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Anotace

Tato diplomové prace je zaméfena na vypocet tenzorti polarizovatelnosti. Uvod se vénuje
piedstaveni konceptu polarizovatelnosti a jejimu vyuziti. Prvni ¢ast diplomové prace se
zabyvd odvozenim vztahli pro vypocet téchto tenzort. V druhé casti je piedstavena
implementace téchto vztahii v prosttedi MATLAB a nasledné porovnani vysledkl s jinymi

autory.
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elektrické pole v integralnim tvaru, impedancni matice.

Summary

This diploma thesis is focused on the calculation of polarizability tensors. Introduction is
focused on the description of the polarizability tensors and their usage. The first part of the
diploma thesis derives relations necessary to calculate the polarizability tensors. The second
part is focused on the implementation of these relations in MATLAB and comparison of

obtained results with different authors.
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Polarizability tensors, electrically small scatterers, Rao-Wilton-Glisson basis, electric field
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1. Introduction

The interest of scientists and engineers in scattering properties of electrically small
objects and in evaluation of their polarizability tensors accompany the electromagnetic theory
from its very beginning [1], [2]. The polarizability tensors are an indispensable tool for
designing artificial materials [3] and frequency selective surfaces [4]. Thanks to the relation
of the polarizability tensors to the radar cross-section [5] of a scatterer and to the radiation
quality factor [6], the polarizability tensors also well describe the radiation properties of
electrically small antennas. The precise evaluation of the polarizability tensors is thus of
major interest for many branches of applied electromagnetism.

In canonical cases, there exist analytical models for polarizability tensors [7], [8].
Unfortunately, realistic scatters have complex geometry and their polarizability tensors can
only be extracted through numerical methods or measurements. In the current state-of-art,
there are many numerical implementations available, see [9], [10] and the references there in.
Existing methods however commonly operate in static limit [9], ignore losses and magneto-
electric tensors and very importantly lack freely available codes for polarizability tensors
evaluation. As for the polarizability measurements, the pioneering work has been done Cohn
[11], in which the scatterer is placed in an electrolyte. For recent methods, which use the
vacuum environment, we mention [12], [13] which obtain the particle polarizability from a
measurement of the scattering parameters of a waveguide segment loaded by the analysed
body or [14] which uses a measurement of the scattering parameters of a two-dimensional
square array of analysed bodies. All the aforementioned methods are however able to measure
only some components of the polarizability tensors and assume highly restrictive symmetries
of analysed bodies.

In this thesis, we propose and verify general method for extraction of all four
polarizability tensors of arbitrarily shaped bodies with finite conductivity. The presented
scheme uses full-wave numerical evaluation, automatically accounting for ohmic and
radiation losses. The thesis also discusses the implementation of this method in the Rao-
Wilton-Glisson basis [15], which results in a freely available code.



2. Definition of polarizability tensors

This Chapter briefly introduces the polarizability concept. Let us assume an
electrically small scatterer, which is fully enclosed in a sphere of radius a (ka < 1) centred in
the coordinate system with k being the free space wave number [16]. Under the assumption of
time-harmonic steady state [16] F(t)= Re{F(a))exp(ja)t)} with angular frequency , the
illumination of a standalone scatterer by an incident electromagnetic wave with electric field

EPY(r) and magnetic field B™J(r) gives rise to an electric and a magnetic dipole

moments pt*¥, m4 according to [1]
E(O
50 )
m 2.1)

where a£§X3], a are the second order polarizability tensors [7], [8]. The

electric and magnetic fields are generally changing in the space but, under the assumption of
electrically small size, they can be considered constant in the volume of the scatterer. The
field at origin E(0) and B(0) is used as a reasonable approximation, since the scatterer is

centred at the origin of the coordinate system.
Under the assumption of a scatterer made of highly conductive material, the electric

[3><3]

[3><3
em

I and a>®

a me

and the magnetic dipole moments, needed for (2.1), can be evaluated from the knowledge of

the induced surface current density K (r) as
p=s, K(r)es @2

1
m:E_l-er(r)dS. (2.3)

