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Abstract 

Topic: Combination of homogenization and nanoindentation in search for microfibril 

angle of spruce 

The thesis is concerned with the estimation of the microfibril angle in the wood cell wall 

using the combination of the micromechanical homogenization and nanoindentation 

measurement. For the homogenization, the upscale model was used employing 

the Self-consistent method for the first step (Polymer network) and the Mori-Tanaka 

method for the second (Cell wall) and the third one (Lumens), and also the standard rule 

of mixtures for the fourth step (Laminate). The effective longitudinal elastic modulus 

of the cell wall level with rotated microfibrils was compared with Young’s modulus 

from the nanoindentation. This iterative computation led to the microfibril angle (MFA). 

Keywords: homogenization, MFA, spruce, wood, nanoindentation, orientation 

averaging, Mori-Tanaka method, self-consistent method 
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Abstrakt 

Téma práce: Kombinace homogenizace a nanoindentace pro odhad úhlu mikrofibril 

smrkového dřeva 

Tato práce se zabývá odhadem odklonu celulózových vláken v buněčné stěně smrkového 

dřeva využitím porovnání výsledků získané mikromechanickou homogenizací s výsledky 

měření pomocí nanoindentace. Homogenizace byla prováděna s postupným zvětšováním 

měřítka tzv. “od nejmenšího k největšímu” pomocí self-konzistentní metody pro první 

stupeň (polymerní síť), metody Mori-Tanaka pro druhý (buněčná stěna) a třetí stupeň 

(lumeny) a pomocí klasické laminační teorie pro čtvrtý stupeň (laminát). Následně 

postupným porovnáváním efektivního modulu pružnosti, získaného homogenizací 

na úrovni buněčné stěny s různě natočenými vlákny, a Youngova modulu pružnosti 

z měření pomocí nanoindentace byl zjištěn výsledný odklon mikrofibril. 

Klíčová slova: homogenizace, odklon mikrofibril, smrk, dřevo, nanoindentace, 

orientační průměrování, metoda Mori-Tanaka, self-konzistentní metoda 
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1. Introduction 

The wood is a natural material used as a building material for thousands years, 

however this material is not known enough. In these times, when all environmentally 

friendly things are very popular, wood became “in” and wood industry is flourishing. 

That’s because it is a renewable source, comparing to, e.g. cement, which is totally 

non-renewable. There are much more advantages, e.g. trees produce oxygen, the natural 

biotope remains to wild animals etc. Also using wood in interiors makes people feel 

comfortable and warm-in-heart. 

Almost 36,8 % of the Czech Republic [9] land is covered by forests. Naturally, wood 

is one of the mainly used building materials. The most cultivated wood species is 

the Norway spruce (Picea abies), which belongs to conifers. In the Czech Republic 

the spruce is a major constituent of the timber production – almost 80 % of the whole 

production [10]. 

2. Wood structure 

Tree stem is mainly used for timber industry, when it is cut into boards, beams etc., 

so only properties of the tree stem are considered. Wood, generally, has a highly irregular 

structure depending on growth conditions, e.g. location, age of the tree, climate, 

weather etc. It is possible to determine wood as a fibre reinforced polymer composite. 

In the following, the structure is described from macrostructure, which can be seen 

by naked eye, to ultrastructure, visible using microscope with high resolution only. 

2.1 Macrostructure 

The macrostructure of wood is discernible by naked eye. Outermost part is a bark, 

which is like a skin for the tree. Protects it against injuries, microbial attacks and other 

harmful agents. Below bark is phloem also called inner bark, which new bark layers come 

from. Next is cambium, the most important layer of the whole tree, where new cells are 

produced (cell production and cell division is not a case of this study, for more 

information see [1]). The main mass of the wood stem is xylem, where one layer produced 

by cambium in one growing season is called growth ring or annual ring. In the xylem 

growth rings appear as darker (latewood) and lighter (earlywood) lines, which make 

almost circles around the middle of the stem. Perpendicularly to growth rings run rays 

in radial directions, some starting from the pith and some from heartwood or sapwood. 
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In the middle of the stem is a darker zone called pith, which comes from the very 

beginning of a tree life. The first several growth rings are also called juvenile wood, which 

is dated to the time, when the tree was a small sapling. Another possible division 

of the xylem is into sapwood and heartwood. Sapwood contains live cells, while all cells 

are “dead” in the heartwood, it means that all pit pairs are closed and could not conduct 

water and nutrients [1]. Fig. 1 illustrates schematically this structural composition. 

 

Fig. 1 Wood macrostructure [2] 

The width of the growth ring is highly dependent on growing conditions, such as 

temperature distribution during the season, precipitation amount, growth place etc. 

The lower temperature is, the thinner is the growth ring and the higher is the density 

of wood. This predetermines the wood from northern parts as a material with better 

mechanical properties compared to the wood from southern parts. 

Another characteristic, which affects the final properties, is the amount of knots and 

other inhomogeneities, such as animal bite or ingrown bark. Knots are the remnants 

of branches, which were cut off during logging or broken when they died. There are two 

types of knots. The first one originate from living branches and the second one are 

residues of the dead branches over which the stem grew. These are called internal knots. 

In a knot and around it, the orientation of the cells deviates from that in the main stem, so 

it causes a local concentration of lower properties, which results into the knot density 

dependence of the strength properties of the wood. Due to its higher density, it shrinks 

more than the surrounding wood and usually falls out [1]. 

When the growth rings seem to be non-central, it usually points to the stem under 

stress. The wood under stress is called reaction wood and divides into two main groups: 
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compression wood and tension wood. The tension wood develops in parts under tension. 

The annual rings are thicker and lighter in colour, with higher tensile strength, which 

could be caused by lower microfibril angle. Also, the content of main cell wall 

constituents is different than in the normal wood. The cell walls exhibit more cellulose 

and less lignin. While the compression wood, which develops under compression stress, 

is almost the opposite. The growth rings are thinner and darker in colour, with shorter and 

round in cross-section tracheids, which exhibit higher microfibril angle. Cracks appear 

on the inner side of the cell wall and extend quite deep into the S2 layer, while S3 layer 

is completely absent. The compression wood contains less cellulose and more lignin than 

the normal wood and exhibits higher compression strength and higher ductility. 

The reaction wood is usually eliminated from the timber production due to its shape 

changes [1]. 

2.2 Microstructure 

Wood, as many biological materials, consists of several types of cells, which are 

produced in cambium. Spruce, which belongs to conifers (softwood), mainly consists 

of tracheids, approximately 94% of the wood volume. The microstructure is depicted 

on Fig.2 and 3. 

Tracheids are long closed tube-like cells with almost rectangular cross section, 

elongated in the axial direction of the stem. The void inside a cell is called lumen and 

serve as a conductor of water and nutrients. In the longitudinal direction, they are joined 

to one another finger-like and the water and nutrients run through the pit pairs (see Fig. 3), 

possibly described as small holes in the cell wall of each attached cell. In the radial and 

tangential direction, cells are joined together by middle lamella, acting as a “glue” 

between cells. The length is about 2,5 – 2,82 mm and width about 13 – 39,3 µm 

(depending on the cell type and direction), approximately, so the value of the length 

over thickness ratio is about 100:1. There are obvious differences between earlywood and 

latewood tracheids. Earlywood tracheids have thinner walls and bigger lumens, because 

they are mainly used for conduction in the beginning of the growing season. Unlike them, 

latewood tracheids are much thicker with small lumens, used as a storage area and 

mechanical support of a crown. Also the cross section is different, for earlywood is typical 

almost square shape, contrary to latewood, which is more rectangular. In the tangential 

direction almost all cells have the same width, however in the radial direction, latewood 

cells are nearly half in width [1]. 
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Another type are parenchyma cells, which are almost the same as tracheids, except 

for the length and different type of pits. In the spruce, they mostly appear as building parts 

of rays and resin canals. 

