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Abstrakt

Tato bakalářská práce využ́ıvá informačńı metriky známé jako odhadová en-
tropie za účelem analýzy informačńıho obsahu v postranńım kanálu. Útok na
postranńı kanál, který byl v této práci zvolen, je diferenciálńı (resp. korelačńı)
odběrová analýza. Tento útok byl proveden na zař́ızeńı, které nebylo ni-
jak chráněno proti útok̊um postranńımi kanály. Následná analýza ukázala,
jak velké množstv́ı informačńıho obsahu je př́ıtomno v měřeńıch postranńıho
kanálu. Při tuto analýzu se ukázala odhadová entropie jako excelentńı bezpeč-
nostńı metrika pro určeńı mı́ry ochrany zař́ızeńı proti útok̊um postranńımi
kanály.

Kĺıčová slova Diferenciálńı odběrová analýza, korelačńı odběrová analýza,
AES, entropie, odhadová entropie

Abstract

This bachelor thesis utilizes an information metric known as guessing entropy
in order to analyze the information content present in a side channel. The
side-channel attack chosen in this thesis is the differential (or more specifically,
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correlation) power analysis. Utilizing the correlation power analysis attack on
a device lacking protection against it, it is discovered how much information
content is present in the power measurements. During this process, guess-
ing entropy shows itself as a highly viable security metric when it comes to
deciding how well a device is protected against side-channel attacks.

Keywords Differential power analysis, correlation power analysis, AES, en-
tropy, guessing entropy
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Introduction

The standard perception of an encryption device can be compared to that of
a black box - a device which receives an input plaintext and produces nothing
but the output - in our case the ciphertext. An attack on such a device is
then trying to exploit the encryption algorithm and its weaknesses.

However, in reality, these devices produce other outputs as well, such as
time spent on various operations, the electromagnetic leaks or power consump-
tion. This kind of information is called side-channel information.

Side-channel attacks are forms of attacks which instead of exploiting a
weakness in the algorithm try to exploit the knowledge of side-channel in-
formation. While these attacks do not necessarily give the adversary the
knowledge of the secret key used in encryption, they are still able to provide
him with information that he would not be able to otherwise know, such as
the algorithm used for encryption.

The goal of this thesis is to research the potential application of informa-
tion theoretic metrics in relation to differential power analysis (or more spe-
cifically, correlation power analysis, which is one of the possible side-channel
attacks.
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Chapter 1

Power analysis

The core component of integrated circuits are the transistors, which are able
to work as switches. While the current flows through the circuit, power is
being consumed. This power consumption can be externally observed, which
is the core idea for side-channel attacks using power analysis.

Figure 1.1: Naive assumption of a cryptographic device

Cryptographic process
Input data Output data

While certain ciphers, such as AES, are considered to be mathematic-
ally very strong [1], it is possible to break these ciphers using power analysis
attacks. Due to this fact, any cryptographic device which can be directly ac-
cessed by the adversary for the purpose of measuring the power consumption
needs to be properly secured against these attacks.
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1. Power analysis

Figure 1.2: Actual information available from a cryptographic device

Cryptographic process
Input data Output data

Timing variations
Power consumption

Thermal radiation
Other S-C information

1.1 Simple power analysis

Simple power analysis (SPA) is the starting point of the power analysis attacks.
The attack utilizes visual observation of the current used by the device in order
to retrieve the secret key [2]. A good example of utilization of this attack can
be seen on the RSA cipher. By observing the variations in power usage,
specific operations, such as square and multiply in RSA, can be identified. By
doing so, the adversary is able to compute the secret key.

Thanks to the fact that SPA utilizes visual observation of the current as it
is used by the device, it is also possible to see the order of instructions which
had been executed by the device. Thus, it is possible for the adversary to
see which conditional branches had been taken. Using that knowledge, the
adversary can break the DES cipher as it is visible which segments of the
power measurements correspond to the ”0” and ”1” bits that had been used
in the process to decide whether a conditional jump should occur [3].

1.2 Preventing simple power analysis

Simple power analysis depends on the ability of the adversary to visually
examine the information leaked from the device. Therefore, simple power
analysis can be prevented by introducing noise into the data that the adversary
can measure. Another possible option that can be used to prevent SPA is to
implement the cryptographic algorithm used in a way that will avoid usage of
secret intermediates or key for conditional branches. [3]

Even though SPA is relatively easy to prevent, it has been reported in [4]
that many smart cards have been found to be vulnerable to SPA.
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1.3. Differential power analysis

1.3 Differential power analysis

Differential power analysis (DPA), instead of visual examination of the inform-
ation related to power usage leaked from the device, statistically examines the
data correlating to the secret key. This statistic examination is exactly what
makes DPA so strong, as DPA is able to break even cryptographic devices
which are able to produce a lot of noise in their power traces. Not only that,
but the adversary also does not need to know anything about the crypto-
graphic device [2]. However, unlike SPA, proper DPA attack requires a signi-
ficantly higher amount of power traces, which the adversary might potentially
not be able to obtain.

The statistical techniques in DPA involve the evaluation of the differences
between the means of power traces. The basic steps involved in this process
are:

1. Performing cryptographic operations (either encryption or decryption)
on a device with different sets of data.

2. Measuring and recording the power consumption traces as well as the
data output processed during each cryptographic operation.

3. Partitioning the power traces into different subsets according to a specific
property of the state processed.

4. Checking statistical differences between the subsets. A data leak occurs
when differences have been observed.

Utilizing these steps, it then becomes possible to retrieve the secret key simply
from the power measurements [5].