Notice that the polarizability tensor « fully characterizes the scattering properties of an
electrically small scatterer [9], [8]. The main topic of this thesis is a calculation of « of a

solitary and highly conducting scatterer.
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3. Excitation of polarizability tensors

This Chapter demonstrates how the polarizability tensor a can be evaluated. The

derivation starts with imagining six different excitation scenarios

(3.1)

producing six different polarizations of the scatterer according to (2.1). If these excitations are
chosen as to make the columns of the feeding matrix F linearly independent, the polarizability

tensors can be evaluated as

aee aem — pl p6 F—l (3 2)
Ope Oy m, M . .

The next step is the evaluation of the surface current density K(r) needed for (2.2)

and (2.3). Throughout this thesis, K(r) is obtained from the electric field integral equation

(EFIE) (see Appendix 7.1) [17], discretized in a given basis
K(r)=21,f,(r). (3.3)

where 1" is the vector of expansion coefficients with unit [A-m] and f, (r) is a suitable

dimensionless basis function.

11



The expansion (3.3) transforms the EFIE into [17] (it is shown for all six incident waves)

<f1’E1>"'<f11E6>
(E-Z)[I, - L]=Q= . i |, (3.4)
(fy, E)(fy. Eq)

[N><N

withQ™® as an excitation matrix with unit [V-m] , ZI™N as the well-known impedance

matrix [17], with ™"} as the matrix representing ohmic losses of a lossy conductor and with

(f.9)=]t(r)-g(r)ds (3.5)

S

as the scalar product. The construction of the matrices Z and X is detailed in Appendices 7.6
and 7.7.
Substitution of (3.3) into (2.2), (2.3) and utilization of (3.4) allow us to write

LE H:m[' '6]{;}(24)_1‘3’ (36)

where matrices P MPlare representations of (2.2) and (2.3) in the basis (3.3). The

construction of matrices P and M is detailed in Appendices 7.4 and 7.5.

Putting all together, we have

Aee Aoy _ P (Z Z)—l QF—l
ame amm - M . (37)
The only pending issue is to find six suitable excitations generated by incident electric fields

E,(r) . Note, that magnetic fields B;(r) cannot be chosen freely as they are connected to

the electric fields via free space Maxwell’s equations.
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3.1. Normalization of the polarizability tensors

As it stands, formula (3.7) is not well suited for an implementation in finite numerical
precision. The reason are different units of four polarizability tensors involved and thus a
varying number of achievable significant digits. To solve this issue, a suitable removal of
units is necessary. As a by-product, one also obtains quantities independent of the absolute
dimensions of the scatterer.

For numerical implementation of (3.7) and for presentation of results in Chapter 5 we

first transform

P—>c,—,
0
(3.8)
M- M
VO
where V, is defined as
4
V, =—mna’. (3.9)
3
Second, the feeding matrix F is transformed according to
B —c,B. (3.10)
Third, the loss and impedance matrix are transformed as
X-Z
r-7- 7 (3.11)
0
where Z, is the impedance of vacuum.
Lastly, the polarizability tensors are transformed as
{aee aem :| - i|:80_1aee Zanm :| (312)
ame mm VO Zoame uoamm
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3.2. Feeding

Final step in the calculation of the polarizability tensors is to obtain the excitation
matrix Q and the feeding matrix F. At beginning of Chapter 3 it was mentioned that exactly

six linearly independent excitations are needed. Six independent waves produce regular

matrix F, and only regular matrix has its inverse matrix F™. This Section introduces two

excitation options.

3.2.1. Feeding with plane waves

First option is to use plane waves. Elementary relations for plane waves read

E — EO e—jkn~r’ (313)
c,B nxE,

where n is a unit vector in the direction of the plane wave propagation and E, is a vector in

the direction of polarization. Here we assume E,=1V-m™. The direction of electric field is

further restricted by

n-E,=0. (3.14)

As a particular case, we chose waves propagating and being polarized solely along coordinate

axes, i.e.