 

Fig. 2 Microstructure of the spruce (optical microscope) – cross section 

There are also cells oriented radially comprising tracheids and parenchyma cells. 

This structure is called ray and is made of a group of cells together, starting from pith 

or heartwood and sapwood. Rays work as conductors in the radial direction of the stem. 

Because of this purpose, they are connected one to another and also with axial tracheids. 

In the cross section, they appear as tube-like lines (Fig. 2) and in the longitudinal section 

as a group of cells. In a case of the spruce the ray is one cell wide and a few cells high, 

see Fig. 3. The volume fraction of rays is 5,9%, approximately [1]. 

 

Fig. 3 Microstructure of the spruce (optical microscope) – tangential direction 

Next microstructure appearing in wood is a resin canal (Fig. 2). This structure occurs 

in both longitudinal and radial direction as a huge hole surrounded by some cells. Resin 

canals serve as resin conductors running through the whole tree. The amount of the resin 

canals is small, approximately 0,14% of the wood mass [1]. 
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2.3 Ultrastructure 

When the structure of the wood is studied with larger magnification, e.g. the polarised 

light microscope, the cell wall appears to be composed of several layers, so it is possible 

to determine cell wall as a multilayer laminate. As it is evident from Fig. 4 the layers are 

(described outwards): warty layer, secondary wall, primary wall and middle lamella 

(sometimes called intercellular layer).  

 

Fig. 4 The structure of the tracheid cell wall and middle lamella [1] 

The warty layer is a continuous thin amorphous layer containing some fibres and 

warts. This layer is not found in all wood species, but softwood tracheids have it nearly 

always. 

The secondary wall consists of several layers. The main division is into three layers: 

outer layer S1, middle layer S2 and inner layer S3. The outer layer S1 is composed 

of several lamellae with cross fibrillary texture, which means that the direction 

of the reinforcing fibres in reference to the axial direction alternate left to right with 

relatively wide angle, see Fig. 4. Its thickness is about 10 – 15% of the total thickness 

of the secondary wall. The middle layer S2 is the thickest layer compared to S1 and S3 

covering about 85% of the total thickness of the secondary wall. There is a small deviation 

of the reinforcing fibres from the longitudinal axis and a high degree of parallelism 

of microfibrils (the cellulose fibres). The middle layer has a great influence 

on the properties of the cell wall and subsequently on the properties of the whole stem. 

The inner layer S3 has similar structure as outer layer, with higher deviation of the fibres 

from axial direction. There are also transition lamellae with a gradual shift of microfibril 
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angles (the deviation of the cellulose fibres from the longitudinal axis) between S1 and S2 

and between S2 and S3. 

The primary wall is the first cell wall layer produced in the cambium, this is 

the reason of the imperfection of this layer. It consists of a single lamina with more or 

less randomly oriented microfibrils. Microfibrils will be mentioned in Section 5. 

The middle lamella joins the cells together. It is totally amorphous, highly lignified 

material without any reinforcement. Due to the lack of the reinforcement and amorphous 

structure, the middle lamella is weaker than the cell wall [1, 3]. 

The wood cell walls consist mainly of cellulose (predominantly crystalline), 

hemicellulose (predominantly amorphous) and lignin (totally amorphous). Apart 

from these basic components, other substances appear in the wood microstructure, such 

as extractives, water and some additional minor components. 

The cellulose (C6H10O5) is a semi-crystalline thermoplastic natural polymer forming 

the reinforcing microfibers in the cell wall. Cellulose is produced by polymerization 

of glucose monomers into a linear molecule chain. The molecule chains can form larger 

units, crystalline or amorphous in arrangement (crystalline and amorphous cellulose 

mentioned in Section 4 in the second step of homogenization). Hemicelluloses are 

heteropolysaccharides composed of glucose and other monomers, e.g. mannose, 

galactose, xylose, arabinose and others. They have semi-crystalline structure with 

a dominant amorphous structure component. Lignin is a large molecule composed 

of phenyl propane units where hydroxyl- and methoxy- groups substitute hydrogen. It has 

a very complicated and heterogeneous structure. There are many types of lignin, differing 

due to its location. The main task of lignin is to act as a “glue” between macrofibrils (units 

composed of cellulose microfibrils and hemicellulose layers around them) [1]. 

 

3. Nanoindentation 

3.1 Main principle 

The nanoindentation is usually used for elastic modulus and hardness measurements 

at the micrometre and nanometre scales. The main principle is pushing of small hard tip 

with known geometry and material properties to a material with unknown properties. 

During the indentation, loading force and displacement of the tip are measured and 

the dependence of these parameters is depicted by load-displacement curve, see Fig. 5, 
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where Pmax is the maximum load, hmax is the maximum displacement, S=dP/dh is 

the elastic unloading stiffness defined as the slope of the unloading curve and hf is 

the final depth, the permanent depth of penetration after the indenter is fully unloaded. 

In this thesis, the Berkovich tip – the sharp, geometrically self-similar triangular pyramid 

made of diamond, was used for the static indentation on Hysitron® TI 750L Ubi™. 

During loading the elastic and plastic deformation is assumed, whereas only elastic 

deformation is supposed to be during unloading. The maximum force holding is used 

to ensure that only elastic deformation appears and the viscoelastic material response is 

eliminated, this is very important in the case of wood, because it exhibits viscoelasticity. 

The properties of the tested material are computed from the unloading part 

of the load-displacement curve obtained during one cycle of loading and unloading; basic 

equations of the isotropic indentation are mentioned in section 3.2 assuming the isotropic 

half space [4]. 

 

Fig. 5 Load-displacement curve and unloading process of the indenter tip [4] 

 

3.2 Basic equations for static isotropic nanoindentation 

Contact depth 

Assuming that the pile-up is negligible, which actually isn’t in the case of wood, see 

Section 3.4, the elastic models show that the amount of sink-in hs is given by: 

ℎ𝑠 = 𝜀.
𝑃𝑚𝑎𝑥

𝑆
 

where ε is a constant depending on the indenter geometry (ε = 0,75 for the measurement 

in this thesis), Pmax is the maximum load and S is the elastic unloading stiffness. 

(1) 
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From the Fig. 5 (right) it is obvious, that the contact between the material and the indenter 

is not along the whole measured depth, but it is necessary to subtract the amount 

of the sink-in. After that the contact depth is given by: 

ℎ𝑐 = ℎ𝑚𝑎𝑥 − ℎ𝑠 = ℎ𝑚𝑎𝑥 − 𝜀.
𝑃𝑚𝑎𝑥

𝑆
 

where hmax is the maximum measured depth of the indentation and hs is the amount 

of the sink-in of the material during the indentation [4]. 

 

Area function 

The area function gives us the value of the projected contact area of the indenter tip. 

