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Abstract

New and unseen polymorphic malware, zero-day attacks, or other types of advanced persistent

threats are usually not detected by traditional security systems. This represents a challenge to

the network security industry as the amount and variability of attacks has been increasing. In

this thesis, we propose three key approaches, each dealing with this challenge at different levels

of abstraction.

In order to cope with an increasing volume of network traffic, we propose the adaptive sam-

pling method based on two concepts that mitigate the negative impact of sampling on the

raw input data: (i) Features used by the analytic algorithms are extracted before the sampling

and attached to the surviving flows. The surviving flows thus carry the representation of the

original statistical distribution in these attached features. (ii) Adaptive sampling that delibera-

tively skews the distribution of the surviving data to over-represent the rare flows or flows with

rare feature values. This preserves the variability of the data and is critical for the analysis of

malicious traffic, such as the detection of stealthy, hidden threats. Our approach has been ex-

tensively validated on standard NetFlow data, as well as on HTTP proxy logs that approximate

the use-case of enriched IPFIX for the network forensics.

Next, we propose a novel representation and classification system designed to detect both

known as well as previously unseen security threats. The classifiers use statistical feature rep-

resentation computed from the network traffic and learn to recognize malicious behavior. The

representation is designed and optimized to be invariant to the most common changes of mal-

ware behaviors. This is achieved in part by a feature histogram constructed for each group of

network connections (flows) and in part by a feature self-similarity matrix computed for each

group. The parameters of the representation (histogram bins) are optimized and learned based

on the training samples along with the classifiers. The proposed approach was deployed on large

corporate networks, where it detected 2,090 new variants of malware with 90% precision.

Finally, we propose a distributed and self-organized mechanism for the collaboration of mul-

tiple heterogeneous detection systems. The mechanism is based on a game-theoretical approach

that optimizes the behavior of each detection system with respect to other systems in highly

dynamic environments. The game-theoretical model specializes the detection systems on specific

types of malicious behaviors to collaboratively cover a wider range of attack classes. According

to our experimental evaluation on the real network traffic, the proposed mechanism shows clear

improvements caused by mutual specialization of individual detection systems.

All three approaches can be combined into a unified collaborative fusion system, analyzing

the input network traffic at different levels of abstraction. The benefits of such combination were

demonstrated in the final experiment, where we combined the proposed adaptive sampling with

a collaborative mechanism for detection systems deployed in multiple networks.
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Chapter 1

Introduction

As computer networks evolved into a highly dynamic and ubiquitous infrastructure, more and

more companies and organizations deploy additional security systems to maintain their envi-

ronment secure. Increasingly sophisticated threats require the development of new solutions

and architectures capable of addressing a comprehensive set of vulnerabilities. To address these

problems, researchers and engineers have designed various security mechanisms protecting the

availability, confidentiality, and integrity [141] of critical systems and networks.

Besides the increasing variability of network threats, the volume of network traffic has also

been steadily increasing over the last years [5]. At the same time, the delivery of critical services

from cloud data centers has increased not only the volume of traffic, but also the complexity

of transactions. It has also redefined the need for network monitoring and long-term storage

of network and transaction logs. The increase in volume also brings computational problems

for more sophisticated detection and classification algorithms [86], as they may easily become

increasingly difficult to compute on the full traffic log. Storing large amounts of traffic monitoring

data also complicates network forensics and increases data retention and investigation costs.

Intrusion detection systems (IDS) have become necessary mechanisms protecting large enter-

prise networks. They are typically combined with other existing network security devices (e.g.

firewalls, authentication servers, and anti-virus programs) to enhance the overall network secu-

rity capabilities. However, each of these systems operates individually, with no interactions with

other security systems. New emerging class of cyber attacks called collaborative attacks [155]

launched by multiple attackers are highly effective against stand-alone detection systems, so the

next-generation security devices based on cooperative and collaborative defense are required.

With the increase in the number of deployed detection systems and with the ever-growing com-

plexity of the network environment, security administrators are becoming overwhelmed with lots

of false alerts and other unnecessary or redundant information, weakening the overall efficiency

of security monitoring. An intelligent mechanism is required to extract relevant information from

the network traffic into high-level alerts and combine the alerts across all IDS systems.

Alert correlation and knowledge fusion have become widely used in the cooperative intrusion

detection systems as techniques capable of grouping alerts from multiple sources together. While

these methods are able to remove alert redundancy, taking the next step and moving towards a

collaborative adaptation of individual detection systems on the current or future network threats

still represents a significant challenge in the research community.

We believe that intrusion detection systems, and all network security devices in general,

should operate in a collaborative and uniform architecture, fusing data into information and

knowledge to provide useful and tangible situational awareness to network security engineers.
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In this thesis, we propose three key approaches, each processing the network traffic at different

level of abstraction, namely an adaptive sampling that reduces large amounts of low-level data

while preserving most of the malicious activity in the network, an invariant representation of

network traffic suitable for classifying unseen malware variants at the medium level, and a

collaborative model for high-level collaboration of heterogeneous detection systems. All three

approaches can be combined into a unified collaborative fusion system that transforms low-level

data into high-level knowledge and are typically combined with additional techniques in order

to build a full-fledged IDS system [2, 123]. From our experimental evaluation, we will show

significant improvements of the proposed approaches against the state-of-the-art methods.

1.1 Research Problems

This thesis addresses the following research problems:

RP1 - How to select limited amount of network traffic for analysis with minimal impact on

system efficacy?

A lot of sophisticated detection algorithms suffer from high computational requirements mak-

ing them impractical or even impossible to deploy in real network environments. When the

computational complexity of such methods is artificially reduced to make them applicable,

the ability to detect advanced threats is typically significantly decreased. An alternative and

widely-used solution is to employ random sampling, which however could be devastating for

any of the subsequent postprocessing. We propose a better alternative.

RP2 - How to represent network traffic to detect new and previously unseen threats?

New and unseen polymorphic malware, zero-day attacks, or other types of advanced persistent

threats are usually not detected by signature-based security devices, firewalls, or anti-viruses.

This represents a challenge to the network security industry as the amount and variability

of incidents has been increasing. Consequently, this complicates the design of learning-based

detection systems relying on features extracted from network data. The problem is caused by

different and evolving joint distribution of observation (features) and labels in the training

and testing data sets.

RP3 - How to create a detection system resilient to evasion?

Security systems are prime and highly valuable targets for the attackers. Various security

threats have been used to infiltrate IDS systems or decrease their performance and detec-

tion capabilities [48]. Deployment of robust representations and methods would decrease the

possibility of attacker’s manipulation with the system.

RP4 - How to utilize more detection systems and build a collaborative-adaptive system?

Detection of more sophisticated collaborative attacks [155] requires cooperation of various

next-generation intrusion detection systems. This problem is partially related to alert cor-

relation, which is motivated by the problem not to overwhelm security engineer with large

number of (false) simple alerts, as well as to provide more comprehensive overview of the

network security state. However it concentrates mainly on attacks launched by a single at-

tacker, so designing an applicable framework of monitoring and defensive mechanisms against

multiple collaborative attackers still remains a great challenge.

2



1.2 Key Contributions

This thesis has four main contributions:

• Adaptive sampling method [16, 18, 19] - We propose a new adaptive sampling method.

This method is suitable for network behavior analysis techniques or network forensics thanks

to the efficient sampling strategy, which selects individual flows to minimize the information

redundancy of the network traffic. Furthermore, we introduce the concept of late sampling,

where the algorithm first computes feature statistics and then samples the input data. The

precomputed statistics are unbiased and can be used for the sampling method and the sub-

sequent processing with minimal impact on the computational complexity of the system. Ex-

tensive experimental evaluation is provided to verify the proposed approach w.r.t. anomaly

detection, information loss, and network forensics. Special emphasis is given to the analysis of

real proxy logs and the impact of sampling on current network security threats. The proposed

adaptive sampling addresses RP1.

• Bag invariant representation for classification of malicious traffic [21, 22, 23] -

We propose a supervised approach that is able to detect previously unseen types of malware

categories from a limited amount of training samples. Unlike classifying each category sepa-

rately, which limits the robustness, we propose an invariant training from malware samples

of multiple categories. Instead of classifying network flows individually, we propose to group

flows into bags, where each bag contains flows that are related to each other. To enforce the

invariant properties of the representation, we propose to use a novel approach, where the

features are derived from the self-similarity of flows within a bag. These features describe

the dynamics of each bag and have many invariant properties that are useful when finding

new malware variants and categories. The proposed bag representation describing malware

dynamics further increases the level of abstraction of the underlying network traffic in the

proposed fusion model. The proposed approach addresses RP2 and RP3.

• Method for optimizing the representation automatically from the input data [23]

- To optimize the parameters of the representation, we propose a novel method that combines

the process of learning the representation with the process of learning the classifier. The re-

sulting representation ensures easier separation of malicious and legitimate communication

and at the same time controls the complexity of the classifier. We evaluated the proposed

representation on real network traffic of multiple companies. Unlike most of the previously

published work, we performed the evaluation on highly imbalanced datasets as they appear

in practice (considering the number of malicious samples), with most of the traffic being le-

gitimate, to show the potential of the approach in practice. The proposed method contributes

to address RP2 and RP3.

• Models for distributed collaboration of multiple IDS systems [14, 15, 17, 20] -

We propose two collaboration models for heterogeneous detection systems. The first model

is suitable for detection systems deployed in various parts of the same network, where we

propose to specialize inner models of the detectors towards a superior efficacy on a subset

of attacks. Specialized detection systems produce less false alerts and their mutual collabo-

ration leads to better efficacy results. The second model is designed for the collaboration of

detection systems deployed across multiple networks, where we propose to acquire a global

intelligence from all collaborating systems. We assume that the detection systems are consist

3
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Fig. 1.1: All individual contributions of the thesis can be combined together and cover all levels
of abstraction of the proposed collaborative fusion model.

of sophisticated algorithms to be able to detect advanced threats. Such algorithms are typi-

cally computationally intensive and cannot process the whole input data in time. Therefore,

we propose a collaborative-adaptive sampling component that is deployed together with each

detection system. The component uses the global intelligence to significantly increase the

sampling rate of malicious or suspicious data so the sophisticated detection methods are able

to detect the attacks in time. This model prevents the attacks targeting multiple organiza-

tions and networks from being globally successful and reusable. The proposed collaboration

models address RP3 and RP4.

We propose a collaborative fusion model illustrated in Figure 1.1 that is composed of the

individual contributions and covers the processing at all levels of abstraction: data, information,

knowledge, and intelligence. The proposed architecture increases the level of abstraction of in-

coming network traffic as the data traverses through the system into a humanly understandable

and actionable intelligence. With precomputed statistics at Level 0, the adaptive sampling at

Level 1 reduces the amount of network traffic with significantly smaller loss of critical informa-

tion, allowing more sophisticated classification algorithms at Level 2 to detect novel intrusions

and threats. In the distributed or collaborative setting, Level 3 collects and correlates alerts

collected from multiple systems and networks. The acquired global intelligence is valuable for

a global situational security awareness. The feedback calculated at Level 4 is propagated to

lower levels to dynamically adapt and reconfigure each collaborating system, which increases

the overall efficacy and threat coverage.

Overall, all four contributions of the thesis enable an intelligent decomposition of IDS systems

into a larger and distributed system. We propose to separate relatively fast operations (feature

4



extraction, sampling, bag creation) from the more advanced transformations applied in later

stages. Together with the proposed collaboration mechanism, this idea enables seamless dispersal

of the IDS inspection on network devices and increases the overall security of the networks.

1.3 Outline of the Thesis

This thesis is structured as follows:

Chapter 2 reviews related work. Relevant research areas include extracting information and

knowledge from the network traffic, with the emphasis on sampling and classification methods.

Existing work on cooperation and collaboration among multiple detection systems is also

included.

Chapter 3 presents the details about the proposed adaptive sampling method suitable for

anomaly detectors, classifiers, or other types of postprocessing. The benefits of the proposed

method are verified on various types of network data acquired from different networks.

Chapter 4 describes a novel approach for representing and classifying malicious behaviors

from the network traffic. We discuss the invariant properties of the proposed representation

and the corresponding application in classifying network threats as a means of extracting

information and knowledge from the network data.

Chapter 5 proposes a fully-distributed model for collaboration of multiple detection systems

deployed in one network. The model ensures mutual specialization of individual detectors to

increase the number and the diversity of detected attacks.

Chapter 6 contains an experimental evaluation of the proposed collaborative-adaptive model

designed for the collaboration of detection systems across multiple networks. The model

continuously collects and correlates results provided by the detection systems into a global

intelligence. The intelligence is used to automatically configure the collaborating systems,

which prevents attacks from being globally successful and reusable.

Chapter 7 summarizes the contributions of this thesis and provides the list of related publi-

cations and patents.
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Chapter 2

Related Work

This chapter is divided into three main sections, reflecting the decomposition of the problem into

three parts according to the level of abstraction in the proposed model illustrated in Figure 1.1:

sampling of network traffic, classification of network traffic, and collaboration of multiple detec-

tion systems. The first section summarizes existing sampling methods proposed to reduce large

volumes of network traffic, highlighting their benefits and limitations. Next section describes

recent research in the field of network traffic classification. Final section discusses three types of

security architectures w.r.t. the collaboration possibilities of inner components. The last section

concludes with the overview of relevant algorithms for distributed collaboration.

2.1 Sampling of Network Traffic

Various sampling methods has been proposed to tackle the problem of reducing the network traf-

fic for further processing or analysis (such as quality of service provisioning, traffic profiling and

control, fault detection, service level agreement verification (SLA), or intrusion detection [97]).

Depending on their purpuse, these methods are applied on various types of network data (such

as network packets, CISCO NetFlow [1], HTTP/HTTPS proxy logs, or other IPFIX format).

In the following, we will summarize the existing approaches and emphasize their strengths and

weaknesses.

2.1.1 Packet Sampling Methods

The most traditional and widely-used sampling is random sampling of network packets (denoted

as random packet sampling). Each packet is sampled according to the sampling rate which is

predefined in the beginning and is fixed for all incoming packets. This method has gained an

increased popularity thanks to its simplicity and low computational complexity, as it is easy

to implement it and deploy on routers in networks of arbitrary size. Even though random

packet sampling is useful in keeping the traffic volumes under control, its simplicity negatively

influences any reasoning built on the top of sampled data, such as anomaly-based network

intrusion detection [66].
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Several modifications and improvements of random packet sampling has been proposed to

decrease the negative effect of information loss. Generally, most of these approaches adjusted

the sampling method to deal with a so called elephant and mice phenomenon. This phenomenon

says that a small percentage of network flows typically accounts for a large percentage of the total

traffic. More specifically, 10 – 20% flows are responsible for approx. 80% of the total packets [41].

This means that random packet sampling implicitly emphasizes a minority of large flows (with

lots of packets) at the expense of the majority of smaller flows, which brings a significant bias

for flow-based network traffic monitoring and analysis.

Sample and hold sampling [60] was proposed to identify elephant flows with lots of packets

and then sample them with minimal packet loss. The method starts with sampling of each packet

randomly. The method creates a new flow entry in the flow memory for every sampled packet

belonging to a new and unseen flow. Once the flow entry is created, it is updated with every

subsequent packet belonging to the flow and a corresponding counter is held in a hash table till

the end of the measurement interval. It means that when a packet of a flow is sampled, all the

subsequent packets of this flow will be sampled as well, which reduces the bias for longer flows

with many packets at the expense of the rest of the flows.

Stratified packet sampling [41] was proposed to provide an unbiased estimation of flow sizes

(in terms of number of packets and bytes). The method divides time into predetermined, non-

overlapping intervals called strata (or blocks). For each block, they sample packets with the same

probability (via random sampling). At the end of each block, flow statistics are estimated. Both

methods [41, 60] are aimed for an accurate estimation of elephant flows, however majority of

flows with fewer packets may not be selected at all, which could be devastating for finding smaller

and mostly hidden connections of malicious communication. Non-linear adaptive sampling [76]

was proposed to increase the number of small-sized flows in the sampled set. The first packet

of each flow is always selected to the final set and then the sampling rate decreases as the

number of sampled packets for a given flow increases. The sampling is suitable for packet-based

passive measurement, as it significantly reduces the overall number of packets while providing

an unbiased estimation of flow sizes. However, the number of flows in the sampled set remains

constant.

A packet-sampling method leveraging results from anomaly detectors was proposed as pro-

gressive security-aware sampling [6]. The method relies on a collaboration of anomaly detectors

located on multiple hop nodes in the network. At each node, the detectors evaluate incoming

packets and include the decision into the header of each packet. The decision is then used at

the next node to sample more anomalous traffic. While evaluating packets before sampling is

beneficial for further analysis and monitoring, it does not allow deployment of advanced and

computationally more expensive algorithms.

As more sophisticated detection algorithms have been proposed to fight against cybercrime,

researchers started to compare the impact of packet and flow sampling on network traffic dis-

tributions and other features that are used in these algorithms. It has been proven [75] that

second order statistics cannot be inferred when sampled with packet sampling, as opposed to

flow sampling, some of these statistics can be retrieved. Moreover, packet sampling produces

accurate estimates of byte and packet counts, but inaccurate estimates of flow counts [34], as

volume metrics are less resilient to sampling than entropy-based summarizations [34]. The im-

pact of packet sampling on anomaly detection metrics (volume and entropy) as well as on 3

algorithms for scan detection (TRW [85], TAPS [140], Xu [154]) has been extensively studied
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in [34] and [103]. Both studies, together with other published work [69, 101] came to the same

conclusion that flow sampling is superior to packet sampling when it comes to anomaly de-

tection. Another detailed study [37] confirmed the negative effect of packet sampling on the

classification of network traffic.

The main reason for packet sampling being inferior is threefold: (a) packet sampling causes

a fundamental bias called flow thinning (smaller flow size distribution) that causes high false

positive and false negative rates [103], (b) packet sampling brings traffic feature set distortion

towards either uniformity or biased towards large-sized flows, which significantly reduces the

recall, and (c) trying to minimize loss of information at packet level is not efficient for flow-

based approaches, as there is only small reduction of data at the flow level [69]. The impact

of sampling on portscan detection [113, 112] revealed that flow sampling is not always better

than packet sampling when equal amount of packets is sampled in both cases. Since there are no

guaranties of how many flows will be sampled, the flow reduction effect is again questionable.

2.1.2 Flow Sampling Methods

The above mentioned results motivated the researchers to put the main focus to flow-based

sampling. Smart sampling introduced by [55] is a flow-level analogy to sample-and-hold sam-

pling. Large flows (with more bytes) are selected with higher probability then small flows.

More specifically, a flow record representing a flow of x bytes is sampled with probability

pz(x) = min{1, x/z}. Flows of size greater than manually threshold z are always selected, while

smaller flows are sampled with probability proportional to their size. Smart sampling can be use-

ful for estimating flow length distribution [56] (e.g. for network usage monitoring), but it is not

suitable for general anomaly detection methods [101]. A combination of packet and flow-based

sampling [156] was designed to estimate network flow characteristics (namely packet lengths and

byte sizes) using expectation-maximization (EM) algorithms, however the convergence of the

proposed algorithms is rather slow.

Selective sampling [9] was proposed as an flow-based alternative to non-linear adaptive [76]

and smart sampling. The method is based on common observation that small flows (with small

number of packets) are usually the source of malicious traffic (e.g. DDOS or worm propagation).

Therefore selective sampling samples small flows with higher probability and flows that are larger

in size than manually predefined threshold are sampled with probability inversely proportional

to their size:

p(x) =

{
c x ≤ z
z/(n · x) x > z,

(2.1)

The authors of selective sampling introduced a new trend in sampling, where the methods are

specifically designed for anomaly detection algorithms [8]. This approach deliberatively looses

some information in order to magnify specific types of anomalies, which did not have to be visible

even from the unsampled set. This way, a carefully-designed sampling can actually improve the

effectiveness of some detection algorithms. Even though the selective sampling was designed only

for an entropy based anomaly detector, the idea of customizing sampling methods for anomaly

detection has proven strong in the following years and our work builds on the top of it.
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Sampling Sampling Volume Distrib. Anomaly
Method Level Preservation Preservation Detection

Random Packet Sampling P ◦ ◦ ×
Sample and Hold Sampling [60] P • × ×
Adaptive Packet Sampling [41] P • × ×
Adaptive Non-Linear Sampling [76] P • ◦ ×
Progressive Sampling [7] P × × •
Random Flow Sampling F • • ◦
Smart Sampling [55] F • × ×
Selective Sampling [9] F × × •
Proposed Adaptive Late Sampling F ◦ ◦ •

Table 2.1: The overview of selected sampling methods, levels (P - packet, F - flow) and their
suitability for anomaly detection and for preserving traffic volumes and distributions. Legend:
× - not suitable, ◦ - partially suitable, • - suitable.

The use of sampled data for more advanced analysis, such as Network Behavior Analysis

(NBA) or intrusion detection [139], is problematic [102], as any sampling necessarily impacts the

effectiveness of the anomaly detection and data analysis algorithms. These algorithms are based

on pattern recognition and statistical traffic analysis, and the distortion of traffic features can

significantly increase the error rate of these underlying methods by breaking their assumptions

about traffic characteristics [37]. The loss of information introduced by sampling methods also

negatively impacts any potential postmortem or forensics investigation. Moreover, the impact

of sampling on new or extended data formats (e.g. HTTP proxy logs, NetFlow [1], or IPFIX

protocol extended with new HTTP fields [147]) has not been studied yet.

2.2 Network Traffic Classification

Network perimeter can be secured by a large variety of network security devices and mechanisms,

such as host-based or network-based Intrusion Detection Systems (IDS) [129]. We briefly review

both systems, focusing our discussion on network-based IDS, which are the most relevant to the

presented work.

2.2.1 Host-based IDS

Host-based IDS systems analyze malicious code and processes and system calls related to OS

information. Traditional and widely-used anti-virus software or spyware scanners can be easily

evaded by simple transformations of malware code. To address this weakness, methods of static

analysis [108], [135] were proposed. Static analysis, relying on semantic signatures, concentrates

on pure investigation of code snippets without actually executing them. These methods are

more resilient to changes in malware codes, however they can be easily evaded by obfuscation

techniques. Methods of dynamic analysis [107], [126], [159] were proposed to deal with the

weaknesses of static analysis, focusing on obtaining reliable information on execution of malicious
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programs. The downside of the dynamic analysis is the necessity to run the codes in a restricted

environment which may influence malware behavior or difficulty of the analysis and tracing the

problem back to the exact code location. Recently, a combination of static and dynamic analysis

was used to analyze malicious browser extensions [81].

2.2.2 Network-based IDS

Network-based IDS systems are typically deployed on the key points of the network infrastructure

and monitor incoming and outgoing network traffic by using static signature matching [70] or

dynamic anomaly detection methods [39]. Signature-based IDS systems evaluate each network

connection according to the predefined malware signatures regardless of the context. They are

capable of detecting well-known attacks, but with limited amount of detected novel intrusions.

On the other hand, anomaly-based IDS systems are designed to detect wide range of network

anomalies including yet undiscovered attacks, but at the expense of higher false alarm rates [39].

2.2.2.1 Classification of Network Traffic Services

Network-based approaches are designed to detect malicious communication by processing net-

work packets or logs. An overview of the existing state-of-the-art approaches is shown in Table

2.2. The focus has been on the traffic classification from packet traces [27], [105], [136], [150],

as this source provides detailed information about the underlying network communication. Due

to the still increasing demands for larger bandwidth, analyzing individual packets is becoming

intractable on high-speed network links. Moreover, some environments with highly confidential

data transfers such as banks or government organizations do not allow deployment of packet

inspection devices due to the legal or privacy reasons. The alternative approach is the classifi-

cation based on network traffic logs, e.g. NetFlow [1], DNS records, or proxy logs. The logs are

extracted at the transport layer and contain information only from packet headers.

Methods introduced in [58] and [88] apply features extracted from NetFlow data to classify

network traffic into general classes, such as P2P, IMAP, FTP, POP3, DNS, IRC, etc. A com-

parison and evaluation of these approaches can be found in a comprehensive survey [91]. The

work in [11] provides the description of traffic patterns for selected applications and proposes a

classification technique to identify video, audio and file transfer traffic tunneled over HTTP.

A combination of host-based statistics with SNORT rules to detect botnets was introduced

in [74]. The authors showed that it is possible to detect malicious traffic using statistical features

computed from NetFlow data, which motivated further research in this field. An alternative

approach for classification of botnets from NetFlow features was proposed in [29]. The authors of

[120] have used normalized NetFlow features to cluster flow-based samples of network traffic into

four predefined categories. As opposed to our approach, the normalization was performed to be

able to compare individual features with each other. In our approach, we extended this idea and

use normalization to be able to compare various malware categories. While all these approaches

represent relevant state-of-the-art, network threats evolve so rapidly that these methods are

becoming less effective due to the choice of features and the way they are used.
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2.2.2.2 Classification of Malware over HTTP(S)

One of the largest changes in the network security landscape is the fact that HTTP(S) traffic

is being used not only for web browsing, but also for other types of services and applications

(TOR, multimedia streaming, remote desktop) including lots of malicious attacks. According

to recent analysis [79], majority of malware samples communicate via HTTP. This change has

drawn more attention to classifying malware from web traffic. In [93], the authors proposed an

anomaly detection system composed of several techniques to detect attacks against web servers.

They divide URIs into groups, where each group contains URIs with the same resource path.

URIs without a query string or with return code outside of interval [200, 300] are considered

as irrelevant. The system showed the ability to detect unseen malware samples and the recall

will be compared with our proposed approach in Section 4.6. In [137], the authors introduced

a method for predicting compromised websites using features extracted from page content and

Alexa Web Information Service.

Having sufficient amount of labeled malware samples at disposal, numerous approaches pro-

posed supervised learning methods to achieve better efficacy. Clasifying DGA malware from

DNS records based on connections to non-existent domains (NXDomains) was proposed in [10].

Even though several other data sources were used to detect malware (such as malware execu-

tions [12] or JavaScript analysis [87]), the most relevant work to our approach uses proxy logs

[42], [77], [100], [161], [110].

The clustering of malware signatures was proposed in [115]. DGA-based malware was analyzed

in [10], while the user agent anomalies were studied in [90]. The authors of [65] performed a

detail analysis of botnet behavior including HTTP channels. This paper focuses on HTTP traffic,

summarizes the previous malware analysis, and include other types of malicious behaviors.

In all these methods, proxy log features are extracted from real legitimate and malicious

samples to train a data-driven classifier, which is used to find new malicious samples from the

testing set. There are five core differences between these approaches and our approach: (1) we do

not classify individual flows (in our case proxy log records), but sets of related flows called bags,

(2) we propose a novel representation based on features describing the dynamics of each bag, (3)

the features are computed from the bags and are invariant against various changes an attacker

could implement to evade detection, (4) parameters of the proposed representation are learned

automatically from the input data to maximize the detection performance, (5) the proposed

classification system was deployed on corporate networks and evaluated on imbalanced datasets

(see Table 2.2) as they appear in practice to show the expected efficacy on these networks.