E, ][0 0 1 0 1 0]
E,| [t 00 0 0 1

N L S _
¢,B,| |0 0 0 h 0 h '
¢B,| [0 h, 0 0 h O
¢B,| |[h 0 h 0 0 O]

where h —h, are constants with values of plus or minus unity. The columns of (3.15) need to

be linearly independent, i.e. we require

14



det(F)=(h,hh, —hh,h) = 0. (3.16)

The equation (3.16) has 32 solutions, which read

Table 3-1: Solutions of equation (3.16), part 1

h | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
h, | 1 1 1 1 1 1 1 1 /1|-1}|-1}-1,-1|-1|-1|-1
hy | 1 1 1 1 /-1|]-1}]-1|-1|1 1 1 1 /-1|-1]-1|-1
h, | 1 1 1-1]-1|1 1 |-1]-1|1 1 (-1]-1]1 1 -1]-1
hh )11 |{-1/1}|-1|1|-1|1/|-1]1|-1|21|-1/1]|-1]1]|-1
hy | -1 1] 1 1 /1|1 |-1|-1|1 1 (-1|-1|1|-1|1 1|1
Table 3-2: Solutions of equation (3.16), part 2

h |-2|-1|-1|-1|-1|-1|-1|-1|-1|-1|-1|-1|-1|-1|-1|-1
h, | 1 1 1 1 1 1 1 1 /-1|-1}|-1}-1,-1|-1|-1|-1
hy | 1 1 1 1 |-1/-1|-1|-1]1 1 1 1 /-1]-1|-1]|-1
h, | 1 1 | -1]-1]1 1 /-1|-1]1 1 1-1]-1]1 1 |-1]-1
h, )1 |-1,1|-1|1|-1|1|-1|1|-1|]1|-1|]1]|-1]1]-1
hy | 1 |-1|-1]1|-1]1 1 |1-1]-1|1 1 /-1}]1|-1|]-1|1

Under the assumption of electrical small scatterer, all the above excitations are like and quite

arbitrarily,

we choose

for the later calculations.

1
Il
O O O +— O

o B O =, O O

R O O O O -

o O B O O

O B O O O -

Calculation of the excitation matrix Q is detailed in Appendix 7.8.
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3.2.2. Feeding with Bessel’s waves

An interesting possibility would be to have normalized feeding matrix F equal to the
identity matrix. This can be accomplished by using cylindrical waves as an excitation.

As an example, the incident wave belonging to the third column of F, e. g. E(0)=2z,,

c,B, =0 can be obtained by

E=2,J,(kp), (3.18)

where p=./x*+y? and J, is the Bessel's function of the first kind and order n.

Faraday’s law leads to

CoB = ip i (kp). (3.19)

Similar procedure leads to the excitation corresponding to the sixth column of the excitation

matrix F. In this case, one chooses

E=-jo, Jl(kp),

3.20
c,B=2,c,J,(kp). (3:20)

The excitation corresponding to other columns of matrix F can easily be obtained by rotation
of (3.18) — (3.20). Calculation of the excitation matrix Q is detailed in Appendix 7.8.

16



4. Implementation in MATLAB

All necessary expressions have been implemented in MATLAB [18] in a class named
“Polarizability”. Figure 4-1 shows a working diagram of the class.

class constructor

import triangular mesh

S Z

set conductivity

A4

set type of feeding

\Z

set electric sizes

\Z

initialize calculation of

polarizability tensors

\Z

obj.fillPrivateProperties; calculate matrices: P,M,Z, X

\Z

obj.getBWpolarizabilities;

tensors
NZ

save results

calculate BW polarizability

Figure 4-1: Working diagram of the Polarizability class; green colour denotes public commands, red colour denotes

private commands
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For calculation of polarizability tensors, the user have to first call the constructor of

the class
obj = Polarizability():