For a proper determination of the elastic moduli it is necessary to calibrate the area 

function carefully by independent measurements on a material with known properties 

(usually fused silica) to take the deviations from an ideal tip geometry into account. 

The area function used in the Hysitron® TI 750L Ubi™ for the indentation modulus 

computation is: 

𝐴 = 𝐶0. ℎ𝑐
2 + 𝐶1. ℎ𝑐 + 𝐶2. ℎ𝑐

1/2
+ 𝐶3. ℎ𝑐

1/4
+ 𝐶4. ℎ𝑐

1/8
+ 𝐶5. ℎ𝑐

1/32
 

where A is the area function (sometimes called the indenter shape function), Cx are 

calibration constants and hc is the contact depth of the indenter given by the equation (2). 

The equation varies for different indenter tips and the number of members of the equation 

depends on the required accuracy of the computation [4]. 

 

Indentation modulus 

The indentation modulus (also called reduced modulus) is the main variable 

quantified from the measured data, which describes the tested material resistance to being 

deformed elastically by the applied force. The equation considering isotropic indentation 

is given by: 

𝐸𝑟 =
√𝜋

2. 𝛽
.
𝑆

√𝐴
 

where Er is the indentation modulus, β is the dimensionless parameter of the indenter tip 

geometry (β=1,034 used for the Berkovich indenter in the measurement evaluation), 

S is the measured elastic unloading stiffness S=dP/dh and A is the area function [4]. 

(3) 

(4) 

(2) 
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Sample Young’s modulus 

The sample Young’s modulus is the modified indentation modulus, which takes 

into account that the elastic material response could occur in both the specimen and 

the indenter tip. Utilizing material properties of both materials in the contact, the sample 

modulus is given by: 

𝐸𝑠 = (1 − 𝜈𝑠
2). (

1

𝐸𝑟
−
1 − 𝜈𝑖

2

𝐸𝑖
)

−1

 

where Es and νs are Young’s modulus and Poisson’s ratio of the specimen, respectively 

and Ei and νi are Young’s modulus and Poisson’s ratio of the indenter, respectively and 

Er is the indentation modulus [4]. 

 

Hardness 

Once the contact area is known, it is possible to determine the hardness by: 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴
 

where Pmax is the maximum load and A is the contact area. It is necessary to note that 

this equation is based on the contact area under load, so it may deviate from the traditional 

hardness measured from the area of the residual hardness impression, if the material 

exhibits a significant elastic recovery during unloading [4]. 

 

3.3 Sample preparation 

The small pieces of the Norway spruce (1x1cm in cross section and 3 cm long, 

approximately) were cut from the timber, embedded in epoxy resin, placed into vacuum 

and left there for a while to eliminate an unwanted gas. Cured samples were cut 

with diamond cut-off wheel into 5 mm thick slices using water cooling. Then all samples 

were ground with silicon carbide grinding papers with grit 1200 grain/cm2, 

2400 grain/cm2 and 4000 grain/cm2 under water to eliminate thermal degradation 

of wood, using 2 minutes sequences of the grinding alternating with 5 minutes sequences 

of the drying on the air to prevent water soaking to the wood microstructure. 

Approximately 5 sequences for each paper were performed. After each grinding level, all 

samples were cleaned in an ultrasonic bath of drinkable water for 2 minutes, 

(5) 

(6) 
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approximately, to remove the loose particles of the ground material. As the last step 

of the sample preparation, the surface polishing on the Struers MD-Dac cloth with 

lubricant for water-sensitive materials was used to achieve the best surface as possible. 

 

Fig. 6 Prepared samples for nanoindentation 

3.4 Measurement 

The static nanoindentation was performed using Hysitron® TI 750L Ubi™ with 

diamond Berkovich tip (νi=0,07, Ei=1141 GPa), as mentioned in the beginning of this 

section. All indentation points were located to the middle layer of the secondary wall – 

S2 using the click script method for a proper selection of the indented area. 

The trapezoidal load function with the 10s hold period of the maximum force of 400 μN, 

and 5s for both loading and unloading with load-rate 80 µm/s, were used for all samples. 

For each indentation point, the load-displacement curve was plotted – all curves with 

a significantly different shape or with a wrong position of the indent were eliminated. 

From measured data was computed indentation modulus Er using Eq. (4) and 

afterwards Young’s modulus employing Eq. (5) using Poisson’s ratio of the sample 

(νs=0,25) from micromechanical model mentioned in Section 4 and the material 

properties of the indenter (νi=0,07; Ei=1141 GPa). The results of the indentation are 

summarized in Table 1 and Table 2, respectively. 

Mean values of the indentation modulus Er [GPa] 

  Sample 2 Sample 5 Samples 2+5 

Earlywood 14.27 13.56 14.04 

Transition zone 13.81 16.25 15.36 

Latewood 13.90 16.36 14.84 

Overall 13.94 16.21 14.87 

Table 1: Mean values of the indentation modulus Er 
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Mean values of the Young's modulus Es [GPa] 

  Sample 2 Sample 5 Samples 2+5 

Earlywood 13.55 12.86 13.21 

Transition zone 13.40 15.45 14.59 

Latewood 13.16 15.57 14.10 

Overall 13.21 15.41 14.13 

Table 2: Mean values of the Young’s modulus Es 

There seems to be correlation between measured data and surface roughness. 

The sample 5 had a very rough surface and lower indentation modulus compared 

to sample 2. After re-polishing the surface became smoother and the indentation modulus 

significantly higher. Some measured data of the roughness and indentation modulus are 

given in Table 3 as an example. However, the surface of all samples remained rougher 

than desired, unless the great care was taken for the preparation. It would be better 

to prepare samples using an ultramicrotome (very sharp diamond knife), so the polishing 

and grinding would not be necessary.  

Sample 5 

RMS 

roughness  

[nm] 

Indentation 

modulus  

Er [GPa] 

Before re-polishing 
62.82 7.85 

87.37 9.74 

After re-polishing 
22.63 18.13 

32.45 18.01 

Table 3: Measured data of the surface roughness and indentation modulus 

It is necessary to note that in [4] the authors mention that great care must be taken 

if the hf/hmax ratio is larger than 0,7 (hf – the final depth, hmax – the maximum 

displacement, see Fig. 5). This ratio describes the behaviour of the tested material under 

pressure of the indenter tip, especially the pile-up of the material along the tip. High 

values of this ratio obviously lead to large errors in the contact area, which affects 

the hardness (the function of A, see Eq. (6)) and indentation modulus (the function of √𝐴, 

see Eq. (4)). From values in Table 4 is evident that large errors for both tested samples 

might appear. The solution of this problem could be the direct measurement of the contact 

area from indentation scans or derivation of equation, which do not include the contact 

area. Unfortunately, the measurement of each contact area is almost impossible, at least 

very time-consuming, and it requires specific equipment for a proper scanning and a very 

long scanning time. The derivation of the equation not containing area function could be 

the focus of the future study. 
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The values of hf/hmax ratio 

  Sample 2 Sample 5 Samples 2+5 

Mean 0.70 0.74 0.71 

Minimum 0.57 0.63 0.57 

Maximum 0.81 0.84 0.84 

Table 4: The values of the hf/hmax ratio 

4. Homogenization 

4.1 Main principle 

Wood is generally heterogeneous material. It is a natural composite consisting 

of many components, starting at atomic level. However, for the structural analysis we 

need only few values of the mechanical properties of the building material. In this case, 

it means that only properties of the whole timber are desired. For this purpose, it is 

necessary to implement homogenization model to get the effective value of the whole 

material, not only constructional parts. The main homogenization principle is based 

on substituting a heterogeneous material with a homogeneous material of equivalent 

properties. Although there are many methods of micromechanical homogenization, only 

two methods were used in this thesis. In particular, the Self-consistent method and 

the Mori-Tanaka method seem to be well suitable for our purpose. 

