×Mr 7→ R assigns an energy consumption to an edge e ∈ Er and to
an EV model m ∈Mr,

• a function δ : Er 7→ R+
0 assigns a distance to an edge e ∈ Er,

• a function ν : Er 7→ R+
0 assigns an average speed to an edge e ∈ Er,

• Rr is a set of all road categories that occur in the graph,

• a function % : Er 7→ Rr assigns a road category to an edge e ∈ Er.

Charger Extended Road Graph: The Charger Extended Road Graph (CERG) G′r =
(V ′r , Er,Mr, g, δ, ν, Rr, %, φ, ς) is a directed weighted graph, where

• V ′r = Vr ∪ S is the union of the set of vertices Vr from the Road Graph Gr and the
set of vertices S, where a vertex s ∈ S is a charger defined by its latitude lats ∈ R,
longitude lons ∈ R and elevation elevs ∈ R,
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• Er is a set of edges in Gr describing the roads between junctions,

• Mr is a set of supported EV models in the graph,

• a function g : Er ×Mr 7→ R assigns an energy consumption to an edge e ∈ Er and to
an EV model m ∈Mr,

• a function δ : Er 7→ R+
0 assigns a distance to an edge e ∈ Er,

• a function ν : Er 7→ R+
0 assigns an average speed to an edge e ∈ Er,

• Rr is a set of all road categories that occur in the graph,

• a function % : Er 7→ Rr assigns a road category to an edge e ∈ Er,

• a function φ : S × R+
0 7→ R+

0 assigns a price per unit of energy to a charger s ∈ S at
time t ∈ R+

0 ,

• a function ς : S ×Mr 7→ cts,m assigns a charging function to a charger vertex s ∈ S
and an EV model m ∈Mr.

3.3.1 Model of Electric Vehicle

Let us define the simple EV model m ∈Mr such that m = {bmin, bmax} where bmax ∈ R+
0 is

a maximum of battery capacity and bmin ∈ [0, bmax] is a minimum of battery capacity. Note
that, the bmin is not fixed to zero value. It gives an ability to each EV model to specify
the minimum battery state of charge which is safe to not get stranded in the middle of the
journey.

Figure 3.1: Tesla Model S.

3.3.2 Battery State of Charge

Let us have a Charger Extended Road Graph (CERG)G′r and a EV modelm = {bmin, bmax}.
We have to allow the possibility of recharging the battery in a vertex v ∈ V ′r , we distinguish
the arrival (incoming) state of charge (SoC) bin(v) ∈ [bmin, bmax] and the departure (outgo-
ing) SoC bout(v) ∈ [bmin, bmax] of the vertex v. In other words, the bin(v) is a SoC before
the recharging and the bout(v) is a SoC after the recharging. Then, the amount of energy
bch(v) ≥ 0 recharged in a vertex v is the difference between the departure SoC bout(v) and
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the arrival SoC bin(v), formally written as bch(v) = bout(v)−bin(v). Note that the departure
SoC is greater or equal than the arrival SoC (bout(v) ≥ bin(v)) if the vertex v ∈ S is a
charger, otherwise bin(v) = bout(v). The battery recuperation causes that CERG G′r may
contain edges with a negative energy consumption. This means that SoC will increase or
decrease after traversing the edge. While computing a path, the battery SoC has to stay
in the battery interval [bmin, bmax], because overcharging and undercharging the battery are
not allowed. Since it is unknown how much energy is charged on each visited charging sta-
tion, the definition of path does not suffice to describe a journey for EV in G′r. To describe
a journey in CERG G′r properly, we also need a function bch that assigns the amount of
charged energy to the visited charger. According to [12] we define a function that computes
the arrival SoC and the departure SoC of each vertex that is contained in the constrained
path. We extended the function from [12] that recharging in the vertex is possible.

Let us have a set of constraints Cev = {bmin, bmax}, a constrained path Pv1,vn,Cev ∈ G′r,
where n = |Pv1,vn,Cev | is the number of vertices included in Pv1,vn,Cev and a function bch :
S∩Pv1,vn,Cev 7→ R+

0 . Then, we define the function bin : Pv1,vn,Cev×Mr 7→ [−∞, bmax] assigns
an arrival SoC to the vertex vi ∈ Pv1,vn,Cev for each i = 1, . . . , n, as follows:

bin(vi,m) =


binit, if i = 1
min(bin(vi−1,m) + bch(vi−1)− g((vi−1, vi),m), bmax), if vi ∈ S
min(bin(vi−1,m)− g((vi−1, vi),m), bmax), otherwise

where binit is the initial SoC in the vertex v1 where g is a function of CERG G′r that assigns
an energy consumption to a tuple of an edge and an EV model. The function bin adds the
amount of energy recharged at the charger s ∈ S to the arrival SoC in previous vertex in
the path. Then, subtracts the amount of energy consumed by traversing the edge. When
overcharging would occur, the function bin return the maximum of the battery capacity
bmax. In contrast to the overcharging, the undercharging affects the feasibility of the path.
Also, we define the function bout : Pv1,vn,Cev ×Mr 7→ [−∞, bmax] assigns a departure SoC to
vi ∈ Pv1,vn,Cev for each i = 1, . . . , n as follows:

bout(vi,m) =
{
bin(vi,m) + bch(vi), if vi ∈ S
bin(vi,m), otherwise

Then, the path Pv1,vn,Cev = (v1, . . . , vn) is feasible by EV if and only if the bin(vi) ∈
[bmin, bmax] ∧ bout(vi) ∈ [bmin, bmax] holds for i = 1, . . . , n.

3.3.3 Approximated Consumption Function

We provide a simplified model of the consumption function g in the CERG G′r, similarly
as in [13, 7]. This model use the elevation change and the length between two vertices to
compute an energy consumption of the edge. Given the vertices u, v ∈ V ′r , their elevation
change ∆eleve = elevv − elevu and a function δ ∈ G′r, we define a function g : E ×Mr 7→ R
that assigns an energy consumption g(e,m) to every edge e = (u, v) ∈ E traversed by an
EV model m in the CERG G′r such that:

g(e,m) =
{
κ · δ(e) + λ ·∆eleve, if ∆eleve ≥ 0
κ · δ(e) + α ·∆eleve, otherwise
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where κ, λ, α ≥ 0 are tuning constants. The function g distinguishes an energy consumed
while driving uphill (∆eleve > 0) from driving downhill (∆eleve < 0). While driving
downhill, the function g could return a negative value, it represent the recuperation of the
battery. Note that we do not use any the property of EV model m to influence the energy
consumption, however this function suffices for our requirements. For now, we can affect
the consumption by setting the tuning constants.

3.3.4 Charging Function

Given a sequence of continuous intervals (I1 = [x1, x2), I2 = [x2, x3), · · · , Ik = [xk,∞)),
a piecewise linear function f : X 7→ Y is a function that is linear on each interval Ii for
i = 1, · · · , k. Then each point (xi, f(xi)) for i = 1, · · · , k is the supporting vector of f . Given
a sequence of supporting vectors ((x1, y1), · · · , (xk, yk)) where xi < xi+1 for i = 1, · · · , k−1,
the piecewise linear function is uniquely defined as follows:

f(x) =



(x−x1)(y2−y1)
x2

+ y1, if x1 ≤ x < x2
(x−x2)(y3−y2)

x3
+ y2, if x2 ≤ x < x3
...

(x−xk−1)(yk−yk−1)
xk

+ yk−1, if xk−1 ≤ x < xk

Then, the charging function cts,m : [bmin, bmax] 7→ R+
0 is a non-decreasing piecewise linear

function that assigns a time needed to recharge the EV model m = {bmin, bmax} ∈ Mr on
the charger s ∈ S from the minimum battery SoC bmin to the desired SoC bd ∈ [bmin, bmax].
We reused this model of charging functions from [13].

3.3.5 Journey for Electric Vehicle

Because the constrained path in the CERG G′r is not sufficient to describe recharging during
the journeys, we provide another definition. Given a G′r, an EV model m = {bmin, bmax and
a set of constraints Cev = {bmin, bmax}, we define the journey J(u, v, Cev) = {Pu,v,Cev , bch} ∈
G′r as an union of the constrained path Pu,v,Cev ∈ G′r and the function bch : S∩Pu,v,Cev 7→ R+

0
that assigns the amount of charged energy bch(s) to a charger vertex s ∈ S∩Pu,v,Cev contained
in the constrained path Pu,v,Cev . The journey J(u, v, Cev) is feasible by EV if and only if
the arrival SoC bin(vi) and the departure SoC bout(vi) is in the interval [bmin, bmax] for
i = 1, · · · , n where n is the number of vertices in the journey. The journey J has two
criteria, a travel time tt(J,m) ∈ R+ and travel costs tc(J,m) ∈ R+

0 .

Driving Time Function: Let us define the driving time function dt : E 7→ R which
assigns a time needed to traverse an edge e without recharging, as follows:

dt(e) = δ(e)
ν(e)

where ν : E 7→ R is a function assigning an average speed of EV to an edge e ∈ E and δ(e)
is a function that assigns a length to the edge e.
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Travel Time Function: Given the journey J , we define the travel time criteria tt(J,m) ∈
R+ for the journey J surpassed by an EV model m ∈Mr as

tt(J,m) =
n−1∑
i=1

tt(ei,m)

where ei = (vi, vi+1) ∈ Er is i-th edge in the journey J , n = |J | is the number of vertices
contained in the J and tt : Er ×Mr 7→ R+ is the travel time function that assigns a travel
time to ei. The travel time function contains the driving time as well as the charging time,
it is defined, as follows:

tt(ei,m) =
{
dt(ei) + ctvi,m(bout(vi,m))− ctvi,m(bin(vi,m)), if vi ∈ S
dt(ei), otherwise.

