
Objective of the thesis is to design a chemical inventory management sys-
tem for pharmaceutical industry and implement its data access layer (back
end).

Perform analysis of the user requirement specifications as well as analysis
of the regulatory authority (European commission) requirements for compu-
terized systems, defined in ”The Rules Governing Medicinal Products in the
European Union, Annex 11” of EDURALEX Vol. 4. Completely design the
system. Implement data access layer of the system. Perform testing of the
implemented part of the system focused on storing and loading data. The
system will be developed in Java together with MySQL database.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Chemical inventory management system

for pharmaceutical industry

Mgr. Juraj Škvarla

Supervisor: Mgr. Monika Součková

5th May 2016

Acknowledgements

I take this opportunity to express gratitude to my supervisor Mgr. Monika
Součková for precious advices and time spent helping me elaborate the thesis.
I also wish to express my sincere thanks to all of the faculty members for their
help and support during my study, especially to Bc. Eva Dud́ıková. I would
like to also acknowledge my schoolmate Bc. Jan Anděl and everyone who dir-
ectly or indirectly, have contributed to the thesis. Finally, I am most grateful
to my family for the continuous encouragement, support and attention.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 5th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Juraj Škvarla. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Škvarla, Juraj. Chemical inventory management system for pharmaceutical
industry. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2016.

Abstrakt

Bakalářska práce se zabývá analýzou, návrhem a vývojem aplikace použitelné
pro ř́ızeńı skladového hospodářstv́ı chemikálíı v malé až středně velké far-
maceutické firmě v regulovaném prostřed́ı správné výrobńı praxe (SVP). Je
kladen d̊uraz jak na analýzu uživatelských požadavk̊u, tak na splněńı legis-
lativńıch požadavk̊u Evropské Unie na poč́ıtačové systémy v SVP. Navržený
software poskytne pohodlné řeseńı problematiky ř́ızeńı skladu jak vstupńıch
surovin, tak meziprodukt̊u a produkt̊u.

Kĺıčová slova Správná výrobńı praxe, Validace poč́ıtačových systémů, Reg-
ulované prostřed́ı, Java, Systém ř́ızeńı skladu chemikli, Kontrola kvality chemikli

Abstract

Bachelor thesis deals with analysis, design and development of the software
usable as a stock management system of chemicals for small or mid-sized
pharmaceutical companies, operating in regulated good manufacturing prac-
tice (GMP) environment. The emphasis is given to analysis of user require-
ments as well as to compliance with European Union legislative requirements
on computerized systems used within GMP environment. Designed software

ix

shall provide confortable solution for stock management of raw materials, in-
termediates as well as products.

Keywords Good Manufacturing Practice, Computerized System Valida-
tion, Regulated Environment, Java, Chemical inventory management system,
Quality control of chemicals

x

Contents

Introduction 1

Aim . 1

1 State-of-the-art 3

1.1 Known existing applications and solutions 3

1.2 Relationship of Computer System Validation to the Software
Development Life Cycle . 3

2 Analysis 5

2.1 Analysis of user requirements 5

2.2 State diagrams . 10

2.3 Access of legal requirements influencing design of the system . 10

3 Design 13

3.1 Selecting the right tools . 13

3.2 Deployment and design pattern 14

3.3 Components . 14

3.4 Presentation (PL) layer . 14

3.5 Business (BL) layer . 18

3.6 Persistent (DL) layer . 19

4 Realisation 25

4.1 Naming Conventions . 25

4.2 Implementation of Back-end . 25

4.3 Testing . 26

Conclusion and discussion 29

Assessment of compliance with the user and legal requirements . . . 29

Known bottlenecks . 30

Future functional improvements . 30

xi

Bibliography 31

A Acronyms and terminolgy 33

B Contents of enclosed CD 35

C GMPWare User Guide 37
C.1 Basic functions description . 37
C.2 User groups, rights and responsibilities 38
C.3 Batch states, expiry and material compliance control 38
C.4 Home window of the GUI . 38

D GMPWare Administrator guide 41
D.1 Design principle . 41
D.2 Setup of the database . 41
D.3 Setup of the client apps . 42
D.4 Configuration of the system . 42
D.5 Maintenance . 42

xii

List of Figures

1.1 V-diagram . 4

2.1 Different types of users . 7
2.2 Use cases of users . 8
2.3 Sampling of the material use case 9
2.4 Withdraw of the material use case 10
2.5 State-transition diagram of a batch states 11

3.1 Deployment diagram . 14
3.2 Main package diagram . 15
3.3 Three main view classes . 16
3.4 Login view example . 16
3.5 Home view example . 17
3.6 Controller classes . 17
3.7 Model classes . 19
3.8 Package diagram of the DL layer 20
3.9 Class diagram of the entity package 20
3.10 Interfaces of the DL layer . 22
3.11 Enhanced entity-relationship models 23

4.1 List of the DL integration tests . 27

C.1 Material quality control . 37
C.2 GUI Home Window . 39
C.3 Batch states . 40

xiii

Introduction

With the starting usage of computers in the industry in the 1980s, demands
were also initiated to document the quality of such systems with regulatory re-
quirements. The Blue Book of the FDA from 1983 is a notable example. As a
response to the increased use of computerized systems and the increased com-
plexity of these systems, European Union in 2010 issued a revised guideline on
use of computerized systems in regulated environment of Good Manufacturing
Practice for manufacturing of Medical Products for Human and Veterinary Use
[1]. According to Annex 11 of this guideline, EU pharmaceutical companies
are by law required to have all computerized systems validated.

