
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 1, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Design and Implementation of Cellular Automaton Simulating Domain Growth

 Student: Martin Mužák

 Supervisor: RNDr. Jiří Kroc, Ph.D.

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

The main goal of the work is to implement a cellular automaton simulating growth of domains. Theoretical
aspects of the algorithm are explained in the publication [1]. The application will consist from a back-end
that is already written in C and from a front-end that is to be designed and implemented.
1. Familiarize yourself with the design concept and implementation of the cellular automaton simulating
domain growth.
2. Rewrite the existing back-end from C to C++.
3. Design and implement a front-end in the C++ language with use of the Qt library.
4. Properly document the whole application and test it.
The final program will be available on portals Researchgate and Sourceforge in the form of freeware as an
example of self-organization.

References

[1] J. Kroc: Diffusion Controlled Cellular Automaton Performing Mesh Partitioning, LECTURE NOTES IN
COMPUTER SCIENCE, Vol. 3305, 131-140, 2004.
[2] A. Hoekstra, J. Kroc, P. Sloot: Introduction to Modeling of Complex Systems Using Cellular Automata, Springer, In
book: Simulating Complex Systems by Cellular Automata (Understanding Complex Systems), Berlin, Heidelberg, 1-16,
2010.
[3] J. Kroc: Diffusion Controlled Cellular Automaton Viewed as Example of Self-Organization within Biology,
https://www.researchgate.net/publication/280933644_Diffusion_Controlled_Cellular_Automaton_Viewed_as_Example_
of_Self-Organization_within_Biology.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Design and Implementation of Cellular

Automaton Simulating Domain Growth

Martin Mužák

Supervisor: RNDr. Jǐŕı Kroc, Ph.D.

9th May 2016

Acknowledgements

I would like to thank my supervisor RNDr. Jǐŕı Kroc, Ph.D. for introducing
me to this interesting topic, as well as for the support during the development
process and writing the thesis text. Also, I would like to thank my family and
friends for all the support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 9th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Martin Mužák. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mužák, Martin. Design and Implementation of Cellular Automaton Simulat-
ing Domain Growth. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2016.

Abstract

This bachelor thesis is devoted to design and implementation of the graphical
user interface of cellular automaton simulating domain growth. User interface
is implemented in C++ with usage of framework Qt. Important elements
are intuitive controls of the application and clean code, which allows another
program modifications. Application allows user to set initial location of the
domains and their growth factor. During simulation user can perform selected
actions.

Keywords desktop application, complex system, celullar automata, domain
growth, self-organization, emergence, visualisation, C++, Qt

ix

Abstrakt

Tato bakalářská práce se věnuje návrhu a implementaci grafického uživatelského
rozhrańı buněčného automatu simuluj́ıćı r̊ust domén. Uživatelské rozhrańı je
implementováno v jazyce C++ s použit́ım frameworku Qt. Hlavńım požadavkem
je intuitivńı ovládáńı a čistý kód, umožňuj́ıćı daľśım úpravy programu. Apli-
kace nab́ıźı možnost počátečńıho rozložeńı domén a jejich faktoru r̊ustu. Během
simulace lze provádět vybrané akce.

Kĺıčová slova desktopová aplikace, komplexńı systémy, buněčné automaty,
r̊ust domén, samoorganizace, emergence, vizualizace, C++, Qt

x

Contents

Introduction 1

1 Introduction to Complex System and Cellular Automata 3

1.1 Complex Systems . 3

1.2 Cellular Automata . 5

2 Simulation of domain growth using cellular automaton 11

2.1 Introduction . 11

2.2 General Concept . 12

2.3 Variables . 12

2.4 Rules definition . 12

2.5 Demonstration . 13

2.6 Possible improvement of algorithm/known bug 13

3 Software requirements 15

3.1 Functional requirements . 15

3.2 Non-functional requirements . 16

3.3 User interface requirements . 16

4 Analysis of the application 17

4.1 Typical user . 17

4.2 Use cases . 18

5 Design of the application 21

5.1 Design of graphical user interface 21

5.2 Cellular automaton . 22

5.3 Class design . 22

5.4 Technologies . 23

6 Realisation 25

xi

6.1 Drawing window implementation 25
6.2 Simulation of the domain growth 26
6.3 Domain adding . 28
6.4 Configuration saving . 29
6.5 Saving image of the simulation 30

7 Testing 33
7.1 Testing environment . 33
7.2 Scenario . 33
7.3 Test evaluation . 34
7.4 Changes in the application . 35

Conclusion 37
Future work . 38

Bibliography 39

A Acronyms 43

B User’s manual 45
B.1 Introduction . 45
B.2 Program installation . 45
B.3 Initial screen . 46
B.4 Setting up the simulation . 48
B.5 Running the simulation . 48
B.6 Use case stories . 50

C Programmer’s manual 51
C.1 Introduction . 51
C.2 Programmer’s convention . 51
C.3 Structure of the program . 52
C.4 Compilation & Deployment . 53

D Contents of enclosed CD 55

xii

List of Figures

1.1 Two basic types of neighborhood 7
1.2 Glider . 8
1.3 Blinker . 8

2.1 Demonstration of domain simulation 13
2.2 Known bug in algorithm . 14

4.1 Use case model . 18

5.1 Design of the main window . 22
5.2 Class diagram . 23

6.1 The visualization of the drawing window 27
6.2 The set of the pictures . 31

7.1 New look of the switch button . 35
7.2 The prompter for the switch button 35

B.1 Look of the window after the application start 46
B.2 Control buttons before the simulation starts 46
B.3 Control buttons during the simulation 47
B.4 Menu bars . 47
B.5 A screen with domains and drawn wall cells 49
B.6 A detail of the domain . 49
B.7 A screen during the running simulation 49

xiii

Introduction

Very often scientists struggle with the problem of simulating various physical
phenomena, for example spreading of the forest fires or organization of the ants
in an ant colony. In 1940s, John von Neumann and Stanislav Ulam discovered
the concept of cellular automata[1], which von Neumann defined as a method
of complex systems simulation. Cellular automaton theory is described as a
universe consisting of an homogeneous array of “cells”[2, 3]. Each cell has
a finite number of states and according to its current state and rules, which
are defined for the whole system, the cell reacts to specific situations. As
computations of cellular automata run simultaneously for all cells at the same
time, they are seen as a paradigm of distributed computations. Based on von
Neumann’s thesis, many scientists had contributed to this field.

Nowadays, we can find a number of programs where evolution of CAs
can be simulated. However, the spectrum of possible physical phenomena
described by cellular automata[3, 4] is so wide that creating a program which
would cover the whole spectrum is impossible. Therefore, this thesis is dedi-
cated only to a part of this spectrum, the self-organization, which is one of
the key processes observed within complex systems.

The main goal of this thesis is to enable researchers to understand basics
of complex system modelling on an example dealing with domain growth[5]
and to conduct their own research motivated by the program. The application
offers a great degree of freedom in configuration of simulation, with a possibil-
ity to save simulated models as an image file in several formats. Another goal
of this thesis is to improve the accessibility of programming of the complex
systems. The application offers to switch on the hints and prompter for every
user action, so the less skilled users can use the program without being afraid
of the lack of knowledge. The application is open-source, which means that
anybody can modify the source code and develop his/her ideas on how to
improve the program.

The first chapter is devoted to the introduction into the complex systems,
especially in one way of their possible simulation - cellular automata. In

1

Introduction

the next chapter, the current state of the art is analyzed. The third chapter
contains definition of the functional requirements, non-functional requirements
and requirements on the graphical user interface. The next chapter continues
with the analysis and describes typical users and use cases. The fifth chapter
is about application design, technologies used for implementation and class
design. Classes implemented in the resulting application are also described
in this chapter. The next chapter contains a description of the realization
of the program and the source code snippets, which implements important
and complex parts of the application. In the chapter dealing with application
testing, used techniques and actions that were taken after the test results
evaluation are described. The last chapter is a summary of the whole thesis
and it concludes whether the requirements were fulfilled.