1.3.1 Correlation power analysis

Correlation power analysis (CPA) is an extension of the differential power ana-
lysis. Unlike the standard DPA, it is required to create a model of power con-
sumption in order to approximate the power consumption of the target device
during its cryptographic operation. Afterwards, this model of predicted power
consumption is applied to a specific key hypothesis. The hypothetical power
consumption for a key is then compared with the actual power measurements.
The hypothetical power consumption values for a specific key providing the
highest correlation with the actual power consumption should then provide
the adversary the secret key [5].
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1. Power analysis

When the architecture of the target device is known, it is possible to create
a very accurate model of the power consumption. However, even when this
information is not known to the adversary, it is possible to use a more general
model. Commonly used models are based on the Hamming weight or the
Hamming distance [2] [5].

The Hamming weight model (HW) is very basic and works under the as-
sumption that the amount of power consumed during the cryptographic pro-
cess is proportional to the number of bits with the value ’1’ during an opera-
tion [5]. This power model is generally not well suited to describing the power
consumption in CMOS circuits as the power consumption of CMOS circuits
is dependent on transitions in the circuit, rather than on the processed value
[5]. However, even though that is the case, Hamming weight model can still
be used, although the Hamming distance model tends to be preferred when it
can be used.

The Hamming distance model (HD) extends the Hamming weight model
and uses the number of logic transitions during cryptographic operations to
describe the power consumption. The assumptions in this model are:

• A static bit does not contribute to the power consumption.

• A transition from ’0’ to ’1’ consumes the same amount of power as the
transition from ’1’ to ’0’.

[5]

The Hamming distance model can then be evaluated as

HD(v, v′) = HW (v ⊕ v′)

where v’ is the previous value of v before the cryptographic operation (or
operations).

These are not the only relatively generic power models, examples of others
worth noting are:

• least significant bit (LSB) model

• zero-value model.
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1.3. Differential power analysis

The least significant bit (LSB) model simply models the power consump-
tion according to the least significant bit of the hypothetical intermediate
values. The zero-value model, on the other hand, assumes that the power
consumption for data value 0 is lower than for any other value [2].

1.3.1.1 Evaluating correlation

Pearson’s correlation coefficient is a very common metric used to evaluate
linear relation between data. Because of that, it can be utilized in the DPA
attack. Not only that, but the correlation coefficient also helps in comparing
different CPA attacks between each other [2].

Formally, Pearson’s correlation coefficient is defined as

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
.

Where

• ρX,Y is the correlation coefficient between two random variables

• cov(X,Y ) is the covariance between two random variables

• σX is the standard deviation of X

• E is the expected value

• µX is the mean of X.

The value of the correlation coefficient ranges from -1 to 1, where a value of
-1 indicates a completely negative linear relationship, the value of 0 indicates
no linear relationship and 1 indicates perfect positive linear relationship.

It is also possible to estimate the value of Pearson’s correlation coefficient
for a sample. With n measurements of variables X and Y written as xi and
yi, then the correlation coefficient can be estimated using the formula

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n− 1)sxsy

where x̄ and ȳ are the sample means of X and Y and sx and sy are the
sample standard deviations of X and Y.
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1. Power analysis

It is also worth noting that the Pearson’s correlation coefficient is not
necessarily guaranteed to be defined. In case that the standard deviation of
any variable is zero, the correlation coefficient is simply undefined.

In the process of correlation power analysis, the variables X and Y are
used to represent the samples from actual power traces and from the power
consumption hypotheses [2] [5].

Even though Pearson’s correlation coefficient is commonly used, the at-
tack can also be executed by using another metric to decide the relationship
between the hypothetical power consumption values and the actual power
traces. Such an example can be the so-called distance-of-means. However,
these models only allow binary power models. Therefore, an attack based on
correlation coefficient can be stronger since its power model can describe the
hypothetical power consumption better than a binary one would [2].

1.4 Preventing differential power analysis

Preventing differential power analysis is however a more difficult task to ac-
complish than preventing simple power analysis. The main goal of DPA pre-
vention is the reduction of any dependence between the data used by the
cryptographic device and the power consumption [6]. There are various tech-
niques which can be used and which accomplish this in slightly different ways.
Some of these techniques are:

• Introduction of noise into power measurements [3]

• Reduction of signal sizes [3]

• Hiding [2]

• Masking [2]

Even though DPA can recover a key when there’s a lot of noise in the
power traces, introducing noise into power measurements can still be a viable
counter-measure. The reason for that is that the number of power consump-
tion samples required for the attack rises up, thus rendering the cryptographic
device safer against DPA, especially in situations where the adversary might
not be able to record a high amount of traces.

A similar result can be achieved when the signal sizes are reduced. This
can be done in various ways, for example by choosing operations that leak
less information or by physically shielding the device. However, in practice,
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1.4. Preventing differential power analysis

shielding the cryptographic device heavily might not be feasible due to the
cost and device’s size required. [3]

The effect of adding noise into power measurement samples can be seen
on the figure 1.4 and compared to the power measurement samples obtained
from an unprotected device presented on the figure 1.3.

Figure 1.3: A short segment of a power measurement sample
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A short segment of a power measurement, no noise

However, even if the device leaks a heavily degraded signal with a lot of
noise in it, the adversary can still theoretically perform the standard DPA (or
CPA) attack, as the only problem is the high amount of samples required.
Other two techniques which have been presented, hiding and masking, are
able to protect the device from the DPA attack, since their direct goal is to
remove the connection between the data processed and the power leakages.