2.3 Collaborative Intrusion Detection Systems

Nowadays, Intrusion Detection Systems [129] (IDS) play a crucial role in protecting computer

networks against various types of attacks and other malicious behavior. As already mentioned

in the previous section, every IDS can be categorized into two groups: host-based or network-

based. Host-based IDSs are deployed on each host individually, where they analyze processes

and system calls related to OS information. Network-based IDSs usually cover larger segment

of network infrastructure (subnet) and monitor incoming and outgoing network traffic.
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Moreover, IDS systems can be categorized into anomaly-based or signature-based IDS ac-

cording to the detection principles the system is based on. Anomaly-based IDS is able to detect

novel and zero-day attacks by employing various types of anomaly detection methods [39]. These

methods usually create a model of normal (legitimate) behavior and continually recognize de-

viations from that behavior, which are marked as network anomalies. The downside of this

approach includes mainly higher false positive rate (legitimate behavior marked as malicious).

Signature-based IDS [128] performs signature matching of observed network traffic with prede-

fined patterns of intrusive behavior. These systems are less error prone, however their database

needs to be updated each time a new intrusion is observed to be able to detect it.

2.3.0.1 Taxonomy

Before we will discuss the CIDS in more detail, it should be noted that the term Collaborative

IDS is sometimes used synonymously with the term Cooperative IDS. We suggest to respect the

differences of these two terms as described in [36], however for the sake of simplicity, we will

denote both systems as CIDS.

Cooperative Intrusion Detection System is a distributed system, where participants are able

to exchange information related to the intrusion detection. Each individual entity operates on its

own and provides the outcome to the rest of the entities, which may create additional benefits,

but not completely new opportunities.

Collaborative Intrusion Detection System is a dynamic, distributed system where participants

interact between each other to enable adaptation on their environment and their tasks, or making

teams and other organizational structures. In such configurations they are able to solve problems

that would not be solvable when working separately.

Event represents a symbolic description of a particular network activity (service, behavior).

It may corresponds to both legitimate and malicious activity.

Alert is defined as a symbolic description of a particular network activity (service, behavior)

reported by IDS, which is considered as malicious by the system.

In the following, we will describe three above-mentioned architecture designs of cooperative

and collaborative intrusion detection systems (denoted as CIDS): centralized, hierarchical, and

fully distributed. We will point out the benefits and limitations of each architecture and describe

selected contributions, proposed frameworks, and techniques in more detail.

2.3.1 IDS Architectures

The first IDS prototypes were designed in the 1980s to protect security assets by using local

anomaly detection and expert systems [53]. Later in the 1990s, first distributed intrusion detec-

tion systems based on the centralized approach [134, 52] were proposed. These systems present

centralized view of distributed architecture by aggregating information from multiple sources,

which goes hand to hand with scalability problems and a single point of failure security risks.

Hierarchical and multi-layered approaches [119] introduced in late 1990s partially solved the scal-

ability, while additional challenges dealing with reducing false alerts were discussed and analyzed.

Since 2000, researchers have proposed several fully distributed IDS architectures [49, 157, 158]
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Fig. 2.1: Centralized CIDS architecture [162].

targeting scalability and a single point of failure issues. However with the strong increase of

network traffic, researchers concentrated on targeting new challenges, e.g. computational and

communication complexity or reducing extensive amount of (false) alerts.

Most recently, Cooperative and Collaborative Intrusion Detection Systems (CIDS) have been

discussed in the context of novel and more sophisticated attack scenarios across multiple en-

terprise networks. Data privacy and trust between participating parties should be resolved, as

well as evasion strategies against well-informed attacker. The main advantages of collaboration

among multiple heterogeneous intrusion detection systems include [36]:

• scalability and robustness - System is able to operate efficiently on networks (or on groups

of networks) regardless of its size in number of hosts as well as in number of incoming and

outgoing network traffic.

• availability - System is operational even if some parts are disabled by the attacker (no single

point of failure is present), so the system is able to compensate lack of central components.

• teamwork - Division and sharing of tasks can improve the overall performance and the

effectiveness, resulting in coordinated decisions that can compensate potential individual

shortcomings.

• complex overview - Having the overall network security at disposal enables the awareness

of distributed cooperative/collaborative attacks.

2.3.1.1 Centralized CIDS

Initial CIDS architecture concepts were designed as centralized solutions, in which alerts locally

collected on multiple detectors are sent to single central correlation unit, which performs the

fusion process as illustrated in Fig. 2.1. Although this architecture is easy to deploy, it may

become a single point of failure representing high security risk. When disabling the central node,

the correlation process is deactivated, which could compromise the whole network security. The

central correlation unit also has to deal with large amounts of alerts, so care must be taken

when dealing with centralized architectures. On the other hand, the total awareness of the

whole network state may produce best detection efficiency.
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Fig. 2.2: Hierarchical CIDS architecture [162].

The NSTAT system proposed in [89] is an example of centralized CIDS. It uses client/server

model consisting of several hosts as a source of multiple audit trails, and a central server machine

making the final assessments about possible network security threats. The audit trails from

monitored clients are collected into a single chronological data stream, which is analyzed in the

central unit by using state transition analysis in real time. NSTAT focuses only on signature

actions of penetration attacks, which limits the detection capabilities. Therefore the authors

suggest to integrate NSTAT system with other CIDSs to increase the overall detection potential.

2.3.1.2 Hierarchical CIDS

More advanced hierarchical CIDS architecture is partitioned into individual groups according

to geographical location, types of services running within the network, anticipated types of

attacks etc. Each group includes a correlation node, which handles all alerts generated by all

detection mechanisms within the group and passes the results to the correlation node on higher

hierarchical level for further analysis. An example of this approach is illustrated in Figure 2.2.

This type of architecture reduces the danger of a single point of failure, however it does not

introduce fully scalable design. Furthermore, the correlation nodes process alerts within their

hierarchical structure and do not posses with the whole network awareness, which can weaken the

effectiveness of the correlation results. Last but not least, failure of central analysis component

located at the very top of the architecture could result in the total destruction of the system.

In [119], the authors introduce a general framework of hierarchical CIDS called EMERALD

for large enterprise networks. The framework consists of three layers: service layer, domain-wide

layer, and enterprise-wide layer. Service layer contains dynamically deployable service monitors,

which perform network traffic surveillance and may interact with the environment by providing

localized analysis to other monitors. These monitors are independently tunable by using several

parameters (e.g. type of detection method, subscription list for sending the results etc.) and are

able to provide both signature analysis and statistical profiling. The second layer called domain-

wide layer operates with domain monitors that aggregate and correlate results received from the

service monitors and report domain threats to the network administrator. Finally, enterprise-

wide layer analyzes attacks across the whole network infrastructure, providing a complex view
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Fig. 2.3: Fully distributed CIDS architecture [162].

on the overall network state. The authors do not discuss any communication issues, however the

proposed framework represents an interesting contribution to the research community, providing

foundations to other CIDS architectures.

Servin and Kudenko [130] proposed hierarchical CIDS to detect DDoS attacks. The system

is composed of sensor agents that monitor local state information and send that information

in form of communication signals to central agents located in the upper part of the hierarchy.

Each central agent processes the signal received from multiple sensor agents and learns by using

reinforcement learning, where an action signal should be generated and passed through to other

central agent in order to gain a positive reward. Finally the agent on the top of the hierarchy

uses reinforcement learning to determine whether or not to trigger an alert to the network

administrator. The goal of this learning process is that every agent would know in each state

the action to execute to obtain a positive reward. The downside of this approach is that even

though the architecture is hierarchical, it exhibits a single point of failure, as compromising of

a single central agent on the top will incapacitate the whole alert generation procedure.

Mutual dependences among various computer networks are discussed by Li et al. [96]. The

authors built hierarchical CIDS by using three types of detectors: local, regional, and global.

Local detectors reside on end hosts and their task is to detect potential intrusions and report

them to regional level, where regional detectors discovers regionally visible attacks by using

discrete-time Hidden Markov Models, assuming mutual dependence among end hosts within the

region. A region is a group of hosts sharing similar attributes, for example network proximity,

local host properties (operating system types), or policy constraints. Finally, global detectors

collect results from regions that are mutually independent, so sequential hypothesis testing

technique can be applied to reveal more complex attack scenarios.

2.3.1.3 Fully Distributed CIDS

Fully distributed architecture generalizes the hierarchical concept into peer-to-peer relation

among the individual parts of the system. Graphical illustration of this architecture is depicted

in Fig. 2.3.
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Yegneswaran [158] designed a distributed CIDS called DOMINO and demonstrated the utility

of sharing information between multiple IDS systems in a cooperative infrastructure. They

used information-theoretic approach, more specifically Kullback-Leibler [67] distance metric to

quantify additional information gained by adding new nodes to the system. The results show

that even a small number of nodes can significantly enhance the overall detection capabilities of

the system.

Locasto [98] addresses the problem of data privacy in a fully distributed CIDS by using Bloom

filters [31]. Bloom filters are compact (reduction in data size), resilient (no false negatives), and

secure (one-way data encoding) data structure that satisfies the privacy needs for participating

on collaborative defense across various enterprise networks. However some false positives may

occur depending on the number of elements.

Host-based distribute CIDS proposed by Dash [49] uses local and global detectors to detect

slow network intrusions. Each local detector resides on one end-host machine, uses a binary clas-

sifier to analyze both incoming and outgoing traffic and sends the output to randomly selected

global detector. Global detectors draw conclusions about the received signals by using simple

aggregation techniques (e.g. summing the number of positive counts) or Bayesian networks. The

authors introduced interesting approach to boost the effectiveness of numerous week detectors,

however these detectors are supposed to be host-based and binary. We believe such limitations

may cause the deployment of the system on large enterprise networks impractical. Furthermore

the authors do not discuss the communication issues and load balancing between communicating

parties.

Dayong [157] proposed to employ multi-agent approach in P2P distributed CIDS. They sug-

gest to deploy on each host two types of agents handling the detection process and communica-

tion. Another two types of mobile agents are able to travel from one host to another to collect

information regarding cooperative attack scenarios.

2.3.1.4 CIDS Summary

According to the proposed approaches and techniques, it is possible to identify five key aspects

of general Collaborative Intrusion Detection Framework [36]: Communication Scheme (type of

communication used), Organizational Structure (topology of the whole system architecture),

Group Formation (whether the system allows creation of smaller teams and coalitions), In-

formation Sharing and Interoperability (whether the data, information, and/or knowledge is

shared), and System Security (collaborative trust management, adversary evasion countermea-

sures). However, the key criterium with respect to alert fusion is the system architecture. An

overview of three main types of CIDS architectures together with their major benefits and

limitations is presented in Tab. 2.3.

2.3.2 Cooperative Multi-Agent Learning

In recent years, several applications of various machine learning techniques have been studied

to enhance the detection performance of intrusion detection systems. However, most of the re-

search aim has been concentrated on either adaptation methods for a single IDS [121, 125] or
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Architecture Examples Advantages Disadvantages

Centralized [89] Efficient in small envi-
ronments

Single point of failure; Poor scalability

Hierarchical [96, 119, 130] Better scalability Single point of failure at the top and
poor correlation effectiveness at the

bottom of the hierarchy

Distributed [49, 157, 98, 158] No single point of fail-

ure; Fully scalable

Higher communication load; Uncertain

detection accuracy; Simpler existing
alert correlation methods

Table 2.3: An overview of three main types of CIDS architectures with corresponding benefits
and limitations.

data/information/knowledge fusion methods of multiple CIDS [116, 146, 149] to reduce false

alerts and increase the overall detection awareness. Representative selection of approaches pro-

posed in the field of alert correlation and fusion is described in the previous section. In this

section, we will concentrate on the machine learning approaches (more specifically on cooper-

ative multi-agent learning techniques), allowing the system to distributively learn and adapt,

which is highly desirable in dynamic network environments.

The field of cooperative multi-agent learning has been extensively studied by the research

community. The proposed approaches can be categorized by using several criteria. According to

the feedback the critic/environment provides to the learner, we distinguish unsupervised, super-

vised, and reward-based learning [111]. In supervised leaning techniques, a critic provides correct

solutions to learners, in contrast with unsupervised learning, where no feedback is provided at

all. In reward-based learning, each learner receives some reward based on the behavior of the

learner. Furthermore, several hybrid techniques have been proposed, e.g. semi-supervised learn-

ing methods usually take advantage of a small set of correct output data to enhance the learning

process on larger set of unknown data [33].

As mentioned above, supervised learning methods provide most valuable feedback, allowing

to learn from the ground truth. However, applying supervised machine learning methods in

network environment is not practical (and mostly hardly achievable) due to extensive cost of

obtaining labeled data. Moreover, in such a dynamic environment as computer networks, the

ground truth could change rapidly making the labeled data unsatisfactory or obsolete. Despite of

these difficulties, there has been few attempts to create larger sets of labeled data [64]. However

most of them are from controlled or artificially created environments and were proven to be not

representative [4].

Semi-supervised techniques usually require small amount of labeled data that are used to

improve performance on larger set of unlabeled data. Typical example of semi-supervised learn-

ing technique is multi-view approach, where the data attributes are split into various attribute

subsets (views). On the other side, in consensus training, multiple classifiers with different views

are combined to form a high-level ensemble classifier.

Mao et al. [104] proposed multi-view co-training method [33] to leverage unlabeled data to

enhance overall detection performance. They used data from two sources (network and host)

and apply modified co-training algorithm to train classifiers. Data instances with high uncertain

classification are labeled by an expert and returned back to the system. Chiu et al. [40] proposed
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Fig. 2.4: Interaction of a single agent with the environment in reinforcement learning [144].

algorithm called two-teachers-one-student (a combination of multi-view and consensus training

technique) to reduce the number of reported false alerts.

Event though semi-supervised techniques significantly decreased the amount of required la-

beled data, they still need some representative labeled samples in order to work correctly, and

what is more, the performance of the algorithms strictly depends on labeled samples. However,

selecting representative labeled sample set could be problematic and even small deviations may

introduce considerable errors.

Collaborative learning by knowledge exchange was studied by Fisch et al. [63]. The authors

proposed distributed collaboration mechanism based on sharing static patterns of novel attacks

between probabilistic classifiers. Their off-line learning technique consists of two stages: rule

premises training in an unsupervised fashion (variational Bayesian inference) and supervised

class labeling for training of rule conclusions. This technique involves numerous interactions

with security administrator, which may be impractical in real network environments.

In real-time or online network intrusion detection, collaborative intrusion detection devices

do not receive any correct answers about the actions they take. However, it is possible to pro-

vide some feedback describing reaction of the unknown environment on selected action. Thus

detection systems have to perform some actions first in order to learn the experience which

action brings best results in which state. For this reason, we believe that applying reinforcement

learning in CIDS can dramatically improve overall performance of the system.

Thus in the following, we will focus mainly on reward-based learning methods (more specif-

ically on reinforcement learning methods) and their applications in network security domain.

We will introduce current related work in IDS/CIDS learning followed by introduction to rein-

forcement and team learning techniques. Beside reinforcement learning, there has been proposed

other types of reward-based approaches, e.g. evolutionary computation, simulated annealing, or

stochastic hill climbing. Unlike reinforcement learning, these methods learn behaviors of the

agents directly without any value function and we will not describe them further.

2.3.3 Cooperative Reinforcement Learning

Reinforcement learning (RL) has been widely studied as a popular and effective technique for

cooperative multi-agent learning in domains, where feedback is provided after a sequence of

actions performed in the environment [144], typically expressed as penalties or rewards. RL

methods are based on trial and error interaction with the environment, where predefined formulas

are updated to generate expected utility values. These values are used further in the exploration
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and exploitation process of the state space. A single-agent RL interaction is illustrated in Fig.

2.4.

Generally, the proposed approaches can be divided into searched-based algorithms, model-

based, and model-free methods. An example of searched-based technique is evolutionary com-

putation, where an evolutionary algorithm creates initial population of randomly generated in-

dividuals, and uses selection, breeding, and mutation to produce new individuals. Model-based

methods [28] typically stochastically sample the environment to build a model and then approx-

imate functions to generalize beyond experienced states. They require less exploration of the

environment, but do not scale well to larger problems. On the other side, model-free methods

[143, 151] do not require any model and approximate the optimal policy only by interactions

with the environment. However, most of the proposed techniques have been derived from a

model-free algorithm called Q-learning [151].

We believe that creating a model of network traffic environment is infeasible due to its highly

dynamics, and searched-based techniques are impractical due to high number of dynamically

changing states and variables. On the other hand, model-free methods provide a mechanism

to enable multi-agent learning without these restrictions, but the dynamics of the system may

influence their convergence properties. However such influence may be desirable in network

security environments, where ensures unpredictability of the system. That is why we will focus

on model-free techniques (and especially on Q-learning [151] algorithms) more in detail.

Various challenges have been identified, including:

• co-learning - In order to coordinate the overall behavior of the system, each agent should

observe actions performed by the rest of the team and infer relevant knowledge into individual

learning process.

• non-stationarity - Most single-agent RL algorithms assume stationary environments for

their convergence properties. Making the environment non-stationary may violate such prop-

erties.

• scalability - The proposed algorithms are often designed for smaller sets of agents, which

makes their deployment into real world problems impractical.

• exploration and exploitation - How to balance trade-off between exploration and ex-

ploitation represents traditional RL challenge. An agent that collects information from the

environment should perform some exploration to avoid suboptimal solutions. On the other

hand, the agent should not spent too much time in areas with low rewards.

In the following, we will present general definitions and ideas of reinforcement learning ap-

proaches.

2.3.3.1 Single Learner

In single-agent reinforcement learning, an agent or group of agents uses common resources to

gain common knowledge of the environment. When more agents are involved in the learning

process with a single learning knowledge, we call this approach as team learning [111]. The

environment can be described by using Markov decision process (MDP), which is defined as

a tuple (X,U, f, ρ), where X denotes the finite set of environment states, U denotes the finite

set of agent actions, f : X × U × X → [0, 1] is the state transition probability function, and

ρ : X × U × X → R is the reward function. An agent performs action uk ∈ U to change the
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state of the environment from xk ∈ X to xk+1 ∈ X according to the state transition function

f(xk, uk, xk+1) ∈ [0, 1] and receives corresponding reward rk+1 = ρ(xk, uk, xk+1) ∈ R.

The values of both functions depend only on two consequent states, so the long-term effects

of selecting an action is unknown. The behavior of each agent is driven by its policy h : X×U →
[0, 1], which defines which action should be taken in which state. The goal in each step k is to

maximize the expected discounted return over the probabilistic state transitions

Rk =

∞∑
j=0

E(γjrk+j+1).

Value Rk represents total reward accumulated in the long run, which can be bounded by using

the discount factor γj ∈ [0, 1).

In other words, the goal of each agent is to maximize its overall long-term performance with

only one-step performance information. To achieve this goal, we usually define the action-value

function (Q-function) Qh : X × U → R, which expresses the expected return of a state-action

pair (x, u) given the policy h:

Qh(x, u) = E{
∞∑
j=0

γjrk+j+1 | xk = x, uk = u, h}.

Furthermore, the optimal Q-function is defined as Q∗(x, u) = maxhQ
h(x, u), which satisfies the

Bellman optimality equation:

Q∗(x, u) =
∑
x′∈X

f(x, u, x′)[ρ(x, u, x′) + γmax
u′

Q∗(x′, u′)], ∀x ∈ X,u ∈ U.

This equation states that the optimal value of selecting action u in state x can be computed as

a summation of expected immediate reward and the expected (discounted) optimal value of the

next state x′. The learning goal can be achieved by computing Q∗ and selecting corresponding

action according to the greedy policy applied to Q∗ value:

h(x) = arg max
u

Q(x, u).

Classic technique to deal with exploration/exploitation challenge is ε-greedy action selection

[144], where an agent selects greedy action (producing highest known reward) with probability

1 − ε or an explorative action with probability ε. Note that all actions with nonzero probabil-

ity will be selected after sufficiently large amount of iterations. It has been proven that some

algorithms (e.g. Q-learning) converge to the optimal value function for nonzero exploration prob-

ability. Unfortunately the convergence speed may be very slow and depends on the number of

actions mostly exponentially. Furthermore, another drawback of ε-greedy algorithm is that it

chooses equally among all actions. Therefore, various other exploration/exploitation techniques

have been proposed, including Boltzmann Exploration [144], Optimistic Initial Values that ben-

efits rarely visited areas, or other more sophisticated algorithms [145].

In Q-learning, the current estimate of Q∗ is computed according the following equation:

Qk+1(xk, uk) = Qk(xk, uk) + αk[rk+1 + γmax
u′

Qk(xk+1, u
′)−Qk(xk, uk)],
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where αk ∈ (0, 1] is the learning rate that specifies the size of the adjustment towards new change.

Q-learning is widely used algorithm with proven convergence and has provided an inspiration

for more advanced RL algorithms (e.g. Q(λ) [114]).

Team learning is an extension of single-agent reinforcement learning, where single learner

discover the optimal policy for a team of agents. Team learning can be divided into two groups:

homogeneous and heterogeneous learning. The former uses a single-agent behavior for all agents,

the latter may create different types of behaviors, which allows agent specialization. Main dis-

advantage of team learning is the explosion of the state space, which could be problematic for

methods that explore the space of state utilities (e.g. reinforcement learning methods).

Collaborative intrusion detection systems based on team learning would use a single learning

mechanism for all system nodes, which could be undesirable for the security reasons. However,

the presented methodology can be extended to multi-agent learning, which we briefly discuss in

the following section.

2.3.3.2 Multiple Learners and Concurrent Learning

Multi-agent reinforcement learning generalizes MDP to stochastic game. A stochastic game is a

tuple (X,U1, . . . , Un, f, ρ1, . . . , ρn), where n is the number of agents, X is a discrete set of states

in the environment, Ui represents a set of actions available to agent i, f : X ×U ×X → [0, 1]

is the state transition probability function (U = U1 × . . .× Un), and ρi = X ×U× → R is the

reward function of agent i.

Thus the change in state as well as the reward received depends on the joint action of all

agents uk = (uT1,k . . . , u
T
n,k). Moreover, the policies of all individual agents hi : X × Ui → [0, 1]

form the joint policy h. Finally the Q-function of each agent is a function of the joint action

conditioned on the joint policy: Qh
i : X ×U→ R.

According to the relation between the reward functions, we can define fully cooperative sce-

narios, where all agents have the same goal (ρ1 = . . . = ρn) as well as fully competitive scenarios

(ρ1 = −ρ2).

Single-agent learning algorithms in stationary environments usually explore the state space

and may converge to local or global optimum. The situation becomes more difficult in dynamic

environments, where the environment changes through time so the agent has to shift the optimal

behavior with respect to the change of the environment. Moreover in multi-agent learning, the

agents can adaptively modify each others’ learning environment. To model and predict the

dynamics of multi-agent learning, Vidal and Durfee [148] proposed technique of using parameters

such as rate of behavior change per agent or learning rate to approximate the error in the decision

function of the agents during the learning process.

In a fully cooperative scenario, the reward is divided among agents w.r.t. their interactions and

current state of the environment. Most approaches uses general-sum stochastic games [35, 164],

where the reward is assigned unequally. In other words, increasing the reward of one agent does

not imply increasing the rewards of other agents, which may result in non-cooperative behavior.

Recent approaches combine techniques from reinforcement learning and game theory to enable

the application in dynamic environments [44, 131].

23



Intrusion Detection Sensors and Sniffers

Level 1
Object refinement

Level 0
Data

refinement

Object base

Level 2
Situation refinement

Level 3
Threat

assessment

Intrusion Detection Knowledge

Situation base

Level 4
Resource

management

Information Flow Block DiagramAbstraction

Knowledge

Information

Data

Fig. 2.5: Overview of the architecture proposed by Bass [25] for creating cyberspace situational
awareness.

2.3.4 Knowledge Fusion in Network Security

Knowledge fusion has become widely used in collaborative intrusion detection systems as a

technique capable of addressing novel challenges that have emerged in recent years. Bass [24, 25]

proposed high-level fusion framework illustrated in Figure 2.5. This framework uses decision-

support process from standard military doctrine called OODA (observe, orient, decide, act)

that can be mapped into the three levels of abstraction: data, information, and knowledge.

Data represents the observations and measurements, forming information when placed in some

context. Knowledge is information explained and understood.

This framework extends the typical functionality of intrusion detection systems by introducing

threat modeling phase and resource management feedback loop. The main goal of the proposed

architecture is to present generated network security events at the level of human understanding

of the network security threats. In the following, we will describe the purpose of each layer

presented in Figure 2.5:

Level 0 The lowest layer ensures calibration and filtering of raw data from multiple sensors

and alignment of measurements.

Level 1 The second layer performs data correlation and assigns weighted metrics based on rel-

ative importance to intrusion detection primitives. The output is an object, which represents

an instance of the phenomenon that should be analyzed.
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Level 2 In this layer, aggregation of intrusion detection primitives is performed based on their

dependencies, point of origin, common protocols and targets, attack rates, and other high-level

attributes. The output of this layer is the situational knowledge.

Level 3 The highest level is able to provide final assessments and implications of current sit-

uation by correlation with security policies.

Level 4 The last level serves as a fusion feedback loop. By using current situation knowledge,

more thorough analysis can be made at different levels.

This alert fusion framework was further discussed by Corona et al. [43], where they used

the proposed scheme to identify current research aims on information fusion according to the

level of abstraction. Authors also extend the data fusion procedure with data organization and

reconciliation. They claim that data should be organized by using several features describing

their network context, e.g. topology, acquisition time, service type etc. Furthermore they discuss

reconciliation and validation of raw data by using multiple sensors. Although the proposed

suggestions and enhancements about data validation may refer to relevant security issues, they

are outside of the scope of this thesis.

2.3.4.1 From Data to Information

Related work on data and object refinement includes numerous research approaches and tech-

niques dealing with acquiring raw network data, their calibration, filtering, and representation.

Numerous sampling techniques have been proposed to reduce the computational overhead of

IDS systems deployed on high-speed network links. The techniques are described in Section 2.1

in more detail.

Another example of such refinement is anomaly detection assessment, where several detection

methods evaluate the incoming traffic according to the degree of anomaly [13, 123]. The optimal

aggregation function is selected and used to combine all individual assessments.

2.3.4.2 From Information to Knowledge

Nowadays sophisticated security threats are extremely difficult to detect by traditional network

security monitoring devices. These threats may use cooperative or collaborative techniques to

become stealthy for non-cooperative detection systems [155]. These attacks can be successfully

detected when multiple systems operate in a cooperative mode, sharing results and gained

experience. To provide most valuable and meaningful feedback, each system should be able to

extract some knowledge from the observed data, which can be passed to other systems to create

a complex network security awareness by using techniques from information and knowledge

fusion. Generally, we distinguish between two types of information fusion techniques:

1. classifier combination - These techniques use various classifiers in order to take unique deci-

sions about the patterns (single network packets or flows).

2. alert correlation - High-level description of the attacks generated by multiple intrusion de-

tection systems.

Combining heterogeneous network security systems is motivated by the fact that it is ex-

tremely difficult for a single detection algorithm to detect all kinds of network threats. On the
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Approach Examples Advantages Disadvantages

Similarity based [83, 146] Easy to implement and use;

Lower computational complex-

ity; No prior knowledge needed

Unable to detect more sophisti-

cated attacks

Attack scenario [51, 116, 149] Effective on predefined attacks Unable to detect novel attacks; At-

tack library definition

Attack prerequisites &
consequences

[45, 46, 163] Able to detect novel attacks Building complex attack database;
High computational complexity

Filtering [118] Lower computational complex-

ity; No prior knowledge needed

Poor scalability; Extensive knowl-

edge of the environment needed

Table 2.4: An overview of existing alert fusion techniques with corresponding benefits and limi-
tations.

other hand, different detection techniques are likely to make different types of errors. From

this reason, it is reasonable to apply some techniques and methods from well-studied field of

combining classifiers [92] to increase the overall detection potential but at the same time effi-

ciently handle false positives and other classification errors. In our prior work, these techniques

were applied when combining various anomaly detection methods processing the same low-level

data [123]. Section 2.2 outlines the state of the art for classification methods in network security.