Class Polarizability has several required inputs; the main input is a triangular mesh of
the studied object. Allowed format is a NASTRAN [19] file. User can easily import data from
NASTRAN with command

obj.readNastran ('nameOfFile.nas');
Imported mesh can be shown in a figure
obj.plot();
Second input is a conductivity of the scatterer. It can easily be set by
obj.conductivity = value;

The class supports two types of feeding. If user wants to calculate the tensors with
plane waves feeding then he sets feeding to 'PW'. If he wants to use Bessel’s wave so he sets
feeding to 'BW'. If he wants to use both feeding he can use 'PWBW'. The command reads

obj.feeding = 'string';

The last input is a vector of electric sizes ka. The first possibility is to set electric sizes

directly with command

obj.electricSize = values;

The second possible way is to set frequencies of the object by command

obj.frequency = values;

18



Property “frequency” is dependent property with setter and getter methods, it depends on

“glectricSize”, the relation between them is

_ kac,

f :
2na

(4.1)

where a is calculated automatically from the supplied triangular mesh.

When all inputs are given in the object then the calculation can start with command

obj.getPolarizabilities():;

In the first step, this method calls method “fillPrivateProperties”. This method calculates

matrices Z, X, P and M. When calculation of private properties is finished, then the

calculation of the excitation matrix and polarizability tensors begins. Two methods handle this
job, one for plane waves and one for Bessel’s waves. Their names are “getPWpolarizabilities”
and “getBWpolarizabilities”.

Polarizability tensors are stored in two structure arrays, the first for plane waves and

the second for Bessel’s waves. User can access these variables as

structl obj .polBW;

struct2 = obj.polPW;
Results can be saved in a .mat file as
obj.save ('nameOFfile');
This command saves both polarizability structure arrays, electric sizes and some additional
information about triangular mesh.

Graphical user interface (GUI) was also developed. Print screen of GUI can be seen in
Figure 4-2.

19



4. Polarizability - bt

Parameters

Feeding Conductivity Electric sizes
Beszels waves inf (®) electric sizes (-)
Rel. permeability O frequencies (Hz)
[ plane waves 1 0.1:0.01:0.2
Import mesh Plot mesh Restart Calculate polarizabilities

Ploter of results

Feeding Polarizability — Row — Col. — Number
Bessels's ... v | es =1 =11~ real -
X-axe

Plot it

electric sizes

Sawve results to .mat ‘

About ‘

Figure 4-2: GUI of the Polarizability class

5. Results

The code presented in the last Chapter has been used for calculating polarizability of a
sphere, a cube and a broadside-coupled split ring resonator (BCSRR) [20]. These shapes were
used for verification purposes since their polarizabilities are known analytically, for
polarizability of a sphere see [7], for polarizability of a cube see [9] and for polarizability of a
BCSRR see [20], [21]. All the results presented in this Chapter are normalized according to
(3.12). If we do not state otherwise all object are assumed to be made of perfect electric
conductor (PEC).
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5.1. Polarizability of a sphere and a cube

Normalized static polarizability matrices for a sphere are analytically given by [7]

aee :3U, (51)
o ==, (5:2)
2

where U is the identity matrix.
For the numerical evaluation, a PEC sphere of electrical size ka =0.01 was discretized
into 1504 triangles (see Figure 5-1) and its polarizabilities have been evaluated (with Bessel’s

feeding) via the code described in Chapter 4. The results are:
a,, ~3.0157U, (5.3)
a,, ~—1.5072U. (5.4)
To the best of author's knowledge, an analytical formula for the polarizability of a
cube does not exist. There however exist very precise numerical evaluation of its static
polarizability [9], [10]

a,, ~1.3394U, (5.5)

a,,, ~—0.6022U. (5.6)
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For a numerical evaluation, PEC cube of electrical size ka=0.01 was discretised into
1584 triangles (see Figure 5-1) and its polarizabilities have been evaluated (with Bessel’s

feeding) via the code described in Chapter 4. The results are:

a,, ~1.3520U, (5.7)

a, ~—0.6095U. (5.8)

Excellent agreement with analytical result can be observed in both aforementioned cases.