In case of hiding, this goal is achieved by removing the connection between
power consumption and the intermediate values or the operations that have
been performed. Thus, the cryptographic device using the hiding technique
performs all the calculations in the same way as an unprotected device would.
[2]. This independence between calculations and the power consumption can
be achieved in two different ways [2][6].

• The device consumes random amounts of power in each clock cycle.

• The device consumes equal amounts of power in each clock cycle.
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1. Power analysis

Figure 1.4: A short segment of a power measurement sample, Gaussian noise
added
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A short segment of a power measurement, Gaussian noise added

The goal of masking, on the other hand, is to create this independence by
concealing intermediate values using a random value, which is called a mask.
This mask is generated inside the device every single time – meaning that
the value is different every time the cryptographic device runs. Thanks to
that, the adversary can not know the mask. Because of all these properties,
masking has been extensively discussed by researchers [6].

Even though these defenses protect a cryptographic device from the stand-
ard first-order DPA, it is possible to attack devices protected by hiding and
even those protected by masking, using so-called higher-order DPA, which
exploits the joint leakage of multiple intermediate values [7]. Because of that,
combining masking or hiding or both with other protections, such as introdu-
cing noise into the measurements, can be very useful, as a DPA attack can
become infeasible.
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Chapter 2

Measuring quality of DPA

While the adversary is able to break the cryptographic device using differential
(or correlation) power analysis, he might not necessarily be able to measure
as many traces as he needs to. That can especially be the case when the
device is protected by counter-measures, which make the attack less feasible
by making the device produce imperfect leakages (either by leaking noise,
reducing the signal sizes or using a different strategy). Because of that, an
important question arises - how much information does the adversary know
about the secret key while he’s executing the DPA (or CPA) attack?

At the moment, the metric for measuring the quality of a DPA attack
that is used the most (and was also used in DPA contest [8], which is a
contest where contestants try to attack a cryptograpghic device using power
analysis attacks), is the success rate. However, estimating success rate can
also be very problematic, as the empirical way involves performing the attack
a certain number of times and recording the number of successes. This also
poses a problem in deciding security in devices which have been protected
against DPA attacks, since the attack might be infeasible for the evaluator,
but not necessarily for the attacker [9].

Even though success rate is a very useful metric thanks to its intuitive-
ness (as a higher rate for lower traces indicates a better attack or a device
less protected), the metric itself does not provide any knowledge about the
information retrieved about the key so far.

2.1 Guessing entropy

Because of the lack of metrics useful for describing the potential of the attack,
another metric, guessing entropy, has recently been used to evaluate the qual-
ity of a DPA attack. The second DPA contest [8] also used this specific metric
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2. Measuring quality of DPA

together with success rate, as a metric for evaluation of the efficiency of an
attack (although in a slightly different form of partial guessing entropy).

Guessing entropy was first introduced in [10], but the name was not used
at the time. Guessing entropy is a metric which tries to estimate the average
number of guesses required to determine the true value of a random variable
X, using an optimum strategy. The optimum strategy being one where all
the possible values of a random variable X are being ranked from the most to
least likely and afterwards guessing the true value in this order.

Formally, if X is a discrete random and the values of X are sorted with
decreasing probability, the guessing entropy G(X) is defined as

G(X) =
n∑

x=0

P (xi)(x+ 1)

where P (X) is the probability mass function. [11]

Further on, partial guessing entropy, as it has been used in the DPA con-
test, refers to finding the guessing entropy of a specific subkey of the key
[12].

2.1.1 Link between Shannon entropy and guessing entropy

Let X be a discrete random variable with possible values {x1, ..., xn} and
P (X) the probability mass function. Shannon entropy is then defined as

H(X) = −
n∑

i=1

P (xi) logP (xi)

[13].

In the article ”A Mathematical Theory of Communication”, Shannon also
explained why the choice of a logarithmic function for information evaluation
is ideal. The unit that entropy is measured in depends on the base of logarithm
used. In case the logarithm used has base 2, this unit is called a binary digit,
or bits for short. If a decimal logarithm is used, the unit is then called a
decimal digit [13].

However, guessing entropy, unlike Shannon entropy or other entropy-based
metrics, does not use a logarithmic function for its evaluation. Guessing en-
tropy is even measured in a completely different unit - in numbers of guesses
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2.1. Guessing entropy

[11]. Because of this a very important question arises - is guessing entropy
really linked to Shannon entropy? And if so, how?

It has been proven by Massey in 1994 that the lower bound of the average
number of successive guesses using an optimum strategy until the value of a
discrete random X is guessed correctly depends on Shannon entropy - and en-
tropy actually provides the lower bound. More specifically, if H(X) represents
the Shannon entropy and G(X) the guessing entropy, then

G(X) ≥ 1

4
× 2H(X) + 1

provided that H(X) ≥ 2 bits [10]. This relationship is also very intuitive,
as guessing a value in a system with higher entropy should be more difficult.
Massey [10] has also proven that while guessing entropy can be underbounded
using entropy, it cannot be overbounded in the same manner.

This link shows that while guessing entropy is measured in different units,
an important connection with Shannon entropy has been established.

2.1.2 Guessing entropy as a security indicator

However it is important to note that guessing entropy is not a metric without
any problems. The problem mostly stems from the fact that even though a
connection between average guesswork and entropy exists, the link does not
give us equality between the two.