However, high-level information and knowledge from detection systems should be processed by

alert correlation techniques. In the following, we will concentrate on the state-of-the-art in alert

correlation. Alert management and correlation is concentration on finding mutual relationship

between the alerts and has been studied by researches and vendors as a technique to reduce the

number of false alarms generated by the network security mechanisms, to increase the level of

abstraction of the alerts, and to recognize larger attack scenarios.

The proposed approaches can be categorized into four types of techniques [57, 162], which we

discuss further in more detail:

• similarity between alert attributes [83, 142, 146],

• predefined attack scenarios [51, 116, 149],

• attack prerequisites and consequences [45, 46, 163],

• filtering techniques [118].

An overview of described alert fusion approaches together with their benefits and limitations is

presented in Tab. 2.4.

The research in alert management focuses not only on novel correlation techniques and al-

gorithms, but also on a formal definition of the problem. For example M2D2 data model [106]

proposed by Morin et. al. formalizes an information model designed for network security infor-

mation representation. The model includes four types of information (information about system

characteristics, vulnerabilities, security tools, and events observed), which makes the model

generalized enough to provide sufficient amount of relevant information for further correlation

process of multiple information sources.

2.3.4.3 Similarity Between Alert Attributes

Each alert generated by IDS has several attributes associated with it, e.g. source and destination

IP address, port numbers, protocol, timestamps. The most intuitive way how to correlate alerts
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is to group them through the similarity of their attributes. The main challenge is how to define

the similarity metrics. The existing techniques proposed in the category are able to reduce

large amounts of (false) alerts by aggregating similar alerts corresponding to the same attack or

legitimate behavior.

Valdes and Skinner [146] proposed a three-layered probabilistic model that aggregates low-

level events from heterogeneous sensors into security alerts on higher level of abstraction. At the

first level, the mechanism aggregates the most primitive network events (e.g. TCP connections)

into more advanced entities, which are further collected from various sensors by the correlation

utility to perform alert correlation. The correlation procedure groups alerts into meta alerts

(alerts of higher level of abstraction) by using feature similarity metrics. The authors also in-

troduced an expectation of similarity Ei, a relationship between new alert and one meta alert,

which expresses prior expectations that the feature Xi of alert X should match (based on pre-

defined incident class similarity matrix) and serves as a weight factor in the similarity function

between alert X and Y :

SIM(X,Y ) =

∑
iEi · SIM(Xi, Yi)∑

iEi
.

An approach proposed by Julisch [83] is based on identification of root causes that represent

the reasons for which alarms occur. The alarms with similar attributes are grouped to clusters

with their own root cause. This method concentrates on high-level alert analysis and tries to

decrease the number of alarms by reducing the number of observed root causes.

2.3.4.4 Predefined Attack Scenarios

The approaches based on predefined attack scenarios are designed to reveal more complex

attacks, usually executed in several steps. These methods are effective in detecting well-

documented attacks that are included in attack scenario database by security experts, while

novel attacks are usually missed.

In [51], Debar and Wespi proposed an aggregation and correlation component built on the

top of an event managing product. They introduced an approach that combines similarity-based

method with technique based on predefined attack scenarios by specifying four requirements

for the alert correlation process: prevent flooding (i.e. operator overload) and false positives,

put the information into context by aggregating related events and improve the scalability by

level-of-detail/vulnerability selection management. The proposed aggregation and correlation

process can be divided into three steps. The first step includes the preprocessing of alerts re-

ceived from heterogeneous sensors into unified data model for intrusion detection alerts based

on three attributes: probe or detector, source, and target. The consequent steps involve two

types of alert correlation procedures: relationship correlation and relationship aggregation. The

relationship correlation is based on explicit static rules and ensures identification of duplicates

and consequences, while relationship aggregation groups similar alerts together by using several

types of predefined situations based on the combination of three attributes: source, target, and

alert class.

Perdisci et al. [116] proposed alert fusion technique, where signature-based IDS alerts are

assigned to meta-alerts predefined by the user. These alerts generated by heterogeneous IDSs

are aligned into the Intrusion Detection Message Exchange Format (IDMEF) [50], which is a

27



standard message formate for intrusion detection reporting. The proximity to meta-alerts is

defined with similarity metrics by using IP addreses, ports, etc. When an alert is not assigned

to any meta-alert, it is reported to security experts for further label analysis.

Multi-dimensional alert correlation technique proposed by Zhou et al. [149] uses predefined

patterns of attack types consisting of standard traffic features (IP addresses, ports, etc.). The

incoming alerts are first correlated by using the predefined attack patterns, followed by filtering

mechanism to remove insignificant or redundant pattern instances.

2.3.4.5 Attack Prerequisites and Consequences

Correlation methods based on attack prerequisites and consequences (sometimes named multi-

stage approaches) try to reconstruct complex attack scenarios by discovering the causality re-

lationship between the alerts. Typically, these methods use first order logic or attack modeling

languages (LAMBDA [46]). The downside of this approach is that a large library of predefined

state transitions is required for the algorithm to work properly, which is very expensive to create.

Cuppens [45] proposed an alert management mechanism composed of three functions: alert

management function receives alerts generated by different IDS and stores them for further

analysis in form of relational database; alert clustering function uses predefined expert rules (in

form of predicates) to build clusters of alerts that correspond to the same occurrence of attack;

alert merging function is responsible for merging previously-built clusters according to attack

classifications, source/target, or temporal information.

Cuppens and Miege extended this mechanism by definition of additional correlation function

[46]. The purpose of this function is to automatically generate a set of correlation rules (by

using abductive reasoning), which can be applied on alerts to recognize more complex attack

scenarios. The correlation process has an explicit phase, where the security administrator defines

connections between events according to his knowledge, as well as implicit phase, where rela-

tions between events are determined by the statistical properties. The authors also discussed

the preliminary possibilities of intention recognition (to anticipate the intruder’s intentions)

and consequent reaction of the network security administrator. The main disadvantage of this

approach is strong influence of expert rules and knowledge on the overall effectiveness of the

mechanism – these rules are mostly domain dependent and very expensive to define.

In [163], the authors present a technique for correlating alerts from signature-based NIDS by

searching for specific alert relations. Several alert features were extracted (e.g. network addresses,

type of service, credentials etc.) to find connections to other alerts by using requires/providers

model and applying predefined inference rules. However, this technique does not perform well

on multi-sensor attacks and other more sophisticated threats and is impractical due to relatively

high computational requirements. Moreover, the inference process operates with detailed infor-

mation provided by signature based NIDS, which could be hardly applicable in encrypted or

security-sensitive environments.

2.3.4.6 Filtering Techniques

Definition of a complex library of state transitions represents very complicated and expensive

task. Filtering techniques have been proposed to remove the need of creating such libraries.
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Prospective alerts are prioritized according to their impact to targeted systems by using specific

filtering methods.

Porras et al. [118] designed a system capable of collecting, correlating, and prioritizing alerts

generated from multiple heterogeneous network security devices, e.g. firewalls, various antivirus

software, or network-based and host-based IDSs. Incoming alerts are first transformed into an

internal report format, then evaluated and ranked according to the relevancy (based on the

topology of their targeted IP addresses), priority (degree to which an attack was successful),

and the likelihood of success. Once ranked, correlation process filters alerts by using predefined

security policies. Proposed approach is able to analyze heterogeneous alerts, however at a very

high price – deep expert knowledge of network security perimeter as well as definition of security

policies is essential for the proposed mechanism to function properly.
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Chapter 3

Adaptive Sampling

In order to cope with an increasing volume of network traffic, flow sampling methods are deployed

to reduce the volume of network traffic data collected and stored for monitoring, attack detection,

and forensic purposes. Sampling necessarily frequently changes at least some of the statistical

properties of the data and can reduce the effectiveness of subsequent analysis or processing. In

this chapter, we propose two concepts that mitigate the negative impact of sampling on the

data:

• Late sampling is based on a simple idea that the features used by the analytic algorithms can

be extracted before the sampling and attached to the surviving flows. The surviving flows

thus carry the representation of the original statistical distribution in these attached features.

• The second concept we introduce is that of adaptive sampling. Adaptive sampling delibera-

tively skews the distribution of the surviving data to overrepresent the rare flows or flows with

rare feature values. This preserves the variability of the data and is critical for the analysis

of malicious traffic, such as the detection of stealthy, hidden threats.

Our approach has been extensively validated on standard NetFlow data, as well as on HTTP

proxy logs that approximate the use-case of enriched IPFIX for the network forensics.

New adaptive sampling method described in this chapter is the first contribution of the

thesis. It resides at Level 1 of the proposed fusion architecture (see Figure 3.1) and reduces

the incoming network traffic by putting the data into context with the precomputed statistics

acquired at Level 0. The proposed approach guarantees that the number of sampled flows does

not exceed the predefined limits necessary for higher layers of the collaborative fusion model

and at the same time optimizes the distribution and representation of sampled flows.

3.1 Early and Late Sampling

As already discussed in the previous section, any sampling that is performed on the raw input

data (e.g. network packets or flows) negatively impacts the traffic feature distributions. In the

following, we will denote this traditional way of sampling as early sampling. An example of

such negative impact in one dimension (number of flows originating from each source IP address)

is illustrated in Figure 3.3. In contrast to the original distribution shown in Figure 3.2, early

sampling may not only affect the shape of the distribution, but also downright eliminate most
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Fig. 3.1: Adaptive sampling resides at Level 1 of the proposed architecture and reduces the in-
coming network traffic by putting the data into context with the precomputed statistics acquired
at Level 0.
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Fig. 3.2: Number of flows for 20 source IP addresses computed from the original (unsampled)
data. The distribution is unbiased, however the computational demands of the detection algo-
rithms are high.

of the rare feature values. And the flows related to the eliminated values are typically the ones

that should be discovered by anomaly detection/detectors.

The impact on the specific anomaly detector would be twofold. First, most detectors use the

shape of the feature distribution in order to build an internal predictive model [138]. There-

fore, any significant change in the shape of the distribution directly impacts the efficacy of the

anomaly detection techniques. Moreover, the sampling has disproportionally eliminated the rare

or unusual feature values. These values are typically those that can be identified as anomalous

and potentially malicious. Effectively, early, unbiased sampling has a filter-like effect on the

32



Detection

Sampling (Early)

Feature Extraction

Selected Flows
+  Biased
Feature Values

Selected Flows

Comp. demands: LOW

Input Flows
Source IP Addresses

IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 IP10 IP11 IP12 IP13 IP14 IP15 IP16 IP17 IP18 IP19 IP20

N
um

be
r o

f F
lo

w
s

0

5

10

15

20

25

30
Feature Distribution for Early Sampling

Fig. 3.3: The effect of early random sampling on feature distribution. Due to the fact that the
flows are first randomly selected and the feature values are computed afterwards, early random
sampling negatively shifted the feature distribution. You can see that flows originated from 8
source IP addresses were eliminated completely (pure white bars), while the rest of the values
are highly imprecise.
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Fig. 3.4: Late random sampling preserves unbiased feature values of flows that are selected by
the sampling. However, source IP addresses with small number of flows are still eliminated.

anomaly detection method behind it. As we will demonstrate in Section 3.4, early sampling

considerably increases the minimal size of the detectable incidents.

To solve this problem, we need to differently restate the optimal sampling problem. We can no

longer improve the sampling method in isolation, but we need to optimize the performance of the

combination of the sampling and the specific anomaly detector. Working with the combination

allows us to introduce two complementary techniques.

First, we propose late sampling that is based on a simple intuition. Statistical machine

learning techniques rarely work with the raw data. Rather, they are applied in two steps. In the

first step, the detector extracts features from the flows. In the second step, the features are used

to build and maintain a statistical model. In late sampling, features are extracted from the full

traffic before the sampling and enrich the sampled data with the features built from the full,

unbiased data. This approach is based on the assumption that the computational cost related

to the feature extraction and maintenance is significantly lower than the cost of the AD method

itself. The difference between the traditional early and the proposed late sampling is depicted

in Figures 3.3 and 3.4.

Bias introduced by the sampling is significantly reduced, which rapidly improves the detection

performance of AD methods (verified experimentally in Section 3.4). The remaining bias is

mainly due to the possible elimination of the specific flow record, but does not affect the values of

the features associated with the flow (illustrated in Figure 3.4). Features are frequently extracted
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Fig. 3.5: Adaptive sampling increases the variability of flows (and the number of source IP
addresses) selected to the sampled set, while late sampling preserves unbiased feature values
for selected flows. Their combination (late adaptive) leads to the highest amount of preserved
feature values.

from a group of flows (such as all the flows from one host/port over the selected time period),

and are attached to each flow from the group. Therefore, even if we remove some flows from the

group, the information associated with the remaining flows correctly reflects the properties of

all flows from the group. Features extracted from the data can be used for the sampling method

itself, helping it to select the most valuable and informative data.

Second, features important for the detector are known beforehand, so we can optimize for

their preservation by the modification of the sampling algorithm itself. Therefore, we propose

adaptive sampling (presented in Section 3.3) that modifies the sampling rate of flows w.r.t.

their feature values to maximize the variability and minimize the redundancy. The combination

of adaptive and late sampling minimizes the bias of feature distributions important for the

consequent anomaly detection methods, as illustrated in Figure 3.5. Late sampling allows the

adaptive sampling to emphasize the conservation of the variability in the data, as the proportions

have been conserved by feature extraction.

In the next section, two measures designed to describe the statistical impact on the sampled

data are proposed. These measures are used for the comparison of individual sampling methods

in Section 3.4.

3.2 Sampling Measures

Comparing individual sampling approaches with each other has not been always straightforward,

mainly due to the missing metrics. The these fills this gap by introducing two measures that

will be used for comparing various sampling methods from the network security perspective.

Intuitively, the ideal sampling should be a process in which the number of samples and their

distributions are selected in such a way that the loss of feature values is minimal. However, when

dealing with the ideal sampling for network security purposes (i.e anomaly detection, network

classification, or network forensics), different features and statistics impact the performance of

the system differently, depending on the type of system or usage. This is because the individual

methods or components of the system use only a subset of features received from the network

traffic, or their feature sensitivity is variable. This fact implies that some features are more im-
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portant for the given system, algorithm, or consequent analysis. The thesis starts with presenting

the notation, followed by the definitions of the measures.

One flow (i.e. one network connection) is defined as a set of packets having the same source

and destination IP address, source and destination port, and protocol [1]. Besides these basic

features, each flow contains additional fields such as number of bytes or packets transferred,

timestamp etc1. One flow will be denoted as ϕ and a set of n flows as Φ = {ϕ1, . . . , ϕn}. Next,

k-th feature of ϕ will be denoted as fk and k-th feature value of ϕ as ϕ(k). For example, f1

meaning source IP address implies that ϕ(1) denotes concrete source IP address of ϕ. Anomaly

detection and classification methods compute distributions and statistics of these features for

their algorithms and models. That is why it is important to preserve as many of these statistics

and distributions as possible.

The distributions can be described by feature statistics which are computed from feature

values. We distinguish between two types of feature statistics: count features f c and entropy

features fe. These two types of statistics are used in most of the existing anomaly detection and

classification methods and their preserving is important for the correct analysis of the sampled

set. Count features indicate numbers of flows related to ϕ through the feature fk, i.e. with

feature value ϕ(k). For example, fk meaning source IP address implies that f c
ϕ(sIP ) denotes the

number of flows with the same source IP ϕ(k). Count features across more (first q) features

will be denoted as f c
ϕ(1,...,q) . Implicitly, we will use count features in number of flows unless told

otherwise. Entropy features describe the entropy of feature fk from flows related to ϕ through

the feature fl.

Furthermore, we will denote the original finite unsampled set as ΦU and the finite sampled

set as ΦS . Thus f c
ϕ(sIP )(ΦU ) denotes the number of flows from the original set with exactly the

same source IP address as has flow ϕ. And fe
(sPrt)

ϕ(dIP ) (ΦS) is the entropy of source ports from the

sampled set, whose flows target exactly the same destination IP address as flow ϕ.

Definition 1: Let ΦS be a set of flows sampled from the original set ΦU with the sampling

probability p(x). Then the reversibility degree of count feature f c
ϕ(k) is defined as:

rck =
1

| ΦS |
·
∑
∀ϕ∈ΦS

(
f c
ϕ(k)(ΦS)

f c
ϕ(k)(ΦU )

)
∈ [0, 1] . (3.1)

The reversibility degree shows how well the original (unsampled) feature values have been pre-

served in the sampled set ΦS . Value rck = 1 indicates that the feature values of feature fk in the

sampled set ΦS were not affected by the sampling, while rck = 0 means that all feature values in

the sampled set has been completely lost.

To define the reversibility degree of entropy feature, we first describe the relative uncertainty

described in [153]. The relative uncertainty of an entropy feature fe
(k)

ϕ(l) is a normalized entropy:

rue
(k)

ϕ(l) =
fe

(k)

ϕ(l)

log f c
ϕ(l)

∈ [0, 1].

1 Please, note that the specific set of features depends on the type of network data, such as NetFlow [1] or proxy

logs.
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Note that ∀ϕ : 0 ≤ fe(k)
ϕ(l) ≤ log f c

ϕ(l) , and fe
(k)

ϕ(l) = 0 for the case, where all values are the same

(no diversity), while maximal value fe
(k)

ϕ(l) = log f c
ϕ(l) implies that the values occurred only once

(maximal diversity).

Definition 2: Let ΦS be a set of flows sampled from the original set ΦU with the sampling

probability p(x). Then the reversibility degree of entropy feature fe
(k)

ϕ(l) is defined as:

rek,l = 1− 1

| ΦS |
·
∑
∀x∈ΦS

| rue
(k)

ϕ(l)(ΦU )− rue
(k)

ϕ(l)(ΦS) | ∈ [0, 1]. (3.2)

Please, note that late sampling, unlike traditional early sampling, has the reversibility degree

of count and entropy features equal to 1, as all feature values are precomputed in advance

from the original set ΦU . Therefore, late sampling has a great advantage against other sampling

methods. However, the reversibility degree of features is not the only measure the sampling

method should optimize. For example, in the case of many missing flows with unique feature

values, the sampling would be far from optimal. For this reason, we define a second measure

called feature variability.

Definition 3: Let ΦS be a set of flows sampled from the original set ΦU with the sampling

probability p(x). Then the coverage degree of feature fi is defined as:

ci =
di(ΦS)

di(ΦU )
∈ [0, 1], (3.3)

where di(ΦS), di(ΦU ) stands for the number of distinct values of fi in ΦS and ΦU .

The coverage degree determines the ratio of how many unique values have remained in the

sampled set ΦS . Value ci = 1 means that ΦS contains all unique values of feature fi from the

original set ΦU .

These two quality measures describe the conflicting demands in the anomaly detection and

classification domain – to retain as much of the unique feature values as possible (measured with

the coverage degree) with minimal loss in precision (measured with the reversibility degree). The

proposed combination of late and adaptive sampling ensures maximum reversibility and better

coverage degree than random sampling (see Section 3.4 for details). A high reversibility degree

is desired in methods based on statistical modeling, while maximizing the coverage degree is

essential for knowledge-based approaches that depend on specific values of the individuals.

3.3 Adaptive Sampling Technique

This section describes an adaptive, feature-aware sampling technique specifically designed for the

purposes of anomaly detection, classification, and network forensics. The main ideas behind the

proposed method are the following: (1) the incremental value of flows in a single set (defined by

one or more common feature values) decreases with the growing number of similar flows already

in the set, and (2) the system computes the feature statistics before the sampling procedure, so

the statistics are computed from the original, full set of data. Before we present the algorithm

itself, we first discuss these two assumptions in more detail.

36



The first idea is based on the assumption that if the same feature value occurred many times

in the full set ΦU , the benefit of adding this value to the sampled set ΦS decreases in time. In

other words, instead of selecting a large number n1 of the same values, it is reasonably better

to select only a satisfactory large subset of these values n2 (n2 < n1) without compromising its

great magnitude. This way, the algorithm is able to decrease the redundancy and increase the

variability of feature values. The second idea of computing feature statistics before sampling (i.e.

late sampling) is advantageous against the traditional early sampling as described in Section

3.1.

A majority of anomaly detection and classification methods use feature values in their algo-

rithms. The are also important for both live and postmortem network forensics, as they help

to identify the intention and the identity of the attacker. The effectiveness of a specific system

usually depends on the values of features important for the system, and this set of features

varies from system to system. Based on this fact, the features are divided into two categories.

Features with large impact on the system or method belong to primary features, while the rest

of the features are denoted as secondary features. Primary features are selected a priori based

on the properties of the subsequent algorithms and methods.

Definition 4: Let f1, . . . , fk be primary features. We define primary probability pp as the

probability that a flow related to ϕ through features f1, . . . , fk is selected to the sampled set:

pp(ϕ|f1, . . . , fk) =

 s(a) f c
ϕ(1,...,k) ≤ t

s(a) · log t
log fc

ϕ(1,...,k)
f c
ϕ(1,...,k) > t

(3.4)

where s(a) ∈ [0, 1] is the baseline sampling rate that can be computed according to Equation 3.7

from Theorem 1 introduced later in this Section. The threshold t defines a point in the distribu-

tion, where the sampling method starts setting the probability proportionally to the size of the

feature value. The higher the feature value, the lower the sampling rate assigned. The position

of the threshold t can be assigned manually, or preferably the threshold can be computed auto-

matically by the Algorithm 2 to adapt on the incoming data. The effect of t is discussed later

in this section in more detail.

This modification from random sampling slightly shifts the original probability distribution

for flows with feature values above the threshold. We argue that reducing the size of attacks with

higher feature values does not harm the system effectiveness, as these large attacks are mostly

detectable with ease. Decrease in the sampling rate for frequent values allows the algorithm to

increase the sampling rate for smaller and mostly hidden attacks without any change in the

total number of sampled flows.

Definition 5: Let f1, . . . , fk be primary features and let fi be a secondary feature. We define

secondary probability, which is a probability that a flow related to ϕ through the feature fi is

selected to the sampled set, as:

ps(ϕ|fi) =

{
max (rue

(i)

ϕ(1,...,k) , d) f c
ϕ(1,...,k) > t

1 otherwise,
(3.5)

where d ∈ (0, 1) is the lower bound, which penalizes redundant flows (i.e. flows with the same

feature values).

Flows with the same feature values have rue
(i)

ϕ(1,...,k) = 0 and ps(ϕ|fi) = d ≤ 1. The secondary

probability for these flows is decreased, as their information value is lower. Parameter d deter-
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mines the minimal sampling rate that is applied when all values of a secondary feature fi are

the same. The value of d should respect the importance of fi in the given system and it is the

second parameter of the algorithm. Note that the decrease is applied only on flows with primary

feature values above the threshold t (i.e. on flows with frequently used primary feature values).

Flows with rare or unique values are not affected, as they have higher information value and

decreasing the sampling rate for such flows is not desired.

Definition 6: Let f1, . . . , fk be primary features and fk+1, . . . , fn secondary features. Then

the probability that the adaptive sampling will select flow ϕ is defined as follows:

p(ϕ) = pp(ϕ | f1, . . . , fk) ·
n∏

i=k+1

ps(ϕ | fi). (3.6)

Network traffic is highly correlated and the features are not independent. However, it is not

practical to compute a joint probability distribution over all features. The proposed adaptive

sampling makes a compromise solution, taking joint distribution only from the primary features

and the secondary features is considered as independent. This definition makes a reasonable

trade-off between the precision of the probabilities and the computational complexity.

The proposed adaptive sampling is able to modify the sampling rate to reflect feature dis-

tributions of the network traffic. It selects flows according to the size of their feature values in

order to suppress large, visible and easily detectable events, and to reveal some interesting facts

from the smaller ones, while the feature distributions are slightly shifted for the benefit of the

anomaly detection.

Theorem 1: Let Tflows be the maximal number of flows selected from ΦU into the sampled

sets Φ
(1)
S , . . . , Φ

(m)
S (typically, it corresponds to the maximal number of flows the system is able

to process) by using the adaptive sampling with the primary feature fi and adaptive sampling

rate s(a) computed as:

s(a) =
Tflows∑

fc
ϕ(i)
≤t 1 +

∑
fc
ϕ(i)

>t
log t

log fc
ϕ(i)

. (3.7)

Then it holds:

ΦS = lim
m→∞

(
1

m
·
m∑
i=1

|Φ(i)
S |

)
≤ Tflows.

Note that even if the set ΦU is finite, it is possible to create an infinite sequence of its subsets,

where the subsets do not have to be exclusively unique.

Proof: Let us assume that Tflows ≤ |ΦU |. Then we can express Tflows by using sampling rate

s(a) and threshold t from Equation 3.7 as follows:

Tflows = s(a) ·

 ∑
fc
ϕ(i)
≤t

1 +
∑

fc
ϕ(i)

>t

log t

log f c
ϕ(i)


The summations are over all flows ϕ satisfying the threshold conditions. Now we can express

ΦS from Equations 3.4 and 3.6 as:
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ΦS = s(a) ·

 ∑
fc
ϕ(i)
≤t

1 +
∑

fc
ϕ(i)

>t

log t

log f c
ϕ(i)

− εp = Tflows − εp ≤ Tflows,

where εp ≥ 0 represents decrease in number of sampled flows caused by secondary probabili-

ties. Thus computing the parameter s according to the Equation 3.7 guarantees the theorem

statement. �

Theorem 1 provides for the adaptive sampling an upper bound in number of sampled flows.

Knowing the computational constrains of the system, the operator can predefine the maximum

number of sampled flows Tflows in some period of time and the algorithm will automatically

adjust the sampling rate s(a) to maximize (but not exceed) this limit. Next, Theorem 2 describes

the meaning of the threshold t and the relation between the adaptive and random sampling.

Theorem 2: Let t be the threshold of the adaptive sampling. If t→∞, then the results of the

adaptive sampling converge to the results obtained by random sampling.

Proof: When t→∞, it is possible to find T ∈ N such that:

t→∞⇒ (∃T ∈ N) (∀ϕ ∈ ΦU , ∀fi) (T ≥ f cϕ(i)).

Defining t = maxϕ∈ΦU {f cϕ(i)} implies that
∑
fc
ϕ(i)

>t
log t

log fc
ϕ(i)

= 0. Then the adaptive sampling

rate s(a) from Equation 3.7 can be simplified as:

s(a) =
Tflows∑
fc
ϕ(i)
≤t 1

=
Tflows∑
ϕ∈ΦU 1

=
Tflows
|ΦU |

= s(r). �

Theorem 2 describes the meaning of the threshold t. Adaptive sampling with small t strongly

emphasizes flows with rare values of primary features at the cost of the rest of the features

and flows. This effect is illustrated in Figure 3.6. On the other hand, large t shifts the adaptive

sampling towards a random sampling, where all samples are distributed equally regardless of

the information gain (also shown in Figure 3.6).