For pharmaceutical companies this means:

• Limited selection of the software/developer

• Additional cost for software validation

This makes use of computerized systems by pharmaceutical companies
somewhat complicated. Therefore it is to advantage that the developer is fa-
miliar with the regulatory requirements. Not only because the validation of
computer systems is an interdisciplinary task, but because its tightly inter-
connected with the process of development of the computer software.

Aim

Obsolete chemical inventory management systems have a tendency to create
needless tasks for the whole organization, from spending time searching for
chemical containers to reordering stock that cant be found. After years of
research, what may seem to be inconsequential losses of time and funds can add
up to a serious amount of wasted resources. You may also be rightly concerned
about staying in compliance if you arent sure where and in what state your
regulated chemicals are at all times. This affects not only the qualitative
environment of the lab but also your organizations long-term operational costs.

1

Introduction

Aim of the bachelor thesis is to analyse both user requirements of a small
pharmaceutical company and legal requirements of the European Union, ac-
cording to that design simple Java stock-management desktop application that
would be easy to integrate within already established GMP quality manage-
ment system, implement and test its back-end.

2

Chapter 1

State-of-the-art

Most of the GMP-oriented applications that i have searched through are usu-
ally complex and very expensive software solutions e.g. instantGMPtm or
GMPPro. They are modular, however more or less designed to replace whole
”paper based” quality management system of a the company. This is often
very risky and financially demanding. Only very big pharmaceutical compan-
ies have enough resources for such big and risky investments. It is cheaper,
safer and more convenient for small to mid-sized pharmaceutical company to
have simple computerized system avaliable that solves only one problem and
can be integrated into the working ”paper-based” QMS and therefore replace
only QMS tasks related to it.

1.1 Known existing applications and solutions

There are a lot of stand-alone off-the-shelf or open source stock management
systems available. None of them that I have found satisfy all of the user
and legal requirements discussed. Because they cannot be configured so that
they would fulfill industry specific user and legal requirements, they would
inevitably fail during the validation process.

1.2 Relationship of Computer System Validation
to the Software Development Life Cycle

In order for software product to be usable within GMP environment, it must
be validated. Computer System Validation is carried out through activities
that occur throughout the entire Software Development Life Cycle (SDLC).
The well known V Diagram Fig. 1.1, is widely used in the IT literature to
emphasize the importance of testing and testing related activities at every
step in the SDLC. It is also development strategy that is recommended by the
GAMP 5 [2], well know industry guidance to achieve compliant computerized

3

1. State-of-the-art

systems. In the V-model, each stage of verification phase has a corresponding
stage in the validation phase. I will start testing from the bottom of the V-
diagram and test only corresponding, implemented part of the software by
integration tests. Together with the analysis and design documentation I will
generate enough data for the beginning of the project test and integration
validation process phase.

Figure 1.1: V-model of the SDLC, may be considered an extension of the
waterfall model

4

Chapter 2

Analysis

2.1 Analysis of user requirements

Purpose for creating such system is to improve current solution for storing
and managing chemicals within GMP QMS. It should replace currently used
non-validated MS Access-based database. New system should be more robust,
safer, easier to use, maintain and backup. There are three types of materials
to be stored:

• Input materials

• Intermediates

• Final products

Each material has its unique material number, supplier, location to be stored
in, units of measure and expiration interval (reanalysis interval). Each ma-
terial can have several batches present in a warehouse, each with different
batch number (also called LOT number). Each batch in a warehouse is in a
particular state. There are three most important GMP-relevant states of the
material:

• Approved for use - batch state which is approved for use.

• Quarantine- batch state of the material, while waiting for QC/QA to be
analyzed.

• To be disposed - batch that has been disapproved for use or validity of
the approval expired.

and three other states in which a material can be:

• Sampled - batch that has been sampled for analysis bat not yet analyzed.

• Disposed - batch that is no longer in warehouse.

5

2. Analysis

• Expired - batch with expired approval.

2.1.1 Functional requirements

Summary of the basic functions that the software should perform:

1. Add, delete and edit records, i.e. user , material number, batch and
transactions such as withdraw of the material.

2. Keep track of an amount of the chemicals in stock, i.e. it must be
possible to see how much of the material for each batch there is left in
a warehouse. It should be obvious which batch (if there are more then
one batch) should be used first (according to a rule first-in first-out), to
avoid expiration of the material.

3. Keep track of a location of the chemicals, i.e. it should be possible to
locate each batch within the warehouse.

4. Keep track of expiry dates, i.e. it must be possible to see how much
time is there left before expiration of the material

5. Classify chemicals according to their QC/QA state (quarantine, ap-
proved for use, disapproved for use, etc.), i.e. it must be possible to
identify in which state a particular batch is present in a warehouse.