2

Chapter 1

Introduction to Complex
System and Cellular Automata

The basic knowledge of the complex systems and the ways how to simulate
them is crucial for understanding of the CSs applications. This chapter is
meant to provide such knowledge. It contains a brief introduction to this
issue, as well as an introduction to the massive parallel computations, self-
organization and emergence.

1.1 Complex Systems

1.1.1 Definition

There is a number of widely used definitions describing complex systems. A
lot of researchers have their own explanation[1, 6, 7], but generally, we can
describe them as subjects consisting of well-defined components. Together,
they are forming a functioning whole, where behavior is dynamical and with
responses to the environment.

“In complex systems we observe group or macroscopic behavior emerging
from individual actions and interactions. One of the first biological observa-
tions of complex systems, if not the first one, is linked to ant-colony behavior.
Each ant is simply following its internally encoded reactions to external stim-
uli. It is a well-known fact that ant species may have a set of 20 up to
40 reactions on any given external stimulus. Despite the lack of controlling
entities, an ant-colony builds its ant-hill, feeds it, protects it, attacks other
colonies, follows a foraging strategy etc. This emergent behavior observed in
ant-colonies is prototypical for many other complex systems.”[4]

“The components of a complex system are most commonly modeled as
agents i.e. individual systems that act upon their environment in response to
the events they experience. Examples of agents are people, firms, animals and
molecules. The number of agents in the system is in general not fixed as agents

3

1. Introduction to Complex System and Cellular Automata

can multiply or die. Usually, agents will react to a specific condition perceived
in the environment by producing an appropriate action. The casual relation
or rule connecting condition and action, while initially fixed for a given type
of agent, can in some cases change, by learning or evolutionary variation.”[8]

Examples of a complex system can be found in the whole spectrum of
scientific disciplines, from physics, medicine or chemistry to parts of human
society like stock markets or the Internet network. A few concrete examples
that can be observed within complex systems are such phenomena like cloud
patterns, fluid velocity or immune system.

1.1.2 Self-organization

“A promising approach to the problem of dynamical emergence is provided by
the recently developed models of self-organization. Self-organization may be
defined as a spontaneous (i.e. not steered or directed by an external system)
process of organization, i.e. of the development of an organized structure. The
spontaneous creation of an ‘organized whole’ out of a ‘disordered’ collection of
interacting parts, as witnessed in self-organizing systems in physics, chemistry,
biology, sociology, is a basic part of dynamical emergence.”[9]

Even though sometimes it is hard to decide if the system is self-organizing
because it always depends on the level of the observer’s abstraction, self-
organizing systems have the following characteristics[10]:

• Complexity – Self-organizing systems are always complex systems,
which are not organized centrally but in distributed manner.

• Control parameters – A set of parameters influences the state and
behavior of the system.

• Systemness – Self-organization takes place in a system in a coherent
whole that has parts, interaction, structural relationship, state, and a
border, which delimits it from its environment.

1.1.3 Emergence

“Emergence is a classical concept in systems theory, where it denotes the
principle that the global properties defining higher order systems or ‘wholes’
(e.g. boundaries, organization, control, . . .) can in general not be reduced
to the properties of the lower order subsystems or ‘parts’. Such irreducible
properties are called emergent.”[9]

Another popular definition of emergence as simple as possible: “Order
arising from chaos”[11]. But despite of that we can define some properties of
emergence:

• No leadership – There is no conductor that organize other emergents.

4

1.2. Cellular Automata

• Dynamic – Emergents are always in process, continuing to evolve.

• Coherence – A stable system of interactions.

A great example of how to imagine emergence is a traffic jam. Defined
behavior depends on which level we are thinking. If we see the traffic jam as
a simple collection of cars, then each car of that collection is moving towards
its final destination, which should mean that the whole collection is moving
forward. But if we make the simulation of a traffic jam, someone might be
surprised that the traffic jam is in fact moving backwards. This example shows
how important it is, on which level of description we are trying to define the
system with lots of interacting parts.

1.2 Cellular Automata

1.2.1 Definition

There are several ways how to model complex systems. One of the approaches
to model them are cellular automata[3], which is not very common method
but very important. Another method for complex system simulation is agent
based modeling.[12, 13]

A cellular automaton is a model of a physical system, where space and
time are discrete. It consists of a regular grid of cells, where each cell can
acquire a finite number of states and also has a set of rules for evolving. Each
cell has a defined initial state. Rules are applied at each time step, where each
cell updates its status according to the status of the cells in its neighborhood.

“In the cellular-automaton model of a dynamical system, the ’universe’
is a uniform checkerboard, with each square or cell containing a few bits of
data; time advance in discrete steps; and the ’laws of the universe’ are just
a small look-up table, through which at each time step each cell determines
its new state from that of its neighbors; this leads to laws that are local
and uniform. Such a simple underlying mechanism is sufficient to support a
whole hierarchy of structures, phenomena, and properties. Cellular automata
provide eminently usable models for many investigations in physics, chemistry,
and biology, as well as for experiments in combinatorics and for studies in
parallel computation.”[14]

Despite of the fact[15] that the concept of cellular automata was described
decades ago, there are tools for modeling complex system only for a shorter
period of time. Without the use of high-performance computers, cellular auto-
mata would not be able to solve real world problems. In the 80s and early
90s, the best way to achieve the best performance of the cellular automaton
was to use a specialized hardware which has been designed for this cause.
Examples of this machine is CAM (Cellular Automaton Machine[16]). There
are also several applications dedicated to simulation of the behavior of the
cellular automata (e.g. CAMEL or StarLogo[17]).

5

1. Introduction to Complex System and Cellular Automata

Eventhough applications of the cellular automata are very various systems,
they can be described by following definitions[18]:

• Discrete n-dimensional lattice of cells – We can have one-dimensional,
two-dimensional, . . . , n-dimensional CA. The atomic components of the
lattice can be differently shaped: for example, a 2D lattice can be com-
posed of triangles, squares, or hexagons. Usually homogeneity is as-
sumed: all cells are qualitatively identical.

• Discrete states – At each discrete time step, each cell is in one and
only one state, σ ∈ Σ, Σ being a set of states having finite cardinality
|Σ| = k.

• Local interactions – Each cell’s behavior depends only on what hap-
pens within its local neighborhood of cells (which may or may not include
the cell itself). Lattices with the same basic topology may have different
definitions of neighborhood, as we will see below. It is crucial, however,
that “actions at a distance” not be allowed.

• Discrete dynamics – At each time step, each cell updates its cur-
rent state according to a deterministic transition function ϕ: Σn → Σ
mapping neighborhood configurations (n-tuples of states of Σ) to Σ. It
is also usually, though not necessarily, assumed that (i) the update is
synchronous, and (ii) ϕ takes as input at time step t the neighborhood
states at the immediately previous time step t - 1.

1.2.2 Types of neighborhoods

Before the demonstration of the typical example of the cellular automaton, it
is necessary to define the set of cells that are used for evaluation of the new
updated cell’s status during time step. The used grid is usually square, but it
can also be triangular, hexagon or Voronoi. There are two fundamental types
of neighborhood:

• von Neumann1.1a – Cells having influence on given cell are only those
sharing whole side with it, e.g., 4 cells when radius equals to one (r=1).
A definition of a neighborhood is often provided in the following way[19].
In the case of a von Neumann neighborhood arbitrary r:

N r
N (i, j) = {σk,l| |i− k|+ |j − l| ≤ r}

= {σi,j , σi−1,j , σi,j−1, σi+1,j , σi,j+1}.
(1.1)

• Moore1.1b – Given cell is influenced by the cells sharing side or the
corner e.g. 8 cells when radius equals to one (r=1). Radius of the

6

1.2. Cellular Automata

neighborhood can be any positive value. Neighborhood can be defined
by the following equation[19] for arbitrary r:

N r
M (i, j) ={σk,l| |i− k| ≤ r, |j − l| ≤ r}

={σi,j , σi−1,j , σi−1,j−1, σi,j−1, σi+1,j−1,

σi+1,j , σi+1,j+1, σi,j+1, σi−1,j+1}.
(1.2)

• Random – Given cell is influenced by a randomly chosen set of cells
that can be quite distant from the cell but the size of neighborhood is
limited compared to the size of the World.