Travel Cost Function: Given the journey J , we define the travel cost criteria tc(J,m) ∈
R+

0 for the journey J surpassed by an EV model m ∈Mr as follows:

tc(J,m) =
n−1∑
i=1

tc(ei,m)

where ei = (vi, vi+1) ∈ Er is i-th edge in the journey J , n = |J | is the number of vertices
in J and tc : Er ×Mr 7→ R+

0 is the travel cost function that assigns a travel costs to ei.
The travel costs function contains the monetized travel time as well as the costs for charged
energy. It is defined as follows:

tc(ei,m) =
{

Φ · tt(ei,m) + φ(vi, tdt(vi,m)) · (bout(vi,m)− bin(vi,m)), if vi ∈ S
Φ · tt(ei,m), otherwise

where tdt(vi) is the departure time in the vertex vi ∈ J defined as

tdt(vi,m) =
{
tinit, if i = 1
tinit + tt(J(v1, vi, Cev),m), otherwise

3.4 Electric Vehicle Routing Problem with Recharging

EV routing covers the problematics connected with computing journeys for EVs. EVs has
several restrictions that was not taken into account in routing for ordinary cars. Cruising
range of EV is small and recharging takes more time on the charging station. Also, the
battery may be recuperated during the ride. The recuperation occurs while decelerating or
driving downhill, it causes that several edges with negative weight are present in the CERG.
Furthermore, we consider dynamic pricing to determine the price per unit of energy. In
this section, we define a Electric Vehicle Routing Problem with Recharging where the CERG
G′r is given.
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Electric Vehicle Journey Request: We define an EV request qev = (o, d, tinit,m, binit,Φ),
where

• o ∈ V ′r is an origin vertex in G′r,

• d ∈ V ′r is a destination vertex in G′r,

• tinit ∈ R+
0 is a departure time from the origin vertex o,

• m = {bmin, bmax} ∈Mr is an EV model that will be driven during the journey,

• binit ∈ [bmin, bmax] is an initial SoC at the origin vertex o,

• Φ ∈ R+
0 is a time monetization constant that describes the price per unit of time.

3.4.1 Earliest Arrival Problem for Electric Vehicles

Given a Charger Extended Road Graph G′r and an EV request qev. The Earliest Ar-
rival Problem for Electric Vehicles with Recharging (EAP-EV) asks for a journey J∗ =
{Pu,v,Cev={bmin,bmax}, bch} ∈ G′r that is feasible by EV. The journey J∗ starts at the origin
vertex o with the initial SoC binit no earlier than tinit and ends in the destination vertex d
with the minimum possible travel time tt(J∗,m). The function bch assigns the amount of
charged energy to every charging station contained in the journey J∗. The journey J∗ has
to satisfy the set of constraints Cev from the journey definition 3.3.5.

3.4.2 Minimum General Cost Path Problem for Electric Vehicles

Given a Charger Extended Road Graph G′r and an EV request qev. The Minimum Gen-
eral Cost Path Problem for Electric Vehicles (MGCPP-EV) asks for a journey K∗ =
{Pu,v,Cev={bmin,bmax}, bch} ∈ G′r that is feasible by EV. The journey K∗ starts at the ori-
gin vertex o with the initial SoC binit no earlier than tinit and ends in the destination vertex
d with the minimum possible travel costs tc(K∗,m). The function bch assigns the amount
of charged energy to every charging station contained in the journey p. The journey K∗ has
to satisfy the set of constraints Cev from the journey definition 3.3.5.

3.4.3 Electric Vehicle Journey Response

We define the EV journey response rev as a set of journeys that contains at least a journey
J∗ and a journey K∗, where

• J∗ = {Pu,v,Cev , bch} is the optimal journey that is asked by the EAP-EV,

• K∗ = {Pu,v,Cev , bch} is the optimal journey that is asked by the MGCPP-EV.

The EV response wraps the solutions of both problems to a set, it may also contain an
additional set of alternative journeys.



Chapter 4

Solution Approach

We solve the both problems from Section 3.4 by multicriteria graph-based algorithm. The
whole process of solving the problem is shown in Figure 4.1. Firstly, we describe the ex-
act structure of the Search Graph. Secondly, we provide the multicriteria algorithm that
computes a set of n feasible journeys (J1 = J∗, J2, . . . , Jn = K∗), where J∗ is the solution
of the EAP-EV, K∗ is the solution of MGCPP-EV and each Ji for i = 2, . . . , n − 1 is the
alternative feasible journey that is a trade-off between J∗ and K∗. We call such a set the
EV response rev. Thus, we compute both journeys by running the multicriterial algorithm
once. Finally, we propose a few techniques that speeds up the algorithm.

Figure 4.1: Journey planner schema. The factory represents the process of building the
Search Graph, the funnel illustrates filtering the input (OpenStreetMap) data. The gears
interpret the algorithm used to compute the journeys. The paths with map markers sym-
bolize the computed journeys J∗ and K∗.

15
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4.1 Search Graph

Since the CERG graph G′r is the general model of transport network for EVs, the weight
functions are not adapted to solve problems with graph-based algorithms. For our purpose,
we build another graph in query time that is more appropriate to solve problems introduced
in Chapter 3. We call such a graph, the Search Graph. The Search Graph is built in query
time, so the EV request qev is already known. The CERG graph G′r is also given. Then, the
Search Graph is a weighted graph Gsearch = (Vsearch, Esearch, tt′, tc′, dt, cp, φ, ς), where

• Vsearch is a set of vertices,

• Esearch is a set of edges,

• tt′ : Esearch × S × [bmin, bmax] × [bmin, bmax] 7→ R+ is a weight function that assigns
a travel time to an edge traversed by the EV model m. Travel time is contains
driving time as well as time spent while recharging at charger s ∈ S from a SoC
bins ∈ [bmin, bmax] to a chargeable SoC bouts ∈ [bmin, bmax],

• tc′ : Esearch × S × [bmin, bmax] × [bmin, bmax] × R+
0 7→ R+

0 is a weight function that
assigns a travel costs to an edge traversed by the EV model m. Travel costs are
derived from costs while driving and from costs for recharging at charger s ∈ S from
a SoC bins ∈ [bmin, bmax] to a chargeable SoC bouts ∈ [bmin, bmax] with a price per unit
of energy πs ∈ R+

0 ,

• dt : Esearch × [bmin, bmax] 7→ R+ is a weight function that assigns a driving time to an
edge traversed by the EV model m according to the departure SoC boutu ,

• cp : [bmin, bmax] × Esearch 7→ R is an energy consumption function that assigns an
energy consumption to an edge traversed by the EV model m according to departure
SoC in u.

• a function φ : S × R+
0 7→ R+

0 assigns a price per one unit of energy to a charger s ∈ S
at time t ∈ R+

0 ,

• a function ς : S 7→ cts,m assigns a charging function to a charger vertex s ∈ S visited
by the EV model m.

Note that the search graph Gsearch is dependent on EV model m, so journeys computed in
this graph may not be feasible by other EV models. The functions tt′ and tc′ are adapted
such that it is possible to recharge in arbitrary charger seen earlier in the journey, they are
defined as follows:

tt′(e, s, bins , bouts) =
{
dt(e, boutu) + cts,m(bouts)− cts,m(bins), if u ∈ S ∧ s 6= ⊥
dt(e, boutu), otherwise.

tc′(e, s, bins , bouts , πs) =
{

Φ · tt′(e, s, bins , bouts) + πs · (bouts − bins), if u ∈ S ∧ s 6= ⊥
Φ · tt′(e, s, bins , bouts), otherwise
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4.2 Shortest Path Algorithm

The shortest path problem is a problem of computing a path P ∗u,v from u ∈ V to v ∈ V in a
Graph G such that the path P ∗u,v has the smallest weight w(P ∗u,v) = min(w(P )) of all paths
Pu,v ∈ G from u to v. If there is no path, we denote the shortest path weight w(P ∗) = ∞
as infinitely long. If graph G is a strongly connected component then a shortest path P ∗u,v
always exists.

The problem defined above is single-pair variation of shortest path problem. There
are more variation as single-source, single destination and all-pairs shortest path problem.
Single-source shortest path problem computes shortest path from source vertex u to all other
vertices in the graph G. Single-destination shortest path problem computes shortest path
from all vertices in the graph G to a destination vertex v. All-pairs shortest path problem
computes shortest path for every pair of vertices (u, v) in a graph G.

4.2.1 Dijkstra’s Algorithm

The Dijkstra’s shortest path algorithm [1] solves the shortest path problem. The original
Dijkstra’s algorithm published in 1959 finds the shortest path between start and goal vertices
in a weighted graph with non-negative edge weights. In other words it solves single-pair
shortest path problem (SP-SPP). Also, by simple modification we can solve the single-source
(SS-SPP), single-destination (SD-SPP) and all-pairs (AP-SPP) shortest path problem. But
solving AP-SPP on large graphs with Dijkstra’s algorithm is slower than Floyd-Warshall
algorithm [22, 23]. Solving SD-SPP by Dijkstra’s algorithm may be done in two variations.
First variation is finding shortest path from all starting vertices to one destination. But
better approach is to convert the problem from SD-SPP to SS-SPP such that we run the
algorithm from destination and investigate incoming edges except outgoing, we call it the
backward search.