6. Staff shell be informed (by email), if there was a critical batch state
change, i.e. if there is a new batch in quarantine, batch has expired,
batch to be disposed and batch to be supplied

Other requirements

7. Amount of chemicals shall be stored in different containers and states.
Therefore different units of measure and unified precision shall be used
(one decimal place). At least following units of measure shall be avail-
able: Litres, Millilitres, Kilograms, Grams, Milligrams, Pieces.

8. Every batch number has format of PPP-MMMMM-YY where PP is
identification number of the batch (1-999), MMMMM is material num-
ber and YY are two last digits of the current year.

It is estimated that there will be approximately 100 to 300 different ma-
terials stored into the database. For each usually 1-5 different batches.

6

2.1. Analysis of user requirements

2.1.2 Non-functional Requirements

1. Security - Access to the database should be restricted for unauthorized
persons.

2. Maintainability - Database maintenance should be cheap and easy.

3. Accessibility - System shall be accessible from local computers within
private LAN network for several (1-10) users at the same time.

4. Operating systems - System must be able to run on multiple operating
systems.

5. Interface - System should have graphical user interface.

6. Language - Available at least in English and Czech

2.1.3 User Characteristics

There will be four groups of users:

Figure 2.1: Different types of users working with the database

7

2. Analysis

There are two different actions users can perform. They can create trans-
actions or they can configure database. Configuration of the database is for
Admin group only. Other three groups of users are allowed to perform partic-
ular type of transactions.

• Production chemists – chemists who can search through the database
and withdraw certain amount of chemicals, user group 1.

• Supplier chemists - group of users who are responsible for supply and dis-
posal of the chemicals. They can only add chemicals into the quarantine
and dispose the chemicals, user group 2.

• QC/QA department - chemists who sample, approve and disapprove
chemicals for use, user group 3.

• Admins – admins can configure the database, user group 4.

There are no special user specific requirements for the software. GUI
should be as simple as possible.

2.1.4 Use Cases

Figure 2.2: Top-level use cases

8

2.1. Analysis of user requirements

Sampling of the material Scenario - Batch has been received in storage
area and put into the quarantine. It is necessary to sample and analyze the
material so it can be approved for use, see Fig. 2.3.

Figure 2.3: Sampling of the material use case

1. Once one or more batches are in quarantine, a person responsible for
sampling and/or analysis is notified by email about the fact.

2. If there are more batches to sample, person will choose which batch to
sample and fill in sampling form.

3. After control of the sampling record can be submitted.

Withdraw material Scenario - It is necessary to withdraw material that
will be used in production:

1. Production chemist will fill in withdraw requirement form (Material
number and amount required)

2. If there is approved batch of material available with sufficient quantity,
its location and withdraw form is shown.

3. If there is not enough material or there is no batch. Email is send to
responsible users.

9

2. Analysis

Figure 2.4: Withdraw of the material use case

2.2 State diagrams

Transition between states of the material shall follow schema in Fig. 2.5. Each
transition between batch states must be documented and traceable.

2.3 Access of legal requirements influencing design
of the system

Some of the legal requirements are already reflected into user requirements.
This chapter focuses on those that are not. Each legal requirement is assessed
and design aspect proposed.

Annex 11 is divided into 3 parts:

1. General Requirements - these requirements apply purely to the approach
of the customer to the computerized system management, supplier se-
lection, etc.

2. Project Phase - these requirements apply to the project phase of the de-
veloping process. It focuses on precise URS definition and other quality-
relevant practices for project phase.

10

2.3. Access of legal requirements influencing design of the system

Figure 2.5: States in which a batch can be. Each transition between states
corresponds to actions that different users can perform.

3. Operational phase - these are general requirements on operation of the
computerized system. From these I have selected requirements which are
relevant from database-type computerized system and could be fulfilled
by correct design of the system. Each desing feature and its function is
briefly described.

According to chapter 5: ”Computerised systems exchanging data electron-
ically with other systems should include appropriate built-in checks for the cor-
rect and secure entry and processing of data, in order to minimize the risks.”
Manual entry of the data in specific format is required for amount of material
(correct units and precision), etc. see section 2.1. Therefore for entry of these
data there shall be special ”input data format validation” methods.

According to chapter 6: ”For critical data entered manually, there should
be an additional check on the accuracy of the data. This check may be done

11

2. Analysis

by a second operator or by validated electronic means. The criticality and the
potential consequences of erroneous or incorrectly entered data to a system
should be covered by risk management.” Similarly to the previous risk of the
format missentry, where critical data will be enterd manually, confirmation
notice should be available when user is asked to confirm correctness of the
entered data. This can be implemented for example on presentation layer
(accuracy checks of the data).

According to chapter 8: ”It should be possible to obtain clear printed copies
of electronically stored data.” Therefore there shall be used a library for pdf
export e.g. iText PDF Api that would allow to provide such functionality.