As it has been presented in ”Guesswork is not a substitute for Entropy”
[14], the lower bound which entropy puts on guesswork is often good enough.
However, the expected amount of guesswork and the actual guessability might
be completely different.

Not only that, but [11] also mathematically proves that it is possible for
a random variable with arbitrarily high guessing entropy which would have a
probability of guessing at one try arbitrarily close to 1.

Due to these reasons, it is important to understand that while guessing
entropy serves as a reasonable metric for evaluating the expected amount of
guesswork when it comes to guessing the value of a secret key, it still does
have its own issues. Because of that, it has been proposed in [14] that other
means of evaluating guesswork should be used as well, such as calculating the
moments of guesswork instead of the mean.
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2. Measuring quality of DPA

2.1.3 Guessing entropy and CPA

Using guessing entropy as a metric of information, we can estimate how much
guessing needs to be done in order to guess the key properly after performing
the correlation power analysis attack. The only thing needed for an evaluation
of guessing entropy is the ability to sort the hypothetical keys by the order of
their probability.

Fortunately enough, this can be easily performed in correlation power ana-
lysis. The last step of CPA consists of comparing the hypothetical power con-
sumption values with the power traces. One of the choices commonly used for
determining the relationship between these two is using the correlation coef-
ficient. The secret key which the adversary is trying to discover is then going
to be the one which correlates the most with the hypothetical consumption
values for that secret key [2].

Thanks to this fact, it then becomes possible to sort the hypothetical
keys (or subkeys) according to how much they correlate with the real power
consumption - thus leading to the hypothetical keys being sorted according to
their probability, allowing the evaluation of guessing entropy. The evaluation
can simply be done by accumulating the position of the secret key in the
ordered list after an arbitrary amount of power traces had been used and then
evaluating the average value [15].

Figure 2.1: Example partial guessing entropy progression
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2.1. Guessing entropy

As it can be seen on the figure 2.1, partial guessing entropy is a viable
metric when it comes to deciding the point where the subkey becomes gets
found. Not only that but the effect of added Gaussian noise can be slightly
visible as well as an additional trace can completely throw off the correlation
analysis at any point, until enough traces are used.
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Chapter 3

Advanced Encryption Standard

Advanced Encryption Standard, abbreviated as AES, is a popular symmetric
block cipher [16]. The cipher was developed by two Belgian cryptographers,
John Daemen and Vincent Rijmen as Rijndael (a play on their names) [17] and
was further on announced by National institute of Standards and Technology
(NIST) as AES in 2001 [16].

AES is a symmetric block cipher encrypting and decrypting data using a
block size of 128 bits (16 bytes) and is capable to do so using a key of 128, 192
or 256 bits. The block consisting of 16 bytes is arranged in a 4 by 4 matrix
known as the State [16].

Figure 3.1: AES State

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

The State, on which all of the transformations are being done, is created
from the input array (in) according to the scheme:

sr,c = inr+4c

for 0 ≤ r < 4 and 0 ≤ c < 4 [16].

The number of round operations depend on the size of the key. Either 10,
12 or 14 rounds are done for a 128, 192 or 256 bit key respectively. The order
of operations can be seen in the figure 3.2.
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3. Advanced Encryption Standard

Figure 3.2: The flow of AES

Key expansion

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Plaintext in

Encrypted data out

Round ≤ 9, 11 or 13

The first step before the initial round utilizes key expansions. Round keys
are derived from the cipher key for each round using a specific key schedule.
Afterwards, the 4 main steps done in each round are AddRoundKey, SubBytes,
ShiftRows and MixColumns (with the exception of the last round).

AddRoundKey is done every round. As a specific round key is generated
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3.1. Side-channel attacks and AES

for every round from the initial key, the round key is combined with the State
using the bitwise XOR operation.

SubBytes is an operation providing non-linearity in the cipher. Each byte
is transformed independently using a substitution table (S-box), which is con-
structed using two transformations

1. The first step consists of calculation of the multiplicative inversion of
each byte in GF(28) (with the byte {00} being mapped to itself).

2. Afterwards, an affine transformation is applied. A fixed 8x8 bit mat-
rix is multiplied with the calculated multiplicative inverse (in GF(2)).
Afterwards, the result is masked using the bitwise XOR operation with
the byte {63}.

ShiftRows operates on rows of the AES State. Each row except for the
first one is cyclically shifted by a specific offset.

• The second row is shifted by one position to the left.

• The third row is shifted by two positions to the left.

• The fourth row is shifted by three positions to the left.

MixColumns provides diffusion in the cipher by multiplying each column
of the state with a fixed matrix.

3.1 Side-channel attacks and AES

AES is considered to be one of the top ciphers, even to the point that the
U.S. government announced that the cipher can be used to protect classified
information up to the SECRET level (TOP SECRET level requires use of
AES using either 192 or 256 bit key lengths) [18].

Currently, the best key-recovery attack on AES is able to recover the key
with time complexity 2126.01 (AES-128), 2189.91 (AES-192) and 2254.27 (AES-
256) [1], which is a very slight improvement over the bruteforce method and
is still not feasible in realistic scenarios.

However, side-channel attacks are not trying to exploit the cipher directly,
but rather uses information leaking from the device through the side-channels.
And while AES has been shown to be strong against any kind of traditional
attack, differential power analysis is potentially a feasible attack on AES [5].
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3. Advanced Encryption Standard

3.1.1 Differential power analysis attack on AES

During the DPA contest v2 [8], where participants were executing a DPA
attack on an FPGA implementation of AES which was unprotected. Using
various kinds of differential power analysis, certain contestants were able to
achieve global success rate higher than 80% after analyzing less than 10,000
power traces. Even though obtaining such an amount of traces might not be
possible in certain scenarios, it still shows how feasible DPA and its variations
can be against AES, especially when compared to other potential kinds of
attacks. As it has been reported in [5], the number of traces required for the
DPA attack to extract a 128-bit key tends to be around thousands.