Given an directed weighted graph G = (V,E, f) and an origin vertex o ∈ V , we describe
the process of Dijkstra’s algorithm to solve the single-source shortest path problem. In
initialization phase, the algorithm sets distance label lo = 0 to origin vertex o and lv =∞ to
all other vertices v ∈ V \{o}. The origin is added to priority queue Q, which sorts the vertices
by its labels in ascending order. In each iteration, the vertex u ∈ V with the minimum label
lu is polled from the priority queue Q. Then all edges e = (u, v) ∈ E outgoing from the
vertex u are inspected. For every successor v is created new label l′v = lu + f(e), if l′v < lv
then label lv is replaced by l′v and v is added to the priority queue Q. Algorithm ends when
priority Q is empty. In the case of single-pair shortest path problem, the algorithm ends
when the label of destination vertex is polled from the queue Q.

The Dijkstra’s algorithm has the property that once the vertex u ∈ V is polled from the
Q, then there does not exist a shorter path Po,u from the vertex o to the vertex u, it is also
known as label-setting property. In other words, every vertex in the graph is polled no
more than once. This algorithm returns labels with the smallest weights of the path as the
solution, not the path itself. For the path retrieval, the pointer of parent label is added to
each label during the computation.

The shortest path computed by this algorithm may not be feasible by EV (see Figure
4.2). Therefore basic version of Dijkstra’s algorithm can not be used.
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Figure 4.2: Let us consider the optimization on the travel time criteria and none of the
vertices is charging station. The green path from v1 to v3 is optimal. By expanding the v3,
we get the path Pg = (v1, v3, v4) with the travel time of 11 s. Nevertheless, the continuation
to the vertex v4 is not possible, because the battery SoC is zero. If we consider discarding
unfeasible labels. Then, the solution is that the v4 is unreachable from v1, which is not true.
Thus, we cannot discard the blue slower path in v3 because is has better battery SoC and
it is the only way to reach the v4. This picture also shows that one vertex may have more
labels that cannot be discarded.

4.3 Constrained Shortest Path Algorithm

The constrained shortest path problem (CSPP) is an extension of the shortest path problem
such that the computed path has to satisfy a set o constraints. Given an directed weighted
graph G = (V,E, f), a set of constraints C, an origin o ∈ V and a destination d ∈ V . The
CSPP asks for a constrained path P ∗(u, v, C) that has the smallest weight w(P ∗) = min(P )
of all constrained paths P that satisfies a set of constraints C.

It is possible to say that the formulation of our problems is an extension of CSPP,
because the journey is nothing else than the constrained shortest path, accompanied by the
function to retrieve the amount of charged energy by each visited charging station. The
CSPP problem is usually solved by a modification of Dijkstra’s algorithm that is still single-
criterion. However, the time complexity is much worse. Since we have two problems with
battery constraints, we would have to run the algorithm twice, with the travel time criteria
and with the travel cost criteria. However, the travel costs are often affected by the travel
time, thus the search space may become really similar for both problems. We decided to
merge these two criteria and provide the multicriterion algorithm with constraints. The
advantage of this decision is that we will solve both problems at once. Furthermore, the
outcome of the algorithm contain alternative solutions that are the trade-off between the
minimum travel time and the minimum travel cost criteria.
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4.3.1 Bicriteria Shortest Path Algorithm

As a basis of our algorithm, we use the Bicriteria Shortest Path (BSP) algorithm [24, 25]
that does not satisfy any constraints. The BSP is an extension of Dijkstra’s algorithm, that
allow us to compute a set of journeys that contains an optimal journey for each criteria.
The outcome also contains alternative paths representing a trade-off between two criteria.

Since we have two criteria, the label from Dijkstra’s algorithm has to be extended. Given
the graph G′r and the EV request qev. Let us have a label lu = (τ, π) of a vertex u ∈ V ′r ,
where τ = tt(J,m) is the travel time and π = tc(J,m) are the travel costs of the path
Jo,u ∈ G′r from the origin vertex o ∈ V ′r to the vertex u ∈ V ′r . In the Dijkstra’s algorithm,
we replace the label when the newly visited label of the same vertex had lower value. In
this case, it is not that straightforward because we optimize two criteria at the same time.
Then, we need to determine whether the label would be discarded or not. The label lu is
dominated by another label l′u = (τ ′, π′), signed (lu ≺ l′u), if following conditions holds:

τ ≥ τ ′ (4.1a)
π ≥ π′ (4.1b)

τ 6= τ ′ ∨ π 6= π′ (4.1c)

In other words, we can discard only the label that is worse in both criteria. The Pareto
set Lu is a set of labels assigned to vertex u ∈ V ′r where each label lu ∈ Lu is not dominated
by any other label l′u ∈ Lu. In case of Dijkstra’s basic approach, every vertex has one label
only. In this extended algorithm, every vertex u ∈ V ′r has a pareto set Lu which may contain
an arbitrary number of labels.

In the initialization phase, the algorithm adds the origin label lo = (0, 0) to the pareto
set Lo, pareto sets of all other vertices are empty. Also, the origin label lo is added to the
priority queue Q. In the priority queue, labels are sorted firstly by travel time, secondly
by travel costs. Note that this time, we add the labels to the queue, not the vertices. In
each iteration, the label lu is polled from the top of the priority queue Q. Then all edges
e = (u, v) ∈ Er outgoing from u are inspected. For every successor v is created a new label
l′v = lu + (tt(e,m), tc(e,m)). If the label l′v is not dominated by any label lv ∈ Lv, then
the label l′v is added to Lv and Q. At the same time, each label lv ∈ Lv that is dominated
by newly created label l′v is removed from Lv and Q. Algorithm terminates when Q is
empty. The solution of the algorithm is the Pareto set Ld of the destination vertex d. This
algorithm is label setting because the functions tt and tc are non-negative. In this case it
means, that once the vertex u is polled from Q then the actual label lu cannot be dominated
anymore, we call such a label as settled. If we stop the algorithm after the first label ld
of the destination vertex is polled from Q, we get only the path with the minimum travel
time.

The basic BSP algorithm does not support the battery constraints nor the charging at
charging stations. We have to do several modifications to make this algorithm applicable
for our problems. Firstly, we need to track the battery SoC of EV model in each vertex
contained in the journey. The battery SoC is changed, according to the energy consumed
by the EV model, during the traversing an edge. We consider battery recuperation when
driving downhill, thus some of the edges have negative energy consumption. In papers that
optimizing energy consumption, the potential shifting technique [5] is used to get rid of
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negative weights. For our purpose, it is not needed because we use energy consumption to
compute a SoC which is the constraint only. Note that negative cycles are not occurred
in a graph G′r considering the g as a weight function, because it is not possible to arrive
to a visited position with greater SoC than before, without recharging. However, in G′r
are charging stations that violates this assumption. Moreover, the situation of returning to
the vertex later with recharged energy is appreciated, when the EV driver is forced to do
a detour to a charging station. Fortunately, the SoC is limited by bmax, thus the negative
cycle cannot cause the infinite loop of the algorithm.

4.3.2 Modified Consumption Function

The consumption function g in G′r does not consider battery constraints of the EV model m.
During the computation we must consider situation when traversing an edge will exceeds
the maximum SoC bmax or surpass the minimum SoC bmin. Similarly as in [12], let us define
an energy consumption function c : [bmin, bmax] × Esearch ×Mr 7→ R which returns energy
consumed while traversing an edge e = (u, v) ∈ Esearch with an EV modelm from the vertex
u and a departure SoC bout(u) ∈ [bmin, bmax] as follows:

c(bout(u), e,m) =


∞, if bout(u)− g(e) < bmin
g(e), if bout(u)− g(e) ∈ [bmin, bmax]
bout(u)− bmax, if bout(u)− g(e) > bmax

This function regulates the energy consumption assigned by function g depending on the
departure SoC bout(u) in the vertex u. If the edge is not feasible by EV model m, the
function returns the infinity value. If the maximum of battery capacity bmax would be
exceeded by traversing an edge, the function c returns a value that recuperate the battery
to the maximum of battery capacity bmax.

4.3.3 Charging on the Charger

While the charger s ∈ S is visited during the computation, we are facing the problem that
we do not know much energy is optimal to be charged. Rather than trying all options from
the interval [bin(s), bmax], we use the concept of recharging from [13]. The purpose is that
we compute the amount of charged energy on the charger retrospectively. If we visit the first
charger, we mark the arrival SoC bin(s) and pointer on the charger s. When the following
charger is visited, we derive from the information about the path between chargers, how
much energy is charged on the last seen charger s. Then the charging time and travel costs
are added to the following label. When we reach the destination node, it is needed to add
another last correcting label that contains charging on the last seen charger. On the other
hand, it complicates the domination of labels during the search, because labels with the
different s may not be dominated.

Consumption Profile Function: Since we do the recharging retrospectively, tracking
the SoC with the consumption function c is not possible. As in [7, 13, 12], we profile the
energy consumption from the actual charger to the next charger by keeping three values
only, the minimum SoC ine ∈ [−bmax, bmax] to traverse an edge, energy consumed coste ∈



4.3. CONSTRAINED SHORTEST PATH ALGORITHM 21

[−bmax, bmax] by traversing an edge (if the battery is not overcharged) and the maximum
possible SoC oute ∈ [−bmax, bmax] after traversing an edge. Then the consumption profile
function cpe(b, e,m) : [bmin, bmax]× Esearch ×Mr 7→ R is defined as follows:

cpe(bout(u), e,m) =


∞, if bout(u) < ine
bout(u)− oute, if bout(u)− coste > oute
coste, else.