According to chapter 9: ”Consideration should be given, based on a risk
assessment, to building into the system the creation of a record of all GMP-
relevant changes and deletions (a system generated ”audit trail”). For change
or deletion of GMP-relevant data the reason should be documented. Audit
trails need to be available and convertible to a generally intelligible form and
regularly reviewed.” In order to comply there will be created a class ”Trail-
Logger” responsible for logging all GMP-relevant changes, e.g. communication
with the database. Following changes are considered to be ”GMP-relevant”:

1. Deletion of the records.

2. Upload of the records.

3. Creation of new records.

4. Sing-in and sign-out of the user.

According to chapter 12: ”Physical and/or logical controls should be in
place to restrict access to computerized system to authorized persons. Suitable
methods of preventing unauthorized entry to the system may include the use of
keys, pass cards, personal codes with passwords, biometrics, restricted access
to computer equipment and data storage areas.” User access control will be
designed so that only authorized operators can perform critical operations.
Only hash of the passwords shall be stored in database.

According to chapter 13: ”All incidents, not only system failures and data
errors, should be reported and assessed. The root cause of a critical incident
should be identified and should form the basis of corrective and preventive
actions.” Exception thrown will be logged into the database from which user
can assess root cause and perform corrective and preventive actions.

Chapters 7, 10, 11, 14 and 15 does not influence design of the database
ether because the software will not provide mentioned functionality or because
it is not possible to fulfill such requirement purely by correct design of the
application.

As can be seen there are at least 6 legal requirements that shall be taken
into the account during the design stage.

12

Chapter 3

Design

3.1 Selecting the right tools

The following section lists some tools and libraries used during the develop-
ment process.

• MySQL database - For purposes of the small to mid-sized company and
the fact that there will be only a few users logged in at the time, MySQL
performance will be sufficient. Also MySQL as an open-source solution
will comply with the requirement on low purchase and maintenance cost
of the database [3].

• JUnit - Testing framework JUnit [4] is widely accepted as a standard
for unit testing in Java. Many of the available testing products on the
market are either based on or extend JUnit. Also, many IDEs currently
have built-in support for JUnit. The majority of unit tests written in
this book are JUnit tests.

• JDBC - It’s an established standard API for database access[3].

• Swing - Library provides a flexible graphical user interface tools from
which to develop user interface. It is part of Oracle’s Java Foundation
Classes[5].

• Hibernate - For application with complex interrelationships, Hibernate
can take away a huge amount of coding effort and will result in an applic-
ation that performs better than the alternative handcrafted JDBC[6].

• iText - This library offers powerful and flexible tools for PDF creation,
editing and inspection[7].

• javamail - The JavaMail API provides a protocol-independent framework
to build mail and messaging applications[8].

13

3. Design

3.2 Deployment and design pattern

Based on the analysis of the user and legal requirements. Application deploy-
ment as shown in Fig. 3.1 will meet user requirement on accessibility and will
not restrain fulfillment of any legal requirements. It shall be based on 2-tier
architecture style and will use Model-View-Controller (MVC) design pattern.

Basic principle of the application with the centralized database would be
that user would sign in into the application and application would then sign
in into the database within local area network (LAN). Information necessary
for application to log into the database (IP address of the database server and
port) will be provided by the config.properties file.

Figure 3.1: Two-tier deployment of the application

3.3 Components

Source code is structured into 3 main packages (layers).

1. Presentation package

2. Business package

3. Data package

Each package with different responsibility, as depicted in Fig. 3.2.

3.4 Presentation (PL) layer

Presentation layer contains view classes package and controller classes package.

14

3.4. Presentation (PL) layer

Figure 3.2: Structure of the project source files and packages

Because it is required, that the application is in two different languages,
Non-functional requirement No. 6, in order to allow for easy GUI translation,
there will be a class of constants shared among all view and controller classes
that contains GUI labels and messages.

3.4.1 Views

Package of views will contain classes that are necessary in order to interact
with the user.

There will be three main view classes:

1. LoginView - will be resposible for getting login information from the
user such as username and password

2. HomeView - will be main view from which users can initiate all batch
transactions such as putting new or expired batch into the quarantine,
sample a material, etc. Home view will also show actions that are ne-
cessary to perform, in order to keep database updated and all batches
approved for use. Example of how homeView could look like, see. Fig.
3.5

3. ConfigureView - will be responsible for getting information from the user
required in order to add new, update and delete configuration data into
the database

15

3. Design

Figure 3.3: Classes of the view package with examples of some of the required
methods and member variables.

Figure 3.4: Example of the proposed LoginView.

3.4.2 Controllers

There will be following controller classes, see. Fig. 3.6.

1. LoginController

2. HomeController

3. ConfigureController

LoginController is responsible for all actions necessary in order to log user in.
It will pick user based on username from the database and verify its pass-
word hash. There could be for example java.security package and its Secure
Hash Algorithm (SHA-256) used for that. If the hashes matches it will create
HomeController class and inject the user object into it. 1. LoginController
will also be responsible for reset of the forgotten user password.