When attacking the AES cipher using DPA, several properties of the cipher
can be exploited [5].

The first property which can be exploited is right at the beginning of
AES. The initial plaintext input is masked with the round key using the XOR
operation in the AddRoundKey operation. This method, however, requires
the adversary to have access to the plaintext values used.

Another exploitable property happens right at the end of AES. The final
ciphered output is the result of operations SubBytes and ShiftRows XOR-ed
with the final round key. An advantage at this point is that last round does
not involve any MixColumns diffusion. While the relationship between the
state (especially at the end of the cipher) and the key is not as clear as in the
previous case, it is possible to compute the initial key from the final round
key by reversing the key expansion.

A property which can be effective to exploit is the substitution in the
SubBytes operation of AES. This has a specific advantage when it comes
to the magnitude of the attack space. The SubBytes operation operates on
each byte of the AES State independently. Because of that, the same set of
traces can be used for all bytes, which significantly reduces the possibilities the
adversary needs to count with. In case of AES-128, instead of searching all the
2128 possible values of the key, the attack space only has 16×28 combinations.

3.1.2 Correlation power analysis attack on AES

The first important step when attacking the AES cipher using correlation
power analysis is to select a particular data register for the attack. When
it comes to the AES algorithm, a relationship between the data and power
consumption can be found well in the SubBytes operation. It is possible to
target the AES S-Box used in the first round as well as in the last round.
Afterwards, the actual execution of the attack can be done in a few simple
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3.1. Side-channel attacks and AES

steps [2].

Firstly, the power consumption is recorded. In order to perform these
measurements of power traces, the adversary records the data inputs and
their corresponding power consumption measurements. Combining these, it
is possible to create a matrix T of size D×T , where D is the amount of input
plaintext values which have been used and T denotes the length of the traces.

The second step involves preparation for the power analysis. Input plain-
text values are combined with all key hypotheses using the specific crypto-
graphic algorithm used in the spot which the adversary is attacking. In case
of attacking the first round of SubBytes operation, this can be done by evalu-
ating the intermediate values of AddRoundKey and SubBytes operations. This
creates a matrix V of size D ×K, where K denotes the total number of pos-
sible values which the key can have. A column j of the matrix V then has all
the hypothetical intermediate values for a key kj .

Afterwards, the chosen power model is applied to the hypothetical inter-
mediate values. Each element vi,j of matrix V is mapped to a new element
hi,j in the matrix H containing hypothetical power consumption values.

The last step involves comparing the hypothetical power consumption val-
ues with the actual power traces. As it has been described in chapter 1,
correlation coefficient is an excellent choice for this. Every column hj of mat-
rix H is compared with each column ti of matrix T. The attacker therefore
compares the hypothetical power consumption values of all key hypotheses
with the recorded traces at every position. This results in the matrix R of
size K × T , where an element ri,j is the result of the comparison between
columns hi and tj .

The matrix R reveals two important pieces of information at the indices
with the highest value:

• The secret key used by the cryptographic device.

• The moment when the intermediate value is processed by the device.

[2]
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3. Advanced Encryption Standard

Figure 3.3: Visualization of correlation values in matrix R for a correct subkey
(HD model)
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Figure 3.4: Visualization of correlation values in matrix R for an incorrect
subkey (HD model)
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As it can be seen in figure 3.3, when the subkey is found, a significant peak
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3.1. Side-channel attacks and AES

can be observed in the corresponding row of the matrix R. The other rows on
the other hand lack this significant peak and their values tend to be relatively
close to each other.
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Chapter 4

Experiments

The goal of this chapter is to empirically decide whether guessing entropy is a
helpful metric for providing information about side-channel leakages. That is
being decided by attacking a device using the CPA attack in various situations,
those being:

• Unprotected device

• Device producing noise into its power samples

• Device reducing signal quality - cutting bits of information

It is important to note that the device from which the power measure-
ments were taken did not possess any protection against CPA - both noise
and removal of information in the power traces were simulated. Also, when
evaluating the partial guessing entropy of the key, only one key had been used.
In order to see whether the results can be expected consistently, all the power
measurements were divided into smaller population sets.

4.1 Measuring the power traces

The traces were measured using the Agilent DSO-X3012A oscilloscope. The
device performing the AES cipher was the smartcard ATMega Card using the
ATMega163 circuit. Used card reader was Gemalto IDBridge CT30. Using
this method, 4000 power traces were taken.

For the CPA attacks on a device protected by noise introduction, addi-
tional Gaussian noise has been applied to the power traces by drawing random
samples from normal (Gaussian) distribution.
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4. Experiments

For the CPA attacks on a device protected by changing the amount of in-
formation retrieved, this had been simulated by applying a mask to the power
measurements result using the bitwise AND operation. As every measurement
at a point was represented by one byte, in order to remove one bit of inform-
ation, a mask {111111102} (254) was applied to each measurement using the
AND operation. This was done similarly for other bits as well.