For a single edge e ∈ E is consumption profile function created by setting:

ine = max{bmin, g(e)},
oute = min{bmax, bmax − g(e)},
coste = max{g(e),−bmax}.

If g(e) > bmax, then the edge e is not feasible and the function cp(e, bout(u),m) is undefined.
Note that the functions c and cp are equivalent for a single edge. However, we need to
profile an energy consumption for more edges chained in the path. The advantage of using
the function cp is that after the edges are chained, we are still able to describe the energy
consumption by three values, while traversing both edges consecutively. Thus, we define
how consumption profiles are chained. Given two edges e1 = (u, v), e2 = (v, w) ∈ E and
their consumption profiles cpe1 , cpe2 , we get chained consumption profile cpe1◦e2 by setting:

ine1◦e2 = max{ine1 , coste1 + ine2},
oute1◦e2 = min{oute2 , oute1 − coste2},
coste1◦e2 = max{coste1 + coste2 , ine1 − oute2}.

If max{ine1 , coste1 + ine2} > bmax, then the shortcut is not feasible and cpe1◦e2 is undefined.
Note that costp is not always the sum of particular edge costs, it is the case when any
subpath recuperate more than maximum energy. Also, the profile of energy consumed on
chained edges differs for each EV model.

Chargeable Limits: As suggested earlier, algorithm do the charging procedure at the
charger or the destination vertex only if any charger were seen before. Now, we need to
determine the amount of charged energy at the last seen charger vertex. When we arrive to
such a vertex u ∈ S ∪ d, where the charging by last seen charger s ∈ S is allowed. The SoC
bin(s) is a SoC at last seen charger vertex and cps,u is consumption profile from s to u. We
determine the maximum SoC βmax and minimum SoC βmin that pays of to be charged as
follows:

βmax = costs,u + outs,u

βmin = max(ins,u,min(bin(s), βmax))

If the charging time function and price per unit of energy is the same for all chargers,
then would be optimal to charge to SoC βmin. Nevertheless, we consider dynamic pricing
on the chargers, thus we have to try all chargeable SoCs in the interval [βmin, βmax]. We
discretize the interval to a finite list of SoCs. Let us define a list of chargeable SoCs CL =
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𝑏𝑖𝑛(𝑠)

𝑏𝑜𝑢𝑡𝑛

𝑏𝑜𝑢𝑡2

𝑏𝑜𝑢𝑡1

Figure 4.3: Chargeable state of charges. The bin(s) ∈ [bmin, bmax] is a SoC while arriving
to the charger and CL = (bout1 , bout2 , ..., boutn) is finite list of n SoCs that are possible to
charge.

(bout1 = βmin, bout2 , . . . , boutn = βmax), where n = |CL| is number of SoCs in the list and
bouti < bouti+1 for i = 1, . . . , n− 1, see Figure 4.3.

Thus, for each successor of the actual vertex u we generate exactly n labels. By dis-
cretizing the interval, we may violate the optimality of solution, it is important to choose
SoCs between βmin and βmax wisely. On the other hand, we can adapt to the EV driver by
choosing the list of SoCs that he desire to charge. In real use, driver will not want to go to
a charging station because of the recharging a small amount of energy.

4.3.4 Extended Label

Given the search graphGsearch, let us have an extended label lu = (τ, π, bch, cps,u, s, bins , πs),
where

• τ ∈ R+
0 is travel time in vertex u without charging time at the last seen charger s,

• π ∈ R+
0 is travel costs in vertex u without travel costs for charging at the last seen

charger s,

• bch : Vsearch 7→∈ R+
0 is a function that assigns the amount of charged energy to each

vertex in the path,

• s ∈ S is last seen charger,

• cps,u is a consumption profile function of the path from the last seen charger s to the
vertex u,

• bins ∈ R is the arrival SoC at the last seen charger s.

• πs ∈ R+
0 is the price per unit of energy at the last seen charger s
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Similarly as in basic BSP algorithm, we define the domination rule (≺) for labels. The
label lu is dominated by another label l′u = (τ ′, π′, cp′s′,u, s′, b′in′s , π

′
s′) if all conditions in 4.2

or in 4.4 are fulfilled:

τ ≥ τ ′ ∧ π ≥ π′ (4.2a)
s = s′ ∧ πs = π′s (4.2b)

bins ≤ b′in′s ∧ cps,u ≺ cp
′
s′,u (4.2c)

To be this rule complete, we also have to define a domination for the consumption profile
function. Given two consumption profile functions cpu,v, cp′u,v where u, v ∈ Vsearch. The con-
sumption profile function cpu,v is dominated by cp′u,v if cpu,v(b) < cp′u,v(b);∀b ∈ [bmin, bmax].
It is really inconvenient to iterate all battery SoCs. The dominance could be simplified using
three values we defined before, which will hold the correctness. The cpu,v is dominated by
cp′u,v, signed as cpu,v ≺ cp′u,v when all following conditions hold:

inu,v ≤ in′u,v (4.3a)
costu,v ≥ cost′u,v (4.3b)
outu,v ≤ out′u,v (4.3c)

The conditions in 4.2 are truly limiting because we can dominate label only if the same
last seen charger was visited with the same price. We strengthen the domination such that
we compare the best case of the recharged label lu to the worst case of recharged label
l′u. If the worst case of l′u is better than the best case of lu, the lu is also dominated. We
recharge the l′u to the maximum chargeable SoC at last seen charger s and the label l′u to
the minimum rechargeable SoC at last seen charger s′. When we recharge the labels lu and
l′u in last seen charger, then it is not needed to include information about last seen charger
to the label dominance rule. Let us have two triplets, (τac, πac, bac) and (τ ′ac, π′ac, b′ac) where

• τac ∈ R+
0 is the travel time in u after recharging the label lu to the minimum chargeable

SoC in s

• πac ∈ R+
0 is the travel costs in u after recharging the label lu to the minimum chargeable

SoC in s

• bac ∈ R is the arrival SoC in u after recharging the label lu to the minimum chargeable
SoC in s

• τ ′ac ∈ R+
0 is the travel time in u after recharging the label l′u to the maximum chargeable

SoC in s

• π′ac ∈ R+
0 is the travel costs in u after recharging the label l′u to the maximum charge-

able SoC in s

• b′ac ∈ R is the arrival SoC in u after recharging the label l′u to the maximum chargeable
SoC in s
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Then, the lu is also dominated by l′u if all following conditions hold:

τac ≥ τ ′ac (4.4a)
πac + Φ · (τ ′ac − τac) ≥ π′ac (4.4b)

bac ≤ b′ac (4.4c)

In 4.4b we monetized the delayed time of label lu and included it to the travel costs.

4.3.5 Constrained Bicriteria Shortest Path Algorithm

Finally, we have all set to provide the Constrained Bicriteria Shortest Path Algorithm
(CBSP) that solve the EAP-EV and MGCPP-EV.

The search graph Gsearch and the EV request qev is given. In the initialization phase,
the algorithm adds the origin label lo = (0, 0,⊥,⊥,⊥,⊥,⊥) to the pareto set Lo, pareto sets
of all other vertices are empty. Also, the origin label lo is added to the priority queue Q. In
the priority queue, labels are sorted firstly by travel time, secondly by travel costs. In each
iteration, the label lu = (τ, π, bch, cps,u, s, bins , πs) is polled from the top of the priority queue
Q. Then all edges e = (u, v) ∈ Esearch outgoing from u are inspected. For each successor v
we generate a new label, sometimes more than one. It depends on the current label.

Case 1: If the vertex u of the current label is not the charger (u /∈ S), then only one
new label l′v is generated. The criteria τ, π are extended by using the weight functions
tt′, tc′ ∈ Gsearch. The consumption profile function cp(s,u) is linked with the cpe. The
function b′ch will is the same as bch in lv. Information in lu about last seen charger s is
reused in new label l′v. The generated label l′v = (τ ′, π′, b′ch, cp′s′,v, s′, b′ins′

, π′s′) is as follows:

τ ′ = τ + tt′(e, s, bins , bins),
π′ = π + tc′(e, s, bins , bins , πs),
b′ch = bch,

cp′s′,v = cp(s,u)◦e,

s′ = s,

b′ins′
= bins ,

π′s′ = πs.

Case 2: If the vertex u of the current label is the first visited charger on the journey
(u ∈ S∧s = ⊥), then the recharging is skipped. Thus, the only one new label l′v is generated
as in the first case. We mark current charger u as the last seen charger to the l′v. Also, we
compute the actual price per unit of energy and SoC in u. The criteria τ, π are extended by
using the weight functions tt′, tc′ ∈ Gsearch. We start new profiling of energy consumption
from the current (charger) vertex u, then the consumption profile function of l′v is cpe. The
function bch stays the same in l′v, because we do not charged any amount of energy yet. The
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generated label l′v = (τ ′, π′, b′ch, cp′s′,v, s′, b′ins′
, π′s′) is as follows:

τ ′ = τ + tt′(e, s, bins , bins),
π′ = π + tc′(e, s, bins , bins , πs),
b′ch = bch,

cp′s′,v = cpe,

s′ = u,

b′ins′
= binit − cps,u(binit),

π′s′ = φ(u, tdt(u)),

where tdt is the function that computes the date time when a vertex is reached, as follows:

tdt =
{
tinit + τ + cts,m(bouts)− cts,m(bins)), if u ∈ S ∧ s 6= ⊥
tinit + τ, otherwise.