1Because application will have the same identity during the communication with data-
base for each user, therefore information about the user that is logged in must be available

16

3.4. Presentation (PL) layer

Figure 3.5: Example of the proposed HomeView.

Figure 3.6: Class diagram of the controller classes with examples of main
member variables and some required methods.

17

3. Design

HomeController now has information about user who is logged in and takes
responsibility and controls actions performed by the user.

If the user wants to configure the database, then the HomeController cre-
ates ConfigureController and passes responsibility for configuration actions to
it. Configure controller then controls creating and displaying views for adding,
deleting and updating data for configuration, see Sec. 3.6.

3.5 Business (BL) layer

Classes in BL package are responsible for required (business related) actions.

3.5.1 Model package

There will be two main model classes, see Fig. 3.7.

1. BatchTransactionsModel - will communicate with DL through DAO in-
terfaces. Will be responsible for all actions related to batch transactions
(Use cases of the QC/QA, Production and Supplier user groups). It will
have methods like verifyRetestInterval to check if there is batch that
should expire or velidateBatchNumber that would validate that batch
number format is correct, to comply with the functional requirement 8
and legal requirement from chapter 5 of the Annex 11 2.3

2. ConfigureModel - will also use DAO interfaces and will be responsible
for actions related to database configuration (Use cases of Admin user
group).

3.5.2 Other BL classes

In order to comply with the legal requirements from chapter 2.3,. for gener-
ating portable document format files from lists of data, for this there is class
PdfPrinter class which utilizes iText library.

Emailing notifications, function req. 6, when a critical change to the batch
state occurs are handled to EmailNotifier class, that utilizes javamail library
and will send email to correct user who should react to it, etc.

RightVverifier class would be used by the HomeController and would be
responsible for verifying if the user has enough rights to perform particular
action (based on the groups he is member of).

within the code (could also be persisted after login and loaded every time info about the
user that is logged in will be required, but this is in my opinion not a better solution that
pass user if required)

18

3.6. Persistent (DL) layer

Figure 3.7: Class diagram of the model classes with examples of main member
variables and methods.

3.6 Persistent (DL) layer

For loading, storing, updating and deleting persistent objects will be respons-
ible persistence layer, which uses data access objects (DAOs) in order to com-
ply with the single responsibility design principle [9]. Each DAO object imple-
ments public interface with required methods. Since User group, batch states
and transaction types cannot be changed or modified, there are only getters
to the data, Fig. 3.10.

Classes that are to be persisted are in ENTITY package. These objects
are mapped to the relational database by the Hibernate ORM framework.
HibernateUtil class is responsible for creation of SessionFactory for DAO ob-
jects. Singleton design pattern will be applied to the HibernateUtil class, so
that there is only one SessionFactory for entire application.

19

3. Design

Figure 3.8: Package diagram of the DL layer

Figure 3.9: Class diagram of the persistent entity classes

20

3.6. Persistent (DL) layer

3.6.1 Types of data

Persistent layer will store three types of data:

1. Data used for application

2. Data used for configuration

3. Runtime data records

The main difference between the three types is, who and when creates
and/or modifies the data.

3.6.1.1 Data used for application

Without these data application cannot run and also should not be changed
by anyone.2 Information about the batch states, transaction types and user
groups was generated during analysis and is inserted into the database before
application connects to it, see Fig. 2.5 and Fig. 2.1. They are stored in tables:

a. transaction type

b. user group

c. batch state

3.6.1.2 Data used for configuration

This information is a configuration of the database. Users from admin group
can edit, add or remove records from the tables. Database should be con-
figured in this way so that is reflects users, materials and its suppliers, etc.
They are stored in tables:

a. emplacement

b. user

c. unit

d. exp date

e. supplier

f. material

g. supplier has materials

h. user has usergroups

2These data could be constants within the application code and attribute to batch,
transaction and user entities. I have decided to put them into the relational database in
order to avoid data redundancy.

21

3. Design

3.6.1.3 Runtime data records

Are generated by the application to document changes in batch states, amount
of material of each batch available, etc. These data can be created, edited or
deleted by other three user groups at any time. They are stored in tables:

a. transaction

b. batch

c. traillog

d. exceptionlog

Figure 3.10: Interfaces of the DL layer

3.6.2 Database EER model

One main database schema will persist most of the entity objects, Fig.3.11,
but there are two more standalone tables (databases) that are created.

1. Audit Trail database

2. Exception database

Audit Trail database is a table for TrailLog class which manages logging
creation, deletion and update of persisted objects, logging in, logging out of

22

3.6. Persistent (DL) layer

Figure 3.11: Relational models of the database: Main relational model,
TraiLog and ExceptionLog tables

the user and also unsuccessful login attempts3. It is to implement legal re-
quirement from chapter 9, see 2.3. For logging creation, deletion and update
of persisted objects would be responsible DL layer. In order for DAO objects
to be able to log such data, information about the user that is logged in will
be passed from the controller to model objects which will inject this inform-
ation into the DAOs through constructor, so that DAOs have all information
necessary to log theirs transactions.