Because the CPA attack involves comparing the hypothetical power con-
sumption values with the power measurement traces at any time, it is im-
portant that the power traces are aligned. Misaligned power traces can occur
in case of the device being protected by e.g. dummy operations or even in
temperature variations which can slightly alter the clock speed. [19]

4.1.1 Trace alignment

In order to execute the attack, it was necessary to see whether the measured
power traces were aligned properly. A visualization with an overlay of all
power traces during a short period of time had to be created. If the peaks in
power measurements happen around the same time, the traces are aligned and
no further operations are necessary. If the traces are somehow misaligned, it
is necessary to align the traces properly before executing the CPA attack [19].

Figure 4.1: Overlay of 200 power traces in a small time segment
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In case of misalignment of traces, several strategies exist. Two similar
strategies have been tested in [19]. The first one being aligning the traces
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4.2. Executing the attack

according to the global maximum and assume its position is characteristic
for all the traces. However, this strategy had failed to work as the global
maximums were too far apart and in the end it was not even possible to break
the device using DPA. Therefore, another strategy had to be used. Instead
of using a global maximum, the traces were aligned according to the local
maximum of the area of traces which had been targeted in the attack. This
strategy had shown to be effective enough to provide a performance boost in
most trace sets.

Even more complex techniques exist for alignment of traces, such as the
technique of so-called elastic alignment. This strategy uses FastDTW - dy-
namic time warping to align a set of power traces. Dynamic time warping is
used in speech recognition as human speech does not say each word after the
other with the same length of a pause. This strategy had shown to be very
effective and increase the success rate heavily [20].

In this case, since the device was not protected in any way, the traces were
aligned properly and no specific operation with them was required.

4.2 Executing the attack

The correlation power analysis attack has been executed in the Python pro-
gramming language, using the NumPy mathematical library for optimizing
the attack. The choice of language was mostly due to high readability of the
language for the reader as well as the fact that other languages suited for
mathematic calculations such as MATLAB or Wolfram Mathematica are not
as commonly available as Python is.

The implementation of the CPA attack on AES-128 is as it has been de-
scribed in chapter 3 - no adjustment to any defenses were implemented. The
implementation can be found in the accompanied file AES CPA.py. In order
to improve the execution time of the attack, attacks on each subkey run in
parallel using the joblib library.

At first, the chosen power model for describing the power consumption
was the Hamming distance model. However, it was not possible to retrieve
the secret key completely. Even though the first 15 subkeys were perfectly
retrievable, the last one was not. Because the assembly source code of the AES
implementation did not show any difference between the SubBytes operation
performed for any of the first 15 subkeys and the last one, it was not believed
that the software implementation causes this unexpected behavior. Thus, the
entire power traces and the correlation points were analyzed. Unexpectedly,
the Hamming distance model correlated at other points in time which were
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expected. Instead of correlating at the point when the device stored the value
retrieved from the S-Box, the model correlated after the S-Box operation in
each cycle ended - thus correlating at the load operation of the next subkey.
The reason for this is not known and it shows that the HD model does not
necessarily describe any hardware perfectly.

Therefore, a different power model had to be used. Instead of the HD
model, the Hamming weight model had been used, which was able to break
all the subkeys perfectly. Not only that, but when the correlation point was
analyzed, the correlation happened right during the operations where it was
expected - right after the value was retrieved from the S-Box.

4.2.1 Evaluating partial guessing entropy

As guessing entropy is an average number of guesses required using optimum
strategy to guess the correct key, the complete set of traces has been divided
into a set of smaller trace sets of the same sizes.

In order to evaluate partial guessing entropy for each subkey and for every
possible amount of traces from the measured trace set, it was then necessary
to save partial guessing entropy from each run.

This data was saved into a file in the format of a matrix - each row con-
tained partial guessing entropy for each subkey at a specific number of traces
used in the CPA attack. Therefore the matrix was of size T ×16, where T was
the amount of traces used. Each element of these matrices was then averaged
with each other in order to evaluate the final value of partial guessing entropy.

4.3 Results - unprotected device

The 4000 power traces were divided into 10 sets of 400 traces. The secret
key was retrieved from each trace set with a relatively low number of traces
needed. The complete amount of traces needed for partial guessing entropy
of all subkeys to be consistently 0 (meaning that no change in any partial
guessing entropy for the trace set has been observed) can be seen on the table
4.1.

It is important to note that the values in the table 4.1 refer to consistent
zero guessing entropy. In most cases, the secret key was already known - but
addition of newer traces made it possible for a certain subkey to correlate
slightly more than the correct one, resulting in partial guessing entropy of the
subkey to be 1 instead of 0. This can be seen on the figure 4.2, which shows
how well was the key known. Even though it was necessary to use over 200
traces to be absolutely sure that the secret key was recovered properly, this
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4.3. Results - unprotected device

Table 4.1: Amount of traces required to know the secret key perfectly - un-
protected device

Trace set # Traces needed

Trace set 1 228

Trace set 2 203

Trace set 3 331

Trace set 4 202

Trace set 5 214

Trace set 6 310

Trace set 7 208

Trace set 8 216

Trace set 9 351

Trace set 10 212

was the case only for a specific subkey - all the others were perfectly known.
Therefore, even if the attacker could not get the amount of traces required,
using a bruteforce method at this moment would be extremely fast.

Figure 4.2: Partial guessing entropy averaged from 10 tracesets taken from an
unprotected device.
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The amount of traces which were needed to break the device (mostly
between 200 and 300) is lower than expected (for example the DPA contest
v2 [8] provides 20,000 traces for their unprotected device, yet certain attacks
were not able to recover the secret key). This is mostly attributed to the high
quality of power measurements and the naive implementation of AES which
leaks information heavily.