Finally, we will discuss possible scenarios for the proposed algorithm. The sampling will be

most effective on datasets with a few very large samples (feature value is highly above the

threshold t) and many small samples (with feature values below t). In this scenario, the large

samples would be sampled with significantly smaller probability than the small samples, which

greatly increases the variability of the sampled set. In case the samples are equally distributed

in all feature statistics (i.e. all features will have uniform distributions), the adaptive sampling

is unable to make any preference and it would select all samples with the same probability.

The proposed algorithm is designed to be easy to use and implement. The pseudo-code of the

algorithm with one primary feature fi and one secondary feature fj is described in Algorithm 1.

As illustrated in Figure 3.6, threshold t significantly influences the properties of the adaptive

sampling. Therefore, it should be carefully defined with respect to the deployed environment,

detection engine or the purpose of the subsequent analysis. In some cases, it may be unclear

how to define an optimal value for t. We propose to use Algorithm 2 to set the threshold t

dynamically and optimally for the given data and environment. The input for the algorithm is

a value v that is more intuitive and better describes the effects of the adaptive sampling. This

value v is the point where the adaptive and random sampling samples with equal (or almost

equal) probability, as shown in figure on the right hand side of the Algorithm 2.
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Fig. 3.6: Impact of the threshold t on the probability of being sampled p(ϕ). Adaptive sam-
pling with smaller threshold values (e.g. t = 10) emphasizes flows with rarely visited source
IP addresses (i.e. with smaller f c

ϕ(sIP )), as they have almost three times higher probability of

being sampled when compared to the random sampling. On the other hand, highly redundant
flows (i.e. flows with high value of f c

ϕ(sIP )) are sampled with smaller probability than random

sampling. However, thanks to their large number of occurrences, they will be sampled into the
set ΦS as well.

Algorithm 1 Adaptive Sampling Technique

ΦU = original (not sampled) set of flows ϕ

ΦS = sampled set
t = predefined threshold (input parameter)

T = maximum size for ΦS

function SampleBatch

ΦS = empty set of incidents

s(a) = baselineSampling(ΦU , t, T )
for ϕ : ΦU do

p(ϕ) = samplingProb(ϕ, s(a))
if random.nextDouble() ≤ p(ϕ) then

ΦS .add(ϕ)

end if
end for

return ΦS

end function

function BaselineSampling(ΦU , t, T )

Tsum = 0

for ϕ : ΦU do
if fc

ϕ(i) ≤ t then

Tsum = Tsum + 1

else Tsum = Tsum + log t
log fc

ϕ(i)

end if

end for
return T

Tsum
end function

function SamplingProb(ϕ, s(a))

p = s(a)

if fc
ϕ(i) > t then

p = p · log t
log fc

ϕ(i)
· ps(ϕ|fj)

end if

return p

end function

Given value v, Algorithm 2 computes automatically the threshold t in such a way that the

adaptive sampling will sample flows with feature values from interval < 0, v) with greater prob-

ability than random sampling, while flows with feature values from interval (v,+∞) will be

sampled with lower probability. Parameter v is typically set on the boundary of the sensitivity

of the system, meaning that attacks with primary feature values higher than v can be easily

detected or identified. Adaptive sampling increases the number of flows with low occurrences,

improving the sensitivity of the system or the information value of the sampled data. In those
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Algorithm 2 Dynamic computation of the threshold t

function ComputeThreshold(v, ΦU , T )
t = v
s(r) = T

|ΦU |

f̃
c

i = {f c
ϕ

(i)
1

, . . . , f c
ϕ

(i)
k

| ∀i : f c
ϕ

(i)
i

< v}

sortDownwards(̃f
c

i )

for u : f̃
c

i do
s(a) = baselineSampling(ΦU , u, T )
if s(a) · log ulog v < s(r) then return t
end if
t = u

end for
return t

end function
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cases where computing the threshold t with Algorithm 2 cannot be realized, it is also possible to

set t = v, which still leads to better or equal performance when compared to random sampling.

3.4 Experimental Evaluation

The goal of the sampling evaluation is to verify the benefits of late adaptive sampling technique

in several aspects. The evaluation is based on the comparison of adaptive and random flow

sampling techniques2 in early and late configuration on real network traffic data. Packet sampling

methods were not included due to significantly worse results at the flow level when compared

to flow sampling [102].

The evaluation consists of four types of experiments with three different sets of data. The

overview of the datasets used in the evaluation is provided in Table 3.1. Dataset A contains a

one-day mix of a university network traffic (NetFlow format) with large horizontal and vertical

scans and a small SSH brute force attack. The attacker launches a large scanning activity, which

hides a more serious SSH brute force attack (of much smaller intensity) against other victim in

the same network. Dataset B contains only one day of the university network traffic, which was

partially labeled (approx. 45% of all flows) by security experts into various types of network

behaviors, such as p2p, scanning, ssh cracking etc. Finally, the dataset C is a capture of one day

of proxy logs (HTTP/HTTPS traffic) from a large company. Table 3.1 also shows the maximum

number of flows in a 5-minute time interval and the requested maximum number of sampled

flows. The corresponding sampling rates for random sampling are 1:6, 1:7, and 1:10 respectively

(to fulfill the requested size of sampled data).

The datasets used in the evaluation include university and corporate networks. The impact

of both large-scale and small targeted attacks was analyzed using two types of network data

(NetFlow and proxy logs). The datasets cover wide statistical diversity of the network traffic,

which allows to draw general conclusions about the performance of the proposed method.

2 Random flow sampling was chosen for its massive deployment in practice.
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Dataset Data source Description Flows in 5 minutes Sampled size Speed

dataset A NetFlow University + attacks 6.2M 1.0M 10Gb
dataset B NetFlow University traffic 0.7M 0.1M 1Gb
dataset C Proxy logs Large company 2.0M 0.2M > 10Gb

Table 3.1: Overview of the datasets used in the evaluation, together with their type, description,
speed, and maximal input and predefined output/sampled size (in number of flows).

First, the performance of each sampling method was measured to show the differences in

the computational complexity, followed by the evaluation of how the sampling methods influ-

ence traffic feature distributions. The impact of sampling on various existing anomaly detection

methods was also evaluated. The experimental evaluation is concluded with the impact on the

network forensics. The reason for using different sets of data is because of the nature of the ex-

periments: e.g. network traffic from a 10-gigabit link is suitable for measuring the computational

performance of sampling.

In the first three of our experiments, the parameters of the adaptive sampling were the fol-

lowing: f c
ϕ(sIP ) was the primary feature, fe

(sP )

ϕ(sIP ) , f
e(dIP )

ϕ(sIP ) , and fe
(dP )

ϕ(sIP ) were the secondary features,

d = 0.8 and t = 1000. The rationale behind setting d = 0.8 is that d ∈ (0, 1) should not be

very close to 1 (which would minimize the effect of secondary probabilities). Setting d = 0.8

will ensure that flows with frequent source IP addresses and unique values of secondary features

will be sampled two times more often (see Equations 3.5 and 3.6) than flows where the values

of secondary features are identical, which further increases the diversity of the sampled set. The

adaptive early sampling method computes only count statistics for primary feature and the rest

of the statistics (entropies and other counts) is computed from the sampled set.

3.4.1 Sampling Performance

In this experiment, the performance of sampling methods was evaluated in terms of CPU time

needed for sampling the input data and creating statistics for further post-processing (anomaly

detection, classification, etc.). The experiment was performed with a 5-minute block of network

traffic from two networks (dataset A and B) on four sampling methods: random early, adap-

tive early, random late, and adaptive late. In early sampling, the input flows are first sampled

and then the system computes the statistics from the smaller sampled set. Both late sampling

techniques compute statistics before sampling, which requires more computational time as you

can see in Table 3.2. Note that the relative differences between the individual methods and sizes

of the input data are more important than the absolute values, as they strictly depend on the

specific computational assets used in the evaluation (4-core 3.2GHz processor).

Random early sampling method requires minimal computational time, but this sampling is

devastating for any anomaly detection method as we will show further in our experimental

evaluation. On the other hand, both late sampling methods (adaptive late and random late)

are the most CPU time consuming, however this extra time is well invested w.r.t. the quality

of results. We can see that the difference between random early and random late is in the extra

time needed to compute all network statistics from the original network traffic. This time is

affordable considering the fact that the input data represents 5 minutes of network traffic. Even
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Input data Random E Adaptive E Random L Adaptive L

6,200,000 → 1,000,000 9531 13182 16972 17269
700,000 → 100,000 826 1419 2386 2730

Table 3.2: CPU time in ms needed to sample the input flows from datasets A and B by using
four types of sampling techniques. On dataset A, random early (Random E) sampling was 1.8
times faster than adaptive late (Adaptive L).

Sampling c(sIP ) c(dIP ) c(sPrt) c(dPrt) c(Prot) c(Bytes) c(Pkt)
Random E 0.023 0.016 0.070 0.067 0.406 0.071 0.080
Random L 0.023 0.016 0.070 0.067 0.391 0.071 0.080
Adaptive E 0.060 0.013 0.174 0.162 0.469 0.143 0.151
Adaptive L 0.108 0.009 0.273 0.253 0.453 0.215 0.228

Table 3.3: Coverage degree of selected features computed from dataset A by using four types of
sampling methods: random early, random late, adaptive early, and adaptive late. Higher values
mean better coverage - minimal value is 0, maximal is 1.

though random late sampling computes the statistics from the original data, the method itself

does not use them during the sampling process (unlike adaptive late). The statistics may be used

by the anomaly detection methods or any other type of postprocessing. In contrast with adaptive

late, adaptive early computes before sampling only count statistics for primary features. Thus,

the difference between adaptive late and adaptive early expresses additional computational cost,

when entropies are computed from the original set instead of the sampled set. Note that the

majority of the detection algorithms require much more CPU time to process the corresponding

amount of network traffic.

3.4.2 Preserving Feature Variability

This section provides a comparison of four evaluating sampling techniques in measures defined in

Section 3.2. Since the reversibility degree (Equation 3.1 and 3.2) for late sampling approaches is 1

(maximal), we will compare the sampling methods based on the coverage degree (Equation 3.3)

of the following features: source and destination IP addresses, source and destination ports,

protocols, bytes, and packets. The methods were evaluated on dataset A to show the ability of

preserving feature statistics on high-speed network links.

The individual values of the coverage degree is shown in Table 3.3. You can see that random

early and random late sampling show almost identical behavior, which is expectable because

none of them uses precomputed statistical information for the sampling itself. The late adaptive

sampling outperforms the rest of the methods in almost all feature statistics, which means that

it preserves more variability of the network traffic.
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Overview of the impact of sampling on anomaly detection

Network Behavior Random E Random L Adaptive L No sampling

horizontal scan 0.671 0.755 0.732 0.692
malicious 0.537 0.564 0.557 0.545
p2p 0.472 0.525 0.530 0.516
scan sql 0.846 0.858 0.869 0.845
skype supernode 0.432 0.496 0.502 0.458
ssh cracking 0.521 0.522 0.581 0.622
ssh cracking resp 0.531 0.576 0.575 0.674
vertical scan 0.700 0.793 0.799 0.780
average (stdev) 0.571 (0.144) 0.636 (0.142) 0.643 (0.137) 0.641 (0.132)

Table 3.4: Mean of AUC values across all of the anomaly detection methods for different types
of malicious network behaviors and sampling methods. The results are measured on dataset B.
Higher values are better. Even though it is not a backbone link, there is a measurable difference
between random early sampling and the rest of the methods. The results of random late, adaptive
late, and no-sampling method are comparable.

3.4.3 Impact on Anomaly Detection

In this Section, the impact of the sampling methods on the accuracy of six anomaly detection

methods is analyzed. Namely, the method called Minds [59] models differences of the count

features in time, Xu [153] defines static classification rules with relative uncertainty. Methods F-

D and F-S are two newer methods [117] that extend the work of [94] and [95] with the prediction

model of the network traffic by using PCA. Other two variants of this approach but with

different features are called Flags-F-D and Flags-F-S. Taps [140] method is specially designed

to detect scans and uses sequential hypothesis testing. These anomaly detection methods were

integrated into the intrusion detection system – CAMNEP [123]. The detection methods require

computation of the following statistics: distributions of flows/bytes/packets having the same

sIP/dIP (or combination of the same sIP and dPrt or same dIP and sPrt), entropy of sP/dIP/dP

having the same sIP, and entropy of sIP/sP/dP having the same dIP.

The impact of sampling on the above-mentioned anomaly detection methods was repeatedly

evaluated on datasets A and B described in Table 3.1. We used 20 evaluations for each dataset

and sampling method. On dataset B, the AUC (Area Under the ROC Curve) was calculated.

Unknown (unlabeled) traffic was considered as legitimate. The evaluation results are shown in

Table 3.4. Random early sampling decreases the detection capabilities by a measurable difference.

On the other hand, both random late and adaptive late sampling show comparable results to the

case when no sampling method is used, which means that concept of late sampling is suitable

for subsequent anomaly detection or network classification.

The reason why the adaptive late sampling was only slightly better than random late sampling

is because of the fact that the dataset B did not contain any larger network incidents that could

be suppressed by the adaptive sampling. In the second part of this analysis, the evaluation

is performed on dataset A to show the unique properties of the adaptive sampling technique

on backbone links. You can see that the adaptive late was negligibly better than no-sampling

method, which is thanks to emphasizing smaller attacks, so they are more visible and easily

detectable. This effect will become more evident in the following analysis on dataset A.
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Fig. 3.7: Quality of detection of SSH brute force attack (requests and responses) by using different
anomaly detection methods and sampling techniques on dataset A. First scenario with only
brute force attack (a) and response (b) shows considerable detection improvements for late and
adaptive sampling. Large scans included into the second scenario as a distraction make it more
difficult for the methods to detect the hidden BF attack. Still, the combination of adaptive and
late sampling is able to detect it – figure (c) for request and (d) for response.

The next evaluation is performed on dataset A and is divided into two scenarios: with and

without large scans. The benefit of the adaptive sampling will be demonstrated on these two

scenarios. Note, large scans can be easily detected, so the main focus is to analyze the detection

quality of the hidden SSH brute force attack (in both scenarios). For each scenario, we have

evaluated all detection methods individually and repeatedly 20 times, and the mean and standard

deviation of the results is shown in Figures 3.7 and 3.8. The detection methods assign to every

flow an anomaly score from interval [0, 1], where 0 stands for least and 1 for most anomalous

flow. The detection quality for each anomaly detection method is computed as a sigma distance

from the mean as follows:

Q = (µattack − µall)/σ, (3.8)
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Fig. 3.8: Averge AUC values with the standard deviations of SSH brute force attack (request and
response together) for various detection methods measured on dataset A. Both late sampling
techniques outperformed random early and are more stable. Moreover, adaptive late sampling
was able to decrease the amount of noise caused by the large scans and outperformed also
no-sampling method.

where µattack is anomaly value of the attack and µall and σ is the mean and standard deviation

of the anomaly values of all flows. Higher positive value means that the attack is better separated

from the rest of the traffic. On the other hand, negative value means unsatisfactory detection

results, as the corresponding anomaly detector did not consider the attack as anomaly.

Figures 3.7(a) - (b) illustrate the results from the first scenario without the large scans (only

with the small brute force attack) of every individual detection method and a simple average of

these methods. As you can see from Figure 3.7(a), the adaptive sampling separates the brute

force attack from the rest of the traffic better than any other technique (even slightly better than

no sampling), which is visible in the rightmost part of the figure. On the other hand, random

early sampling shows very unsatisfactory results. Moreover, as opposed to early sampling, late

sampling methods provide stable results, having only small standard deviation thanks to the

precomputed statistics. Since the anomaly detection algorithms are deterministic, no-sampling

method provided always the same results.

Figure 3.7(b) illustrates the sigma distance of the brute force attack response. Similarly as

in the previous case, random early sampling is significantly worse than the rest of the methods.

No-sampling is slightly better than random late. As the percentage of flows related to the attack

is higher in ΦS than in ΦU , adaptive late was able to outperform no-sampling. Based on the

analysis so far, late sampling is very important for the methods to be able to detect the attack

and the adaptive late outperformed random late sampling.

The benefits of the adaptive late sampling become even more visible in the second case

illustrated in Figures 3.7(c) and (d). Here, the small brute force attack is hidden behind the

extensive scans. The results for the adaptive late sampling are almost identical with the previous

scenario, which means that the inserted attacks had minimal negative influence. This is caused

by the adaptive properties of the sampling – the amount of flows related to the large scan activity

was decreased, allowing the detection methods to concentrate on the rest of the flows (including

the attack) in more detail. We have also performed two-sample t-test for unequal variances to

verify that the results of the adaptive sampling are better than the results obtained by other
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Fig. 3.9: The influence of the threshold t on average AUC values for both scenarios in dataset A
– with brute force (BF), and with brute force and large scans (BF + scans). Comparison with
random late and no-sampling is also included. For t ∈ [25, 10000], the AUC value of the adaptive
late is significantly better. As t goes to infinity, the results converge to the results obtained by
random late method (as stated in Theorem 2).

methods. In all comparisons, the P-value was smaller than 0.001, which provides the evidence

to reject the null hypothesis of equal means.

Figure 3.8 depicts the average AUC value of the attack and attack response and also confirms

the results obtained so far. Finally, Figure 3.9 shows the influence of the threshold t on average

AUC values for both scenarios in dataset A – with brute force (BF), and with brute force and

large scans (BF + scans). Comparison with random late and no-sampling is also included. You

can see that there is a large interval (t ∈ [25, 10000]), where the AUC value of the adaptive

late sampling is significantly better, and as t goes to infinity, the results converge to the results

obtained by random late approach (as stated in Theorem 2).

3.4.4 Impact on Network Forensics

The last part of the evaluation describes the effectiveness of the proposed adaptive late sampling

for the purpose of network forensics. Retrieving true and relevant information is the key factor

in network forensics. However, due to the still increasing amount of network traffic, it is not

feasible to store and efficiently retrieve the full communication of the monitored network for

longer time periods. To be able to use sampling in this context, the sampled data must contain

as much feature variability (the ratio of retained unique values) as possible, while redundant

flows can be easily discarded.

In this evaluation, flows (connections) from HTTP(S) proxy logs of a large worldwide company

were analyzed for a period of one day – dataset C. Due to the large amount of network traffic

(reaching 300 million flows per day only for HTTP(S)), network analysts have to decide between
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All Flows

Feature Adaptive t=2 Adaptive t=10 Random No-sampling

number of flows 28,595,886 28,794,294 28,796,348 281,614,703
number of users 102,689 102,501 102,264 110,898
number of domains 327,736 266,271 216,902 349,351
number of user agents 40,080 39,344 38,702 83,065
unique bytes down 371,563 360,155 337,818 892,642
unique bytes up 78,270 74,985 69,852 212,030

Table 3.5: Comparison of results obtained with the adaptive, random, and no sampling on the
selected set of features – measured on all flows.

Malware Flows

Feature Adaptive t=2 Adaptive t=10 Random No-sampling

number of flows 1,356 936 420 4,729
number of users 23 21 15 24
number of domains 38 28 19 53
number of user agents 20 18 14 21
unique bytes down 146 110 72 260
unique bytes up 4 3 3 4

Table 3.6: Comparison of results obtained with the adaptive, random, and no sampling on the
selected set of features – measured on malware flows.
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Fig. 3.10: Evaluation of four types of configurations (no sampling, adaptive t=2, adaptive t=10,
and early random sampling) with the coverage measure on six different features (number of
flows, users, domains, user agents, unique bytes down, and unique bytes up).

the increase of the costs for storage, or storing all the data for a limited time, or sampling the

data and storing the sampled data for longer time periods. This analysis will show that for

the given costs, sampling the data adaptively while extending the storage period represents a

promising option. The output limit for the number of flows per 5-minute batch was 200k, which

corresponds to the sampling rate approx. 1:10. Dataset C was analyzed by various security

devices. The reports of the devices were verified manually and 24 confirmed infected users were

found. Four types of configurations were compared: no sampling (i.e. analysis of the original
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Fig. 3.11: Graph of malicious communication between the attackers (red nodes) and infected
hosts (green nodes). The graph is computed from dataset C for: (a) original data without any
sampling, (b) random sampling with rate 1:10, and (c) adaptive sampling with baseline rate
around 1:10 and t = 2. Random sampling missed most of the individual attacks and large
number of malicious domains, while the adaptive sampling preserved more malicious flows and
most of the individual infections.

data), random sampling, and adaptive sampling in two configurations (with threshold t = 2 and

t = 10). Low values of t were intentionally chosen to boost feature variability. The purpose of this

evaluation is to demonstrate that the adaptive sampling is able to preserve critical information

about the infected users even in significantly smaller sampled data.

Table 3.5 describes the impact of sampling on the proxy log features (feature coverage mea-

sure from Section 3.2) that are important for network forensics: number of unique flows, users,

domains, user agents, and unique values of bytes up and bytes down. Each feature was preserved

differently, e.g. there was only a slight loss in number of users, while the user agents or bytes

were preserved with higher loss. However, adaptive sampling with (t = 2) achieved the best
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results in all features. The biggest difference is in the number of domains (as domains were

set as the primary feature), where the adaptive sampling has only a minor loss, while random

sampling lost 40% of the domains. The relative comparison of the methods is also depicted

in Figure 3.10(a). The evaluation on the malicious flows resulted with the same conclusion, as

described in Table 3.6 and illustrated in Figure 3.10(b).

Figure 3.11 shows the graph of malicious communication between the attackers (red nodes)

and infected hosts (green nodes) for the original data (i.e. no sampling), and random and adap-

tive (t = 2) sampling. The thickness of the edges represents the amount of communication in

number of flows. Therefore, these three graphs show the loss of information introduced by each

sampling method. Random sampling (Figure 3.11(b)) missed most of the individual attacks (as

they are hard to find due to their small sizes). The connection between the two large clusters

was also lost. Finally, only two malicious domains were retained from the group of domains

attacking a single user (located at the bottom in the center). On the other hand, the adaptive

sampling with t = 2 (Figure 3.11(c)) performed significantly better. Most of the individual

attacks together with the connection link between the two large clusters were preserved. Also

more malicious domains were found from the group of domains attacking a single user. These

results confirm the properties of the proposed approach. Thanks to the adaptive properties de-

scribed in Section 3.3 and also thanks to the stability of the results shown in Section 3.4.3, any

sampled set acquired with the adaptive late sampling will have similar composition in terms of

favoring flows with unique feature values. And malicious traffic is typically connected with these

unique feature values. Therefore, preserving non-redundant information is very important for

any type of network forensics, where the identification of the attackers and the corresponding

consequences needs to be done.

Overall, the evaluation shows that the adaptive sampling (unlike random sampling) is a

valuable alternative when the data reduction needs to be applied without significant loss of

information.

3.5 Summary

We presented two concepts that mitigate the negative impact of sampling on the data. Late

sampling is based on a simple idea that the features used by the analytic algorithms can be

extracted before sampling and attached to the surviving flows. The surviving flows thus carry

the representation of the original statistical distribution in these attached features. The second

concept we have introduced is adaptive sampling. Adaptive sampling deliberately skews the

distribution of the surviving data to overrepresent the rare flows or flows with rare feature

values.

Furthermore we defined two quality measures to evaluate the properties of the adaptive and

random sampling. The quality metrics are general enough, allowing any sampling method to

quantify the quality of the results from the anomaly detection standpoint.

Our approach has been extensively validated on standard NetFlow data, as well as on HTTP

proxy logs that approximate the use-case of enriched IPFIX for the network forensics. Feature

values remained unbiased thanks to the late sampling, while the feature variability was boosted

by the adaptive sampling. The combination of the late and adaptive concepts achieved the best
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results in all evaluations and datasets and was able to retain almost all malware threats. The

method has proven to be very promising when combined with anomaly detection or classification,

and provides superior results for the network forensics. The proposed idea will be also effective

on any future malware behaviors, with a significant exception: if the malware starts to mimic

frequently used legitimate traffic, the feature values will become identical and the probability

of malware flow selection would drop accordingly. This would also decrease the efficacy of any

anomaly detection algorithm.
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Chapter 4

Invariant Representation and Classification

Current network security devices classify large amounts of the malicious network traffic and

report the results in many individually-identified incidents, some of which are false alerts. As

we already described in Chapter 3, the proposed adaptive sampling method can be used to

significantly reduce the amount of raw input data while optimizing the distribution and repre-

sentation of sampled flows for methods at higher levels of the fusion model. At higher levels, a

lot of malicious traffic remains undetected due to the increasing variability of malware attacks.

As a result, security analysts might miss severe complex attacks because the incidents are not

correctly prioritized or reported.

The network traffic can be classified at different levels of detail. Approaches based on packet

inspection and signature matching [70] rely on a database of known malware samples. These

techniques are able to achieve results with high precision (low number of false alerts), but their

detection ability is limited only to the known samples and patterns included in the database

(limited recall). Moreover, due to the continuous improvements of network bandwidth, analyzing

individual packets is becoming intractable on high-speed network links. It is more efficient to

classify network traffic based on flows representing groups of packets (e.g. NetFlow [1] or proxy

logs [99]). While this approach has typically lower precision, it uses statistical modeling and

behavioral analysis [39] to find new and previously unseen malicious threats (higher recall).

Statistical features calculated from flows can be used for unsupervised anomaly detection, or

in supervised classification to train data-driven classifiers of known malicious traffic. While the

former approach is typically used to detect new threats, it suffers from lower precision which

limits its practical usefulness due to large amount of false alerts. Data-driven classifiers trained

on known malicious samples achieve better efficacy results, but the results are directly dependent

on the samples used in the training. Once a malware changes the behavior, the system needs

to be retrained. With continuously rising number of malware variants, this becomes a major

bottleneck in modern malware detection systems. Therefore, the robustness and invariance of

features extracted from raw data plays the key role when classifying new malware.

The problem of changing malware behavior can be formalized by recognizing that a joint

distribution of the malware samples (or features) differs for already known training (source)

and yet unseen testing (target) data. This can happen as a result of target evolving after the

initial classifier or detector has been trained. In supervised learning, this problem is solved by

domain adaptation. Under the assumption that the source and target distributions do not change

arbitrarily, the goal of the domain adaptation is to leverage the knowledge in the source domain
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and transfer it to the target domain. In this work, we focus on the case where the conditional

distribution of the observation given labels is different, also called a conditional shift.

The domain adaptation (or knowledge transfer) can be achieved by adapting the detector

using importance weighting such that training instances from the source distribution match the

target distribution [132]. Another approach is to transform the training instances to the domain

of the testing data or to create a new data representation with the same joint distribution of

observation and labels [26]. The challenging part is to design a meaningful transformation that

transfers the knowledge from the source domain and improves the robustness of the detector on

the target domain.

We present a new optimized invariant representation of network traffic that enables domain

adaptation under conditional shift. The representation is computed for bags of samples, each of

which consists of features computed from network traffic logs. The bags are constructed for each

user or device and contain all network communication with a particular hostname/domain. The

representation is designed to be invariant under shifting and scaling of the feature values and

under permutation and size changes of the bags. This is achieved by combining bag histograms

with an invariant self similarity matrix for each bag. All parameters of the representation are

learned automatically for the training data using the proposed optimization approach.

The proposed invariant representation is applied to detect malicious HTTP traffic and resides

at Level 2 of the proposed architecture – see Figure 4.1. We will show that the classifier trained

on malware samples from one category can successfully detect new samples from a different

category. This way, the knowledge of the malware behavior is correctly transferred to the new

domain. Compared to the baseline flow-based representation or widely-used security device,

the proposed approach shows considerable improvements and correctly classifies new types of

network threats that were not part of the training data.