Case 3: If the vertex u of the current label is charger and another charger was
already visited on the journey (u ∈ S∧s 6= ⊥), we retrospectively recharge to all chargeable
SoCs in last seen charger. Thus, for each chargeable SoC bouts,i ∈ CL (see Section 4.3.3) is
generated a new label l′vi

. The new function b′ch,i of l′vi
is created by extending the bch by

bch(s) = bouts,i − bins . The criteria τ, π are extended by using the weight functions tt′, tc′ ∈
Gsearch. Also, we compute the actual price per unit of energy and SoC in u. We start new
profiling of energy consumption from the current (charger) vertex u, then the consumption
profile function of l′vi

is cpe. The generated label l′vi
= (τ ′, π′, b′ch, cp′s′,v, s′, b′ins′

, π′s′) is as
follows:

τ ′ = τ + tt′(e, s, bins , bouts,i),
π′ = π + tc′(e, s, bins , bouts,i, πs),
b′ch = bch ◦ bch(s) := bouts,i − bins ,

cp′s′,v = cpe,

s′ = u,

b′ins′
= bouts − cps,u(bouts),

π′s′ = φ(u, tdt(u)),

where the function tdt is the same as in the case 2.

After generating new labels, we discard all labels that are not feasible by the EV model
m. Then, we inspect all labels that left. If the label l′v is not dominated by any label
lv ∈ Lv, then the label l′v is added to Lv and Q. At the same time, each label lv ∈ Lv that is
dominated by newly created label l′v is removed from Lv and Q. Algorithm terminates when
Q is empty. The solution of the algorithm is the Pareto set Ld of the destination vertex d.

Note that when the destination vertex d is reached, it is also needed to decide whether
to recharge. If last seen charger is defined s 6= ⊥, then we need to generate labels modified
by recharging.
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This algorithm is label setting because the functions tt′ and tc′ are non-negative. In
this case it means, that once the vertex u is polled from Q then the actual label lu cannot be
dominated anymore, we call such a label as settled. If we stop the algorithm after the first
label ld of the destination vertex is polled from Q, we get only the path with the minimum
travel time.

The similar algorithms were introduced in [13, 17, 16]. However, these works differs in
the problem specification. We were inspired by their approaches and adapted them to our
problems. The difference is mainly in the structure of label and in the label dominance.

4.4 Speed-up Techniques

Our extension of BSP solve the problem directly in the search graph with non-polynomial
time in the worst case. It is not sufficient for real-time applications, where it is assumed
that the result is returned in few seconds at worst. Therefore, we propose some techniques
that improves the computation time with little or no loss in solution optimality.

4.4.1 Pre-processed Search Graph

The edge pre-processing is a speed-up technique that creates shortcuts between nodes, it
is crucial for computing paths in large graphs. For our purpose, it is useful to precompute
optimal paths between chargers. This can be done only once before running the program.
In query time, it is needed to compute non-dominated paths from origin vertex to each
charger (First Mile problem) and non-dominated paths from each charger to the destination
vertex (Last Mile problem). Then, we may use another search graph that contains only the
shortcuts to solve our problems. This technique was also used in [16].

For the precomputation of edges, we use the CBSP algorithm with several modifications.
We set the charging stations as the goal vertices and disable the recharging at charger ver-
tices. Furthermore, the travel costs criteria is set to zero in each label. During precoputation,
we do not know the exact SoCs in vertices contained into the shortcut. To not loose the
information about energy consumption while computing the shortcuts, we use the chaining
of consumption profile function cp. Nevertheless, the energy consumption profile has to be
precomputed for each EV model m ∈Mr contained in CERG. Moreover, between each pair
of vertices is pareto of non-dominated journeys, it leads to parallel edges in the precomputed
graph. It is caused by battery constraint, the slower paths with higher SoC at the destina-
tion cannot be removed to not harm the optimality. The number of solutions in pareto sets
may be really big. However, some solutions in the pareto sets have approximately the same
criteria. Thus, we decided to define a tuning constant k ∈ N that will limit the number of
created edges from each pareto sets.

The Pre-processed Search Graph G′search is a Search Graph (see Section 4.1) where
the set of edges E′search is the composition of precomputed edges between chargers Ech, first
mile edges Efm and last mile edges Elm. The set of vertices V ′search is the set of charger
vertices S merged with an origin vertex o and a destination vertex d. The example of pre-
processed search graph Gsearch is in Figure 4.4. Note that pre-processed graph does not
have to be a strongly connected component, it depends on cruising range of EV.
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Supercharger

Origin

Destination Last mile edge

Precomputed edge

First mile edge

Figure 4.4: Example of the Pre-processed Search Graph. Each connection in the picture
describes a list of parallel edges.

Edges Between Chargers We run the CBSP from every charger s ∈ S in the basic
Search Graph Gsearch. Since the charging on the chargers is disallowed, the EV’s cruising
range is limited by the initial SoC. At the time of pre-processing, it is unknown what will
be the arrival SoC bin(s) and how much energy will be charged at the charger s. Thus, the
initial SoC binit ∈ B is set to maximum SoC bmax. For every termination of the algorithm,
we extract all Pareto sets Lv of charger vertices v ∈ S − s. Then for each Pareto set Lv we
create parallel edges e = (s, v, i); i = 1, · · · , n from start charger s to destination charger
v where n ∈ R0 is the number of labels in the Pareto set Lv, index i indicates the order
of parallel edge. Parallel edges are ordered by the travel time and the energy consumption
respectively. This leads to the generation of too many edges. Even the slowest path between
chargers with the highest SoC could be the part of optimal journey. Because some edges
may be really similar, the reduction of the number of generated edges is reasonable. We
select no more than k edges of each pair of chargers. The outcome is set of edges between
chargers Ech

First and Last Mile Edges The First Mile problem is solved by running the CBSP
algorithm in the basic Search Graph Gsearch from origin vertex o ∈ Vr. Charging is disal-
lowed again, but the initial SoC binit is defined by user. Set of edges Efm is created from
Pareto sets of charger vertices similarly as explained before. We also create edges from the
Pareto set Ld of the destination vertex if it is not empty. The last mile problem is solved
by running the CBSP algorithm (without charging property) on Gsearch from destination
vertex d ∈ Vr, but with the difference in inspection of edges. Instead of outgoing edges, the
incoming edges are inspected. Also, the consumption profile function has to be chained in
reversed order. Initial SoC binit is set to bmax. During the reversed search, the actual SoC in
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label need not to hold in battery interval [bmin, bmax]. It does not matter because we have
profile of energy consumption in a label, not the exact SoC. Thus, the algorithm can discard
labels if consumption profile function is undefined. If the initial SoC is too small, the First
mile does not find any path to Charger nor to the destination vertex. Thus, the feasible
path does not exist. When the Last Mile computation returns the empty set of edges and
there are no edge from origin vertex to destination vertex in the First Mile set of edges, the
algorithm terminates and the third phase is not triggered.

4.4.2 Dominance Relaxation

Such a definition of label dominance, as in 4.3.5, may cause that pareto sets contain a
labels with the almost same criteria values. Also, the pareto sets may become too large.
With reference to [26, 17], we applied the dominance relaxation technique that reduce the
number of labels in Pareto sets during the search. The purpose of this technique is to favor
the criteria values of the labels that were inspected earlier. Let us have two labels lu, l′u
from CBSP and a value ε ∈ [0, 1]. Then we determine a ε-dominance (-). A label lu is
ε-dominated by label l′u (lu - l′u) if the all condition in 4.5 or 4.6 are fulfilled:

τ ≥ ε · τ ′ ∧ π ≥ ε · π′ (4.5a)
s = s′ ∧ πs = π′s (4.5b)

bin,s ≤ b′in,s′ ∧ cps,u ≺ cp′s′,u (4.5c)

Similarly, we relax the rule 4.4. The lu is also ε-dominated by l′u if all following conditions
hold:

τac ≥ ε · τ ′ac (4.6a)
πac + Φ · (τ ′ac − τac) ≥ ε · π′ac (4.6b)

bac ≤ b′ac (4.6c)

Where the triplets (τac, πac, bac) and (τ ′ac, π′ac, b′ac) are the same as in Section 4.3.5.

4.4.3 Search Space Reduction

Since we do not allow large detours, we decided to reduce the search space by an ellipse as
it is described in [27]. In query time, we set the focal points of the ellipse to the origin o
and destination d. Then during search, only the vertices that intersects the fixed ellipse are
inspected. This pruning heuristic may reduce the size of the optimal pareto set of journeys.
In worst case, it is possible that solution might not be found at all. This usually occurs
when the distance between the origin and the destination is short or when it is needed to
drive around the water area. To improve the this technique we define the minimum length
of the minor axis.
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Implementation

This chapter we provide the implementation details of this work. Firstly, we describe the
tool that build the graphs from OpenStreetMap data. Then, we provide the pseudocode
of the Constrained Bicriteria Shortest Path algorithm proposed in Chapter 4. Finally, we
describe the backend and the frontend of the web application Charge Here.

5.1 Tool for Building Graphs

We have defined several types of graphs in this work, the Charger Extended Road Graph
(CERG) that describes transport network for EV, the basic Search Graph that has same
set of vertices and set of edges as CERG, the Pre-processed Search Graph that contains
precomputed edges between chargers, First Mile edges and Last Mile edges. In this section
we introduce a new type of graph that is used in our implementation.