4.4 Results - noise in measurements

The 4000 power traces were divided into 4 sets of 1000 traces. None of the
trace sets allowed for a complete, stable retrieval of the secret key. However,
most of the subkeys were retrieved and those that were not had a very low
partial guessing entropy (below 5).

Figure 4.3: Partial guessing entropy averaged from 4 trace sets with Gaussian
noise.
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Even though the figure 4.3 is quite erratic, a few important points can be
deduced from the figure:

• Added noise changes certainty of the subkey being the correct one heav-
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4.5. Results - cutting bits of information

ily. A few traces which behave differently from the rest can make the
correct subkey become more improbable than before.

• Certain subkeys leak the information better than others - even through
Gaussian noise. While certain subkeys required a high amount of traces
before their partial guessing entropy became lower than 10, other sub-
keys leaked the information better so it was possible to retrieve them
with a lower amount of traces.

When analyzing the certainty of the key, guessing entropy shows how viable
metric it actually is. Not only can it be seen how much can the adversary be
potentially certain of the key after attacking on a certain amount of traces,
it even shows its viability as a security metric - the effect of the defensive
measure can be visually seen and more defenses can be applied, if need be.

4.5 Results - cutting bits of information

Due to the relatively high amount of masks applied, only 4 sets of 400 power
traces were used in these experiments. These trace sets were the same as the
first four sets used in the experiments with an unprotected device. The pur-
pose of these masks was to remove certain bits from the power measurements.
In each experiment, an additional bit was removed from the power traces,
starting at removing the least significant bit and ending at keeping only the
two most significant bits. Using this method, information content was taken
out of the power measurements.

Firstly, two hypotheses have been made before the experiments were per-
formed:

• The lowest bits don’t necessarily provide any information and can differ
simply based on small temperature differences or other reasons. Thus,
their removal could potentially even lower the entropy (or the guessing
entropy).

• When enough information content is removed, the CPA attack should
be difficult to perform, as the lower bits should be the ones providing
the small differences which help the execution of the attack. Since these
differences are trying to be discovered using statistical methods (correla-
tion analysis, in this case), with only the highest bits present, the attack
should become difficult to perform.
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An interesting thing to note is that when enough information content was
removed, the attack itself required more traces in general, as at certain times
the correlation could not be evaluated (division by zero).

The effect of removing information from the power measurements can be
seen on the figure 4.4, which shows how much the signal quality degrades each
time a bit of information is removed from the power measurements.

4.5.1 Lowest bit removed from the measurements

The expected behaviour in this case was that the guessing entropy should be
roughly the same as in the case of the unprotected device (potentially even
better, if the least significant bit was mostly just noise in measurements).

As in the case of the unprotected device, the secret key was retrieved
perfectly. The amount of traces required for a stable retrieval can be seen on
the table 4.2.

Table 4.2: Amount of traces required to know the secret key perfectly - LSB
always 0

Trace set # Traces needed

Trace set 1 233

Trace set 2 211

Trace set 3 344

Trace set 4 158

When compared to the table 4.1, the hypothesis is proven mostly correct.
The amount of traces which were required to retrieve the secret key perfectly
were roughly the same. Not only that, but in the case of the fourth set, a
lower number of traces was required.

4.5.2 Two lowest bits removed from the measurements

The estimated values of guessing entropy were still to be roughly the same as
in the case of the unprotected device. The reason for this hypothesis is that
the two least significant bits were not expected to carry a lot of information.

Just as before, the secret key had been retrieved perfectly in a stable
manner in all sets of traces. The amount of traces required for a stable retrieval
of the key can be seen on the table 4.3.

Just as in the case before, the expected behaviour was correct. In certain
cases, the removal of information content even helped in retrieval of the secret
key.
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Table 4.3: Amount of traces required to know the secret key perfectly - 2
LSBs always 0

Trace set # Traces needed

Trace set 1 203

Trace set 2 211

Trace set 3 342

Trace set 4 193

4.5.3 Three lowest bits removed from the measurements

From visual observation of the effect of removing three lowest bits from the
measurements 4.4, no real change in the difficulty of executing the attack was
expected due to the fact that the signal still wasn’t degraded heavily.

Table 4.4: Amount of traces required to know the secret key perfectly - 3
LSBs always 0

Trace set # Traces needed

Trace set 1 266

Trace set 2 253

Trace set 3 214

Trace set 4 180

This hypothesis had proven mostly correct. In two sets, the attack be-
came more difficult to perform. However, in the other two, it became easier -
especially in the case of the third trace set.

Still, as the three lowest significant bits did not degrade the signal very
much, retrieving the secret key required almost as much work as in the case
of the unprotected device.

4.5.4 Four lowest bits removed from the measurements

At this point, visual observation of the signal on figure 4.4 shows that the
signal begins to degrade in quite an obvious manner. Therefore, the expected
behaviour in this case was to see all tracesets requiring more traces in order
to retrieve the secret key.

While the secret key had been retrieved perfectly in a stable manner using
all of the trace sets, the required work started to become visibly higher. Not
only that, but all four sets required more work than in any of the cases before.
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Table 4.5: Amount of traces required to know the secret key perfectly - 4
LSBs always 0

Trace set # Traces needed

Trace set 1 378

Trace set 2 281

Trace set 3 356

Trace set 4 246

4.5.5 Five lowest bits removed from the measurements

Because the signal quality has degraded even heavier, it was expected that it
might not be possible to retrieve the secret key in a stable manner in certain
trace sets.