Self-Consistent method 

The Self-consistent method belongs to effective medium approximations based 

on a solution of an auxiliary inclusion problem. The interaction between inclusions is 

imagined by placing an inclusion into a homogeneous medium that has the overall 

effective properties. This method is well suitable for materials with almost the same 

volume fractions of phases, so the role of the matrix and inclusions could be reversed. 

Unfortunately, this method is implicit and leads to an iterative computation. In this thesis, 

the transformed version of the equation is adopted: 

𝑐1. 𝐾1
3. 𝐾1 + 4. 𝐺𝑆𝐶

+
𝑐2. 𝐾2

3. 𝐾2 + 4. 𝐺𝑆𝐶
+
5

3
. (

𝑐2. 𝐺1
𝐺𝑆𝐶 − 𝐺1

+
𝑐1. 𝐺2

𝐺𝑆𝐶 − 𝐺2
) +

2

3
= 0 

where c, K, G are the volume fraction, bulk modulus and shear modulus of each phase, 

respectively, and KSC and GSC are the homogenized bulk modulus and homogenized shear 

modulus, respectively [5]. 

 

(7) 



27 
 

Mori-Tanaka method 

The Mori-Tanaka method belongs to effective field approximations. This method 

is based on a solution of a single inclusion in an unbounded matrix loaded by unknown 

average field in the matrix. The method is well suitable for a material with predominant 

matrix with some inclusions. Fortunately, the method provides explicit form so 

the computation is much easier and faster. Apart from the common formulation 

of the Mori-Tanaka method used for the second homogenization step, the transformed 

version of the equation is adopted in case of lumens (the third homogenization step). 

Considering properties of the inclusions equal to zero, the resulting effective properties 

of the homogenized material are given by: 

𝑘𝑀𝑇 =
(1 − 𝑓). 𝑘1. 𝑚1

𝑓. 𝑘1 +𝑚1
 

𝑙𝑀𝑇 =
(1 − 𝑓). 𝑙1. 𝑚1

𝑓. 𝑘1 +𝑚1
 

𝑛𝑀𝑇 = (1 − 𝑓). 𝑛1 + (𝑙𝑀𝑇 − (1 − 𝑓). 𝑙1).
𝑙1
𝑘1

 

𝑚𝑀𝑇 =
(1 − 𝑓). 𝑘1. 𝑚1

𝑘1 + 𝑓. (𝑘1 + 2.𝑚1)
 

𝑝𝑀𝑇 =
1 − 𝑓

1 + 𝑓
. 𝑝1 

where f is the volume fraction of pores, upper index (MT) means the effective properties 

of the homogenized material, lower index (1) describes properties of the matrix and k, l, 

n, m, p are given by: 

𝑘 = −[
1

𝐺𝑇
−

4

𝐸𝑇
+ 4

𝜈𝐴
2

𝐸𝐴
]

−1

 

𝑙 = 2. 𝑘. 𝜈𝐴 

𝑛 = 𝐸𝐴 + 4. 𝑘. 𝜈𝐴
2 = 𝐸𝐴 +

𝑙2

𝑘
 

𝑚 = 𝐺𝑇 

𝑝 = 𝐺𝐴 

where EA, GA, νA are the longitudinal Young’s modulus, shear modulus and Poisson’s 

ratio and ET, GT are the transversal Young’s modulus and shear modulus, respectively 

[5]. 

(8) 

(9) 
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4.2 Modification for wood 

As it was said, the wood exhibits highly irregular microstructure, but it is possible 

to consider the microstructure as more or less regular. The type of the wood composition 

leads to the upscale homogenization, which could contain many steps. The three last steps 

(cell wall, earlywood/latewood, laminate) are depicted schematically on Fig. 7. 

 

Fig. 7 The three last steps of the upscale homogenization 

The micromechanical homogenization starts at the level called the polymer network 

with a characteristic length of a representative volume element (marked as RVE in 

the following text) in the range of 8-20 nm. The polymer network consists 

of hemicellulose, lignin, water and extractives, in this thesis the last two components 

(water + extractives) are neglected, so the volume fractions are given as:  

𝑓ℎ𝑒𝑚𝑐𝑒𝑙𝑙 + 𝑓𝑙𝑖𝑔 = 1 

where fhemcell and flig are the volume fractions of the hemicellulose and lignin respectively. 

Certainly, it is possible to start at the lower scales such as the atomic constitution 

of the cell walls, but it is too detailed and for our purpose it is not necessary. 

The hemicellulose and lignin have almost the same volume fractions and are mixed, so 

the Self-consistent method with spherical inclusions in the isotropic matrix seems to be 

well suitable for this homogenization step [6]. 

Following the cell wall composition, the next step adopts the polymer network from 

the previous step as a matrix supplemented with amorphous and crystalline cellulose 

as infinite cylindrical inclusions, because of the fibre-like origin of the celluloses, 

employing: 

𝑓𝑝𝑜𝑙𝑦𝑛𝑒𝑡 + 𝑓𝑐𝑟𝑦𝑐𝑒𝑙𝑙 + 𝑓𝑎𝑚𝑜𝑐𝑒𝑙𝑙 = 1 

where fpolynet, fcrycell and famocell are the volume fractions of the polymer network, crystalline 

cellulose and amorphous cellulose, respectively. The characteristic length of RVE falls 

within the range of 0,5-1 µm. These assumptions lead to the Mori-Tanaka method 

for isotropic matrix with infinite cylindrical inclusions, which are parallel 

(10) 

(11) 
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to the longitudinal cell axis. The results of this step correspond to the effective properties 

of the cell wall, however with zero microfibril angle. The effective properties of the cell 

wall with non-zero microfibril angle will be mentioned later [6]. 

Further step provides the effective properties of the earlywood and latewood 

material. The homogenization model is made up of the cell wall forming the matrix and 

lumens as infinite hollow cylindrical inclusions, which are parallel to one another and 

also with the longitudinal cell axis, assuming that:  

𝑓𝑐𝑤 + 𝑓𝑙𝑢𝑚 = 1 

where fcw and flum are the volume fractions of the cell wall and lumens, respectively. 

The characteristic length of RVE for this step is in the range of 100-150 µm. 

The Mori-Tanaka method is used again in the same way as in the previous step, with only 

one difference, that the inclusions are pores so the stiffness is equal to zero, recall Eq. (8) 

[6].  

The last step comprises of the laminate consisting of earlywood and latewood, 

considering that: 

𝑓𝐸𝑊 + 𝑓𝐿𝑊 = 1 

where fEW and fLW are the volume fractions of the earlywood and latewood, respectively. 