(a) The von Neumann neighborhood
with radius 1.[20]

(b) The Moore neighborhood
with radius 1.[21]

Figure 1.1: Two basic types of neighborhood.

1.2.3 The Game of Life

The most famous model among two-dimensional cellular automata is the
Game of Life[22], described by the British mathematician John Horton Con-
way in 1970. The cellular automaton consists of a certain number of cells,
where each cell can acquire only two states and four rules which specifies the
rules of updating status of every cell each time step. The reason behind the
name “Game of Life” is a certain resemblance to living organisms.

The rules applied each time step are following:

• If a cell is alive and has two or three living neighbors, it stays alive for
the next generation (survival).

• If a cell is alive and has fewer than two living neighbors, then it dies
(under-population).

• If a cell is alive and has more than three living neighbors, then it dies
(overpopulation).

• If a cell is dead and has exactly three living neighbors, then it becomes
alive (reproduction).

7

1. Introduction to Complex System and Cellular Automata

The Game of Life represents a cellular automaton with emergent behavior.
When a random initial states of the cells are set and several time steps are
applied, a pattern behavior created by the living cells can be observed. Some
of those structures are called “gliders”1.2. An structure called “blinker”1.3
consists of three living cells changing every time step from a horizontal cluster
to a vertical cluster and back.

Figure 1.2: Demonstration of an emergent pattern called Glider, which is
created by living cells.[23]

Figure 1.3: The emergent pattern called Blinker.[24]

1.2.4 Implementation

The Game of Life is not hard to implement, but one has to keep in mind the
parallelism i.e. the evaluation of each cell is performed simultaneously. It
means that the values from the old time step/layer have to be kept until all
values from the new step/layer are evaluated. In such way, we easily store the
old values separated from the new ones.

Sequential implementation can be written with usage of the two 2D arrays
of bool variables, where value “1” demonstrates a living cell and value “0” a
dead cell. Algorithm iterating through first array’s cells, counts the number
of its neighbors, which is a totalistic rule, decide the new updated state of
the cell according to the given rule and save the new value into the second
array. When all cells are counted and their new states are saved in the second
array, then pointers to these arrays are swapped, so the first pointer always
references to the array with new states.

8

1.2. Cellular Automata

An abstract code follows:

• count new states(p array1, p array2) – Number of living neighbours for
each cell in the first array is counted and new states of the cells are saved
into the second array.

• swap pointers(p array1, p array2) – Pointers are switched, so pointer
p array1 references on the array with the new states.

• print(p array1) – Voluntary step, cells in the array1 are printed, repre-
senting state of the cellular automaton at the end of the time step.

i n t main (void){

. . . // I n i t i a l i z a t i o n o f a r rays
// and s e t t i n g up i n i t i a l s t a t e s

f o r (i =0; i<NUMBER OF TIME STEPS; i ++){
count new statuse s (p array1 , p array2) ;
switch p o i n t e r s (p array1 , p array2) ;
p r i n t (p array1) ;

}

9

Chapter 2

Simulation of domain growth
using cellular automaton

This chapter contains information about the cellular automaton used in the
developed application. General information about the set of states and rules
used for simulation of domain growth are described here. Author of the im-
plementation of the automaton is Jǐŕı Kroc, who is also the leader of this
bachelor thesis. Subject of this thesis is to write a graphical user interface for
the simulation. Originally, graphical output is implemented as generation of
pgm figures that can be converted into another figure formats. Information
provided in this chapter is a summary of the publication “Diffusion Con-
trolled Cellular Automaton Performing Mesh Partitioning” [5] also written by
Jǐŕı Kroc.

2.1 Introduction

A model performing mesh partitioning into computationally equivalent mesh
parts on regular square lattices using a diffusion controlled cellular automaton
is used for the simulation of domain growth. Algorithm is processing inform-
ation in parallel on a single processor computer. We do not have access to a
truly parallel computers. Hence, all computations are in the end processed
sequentially on a single processor computer. Implementation of a parallel
computer for a single processor computer is often called back-end. In our case
back-end and local rule are mixed together. Each cell assigned as a domain
seed has a pre-defined amount of growth factor. According to the rules used for
migration, the borders of domains are changing each time step. The model
uses self-organization principles ensuring convergence. Solution is achieved
from any initial configuration.

11

2. Simulation of domain growth using cellular automaton

2.2 General Concept

Each cycle is composed of five steps, which are applied in a specific order -
growth of domain, two steps of diffusion of diffusive agents and two steps of
migrations of domain boundaries. The initialization has to be done before
the simulation starts. Each simulated domain is initialized as a single cell
possessing the domain number and a certain amount of diffusive agent. If too
low initial value is taken, then algorithm becomes unstable. Other cells are
empty or marked as walls. The difference between walls and empty cells is,
that a cell that represents a wall cannot be occupied by any domain. Domain
can migrate into an empty cell or neighboring domain if difference between
migrated cell amount of diffusive agents and amount of diffusive agents of the
cell of the migrating domain is bigger than a given threshold. The threshold
can be too high, if too low amount of diffusive agent is taken as the initial
value.

2.3 Variables

Each cell has the following set of variables:

• domain-number – The unique identification of the domain which fills
the given cell.

• growth-factor – Stores the amount of growth factor.

• distribution[0], distribution[1], distribution[2], distribution[3]
– Store fractions of growth-factor split into the neighboring cells via
diffusion - each variable for one neighboring cell.

• protect – Flag, if set, given cell is going to migrate and flag prevents the
cell to be migrated by domain occupying neighboring cells and avoids
mixing of diffusive agents from different domains.

2.4 Rules definition

Definition of all rules applied in the Diffusion Controlled Cellular Automaton:

• Growth rule G – Performs growth of domain seeds. For each cell, there
are four cells in Von-Neumann neighborhood which are tested against
possibility to grow. Cells defined as the wall cells are not tested because
they cannot migrate as well as they cannot be migrated.

• Migration rule M1 – Tests conditions of cell being considered for
migration. Variable protect could be set to a value that lock the poten-
tial migration sub-step against being influenced by other cells until the
migration sub-step is finished. A migration threshold is defined.

12

2.5. Demonstration

• Diffusion rule D1 – At first, the growth factor of migrating domains
is deposited into the possible directions. It is considered as a possible
direction if the neighboring cell belongs to the same domain.

• Diffusion rule D2 – Deposited growth factor is shifted into appropriate
neighboring cells. This rule finalizes actions done in rule D1.

• Migration rule M2 – Finalization of the simulation cycle. Movements
of domain borders from protected cells are done by specific rules.

2.5 Demonstration

Following figures display the state of domains for given initial positions in
specific time with wall cells covering part of the grid.

Figure 2.1: Demonstration of domain simulation with eight domain seeds and
boundaries (times 0, 1k, 10k, 20k).

2.6 Possible improvement of algorithm/known bug

When the initial amount of growth factor of domains differs by hundreds
or more, consistency of the domain can be disrupted by a domain. Very
probably the scenario of orphans creation is the following. A domain having a
lower amount of growth factor is “eaten” by that with greater amount of GF.
Shrinking domain leaves behind “peninsulas”2.2a that can be scissored2.2b by
the domain having a greater amount of GF.

13

2. Simulation of domain growth using cellular automaton

(a) The red domain is “eaten”
by the yellow domain and creates
the peninsula.

(b) The peninsula of the red domain
is scissored and an orphan is created.

Figure 2.2: The feature of the algorithm that was not recognized during its
design because amount of diffusive agents within all domains was kept equal.

14

Chapter 3

Software requirements

Software requirements define the behavior of the application, its external inter-
faces, portability of the software across various platforms or language access-
ibility.