4.1 Formalization of the Problem

This chapter deals with the problem of creating a robust representation of network communi-

cation that would be invariant against modifications an attacker can implement to evade the

detection systems. The representation is used to classify network traffic into positive (malicious)

or negative (legitimate) category. The labels for positive and negative samples are often very

expensive to obtain. Moreover, sample distribution typically evolves in time, so the probability

distribution of training data differs from the probability distribution of test data. This compli-

cates the training of classifiers which assume that the distributions are the same. In the following,

the problem is described in more detail.

Each sample (in our case each sampled flow ϕ) is represented as an n-dimensional feature

vector x ∈ Rn. Samples (flows) are grouped into bags, with every bag represented as a matrix

X = (x1, . . . ,xm) ∈ Rn×m, where m is the number of samples in the bag and n is the number of

features. The bags may have different number of samples. A single category yi can be assigned

to each bag from the set Y = {y1, . . . , yN}. Only a few categories are included in the training

set. The probability distribution on training and testing bags for category yj will be denoted

as PL(X|yj) and PT (X|yj), respectively. Moreover, the probability distribution of the training

data differs from the probability distribution of the testing data, i.e. there is a domain adaptation
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Fig. 4.1: Classification module resides at Level 2 of the proposed architecture. The module
transforms sampled network traffic into a representation of bags (groups of flows). The bages
are classified into malicious incidents pointing to infected users or devices.

problem [30] (also called a conditional shift [160]):

PL(X|yj) 6= PT (X|yj), ∀yj ∈ Y. (4.1)

The purpose of the domain adaptation is to apply knowledge acquired from the training

(source) domain into test (target) domain. The relation between PL(X|yi) and PT (X|yi) is

not arbitrary, otherwise it would not be possible to transfer any knowledge. Therefore there is

a transformation τ , which transforms the feature values of the bags onto a representation, in

which PL(τ(X)|yi) ≈ PT (τ(X)|yi). The goal is to find this representation, allowing to classify

individual bag represented as X into categories Y = {y1, . . . , yN} under the above mentioned

conditional shift.

Numerous methods for transfer learning have been proposed (since the traditional machine

learning methods cannot be used effectively in this case), including kernel mean matching [68],

kernel learning approaches [54], maximum mean discrepancy [80], or boosting [47]. These meth-

ods try to solve a general data transfer with relaxed conditions on the similarity of the distribu-

tions during the transfer. The downside of these methods is the necessity to specify the target

loss function and availability of large amount of labeled data.

This chapter proposes an effective invariant representation that solves the classification prob-

lem with a covariate shift (see Equation 4.1). Once the data are transformed, the new feature

values do not rely on the original distribution and they are not influenced by the shift. The

parameters of the representation are learned automatically from the data together with the
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classifier as a joint optimization process. The advantage of this approach is that the parame-

ters are optimally chosen during training to achieve the best classification efficacy for the given

classifier, data, and representation.

4.2 Invariant Representation

The problem of domain adaptation outlined in the previous section is addressed by the proposed

representation of bags. The new representation is calculated with a transformation that consists

of three steps to ensure that the new representation will be invariant under scaling and shifting

of the feature values and under permutation and size changes of the bags.

4.2.1 Scale Invariance

As stated in Section 4.1, the probability distribution of bags from the training set can be different

from the test set. In the first step, the representation of bags is transformed to be invariant under

scaling of the feature values. The traditional representation X of a bag that consists of a set of

m samples {x1, . . . ,xm} can be written in a form of a matrix:

X =


x1

...

xm

 =


x11 x12 . . . x1n

...

xm1 xm2 . . . xmn

 , (4.2)

where xlk denotes k-th feature value of l-th sample. This form of representation of samples

and bags is widely used in the research community, as it is straightforward to use and easy to

compute. It is a reasonable choice in many applications with a negligible shift in the source

and target probability distributions. However, in the network security domain, the dynamics

of the network environment causes changes in the feature values and the shift becomes more

prominent. This shift can be also caused by the volumetric changes introduced by sampling. As

a result, the performance of the classification algorithms using the traditional representation is

decreased.

In the first step, the representation is improved by making the matrix X to be invariant

under scaling of the feature values. Scale invariance guarantees that even if some original

feature values of all samples in a bag are multiplied by a common factor, the values in the new

representation remain unchanged. To guarantee the scale invariance, the matrix X is scaled

locally onto the interval [0, 1] as follows:

X̃ =


x̃11 . . . x̃1n

...

x̃m1 . . . x̃mn

 x̃lk =
xlk −minl(xlk)

maxl(xlk)−minl(xlk)
(4.3)
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4.2.2 Shift Invariance

In the second step, the representation is transformed to be invariant against shifting. Shift

invariance guaranties that even if some original feature values of all samples in a bag are

increased/decreased by a given amount, the values in the new representation remain unchanged.

Let us define a translation invariant distance function d : R × R → R for which the following

holds: d(u, v) = d(u+ a, v + a).

Let xpk, xqk be k-th feature values of p-th and q-th sample from bag matrix X. Then the

distance between these two values will be denoted as d(xpk, xqk) = skpq. The distance d(xpk, xqk)

is computed for pairs of k-th feature value for all sample pairs, ultimately forming a so called

self-similarity matrix Sk. Self-similarity matrix is a symmetric positive semidefinite matrix,

where rows and columns represent individual samples and (i, j)-th element corresponds to the

distance between i-th and j-th sample. Self-similarity matrix has been already used thanks to

its properties in several applications (e.g. in object recognition [84] or music recording [109]).

However, only a single self-similarity matrix for each bag has been used in these approaches. This

paper proposes to compute a set of similarity matrices, one for every feature. More specifically, a

per-feature set of self-similarity matrices S = {S1, S2, . . . , Sn} is computed for each bag, where

Sk =


sk11 sk12 . . . sk1m

.

..

skm1 s
k
m2 . . . s

k
mm

 . (4.4)

The element skpq = d(xpk, xqk) is a distance between feature values xpk and xqk of k-th feature.

This means that the bag matrix X with m samples and n features will be represented with n

self-similarity matrices of size m×m. The matrices are further normalized by local feature scaling

described in Section 4.2.1 to produce a set of matrices S̃. This transformation is illustrated in

Figure 4.2 as step (3).

The shift invariance makes the representation robust to the changes where the feature values

are modified by adding or subtracting a fixed value. For example, the length of a malicious URL

would change by including an additional subdirectory in the URL path. Or, the number of trans-

fered bytes would increase when an additional data structure is included in the communication

exchange.

4.2.3 Permutation and Size Invariance

Representing bags with scaled matrices {X̃} and sets of locally-scaled self-similarity matrices

{S̃} achieves the scale and shift invariance. Size invariance ensures that the representation is

invariant against the size of the bag. In highly dynamic environments, the samples may occur

in a variable ordering. Permutation invariance ensures that the representation should also

be invariant against any reordering of rows and columns of the matrices. The final step of

the proposed transformation is the transition from the scaled matrices X̃, S̃ (introduced in

Sections 4.2.1 and 4.2.2 respectively) to normalized histograms. For this purpose, we define for

each bag:

zXk := vector of values from k-th column of matrix X̃
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zSk :=column-wise representation of upper triangular

matrix created from matrix S̃k ∈ S̃.

This means that zXk ∈ Rm is a vector created from values of k-th feature of X̃, while zSk ∈
Rr, r = (m−1) · m2 is a vector that consists of all values of upper triangular matrix created from

matrix S̃k. Since S̃k is a symmetric matrix with zeros along the main diagonal, zSk contains only

values from upper triangular matrix of S̃k.

A normalized histogram of vector z = (z1, . . . , zd) ∈ Rd is a function φ : Rd × Rb+1 → Rb

parametrized by edges of b bins θ = (θ0, . . . , θb) ∈ Rb+1 such that

φ(z;θ) = (φ(z; θ0, θ1), . . . , φ(z; θb−1, θb)),

where

φ(z, θi, θi+1) =
1

d

d∑
j=1

[[zj ∈ [θi−1, θi)]]

is the value of the i-th bin corresponding to a portion of components of z falling to the interval

[θi−1, θi).

Each column k of matrix X̃ (i.e. all bag values of k-th feature) is transformed into a histogram

φ(zXk ,θ
X
k ) with predefined number of b bins and θXk bin edges (boundary). Such histograms

created from the columns of matrix X̃ will be denoted as feature values histograms, because

they carry information about the distribution of bag feature values (illustrated in Figure 4.2 as

step (2)). On the other hand, histogram φ(zSk ,θ
S
k ) created from values of self-similarity matrix

S̃j ∈ S̃ will be called feature differences histograms, as they capture inner feature variability

within bag samples. This transformation is illustrated in Figure 4.2 as step (4).
Overall, each bag is represented as a large concatenated feature map φ(X̃; S̃;θ) : Rn×(m+r) →

R2·n·b as follows: (
φ(zX1 ,θ

X
1 ), . . . ,φ(zXn ,θ

X
n ),φ(zS1 ,θ

S
1 ), . . . ,φ(zSn ,θ

S
n)
)
, (4.5)

where n is the number of the original flow-based features, m is the number of flows in the bag,

and b is the number of bins. The whole transformation from input network flows to the final

feature vector is depicted in Figure 4.2. As you can see, two types of invariant histograms are

created from values of each flow-based feature. At the end, both histograms are concatenated

into the final bag representation φ(X̃; S̃;θ).

4.3 Learning Optimal Histogram Representation

The bag representation φ(X̃; S̃;θ) proposed in Section 4.2 has the invariant properties, however

it heavily depends on the number of bins b and their edges θ defining the width of the histogram

bins. These parameters that were manually predefined in Section 4.2 C influence the classification

performance. Incorrectly chosen parameters b and θ leads to suboptimal efficacy results. To

define the parameters optimally, we propose a novel approach of learning these parameters

automatically from the training data in such a way to maximize the classification separability

between positive and negative samples.

When creating histograms in Section 4.2.3, the input instances are vectors zXk and zSk , where

k ∈ {1, . . . , n}. The algorithm transforms the input instances into a concatenated histogram
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Fig. 4.2: Graphical illustration of the individual steps that are needed to transform the bag
(set of flows with the same user and hostname) into the proposed invariant representation.
First, the bag is represented with a standard (flow-based) feature vector (1). Then feature
values histograms of locally scaled feature values are computed for each feature separately (2).
Next, the locally-scaled self-similarity matrix is computed for each feature (3) to capture inner
differences. This matrix is then transformed into feature differences histogram (4), which is
invariant on the number or the ordering of the samples within the bag. Finally, feature values
and feature differences histograms of all features are concatenated into resulting feature vector.

φ(X̃; S̃;θ). To keep the notation simple and concise, we will denote the input instances simply

as z = (z1, . . . ,zn) ∈ Rn×m (instead of z = (zX1 , . . . ,z
X
n , z

S
1 , . . . ,z

S
n)), which is a sequence of n

vectors each of dimension m.

The input instance z is represented via a feature map φ : Rn×m → Rn·b defined as a con-

catenation of the normalized histograms of all vectors in that sequence, that is, φ(z;θ) =

(φ(z1;θ1), . . . ,θ(zn;θn)), where θ = (θ1, . . . ,θn) denotes bin edges of all normalized histograms

stacked to a single vector.

We aim at designing a classifier h : Rn×m × Rn+1 × Rn(b+1) → {−1,+1} working on top of

the histogram representation, that is

h(z;w, w0,θ) = sign(〈φ(z,w)〉+ w0) = sign

 n∑
i=1

b∑
j=1

φ(zi, θi,j−1, θi,j)wi,j + w0

 . (4.6)

The classifier (4.6) is linear in the parameters (w, w0) but non-linear in θ and z. We are going

to show how to learn parameters (w, w0) and implicitly also θ via a convex optimization.

Assume we are given a training set of examples {(z1, y1), . . . , (zm, ym)} ∈ (Rn×m×{+1,−1})m.

We fix the representation φ such that the number of bins b is sufficiently large and the bin edges

θ are equally spaced. We find the weights (w, w0) by solving

min
w∈Rb·p,w0∈R

γ n∑
i=1

b−1∑
j=1

|wi,j − wi,j+1| +
1

m

m∑
i=1

max
{

0, 1− yi〈φ(zi;θ),w〉}

]
. (4.7)
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The objective is a sum of two convex terms. The second term is the standard hinge-loss surrogate

of the training classification error. The first term is a regularization encouraging weights of

neighboring bins to be similar. If it happens that j-th and j + 1 bin of the i-the histogram have

the same weight, wi,j = wi,j+1 = w, then these bins can be effectively merged to a single bin

because

wi,jφ(zi; θi,j−1, θi,j) + wi,j+1φ(zi; θi,j , θi,j+1) = 2wφ(zi; θi,j−1, θi,j+1) . (4.8)

The trade-off constant γ > 0 can be used to control the number of merged bins. A large value of

γ will result in massive merging and consequently in a small number of resulting bins. Hence the

objective of the problem (4.7) is to minimize the training error and to simultaneously control

the number of resulting bins. The number of bins influences the expressive power of the classifier

and thus also the generalization of the classifier. The optimal setting of λ is found by tuning its

value on a validation set.

Once the problem (4.7) is solved, we use the resulting weights w∗ to construct a new set of

bin edges θ∗ such that we merge the original bins if the neighboring weights have the same sign

(i.e. if w∗i,jw
∗
i,j+1 > 0). This implies that the new bin edges θ∗ are a subset of the original bin

edges θ, however, their number can be significantly reduced (depending on γ) and they have

different widths unlike the original bins. Having the new bins defined, we learn a new set of

weights by the standard SVM algorithm

min
w∈Rn,w0∈R

[
λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yi〈φ(zi;θ∗),w〉}

]
.

Note that we could add the quadratic regularizer λ
2 ‖w‖

2 to the objective of (4.7) and learn

the weights and the representation in a single stage. However, this would require tuning two

regularization parameters (λ and γ) simultaneously which would be order of magnitude more

expensive than tuning them separately in the two stage approach.

The proposed method is based on similar principals as we introduced in Chapter 3 describing

the adaptive sampling. In this case we do not remove redundant flows but merge bins with

similar information value, which results in simpler representation, smoother decision boundary,

and more robust classifier.

4.4 Malware Representation Example

This section illustrates how the proposed representation (nonoptimized version) is calculated for

two real-world examples of malicious behavior. Namely, two versions of a polymorphic malware

Sality are compared. Sality [61] is a malware family that has become a dynamic and complex

form of malicious infection. It utilizes polymorphic techniques to infect files of Widows ma-

chines. Signature-based systems or classifiers trained on a specific malware type often struggles

with detecting new variants of this kind of malware. Naturally, most of the conclusions to the

discussion that follows can be drawn for many other malware threats.

Figure 4.3 shows how the two Sality samples are represented with the proposed approach.

First, the input flows are grouped into two bags (one bag for each Sality sample), because all

flows of each bag have the same user and the same hostname (1). For the sake of simplicity,

only URLs of the corresponding flows are displayed. Next, 115 flow-based feature vectors are
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Fig. 4.3: Illustration of the proposed representation applied on two versions of malware Sality.
First, two bags of flows are created (1), one bag for each Sality sample. Next, flow-based feature
vectors are created for each bag (2). For illustrative purposes, only a single feature is used -
URL length. In the third step, histograms of feature values φ(zXk ,θ

X
k ) and feature differences

φ(zSk ,θ
S
k ) are created (3) as described in Section 4.2.3. Only four bins for each histogram were

used. Finally, all histograms are concatenated into the final feature vector (4). Even though
the malware samples are from two different versions, they have the same histogram of feature
differences φ(zSk ,θ

S
k ). Since φ(zXk ,θ

X
k ) is not invariant against shift, you can see that half of

the values of φ(zXk ,θ
X
k ) are different. Still, φ(zXk ,θ

X
k ) values may play an important role when

separating malware samples from other legitimate traffic.

computed for each bag (2). To simplify illustration, we show only a single feature – URL length.

After this step, each Sality sample is represented with one feature vector of flow-based values.

Existing approaches use these vectors as the input for the subsequent detection methods. As

we will show in Section 4.5, these feature values are highly variable for malware categories.

Classification models trained with such feature values loose generalization capability.

To enhance the robustness of the flow-based features, the proposed approach computes his-

tograms of feature values φ(zXk ,θ
X
k ) and feature differences φ(zSk ,θ

S
k ) (3) as described in Sec-

tion 4.2.3. To make the illustration simple, only four bins for each histogram were used. Finally,

all histograms are concatenated into the final feature vector (4). It can be seen that even though

the malware samples are from two different versions, they have the same histogram of feature

differences φ(zSk ,θ
S
k ). Since the histogram of feature values φ(zXk ,θ

X
k ) is not invariant against

shift, half of the values of φ(zXk ,θ
X
k ) are different.

The number of histogram bins and their sizes are then learned from the data by the proposed

algorithm (see Section 4.3). The proposed representation describes inner dynamics of flows from

each bag, which is a robust indicator of malware samples, as we will show in the analysis of

various malware families in Section 4.6. In contrast to the existing methods that use flow-based

features or general statistics such as mean or standard deviation, the proposed representation

reflects properties that are much more difficult for an attacker to evade detection.
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4.5 Evasion Possibilities

This section discusses evasion options for an attacker when trying to evade a learning-based

classification system. According to the recent work [127], the essential components for an evasion

are: (1) the set of features used by the classifier, (2) the training dataset used for training, (3) the

classification algorithm with its parameters. Without the knowledge of the features, the attacker

is faced with major challenges and there is not any known technique for addressing them [127].

Acquire knowledge of classification algorithm with its parameters or the training data is

hard if not impossible. Therefore, in the following analysis, we assume that only the features

are known to the attacker. When classifying HTTP traffic from proxy logs, it is actually not

difficult to create a set of common features widely used in practice. These features are the

baseline flow-based features, such as those described in Table 4.1. When the attacker performs

a mimicry attack, selected features of malicious flows are modified to mimic legitimate traffic

(or flows marked as benign by the classifier).

In the following, we will analyze the case when the attacker performs a mimicry attack to

evade detection by modifying flow attributes, such as URLs, bytes, and inter-arrival times.

Other flow attributes can be altered in a similar way with analogical results. All modifications

are divided into two groups, depending on whether the proposed representation is invariant

against them.

The proposed representation is invariant to the following changes.

• Malicious code, payload, or obfuscation – The advantage of all network-based security

approaches is that they extract features from headers of network communication rather than

from the content. As a result, any changes to the payload including the usage of pluggable

transports designed to bypass Deep Packet Inspection (DPI) devices will have no effect on

the features. Some pluggable transports (e.g. ScrambleSuit) are able to change its network

fingerprint (packet length distribution, number of bytes, inter-arrival times, etc.). Since the

proposed representation mainly relies on the dynamics of URLs of flows in the bag, such

changes will not negatively impact the efficacy, which is a great advantage against DPI devices.

• Server or hostname – The representation operates at the level of bags, where each bag

is a set of flows with the same user and hostname/domain. If an attacker changes an IP

address or a hostname of the remote server (because the current one has been blacklisted),

the representation will create a new bag with similar feature values as in the previous bag with

the original IP address or hostname, which is a great advantage against feeds and blacklists

that need to be updated daily and are always behind.

• URL path or filename – Straightforward and easy way of evading existing classifiers using

flow-based features or URL patterns is the change in path or filename from sample to sample.

Since the variability of these features remains constant within each bag, these changes will

also have no effect on the proposed representation.

• Number of URL parameters, their names or values – This is an alternative to URL

path changes.

• Encoded URL content – Hiding information in the URL string represents another way

to exfiltrate sensitive data. When the URL is encrypted and encoded (e.g. with base64), it

changes the URL length and may globally influence other features as well. As the proposed
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representation is invariant against shifting, changing the URL length will not change the

histograms of feature differences.

• Number of flows – Another option for an attacker to hide in the background traffic is

increasing or reducing the number of flows related to the attack. Such modification of the

attack does not affect the representation, as long as there are enough flows to create the

feature vectors.

• Time intervals between flows – This feature has been used in many previous approaches

for its descriptive properties. It is an alternative way to the proposed representation how to

model a relationship between individual flows. Our analysis revealed that current malware

samples frequently modify the inter-arrival time to remain hidden in the background traffic –

see Figure 4.4 for details. Therefore, we do not rely on this unstable feature that can be also

influenced by network delays or failures.

• Ordering of flows – An attacker can easily change the ordering of flows to evade detec-

tion based on patterns or predefined sequences of flows. For the proposed representation the

ordering of flows does not matter.

The proposed representation is not invariant to the following changes.

• Static behavior – The representation is not effective on malware behaviors, where all flows

associated with a malware are identical. Such behavior has no dynamics and can be classified

with flow-based approaches with comparable results. In our dataset, only 10% of flows were

removed because of this constrain.

• Multiple behaviors in a bag – In case more behaviors are associated with a bag, such

as when a target hostname is compromised and communicates with a user with legitimate

and malicious flows at once, the representation does not guarantee the invariance against the

attacker’s changes. Such bags contain a mixture of legitimate and malicious flows and their

combination could lead to a different representation. Note that there wasn’t any malware

sample in our data that would satisfy this condition, since the legitimate traffic has to be

authentic (not artificially injected) to confuse the representation.

• Encrypted HTTPS traffic – Most features presented in this paper are computed from

URLs or other flow fields, that are not available in encrypted HTTPS traffic. In this case, only

a limited set of flow-based features can be used, which reduces the discriminative properties of

the representation. However, majority of malware communication is still over HTTP protocol,

because switching to HTTPS would harm the cyber-criminals’ revenues due to problems with

signed certificates [79].

• Real-time changes and evolution – In case a malware sample for a given user and host-

name would start changing its behavior dynamically and frequently, the bag representation

will vary in time. Such inconsistency would decrease the efficacy results and enlarge the time

to detect. However, creating such highly dynamic malware behavior requires a considerable

effort, therefore we do not see such samples very often in the real network traffic.

We conclude our analysis with the observation, that attackers change flow features very

frequently (see Figure 4.4). An example of such change is illustrated in Figure 4.3, where the

next version of Sality malware changed second-level domain, URL path, filename, and URL

prameters. The goal of the proposed representation is to be invariant against most of the changes

to successfully detect new, previously unseen malware variants.
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Fig. 4.4: Flow-based features (columns) are changing for most of the malware categories (rows).
The figure uses normalized entropy to show the variability of each feature within each malware
category. Yellow color denotes that the feature value is changed very often, while blue color
means that the feature has the same values for all samples of the given category. Features:
1-URL, 2-interarrival time, 3-URL query values, 4-URL path, 5-number of flows, 6-number of
downloaded bytes, 7-server IP address, 8-hostname, 9-URL path length, 10-URL query names,
11-filename, 12-filename length, 13-number of URL query parameters, 14-number of uploaded
bytes. Malware categories: 1-Click-fraud (amz), 2-Asterope family 1, 3-Asterope family 2, 4-
Beden, 5-Click-fraud, 6-DGA, 7-Dridex, 8-Exfiltration, 9-InstallCore, 10-Mudrop Trojan Drop-
per, 11-Monetization, 12-Zeus, 13-Mudrop, 14-MultiPlug, 15-mixture of unknown malware, 16-
Click-fraud (tracking), 17-Poweliks family 1, 18-Poweliks family 2, 19-Qakbot Trojan, 20-Rerdom
Trojan, 21-Ramnit worm, 22-RVX, 23-Sality, 24-Threats related to a traffic direction system
(TDS) 1, 25-TDS 2, 26-TDS 3, 27-Tinba Trojan, 28-C&C tunneling, 29-Upatre, 30-Vawtrak,
31-Vittalia, 32-Zbot. Details about the malware categories are given in Section 4.6.

4.6 Experimental Evaluation

The proposed representation was applied to classify unseen malware bags. Next section provides

the specification of datasets and malware categories, followed by the results from the experimen-

tal evaluation. We will show that an SVM classifier achieves significantly better efficacy results

using the proposed representation when compared to the baseline flow-based representation that

is used in previously published work.

4.6.1 Specification of the Datasets

This section provides a detailed description of the datasets, labeled malware samples, and fea-

tures used in the experimental evaluation. Malware samples were obtained from several months

(January - June 2015) of real network traffic of 80 international companies in form of proxy logs

[99]. The logs contain HTTP and HTTPS flows, where one flow is one connection defined as a

group of packets from a single host and source port with a single server IP address, port, and

protocol. As flows from the proxy logs are bidirectional, both directions of a communication

are included in each flow. The malware samples were obtained from findings of several network

security devices based on signatures (Cisco Cloud Web Security), blacklists (Shadowserver1),

1 www.shadowserver.org
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Fig. 4.5: URL decomposition into seven parts.

feeds (Collective Intelligence Framework CIF [62]), and static and behavioral analysis (Cisco

Cloud Web Security). In many cases, human experts were involved to label novel previously

undetected threats. Findings from VirusTotal2 server were also used.

In the following, malware samples will be referred as positive bags, where one positive bag

is a set of flows (connections) from proxy records with the same source host towards the same

destination hostname. In other words, each bag contains the whole client-hostname commu-

nication for a given period of time (e.g. 1 hour).The bags that are not labeled as malicious

are considered as legitimate/negative. We assume that the number of unknown malicious bags

labeled as negatives is negligible when compared to the number of correctly labeled negative

bags. Each bag should contain at least 5 flows to be able to compute a meaningful histogram

representation from the input flows.

Each flow consists of the following fields: user name, source IP address, destination IP address,

source port, destination port, protocol, number of bytes transferred from client to server and

from server to client, flow duration, timestamp, user agent, URL, referer, MIME-Type, and

HTTP status. The most informative field is the URL, which can be decomposed further into 7

parts as illustrated in Figure 4.5. From the flow fields mentioned above, we extracted 88 flow-

based features listed in Table 4.1. Features from the right column are applied on all URL parts,

including the URL itself and a referer.

4.6.2 Malicious Samples

More then 32 different malicious categories were found in the evaluation datasets. Note than most

of the novel threats (typically not detected by most of existing devices) were found and confirmed

manually and are placed into one malicious category called other categories. To illustrate the

complexity of the classification problem caused by the large amount of malware families and their

variability, a brief description of some categories is provided together with proxy log examples

(Table B.1 in Appendix B):

• Asterope – Threat related to Asterope click-fraud botnet. Asterope is a Trojan bot malware

which performs click-fraud by imitating the action of a user clicking on an advertisement. The

bot communicates with the command-and-control server using HTTP from which it receives

the next website to visit.

• Click-fraud, malvertising-related botnet – The main distribution channel for this threat

is fraudulent software such as anti-virus, browser plugins, and software updates. The infection

typically appears as a browser plugin that hijacks web browsers. It may then establish a

command-and-control channel, track user activity, have rootkit capability, and perform click-

2 www.virustotal.com
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Features applied on URL, path, query, filename

length
digit ratio
lower case ratio
upper case ratio
ratio of digits
vowel changes ratio
ratio of a character with max occurrence
has a special character
max length of consonant stream
max length of vowel stream
max length of digit stream
number of non-base64 characters
has repetition of parameters
starts with number

Other Features

number of bytes from client to server
number of bytes from server to client
length of referer
length of file extension
number of parameters in query
number of ’/’ in path
number of ’/’ in query
number of ’/’ in referer
is encrypted

Table 4.1: List of selected flow-based features extracted from proxy logs. We consider these
features as baseline (as some features were used in previously published work), and compare the
baseline with the proposed representation. More detailed description of features is provided in
Appendix A.

fraud through the automatic loading and clicking of unsolicited advertisements. The attacker

may obtain information about the infected device and attempt to further exploit the device

with additional threats.