The characteristic length of RVE is about 3-6 mm. The standard rule of mixture is used 

to obtain the Voigt and Reuss bounds of the effective Young’s modulus employing 

equations: 

𝐿𝑉𝑜𝑖𝑔𝑡 = 𝑓𝐸𝑊. 𝐿
𝐸𝑊 + 𝑓𝐿𝑊. 𝐿

𝐿𝑊 

𝑀𝑅𝑒𝑢𝑠𝑠 = 𝑓𝐸𝑊. 𝑀
𝐸𝑊 + 𝑓𝐿𝑊. 𝑀

𝐿𝑊 

where fEW and fLW are the volume fractions of the earlywood and latewood, respectively, 

and L, M are the stiffness and compliance matrices, respectively. The index (EW) is 

for earlywood and (LW) is for latewood. The Voigt bound represents the upper value and 

the Reuss bound the lower value of the material properties [5]. 

In the whole computation the matrix member X33 represents the longitudinal 

direction of the cell walls. Considering transversely isotropic material the compliance 

matrix is given by Eq. (15), from which all Young’s moduli, shear moduli and Poisson’s 

ratios in both longitudinal and transverse directions were determined. 

 

(14) 

(12) 

(13) 
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1

𝐸𝑇
 −

𝜈𝑇
𝐸𝑇

 −
𝜈𝐴
𝐸𝐴

 0 0 0 

−
𝜈𝑇
𝐸𝑇

 
1

𝐸𝑇
 −

𝜈𝐴
𝐸𝐴

 0 0 0 

−
𝜈𝐴
𝐸𝐴

 −
𝜈𝐴
𝐸𝐴

 
1

𝐸𝐴
 0 0 0 

0 0 0 
1

𝐺𝐴
 0 0 

0 0 0 0 
1

𝐺𝐴
 0 

0 0 0 0 0 
1

𝐺𝑇
 

 

In Eq. (15) EA, GA and νA are Young’s modulus, shear modulus and Poisson’s ratio 

in the longitudinal direction, respectively, and ET, GT and νT are Young’s modulus, shear 

modulus and Poisson’s ratio in the transverse direction, respectively. 

4.3 Samples homogenization 

Step 1 – Polymer network 

Characteristic length of RVE: 8-20 nm 

 Self-consistent method with spherical inclusions 

 Two phases: lignin and hemicellulose 

 Water and extractives are neglected 

Input values: 

  K [GPa] G [GPa] ν [-] f [-] 

Lignin 5.00 2.30 0.30 0.52 

Hemicellulose 8.89 2.96 0.35 0.48 

Table 5: The properties of the polymer network phases [6] 

The input values were taken from [6] and modified for the case without water and 

extractives. The HELP program was used for the computation of the effective properties 

of the polymer network, using lignin as a matrix and hemicellulose as spherical inclusions 

employing the Self-consistent method. Both phases are assumed as isotropic materials, 

with values given in Table 5. 

Step 2 – Cell wall 

Characteristic length of RVE: 0,5-1 µm 

 Mori-Tanaka method with infinite cylindrical inclusions 

 Three phases: polymer network, crystalline cellulose, amorphous cellulose 

M =  (15) 
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 Microfibril angle is considered as zero 

Input values: 

  K [GPa] G [GPa] ν [-] f [-] 

Polymer network - - - 0.61 

Crystalline cellulose - - - 0.22 

Amorphous cellulose 5.56 1.85 0.35 0.17 

Table 6a: The properties of the cell wall phases [6] 

Polymer network (stiffness matrix) 

9.978 4.777 4.777 0 0 0 

4.777 9.978 4.777 0 0 0 

4.777 4.777 9.978 0 0 0 

0 0 0 2.601 0 0 

0 0 0 0 2.601 0 

0 0 0 0 0 2.601 

Table 6b: The properties of the cell wall phases 

Crystalline cellulose (stiffness matrix) 

35.0 0 0 0 0 0 

0 35.0 0 0 0 0 

0 0 168.0 0 0 0 

0 0 0 5.8 0 0 

0 0 0 0 5.8 0 

0 0 0 0 0 4.5 

Table 6c: The properties of the cell wall phases (E33 corresponds to longitudinal axis) [6] 

The values for the crystalline and amorphous cellulose were also taken from [6] and 

the effective properties of the polymer network from the previous step. 

For the computation was used the HELP program again, with polymer network as 

a matrix and crystalline and amorphous cellulose as infinite cylindrical inclusions parallel 

to the longitudinal axis, employing the Mori-Tanaka method. The amorphous and 

crystalline cellulose are supposed to be isotropic and transversely isotropic, respectively, 

whereas the polymer network is transversely isotropic. 

Step 3 – Lumens 

Characteristic length of RVE: 100-150 µm 

 Mori-Tanaka method with infinite cylindrical inclusions 

 Two phases: cell wall, lumens 

 Microfibril angle is considered as zero 
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Input values: 

  flum [-] E [GPa] G [GPa] 

Earlywood 0.42 1E-200 1E-200 

Latewood 0.18 1E-200 1E-200 

Table 7a: The properties of the phases 

Cell wall (stiffness matrix) 

11.600 5.094 4.107 0 0 0 

5.094 11.600 4.107 0 0 0 

4.107 4.107 44.360 0 0 0 

0 0 0 2.910 0 0 

0 0 0 0 2.910 0 

0 0 0 0 0 2.741 

Table 7b: The properties of the phases (E33 corresponds to longitudinal axis) 

For this step it was necessary to find out the volume fractions of the lumens for both 

earlywood and latewood (Table 7a). The image analysis was used for this purpose, 

on Fig. 8 are two pictures as an example. On the left hand side is an original photograph 

from optical microscope, while on the right hand side there is a black-and-white picture 

used for the analysis of phase volume fractions. The image analysis was performed for 

each sample for both earlywood and latewood tracheids and the mean values 

of the volume fractions were obtained using the normal (Gaussian) distribution. 

The effective properties of the earlywood and latewood were predicted using the HELP 

program, with the cell wall as a matrix and lumens as infinite cylindrical inclusion 

parallel to the longitudinal cell axis, employing again the Mori-Tanaka method. Because 

the computation is not defined for zero values of elastic and shear modulus, the very small 

values near zero were presumed, see Table 7a.  

  

Fig. 8 The image analysis – Sample 2_1 earlywood 
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Step 4 – Laminate 

Characteristic length of RVE: 3-6 mm 

 Standard rule of mixtures 

 Two phases: earlywood, latewood 

Input values: 

  fEW [-] fLW [-] 

Sample 2 0.79 0.21 

Sample 5 0.50 0.50 

Overall 0.67 0.33 

Table 8: The volume fractions of the earlywood and latewood laminas 

Earlywood (stiffness matrix) 

3.282 1.169 1.095 0 0 0 

1.169 3.282 1.095 0 0 0 

1.095 1.095 25.100 0 0 0 

0 0 0 1.189 0 0 

0 0 0 0 1.189 0 

0 0 0 0 0 0.957 

Table 9: The effective properties of the earlywood (E33 corresponds to longitudinal axis) 

Latewood (stiffness matrix) 

6.548 2.556 2.240 0 0 0 

2.556 6.548 2.240 0 0 0 

2.240 2.240 35.820 0 0 0 

0 0 0 2.022 0 0 

0 0 0 0 2.022 0 

0 0 0 0 0 1.751 

Table 10: The effective properties of the latewood (E33 corresponds to longitudinal axis) 

The image analysis was performed again to determine the volume fractions 

of the earlywood and latewood laminas. However, the measurement of the earlywood and 

latewood laminas is very inaccurate because of the indistinct boundaries of each lamina. 