5.2. Radiation resistance

Figure 5-1 presents the numerical polarizability extraction for a given frequency sweep.
It can be seen that results are very close to the known static values for small electric sizes. The
small discrepancies can be attributed to meshing. Differences grow with increasing ka, the
reason being the radiation resistance of the scatterer. In this case, the results obtained via the
method of this thesis should be considered as correct ones, since the analytical formulas for

polarizabilities are strictly valid only at ka=0 and are not supposed to be precise at ka > 0.
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Figure 5-1: The real part of the normalized electric and magnetic polarizability of a PEC sphere and a PEC cube obtained
by the method proposed in this thesis (Bessel’s waves feeding, solid lines). The results are compared to their known static

values (dashed lines).

5.3. The accuracy of the method for ka—0

When the electrical size approaches zero, the dynamical formulation of the presented
method brings unpleasant numerical issues. First problem comes from a frequency
dependence of the impedance matrix Z (see Section 7.6), which becomes ill-defined at
ka — 0. Second possible issue relates to the Bessel’s feeding. In that case the sole excitation
by magnetic field at ka—0 in fact produces no excitation at all in the EFIE
formulation (3.7). These two problems were explored and results can be seen in Figure 5-2 for
both, the Bessel's wave and plane wave feeding. It can be seen that for ka smaller than 107°,
the used double precision numerics breaks down, producing meaningless results. This
numerical problem comes from the impedance matrix and it is common to both excitations
types. As a result, the Bessel's feeding brings no practical issues in the ka ranges allowed by

the impedance matrix and it can be safely used for calculating the polarizability tensors.
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Figure 5-2: The real part of the normalized electric and magnetic polarizability of a PEC sphere. Two different excitations of

the dynamical extraction method are used, see Section 3.2. The results are compared to their known static values.

5.4. BCSRR

Encouraged by the good performance of the method on canonical objects, we can try to
test it in more complicated scenario, when radiation effects become important. In that respect,
the PEC resonant scatterers of non-negligible electrical sizes are interesting testing grounds.
As one example, we have chosen the BCSRR [20], extensively used in the design of magnetic
metamaterials [22]. The geometry of the scatterer is illustrated in Figure 5-3. Formula for the
magnetic polarizability tensor, which is presented in [20], [21] and is used for comparison

with numerical results, reads

n W' ( @? R _1u
a2 =—|r, —— || 2-1+j—"d| 2O 5.9
mm L ( ext 2) [a)z J COLJ VO ( )

where r, . is an external radius of the ring, w is the width of the strip, L is the self-inductance

ext

[21], w, is the angular frequency at resonance, ., is the permeability of vacuum and

Z mk* w)
Rrad = 06 (rext _Ej ) (510)
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represents the radiation losses [8], [23]. An excellent agreement can be observed between

analytical model and results from the method of this thesis.
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40 - 4
20 - n
Z
0
&
= 20 n
8 N - - *
= -40 e 2
o = S
-60 + > -
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-80 - S TR : ; .
o - real amnm BW
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0.25 0.275 0.3 0.325 0.35 0.375 0.4
ka

Figure 5-3: The real and imaginary part of the normalized magnetic polarizability of the BCSRR made of PEC. The results
are compared to analytical model (dashed lines). Results obtained by the method proposed in this thesis are presented as

solid lines.

The BCSSR can also be used to test the presence of the ohmic losses. In this case, the

analytical model (5.9) can easily be extended with R, - R, + R, , Where

Rloss = 2 (rext _ﬂ) (511)
Woo 2

represents the conduction losses [21], with o as conductivity of the used material and
S =./2/(wop,) as the penetration depth. The results from the analytically model and from

the numerical extraction are compared in Figure 5-4. In order to keep the problem scalable,

the ratio a/(a)eo) has been fixed at 10”. Again, very good agreement can be observed.
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Figure 5-4: The real and imaginary part of the normalized magnetic polarizability of the lossy BCSRR. The results are
compared to analytical model (dashed lines). Results obtained by the method proposed in this thesis are presented as solid

lines.