Exceptions database table is for logging exceptions that were thrown. It
is to cope with the legal requirement from chapter 13, see 2.3. It shall be im-
plemented by the class ”ExceptionLog” and ”ExceptionLogDAO”. Hibernate
exceptions that are thrown by the Hibernate will be logged automatically by

3There is also another possibility how to implement audit trail functionality and its to
store information about the database transactions as a column to each entity record table.
This would be easy to implement, however not easy to evaluate and view for the user, since
order in which the transaction took place would be lost.

23

3. Design

the HandleException method of the DAO objects. For logging other excep-
tions are responsible methods that caught the exception.

24

Chapter 4

Realisation

4.1 Naming Conventions

• Methods should be verbs, in mixed case with the first lowercase letter.
The first letter of each internal word capitalized.

• The names of variables declared class constants should be all uppercase
with words separated by underscores.

• Class names should be nouns. In mixed case with the first letter of each
internal word capitalized.

• Variables are in mixed case with a lowercase first letter.

4.2 Implementation of Back-end

I have implemented:

• DL package and all of of the JPA Entity classes

• Package with DAO classes

• DAO interfaces

I have also created import.sql script that imports all data necessary for
application and some of the data necessary for DL integration tests, see. 4.3.

In order to configure Hibernate, there is the hibernate.cfg.xml file. For
mapping entities I have been using Hibernate Annotations. Entity classes were
written according to the requirements in Java Persistence API specification
[10]. Apart from the getters and setters of the entity member variables, for
each entity there is a custom constructor and overrided equals and hashCode
methods.

25

4. Realisation

4.3 Testing

When trying to deliver a good software product, especially when there is a
need for validation of the product for pharmaceutical industry, testing of the
code is very important part not only during development stage[11]. Without
sufficient amount of well designed and documented tests (unit test, integration
tests, system tests and user acceptance tests) software should not be accepted
by the customer, because he cannot prove its correct functioning.

In order to test correct mapping of the entities to the MySQL relational
database I have written basic integration tests for all entities and verified that
persistent objects can be stored, deleted and edited from the testing database
as it is expected. The tests were written so that after the test execution, the
data initially stored into the database are the same as before the test. See list
of the tests and their results after last implementation iteration, Fig. 4.1.

26

4.3. Testing

Figure 4.1: List of the integration tests and their results

27

Conclusion and discussion

Proposed industry specific chemical management solution was designed to
meet the specific requirements and responsibilities of users, that will result
in up-to-date and ready-to-use stock of chemicals for manufacturers working
within regulated GMP environment. Further programming is necessary in or-
der to create fully functional application. However, implemented DL package
can already provide basic persistence functionality of the designed application.

I have analyzed both user requirements and legal requirements for com-
puterized systems in regulated environments. From legal requirements i have
chosen those that apply to the particular type of the computerized system
(stock management system) and can be implemented by the correct design.
By using a few libraries I have designed very simple Java application with
minimal required functionality. I have implemented and also tested persistent
layer of the application.

Assessment of compliance with the user and legal
requirements

From 15 functional and non-functional user requirements I believe that ap-
plication more or less comply with all of them. There should be performed
software validation in order to verify that its true.

From 6 important legal requirements I also think that application comply
with all of them, but I think there is a lot more room for improvements.
For example legal requirement No. 9, see. 2.3, states: ”Audit trails need
to be available and convertible to a generally intelligible form and regularly
reviewed.” Audit trail as is designed would mix logging of all DAO transactions
and configuration actions would be mixed with batch transaction records,
which may be hard for reviewing. Therefore this table could be separated or
there could be method to convert it to more ”generally intelligible form”.

29

Conclusion and discussion

Known bottlenecks

Because the application shares database and multiple clients can connect from
multiple computers to it and manipulate the data simultaneously, there are
also limitations on how can application be used. There should be only one
admin user configuring the database at the same time, since if for example
one admin would load user object and changed its username, but meanwhile
another admin would try to change group of that particular user, update of the
user-usergroup relation by the second admin would be unsuccessfull. There
would be an exception thrown, since user with that username would no longer
exist. This cannot happen for other user groups during their tasks, since they
are allowed only to create new batch or add batch transactions. In a GMP
environment, this should not be a problem anyway, since each change to the
application configuration should be only made by the controlled manner.

Expiry date as an interval between reanalysis (expiry interval) will be cal-
culated by the application. This could be a problem if someone want to track
expiry based not on reanalysis interval but rather based on fixed date provided
by the supplier (e.g. when material cannot be analyzed and responsibility for
expiry lies within supplier). And could also make problems during leap years.

Expiry of approved batches, as designed, is verified by the verifyRetest-
Interval method of the BatchTransactionsModel class. Method can be called
automatically, for example when user logs in, but cannot be called if there
would be no user logged in regularly (i.e. application would not run at all).

Future functional improvements

In the future program could be extended, so that it would calculate cost of
keeping materials approved (based on batch analysis cost, reanalysis frequency,
etc.) therefore optimize amount of chemicals supplied (avoid oversupply and
minimize expiry of the batches).