5.1.1 Building Charger Extended Road Graph

OpenStreetMap (OSM) project provides free geographical data that contains information
about the transport network. Thus, we decided to use OSM data as the input. At first,
the data are downloaded in OSM format (.osm). We extract the road network using the
Osmfilter1. In the file, the location is defined as node and road is defined as way which
is the sequence of nodes. Nodes are defined by id, latitude and longitude, for the energy
consumption function we need information about elevation also. The Osmosis plugin2 uses
the Shutter Radar Topography Mission (SRTM) data to assign elevation tag to each node.
The OSM format (.osm) is the extension of XML format and it is possible to parse the OSM
file to Java Objects using the SAXParser class from the javax.xml.parsers package. Now,
we have the road network represented as the graph structure with vertices and edges in Java
Object. We implemented algorithm that extracts the biggest strongly connected component
from a graph. In other words, for every pair of vertices u, v ∈ V exists a path from u to v
in graph G = (V,E, f). We extend such a component by charging stations data imported
from CSV file. For each charging station we add the vertex with coordinates, the incoming

1http://wiki.openstreetmap.org/wiki/Osmfilter
2http://github.com/locked-fg/osmosis-srtm-plugin
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edge and the outgoing edge. The result is the CERG graph. Note that information about
charging stations are not sufficient in OSM data. However, we expect that information
about charging stations may be imported from CSV files.

5.1.2 Building Basic Search Graph

The basic Search Graph has the same number of edges and vertices as the CERG, but
contains different functions. To build the basic Search Graph we need to compute the
consumption profile values for each edge in CERG. In implementation, we distinguish the
search graph for solving First Mile problem and for solving Last Mile problem. Both graphs
implements interface with the function getSuccessors() and buildPath(). The function
getSuccessors() takes the current label in the argument and generates new labels. The
basic Search Graph for First Mile inspects outgoing edges and the basic Search Graph for
First Mile inspects incoming edges. Both graphs has disallowed recharging and returns only
the labels that satisfies battery constraints. The function buildPath() builds the path by
going through label ancestors. During the process, the vertex ID is assigned to every vertex.

5.1.3 Building Pre-processed Search Graph

We use the CBSP algorithm with disabled recharging to create First Mile edges, Last Mile
edges and edges between chargers, as described in 4.4.1. From each pareto set of goal vertex
with the size n we extract k journeys, the fastest journey, the journey with the minimum
energy consumption and k − 2 evenly distributed journeys in the set. If n ≤ k then all
journeys are used. In the case, the journey with the minimum needed SoC to surpass the
journey is not contained in the selection, we add it as well. We use the selected journeys
to create new parallel edges between chargers. We set the maximum number k of parallel
edges to 5. We build the Pre-processed Search Graph by the set of charger vertices and the
set of precomputed edges. This graph implements the same interface as the basic Search
Graph. Thus, the functions getSuccessors() and buildPath() are also present. In this
case, the function getSuccessors has allowed recharging. For each parallel edge and for
each possible charging limit a new label is generated. Also, only the labels that satisfies
battery constraints are returned by this function.

5.1.4 Graph Serialization

It is unnecessary to build the Pre-processed Search Graph from the OSM data every time we
receive the request. We prevent the precomputation from scratch by an object serialization.
We can serialize the graph that extends CERG by precomputed edges between chargers.
Also, all edges has precomputed consumption profile values. We call such a graph the
Double Graph and its example is shown in Figure 5.1. The graph is visualized in CardoDB3

and can be also accessed via public link4. Then in query time, the basic Search Graph is
created by extracting edges from the Double Graph that are not precomputed. The First
Mile problem and Last Mile problem are solved by CBSP algorithm in the basic Search

3http://carto.com
4http://fiserto2.carto.com/viz/c072f736-1c81-11e6-9f80-0e31c9be1b51/public_map
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Graph. After all, the Pre-processed Search Graph is created from charger vertices, First
Mile edges, Last Mile edges and precomputed edges between chargers.

Figure 5.1: Serialized Double Graph. It is a visualization of the graph that contains two
layers. First layer is the Charger Extended Road Graph, the second layer is a set of pre-
computed edges between chargers Ech. Motorway, trunk and primary road tags were used
for constructing the graph.

5.2 Routing

This part of implementation contains mainly the Constrained Shortest Path Algorithm and
structure of the label proposed in Section 4.3.5. The purpose of our implementation is to
have the one algorithm applicable on more search graphs with the same interface. The
search graph generates new feasible labels by the function getSuccessors and the algo-
rithm manages the pareto sets. When the graph returns new labels, every label is checked
against the labels in existing pareto set of the same vertex. All pareto sets are stored in
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bags which is the instance of HashMap class. The key of the hashmap is vertex ID and the
value is the HashSet of labels. In the bag the settled labels, as well as unsettled. Settled
label is such a label that was polled from queue and cannot be dominated anymore. We
store the settled labels of goal vertices in another hashmap. In this case, the lists of paths
are mapped on the goal vertex IDs. The list of paths is an instance of the ArrayList. For
better understanding the implementation, we introduced simplified pseudo-code.

Function: cbspAlg()
Input: search graph G = (V,E, tt′, tc′, dt, cp, φ, ς), start vertex s, goal vertex g, initial SoC

initB, departure time initT , costs per hour phi
Output: List of journeys journeyList retrieved from goal settled labels
Data: priority queue Q, hash map bags containing label set mapped on each vertex in V
begin

foreach v ∈ G.NODES do
bags.put(v, ∅);

end
l ← createStartLabel ();
bags.get(s).add(l);
Q.add(l);
while not Q.isEmpty() do

l ← Q.poll();
l.settle ();
if l.VERTEX = g then

goalLabelSet.add(l);
end
succLabels ← G.getSuccessorLabels (l);
foreach l′ ∈ succLabels do

labelSet ← bags.get(l′.VERTEX);
if not ( l′ ≺ labelSet) then

foreach l′′ ∈ labelSet do
if l′′ ≺ l′ then

labelSet.remove(l′′);
Q.remove(l′′);

end
end
labelSet.add(l′);
Q.add(l′);

end
end

end
journeyList ← retrieveJourneys (goalLabelSet, G);
return journeyList;

end

The priority queue is instance of the class PriorityQueue. G.getSuccessors() returns
for each parallel edge and for each possible charging limit new label. only labels that satisfies
battery constraints. This function is different for each search phase (FM, LM, SP).
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5.3 Web Application

The web application Charge Here is divided to the server-side (Backend) and the client-side
(Frontend). Both parts are deployed on the virtual server (see Figure 5.1) with Apache
Tomcat container. The application is freely accessible online5.

CPU Intel Xeon E5-26xx 2.0 GHz (Sandy Bridge)
CPU cores 4
RAM 16 GB
Operating System Linux 3.16.0-4-amd64 (Debian)
Tomcat Version Apache Tomcat 8.0.32
JVM Version 1.8.0_72-b15

Table 5.1: Description of the virtual server.

5.3.1 Backend

On the server side is the Java servlet that includes the CBSP algorithm to compute journeys.
The application is designed in Representational State Transfer (REST) software architec-
tural style. The journey planner for EV supports only the territory of Germany. The
charging station network contains only Tesla’s Superchargers.

Project Structure: The Apache Maven project consists of the following parts:

• ev-structures - contains basic structures that are needed for building the graph of
transport network, as well as for the routing for EVs, e.g. EVNode, EVEdge, Charger

• zone-builder - converts the input data to a Java Objects, builds the serializable graph
from Section 5.1.4

• routing - contains the implementation of the CBSP algorithm described in Section
5.2

• api - contains the classes that define the REST service by using the JAX-RS annota-
tions and classes that describes JSON objects of the request and the response.

REST API: The application accepts request via HTTP POST method in JSON date
type. The receiving JSON model contains the origin coordinates and the destination coor-
dinates, initial SoC of the EV model in percents and the time monetization parameter in
cents per hour (see Listing 5.1).

5http://charge-here.eu
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{
" c l i e n t " : <s t r i n g >,
" i n i t S o C I n P e r c " : <int >,
" centsPerHour " : <int >,
" o r i g i n " : {

" latE6 " : <int >,
" lonE6 " : <int >

} ,
" d e s t i n a t i o n " : {

" latE6 " : <int >,
" lonE6 " : <int >

}
}

Listing 5.1: The JSON model of the request

An elevation of the origin and the destination is not present in the request, because it is
assigned by the journey planner, as well as the EV model. As the response, the servlet
sends back another JSON with all found journeys. In this case, we call the journey, the
plan because the structure is quite different. Every plan is described as a list of plan seg-
ments divided by chargers. Each segment contains an arbitrary number of consecutive steps.
The step is described by the pair of coordinates with additional information (see Listing 5.2).

{
" c o o r d i n a t e s " : {

" latE6 " : <int >,
" lonE6 " : <int >

} ,
" distanceToNextStep " : <int >,
" l e a v i n g S t a t e O f C h a r g e " : <int >,
" travelTimeToNextStep " : <int >,

}

Listing 5.2: The JSON model of one step

The whole process of the backend part of the application is described in pseudo-code below.
The Double Graph from Section 5.1 is deserialized once in the initialization phase of the
servlet.

Program: Journey Planner for EV
Input: JSON object request containing origin o, destination d, initial SoC initB, costs per

hour phi
Output: JSON object response containing the list of plans
Data: deserialized graph dGraph, EV model evModel,
begin

initT ← getCurrentDateTime ();
start ← findNearestNode (o, dGraph);
goal ← findNearestNode (d, dGraph);
edgesFM ← computeFirstMileEdges (start, dGraph, evModel, initB);
edgesLM ← computeLastMileEdges (goal, dGraph, evModel);
searchGraph ← buildSearchGraph (edgesFM, edgesLM, dGraph, evModel);
journeyList ← cbspAlg (searchGraph, start, goal, initB, initT , phi);
response ← buildResponse (journeyList, dGraph);
return response;

end
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5.3.2 Frontend

The client-side is coded in HTML/CSS and JavaScript (jQuery6, in particular) languages.
Some features from Bootstrap7 framework are used, e.g., Bootstrap Grid to simplify posi-
tioning of elements. Drawing the markers and journeys is handled by Mapbox extension8 of
Leaflet library9. Map tiles, also provided by Mapbox, are based on OpenStreetMap data.