• DGA – Threat that uses domain generation algorithms (DGA) and Fast-Flux to establish its

command-and-control communication. Fast-Flux is a DNS technique used by botnets to hide

malicious devices behind a command-and-control infrastructure of compromised hosts. These

hosts act as proxies that register and de-register their IP addresses. By using a short Time To

Live (TTL) value, the hostname to IP address mapping for devices in the requested domain

name space will change rapidly. This results in a constantly changing list of destination IP

addresses for a single DNS name and allows the attacker to distribute information about the

malicious devices.

• Dridex – Threat related to Dridex banking trojan. Dridex is typically spread through spam

campaigns and its main goal is to obtain confidential information from the user about his or

her online banking and other payment systems. The trojan communicates with the command-

and-control server using HTTP, P2P, or I2P protocols.

• Monetization – Malware monetization activity involving fake blog sites that serve as front

ends for click-fraud.
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Category
Samples Signature-based device

Flows Bags TPs Recall

Training Positives 132,756 5,011 736 0.15

Click-fraud malvertising 12,091 819 238 0.29
DGA malware 8,629 397 231 0.58
Dridex 8,402 264 31 0.12
IntallCore 17,317 1,332 0 0.00
Monetization 3,107 135 0 0.00
Mudrop 37,142 701 0 0.00
Poweliks 11,648 132 0 0.00
Zeus 34,420 1,275 236 0.19

Testing Positives 43,380 2,090 48 0.02

Training Negatives 862,478 26,825
Testing Negatives 15,379,466 240,549

Table 4.2: Number of flows and bags of malware categories and legitimate background traffic used
for training and testing the proposed representation and classifier. Right-most column shows the
amount of bags that were found and blocked by an existing signature-based device. Majority
of the malicious bags from the test were missed, as the device, relying on a static database of
signatures, was not able to catch evolving versions and new types of the malicious behaviors.

• Poweliks – Threat related to the Poweliks Trojan which downloads other malware to the

infected device and can steal information. The threat is persistent and uses several mechanisms

to hide itself.

• Zeus – Threat related to the Zeus Trojan horse malware family which is persistent, may

have rootkit capability to hide its presence, and employs various command-and-control mech-

anisms. Zeus malware is often used to track user activity and steal information by man-in-

the-browser keystroke logging and form grabbing. Zeus malware can also be used to install

CryptoLocker ransomware to steal user data and hold data hostage.

• Others categories – Other categories include Bedep, InstallCore, Mudrop, MultiPlug,

Ramdo, Rerdom, Sality, Vawtrack, Vittalia, etc.

Table B.1 from Appendix B describes an important fact about the distributions of feature

values computed from individual malicious bags. As you can see, URLs within each malicious

bag are similar to each other (as opposed to most of legitimate bags). This small non-zero

variability of flow-based feature values is captured by the proposed representation using both

types of histograms. The variability is very general but also descriptive feature, which increases

the robustness of the representation to further malware changes and variants.

The summary of the training and testing set is shown in Table 4.2. Positive bags from 8

categories with the highest number of bags were added to the training set, while the rest of the

malware samples from the other categories (including novel threats) were included in the testing

set. This means that training and testing data are composed of completely different malware

bags from different malware families. This makes the classification problem much harder, as the

classifier is trained on 8 malware categories and then evaluated on malicious traffic of different

categories and behaviors unseen in the training set. This scenario simulates the fact that new

types of threats are created to evade detection. The benchmarking signature-based network

security device (widely used in many companies) was able to detect only 2% of the malicious
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bags from the testing set. Anomaly detection system introduced in [93] automatically removes

38% of all malicious flows from the testing set, as they have empty URL query string. Training a

classifier for each category separately is an easier task, however such classifiers are typically over-

fitted to a single category and cannot detect further variations without retraining. On the other

hand, training a classifier from multiple categories is more suitable for dynamic or polymorphic

changes of new malware.

Negative bags were acquired from 10 hours of http network traffic of two companies. Negative

bags from the first company were used for training, while bags from the second company were

used for testing. Note that malicious bags found in the traffic were removed from the set of

negative bags.

4.6.3 Evaluation on Real Network Traffic

This section shows the benefits of the proposed approach of learning the invariant represen-

tation for two-class classification problem in network security. Feature vectors described in

Section 4.6.1 correspond to input feature vectors {x1, . . . ,xm} defined in Section 4.1. These

vectors are transformed into the proposed representation of histograms φ(X̃; S̃;θ), as described

in Section 4.2. We have evaluated two types of invariant representations. One with predefined

number of equidistant bins (e.g. 16, 32, etc.) computed as described in Section 4.2, and one when

the representation is learned together with the classifier to maximize the separability between

malicious and legitimate traffic (combination of Section 4.2 and 4.3). For the representation

learning, we used 256 bins as initial (and most detailed) partitioning of the histograms. During

the learning phase, the bins were merged together, creating 12.7 bins per histogram on average.

Both approaches are compared with the baseline flow-based representation used in previously

published work, where each sample corresponds to a feature vector computed from one flow.

Results of a widely used signature-based security device are also provided (see Table 4.2) to

demonstrate that the positive samples included in the evaluation pose a real security risk, as

majority of them was not detected. Maximum number of flows for each bag was 100, which

ensures that the computational cost is controlled and does not exceed predefined limits.

Ten flow-based feature vectors of two legitimate and five malicious bags are displayed in

Figure 4.6. Each row represents one flow-based feature vector. You can see that legitimate bags

have higher diversity of flow-based feature values, which is a result of higher diversity of flows

within a bag (illustrated in Table B.1 in Appendix B). This diversity (also shown in Figure 4.4)

makes it difficult for a flow-based classifier to learn more complex malicious behaviors, as they are

not well separated from the legitimate traffic. On the other hand, feature values within malicious

bags are more consistent, resulting in more bars with uniform color. This key property, which

is shared across malware categories, is not visible from the flow-based features point of view. It

is visible only at the level of bags.

Figure 4.7 shows how the same positive and negative samples look in the proposed repre-

sentation. Zero values are depicted with dark blue color, while maximum values (equal to 1)

are depicted with yellow bars. Instead of ten flow-based feature vectors, each bag is represented

with a single vector describing the inner dynamics of flow-based feature values within each bag.

Malicious bags have a lot of values equal to zero as opposed to legitimate bags, which increases
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Flow-Based Feature Values for Legitimate and Malicious Behaviors

Feature Values
10 20 30 40 50 60 70 80

Legitimate

Legitimate

Click-Fraud

DGA

Dridex

Zeus

Asterope

Fig. 4.6: Graphical illustration of two legitimate and five malicious bags in the baseline (flow-
based) representation. Each bag is represented with 10 flow-based feature vectors (rows). You
can see that feature values of legitimate vectors have high range of values, which complicates
the training of classifiers. They have also significantly higher variability of feature values than
malicious bags, which cannot be utilized from flow-based representation.

Proposed Feature Vectors of Legitimate and Malicious Behaviors

Feature Values
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Asterope

Fig. 4.7: Illustration of two legitimate and five malicious bags in the proposed invariant rep-
resentation. First two legitimate bags show high variability of feature values and can be easily
separated from malicious bags. On the other hand, feature values of malicious bags describe the
inner similarity of flows or URLs within each bag as illustrated in Table B.1 in Appendix B. In
contrast to legitimate bags, malicious bags have a lot of common feature values equal to 0 and
1, which improves their separability.

the separability of the two classes. Moreover, feature values equal to one are common for most

of malicious bags across categories, which increases the descriptive value and robustness of the

proposed representation. Such representation is more suitable for classification of frequently-

changing malicious behaviors, as will be demonstrated further in this section.

Two-dimensional projection of the feature vectors for the flow-based and the proposed rep-

resentation is illustrated in Figures 4.8 and 4.9 respectively. Bags from 32 malicious categories

are displayed with red circles, while the legitimate bags are denoted with green circles. The

projections show that the flow-based representation is suitable for training classifiers specialized

on a single malware category. In case of the proposed representation, malicious bags from var-
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... creating invariant representation ...

Fig. 4.8: Graphical projection of feature vectors of the baseline flow-based representation (some
vectors are in Figure 4.6) into two dimensions using t-SNE transformation. Feature vectors
from 32 different malware categories are displayed. Due to high variability of flow-based feature
values, legitimate and malicious samples are scattered without any clear separation. The results
show that the flow-based representation is suitable for training classifiers specialized on a single
malware category, which often leads to classifiers with high precision and low recall.

Fig. 4.9: Graphical projection of feature vectors of the proposed representation (some vectors
are in Figure 4.7) into two dimensions using t-SNE transformation. Thanks to the invariant
properties, malicious bags from various categories are grouped together, as they have similar
dynamics modeled by the representation. Most of the legitimate bags are concentrated on the
left-hand side, far from the malicious bags. This shows that training a classifier with the proposed
representation will achieve higher recall with comparable precision.

ious categories are grouped together and far from the legitimate traffic, which means that the

classifiers will have higher recall and comparable precision with the flow-based classifiers.

Next, we will show the properties of the proposed method of learning the representation to

maximize the separation between positive and negative samples (see Section 4.3 for details).

Figure 4.10 visualizes the proposed method on synthetic 2-dimensional input data. The input

70



feature x

fe
at

ur
e 

y

lambda=0.00010, trnerr=2.4%, tsterr=14.8%

feature x

fe
at

ur
e 

y

lambda=0.01000, trnerr=10.4%, tsterr=13.5%

feature x

fe
at

ur
e 

y

lambda=0.10000, trnerr=13.2%, tsterr=10.5%

feature
50 100 150 200 250 300 350 400

w
ei
gh
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

feature
50 100 150 200 250 300 350 400

w
ei
gh
t

-1

-0.5

0

0.5

1

feature
50 100 150 200 250 300 350 400

w
ei
gh
t

-1

-0.5

0

0.5

1

Fig. 4.10: Visualization of the proposed method of learning the invariant representation on 2-
dimensional synthetic data. Figures in the upper row show the decision boundaries of two class
classifier learned from the bins for three different values of parameter λ (0.0001, 0.01, 0.1) which
controls the number of emerging bins (the corresponding weights are shown in the bottom row).
With increasing λ the data are represented with less bins and the boundary becomes smoother
and less over-fitted to the training data.

2D point (x, y) ∈ R2 is represented by 4-dimensional feature vector (x2, y2, x+y, x−y). Each of

the 4 features is then represented by a histogram with 100 bins (i.e. each feature is represented

by 100 dimensional binary vector will all zeros but a single one corresponding to the active bin).

Figures in the top row show the decision boundaries of two-class classifiers learned from data.

The bottom row shows the weights of the linear classifier corresponding to the bins (in total

400 weights resulting from 100 bins for each out of 4 features). The columns correspond to the

results obtained for different setting of the parameter λ which controls the number of emerging

bins and thus also the complexity of the decision boundary. With increasing λ the data are

represented with less bins and the boundary becomes smoother. Figure 4.10 shows the principle

of the proposed optimization process. The bins of the representation are learned in such a way

that it is much easier for the classifier to separate negative and positive samples and at the same

time control the complexity of the classifier.

Figures 4.11 and 4.12 show the bins and weights learned from the training set of real network

traffic. The blue vertical lines represent learned weights associated with 256 bins of a histogram

computed on a single input feature. The red lines show new bins derived from the weights by

merging those neighboring bins which have the weights with the same sign. Figure 4.11 shows

the weights and the derived bins for a standard SVM which has no incentive to have similar

weights. The histogram derived from the SVM weights reduces the number of bins from 256 to

130. Figure 4.12 shows the results for the proposed method which enforces the similar weights

for neighboring bins. In this case, the weights exhibit a clear structure and the derived histogram

has only 18 bins. The decision boundary is in this case smoother and the classifier trained from

this representation will be more robust.
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Fig. 4.11: Weights (blue bars) and derived bins of a histogram (red line) for a standard SVM and
one of the invariant features. Since the bins are equidistant and predefined at the beginning, the
resulting histogram (defined by the red line) has complicated structure, leading most probably
to complex boundary and over-fitted results (as shown in Figure 4.10 on the left hand side).
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Fig. 4.12: Weights (blue bars) and derived bins of a histogram (red line) for the proposed bin
optimization. In this case, the weights show a clear structure and the derived histogram has
only 18 bins. The decision boundary is in this case smoother and the classifier trained from this
representation will be more robust. Green dashed lines also show how the histogram bins would
look like if they are positioned equidistantly (16 bins).

Next, a two-class SVM classifier was evaluated on five representations: baseline flow-based,

per-feature histograms of values φ(zXk ,θ
X
k ) (bag mean), per-feature histograms of feature differ-

ences φ(zSk ,θ
S
k ) (bag variance), the combination of both (bag combined), and the combination

of both with bin optimization (optimized bag combined). The training and testing datasets

were composed of bags described in Table 4.2. ROC curves on training data are depicted in

Figure 4.13, where five types of representations are compared. In contrast with the baseline

approach, the classification model trained from the combined bag representation is accurate

even for higher true positive rate values. The figure shows that flow-based classifier achieved

high-precision results with only very limited recall (approx. 7%). This means that the classifier

was specialized on these flows at the expense of the rest of the malicious samples. It also means
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Fig. 4.13: ROC curves in linear (left) and logarithmic (right) scale of SVM classifier on train-
ing data for five types of representations: baseline flow-based, per-feature histograms of values
hF (bag mean), per-feature histograms of feature differences hS (bag variance), the proposed
combination of both (bag combined), and bag combined with optimization of parameters (op-
timized bag combined). Flow-based classifier detected small amount of samples (approx. 7%)
with very low false positive rate. This means that the classifier was specialized on these flows at
the expense of the rest of the malicious samples. On the other hand, the proposed combination
of both bag approaches resulted in high recall with acceptable low false positive rate.
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Fig. 4.14: ROC curves (linear and logarithmic) of SVM classifier on test data for five types of
representations (logarithmic scale on the right). Flow-based representation shows very unsatis-
factory results showing that flow-based approach cannot be applied in practice to detect unseen
malware variants. The combination of feature values with feature differences histogram (bag
combined) led to significantly better efficacy results. These results were further exceeded when
the parameters of the invariant representation were learned automatically from the training data
(optimized bag combined).

that flow-based features are good for training specialized classifiers designed for one specific

behavior. On the contrary, the proposed combination of both bag representations resulted in

significantly higher recall with low false positive rate.

The results on testing data are depicted in Figure 4.14. Note that positive bags in the testing

set are from different malware categories than bags from the training set, which makes the

classification problem much harder. The purpose of this evaluation is to compare flow-based

representation, which is used in most of previously published work, with the proposed invariant

representation. Flow-based representation shows very unsatisfactory results, mainly due to the

fact that the classifier was based only on the values of flow-based features that are not robust
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Fig. 4.15: Precision-recall curve of SVM classifier trained on the proposed representation with
different number of histogram bins for each feature. All classifiers are outperformed by the
classifier, where the parameters of the invariant representation are learned automatically from
the data (optimized bag combined). The classifier achieved 90% precision (9 of 10 alerts were
malicious) and 67% recall on previously unseen malware families.

across different malware categories (as shown in Section 4.5). The classifier based on combined

bag representation performed significantly better. These results were further exceeded when the

parameters of the invariant representation were learned automatically from the training data

(optimized bag combined), which is shown in Figure 4.14 with logarithmic scale.

Precision-recall curve is depicted in Figure 4.15 to compare the efficacy results of classifiers

based on the proposed representation with predefined number of bins per feature (8, 16, 64,

128, and 256 bins) with the same representation, but when the parameters are learned from the

training data (using bin optimization from Section 4.3).

Overall, the results show the importance of combining both types of histograms introduced

in Section 4.2 together, allowing the representation to be more descriptive and precise without

sacrificing recall. But most importantly, when the parameters of the representation are trained

to maximize the separability between malicious and legitimate samples, the resulting classifier

performs in order of a magnitude better than a classifier with manually predefined parameters.

4.7 Summary

This chapter proposes a robust representation suitable for classifying evolving malware behav-

iors. It represents sets of network flows as bags based on the combination of invariant histograms

of feature values and feature differences. The representation is designed to be invariant under

shifting and scaling of the feature values and under permutation and size changes of the bags.

Formally, the representation solves the domain adaptation problem in supervised learning set-

ting, where the training and testing datasets have different probability distributions. For the

network security domain, it means that the proposed approach allows the classifiers to create

robust models of malicious behaviors capable of detecting previously unseen malware variants

and changes.
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The proposed representation was evaluated on real HTTP network traffic with more than

43k malicious samples and more than 15M samples overall. The comparison with a baseline

flow-based approach and a widely-used signature-based web security device showed several key

advantages of the proposed representation. First, the invariant properties of the representation

result in the detection of new types of malware at a low false positive rate. Second, multiple

malware behaviors can be represented in the same feature space while flow-based features ne-

cessitate training a separate detector for each malware family. Third, the combination of precise

signature-based devices with data-driven classifiers trained with the proposed representation

significantly increases the network threat coverage. The new detector improves the incident

reporting and prioritization by including threats that are new but perhaps not yet confirmed.

The proposed representation further increases the abstraction of network traffic. At this level,

the results can be reported to security administrators or can be used to build a collaborative

mechanism that will be described in the next two chapters.
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Chapter 5

Collaborative Adaptation Model

Security administrators deploy multiple detectors (i.e. systems detecting the presence of a threat

or infection) on various locations of the network infrastructure in order to provide the full

monitoring coverage, because large variety of attacks are launched from various locations inside

and outside the network. The detectors are typically deployed in the network hierarchically to

analyze the input data at various levels of detail. For example, one detector is deployed on the

network perimeter and monitors the network traffic between LAN and Internet, while other

detectors can be placed inside LAN, for example near high-value systems or users.

For this reason, different detectors frequently analyze the same input data multiple times,

but their detection methods or the data granularity may by different. When such overlapping

data is analyzed by the detectors running in isolation, the network administrator is overwhelmed

with lots of duplicate alerts, while other intrusions might be completely missed. Existing alert

correlation and fusion methods are designed to remove the duplicates, but do not address the

root cause of the problem: the fact that multiple detectors produce redundant alerts. More often

than not, the detectors are based on different techniques and alert correlation and merging is

not a trivial issue.

We propose to tackle this problem with the collaborative specialization of the detectors, which

reduces the alert redundancy and increases the overall sensitivity of a group of homogeneous

or heterogeneous detectors. The proposed model is based on the idea of mutual specialization,

where each detector specializes its behavior and creates unique alerts. Specialized detectors are

designed to be:

• effective – their models are focused only on a subset of attacks therefore generating less false

alerts.

• essential – they detect unique attacks that haven’t been detected by other detectors.

The specialization is possible only for the detectors that are dynamically reconfigurable,

which means they have a predefined set of parameters (e.g. thresholds, rule priorities, or other

parameters modifying the inner detection models) that can be adjusted automatically as a part of

the local self-adaptation process. The values of such parameters define individual configurations

of the detectors. The range of the parameter values is typically predefined, which means that the

set of all possible configurations of each detector is also known in advance. The configuration

influences the results of a detector, which means that two configurations may lead to different

(but individually still acceptable) results. Static detectors with only one configuration can still

contribute to the collaboration by providing their results to reconfigurable detectors, forcing
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them to specialize (i.e. change their configurations) on the types of attacks that are not detected

by the static detectors.

The collaboration model assumes that the detectors iteratively share their results with each

other. We propose to define a similarity function for each pair of heterogeneous detectors. The

function compares the results of the detector with the results obtained from the rest of the

collaborating detectors to provide feedback describing how unique results were obtained by

the latest configuration of the detector. Due to security and integration reasons, the detectors

should not share any details about their internal models or configurations. Such information can

be misused by attackers to bypass the detectors with customized attacks and penetrate inside

the network, or compromise the detectors and decrease their detection capabilities.

The specialization of the detectors is directed by the proposed game-theoretical solution

concept, where multiple detectors seek to optimize a global collective objective though local

decision making of each detector. The decision making is realized iteratively at the level of

configurations of the inner model of the detector based on the feedbacks computed by the

feedback function. The goal is to select such configuration that leads to unique detections,

which ensures the specialization. Such local optimization process, distributively controlled from

the global perspective, reduces manual setup of the collaborating system, making the deployment

of the whole system more cost-effective and straightforward. The proposed collaboration model

also makes any penetration or manipulation with the system much more difficult thanks to its

inherent unpredictability and robustness, which is ensured by the solution concept of correlated

equilibria, where each detector’s payoff is influenced by the combination of attackers’ strategies

and the strategies played by the other detectors.

The problem of heterogeneous collaboration in the network security domain is hard due to

the incompatibility between heterogeneous detectors and due to the highly dynamic network

environment. We propose to approximate this hard problem with an easier problem of finding

functions that are used in the game-theoretical model suitable for such dynamic environments.

The key assumption is to keep the collaborative model method-independent, allowing the col-

laboration of heterogeneous detectors with various detection principles and algorithms (such as

combining statistical detectors with pattern-matching IDS). A general scheme of the model be-

tween two detectors is illustrated in Figure 5.1. In this model, each detector iteratively processes

batches of input data and the results are distributed to other collaborating detectors through

the network. Next, each detector computes the payoff describing the uniqueness of the results

created with the current configuration and dynamically selects a new configuration according to

the proposed game-theoretical solution concept. The new configuration is then used in the next

iteration of the detector operation, and the process re-starts. This way, each detector can ade-

quately react to the current state of the network by changing its configuration parameters. The

model represents last stage of the proposed general fusion architecture, as depicted in Figure 5.2.

The proposed model has the following assumptions:

• All-to-All Communication - We assume all-to-all communication among the detectors to

be able to distributively propagate the results to other detectors. Possible communication

overhead can be reduced by grouping the results from a single detector into one message that

can be periodically sent to other detectors.

• Reconfiguration Capability - At least some of the detection systems should be reconfig-

urable so they can locally adapt their internal detection models to the current state of the
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Fig. 5.1: Scheme of the first iteration of the proposed collaboration of multiple heterogeneous
detectors.
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Fig. 5.2: The collaboration components reside at Level 3 of the proposed architecture. First, the
incidents from all collaborating systems are collected by the correlation component, followed by
the computation of the feedback, which is then propagated to the lower levels of the system.

network traffic according to the proposed collaborative model. An example of such reconfig-

uration is the change in priorities, aggregation functions, thresholds, sampling rates, or other

parameters influencing the system. The set of all possible configurations of each detector is

predetermined in advance.

• No Common Ontology Required - Results of the detectors can be in various formats

(e.g. Intrusion Detection Message Exchange Format [50] or STIX1), still the detectors are

able to interact with each other. The interoperability is ensured by the functions described

in Section 5.3. These functions allow the detectors to interact with each other even if their

detection mechanisms are different.

• Communication Security - For security reasons, detectors do not provide information

about their internal state or inner model, which is their most valuable asset. If this model

1 https://stixproject.github.io/
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Fig. 5.3: Scheme of a standalone reconfiguration. In each iteration, the detector reuses the results
Elocal for its local (standalone) reconfiguration.

ever gets compromised, the attacker can modify the attack according to the model weak-

nesses and his actions would remain hidden in the background traffic. For this reason, the

only information the detectors provide is the output (e.g. list of detected events) from a single

period of time. Authenticated communication channel with confidentiality and integrity guar-

antees should be used for all communication between the detectors to reduce the possibility

of attacker’s manipulation.

• Strategic Deployment - The performance of the collaboration depends on the position of

the detectors within the network infrastructure, or the size of the collaboration. Therefore,

strategic deployment of the detectors is important to provide a relevant and useful information

to the model. We assume that the position of the detectors in the network is predefined and

cannot be dynamically changed, as manipulations with the detectors would cost additional

resources and might be undesirable (e.g. against the policy).

The above-mentioned assumptions define initial conditions of the distributed collaboration

controlled by the game-theoretical model explained further in Section 5.3.

5.1 Standalone Model

We define an IDS detector PDi as a 3-tuple:

PDi = (DPi, Xi, ri), (5.1)

whereDPi denotes the detection profile of the detector i: it represents the detection algorithm,

type of its input data, and its scope and deployment position in the network. The parameters of

the detection profile are outside of control, i.e. predetermined. Xi = {x(1)i , . . . , x
(n)
i } denotes a

set of all possible configurations of the detection algorithm, and ri stands for a reconfiguration

function that changes the configuration of the detector. In order to keep the notation light, we

will normally omit detection profile from the definition of IDS detector and denote i-th IDS

detector as PDi = (Xi, ri).

The output of i-th detector in a particular time period (e.g. in every 5 minutes) is called

events:

Ei = {e(1)i , . . . , e
(n)
i }. (5.2)
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Fig. 5.4: One (i-th) iteration of the standalone reconfiguration of three heterogeneous standalone
IDS detectors, where each detector analyzes its input data in isolation.

Events are called local if they are created by the detector itself. The events provided to the

detector by a different detector are called remote. Local and remote events produced by and

visible to the detector PDi will be denoted as ELi ∈ Ei and ERi ∈ Ei respectively, where Ei is a

space of all possible sets of events that can be created by PDi .

Reconfiguration function that depends only on local events is called a standalone reconfigu-

ration function:

rSi : Xi × E → Xi, (5.3)

with the corresponding standalone IDS detector PSDi = (Xi, r
S
i ). In each iteration, the stan-

dalone reconfiguration function switches the actual configuration x
(k)
i ∈ Xi of the detector PSDi

into another configuration x
(l)
i ∈ Xi based only on local events ELi . This is also illustrated in

Figure 5.3. Note that explicit indication of time or iteration was omitted in our notation to

keep it as light and concise as possible. A standalone IDS detector operates in isolation without

any collaboration with other detectors. Graphical illustration of three standalone detectors is

depicted in Figure 5.4. For example, a host-based IDS (H-IDS) reconfigures the priorities of

pattern matching rules for analyzing system logs by using only a standalone reconfiguration

function.

The process of selecting a suitable configuration strictly depends on the detection algorithm

and the corresponding set of configurations. We define this procedure as a general function rSi so

it can be used for any IDS detector and its specification depends on the given detector. An exam-

ple of such reconfiguration is a change in parameters, thresholds, or rule priorities, modification

of inner models, adding new patterns or signatures etc. With the standalone reconfiguration

function, each detector is able to reconfigure its parameters to locally optimize its performance.

5.2 Collaborative Model

The proposed collaborative model requires at least two detectors PDi and PDj , both of them

are able to exchange the events and at least one is reconfigurable. A collaborative IDS detector

PCDi = (Xi, r
C
i ) uses a collaborative reconfiguration function:

rCi : Xi × E × E → Xi (5.4)
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creates local events that are further sent to the other detectors within the collaborating group. At
the same time, the detector receives remote events and computes a value describing the similarity
of local events. Finally, the similarity value is used for selecting the optimal configuration that
leads to specialization.

to transition between the individual configuration states. An important part of the reconfigu-

ration is to collect all available remote events, compare them with the local events, and compute

a feedback describing the uniqueness of events generated with the last configuration.

The proposed collaborative model within a single network assumes various types of detectors

deployed at multiple locations of the network. The collaboration goal is to optimize the perfor-

mance of each individual detector to increase the efficacy of the overall system. The model aims

to provide better efficacy when compared to the case of the same detectors running in isolation.