More accurate would be to consider the whole growth ring. The mean values of 

the volume fractions were estimated using normal distribution again. The standard rule 

of mixtures was used for the computation, employing Eq. (9). The Voigt bound represents 

the upper estimation of the effective properties, while the Reuss bound represents 

the lower one. 
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Results: 

  EA [GPa] GA [GPa] νA [-] ET [GPa] GT [GPa] νT [-] 

Polymer network 6.89 2.60 0.32 6.89 2.60 0.32 

Cell wall 42.34 2.91 0.25 9.23 2.74 0.42 

Earlywood 24.56 1.19 0.25 2.85 0.96 0.35 

Latewood 34.72 2.02 0.25 5.50 1.75 0.38 

Wood (Voigt) 27.91 1.46 0.25 3.72 1.22 0.36 

Wood (Reuss) 27.18 1.38 0.25 3.38 1.13 0.35 

Table 11: The effective properties of each step of the homogenization with zero microfibril angle 

The values given in Table 11 are computed without influence of the microfibril angle 

(MFA=0°). The effective properties of the wood with a non-zero microfibril angle will 

be mentioned in Section 5. 

5. Determination of microfibril angle 

5.1 Microfibrils 

The cell wall generally consists of cellulose, hemicelluloses, lignin and extractives. 

Lignin is an encrusting substance solidifying the cell wall, hemicelluloses are the matrix 

substances present between cellulose microfibrils. The cellulose occurs in the cell wall 

in the form of thin threads with an indefinite length, which are called cellulose 

microfibrils. The cellulose has crystalline nature, which is confirmed by many studies 

using e.g. X-ray diffractometry and polarization microscopy. The cellulose microfibrils 

consist of a core crystalline region of cellulose surrounded by paracrystalline cellulose 

and short-chain hemicellulose, while lignin encases them and binds them into a rigid 

structure of wood cell wall. The width of one cellulose fibre is in the range of nanometres, 

approximately 3,5 nm, and the cross section appears to be almost square. 

These microfibrils act in the cell wall like the steel reinforcement in a concrete and make 

a framework in the cell wall [3]. 

5.2 Microfibril angle 

As it was said in Section 2.3 the microfibril angle (MFA) is defined as the deviation 

of the cellulose microfibrils in the cell wall from the longitudinal axis of the tree stem. 

MFA most probably depends on many factors. The first main factor is the position 

of the wood cell in tree stem. Many authors agree that MFA varies from pith to bark, 

being the highest in the pith, and differs with the height of the tree stem, being high 
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in the base of the stem, decreasing with height and increasing again near the top 

of the tree. Also the difference among trees has been observed in many studies, with 

the most obvious variation in the juvenile wood. Some authors found out the difference 

between the radial and tangential cell wall, but another authors report that there is no 

difference between them. The same diversity of the opinions could be seen in the case 

of the growth rate [7]. The dependence of MFA on the cell wall layer is mentioned 

in Section 2.3. 

The relation between MFA and mechanical properties of the wood is obvious, 

especially for the stiffness. It has been shown that low MFA values result in a high 

longitudinal Young’s modulus. This assumption is crucial for the computation in the next 

section. Adopting this idea, it is possible to make a reverse procedure and compute MFA 

using a comparison between the known elastic modulus taken from nanoindentation and 

the effective elastic modulus from micromechanical homogenization. 

5.3 Direct measurement methods 

Basically, there are two types of MFA measurement techniques: measurement 

of individual tracheids or fibres using microscopy, or measurement of bulk wood samples 

using X-ray diffraction or near infrared (NIR) spectroscopy. Some techniques are 

described below. 

Polarisation microscopy 

Polarised light microscopy belongs to the earliest techniques used to evaluate 

the microfibril orientation. Cellulose is partially crystalline, so thin sections of wood are 

birefringent when viewed between two crossed polarising filters. If the very thin 

longitudinal section is cut, it is possible to measure MFA as a weighted average 

of the whole secondary wall. The average microfibril angle is measured by rotating 

the tracheids or fibres until the bright cell wall becomes dark. This is called the maximum 

extinction position (MEP), where MFA is the deviation between the fibre axis and MEP. 

This method requires single cell wall preparation for the average MFA or the single cell 

wall layer preparation to determine MFA in each layer [7]. 

Direct visualisation using physical or chemical methods 

These techniques are based on a surface fracturing, which produces coarse texture 

with microfibril clusters or lamellae that can be seen with a simple brightfield light 

microscope. One of the possible sample preparation is an iodine precipitation within 
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the cell wall. Iodine crystals form cavities in the cell wall and reveal the microfibrils, 

so it is possible to see them by microscope. However, it requires concentrated nitric acid, 

the fumes from which may damage the microscope equipment. Another preparation 

technique uses soft-rot to decay cavities in the cell wall so the microfibrils are visible. 

Unfortunately, it requires a long time for fungus to produce sufficient cavities 

(6-14 weeks). Also the mechanical fibrillation using ultrasonic treatment could 

be utilized, alone or in combination with chemicals [7]. 

X-ray diffraction 

The X-ray diffraction can be employed when the sample is crystalline, fortunately 

the cellulose microfibrils are of the crystalline origin. MFA is obtained by measuring 

characteristics of the 002 equatorial reflection. This method belongs to the most popular 

ones [7]. 

Infrared spectroscopy 

Near infrared (NIR) spectroscopy uses the near infrared region of the electromagnetic 

spectrum to scan the wood surface. Employing the prediction algorithm, it is possible 

to predict MFA [7]. 

 

5.4 Evaluation of MFA using nanoindentation data 

Supposing that the cellulose microfibrils run helically around the cell wall (see Fig. 9 

(left)) and MFA is defined within the plane tangential to the cell wall, there is no 

preferential plane containing longitudinal axis of lumens and the axis of the microfibrils. 

From that it is necessary to perform the orientation averaging before comparing both 

elastic moduli, to take into account all possible orientations of the microfibrils along 

the cell wall. The effective moduli at the cell wall level can be extracted from: 

〈〈𝑴𝑔〉〉 =
1

𝑁
∑𝑴𝑔(𝛼𝑖, 𝑀𝐹𝐴, 0)

𝑁

𝑖=1

 

〈〈𝑳𝑔〉〉 =
1

𝑁
∑𝑳𝑔(𝛼𝑖, 𝑀𝐹𝐴, 0)

𝑁

𝑖=1

 

where N→∞ and Mg, Lg are the compliance and stiffness matrices of the cell wall, 

respectively, transformed into the global coordinate system. In Eq. (16) α is the angle 

(16) 
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which corresponds to the rotation about the longitudinal axis parallel to the direction 

of the lumens, i.e. the deviation of the plane, containing x1 axis and microfibrils, 

from the x2 axis, see Fig. 9 (right). It is also valuable to point out that in this case 

〈〈𝑀𝑔〉〉−1 ≠ 〈〈𝐿𝑔〉〉 in general [8]. 

  

Fig. 9 Illustration of the microfibril angle 

The process of finding MFA is iterative. However, the nanoindentation causes 

the off-axis loading so it is necessary to subtract the effective loading angle from 

the resultant angle to get the real MFA. The value of the loading angle 20° is assumed 

referred to [5]. 