Requirements are split into three sections. First are functional require-
ments which define functions and functionality of the software. Second are
non-functional requirements, those requirements are not related to the func-
tional aspect of the software. Third, user interface requirements define the
behavior of the graphical user interface.

3.1 Functional requirements

• Application shows the simulation model within the application window.

• Allow users to save their configuration into the file and load it from the
file.

• Allow users to set the number of domains used in a simulation model
and their initial position and growth factor.

• Allow users to draw model boundaries in the simulation window.

• Allow users to pause simulation and save a graph into the file as a picture
in PNG, JPEG and BMP format.

• Allow users to save a set of pictures of a simulation model into the chosen
directory.

• Application contains two modes, first for skilled users and the second
one for beginners, where the prompter will be available for all input
windows and simulation model.

• Application validates configuration before every execution.

15

3. Software requirements

3.2 Non-functional requirements

• Application is compatible with operating system Windows 7 and newer,
and Linux 14.

• Application is prepared for the various language localization, e.g. all
labels are in tags allowing translation.

• Release package contains all necessary files and libraries for executing
the application.

• Application is available from websites www.researchgate.net
and www.sourcefourge.net

3.3 User interface requirements

• When user violates the rules for drawing domains and walls, the applic-
ation shows message box with an error message.

• Domain growth factor of each domain can be set from the main window.

• Scroll area is available when there are too many domains to fit them
into the window without scrolling area.

• Each button shows tips with its functionality description.

16

www.researchgate.net
www.sourcefourge.net

Chapter 4

Analysis of the application

After the definition of the software requirements, it is now possible to proceed
to the second part of an analysis of the program. The first half is about
defining the users, which will most probably use the application to conduct
their work or use it for their studies. Each user definition is complemented
with the description of their expected knowledge and abilities. The second
half is describing the most often actions, which will be taken by the users.
Each use case contains scenario of the actions done in specific order.

4.1 Typical user

Users of this application are considered to have at least some basic knowledge
of the issue of the complex systems. There are two types of the typical users:

• Student – Student of the university with a technical orientation, trying
to understand complex systems, cellular automata and self-organization.
He/She has great skills in operating computers and he/she can easily get
familiar with various applications. He/She has a lack of some knowledge
of the action he/she is taking by operating the program, but he/she is
willing to learn the theory how the cellular automaton, used in this
application, works. He/She has some basic knowledge about program-
ming and is able to implement his/her own ideas to improve open-source
applications.

• Researcher – Scientist with a great knowledge of the complex systems.
He/She understands how cellular automata work and how the rules are
applied. He/She has average computer skills. He/She does not have
time to learn how to work with applications that are too complicated
to control. He/She demands possibilities to save his/her current work
or save an image of the cellular automaton to use it for some following
research. He/She has no knowledge about programming.

17

4. Analysis of the application

• Teacher – Teacher with an average knowledge about complex systems
and cellular automata. He/She is able to control the basic application
but he/she has a minimal knowledge about programming. He/She wants
to use useful programs as learning tools for his/her students.

4.2 Use cases

Figure 4.1: Role “User” and the actions (events) which can be done within
the application.

• Simulation of domain growth with saving results of the work.

1. Scenario starts at the moment when user starts the application.

2. User marks cells in the drawing window as seeds of domains.

3. User fills the amount of domain growth factor for each domain.

4. User draws boundaries in the cell window.

5. User starts the simulation.

6. If user is not satisfied with the model, he/she modifies the position
of the domains and its domain growth factor.

7. User saves configuration of the model for further use.

8. User saves images of the simulation.

18

4.2. Use cases

• Modification of the source code.

1. Scenario starts when a user opens a project in Qt Creator

2. User adds his/her own methods in existing classes or create his/her
own class in a separate file, in this case he made himself/herself
sure, that the new file appears in a *.pro file.

3. User compiles the program in debug mode and check if the program
works correctly without crashes.

4. User compiles the program in release mode.

5. User makes release package by adding libraries (*.ddl files).

19

Chapter 5

Design of the application

Design of the application can be split into the two parts:

• Graphical user interface

• Cellular automaton

5.1 Design of graphical user interface

Thanks to the knowledge gained during the analysis, it was possible to design
a prototype of the application’s main window. For the modeling of the wire-
frame[5.1], Balsamiq1 application was used. The main window was split into
several parts:

• upper menu bar,

• left part of the window displaying all domains and their specifications,

• drawing window,

• buttons for controlling the simulation.

All elements can be reached directly from main window. Upper menu bar
is split into the three parts, each part containing functionality creating logical
unit.

Drawing widget has two modes, one for drawing domains and wall cells.
The second mode is used for the simulation rendering.

1https://balsamiq.com/

21

https://balsamiq.com/

5. Design of the application

Figure 5.1: Original design of the main window.

5.2 Cellular automaton

The code implementing CA was programmed by Jǐŕı Kroc. Originally, the
programming language used for the implementation was C.

It was decided to rewrite the implementation of the cellular automaton to
the C++ language. Modifications done in the source code of CA do not change
its functionality. As a result, new class dedicated to the cellular automaton
was created and performs all necessary actions (initialization, all steps of the
simulation) needed for the simulation.

5.3 Class design

Before the beginning of the implementation classes were designed, which im-
plements the application’s functionality and splits it into logical parts.5.2 The
application was implemented in accordance with this design.

• MainWindow – Represents the main window of the application. It is
responsible for application start and creation of the graphical interface
(e.g. menu bars, layouts, drawing window). It connects elements of GUI
(e.g. buttons, labels) with appropriate methods.

• DrawWidget – A custom widget inherited from the basic widget (QWid-
get). It represents a drawing window displayed in the main window of the
application. This class implements methods for domain and boundaries
drawing. Values from the window are used in the cellular automaton as
parameters for simulation.

22

5.4. Technologies

Figure 5.2: Class diagram showing how classes are composited.

• GroupBoxWidget – A custom widget inherited from Qt basic class
QGroupBox. The class represents values for each domain drawn in the
drawing window. It contains basic elements like label, buttons and line
edits. In each instance of this class, information about one domain is
stored.

• CellularAutomaton – Methods in the class were originally created
by Jiri Kroc and refactored for the purposes of the application by the
author of this thesis. The class represents the cellular automaton and
back end part of this program. At the beginning of the simulation it
loads values from GroupBoxWidget and DrawWidget.

• InfoLabel – A custom widget inherited from Qt class QLabel. It rep-
resents label with information displayed in the main window when there
is no domains marked in the drawing window.

The design counts also with one additional header file containing the definition
of the initial values. This file makes their further modification easier, so for
the change of the value, user does not have to search throughout the whole
project files.

5.4 Technologies

An important part of the software development process is to choose the right
tools for the implementation and the way how to implement the resulting
application. Both parts are examined in detail in the following sections.

5.4.1 Programming language

The decision which programming language will be used for the implementation
was made by the leader of this thesis in the thesis assignment. The language
is C++, same as the language used to create the back end.

23

5. Design of the application

• C++ – Object-oriented language, originally developed as a extension for
the language C in 1970s. C++ is a popular language with many open
source libraries and frameworks.

5.4.2 Frameworks and libraries

The extensions were used to help to implement graphical user interface, suit-
able extensions for this cause are:

• Qt2 – Qt is a multi-platform framework for creating graphical user inter-
face in C++. It is very popular thanks to its enormous documentation[25].
To facilitate work, users can use Qt Creator and Qt Designer for design-
ing their applications.

• GTK+3 – GTK+ is a multi-platform toolkit written in C, formerly
known as GIMP Toolkit. GTK+ contains a set of widgets suitable for
creating graphical user interface. It is licensed under the terms of the
LGPL i.e. GTK+ is open source toolkit. For easier design implementa-
tion there are several applications which offer GUI Designer.

The decision, that used framework will be Qt was made by the leader of the
thesis.