Design: The design of the application is straight forward. The most of the page is covered
with the map. The map has an additional layer with superchargers, the availability of
supercharger is shown on click. In the top left corner is the panel for the addresses (or GPS
coordinates) of the origin and the destination of the requesting journey. Both input boxes
have enabled the autocomplete feature that is connected with the Mapbox Geocoding API.
In the bottom of the search panel are two sliders. The first slider indicates the battery state
of charge of EV at the start in percents. The second slider sets the money that would the
driver spent per an hour on a journey in euros, we call it costs per hour (CpH). Greater
value of CpH prioritizes the fast journeys. Another panel will appear after any journey is
planned. This panel contains the list of plans ordered by travel time. Each plan is described
by four values, the travel time, the length, the energy consumption and the travel costs.
The travel time criterion contains time spent while driving as well as the time spent by
recharging the vehicle. The travel costs contain costs for the recharged energy and travel
time monetized by the value (CpH) which was chosen by the driver before. The selected
journey has shown the battery profile graph also.

Usage: By using the sliders, the user selects the initial battery state of charge of his EV
model and his opportunity costs of an hour spent on the journey. Then, he determines the
position of the origin marker and the destination marker by clicking in the map or filling
the coordinates in the search input fields. Another opportunity is to use the autocomplete
feature by typing a part of the address. Note that there is a need to press Enter for placing
the markers into the map correctly. The frontend sends immediately the JSON request (see
Listing 5.1) via the HTTP POST method. If the JSON response is returned successfully,
the application shows new panel as the list of the recommended plans with the description.
At the same time, all journeys are drawn into the map as a polyline. Along the selected
journey is also shown the markers that describes the superchargers where the EV will be
recharged. The additional info about recharging is shown after clicking on a marker. The
result is time-dependent because the prices per unit of energy are influenced by departure
time. The plans would be disappeared by clicking the ’X’ button in the bottom right corner
of the main panel.

6http://jquery.com
7http://getbootstrap.com/
8http://www.mapbox.com/mapbox.js/api/v3.0.1/
9http://leafletjs.com/reference
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Figure 5.2: Web application Charge Here



Chapter 6

Evaluation

In this chapter we evaluate our implementation of the CBSP algorithm introduced in Chap-
ter 4. We run several experiments with different input parameters, that affect the compu-
tation time of the algorithm.

The whole program, that solves our problems from Chapter 3, is divided into three
phases. The first phase is the First Mile (FM) computation, where the CBSP algorithm
without recharging is used to compute pareto sets of paths from origin vertex to all feasible
chargers or to the destination vertex, if it is also feasible. The second phase is the Last Mile
(LM) computation, where the CBSP algorithm without recharging is used to compute pareto
sets of paths from the destination vertex to all feasible chargers by expanding reversed edges.
Both phases run in the basic Search Graph Gsearch. In the third phase (TP), the CBSP
(with recharging) computes the optimal journeys from the origin vertex to the destination
vertex in the Pre-processed Search Graph G′search.

6.1 Fundamental Settings and Input Data

In this section, we introduce the input graph and determine the origin-destination pairs for
our experiments. We also set the general parameters for the CBPS algorithm.

6.1.1 Input graph

We decided to run our experiments on the model of Germany transport network. The
OSM data of Germany were freely downloaded from Geofabrik website1. We extracted the
road data of motorways, trunks, primary roads and secondary roads. Elevation data are
taken from NASA’s Shuttle Radar Topography Mission (SRTM). The model is extended by
data2 of Tesla Superchargers, price per unit of energy φ is generated by random for each
supercharger and each hour from range [0,50] cents per kWh. According to the official Tesla
Motors website3, the charging function cts,m for a EV model m ∈Mr at superchargers s ∈ S
is defined by the set of supporting vectors ((bmin, 0), (0.8bmax, 2400), (bmax, 4500)). The unit

1http://download.geofabrik.de/europe/germany.html
2http://supercharge.info/
3http://www.tesla.com/supercharger

37



38 CHAPTER 6. EVALUATION

of energy is the watt-hour (Wh) and unit of time is the second (s). The only supported
EV model is Tesla Model S with 85kWh battery pack. Thus, the battery maximum state
of charge SoC bmax is 85,000 Wh. We do not take the risk of getting stranded during
the path, thus the minimum SoC bmin is set to 500 Wh. The constants κ, λ, α in the
consumption function g are set as follows:

κ = 0.2, λ = 2, α = 1.5.

The set of supported road categories Rr and their average speeds are shown in Table 6.1.

Road category Average speed [km/h]
Motorway 100

Motorway link 40
Trunk 70

Trunk link 40
Primary 60

Primary link 40
Secondary 60

Secondary link 40

Table 6.1: Average speeds for road categories.

The outcome graph structure corresponds to the Double Graph from Section 5.1.4. The
Double Graph has 245,211 vertices and 497,928 edges. The set of edges includes 488,491
road edges, which are used to create the basic Search Graph Gsearch and 9,437 pre-processed
parallel edges between chargers is 9,437. The sum of single edges between chargers is 1,943
and the number of superchargers in the graph is 56.

6.1.2 Requests

For the experiments, we have chosen 100 origin-destination pairs (OD-pairs) described in
Table 6.2. All requests consider that Tesla Model S (85 kWk) is the EV model m that will
be driven on the requested journeys. We also fixed the departure time tinit at 10 a.m. to
hold the result consistent. Chosen values of the initial SoC binit and monetization constant
Φ are determined in the beginning of each experiment.

6.1.3 Algorithm settings

All speed-up techniques are enabled, in general. The dominance relaxation constant ε is set
to 0.95. The search space is reduced by the ellipse where a length of minor axis is the direct
distance between the origin and the destination vertices doubled. The maximum number
of parallel edges between two points k is set to 5. The charging policy is such that the
set of chargeable limits CL contains the minimum chargeable SoC βmin and the maximum
chargeable Soc βmax as well as every twentieth percentage of battery capacity that is in
the interval [βmin, βmax].
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Request Origin Destination
1 Berlin Munich
2 Frankfurt am Main Munich
3 Köln Berlin
4 Köln Hamburg
5 Frankfurt am Main Stuttgart

6-100 Random OD-pairs from the bounding box 6.3

Table 6.2: Origin-Destination pairs (OD-pairs), 5 OD-pairs represents real requests to find
journeys between selected German cities and 95 OD-pairs are generated randomly from the
bounding box 6.3 under one contidion that direct distance between origin and destination
is greater than 20 km. Seed value for the random generator is 53684.

Position Latitude Longitude
North East 53.058141 14.542051
South West 47.270211 6.866241

Table 6.3: The bounding box of Germany.

6.2 Experiments

All experiments were run by a remote computing machine provided by Metacentrum4. Tech-
nical specification of the virtual machine is in Table 6.4. In Table 6.5 we introduce a few
tags that are used in this section.

Cluster alfrid-cluster.meta.zcu.cz
CPU Intel Xeon E5-2650v2 2.60GHz
CPU cores 1
RAM 32GB
Operating System Linux (Debian)
JVM Version 1.8.0

Table 6.4: Technical specification of the virtual machine where the experiments were run.

4http://metacentrum.cz
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Tag Description
binit Initial battery state of charge
FM Computation time of the CBSP algorithm used to solve First Mile problem.
LM Computation time of the CBSP algorithm used to solve Last Mile problem.
TP Computation time of the CBSP algorithm used in third phase of the program.
BP Computation time of non-search parts of the program, which includes

building of the response, building of the graphs.
T Total computation time of the program including FM, LM, TP, BP
N The number of journeys found by the algorithm
C Criteria of the journey, a tuple that includes travel time and travel costs

of the journey respectively

Table 6.5: Tags used throuhout this chapter.

6.2.1 Average Computation Time

At first, we measured the average computation time of our program. The initial SoC
and costs per hour (CpH) are randomly set for each request. Interval for initial SoC is
[34000, 85000] (Wh) and interval for CpH parameter Φ is [0, 100] (cents). Other settings are
used as defined in Section 6.1. We queried 100 requests with OD-pairs from Table 6.2, each
request five times.

The result is that the average total computation time (T) of the program is 622 ms.
The proportion of individual algorithm phases on the computation time is in Figure 6.1.

FM
31.47%

LM
38.82%

SP
15.34%

P
14.38%

Figure 6.1: The proportion of individual algorithm phases on the average computation time.

The CBSP algorithm in third phase run for 96 ms on average, it is more than we expected.
The number of edges in Gsearch which is used for FM and LM computation is much greater
than the number of edges in the Pre-processed Search Graph G′search. However, the G′search
produces too many successors in each iteration. It is caused by presence of parallel edges
and because of recharging. Unfortunately, not enough successors can be dominated, it leads
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to large pareto sets and it substantially slow down the algorithm. Thus, the form of the
label dominance has crucial effect on the computation time of the third phase.

First Mile computation is faster on average than Last Mile due to the initial SoC binit
limitation. On the other hand, Last Mile computation is limited by the maximum battery
capacity bmax which is given by the EV model. The average computation times of FM and
LM are nearly similar in the case, the initial SoC is set to battery maximum capacity bmax.