The principle idea of the collaboration is to optimize the detectors through the specialization

on some particular type of intrusions. This should be made possible by the heterogeneity of

the background traffic and detector placement. More specialized detectors typically produce

significantly lower number of false positives which increases the precision of the detector. The

possible decrease in recall of the individual detectors is compensated by the collaboration, where

the final recall is calculated from the findings of all detectors together. Since the detectors analyze

overlapping network traffic, an attack that is missed by one detector will be more probably

detected by a different detector when specialized on different types of attacks than the first one.

To enforce the specialization of each detector, the corresponding reconfiguration function

should be able to compare local and remote events. For such comparison, we propose to use a

similarity function:

sij : Ei × Ej → [0, 1] (5.5)

that computes the degree of similarity of local events with respect to the remote events created

by different detectors.

The collaborative reconfiguration function selects the next configuration by using local events,

remote events, and mapping the remote events to local events through the prism of the similarity

functions. The mapping allows the rCi to assess which of its detected events are unique (and

therefore have a high value for the global system) and which are duplicates of the events detected

by one or more other detectors. The whole collaborative reconfiguration process is illustrated in

Figure 5.5, while an illustration of three heterogeneous collaborative IDS detectors is depicted

in Figure 5.6.

In each iteration (e.g. every 5 minutes), the collaborative reconfiguration function compares

local and remote events created in the same iteration by using predefined similarity functions
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Fig. 5.6: An example of three heterogeneous collaborative IDS detectors. In each iteration, the
results of each detector influence the reconfiguration of other detectors, which allows them to
react on the current state of the network. Optionally, event fusion can be performed as a final
step of the process.

and determines the uniqueness of local events. We propose a mechanism, where the uniqueness

enters to the game model to determine a new configuration with the highest specialization.

One of the key problems is the lack of coordination between the detectors that adapt con-

currently and mutually influence each other. We argue that the explicit coordination between

diverse IDS types would complicate the problem and turn it into a very hard system integration

problem, as all the systems would have to be able to share and understand data about the

effects of each other’s configuration changes. However, it has been shown that a certain class of

game-theoretical techniques can help us to reach a robust solutions without explicit coordination

([122]). These will be presented in Section 5.3.

5.3 Game-Theoretical Collaboration Model

In this section we will connect the proposed collaborative model with generally defined game-

theoretical problem. We formalize the distributed collaboration as a game between the attackers

and a set of defenders represented by IDS detectors. Each player performs certain actions to

achieve its predefined goal. An example of an attacker’s goal is to exploit secret data from private

network. On the other hand, defenders’ goal is typically to prevent the attackers from achieving

their goals, or secure specific infrastructure or type of service within the network.

More formally, the defender system consists of n defenders PD1 , . . . , PDn represented by

IDS detectors. Each defender is one player of the game with its own set of strategies. Strategies

determine the behavior of each player and lead to the predefined goals. That means the strategies

correspond to individual configurations Xi of the detector PDi . We will denote the set of all

strategies for i-th defender PDi as XDi = {x(1)Di , x
(2)
Di
, . . . , x

(k)
Di
}, where x

(k)
Di

is k-th strategy of

player PDi . Similarly, the set of m attackers PA1
, . . . , PAm uses strategies XA1

, . . . , XAm . By

using this notation, we define the normal form of a single iteration of a dynamic sequential

game with n defenders and m attackers as follows:
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G = (P,X,U, E1, . . . , En) (5.6)

P = {PD1
, . . . , PDn , PA1

, . . . , PAm} (5.7)

X = {XD1
, . . . , XDn , XA1

, . . . , XAm} (5.8)

U = {uD1
, . . . , uDn , uA1

, . . . , uAm} (5.9)

uDi : XDi ×XA1
× . . .×XAm × E1 × . . .× En → R (5.10)

uAj : XAj × E1 × . . .× En → R, (5.11)

where U denotes a predefined set of utility functions of the game. The utility function uDi ∈ U
of i-th defender calculated at the end of each iteration is a function of the strategy that was

used in the iteration, the strategies of the attackers (if they are available), and the set of local

and remote events detected during the iteration cycle. The utility function uAj of j-th attacker

depends on his strategy and the set of all detected events. The utility function of the defender

gives higher payoff to strategies that result in uniquely detected malicious events, which forces

the detector to specialize and create unique detections, while the utility function of the attacker

penalizes strategies that were successfully detected, motivating the attacker to perform attacks

that are hard to detect.

This way, we connected a general specification of multi-player dynamic game with the pro-

posed collaborative architecture, where the defenders (IDS detectors) select a suitable strategy

(configuration) and receive the payoff (feedback), which is used for choosing a strategy for the

next iteration (with the reconfiguration function). Formulating the collaboration problem with

a game-theoretical formalism allows us to: 1) model the contradictory goals of the attackers

and the defenders, 2) model and enforce the specialization of the defenders, and 3) propose a

solution concept suitable for solving the game for the dynamic environment, leading to high

utility values in long-term, which in practice means high overall efficacy results of the detectors.

The defenders should ideally optimize a shared utility function. In practice, though, the utility

functions (on the defender’s side) differ as the internal state of each player is inaccessible for

integration and security reasons. The dynamism of the environment also causes that utility

functions of the defenders can rarely be identical.

In the following, we will assume a three-player game between one attacker and two defenders.

Note that this game can be easily extended to different scenarios with more players on both

sides. Generally, the payoff matrix for the first defender that describes the payoff distribution

according to strategies selected by the attacker (columns) and the first defender (rows), can be

written as follows:

UD1 =


uD1

(x1D1
, x1A1

, E
(1)
D1
, ED2) . . . uD1(x1D1

, xkA1
, E

(1)
D1
, ED2)

...
...

...

uD1
(xlD1

, x1A1
, E

(l)
D1
, ED2

) . . . uD1
(xlD1

, xkA1
, E

(l)
D1
, ED2

)

 , (5.12)

where k, l denotes number of all strategies for PA1 , PD1 respectively. I-th column of matrix

UD1
describes how does the payoff change depending on the defender’s strategies (in rows) when

the attacker performed i-th strategy. The payoff matrix for the attacker UA1
and the second

defender UD2
can be expressed similarly.

The proposed game is a sequential game of unpredictable length, where i-th iteration cycle

of the game consists of the following steps:
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1. Applying optimal strategy - At the beginning of each iteration cycle, each defender uses

the strategy x that would have been optimal in the last iteration (e.g. the strategy that leads

to the highest payoff in long-term) for detecting malicious activity from the network traffic.

In our embodiment, this corresponds to applying the optimal configuration of the detector

that leads to most unique and valuable detections. In the first iteration cycle of the game,

where all strategies have equal payoff, the algorithm will choose one randomly.

2. Collecting available information - Next, each defender collects all available information

necessary for calculating the payoff of the strategy that is being used in this iteration. This

includes collecting local events generated by the detector and the current strategy, and all

remote events provided by other collaborating detectors.

3. Computing payoff values - Once the local and all remote events are collected, the defender

will evaluate the current strategy by computing the payoff value. Since we want to specialize

the individual defenders, the utility function should return higher values for strategies result-

ing in high amount of unique local detections (events), and lower values for strategies with

redundant or small amount of local detections (events). The uniqueness κ
(k)
Di

of k-th local

event e
(k)
Di

is calculated through the predefined similarity function as follows:

κ
(k)
Di

= min
∀j,j 6=i

min
∀el∈Ej

(1− sij(ek, el)), (5.13)

where sij(ek, el) ∈ [0, 1] is a similarity of two events. Equation 5.13 defines the uniqueness

κ
(k)
Di

of an event ek as the minimal value of 1− sij(ek, el) calculated from all remote events el

from all collaborating detectors. In case of two defenders, the uniqueness of k-th event e
(k)
D1

created by PD1
is calculated as:

κ
(k)
D1

= min
∀el∈E2

(1− s12(ek, el)). (5.14)

Based on the uniqueness of the local events E
(p)
Di

created by the defender PDi with p-th

strategy x
(p)
Di

to counter strategies xA1
, . . . , xAm of the attackers, the payoff for x

(p)
Di

is defined

as:

u
(p)
Di

= uDi(x
p
Di
, xA1

, . . . , xAm , ED1
, . . . , EDn) =

∑
ek∈E(p)

Di

κ
(k)
Di
· υDi(ek, xA1

, . . . , xAm), (5.15)

where υDi(ek, xA1 , . . . , xAm) : E×XA1× . . .×XAm → [0, 1] is a utility function describing the

value of the particular event ek (e.g. derived from the severity of the detected behavior or from

the confidence of the detection method) and its relation with strategies xA1
, . . . , xAm . The

relations can be approximated by injecting simulated attacks into the real network traffic

and mapping them onto detected events. The events that correspond to known malicious

behaviors will have higher utility values. If such relation is not available, the payoff does

not depend on the strategies of the attackers and the utility function for the game of two

defenders can be simplified as follows:

u
(p)
D1

= uD1
(xpD1

, ED1
, ED2

) =
∑

ek∈E(p)
D1

κ
(k)
D1
· υD1

(ek). (5.16)
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The utility function υ from Equation 5.15 or Equation 5.16 is not necessarily required. More

specifically, in those cases when the detectors cannot determine the utility of generated events

(e.g. event severity), we can omit the utility function in Equation 5.16 and define the feedback

function only with similarity functions. This would imply that all events have the same value.

4. Updating long-term payoff of the strategies - As the proposed game has unpredictable

number of iterations, the model maintains a long-term payoff matrix for each strategy, de-

scribing the value of the strategy from the long-term perspective. Once the payoff is computed

for the current strategy x
(p)
Di

, the solution concept that controls the game updates its corre-

sponding long-term payoff u(x
(p)
Di

). In our case, these values describe an expected value for

each configuration in terms of unique and valuable events.

5. Selecting the optimal strategy for the next iteration - Finally, the solution concept will

select the optimal strategy for the next iteration. If the concept explores the space greedily,

it will always select the strategy that leads to the maximum payoff:

x∗Di = arg max
xDi∈XDi

u(xDi). (5.17)

Note that the configurations of detectors receive low feedback value if they produce the same

events in the same time window. This however does not influence long-term behavior of the

model in this highly dynamic environment. Greedy solution concepts do not have to be the

optimal choice for dynamic games, as they often converge to local optima. In the next section,

we propose a new solution concept that is more robust against the changes of the game.

These five steps represent actions of the game in one iteration, which corresponds to one

reconfiguration cycle of the detector. The reconfiguration cycle is performed repeatedly every 5

minutes and in each cycle, new and previously unseen network traffic is analyzed and evaluated.

In practice, the proposed model requires the definition of the similarity functions sij for each

couple of detector types and optionally the utility function υDi from Equation 5.15. The rest of

the reconfiguration process is defined by the game.

The notion of optimization, where players are not explicitly informed about actions played by

other players, makes the game consistent with the formalization based on extensive-form games

introduced in [165]. We are facing a dynamic optimization problem, where the environmental

conditions imposed by the external environment can change rapidly, making the game similar

to a sequence of static games with unpredictable length.

5.3.1 Summary of the Reconfiguration Process

In this section, we will briefly summarize the whole idea of the proposed collaborative reconfigu-

ration process. Once IDS detector PDi completes the detection process, it sends the local events

Ei to other detectors and at the same time collects remote events E1, . . . , Ei−1, Ei+1, . . . , En.

Once the remote events are collected, the detector PDi determines the similarity of local to

remote events and computes a payoff value (Equation 5.15). This value represents how unique

and valuable these local events are in the collaborative context. Finally, the payoff is passed to

the reconfiguration function controlled by the solution concept (Equation 5.17), which selects

new configuration (strategy) of the detector that is applied in the next iteration cycle.
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5.4 Game Solution Concept

In this section, we will introduce a simple, yet effective algorithm that can be used as a solution

concept for the game defined in Section 5.3. As mentioned above, algorithms in dynamic network

environment should rapidly converge into equilibrium. The equilibrium can be easily changed

with the change of the environment. Since the payoff received at the end of each iteration of the

game can be considered as a reinforcement received from the environment, we propose to adopt a

sequential reinforcement learning model. More specifically, we propose a new algorithm ε-FIRE,

which is a combination of FIRE model [78, 133] with ε-greedy [144] method to guarantee that

the algorithm will always find new equilibria.

The ε-greedy algorithm is an effective means of balancing exploitation and exploration in

multi-agent reinforcement learning domain. This algorithm behaves greedily most of the time,

which means that it selects the actions with the highest estimated reward (or rating). However

every once in a while (with probability ε), it selects the action randomly from all possible actions:

1. Algorithm starts with a set of strategies X to select from. Each strategy is associated with

expected utility u(x).

2. The algorithm draws a random number r from the [0, 1] interval. It compares r with the ε

parameter (hence ε-greedy).

3. If r < ε, then the algorithm randomly selects one strategy from the strategy set. Otherwise,

it selects the strategy with the highest expected payoff.

The convergence of the ε-greedy algorithm is guaranteed for static environments [144], because

as the number of game stages increases, all actions will be selected an infinite number of times.

The results regarding the behavior of the ε-greedy algorithm in stochastic games are encour-

aging. In [152], the authors show that the application of ε-greedy can achieve better results than

standard Q-learning approaches in a series of games. Interestingly, the authors argue that its

use can achieve an average payoff higher than Nash equilibria value in some games and show it

for Prisoner’s dilemma in particular. However, compared to regret-minimization algorithms [32],

the algorithm does not use (and it also does not need to maintain) the information about the

expected payoff for each action. However, the convergence results only hold for a sequence of

static games.

FIRE model [78] was originally designed for trust evaluation in open multi-agent systems.

We have adopted its interaction part into our algorithm to increase convergence speed. Greedy

strategy with the highest payoff is computed according to the following equation:

u(x) = max
j

∑
i

wi · uji ,

where wi represents i-th weight coefficient and uji represents i-th last observed payoff of j-th

strategy. The weights must hold conditions:

W =

N∑
i=1

wi = 1 ∧ wi−1 ≤ wi,

which means it gives more weight to more recent payoff. According to [78] we can use the

following function to calculate the weights:
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Fig. 5.7: Overview of the collaboration scenario between two IDS detectors deployed on different
parts of the network. The first IDS was placed topologically in front of the second IDS.

wi =
1

W
· e

i−1
λ , (5.18)

where i−1 is a time difference describing how far from the past the corresponding weight is and

λ = − log(C)
N−1 with C as user parameter defining value of the last weight before normalization.

With this weight function we can create a set of weights in exponentially descending order

starting from 1 down to C.

Our ε-FIRE algorithm selects strategy x according to the following principle:

x =


arg maxj

∑
i wi · u

j
i r ≥ ε

random(X) r < ε

The ε-FIRE algorithm is suitable for highly dynamic environments, where the reward variance

is larger and rewards are noisier. In such environments, ε-greedy method should perform better

than any simple greedy algorithm [144]. We also argue that in highly dynamic environments,

the ε-FIRE algorithm can outperform the regret minimization as the regret values based on

long-term past experience may be misleading. In the proposed solution concept, these values are

discounted by the use of the FIRE model.

5.5 Experimental Evaluation

This section describes the details about the distributed collaboration of two NetFlow IDS detec-

tors deployed on different parts of the network (as shown in Fig. 5.7). The first detector (denoted

as backbone) was placed on the backbone link and analyzes external communication from all

departments, while the second detector (denoted as subnet) was deployed inside the network

and processes the network traffic only from Department 1. It means that the communication

between Department 1 and Internet is visible to both detectors and the proposed collaboration

method can be used to specialize each detector.
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Fig. 5.8: Overview of the local self-adaptation process in CAMNEP detector.

Network traffic used in the evaluation consists of 500 minutes of real university network traffic

in NetFlow format. The traffic also contains a persistent malware in various stages including the

initial infection (typically from a USB drive or an email attachment), (optional) library download

through the HTTP connection and principally the Command and Control traffic implemented as

a periodic polling of a specific website with HTTP GET requests modeled after actual malware

behavior. It may also establish and maintain the connection and download a small file from the

Command and Control server.

5.5.1 IDS Nodes Description

For the evaluation, we used two CAMNEP [123] IDS detectors. CAMNEP detector analyzes Net-

Flow data in batches (usually 5 minutes of network traffic) with six different anomaly detection

methods. Every 5 minutes, the methods assign to each flow an anomaly score. A suitable aggre-

gation function is chosen for combining all anomaly scores of a flow into a combined anomaly

score. The combined anomaly score is computed for all flows from the batch, creating a distribu-

tion of combined scores. Based on a self-adaptive algorithm proposed in our previous work [124],

the system selects an aggregation function and determines the threshold separating anomalous

and normal parts of the distribution. In the final stage of the processing, events are created from

the anomalous part of the distribution by grouping anomalous flows with similar attributes. The

local self-adaptation cycle is illustrated in Figure 5.8.

CAMNEP IDS detector has the following properties:
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• online detection - CAMNEP detector processes batches with 5 minutes of network traffic

(because of the statistical nature of the anomaly detection engine).

• local reconfiguration - CAMNEP detector is able to reconfigure and change its internal

state by selecting an optimal aggregation function (which combines anomaly values of the

individual detection methods). The aggregation function is the subject for optimization.

• local self-adaptation - The system optimizes its performance according to the predefined

network services and attacks that are inserted from the database into the real network traffic.

If an aggregation function performs well on this labeled data, it will be a suitable candidate

for combining anomaly values of the real network traffic.

• threshold computing - Based on the local self-adaptation, the system determines the

threshold dividing legitimate and malicious parts of the network traffic.

Detailed description of CAMNEP system can be found in [123].

The output of each CAMNEP IDS detector is a set of events characterizing anomalous pro-

cesses and services in the network. Different aggregation function typically results in different

set of events. In the experimental evaluation, we manually predefined 30 different aggregation

functions.

5.5.2 Experimental Scenarios

The backbone and subnet detectors were evaluated in four different scenarios to demonstrate

the benefits of the proposed collaboration model. In each scenario, the detectors used a different

reconfiguration function that controls the process of choosing the optimal aggregation function

for the next iteration cycle (next 5-minutes of the network traffic).

In stand-alone scenario, both IDS detectors operate in isolation and their reconfiguration

functions are based solely on the local self-adaptation process. This process choses an aggregation

function that separates best labeled attacks and legitimate services inserted to the real network

traffic. This scenario simulates a standard deployment of a single detector without any further

interactions with the environment.

Second scenario called no-feedback extends the stand-alone model with an event fusion per-

formed at the end of each reconfiguration. The fusion algorithm combines the results from both

detectors into a single coherent output, showing the benefits of having more detectors at different

locations.

Third scenario called ε-greedy CH performs with small probability ε an exploratory move

and selects randomly an aggregation function from the space of all aggregation functions, while

otherwise (with probability 1 − ε) it behaves similarly to no-feedback reconfiguration. In our

experiments, we set ε = 0.2 allowing the strategy to perform enough exploratory moves.

Finally, the scenario called ε-greedy E is a combination of local self-adaptation and the pro-

posed ε-FIRE solution concept described in Section 5.4 with an exponential vector of weights

w = {0.046, 0.082, 0.147, 0.261, 0.464} (according to Equation 5.18). In each iteration cycle, the

aggregation functions are evaluated twice: by the local self-adaptation and w.r.t the uniqueness

of generated events. A simple average of both evaluations determines, which aggregation func-

tion will be chosen for the next iteration cycle. Based on the uniqueness of generated events,

the reconfiguration function updates the long-term payoff of the configuration (as described in
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Algorithm 3 Computing uniqueness of two sets of events

function computeUniqueness(localEvents, remoteEvents)
unique = 0
for localEvent : localEvents do

for remoteEvent : remoteEvents do
unique = unique+ 1− eventSimilarity(localEvent, remoteEvent)

end for
end for
return unique

end function

function eventSimilarity(lE, rE)
return 2 ∗ intersection(lE.flows, rE.flows)/(lE.flows+ rE.flows)

end function
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Fig. 5.9: Number of successfully detected malware events depending on sigma distance from the
threshold position - subnet(a) and backbone (b) location. Higher values are better

step (4) of the game model). The uniqueness of events is calculated from the similarity of the

underlying flows according to Algorithm 3. The uniqueness is computed from the ratio of sim-

ilar flows in both events. Two flows are considered as similar if they have the same source and

destination IP addresses, source and destination ports, and protocol.

The ε-greedy E reconfiguration allows each detector to optimize not only w.r.t. the local

self-adaptation, but also w.r.t. uniqueness of created events. Thus each CAMNEP detector is

encouraged to specialize on unique network behaviors and significantly increases its potential of

finding novel threats, while keeping false positives down by the local self-adaptation.

5.5.3 Evaluation

In our evaluation, we will show how the proposed distributed collaboration model for one network

improves efficacy of the overall detection system. First, we analyzed the amount of successfully

detected malware events for each of the four scenarios described in Section 5.5.2. The results are

shown in Figure 5.9. Malware event is considered to be detected by CAMNEP detector if the
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Fig. 5.10: Relative false positive rate of the system depending on sigma distance from the
threshold - subnet (a) and backbone (b) location. Lower values are better.

selected aggregation function evaluated the corresponding flows as anomalous by putting them

below the threshold defined in Section 5.5.1.

The position of the threshold separating legitimate and malicious traffic is marked with the

value ”0” at the right-hand side of the figure. Sigma distance (see also Equation 3.8) of an event

is defined as a difference between the threshold position and an average degree of anomaly of

all flows in the event (computed by the individual CAMNEP node) divided by the standard

deviation computed from anomaly values of all flows. Note that higher negative values of sigma

distance from the threshold (i.e. from the threshold to the left) means that the malware event

is better separated from the rest of the traffic.

Analysis from subnet detector is depicted in Figure 5.9 (a). The worst efficacy results in

number of detected malicious events were obtained in the stand-alone scenario. The other two

scenarios, namely no-feedback and ε-greedy CH performed significantly better, showing the ben-

efits of having two detectors on different locations with the overlapping network traffic. This is

where the event fusion algorithms are being applied, representing the current state-of-the-art.

Finally, all three scenarios were outperformed by the proposed ε-greedy E, when both CAMNEP

detectors interact and reconfigure according to the proposed model.

Analogical evaluation of the backbone detector is illustrated in Figure 5.9 (b). The results

are similar as for the subnet detector, however the differences among non-cooperative scenarios

are not so significant. No-feedback scenario as well as ε-greedy CH shows comparable results

with the stand-alone scenario in number of detected malware. This suggests that the event

fusion technique may not be sufficient. Therefore, the system requires the proposed collaborative

approach (ε-greedy E ), which ensures the diversity and specialization of the individual detectors

as shown in Figure 5.9. This is especially important given the fact that the self-monitoring

mechanism on both nodes was identical, and that the increased efficacy is purely a result of

co-specialization.

Furthermore, all scenarios show comparable false positive rates (Figure 5.10). This observation

confirms our assumption that specialized detectors might have individually lower number of true

positives, but they also have lower number of false positives. The combination of positives from

both specialized detectors resulted in significantly more malware detections with the number of

false positives comparable to individual detectors running in isolation.
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5.6 Summary

In this section, we have compared the performance of stand-alone detectors running in isola-

tion with three other strategies, where the detectors interact with each other. We have shown

that event fusion has a positive impact on the overall detection efficacy. Specifically, it increases

recall while false positive rate remains effectively unchanged. Moreover, we have shown that

the proposed collaborative approach between the nodes significantly boosts the overall efficacy,

allowing each system to specialize on the particular network activities, while not reducing the

overall precision. By deploying the collaborative approaches to more complex network infras-

tructures, the IDS nodes will dynamically react to the changes in the network. They are able

to act as a coherent entity capable of maximizing the global network security awareness, while

relying only on minimal mutual collaboration and implicit synchronization.

We placed our collaborative mechanism on the top of the proposed fusion architecture for

two reasons: 1) Collaborating with high-level objects (events) significantly reduces computa-

tional complexity of the collaborative model, especially the costs necessary for synchronization

and sharing the events with other systems. The overall complexity of the collaboration mainly

depends on the complexity of the predefined similarity metrics. 2) Collaborating with high-level

objects (events) that contain as much additional information and knowledge as possible increases

the effectiveness and allows making high-level security assessments for the whole network infras-

tructure.
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Chapter 6

Experiments with a Collaborative Model for
Multiple Networks

The benefits of the collaboration shown in Chapter 5 do not have to be limited to a single

network. On the contrary, a collaboration model for detectors deployed in multiple networks can

significantly reduce the time necessary to detect global network threats, systematically targeting

companies all over the world. A mechanism that would instantaneously propagate the knowledge

about novel attacks to other collaborating detectors and networks and use this knowledge to

configure these systems automatically would significantly decrease global re-usability of the novel

attacks for targeting other networks.

In this chapter, we evaluate a conceptual model of such mechanism. Our collaborative model

for multiple networks benefits from the recent increase of interest of cloud security monitoring

and services. It creates a global framework that can access the network traffic from multiple

networks at the same time without insurmountable integration, security, or bandwidth issues.

Privacy issues can be solved by complete anonymization and obfuscation of all sensitive informa-

tion before sending the information to other detectors. In our model, we propose to share only

a limited (but still very valuable) amount of metadata, such as the list of detected malicious

Internet domains, server IP addresses, autonomous systems, or feature vectors (numbers) de-

scribing the detected behaviors. This data does not contain any host/user-specific information.

This list is a reduced version of the security events from the algorithm in Chapter 5, stripped

of the potentially internal or private information.

If the number of networks becomes large enough, the collaboration builds a global threat

intelligence model. While these models would rarely be complete, collecting such global intelli-

gence is a significant advantage for the detectors, as global statistics and trends can be easily

computed and used to strengthen the detection algorithm. The downside of this approach is

the necessity to process much more traffic than many of the advanced detection or classification

techniques (such as the one introduced in Chapter 4) can handle. And direct inspection in a

cloud device is out of question. However, our collaboration model is designed to deal with this

problem.

The proposed model is based on a different idea than the model introduced in Chapter 5, as

specializing the detectors for each network separately would be undesirable due to the missing

overlap of the network traffic. Global specialization would also be inappropriate due to the

obvious misalignment between the utility functions of individual network owners 1. Instead,

we propose to build and share a global intelligence represented by the reduction of events to

1 The fact that the malware was discovered somewhere else would be of little consolation to any specialized
victim.
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the groups of malicious behaviors and sources (such as known malicious second-level domains,

server IP addresses, or autonomous systems) found in various networks. As most of the global

threats are frequently targeting multiple networks, fast detection on at least one network and

propagating the results to the rest of the networks in a timely fashion prevents the attack from

being globally successful and makes the attack infrastructure harder to re-use.

The model has two main components: sampling and correlation component. The sampling

component ensures that the amount of data that is about to be processed by the detection

system does not exceed the predefined limit and at the same time, the data that is selected

for the processing contains as much relevant information as possible. On a single detection

system, this can be achieved by the adaptive sampling described in Chapter 3. However, we go

one step further and propose a collaborative-adaptive sampling, where the parameters of the

sampling are adjusted based of the feedback received from other detection systems provided

by the correlation component. This way, the information about newly discovered attacks can

simultaneously spread across all the detection systems, as illustrated in Figure 6.1. Depending

on the security requirements and environment restrictions, the model can be deployed in a

centralized or fully-distributed architecture, and as a combination of IDS on premise and cloud-

based collaborative mechanism, or as a system fully-integrated in the cloud.