5.4.3 Development environment

Based on the fact, that the application will be written in Qt, Qt Creator4

will be the development environment.
Qt Creator is developed by Qt Project as well as the whole framework Qt.

It includes debugger, syntax highlighting and autocompleting. Qt Creator
includes Qt Designer, which is an application for designing graphical user
interface from Qt widgets.

2http://www.qt.io
3http://www.gtk.org
4http://www.qt.io/ide/

24

http://www.qt.io
http://www.gtk.org
http://www.qt.io/ide/

Chapter 6

Realisation

In this chapter, the important and interesting parts of the implementation
of the resulting application are covered. The chapter doesn’t contain any
information about regularities or general rules for implementation in language
C++ or in Qt. The information about classes and methods needed during the
implementation were found in the official documentation[25] of the framework
Qt.

6.1 Drawing window implementation

The drawing window6.1 is implemented in the class DrawWidget. This class
represents, in Qt terminology, a custom widget, which means that the class
inherits most of its behavior from standard Qt class (in this case it inherits
from QWidget class), but there are some changes in functionality. It is used
to represent a 100x100 grid. Each cell can represent a domain, a wall or an
empty cell. For implementation, it was crucial to reimplement the following
methods:

• mousePressEvent – The method called when user press the left mouse
button on the top of the widget. The method at first saves the position
of the cursor to the class variable firstPos, which is an instance of the
QPoint class, a class suitable for saving coordinates. The current state
of pixels in image is saved to the backup array of pixels. This array is
used for rendering the rectangular boundaries.

• mouseMoveEvent – The method called every time when user holds
the left mouse button and moves the cursor over the drawing widget.
The first thing which is done, is to revert changes in pixels to the state
when the mouse button was pressed. Then, a rectangle is drawn from
the initial position with coordinates saved in variable firstPos to the
position where mouse cursor is located.

25

6. Realisation

• mouseReleaseEvent – This method is called when the mouse button
is released. At first, method checks if the initial position is not the same
as the mouse release position. If the position is the same and the cell is
empty, a domain is created. If the position is the same but the cell is
not empty, a message box with a warning is displayed and no action is
done.

If the initial position and the mouse release position differs, then the cells
which are being between the initial position and the mouse release pos-
ition are checked whether there are empty or representing the domain.
Then, a rectangle is drawn into the drawing widget.

• mousePaintEvent – This method repaints the whole widget. It is
called at the end of all previous methods, where it is invoked by the
command update().

For the initial visualization of the widget, it was decided to use white and
yellow pixels, thanks to that, it is easy to recognize the grid and it makes
marking an individual cell easier. The black color is used for representing
domains and the boundaries can be recognized by its red color. Each color
can be easily changed by rewriting its value in the class constructor.

One of the class variables is a pointer to the instance of the CellularAuto-
maton class. The instance of that class is created during the start of the
application. Before the beginning of the simulation, the properties of cell
filled their counterparts in CA class.

The colors used in the simulation are defined in the method named set-
Colors, the first twenty colors are hardcoded.

Listing 6.1: Example of hardcoded values.

co lArray [0] = QColor (2 5 5 , 1 7 9 , 0) ; // v i v i d y e l l o w
co lArray [1] = QColor (128 , 62 , 117) ; // s t r o n g p u r p l e
co lArray [2] = QColor (2 5 5 , 1 0 4 , 0) ; // v i v i d o r a n g e

Additional colors are set by counting rgb values, however the colors created
by this generator differ so little that it was necessary to use hardcoded values.
The number of additional colors is set by a parameter. Its default value is 40
but can be easily modified in a data file.

6.2 Simulation of the domain growth

The simulation starts when user press the button “Start”. To allow user
to control the simulation while computations of each time step are running,
the usage of the threads was considered. Because of the goal to keep the
application as simple as possible, Qt class “Timer”5 was used instead.

5http://doc.qt.io/qt-5/qtimer.html

26

http://doc.qt.io/qt-5/qtimer.html

6.2. Simulation of the domain growth

Figure 6.1: The look of the drawing window with domain and boundaries

Timer class handles a repetitive calling of the method to which is con-
nected. After the creation of the connection, the timer can be started. An
argument taken for calling “timer->start(int)” sets how often the connected
method will be called. In the example 6.2, the method “startSimulation()”
would be called every 1000 milliseconds.

Listing 6.2: Example of QTimer initialization.

QTimer ∗ t imer ;
t imer = new QTimer(this) ;
connect (timer , SIGNAL(timeout ()) ,

this , SLOT(s t a r t S i mu l a t i on ())) ;
timer−>s t a r t (1 0 0 0) ;

At the beginning of the simulation at least one domain has to exist. Then
values representing domains in the cellular automaton are filled. These values
(e.g. coordinates of the domains and value of domain growth factor) are taken
from all group boxes and stored in variables of the CA, where they are used
afterwards. Other CA’s variables needed for the simulation are set as well.
Then, the timer can be started.

The timer handles calling the method of the DrawWidget class, values of
the CA are loaded into the values of the drawing window after every time step
is done by the automaton. As the timer calls the method only once per given
amount of time, we can use buttons to control the simulation. Every time the
simulation is paused or stopped the timer is stopped as well.

27

6. Realisation

6.3 Domain adding

The implementation of the domain adding shows the complexity of Qt. The
creation of the domain starts when a user marks a single cell in the drawing
window. It is checked whether the cell is not already occupied by another
cell or wall, if not, signal “createDomain(int x, int y)”, where integer x and y
represents a position of the domain in the drawing window, is sent out. This
signal is caught in MainWindow class which causes calling of the AddDomain
method.

At first, a box with the specification of the domain is created and its
line edits are filled with the value and the erase button is connected with the
appropriate method. When the beginner’s mode is on, the value of the growth
factor is filled with the recommended value 6.3. At the end of the method,
the size of the scroll area is checked and changed if needed.

Listing 6.3: Calculation of the recommend value of the growth
factor. This value is used when the beginner’s mode is on. De-
fault value of GF PER CELL VALUE, DRAW WINDOW X SIZE and
DRAW WINDOW Y SIZE is 100.

int ca l cu la t edVa lue = (GF PER CELL VALUE
∗ DRAW WINDOW X SIZE
∗ DRAW WINDOW Y SIZE)
/ number of domains ;

ca l cu la t edVa lue = ca l cu la t edVa lue
− GF PER CELL VALUE
∗ (2∗DRAW WINDOW X SIZE − 2
∗ (DRAW WINDOW Y SIZE−2)) ;

At the beginning of the resize scroll area method height of the current
group boxes is counted. The group boxes are displayed in two columns, so
their amount must be divided by 2 and because of the rounding, the amount
of the domain must be incremented by 1. Because of the margin size of the
group boxes, value 9 is added to their height. Then, the counted value is
compared with the size of the main window and the bigger value is used for
the new size of the scroll area. If the counted value of the group boxes height
is used, then value 30 is added because of the top margin of the layout, where
group boxes are stored.

28

6.4. Configuration saving

Listing 6.4: Implementation of the scroll area resize.

void MainWindow : : r e s i z e S c r o l l (){
int groupBoxHeight =

(currentDomains +1)/2∗(GROUP BOX HEIGHT+9);

i f (groupBoxHeight>SCROLL HEIGHT){
ui−>scro l lAreaWidgetContents

−>setMinimumHeight (groupBoxHeight +30);
} else {

ui−>scro l lAreaWidgetContents
−>setMinimumHeight (SCROLL HEIGHT) ;

}
}

6.4 Configuration saving

Saving of the configuration can be invoked within the main window of the
application from the menu bar named File. At first, the file dialog appears,
where user can choose the directory in a file system where the configuration
file will be saved. The default extension for the saved file is “.ca”. After
validation that the string where the absolute address is supposed to be is
not empty, the program proceeds to the next step. The output file stream is
open for the chosen file. The first item saved into the file is a number of the
domains. The following items are the specifications of each domain (e.g. their
position and domain growth factor), if the value of a domain growth factor
is empty, then 0 is saved into the file. The information about one domain is
always on a single line and is saved in format “xx,yy:gf”, where:

• xx – X coordinate of the domain.