Solving the First Mile and Last Mile problems together takes 70.29 % of total computa-
tion time. Both phases could be removed at the expense of memory complexity. Similarly, as
the edges between chargers were pre-processed, the pareto set of feasible paths for each ver-
tex in the CERG could be pre-processed. Exactly because of high demands on the memory,
we did not choose this approach.

6.2.2 Initial State of Charge

In this experiment, we observe the dependency of computation time on the initial SoC of
the EV model. For each initial SoC binit, 100 OD-pairs from Table 6.2 were tested. The
monetization constant Φ is set to 0 cents per hour. It means that the total travel costs
represents only the money spent for the energy recharged at the chargers. We run the
evaluation procedure five times, results are shown in Table 6.6.

binit[%] FM [ms] LM [ms] TP [ms] T [ms] N CJ∗ [min, e] CK∗ [min, e]
10 6 349 325 803 5 (390, 20.70) (520, 5.78)
20 21 301 314 748 4 (382, 18.04) (511, 4.96)
30 48 307 281 743 4 (359, 15.88) (486, 3.08)
40 86 296 230 735 4 (351, 13.17) (482, 2.00)
50 134 304 201 749 4 (341, 10.95) (468, 1.52)
60 176 286 324 897 4 (335, 9.36) (448, 1.10)
70 209 270 134 714 3 (330, 8.35) (433, 0.89)
80 282 301 100 794 3 (326, 6.06) (409, 0.68)
90 324 307 73 807 2 (319, 5.20) (390, 0.42)
100 336 300 51 802 2 (316, 3.71) (373, 0.27)

Table 6.6: Average computation time while increasing the initial SoC. The first pair of
criteria CJ∗ describes optimal journey of EAP-EV and the second pair of criteria CK∗

describes the optimal journey of MGCPP-EV.

According to results in Table 6.6, the average computation time of First Mile problem
increases with higher initial SoC. On the other hand, the average computation time of Last
Mile is not influenced. For example, if a driver starts with 80% charged battery, the cruising
range of EV is smaller than with fully charged battery. Also, if the initial SoC is too small,
the destination may not be feasible.

For the Last Mile computation, starting at destination vertex, the initial SoC is inappli-
cable. In this phase, we do not know SoC at last seen charger or which charger will be used.
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All we know is that the SoC at last seen charger has to be in battery range. During the
search edges are chained in reverse order by inspecting incoming edges. We discard paths
that are not feasible with fully charged battery. It causes the cruising range to be always
identical for requests with the same destination. In other words, the Last Mile computation
time is not dependent on initial SoC at all.

Even the third phase is influenced by initial SoC. When the initial SoC is small, then
probably at least one recharging is required. Every inspected vertex, where recharging is
allowed, generates more labels. Also, more frequent recharging leads to greater travel time
and travel costs.

6.2.3 Dominance Relaxation

In Section 4.4, we introduced the constant ε which speeds up the CBSP algorithm by
relaxing dominance of labels. Earlier visited labels are prioritized against newly visited
labels by correcting criteria values in dominance conditions. It is used in each phase of
the algorithm. In this experiment, we test how setting of the ε parameter influences the
computation time and the solution optimality. We set the initial SoC binit to 50 % of the
maximum battery capacity and the monetization constant Φ to 0 cents per hour. It means
that the total travel costs represents only the money spent for the energy recharged at the
chargers. For each ε, we run 100 OD-pairs from Table 6.2. We run the evaluation procedure
five times, results are shown in Table 6.7.

ε T [ms] N CJ∗ [min, e] CK∗ [min, e]
0.80 345 1 (364, 5.18) (455, 1.93)
0.82 331 2 (362, 5.67) (458, 1.89)
0.84 342 2 (359, 6.61) (458, 1.88)
0.86 359 2 (353, 7.32) (463, 1.80)
0.88 478 2 (351, 8.49) (463, 1.75)
0.90 413 3 (345, 9.97) (466, 1.73)
0.92 471 3 (343, 10.49) (466, 1.59)
0.94 587 4 (342, 10.08) (467, 1.57)
0.96 794 4 (340, 11.61) (472, 1.52)
0.98 1409 6 (338, 11.26) (478, 1.42)
1.00 28174 21 (336, 11.68) (496, 1.31)

Table 6.7: Average computation time while increasing the ε parameter. The first pair of
criteria CJ∗ describes optimal journey of EAP-EV and the second pair of criteria CK∗

describes the optimal journey of MGCPP-EV.

This measurement shows that the optimal search without dominance relaxation (ε = 1)
solves the problem in 28,174 ms on average. Although, the optimal journey K∗ is about
21 cents more expensive than the journey if the algorithm with ε = 0.96 is used, but the
computation time is approximately 35 times smaller. In other words, the algorithm expands
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a lot of labels that does not lead to optimal solution. The influence of ε on the minimal
travel time is also shown in Figure 6.2.
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Figure 6.2: Comparison of the travel time and travel price while the dominance relaxation
constant ε is being increased.

Note that if this technique is applied in First Mile and Last Mile phase, we risk pruning
the path to a charger. It means that if the ε is too small, the First Mile computation may not
find any path. Then the program terminates with no optimal journeys, which is incorrect.
The Last Mile is affected in a similar way. In the third phase, charging is available on each
vertex except origin and destination. Thus the finding of at least one journey is guaranteed
if G′search is strongly connected component.

6.2.4 Speed-up Comparison

In this experiment, we set ε to the fixed value (0.95) and compare it with the speed-up
technique from Section 4.4.3. We selected a few combinations of algorithm by turning on
or off the techniques. We observe how the computation time and solution optimality is
affected. At the origin vertex, the battery SoC bmin is set to 50 % of battery capacity. The
monetization constant Φ is set to 0 cents per hour, to obtain as much as possible solutions.
For each setting ε, we used the first OD-pair from Table 6.2. We run the evaluation procedure
ten times, results are shown in Table 6.7.

According to the results, our program without any speed-up technique computes the
optimal journeys from Berlin to Munich in 799,640 ms on average. When the dominance
relaxation (ε = 0.95) is applied, the computation time is reduced to 2,107 ms. Nevertheless,
43 journeys from the pareto set were pruned. On the other hand, if only the technique
with ellipse is applied, the computation time is 386,118 ms, but we obtained full pareto set
of journeys. By applying both speed-up techniques, we get computation time under one
second.
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Dε E FM [ms] LM [ms] TP [ms] T [ms] N CJ∗ [min, e] CK∗ [min, e]
26697 697638 75149 799640 51 (419, 11.60) (707, 3.34)

X 78 545 1378 2107 8 (430, 12.98) (753, 4.18)
X 24141 307231 54590 386118 51 (419, 11.60) (707, 3.34)

X X 78 397 361 945 8 (430, 12.98) (753, 4.18)

Table 6.8: Average computation time while different settings of speed-up techniques is used.
Compared techniques are dominance relaxation Dε and search space reduction technique E
which allows visiting only nodes in the ellipse. The first pair of criteria CJ∗ describes optimal
journey of EAP-EV and the second pair of criteria CK∗ describes the optimal journey of
MGCPP-EV.
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Conclusion

We have formalized a journey planning problems for electric vehicles (EVs) that consider
recharging and dynamic pricing. The first problem is about finding the journey that min-
imizes a travel time including the time spend by recharging. The second problem asks for
the journey with the minimum travel costs. We avoid the inappropriate detours, the sec-
ond journey minimizes money spent for the energy recharged at the charging stations and
takes driver’s opportunity cost of travel time into account. We proposed the graph based
algorithm, which extends the Bicriteria shortest path algorithm and solves both problems
at once. The outcome of the algorithm contains also alternative paths that are the trade-off
between both optimal solutions. We applied several speed up techniques as edge precom-
putation or dominance relaxation to achieve satisfactory computation time. We tested our
Constrained Bicriteria Shortest Path algorithm on Germany transport network represented
as a graph. We have chosen the network of Tesla Superchargers for recharging the battery of
EV. Average computation time of the algorithm for random requests is about a second. The
algorithm is applicable on larger areas with the same sparseness of charging stations with
minimal change of computation time. We also developed the web application Charge Here1

which handles on-demand journey requests. The application includes the same algorithm
and shows the solution onto a map.

This work contributed to the understanding of the problem, which includes the Dynamic
Pricing strategy into route planning for EV. It will be further elaborated by the Artificial
Intelligence Center in the ELECTRIFIC project.

7.1 Future Work

First of all, we want to investigate more sophisticated speed up techniques that could en-
hance the computation time of the search algorithm. Afterwards, we want to do several
experiments on the quality of returned journeys.

Another goal is to provide a model of Dynamic pricing based on the actual traffic to
demonstrate our idea of balancing the electrical grid. Also, we want to improve the structure
of transport network model by using more information about each road segment. We will

1http://charge-here.eu
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add more factors to the consumption function, to determine the energy consumption of the
EV more accurately. In our model, the speed nor the attributes of EV does not have an
impact on energy consumption. Furthermore, breaking causes the battery recuperation. We
would like to take acceleration and deceleration of EV into account as well.

Proposed transport network model assigns average speed to the edge by road type. We
would like to adapt the speed on each road segment to regular traffic, as well as to the
driving uphill, downhill or driving into turns.

Finally, we want to enrich the data of transport network in web application Charge
Here. The graph covers Germany road network of motorways, trunks, primary roads and
secondary roads. Our goal is to cover whole Europe with all road categories where the EVs
have allowed access. We will also consider whether to add more types of charging stations.
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Appendix A

CD content

The CD contains three directories:

• Thesis - thesis in PDF file

• Charge-here-web - source code of the Charge-Here Frontend

• Charge-here-backend - source code of the Charge-Here Backend
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