System could be also extended to provide Bill-of-materials functionality.
If there was an information about the product for which the batch has been
withdrawn, it would be very easy to produce BOM (list and amount of mater-
ials required in order to produce a particular amount of product). In practice
this information is usually laborously piked up from the manufacturing in-
structions an is only estimated.

Also because each batch must be labeled and the database will contain
information about the expiry dates, batch numbers, approval dates, etc. It
would be possible to use it to produce labels of chemicals (quarantine, ap-
proved and also to be disposed).

30

Bibliography

[1] European Commusion Health and Consumers Directore-General. Eud-
raLex, The Rules Governing Medicinal Products in the European Union
Volume 4, Good Manufacturing Practice, Medicinal Products for Hu-
man and Veterinary Use, Annex 11 - Computerised Systems. 2010.
Available from: http://ec.europa.eu/health/files/eudralex/vol-
4/annex11_01-2011_en.pdf

[2] International Society for Pharmaceutical Engineering. GAMP R©5: A
Risk-Based Approach to Compliant GxP Computerized Systems. 2007.
Available from: http://www.ispe.org/gamp-5

[3] MySQL [online]. May 2016. Available from: https://www.mysql.com/

[4] JUnit [online]. November 2015. Available from: http://junit.org/

[5] The Free Encyclopedia. Wikimedia Foundation Inc. Updated 14:02 10:55
CET. [online]. April 2016. Available from: https://en.wikipedia.org/
wiki/Swing_(Java)

[6] Hibernate [online]. May 2016. Available from: http://hibernate.org/

[7] ITextPDF [online]. May 2016. Available from: http://itextpdf.com/

[8] JavaMail [online]. March 2016. Available from: https://java.net/
projects/javamail/pages/Home

[9] Martin, R. C. Agile Software Development, Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall, 2003, ISBN 978-
0135974445.

[10] Sun Microsystems. JSR 220: Enterprise JavaBeans, Java Persistence
API Specification. 2006. Available from: https://jcp.org/aboutJava/
communityprocess/final/jsr220/index.html

31

http://ec.europa.eu/health/files/eudralex/vol-4/annex11_01-2011_en.pdf
http://ec.europa.eu/health/files/eudralex/vol-4/annex11_01-2011_en.pdf
http://www.ispe.org/gamp-5
https://www.mysql.com/
http://junit.org/
https://en.wikipedia.org/wiki/Swing_(Java)
https://en.wikipedia.org/wiki/Swing_(Java)
http://hibernate.org/
http://itextpdf.com/
https://java.net/projects/javamail/pages/Home
https://java.net/projects/javamail/pages/Home
https://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

Bibliography

[11] Freeman, S. Growing Object-Oriented Software, Guided by Tests.
Addison-Wesley Professional, 2009.

32

Appendix A

Acronyms and terminolgy

API Application Programming Interface

BOM Bill Of Materials

CSV Computerized System Validation

DAO Data Access Object

EU European Union

GUI Graphical User Interface

GMP Good Manufacturing Practice

IDE Integrated Development Environment

IP Internet Protocol

JDBC Java Database Connectivity

JPA Java Persistance API

QC/QA Quality Control/Quality Assurance

QMS Quality Management System

LAN Local Area Network

ORM Object Relational Mapping

PDF Portable Document Format

SDLC Software Development Life Cycle

SQL Structured Query Language

V&V Validation and Verification

33

A. Acronyms and terminolgy

XML Extensible Markup Language

Validating computerized system means showing in documented form
that with great probability, the system will function in a reproducible manner
as the specification states it should function.

Good manufacturing practices are the practices required in order to
conform to the guidelines recommended by agencies that control authorization
and licensing for manufacture and sale of food, drug products, and active
pharmaceutical products.

34

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
GMPWare.............................the main directory of source codes

src..................................... implementation source files
PL................................examples of PL package classes
BL examples of BL package classes
DL..................................... implemented DL package

test........................implementation sources integration tests
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

35

Appendix C

GMPWare User Guide

User Guide was written for users of the application so that they understands
how application works and how to use it. For information on how to set up
and configure the system see Admin Guide.

C.1 Basic functions description

GMPWare is very simple Java based software that was designed to provide
support for activities related to management of materials (only chemicals)
within Good Manufacturing Practice. GMPWare is designed to follow and
document actions necessary to analyze starting materials and (dis)approve
them for use as well as actions necessary to avoid expiry of materials. See
”quality controlled” material flow, C.1.

Figure C.1: Basic material quality control principle. Until it was proven that
material has sufficient quality, it cannot be used for production. Rejected -
not sufficient quality, Approved - sufficient quality

37

C. GMPWare User Guide

C.2 User groups, rights and responsibilities

For each GMP-relevant group of actions there is an user group. There are
four user groups, each user group with different responsibility:

• Production – chemists who can search through the database and with-
draw certain amount of chemicals, user group 1.

• Supplier - group of users who are responsible for supply and disposal
of the chemicals. They can only add chemicals into the quarantine and
dispose the chemicals, user group 2.