6. Conclusion

We have become acquainted with the definition of polarizability tensors and derived
relations for their extraction for an arbitrarily shaped electrically small scatterer. The relations
have been implemented in MATLAB and the codes have been used for calculation
polarizability tensors of electric small objects as a sphere, a cube and a BCSRR. These objects
were chosen for their known polarizability tensors. Excellent agreement between our
numerical results and analytically models has been observed in static and dynamic ranges.
The implemented numerical method have important advantage of considering radiation and
ohmic losses.

All codes, which were programmed for the thesis, are freely available on CD, which is
attached to the diploma thesis and can be found on MATLAB file exchange, the link is

http://goo.gl/LVVWTjc. This fast and effective evaluation of polarizability tensors invites for

various optimization tasks concerning electrically small scatterers, which purpose can be

found in the design of artificial media, radio identification tags and beam-forming arrays.
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7. Appendices

7.1. Electric field integral equation
The continuous form of the electric field integral equation (EFIE) [17] used throughout

this thesis reads
ZK(r)=E(r)+k*L{K(r)}+VL{V-K(r)}, (7.1)

with K(r) being the surface current density induced on the scatterer, E(r) being the

incident electric field and with operator L defined as

L{F ()= [F ()T

= ds’.
Anwe 3, (7.2)

The quantity Zg = (1+ j) / (65 ) represents the surface impedance of the conducting half-space
[1] with 5:«/2/(0)/10) being the penetration depth (we consider only non-magnetic

materials, thus x=p,.). The left side of (7.1) thus approximates the reaction of a lossy

conductor in the cases when the penetration depth is negligible with respect to the thickness
and with respect to the curvature radius of any part of the scatterer. Utilizing expansion

K(r)zznllnfn(r)’ (7.3)

the integral equation (7.1) is recast into its matrix form [24]

(. E)
(Z-z)1=| : |, (7.4)
(fv.E)
where
Z =K (o L{F ) (V- L{V- £, 1) ] (7.5)
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is the so-called impedance matrix [17], [24] and where

=7 (f,. f,)] (7.6)

is the matrix representing the reaction of a lossy conductor.

7.2. Triangular mesh
Proposed numerical method for extraction of polarizability tensors needs suitable basis

functions f,(r) and a suitable discretization of the scatterer. This Section introduces the

triangular mesh and the Rao-Wilton-Glisson basis, which are used in the thesis.

7.2.1. Process of triangulation and triangular mesh

Triangulation [25] is a process, which discretizes smooth surface Q to a finite number
of triangles Tn which are able to represent the original structure in computer's memory. The
process can mathematically be described as

Q->D(Q,N)>T,

T.NT, =4,i# ],

T.nT; =T,i=]j, (7.7)
N
UTt, =2,

1

in which D denotes the discretization scheme and N is the number of triangles T.

[Nx3]

Triangular mesh is commonly defined by two matrices p[“"x"‘] and t . Matrix

p[MX3] consists of radius vectors of all M mesh points. Matrix "l gives information on

which three nodes from p form a triangle.
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7.2.2. Pair of triangles, Rao-Wilton-Glisson basis

Triangulation gave us a triangular mesh. We then use pairs of triangles with common
edges and define Rao-Wilton-Glisson (RWG) function [15], see Figure 7-1, as

I,
2A1+
f(r)= Z'Tnh_pn—, reT (7.8)

0, otherwise,

P, TeTt

where In, Ar* denote the edge length and area of triangle, respectively. Vectors p: are defined

as

T=r-V,,,

pn 1,n (79)
Py = V4,n -

where V1 and V4 are free vertices according to Figure 7-1. The triangle containing V, is

denoted as positive, while the triangle containing V, as negative. The expansion coefficients

I, see (7.3), represents surface current density flowing normally to the common edge defined

by vertices V2 and Vs.