Sampling component can be also easily integrated with almost any kind of detector, without

the modification or even a knowledge of the detector. This makes sampling an ideal component

of the black-box integration framework.

6.1 Correlation Component

The purpose of the correlation component (denoted as (C) in Figure 6.1) is to collect results from

all detectors and compute a global intelligence from the detected attacks. The proposed corre-

lation mechanism is specific to this application domain and consists of two stages of clustering

based on the two feature sets: a) features describing malware behavior (e.g. volume, persistence,

frequency, similarity between malware samples) are used for behavioral clustering, and b) fea-

tures describing identity of the targeted servers (hostname, server ip address, or autonomous

system) are used for identity clustering.

Behavioral clustering groups similar types of malicious behaviors. Each cluster may consist of

attacks with servers hosted in various parts of the world. Note, that as opposed to probabilistic

threat propagation [38], these servers do not have to be observably interconnected for the attacks

to fall into a cluster. Identity clustering complements the behavioral clustering and groups

different attacks launched from or associated with the same server. Finally, the identity features

are used to build the global reputation describing the amount of malicious activity associated

with each domain, server IP address, or autonomous system.

Graphical illustration of the proposed behavioral and identity clustering is shown in Fig-

ure 6.2. (1) Initially, Attacker Node 1 performed two attacks of the same type (Type 1) against

Company A and a different attack (Type 2) against Company B. Only one of these attacks was

detected and reported as a malicious incident (red node), while the rest of the attacks were

reported as borderline incidents (yellow nodes) with low severity, waiting for further confirma-

tion. Moreover, Attacker Node 2 performed another attack (Type 2) against Company C, which
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Fig. 6.1: Graphical illustration of the proposed collaborative model across multiple networks - a
combination of IDS on premise with collaborative mechanism in the cloud ((a) centralized and
(b) fully distributed architecture) and the solution fully integrated in the cloud ((c) centralized
and (d) fully distributed architecture). The amount of data sent to the cloud from multiple
networks is reduced by the sampling components (S), so the consequent IDS detector (IDS) is
able to process it. The correlation component (C) collects available results from all detectors
and make global knowledge, which is then pushed back to the sampling components for further
reconfigurations.

was also detected as a borderline incident. Note that the attacker nodes are not observably

interconnected with each other. The proposed clustering is able to automatically confirm the

maliciousness of the borderline incidents by: (2) putting the incident from Company B into

already detected malicious cluster Type 1 as it exhibits behavior similar to MW Type 1, and (3)

inferring the maliciousness of Attacker Node 2 due to the newly discovered incident at Company

B, which makes the other borderline incident launched from the same attacker node but detected

in Company C even more suspicious.

This way, the knowledge gained at one network can be extended and applied at other net-

works to discover the structure of the malicious infrastructure behind the global threats. In the

following, we will discuss both clustering approaches in more detail. We emphasize that the pur-

pose of this section is not to propose a new clustering algorithm, but rather to apply an existing

algorithm as a necessary part of our collaborative model. More detailed clustering algorithms

can be found in [82].
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Fig. 6.2: Graphical illustration of two types of clustering approaches used by the correlation
component for extracting a global security knowledge.

6.1.1 Behavioral Clustering

Behavioral clustering groups attacks with similar behavior into one cluster and separates them

from the rest of the traffic. Since malware is highly evolving, the number of diverse attack

techniques grows with time. This means that the full set of malicious categories is not known in

advance. An unsupervised (or semi-supervised) clustering algorithm can be used to divide the

detected events into clusters. The design of a specific behavioral clustering algorithm is being

studied in [82] and is not part of this thesis.

6.1.2 Identity Clustering

We propose to use an identity clustering as online and interactive alternative to commonly used

blacklists or malicious feeds or other static sources of information about locations typically host-

ing malware. It serves as a complement to behavioral clustering. Attackers typically reuse their

acquired or compromised sites for multiple purposes. Once this site or server IP address is identi-

fied (e.g by behavioral clustering), it’s reputation score maintained for every observable location

is decreased. Later, an unknown attack launched from bad-reputation location is automatically

considered as untrustful and can be processed separately with higher importance.

6.2 Collaborative-Adaptive Sampling Component

The global threat intelligence created by the correlation component is transfered back to the

sampling module. The proposed adaptive sampling introduced in Chapter 3 uses precomputed

statistics and other features to adaptively modify the sampling rate of the incoming network

connections to emphasize smaller or unique artifacts frequently related to malicious activity.

We propose to extend the sampling algorithm (denoted as (S) in Figure 6.1) to incorporate

the global threat intelligence provided by the correlation component. A naive solution is to cre-

ate a database of known malicious sites (e.g. hostnames or second-level domains) and check the
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presence of these sites in the original unsampled data. If such domain is found, the traffic can be

automatically included to the sampled data. However, the naive approach has two main disad-

vantages: 1) it does not control the amount of traffic going to the detectors and once an attacker

launches a massive attack against the detector from bad-reputation sites, it could completely

saturate the detector, and 2) to bypass the existing blacklists and feeds, attackers typically

change hostnames, domains, and server IPs quite frequently, thus reducing the effectiveness of

the naive approach.

Instead, we propose to maintain a global reputation of each domain, server IP address, and

autonomous system and include the reputation values back to the adaptive sampling algorithm.

Connections originating from bad-reputation servers (or autonomous systems) will be sampled

with higher probability than connections from widely used services. More specifically, the cor-

relation component provides through reputation clustering a reputation value τ (sld) for every

second-level domain, τ (sIP ) for every server IP address, or τ (AS) for every autonomous system.

The value τ (sIP ) ∈ [0, 1], where τ (sIP ) = 0 means that the corresponding server IP address is

frequently associated with malware (so the server IP has very low reputation), while τ (sIP ) = 1

denotes a server IP with the highest possible reputation.

To make the adaptive sampling collaborative, the reputation is incorporated as a part of the

primary probability (see Equation 3.4) as follows:

pp(ϕ|f1, . . . , fk) =

 s(a) · 1
τ(ϕ) f c

ϕ(1,...,k) ≤ t, ∀ϕ : s(ϕ) ≤ τ(ϕ)

s(a) · log t
log fc

ϕ(1,...,k)
f c
ϕ(1,...,k) > t

(6.1)

where τ(ϕ) represents the final reputation of flow ϕ computed as a simple average of marginal

values τ (sld), τ (sIP ), τ (AS) etc. This way, the collaborative-adaptive sampling can significantly

boost the sampling rate for flows with bad reputation. Note that the sampling boost is provided

only to the flows with feature values below the threshold, as emphasizing redundant flows would

be counterproductive.

Condition s(ϕ) ≤ τ(ϕ) needs to be satisfied for all flows, otherwise the primary probability

would exceed the interval [0, 1]. If a reputation value of a flow exceeds the sampling rate s(a),

all reputation values will be scaled accordingly. The computation formula for the sampling rate

s(a) from Equation 3.7 has to be modified as follows:

s(a) =
Tflows∑

fc
ϕ(i)
≤t

1
τ(ϕ) +

∑
fc
ϕ(i)

>t
log t

log fc
ϕ(i)

. (6.2)

The algorithm starts by setting all reputation values equal to 1. Based on each update pro-

vided by the correlation component, the reputation is either decreased, or increased, or remains

constant. The level of decrease depends on the number of networks reporting the location as

malicious - the more networks, the more serious and widespread the infection is and the larger

decrease in reputation is performed. On the other hand, the reputation can be increased when

no more infections are reported for some larger time periods.
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Dataset
All Flows Malicious Samples Infected

Total Max in 1 min Flows SLD sIP AS Users

Small-1 25,971,094 45,906 13,923 57 72 20 41
Small-2 24,747,491 42,549 234 25 26 10 32
Medium-1 75,648,425 126,752 549 34 56 16 18
Medium-2 66,523,237 100,490 307 34 44 20 43
Medium-3 (L) 52,938,375 69,801 2,948 107 139 27 123
Large-1 (XL) 273,687,428 333,851 12,058 235 319 60 375

Table 6.1: Overview of the datasets used in the evaluation. Each dataset is described by the
total number of flows per day and maximum per 1 minute. Details about malicious samples are
also shown, included number of flows, second-level domains (SLD), server IP addresses (sIP),
autonomous systems (AS), and infected users.

6.3 Experimental Evaluation

The evaluating collaboration system includes 6 detection systems analyzing HTTP(S) proxy

logs from 6 different networks. Each detection system consists of several classification methods

(such as the method proposed in Chapter 4). The classification methods require the extraction of

advanced and computationally-intensive features to be able to detect more sophisticated attacks,

which means that they are able to analyze only limited number of connections.

To extend the applicability of the experimental results, we will not implement the recon-

figuration into the detection system (as we did in Chapter 5). Instead, we will consider each

detection system as a black box with a single predefined parameter – maximum number of flows

that the system is able to process in the given time interval. Depending on the computational

requirements, the parameter can be predefined for every detection system individually. The goal

of the collaboration is to provide global intelligence to the sampling algorithm to increase the

sensitivity of sampling on probably malicious traffic. Thus, our evaluating criterion will be the

amount of malicious traffic provided to the detection systems.

The details about the datasets are shown in Table 6.1. Each dataset contains 1 day of

HTTP(S) network traffic of one network that was retrospectively analyzed and partially la-

beled by domain experts. The processing of one day of data at one network is divided into

iteration cycles. In each iteration, sampled data provided by the adaptive sampling from one

minute of network traffic is fed to the detection engine. The results are distributed across all

six detection systems and collected in the correlation component. The correlation component

maintains reputation values for all autonomous systems, server IP addresses, and second-level

domains, which are updated with the newly-collected results. The updated values are provided

back to the sampling algorithm to adapt the sampling rate for the next iteration. The sampling

component optimizes the distribution of sampled flows, not their number which has to be under

the predefined limit. In our experiments, the limit for the number of sampled flows was set to

20,000 per minute.

The proposed collaborative-adaptive sampling is compared with a stand-alone version of the

adaptive and random sampling to demonstrate the improvements brought by sharing the global

intelligence. The average results from 5 runs are shown in Figures 6.3 (a) - (d). Networks Small-1

and Small-2 are not displayed, because the sampling limit was too high and all the methods
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Fig. 6.3: Number of infected users from four different networks: (a) Medium 1, (b) Medium 2,
(c) Medium 3, and (d) Large 1.

exhibit negligible differences. However, both networks were contributing to the collaboration by

extending the global intelligence with new malicious findings.

On the rest of the networks, the differences between the methods increases with the growing

size of the network. First, on network Medium-1 (Figure 6.3 (a)), the differences are still negli-

gible. As the number of infected users increases (Figures 6.3 (b) - (d)), the adaptive sampling

proposed in Chapter 3 exceeded random sapling running on each network separately, which

confirms the results obtained in Chapter 3. Both stand-alone methods were outperformed by

the proposed collaborative-adaptive sampling approach. These results confirms the expectations

that global threats can be efficiently eliminated when the global intelligence is pushed back to

the individual systems.

The results of the evaluation confirmed the importance of global intelligence for individual

detectors and also confirmed a common claim that cloud detection is better. Even though the

proposed collaborative model was influencing the systems only at the sampling level, it signifi-

cantly improved the performance of each system on medium and large networks by extracting
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more infected users from the raw input data. This shows that network threats do target multiple

networks and that a collective defense mechanism is necessary for preventing such threats from

being globally successful. We hope that our results will motivate other researchers to continue

their work towards collaborative security systems, for example by extending our model with

more levels of collaboration.
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Chapter 7

Conclusions

The goal of this thesis was to contribute to a set of methods for selecting and classifying malicious

network behaviors at various levels of abstraction and to evaluate the proposed methods on real

network traffic to demonstrate their usefulness in practice.

We have proposed a new collaborative fusion model structured into three main layers, where

each layer increases the level of abstraction of the analyzing objects: from data to information,

from information to knowledge, and from knowledge to global intelligence. The main contri-

bution of this thesis consists of the individual components of the proposed model, namely the

adaptive sampling that reduces large amounts of low-level data while preserving most of the

malicious activity in the network, robust representation of network traffic suitable for classify-

ing unseen malware variants, and two collaborative models for detection systems deployed in

one and multiple networks.

According to the fusion model, the proposed methods and components can be combined

together into a single detection system that transforms low-level data into high-level intelligence.

The proposed methods have been experimentally verified on various types of real network data

and most of them are being used in practice as a part of two intrusion detection systems:

CAMNEP (Cooperative Adaptive Mechanism for Network Protection [123]) and CTA (Cognitive

Threat Analytics [2]). The CTA is an on-line malware detection security-as-a-service product

delivered by Cisco Systems. Besides the methods proposed in this thesis, CTA also contains an

anomaly detection engine [71, 72, 73] and a correlation component [82]. At the time of writing

this thesis, CTA daily analyzed more than 10 billion web requests generated by millions of

users from large enterprise networks. The system finds daily tens of thousands network threats

that evaded previously installed security measures positioning the system as the last line of the

network defense. Through these systems, the methods protect millions of users all over the world

from current and future sophisticated threats.

7.1 Thesis Achievements

This section summarizes the contribution of the thesis to the state-of-the-art of network security.

The achievements are the following:

1. Design and implementation of the adaptive flow sampling method. The sampling process is

divided into two phases and the sampling rate is computed individually for each network flow.
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First, the predefined set of features or other statistical information important for the system is

calculated from the original (unsampled) input data. Second, flows with rare or unique values

of such features are sampled with higher probability than flows with frequently-used values.

This way, the algorithm emphasizes new artifacts and unique behaviors that are usually

tightly related with malicious activity. An extensive evaluation on various data sources from

various networks confirms the benefits of the proposed method in terms of the efficacy of

anomaly detectors or classifiers, as well as in terms of postmortem network forensics. The

method enables the deployment of sophisticated detection/classification algorithms on large

networks without sacrificing their detection power and thus successfully addresses research

problem RP1 of this thesis.

2. Design and implementation of a novel representation of network traffic suitable for detecting

new and previously unseen malware variants. Instead of classifying flows individually, the

proposed representation groups flows into bags and describes their internal structure, which

makes the representation invariant against most of the changes the attackers typically employ

to avoid detection. A novel method that combines the process of learning the representation

with the process of learning the classifier is proposed to optimize the parameters of the rep-

resentation automatically from the data without any manually-predefined parameters. The

resulting representation ensures easier separation of malicious and legitimate communica-

tion and at the same time controls the complexity of the classifier built on the top of it.

The classifier trained on the proposed representation achieved 90% precision (9 of 10 alerts

were malicious) and detected 67% of previously unseen malware families. This achievement

successfully addresses research problems RP2 and partly RP3.

3. Model and solution concept for the distributed collaboration among heterogeneous detection

systems deployed in various parts of the network. The model is based on the idea of local

specialization, where the detection systems reconfigure their internal states to detect unique

intrusions. The reconfiguration process is controlled by the proposed ε-FIRE algorithm and

uses feedback describing the uniqueness of the current results w.r.t. the results provided by

the rest of the detection systems in the given time interval. The proposed model of special-

ized detectors provides better efficacy results and enables to establish a collaboration even if

the detection systems are heterogeneous, which successfully addresses research problem RP4

when realized within the same network. Moreover, the proposed collaborative specialization

also reduces the evasion possibilities for the attackers and implicitly contributes to address re-

search problem RP3. Additional experiments of the collaborative model for multiple networks

addresses RP4 when realized across various networks.

Overall, all four problems addressed in the thesis enable an intelligent decomposition of mono-

lithic IDS systems into larger and distributed system by separating of relatively fast operations

(feature extraction, sampling, bag creation) from the more advanced transformation applied

in later stages. This idea, together with a robust and fully-automated approach to distributed

collaboration, enables seamless dispersal of the IDS inspection on network devices and increases

the overall security of the networks designed for the future.
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Journal Articles with Impact Factor (2)

1. Karel Bartoš, Martin Rehák. IFS: Intelligent flow sampling for network security: An adap-

tive approach. In International Journal of Network Management (IJNM), volume 25(5), pages

263–282, 2015. (80%)

2. Martin Rehák, Michal Pěchouček, Martin Grill, Jan Stiborek, Karel Bartoš, Pavel Čeleda.

Adaptive Multi-Agent System for Network Traffic Monitoring. In IEEE Intelligent Systems,

pages 16–25, 2009. (16%)

Peer-Reviewed Journal Articles (3)

1. Jan Stiborek, Martin Grill, Martin Rehák, Karel Bartoš, Jan Jusko. Game Theoretical

Model for Adaptive Intrusion Detection System. In Transactions on Computational Collective
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Krmı́ček. CAMNEP: An intrusion detection system for high speed networks. In Progress
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Patents (3)
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Office.)
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Bartoš. Multi agent approach to network intrusion detection (demo paper). In Proceedings of

the 7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),

pages 1695–1696, ACM Press, 2008. (16%)

107





References

1. Cisco netflow. http://www.cisco.com/warp/public/732/tech/netflow.

2. Cisco Systems, Inc. – Cognitive Threat Analytics (CTA). http://cognitive.cisco.com/.

3. List of 1 million top web sites. http://www.alexa.com.

4. Testing intrusion detection systems: a critique of the 1998 and 1999 darpa intrusion detection system

evaluations as performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur., 3:262–294, November 2000.

5. Cisco visual networking index: Forecast and methodology, 2013 -– 2018. In Cisco Visual Networking Index

(VNI) White Papers, http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-

vni/white-paper-listing.html, 2014.

6. S. Ali, I. U. Haq, S. Rizvi, N. Rasheed, U. Sarfraz, S. A. Khayam, and F. Mirza. On mitigating sampling-

induced accuracy loss in traffic anomaly detection systems. SIGCOMM Comput. Commun. Rev., 40:4–16,

June 2010.

7. S. Ali, I. U. Haq, S. Rizvi, N. Rasheed, U. Sarfraz, S. A. Khayam, and F. Mirza. On mitigating sampling-

induced accuracy loss in traffic anomaly detection systems. SIGCOMM Comput. Commun. Rev., 40(3):4–16,

June 2010.

8. G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou. Network anomaly detection and classification

via opportunistic sampling. Netwrk. Mag. of Global Internetwkg., 23:6–12, January 2009.

9. G. Androulidakis and S. Papavassiliou. Improving network anomaly detection via selective flow-based

sampling. Communications, IET, 2(3):399 –409, march 2008.

10. M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D. Dagon. From throw-

away traffic to bots: Detecting the rise of dga-based malware. In Proceedings of the 21st USENIX Conference

on Security Symposium, Security’12, pages 24–24, Berkeley, CA, USA, 2012. USENIX Association.

11. B. Augustin and A. Mellouk. On traffic patterns of http applications. In Global Telecommunications

Conference (GLOBECOM 2011), 2011 IEEE, pages 1–6, Dec 2011.

12. M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and J. Nazario. Automated classification and

analysis of internet malware. In C. Kruegel, R. Lippmann, and A. Clark, editors, Recent Advances in

Intrusion Detection, volume 4637 of Lecture Notes in Computer Science, pages 178–197. Springer Berlin

Heidelberg, 2007.

13. K. Bartos, M. Grill, V. Krmicek, M. Rehak, and P. Celeda. Flow based network intrusion detection system

using hardware-accelerated netflow probes. In In CESNET Conference 2008 : security, middleware, and

virtualization – glue of future networks, pages 49–56, 2008.

14. K. Bartos and M. Rehak. Distributed Self-organized Collaboration of Autonomous IDS Sensors, pages

113–117. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

15. K. Bartos and M. Rehak. Self-organized mechanism for distributed setup of multiple heterogeneous intrusion

detection systems. In Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2012 IEEE Sixth

International Conference on, pages 31–38, Sept 2012.

16. K. Bartos and M. Rehak. Towards efficient flow sampling technique for anomaly detection. In A. Pescapè,
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Appendix A

Baseline flow-level features

The classifiers use various features depending on the classification level. At the flow level, the

system decomposes each URL into seven components (protocol, second-level domain, top-level

domain, path, file name, query, and fragment), where i-th component is denoted as ci (see

Figure 4.5). On these components, the following functions are applied.

• URL component length l(ci) - number of characters of the i-th component.

• Ratio of consonant to vowel changes rv(ci) - describes the frequency of changes between

consonants and vowels (this ratio is specifically suitable for recognizing generated domains):

rv(ci) =
number of changes from consonant to vowel

l(ci)
.

• Maximum occurrence ratio of URL characters - according to the observations, char-

acters of some malicious URLs are distributed randomly. The ratio useful to identify this

property is defined as a maximum number of occurrences of any character divided by the

total number of characters in the URL component.

• Maximum occurrence ratio of character type - random distribution can be identified not

only for the individual characters, but also for types of the characters (e.g. letters, numbers,

special characters, etc.).

• Repetitive changes of special characters - a lot of URL addressable forms and views are

long and complicated, but they typically have repetitive changes of two characters used to fill

and separate individual fields of the corresponding form: ’=’ and ’&’. This fact is beneficial

for separating these type of URLs from the rest.

Specifically for the second-level domains, the system extracts the following features:

• Probability of component trigrams Pt(d) - trigrams serve as a reliable indicator whether

the domain is generated or not. Note that the probability distribution of trigrams was created

from the domains listed in Alexa 1 million most popular domains [3]. These domains are more

suitable for creating such distribution because of better robustness when dealing with various

languages (as opposed to dictionary words). The probability of a trigram t(A) being part of

a domain A listed in Alexa 1M most popular sites is defined as:

pt(t(A)) =
number of t(A) occurrences in Alexa

number of all trigrams in Alexa
.

Then, a rank (or upper index) is assigned to each trigram describing the trigram frequency:
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∀i, j ≤ |A| : pt(t
(i)(A)) ≥ pt(t(j)(A)) ⇔ i ≤ j,

where pt(t
(i)(A)) denotes i-th most-frequent trigram from the Alexa list and i ∈ {1, . . . , 1000}.

Finally, we define ranking probability of a trigram t(d) being part of a legitimate domain d

as follows:

p̂t(t(d)) =

{
1− (i− 1) · 10−4 ∃i ≤ 1000 : t(d) = t(i)(A)

0 otherwise
.

Then the probability of domain trigrams Pt(d) is defined as the average of ranking probabil-

ities p̂t(t
(j)(d)).

• Maximal probability of two adjacent trigrams m(d) - most longer domains contain

meaningful words composed of at least two frequently used adjacent trigrams. This fact makes

this feature very promising for removing false positives for generated domains. Intuitively, we

define probability of two adjacent trigrams:

pt(tj(d), tj+1(d)) =
p̂t(tj(d)) + p̂t(tj+1(d))

2
. (A.1)

Then we take maximum of all values:

m(d) = max
j

(pt(tj(d), tj+1(d))). (A.2)

• Number of suspicious trigrams n(d) - majority of generated domains are hard for humans

to pronounce. Beside of consonant to vowel changes, this fact also increases the frequency of

non-typical and rarely used trigrams captured in number of suspicious trigrams:

n(d) = number of trigrams with p̂t(t(d)) = 0. (A.3)

Besides the above mention URL features, the system also extracts the following flow-based

features: flow duration, number of bytes transferred from client to server and vice versa, user

agent, referrer, MIME-type and HTTP status.
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Appendix B

Examples of Bags

Asterope

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=12739868&os=6.1—2—8.0.7601.18571&res=4—1921—466&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=15425581&os=6.1—2—8.0.7601.18571&res=4—1921—516&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=27423103&os=6.1—2—8.0.7601.18571&res=4—1921—342&f=1

Click-fraud, malvertising-related botnet

hxxp://directcashfunds.com/opntrk.php?tkey=024f9730e23f8553c3e5342568a70300&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=c1b6e3d50632d4f5c0ae13a52d3c4d8d&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=7c9a843ce18126900c46dbe4be3b6425&Email=name.surname@company.com

Dridex

hxxp://27.54.174.181/8qV578&$o@HU6Q6S/gz$J0l=iTTH 28%2CM/we20%3D

hxxp://27.54.174.181/C4GyRx%7E@RY6x /M&N=sq/bW ra4OTJ

hxxp://27.54.174.181/gPvh+=GO/9RPPfk0%2CzXOYU%20/Vq8Ww/+a m%7Ez

hxxp://27.54.174.181/qE0my4KIz48Cf3H8wG%7Evpz=iJ%26fqMl%24m/46JoELp=GJww%3D%26Ib+Ar.y3 iu%2D1E/sso

InstallCore Monetization

hxxp://rp.any-file-opener.org/?pcrc=1559319553&v=2.0 hxxp://utouring.net/search/q/conducing

hxxp://rp.any-file-opener.org/?pcrc=1132521307&v=2.0 hxxp://utouring.net/go/u/1/r/1647

hxxp://rp.any-file-opener.org/?pcrc=1123945956&v=2.0 hxxp://utouring.net/go/u/0/r/2675

hxxp://rp.any-file-opener.org/?pcrc=1075608192&v=2.0 hxxp://utouring.net/search/f/1/q/refiles

Poweliks

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=nitric+oxide+side+effects&ua=Mozilla . . .&lr=7&ls=0

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=weight+loss+success+stories&ua=Mozilla . . .&lr=0&ls=0

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=shoulder+pain&ua=Mozilla%2F5 . . .&lr=7&ls=2

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=cheap+car+insurance&ua=Mozilla%2F5 . . .&lr=7&ls=2

Zeus

hxxp://130.185.106.28/m/IbQFdXVjiriLva4KHeNpWCmThrJBn3f34HNwsLVVsUmLXtsumSSPe/zzXtIu9SzwjI . . . 3RqvGzKN5

hxxp://130.185.106.28/m/IbQJFUVjgZn4vx4KHeNpWCmThrJBn3f34HNwsLVVsUmLfkoPaSS+S+zzXtIu9SzwjI . . . 3vKwmk0oUi

hxxp://130.185.106.28/m/IbQJFUVjiJwJBX4KHeNpWCmThrJBn3f34HNwsLVVsUmKH7ue2STvSkzzXtIu9SzwjI . . . 3vKwmk0oUi

hxxp://130.185.106.28/m/IbQNtVVji5/7Yp4KHeNpWCmThrJBn3f34HNwsLVVsUmLz4sO6YRvOjzzXtIu9SzwjI . . . 3zB9057quqv

Legitimate traffic

hxxp://www.cnn.com/.a/1.73.0/js/vendor/usabilla.min.js

hxxp://www.cnn.com/.element/ssi/auto/4.0/sect/MAIN/markets wsod expansion.html

hxxp://www.cnn.com/.a/1.73.0/assets/sprite-s1dced3ff2b.png

hxxp://www.cnn.com/.element/widget/video/videoapi/api/latest/js/CNNVideoBootstrapper.js

Legitimate traffic

hxxp://ads.adaptv.advertising.com/a/h/7g doK40WLPMYHbkD9G2u7HSXjqz . . .&context=fullUrl%3Dpandora.com

hxxp://ads.adaptv.advertising.com/crossdomain.xml

hxxp://ads.advertising.com/411f1e96-3bde-4d85-b17e-63749e5f0695.js

hxxp://ads.advertising.com/ids/411f1e96-3bde-4d85-b17e-63749e5f0695

Table B.1: URLs of flows from selected malicious categories together with two examples of
legitimate URLs (at the bottom). You can see that URLs within each malicious bag are similar
to each other (as opposed to most of legitimate bags). Small non-zero variability of flow-based
feature values is projected into the proposed representation with both types of histograms, which
makes the representation more robust to further malware changes and variants.
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