• yy – Y coordinate of the domain.

• gf – Value of the growth factor.

After the domain specification is saved, the method from the drawwidget is
invoked. The return value of this method is one string with the information
about all pixels. The empty cells are marked with a value of 0 and not empty
cells are marked as 1.

The configuration file is the text file that allows user’s modification from
any text editor. Unfortunately, this option can cause that user will corrupt
the structure in which the data are saved. For this reason the validation of
the file during the load is implemented. The validation should prevent the
application to crash or to load corrupted data.

29

6. Realisation

Listing 6.5: Example of the configuration file.

3
13 ,12 :737
38 ,38 :5373
22 ,65 :5775
0000000011111111111111100000000000000. . .
0000000011111111111111111111111000000. . .
0000000011111111111111111111111000000. . .
. . .

6.5 Saving image of the simulation

Saving image is used to save the picture of the simulation in JPG, PNG or
BMP format. This action can be invoked by clicking on “Save as picture”
button, which is in Option tab bar.

This feature was easy to implement thanks to the Qt’s possibilities. At
first, save file dialog is displayed and user is asked to write the name of the
image file and choose an extension for the file. The default extension is JPG.
After validation that the name of the file is filled, the image is saved.

Listing 6.6: Whole method implementing saving picture

bool MainWindow : : saveP ic ture (){
QString f i leName = QFileDia log : : getSaveFileName

(th i s ,
t r (” Save Image ”) , ” . ” ,
t r (”JPEG (∗ . jpg) ; ;PNG (∗ . png) ; ;BMP (∗ .bmp) ”)) ;

i f (f i leName . isEmpty ())
re turn f a l s e ;

ui−>drawwgt−>grab () . save (f i leName) ;

r e turn true ;
}

In the application, there is also implemented a function for saving multiple
pictures in particular time steps, this function is working similarly to the
function for saving a single picture but it invokes run of the automaton from
the initial position.

30

6.5. Saving image of the simulation

Figure 6.2: Set of the 10 pictures saved in defined time steps via the imple-
mented function in the application (time step 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048).

31

Chapter 7

Testing

Even during the implementation, the application was continuously tested,
every time new functionality was added. This chapter contains information
about how were the final user tests handled.

7.1 Testing environment

Tests were run on a computer with the operating system Windows 10. Before
the start of the test, each testing subject received the list of tasks7.2, which
are supposed to be done in a defined order. These tasks cover the main
functionality of the application.

When the tests start, the testing subject cannot communicate with the
tests supervisor. The supervisor is observing the tester and writing notes of
whether the tasks are successfully completed. If a critical defect appears in
the application, the test is stopped and starts again after the successful bug
correction.

After the end of the test, the testing subject is interviewed:

• if he/she had any difficulties to understand the tasks,

• if any task was hard to complete,

• if the testing subject has any suggestions for the application improve-
ment.

7.2 Scenario

At the beginning of the test, the sheet with following tasks was distributed to
the testers. Goal of the testers were to complete the tasks in the given order.
Tasks are precisely described to avoid any misunderstanding.

33

7. Testing

1. Create six domains.

2. Draw boundaries in the model. The area of the created boundaries has
to be bigger than twenty cells.

3. Start the simulation.

4. Decrease the speed of the simulation.

5. Pause the simulation.

6. Save a single picture of the current state of the simulation window.

7. Stop the simulation.

8. Save the configuration of your model into a file.

9. Clean your workspace, so there are no domains or boundaries. Do not
delete the domain by erase button.

10. Load the configuration from the file, so your workspace will look like
during the saving operation.

11. Delete two out of six domains.

12. Erase half of the boundaries, so the cells are empty.

13. Save a set of the pictures.

7.3 Test evaluation

The application was tested by five users. Each user saw the application for the
first time, a few moments before the test started, so he/she did not have an
opportunity to get familiar with the application nor to read the user’s manual
where it is possible to find help for each task in the test scenario.

A part of the users described the first task as difficult, because they did not
understand how to mark the cell in the drawing window. A label informing
about the domain creation is already present in the application, for that reason
more details about the domain creation are described in the user’s manual.

In the ninth task, testers described the label New on the button in menu
bar as confusing. This button is used to clear the workspace, e.g. to erase
all domains and all wall cells. For that reason the label on the button was
changed to Clear workspace.

As it was expected, the twelfth task was the most difficult to fulfil. Users
found it hard to find the button for changing modes between drawing bound-
aries and drawing empty cells. The actions taken to improve the visibility of
the button are described in the next section.

34

7.4. Changes in the application

The rest of the task were completely fulfilled and users found them easy to
complete. To avoid users confusion, the application will be distributed with
the user’s manual, where each functionality is described in detail.

7.4 Changes in the application

After the test evaluation it was clear that a switcher between drawing modes
has to be highlighted, otherwise users will have a problem to understand this
functionality. Other two cases, which were causing problems to several testers,
where fixed by changing the label text.

To highlight the switcher button, icons were added7.1, so it is now easier to
distinguish in witch mode the application is. Every time the button is pressed
the icon is changed, signalizing which mode is currently used. Also the status
tip, which is located on the bottom of the application window was modified,
now it is displaying more precise information which mode is used.7.2

Figure 7.1: New look of the switch button.

Figure 7.2: The prompter for the switch button.

35

Conclusion

The goal of this thesis was to design and implement a graphical user interface
for a cellular automaton simulating domain growth. Complex systems and
cellular automata are difficult fields of the science, so it was important to
make the graphical interface simple enough to facilitate the work for the people
which are interested in this issue. I believe that the application fulfilled this
requirement. After the discussion with the leader of the thesis we wrote down
all requirements necessary to make the application accessible for students,
researchers and even teachers. According to the requirements, a wireframe
representing the resulting application was created and classes needed for the
implementation were designed. The implementation was done without any
bigger issues; problems like how to involve the implementation of the cellular
automata into the application or how to allow users to control the application
while the simulation is running were solved in a few days. Subsequent user
testing were done without discovering any critical defects, only a few minor
bugs were discovered, but they were easily fixed by changing a few lines in the
source code.

Currently, the source code of the application is placed into the ResearchG-
ate and the SourceForge website and can be freely downloaded. Thanks to the
application, users can easily simulate the domain growth and use the images
of the simulation in their work.

The application fulfills all the requirements defined in the chapter 3 “Soft-
ware requirements”. It allows user to define his model, set domains and to
draw boundaries. Image of the simulation can be saved as a single picture
or as a set of the pictures. Configuration of the cellular automaton can be
saved or loaded from the file. User can switch between the beginner mode and
professional mode, so the amount of the domain growth factor is set to the
recommended value.

37

Conclusion

Future work

Even though the application is finished and the requirements are fulfilled,
there are still several possibilities how to improve the application. The source
code is free to modify so anyone with the knowledge of the programming in
C++ can improve the application.

• When the difference between the amounts of the diffusive agents of two
domain is big enough, “weaker” domain can be tore apart and the orphan
cell is created. This bug is described in 2.6 “Possible improvement of
algorithm/known bug”.

• To allow non-English speakers to use the application, it would be nice to
offer various language localizations. During the implementation of the
application this option was considered and each label displayed in the
application is written in tr tags allowing easy translation. By using the
Qt function lupdate, translation form can be created.

• To allow users to set the size of the drawing window. Currently, the size
of the drawing window is 100x100 cells. The idea is to allow users to
modify this values according to their needs.

38

Bibliography

[1] Mitchell, Melanie. Complexity: a guided tour, 2009. New York, Ox-
ford University Press.

[2] Vichniac, Gérard Y. Simulationg physics with cellular automata:
Physica 10D, 1984. Amsterdam, North-Holland.

[3] Ilachinski, Andrex. Cellular automata: a discrete universe., 2002.
Singapore, World Scientific.