For the comparison of the elastic moduli, the effective longitudinal modulus 

of the cell wall from the step 2 and the sample Young’s modulus from nanoindentation 

were used. The results for both orientation averaging are summarized in Table 12. 

  

MFA [°] 

Compliance 

averaging 

Stifness 

averaging 

Sample 2 7.91 21.27 

Sample 5 4.08 18.13 

Overall 5.12 19.95 

Table 12: The values of the computed microfibril angle (MFA) 

Employing again the micromechanical homogenization model we get the effective 

properties of the wood for both types of the orientation averaging. The results are 

summarized in Table 13 and 14. The homogenization procedure is the same as for the zero 

microfibril angle, with just one difference: the effective properties of the cell wall are 
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obtained by the fibre rotation and orientation averaging, which provides the transversely 

isotropic stiffness matrix used for the next homogenization steps. 

  EA [GPa] GA [GPa] νA [-] ET [GPa] GT [GPa] νT [-] 

Polymer network 6.89 2.60 0.32 6.89 2.60 0.32 

Cell wall 32.47 4.76 0.36 8.61 3.05 0.41 

Earlywood 18.83 1.94 0.36 2.76 1.02 0.35 

Latewood 26.62 3.31 0.36 5.24 1.90 0.38 

Wood (Voigt) 21.40 2.39 0.36 3.58 1.31 0.36 

Wood (Reuss) 20.85 2.25 0.36 3.27 1.21 0.35 

Table 13: The effective properties of each step of the homogenization with MFA= 19,95° using 

the stiffness orientation averaging 

  EA [GPa] GA [GPa] νA [-] ET [GPa] GT [GPa] νT [-] 

Polymer network 6.89 2.60 0.32 6.89 2.60 0.32 

Cell wall 38.65 2.94 0.26 8.63 2.97 0.45 

Earlywood 22.42 1.20 0.26 2.74 1.00 0.37 

Latewood 31.69 2.04 0.26 5.22 1.86 0.40 

Wood (Voigt) 25.47 1.48 0.26 3.56 1.29 0.38 

Wood (Reuss) 24.81 1.39 0.26 3.25 1.18 0.37 

Table 14: The effective properties of each step of the homogenization with MFA= 5,12° using 

the compliance orientation averaging 

The resulting values of the effective properties are relatively high comparing 

to the literature [6], e.g. with values of the EA in the range of 5,038-18,18 GPa, 

unlike Poisson’s ratio which is lower. This inaccuracy is probably caused 

by the simplification of the homogenization model. There are several structural 

components which have been neglected, but might have a considerable impact on the final 

properties. For example, the rays which run radially in the wood stem decrease 

the longitudinal stiffness, while the radial properties increase. Also the resin canals, 

which act like wide hollow tubes, make the microstructure much weaker. 

 

5.5 Other possible approaches of MFA determination 

Another possible inverse approach of MFA evaluation is based on a comparison 

between the micromechanical prediction from homogenization and Young’s modulus 

gained from indentation employing the Pilodyn 6J testing device. The Pilodyn 

measurement is based on a shooting of the indenter tip into the wood with a given energy 

and measuring the indentation depth while simultaneously controlling the wood moisture. 
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From the measured indentation depth could be simply computed macroscopic 

longitudinal elastic modulus EA employing equation (17), which assumes that 

the indentation is performed in the transverse direction of the wood stem, 

𝐸𝐴 = 𝐴 + 𝐵. ℎ 

where EA is the longitudinal elastic modulus, A and B are constants determined 

statistically from the measured data, h is the penetration depth. Assuming the h [mm] and 

EA [GPa] there are two groups of constants: the first group contain the original constants 

with values A = 19,367 and B = -0,5641, see [8], and the latter one are updated constants 

with values A = 17.41911236 and B = -0.2979367551, see [11]. The elastic modulus 

given by Eq. (17) is actually the value of the whole wood, so for the comparison we have 

to use the micromechanical prediction from the last step (laminate) of homogenization 

with a non-zero microfibril angle. For the prediction of the MFA, the Voigt bound and 

stiffness orientation averaging were used. The results are summarized in Table 15 and 

normal distribution of the elastic modulus computed by both equations is depicted 

in Fig. 10 with the mean value of MFA written next to the curve [8]. 

  
Pilodyn test 

E [GPa] 

Homogenization 

E [GPa] 

Microfibril angle 

MFA [°] 

Original equation 13.51 13.64 32 

Updated equation 14.32 14.28 31 

Table 15: The values of the MFA from Pilodyn test 

 

Fig. 10 The normal distribution of the Young’s modulus from Pilodyn 

(17) 
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Next approach, which is inverse too, uses comparison between the elastic modulus 

from the last homogenization step (laminate) and the modulus from tensile tests. As for 

the tensile tests, 17 samples were prepared as thin veneers with widening on both ends. 

The shape of the sample is visible on Fig. 11 with typical tensile failure after the test. 

 

Fig. 11 The sample number 7 from the tensile test 

The calculation procedure was the same as for the Pilodyn test, assuming the stiffness 

averaging and Voigt bound. The volume fractions of earlywood and latewood were 

gained from the image analysis using photographs taken by the scanning electron 

microscope (SEM). The resulting angles, see Table 16, are almost the same as from 

the Pilodyn test, except the last sample (n. 17), which has considerably smaller elastic 

modulus than other samples, probably caused by some microstructural inhomogeneities.  

Sample 

n. 
E [GPa] 

Volume fractions MFA [°] Ehom 

[GPa] Earlywood Latewood Voigt 

1 9.5953 0.70 0.30 39 9.59 

2 - 0.73 0.27 - - 

3 12.876 0.71 0.29 33 12.84 

4 11.033 0.72 0.28 36 11.06 

5 11.234 0.71 0.29 36 11.10 

6 10.039 0.70 0.30 38 10.08 

7 - 0.73 0.27 - - 

8 11.421 0.68 0.32 36 11.22 

9 - 0.63 0.37 - - 

10 11.96 0.65 0.35 35 11.92 

11 9.7536 0.62 0.38 39 9.87 

12 11.714 0.65 0.35 35 11.92 

13 - 0.76 0.24 - - 

14 11.246 0.71 0.29 36 11.10 

15 13.061 0.67 0.33 33 13.03 

16 13.043 0.62 0.38 33 13.26 

17 6.2618 0.64 0.36 50 6.11 

Table 16: The values of the MFA from tensile tests 

However, both methods give significantly different estimates than that from 

nanoindentation. The reason of the differentiation between all presented methods might 
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be the subject of the future study. It is also important to note that authors in [1] mention 

that the value of the elastic modulus depends on the type and direction of loading and 

from that the elastic modulus from the compression test and tensile test is different. 

 

6. Conclusion 

For the proper use of the wood as a building material, it is necessary to understand 

the whole composition and material behaviour under loading in the building construction. 

This method would give a valuable notion of the influence of the particular wood 

components on the effective mechanical properties of the wood. Understanding the wood 

composition is still under development and is also a subject of many research studies. 