• QC/QA - chemists who sample, approve and disapprove chemicals for
use, user group 3.

• Admins – admins can configure the database, user group 4.

After sign in each user group can do different actions, see. C.2. Admins
can configure database by clicking on Configure drop-down menu. Users from
supplier group can put new material into the quarantine by clicking +Quar-
antine button or dispose batches that are in ”to be disposed” state by clicking
+Dispose button. Users from QC/QA group can sample batches that are in
quarantine by clicking on +Sample button and they also can approve already
sampled batches for use by clicking on +Approve button. Users from produc-
tion group can withraw material by clicking on +Withdraw button.

If there is an action necessary, see C.3

C.3 Batch states, expiry and material compliance
control

Every time any user is signed in into the application, application shall check if
there is any batch in ”quarantine”, ”expired” or ”to be disposed” state (non-
compliant state). If there is such a batch, application will send email to every
user from user group that is responsible for required consecutive action. This
way users are informed if there is an action required in order to keep every
batch in ”approved for use”, i.e. they are ready to be used for production,
”sampled”, i.e. ready to be analyzed or ”disposed” state, i.e. they are already
disposed.

C.4 Home window of the GUI

After login Graphic User Intefrace consists of one main ”Home Window”, see
C.2, from which all basic actions with the batches can be done using trans-
action buttons (Quarantine, Sample, Approve, Dispose, Withdraw). There

38

C.4. Home window of the GUI

Figure C.2: Home Window

is also table of the materials that are available you can choose with. Home
window also constains Information section, so that users are informed about
all necessary actions to be done.

39

C. GMPWare User Guide

Figure C.3: States at which a batch can be. Red circle - batch states at which
an action is necessary, Green circle - batch states that are ready to be used or
no action is necessary

40

Appendix D

GMPWare Administrator guide

Administrator Guide was written for users that will be installing and setting
up the GMPWare. It contains only basic information that is necessary to
make the system work and maintain. For further information see development
documentation. It does not contain information on how to perform acceptance
tests, which are required to test correct setup of the application.

D.1 Design principle

GMPWare consists of a centralized MySQL database and ”client” applications
configured within LAN network. Client applications connect to the database
and communicate with it through embedded JDBC interface.

D.2 Setup of the database

There must be MySQL (recommentded version 5.7.12) installed (available
from http://dev.mysql.com/downloads/installer/) in server computer within
LAN network. In order to create and configure the database, before any client
app can connect to it, you should run following scripts:

• create.sql (will create tables and insert foreign keys)

• config.sql (will insert basic data used by the client app)

Also you must make sure that you have created secret root user and set
password that will be used by the client application to connect to the database.
Username of the root user must be ”gmpwareroot”. Its password must be
”gmpware123”.

41

D. GMPWare Administrator guide

D.3 Setup of the client apps

In order to run clinet app, it is necessary to copy executable file GMP-
Ware.java and configuration file config.properties files into the computer with
Java Runtime Environment (recommended version 1.7) installed. Configur-
ation file contains information that is necessary, so that the clinet app can
connect to the database. You must set:

• ”IPdatabase” parameter (IP of the server that has MySQL database
installed and configured)

• ”port” parameter (port at which MySQL database listens)

Example of the config file content(for database at localhost):

#Client connects to database
IPdatabase=127.0.0.1
port=3306

D.4 Configuration of the system

Database should be filled with the essential information about materials (ma-
terials that are to be managed) and user data (who will manage the materials)
of the company before it can be used. In order to configure the system fully,
there should be list of users, list of materials with its suppliers, units of meas-
ure, emplacements and expiry intervals available. Configuration of the system
can be done through client application, see User Guide or manually by insert-
ing required data into the database by using SQL (not recommended).

Other configuration requirements:
There must be at least one person configured within each user group (see User
Guide) so that application can run properly.

D.5 Maintenance

In order to maintain the system you should regularly:

• Backup database data manually by storing an import script (if there is
no other way)

• Edit configuration data such, as users, material managed etc., so that it
reflects current state

• Review and verify exceptions that were thrown and/or report other
known issues to developer

42

	Introduction
	Aim

	State-of-the-art
	Known existing applications and solutions
	Relationship of Computer System Validation to the Software Development Life Cycle

	Analysis
	Analysis of user requirements
	State diagrams
	Access of legal requirements influencing design of the system

	Design
	Selecting the right tools
	Deployment and design pattern
	Components
	Presentation (PL) layer
	Business (BL) layer
	Persistent (DL) layer

	Realisation
	Naming Conventions
	Implementation of Back-end
	Testing

	Conclusion and discussion
	Assessment of compliance with the user and legal requirements
	Known bottlenecks
	Future functional improvements

	Bibliography
	Acronyms and terminolgy
	Contents of enclosed CD
	GMPWare User Guide
	Basic functions description
	User groups, rights and responsibilities
	Batch states, expiry and material compliance control
	Home window of the GUI

	GMPWare Administrator guide
	Design principle
	Setup of the database
	Setup of the client apps
	Configuration of the system
	Maintenance