[4] Hoekstra, Alfons G., Jiri Kroc, and Peter M. Sloot. Simulating
Complex Systems by Cellular Automata, 2010. Berlin, Springer.

[5] Kroc, Jiř́ı. Diffusion Controlled Cellular Automaton Performing Mesh
Partitioning, Lecture Notes in Computer Science, volume 3305, 2004.
Helsinki School of Economics, Mikkeli, 1-6.

[6] Meadows, Donella H. Thinking in systems: a primer, 2009. London,
Earthscan.

[7] Gabbay, Dov M. Philosophy of complex systems, 2011. Oxford
Waltham, North Holland.

[8] Heylighen, Francis. Encyplopedia of Library and Information Sci-
ences: Complexity and Self-organization, 2009. Free University of Brus-
sels, Brussels.

[9] Heylighen, Francis. Self-organization: emergence and the architecture
of complexity, 1989. Free University of Brussels, Brussels.

[10] Arshinov, Vladimir, and Christian Fuchs. Causality, emergence,
self-organisation, 2003. Moscow, NIA-Priroda, 6-8.

[11] Holmann, Peggy. Engaging Emergence: Turning Upheaval into Oppor-
tunity, 2010. San Francisco.

39

Bibliography

[12] Cossentino, Massimo, et al. Handbook on agent-oriented design pro-
cesses, 2014. Berlin, Springer. Print.

[13] Wilensky, Uri, and William Rand. An introduction to agent-based
modeling: modeling natural, social, and engineered complex systems with
NetLogo, 2015. Cambridge, Massachusetts London, England, The MIT
Press, 2015. Print.

[14] Toffoli, Tommaso. Cellular automata as an alternative to (rather than
an approximation of) differential equations in modeling physics: Physica
10D, 1984. Amsterdam, North-Holland, 117-127.

[15] Talia, Domenica. Cellular Automata + Parallel Computing = Compu-
tational Simulation, 1997. Universita della Calabria, Rende.

[16] Toffoli, Tomasso. CAM: High-performance Cellular-automaton Ma-
chine: Physica 10D, 1984. Amsterdam, North-Holland.

[17] Begel, Andrew and Klopfer, Eric. StarLogo: A Programmable
Complex Systems Modeling Environment for Students and Teachers: Ar-
tificial Life Models in Software, 2005. London, Springer.

[18] Berto, Francesco and Tagliabue, Jacopo. The Stanford En-
cyclopedia of Philosophy: Cellular Automata [online], 2012. [cit.
16.2.2016] Available from: http://plato.stanford.edu/entries/
cellular-automata/

[19] Hoekstra, Alfons G., Jiri Kroc, and Peter M. Sloot. Simulat-
ing Complex Systems by Cellular Automata: Introduction to Modeling of
Complex Systems Using Cellular Automata, 2010. Heidelberg, Springer.

[20] Berto, Francesco and Tagliabue, Jacopo.
Von neumann neighborhood with cardinal directions.svg [online] [cit.
16.2.2016] Available from: https://commons.wikimedia.org/wiki/
File:Von_neumann_neighborhood_with_cardinal_directions.svg

[21] Contributors of Wikipedia.
Moore neighborhood with cardinal directions.svg [online] [cit.
16.2.2016] Available from: https://en.wikipedia.org/wiki/Moore_
neighborhood

[22] Gardner, Martin. The fantastic combinations of John Conway’s new
solitaire game ”life”, 1970. Scientific American 223, 120-123.

[23] Contributors of Wikipedia. Game of life animated glider.gif [on-
line] [cit. 16.2.2016] Available from: https://en.wikipedia.org/wiki/
Conway’s_Game_of_Life

40

http://plato.stanford.edu/entries/cellular-automata/
http://plato.stanford.edu/entries/cellular-automata/
https://commons.wikimedia.org/wiki/File:Von_neumann_neighborhood_with_cardinal_directions.svg
https://commons.wikimedia.org/wiki/File:Von_neumann_neighborhood_with_cardinal_directions.svg
https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Bibliography

[24] Contributors of Wikipedia. Game of life blinker.gif [online] [cit.
16.2.2016] Available from: https://en.wikipedia.org/wiki/Conway’s_
Game_of_Life

[25] Qt project. Qt Documentation. [online][cit. 21.2.2016] Available from:
http://doc.qt.io/

41

https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://doc.qt.io/

Appendix A

Acronyms

GUI Graphical user interface

CA Cellular automaton

CAs Cellular automata

CSs Complex systems

GF Growth factor

MPC Massive parallel computation

43

Appendix B

User’s manual

B.1 Introduction

This document is a user’s manual for the application “Cellular automaton
simulating domain growth”. It was created as a part of the bachelor’s thesis.
The application is written in C++ with usage of Qt framework, it is an open
source application and it is free to use or modify. The application can be used
in Windows and Linux and does not require the Internet connection for its
execution.

The primary use of the application is to create a simulation of the domain
growth. The application allows to mark cells as the domains with a definition
of their amount of diffusive agents and to draw boundaries. The application
also allows you to save a configuration of the created model, a single image of
the drawing window or the whole set containing of 10 pictures. The application
offers a brief explanation of the basic elements after switching on the school
mode.

B.2 Program installation

On Windows, it is possible to download a precompiled application from
the author’s profile in ResearchGate. After unpacking the archive, you can
open a file CellGen.exe to run the application. If you intend to build the
application on Windows by yourself, the process is not that simple. The best
way is to download and install Qt Creator, which is a freeware IDE, suitable
for programming Qt applications.

On Linux, unzip the archive, which can be downloaded from author’s
profile in ResearchGate as well. In order to compile and run the program,
it is necessary to have Qt 5.5 (or higher) with qmake and g++. Then, after
unzipping the package, it should be possible to open a terminal in the folder
that contains the program and to write the following commands:

45

B. User’s manual

qmake
make
. / DomainGrowth

B.3 Initial screen

B.3.1 Main elements

After start of the application, the main window should look like this.B.1

Figure B.1: Visage of the window after the application start

The left half of the screen is used to display the domains specifications
after they are marked in the drawing window.

By the drawing window it is meant the widget on the right side with
yellow-white grid. Each square represents one cell/pixel. Below the drawing
window there are several simulation control buttons.

The check box in the top left corner controls whether the value of the
domain growth is filled with the recommended value or if it is filed with zero.

Figure B.2: Control buttons before the simulation starts

• Time step, Speed – Information label about a state of the simulation.
“Time step” is showing how many time steps were done since the be-
ginning of the simulation. “Speed” signalizes how fast the simulation is,

46

B.3. Initial screen

Figure B.3: Control buttons during the simulation

the default speed of the simulation is 9, and the speed can be changed
from 1 to 10, where 1 is the slowest speed.

• Slower – Button to decrease the speed of the simulation.

• Faster – Button to increase the speed of the simulation.

• Draw empty cells/ Draw walls cells – A switch between modes,
the default mode allows you to draw boundaries in the drawing window.
After pressing the button, it is possible to draw empty cells.

• Start – Starts the simulation, it is possible when at least one domain is
marked. After pressing the start button, pause and stop buttons become
available.

• Pause – When enabled during the simulation, then it pauses the sim-
ulation. During the simulation or during the pause, it is not allowed to
modify the drawing window.

• Stop – Stops the simulation and returns the drawing window into the
drawing mode.

B.3.2 Menu bars

There are three tabs in the main menu bar: File, Option and About.

Figure B.4: Menu bars

• Clear workspace – Open a new clean application. The user is warned
if the application is going to erase his changes.

• Load configuration – Load configuration from *.ca file.

• Save configuration – Save configuration to the *.ca file.

• Exit – Closes the application.

47

B. User’s manual

• Save as picture – Saves the visage of the drawing window.

• Save set of pictures – Saves 10 pictures into the chosen directory.
Pictures of the drawing window are captured in various part of the simu-
lation.

• School mode – Turns on help buttons for the domain specification.

• About – Displays a window with a brief information about the applica-
tion and the authors.