The wood is generally anisotropic material with highly irregular structure, possibly 

determined as a fibre reinforced polymer composite. The main part of the tree used 

in the timber production is a stem. On the cross section of the tree stem are well visible 

growth rings which divide into earlywood and latewood. As many materials 

with biological origin, the wood consist of cells. Main wood mass comprises tracheids, 

possibly described as long closed tube-like cells with almost a rectangular cross section, 

elongated in the axial direction of the stem. The hollow space in the middle of the tracheid 

is called lumen and serve as a conductor of the water and nutrients. The most important 

load bearing components are tracheids, more accurate the cell walls. The main particles 

of the cell wall, with probably the highest strength, are cellulose fibres called microfibrils, 

which deviate from the longitudinal axis of the cell with an angle, named the microfibril 

angle (MFA). This angle is probably the reason of the strength deviation of different trees 

and also in the tree itself. Many studies confirmed that low MFA result into the high 

longitudinal modulus and with increasing MFA the elastic modulus is decreasing.  

This dependence of MFA and longitudinal elastic modulus was utilized to estimate 

the value of MFA using comparison between the elastic modulus gained from 

the micromechanical homogenization and the known elastic modulus from 

the nanoindentation measurement. Upscale homogenization was used employing 

the Self-consistent method for the first step (Polymer network), the Mori-Tanaka method 

for the second (Cell wall) and third step (Lumens) and standard rule of mixtures 

for the fourth step (Laminate). The properties of each phase were taken from the literature 

[6] and some of the volume fractions were determined by image analysis, using pictures 
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mainly taken by optical microscope. Before the comparison it was necessary to employ 

the orientation averaging to take into account all possible orientations of the microfibrils 

along the cell wall. Two methods of the orientation averaging were employed – 

the stiffness averaging, which represents parallel connection of the components and lead 

to the Voigt estimation and the compliance averaging, which represents series connection 

and lead to the Reuss estimation.  

As it was said, the microfibril angle has a great impact on mechanical properties. 

This is evident from Table 11, 13 and 14. Comparing these tables the fibre rotation 

decreases the value of the longitudinal elastic modulus, whereas the transversal elastic 

modulus is slowly increasing. The resulting microfibril angles: 5,12° for the compliance 

averaging and 19,95° for the stiffness averaging, lie in the range of 5-20° given 

in the literature [7]. The question is, which averaging gives the accurate value 

of the microfibril angle. The possible solution could be the implementation 

of the orientation averaging into the formulation of the Mori-Tanaka method. This 

approach lead to the similar values as from the stiffness averaging – Voigt estimation, 

whereas the compliance averaging – Reuss estimation give significantly different results. 

The comparison of all used methods is summarized in Table 17. For the confirmation 

of methods, it would be interesting to perform the direct measurement of MFA to find out 

if the theory approximates the reality using methods described in Section 5.3. 

  
Elongitudinal 

 [GPa] 

MFA 

[°] 

Isotropic nanoindentation     

       Compliance averaging (Reuss) 24.81 5.12 

       Stiffness averaging (Voigt) 21.40 19.95 

       Mori-Tanaka averaging 32.60 19.89 

Anisotropic nanoindentation (M-T) 25.07 28.06 

Pilodyn (stiffness averaging)     

       Original equation 13.51 32 

       Updated equation 14.32 31 

Tensile test (stiffness averaging) 11.411) 361) 

1) without sample n. 17 

Table 17: Comparison between all used methods 

In this study the great impact of the microfibril angle on mechanical properties 

was confirmed, however the micromechanical homogenization model still exhibits many 

inaccuracies such as neglecting of many structural components or transformation 

of the geometric shape of some components. One of the fundamental errors is 
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the modelling of the lumens as infinite hollow cylinders. The more exact model would 

be the prolate ellipsoids with flattened sides approaching the rectangular shape 

of the cross section. Also the perforation of the tracheid cell walls made by pit-pairs could 

be included in the model. Another important imperfection is neglecting of the rays and 

resin canals. The rays run radially and strengthen the wood structure in the radial 

direction, however weaken it in the longitudinal direction. The resin canals appear 

in the microstructure of the wood as large hollow tubes approaching the cylindrical shape 

and weaken the structure in both directions. There are also many macroscopic 

inhomogeneities such as knots, which have a great impact on the macroscopic properties, 

or ingrown bark or other imperfections. It might be worthy to separate the cell wall and 

the middle lamellae, which bonds cells together, and upgrade the micromechanical 

homogenization model. 

The microstructural composition also plays an important role in the micromechanical 

homogenization. The volume fractions of each component differ a lot in the whole stem, 

so the consideration of the constant volume fractions can lead to a great error. There are 

many phenomena which could not be even noticed, such as the composition of the cell 

wall phases – the content of the cellulose, lignin etc. this can be improved only by a large 

statistical data set from particular laboratory tests. The same problem can occur in the case 

of the volume fraction of pores (lumens, rays and resin canals). The image analysis can 

distort the values and gives only the in-plane overview of the wood microstructure 

composition. In contrary, the comparison between the volume density of the whole 

sample and the matrix density of the cell wall, which is used by many authors, gives better 

results, however there is no notion about the types of the components, i.e. what portion 

of the overall porosity belongs to lumens etc. 

  
Overall porosity 

[-] 

Image analysis   

Sample 2 0.344 

Sample 5 0.308 

Helium pycnometry   

Sample 2 0.443 

Sample 5 0.550 

Table 18: Comparison between two methods of the porosity determination 

It is evident from Table 18 that the helium pycnometry gives higher porosity than 

image analysis. It is probably caused by neglecting of the other types of voids in the image 
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analysis, where only lumens were considered. However, wrong determination 

of the porosity can lead to great errors, such as overestimation of the elastic modulus, 

which might be considerably higher in the case of low porosity. The valuable method 

of attack seems to be the X-ray microtomography combined with XFEM which gives 

the overview of the whole wood composition. However, it requires specific equipment 

and knowledge. 

Also the assumption of the homogeneous material (the isotropic half space) by means 

of the static nanoindentation might cause errors. Actually, the cell wall is not 

homogeneous and isotropic at all, so the anisotropic nanoindentation seems to be 

a reasonable solution. The results using the anisotropic approach are mentioned in 

Table 17 employing the orientation averaging implemented into the Mori-Tanaka 

method. Comparing anisotropic and isotropic evaluation of the nanoindentation 

employing the same orientation averaging (implemented in the Mori-Tanaka method), 

the isotropic approach gives higher Young’s modulus and subsequently lower MFA, 

whereas the compliance and stiffness averaging provide almost the same values 

of the elastic modulus as anisotropic indentation, however with different MFA. 

Another inaccuracy could occur during nanoindentation measurement due 

to the imperfect sample preparation. During cutting and grinding the wood might soak 

the water and dry again, this changing of the water content might damage 

the microstructure, and the water can extract some constituents of the wood structure. 

As well the movement of the grinding paper can destroy the microstructure. This would 

be reduced by the ultramicrotome cutting of the samples, which removes the grinding and 

polishing from the sample preparation process and so the water. Cut samples using 

ultramicrotome shows lower roughness compare to ground samples and there are no 

problems with water soaking and moisture content. 

The static indentation may cause some inaccuracies due to the pile-up, which can 

be high in the case of wood, because of its viscoelasticity. This problem can be eliminated 

by employing the continuous stiffness measurement, which is usually used 

for the viscoelastic materials and might give better results. 

Mentioned inaccuracies could be implemented in future studies to improve 

the measurement and estimation methods. 
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