Table 4.6: Amount of traces required to know the secret key perfectly - 5
LSBs always 0

Trace set # Traces needed

Trace set 1 392

Trace set 2 308

Trace set 3 N/A

Trace set 4 338

In the case of the third trace set, it was not possible to retrieve the secret
key completely as the partial guessing entropy of one subkey did not become
0. Still, even though the work required to retrieve the key in a stable man-
ner was higher, lower amount of traces was required to know the secret key
almost perfectly, as in all cases most of the subkeys were retrieved earlier. Be-
cause of that, even in the case of the third traceset where the secret key was
not retrieved, the guessing entropy was so low that the amount of guesswork
required would be extremely small.

4.5.6 Six lowest bits removed from the measurements

At this point, the signal became so degraded that it was expected that more
trace sets would not allow for a perfect stable retrieval of the secret key.

The CPA attack became harder to perform yet again - however, still,
potentially reasonable to perform. Due to these results, it is visible that the
most information required for the CPA attack is present in the most significant
bits.
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Table 4.7: Amount of traces required to know the secret key perfectly - 6
LSBs always 0

Trace set # Traces needed

Trace set 1 N/A

Trace set 2 324

Trace set 3 N/A

Trace set 4 373

4.5.7 Only the most significant bit remaining

An interesting question arose - since the most significant bits had shown them-
selves empirically to be the most important ones for the CPA attack, would
it be possible to retrieve the secret key using only the most significant bit?

Table 4.8: Amount of traces required to know the secret key perfectly - only
MSB used

Trace set # Traces needed

Trace set 1 361

Trace set 2 369

Trace set 3 N/A

Trace set 4 361

Surprisingly enough, it was possible to perform the attack only with the
knowledge of the most significant bit - thus only having the values 0 and 128
retrieved from the power measurements.

As it can be seen on the figure 4.5, most subkeys were successfully retrieved
in the attack. Compared to the figure 4.2, it can be seen exactly how much
more was the attack difficult to perform - and the fact that the difference is
not that high. Due to these reasons it is expected for these measurements
that the bits containing the most information required for the attack are the
most significant ones.

4.5.8 Empirically checking the results

Cutting off bit after bit starting at the least significant bits showed exactly
which bits were the most important in performing the attack - especially using
guessing entropy as a metric to determine how good the attack is and how
much information content is present in the power traces.

In order to test whether these theorems were correct, the attack was per-
formed on 400 measurements with only the three least significant bits in the
power measurements used.
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In this case, only 5 subkeys were retrieved properly, with the rest having
their partial guessing entropy either relatively low (between 1 and 20) or
relatively high (from 79 to 249). Even though the attack space became smaller,
its size is still enormous for a brute force attack.

4.6 Summary of experiments

Guessing entropy had empirically proven itself to be a good security metric
when it comes to deciding how much work the adversary needs to put into
breaking the device using a side-channel attack. Not only that, but a few
points about the CPA attack on an unprotected device and guessing entropy
can also be made:

• The values of guessing entropy on various tracesets in one experiment
were very close to each other. As this had been tested on multiple
tracesets, an estimate of guessing entropy which came from one trace
set can be enough to determine the guesswork required.

• Progression of guessing entropy can show how well can the secret key
be retrieved - and more specifically, the effect of a defensive measure on
the difficulty of the attack.

• Guessing entropy at a given time also leads to information about whether
the attack space needed for a brute force attack becomes smaller - and
if so, how much. In most experiments, even if the amount of required
traces to perform the attack was relatively high, the guessing entropy
was very low after a significantly lower amount of traces. In that case,
even a brute force attack would potentially be viable.

An important thing to note is that these findings came from an unprotected
device with protections being simulated. However, it is believed that these
simulations were close enough to the potential real behaviour of the devices.

When it came to the experiments utilizing the removal of information
content in the power measurements, an interesting point had presented itself
- the CPA attack became progressively harder, but still viable, with it mostly
dependent on the values of the more significant bits, rather than the small
differences between each values. This had been proven by the fact that the
attack was not not possible to perform with utilizing only the least significant
bits.
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4.6. Summary of experiments

(a) No bits removed (b) Mask {1111 11102} applied

(c) Mask {1111 11002} applied (d) Mask {1111 10002} applied

(e) Mask {1111 00002} applied (f) Mask {1110 00002} applied

Figure 4.4: The effect of removing information content from the power meas-
urements
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Figure 4.5: Partial guessing entropy averaged from 4 trace sets using only the
most significant bit.
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Conclusion

The side-channel attack called correlation power analysis attack on the AES
algorithm had been researched and implemented in the Python language. Util-
izing the metric called guessing entropy, it became possible to determine the
information content present in the power measurements.

The metric itself had proven itself to be highly viable when it came to
empirically deciding how well the device is protected against the attack - as
well as showing how difficult (or easy) it is for the adversary to perform a
brute force attack after performing the correlation power analysis attack on
devices protected against side channel attacks.

The analysis of guessing entropy in attacks where information content
was removed from the side channel also showed which bits provided the most
information required for the correlation power analysis attack.
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Appendix A

Acronyms

SCA Side-channel attack

SPA Simple power analysis

DPA Differential power analysis

CPA Correlation power analysis

HW Hamming weight

HD Hamming distance

AES Advanced Encryption Standard

NIST National Institute of Standards and Technology

GF Galois field

LSB Least significant bit

MSB Most significant bit
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Appendix B

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

cpa.........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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