B.4 Setting up the simulation

B.4.1 Domains drawing

To run the simulation, at least one domain has to be set. The domain is
created by clicking on one single cell. Then, the cell changes the color to
black and on the left side of the window a box with the information about the
domain appears.B.5

B.4.2 Boundaries drawing

To draw the wall cells, it is necessary to mark more than one cell. When the
left mouse button is pressed on the top of an empty cell, it is necessary to
move the cursor on the top of another cell. After releasing the mouse button,
boundaries are drawn. It is allowed to draw a wall cell or a domain only on
the top of the empty cells.

It can happen that wrong cells are marked as walls. It is possible to hit
the button “Draw empty walls” which changes drawing mode and instead of
drawing wall cells, the empty cells are drawn.

B.4.3 Setting up the domain

After the domain is drawnB.6, it is possible to set its value of the domain
growth by writing the value in the appropriate line edit. The first line edit is
not allowed to modify and shows the coordinates of the domain. By clicking
on the picture of the trash bin, the domain is erased.

B.5 Running the simulation

The simulation is started by clicking on the button “Start”B.2, then the draw-
ing window switches from the drawing mode into the simulation mode. It is
possible to control the speed of the simulation, to pause it and to stop it.

48

B.5. Running the simulation

Figure B.5: Screen with domains and drawn wall cells

Figure B.6: Detail of the domain

Figure B.7: Screen during the running simulation

49

B. User’s manual

B.6 Use case stories

This section contains several examples how the simulation of the domain can
be seen.

• ants colonies – Domains can be seen as ant-colonies. The initial po-
sition (seed) sets the place where an ant colony is created. During the
time, colonies are trying to grow accordingly to their values of domain
growth factor, which can represents size and vitality of the colony. Dur-
ing their attempts to grow, they can meet with obstacles, inappropriate
soil (walls), which cannot be used for spreading the colony. Ants can also
meet other ants from a different colony and of course only the stronger
colony can hold their soil and occupy the soil of the other colony.

• balloons with water – Let’s imagine a big carton box and several
balloons filled with water. When you put the balloons into the box, for
some time they are competing with each other on the bottom of the box.
After some time of competition, movement of the borders of balloons is
minimal and the balloon with the biggest amount of water occupies the
biggest area.

• bacterial communities – At the beginning, each bacterial community
is spreading from its initial position (seed). The speed of the spreading
is in accordance with its vitality (growth factor in the application). The
more vital bacterial community growths at the expense of the less vital
one.

50

Appendix C

Programmer’s manual

C.1 Introduction

This document is a programmer’s manual for the application “Cellular auto-
maton simulating domain growth”. It was created as a part of the bachelor’s
thesis. The application is written in C++ with usage of Qt framework, it is
an open source application and it is free to use or modify. The application can
be used in Windows and Linux and does not require an internet connection
for its execution.

This manual contains information how the source code is written. It gives
information about the used notation for comments, new methods or classes.
One section is dedicated to the description of the structure of the program.
The next chapter contains information about how to compile the modified
program and how to prepare the release package.

The primary use of the application is to create a simulation of the domain
growth. The application allows to mark cells as the domains with a definition
of their amount of diffusive agents and to draw boundaries. The application
also allows you to save a configuration of the created model, a single image of
the drawing window or the whole set containing of 10 pictures. The application
offers a brief explanation of the basic elements after switching on the school
mode.

C.2 Programmer’s convention

C.2.1 Comments

The comments are written in English. They contain a brief information about
each method and each class. The comments are written in the header files, in
the source files, they are written only if it is necessary for the code intelligib-
ility.

51

C. Programmer’s manual

C.2.2 Classes

Each class comment has to contain a brief information about what is the class
representing. If it is appropriate, there is an additional information about the
class functionality. The name of the class should be chosen with accordance
to its functionality with the first capital letter, e.g. “NameOfTheClass”. Each
class is defined in the separated header file.

Listing C.1: Example of the class comment

/∗ !
∗ \ b r i e f Custom widget r e p r e s e n t i n g domain .
∗
∗ Implements custom widget i n h e r i t i n g from QGroupBox .
∗ Each ob j e c t o f t h i s c l a s s r e p r e s e n t s
∗ one domain and i t s p o s i t i o n
∗ and amount o f d i f f u s i v e agents .
∗/

c l a s s GroupBoxWidget : pub l i c QGroupBox

C.2.3 Methods

Like the class, each method contains a brief information about its purpose.
Also if the method has any parameters, it is necessary to write a short note,
about what each parameter represents. The name of the method is written
with a small first letter, e.g. “nameOfTheMethod”.

Listing C.2: Example of the method comment

/∗ !
∗ \ b r i e f Creates domain with g iven coo rd ina t e s .
∗
∗ \param x X coord inate o f the domain .
∗ \param y Y coord inate o f the domain .
∗ \param gf Amount o f growth f a c t o r .
∗/
void addDomain (i n t x , i n t y , std : : s t r i n g g f) ;

C.3 Structure of the program

The program is currently split into five classes (CellularAutomaton, DrawWid-
get, GroupBoxWidget, InfoLabel, MainWindow). Detail description about
what each class implements can be found in the bachelor thesis.

52

C.4. Compilation & Deployment

C.4 Compilation & Deployment

C.4.1 Windows

On Windows, the best way is to install Qt Creator6. It is developed by
Qt Project as well as the whole framework Qt. It includes debugger, syntax
highlighting and autocompleting. The Qt Creator includes Qt Designer, which
is an application for designing graphical user interface from Qt widgets. It
has also many built-in libraries and contains a documentation for each class
and its methods.

In the QtCreator, a user can open the project by choosing the *.pro file
in the project folder. Then, the working space appears. The user can easily
modify the program and then choose to compile the program in the release
mode. After the compilation, a new directory named “release” is created in the
project folder. Unfortunately, the directory, where the release version of the
application is stored, does not contain all libraries that are necessary to run the
application. However, Qt has a program which is able to add the libraries into
the folder. The program is called “windeployqt” and is located in the folder
“\Qt\5.5\mingw492 32\” bin (path can be slightly different according to the
type and version of the compilator which the user is using). Windeployqt can
be executed from the command line, as a parameter it takes the path to the
application binary file.

Listing C.3: Command for creation of the release package

windeployqt <path−to−app−binary>

The windepoyqt creates a folder with an application file and libraries. It can
happen that a few libraries are still missing, they have to be put into the folder
manually.

Another way how to prepare the release package is to download the archive
with the old original version of the application from the research gate website,
unzip the archive and repleace the old executable *.exe file with the new one.

C.4.2 Linux

For the compilation of the applications source code and execution, it is nec-
cessary to have installed Qt 5.5.1 or newer. Then the compilation is done by
following commands:

qmake
make
. / DomainGrowth

6http://www.qt.io/ide/

53

http://www.qt.io/ide/

Appendix D

Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

DomainGrowth...............................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
BT Martin Muzak 2016.pdf............the thesis text in PDF format

55

	Introduction
	Introduction to Complex System and Cellular Automata
	Complex Systems
	Cellular Automata

	Simulation of domain growth using cellular automaton
	Introduction
	General Concept
	Variables
	Rules definition
	Demonstration
	Possible improvement of algorithm/known bug

	Software requirements
	Functional requirements
	Non-functional requirements
	User interface requirements

	Analysis of the application
	Typical user
	Use cases

	Design of the application
	Design of graphical user interface
	Cellular automaton
	Class design
	Technologies

	Realisation
	Drawing window implementation
	Simulation of the domain growth
	Domain adding
	Configuration saving
	Saving image of the simulation

	Testing
	Testing environment
	Scenario
	Test evaluation
	Changes in the application

	Conclusion
	Future work

	Bibliography
	Acronyms
	User's manual
	Introduction
	Program installation
	Initial screen
	Setting up the simulation
	Running the simulation
	Use case stories

	Programmer's manual
	Introduction
	Programmer's convention
	Structure of the program
	Compilation & Deployment

	Contents of enclosed CD