Vo (0, 0, 0) \%

n 4

Figure 7-1: Forming RWG function
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Majority of triangles are shared between three or more RWG functions, only boundary
triangles are shared between two or only one RWG function. This property gives the RWG

basis great flexibility for describing surface current density K (r) in the form (7.3).

7.3. Barycentric coordinate system
Barycentric coordinate system [26] can help us with solving integrals over arbitrary
triangle, which become very handy in dealing with the RWG basis. Barycentric coordinates

a, B,y are defined by three vertices V1, V2, V3 and transformation

X v

r=ly|=T|a| (7.10)
z B
XX X

T= i Y2 Y3 | (7'11)
Zl ZZ Z3

where columns of the matrix T are the Cartesians coordinates of vertices V1, V2, Vs.

Important attribute of the barycentric coordinates is their normalization

l=y+a+p. (7.12)
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The graphical representation of the barycentric coordinates is depicted in Figure 7-2

and shows how an arbitrary triangle is transform into a rectangular isosceles triangle.

P, (x2,)5,2,)

/
y

Pl (xlay],zl) R

X\
~

P (3, 3, 23) (0,0) 1.0)”

(a) (b)

(0,0,0)

Figure 7-2: Barycentric coordinate system

Transformation (7.10) together with (7.12) allows then to write an integration of an

arbitrary function over a given triangle as

[f(r)dr= 2Aﬁﬁ f(aV,+BV, +(1-a-pB)V;)dadp, (7.13)

where A is area of the triangle and 2A is the Jacobian. This result follows from the fact that a
rectangle in barycentric coordinates corresponds to a quadrilateral in Cartesian coordinates,
and the ratio of the areas of the corresponding shapes in the corresponding coordinate systems
iS given by 2A.
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7.4. Derivation of matrix P in RWG basis
The substitution of (3.3), (7.8) into (2.2) leads to

p=-[K(r)ds :izun(j f(r) dsj:
Jo J s
° (7.14)
—ZI | . ds |.
jo T T\ 2A /%
Equation (7.14) can be rewritten into the matrix form
p =PI,
P =P +P,
pr = [ p;ds (7.15)
" JZATC!) Al " 1 .
= I”_ I . ds,
jZAja)A;
where P corresponds to the electric dipole moment of the n-th RWG function.
The integral describing P, is evaluated as follows
I I
Pr=—"[prdS=—"—[(r-V,,)dS =
jZA]a)AJ; jZAWCz)AJ;( 1’)
I( ~%,,)dS +Y, [ (Y= Yy,)dS + (7.16)
J2A1 A;

zj Z,, dSJ
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Transforming triangle T," to the barycentric coordinate system (see Section 7.3), gives

Py =X I” J‘(x—xlyn)dS:

JZATCOA;
In +llfa
X, Ao 2A1.(|; '([ (x(a,ﬂ)—xivn)dﬁda:

:XO_I—n X2,n_Xl,n+X3,n .
jol 8 3 6

Integrations for y and z directions are similar, thus

| X2,n + X3,n _2X1,n
P;=Pr:x+Pr\+,y+Pn+,Z:-_n y2,n+y3,n_2y1,n :

j6w
The result for Py* in (7.18) also corresponds to

+ In + (~+ In +
Pn :jz_wpn (Cn)zjz_a)(cn _Vl,n)’

where C. is the centre of the positive triangle

Vv, +V, +V
C;Z 1n :23,n 3,n.

An analogous procedure gives

SN )
I:)n = Jza)pn (Cn):jz_a)(v4,n_cn)1

where C, is the centre of the negative triangle

C_ — V2,n +V3,n +V4,n
n 3 '
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Putting all together,

+ - In + -
P, =P +P, =——(C/-V,,+V,,-C,). (7.23)

2w

Now we use (7.20), (7.22) and write

P :_'_n(c; -C,). (7.24)
jo
7.5. Derivation of matrix M in RWG basis
The substitution of (3.3), (7.8) into (2.3)

1
mzil(er(r))dSZZn:ln(!(rxfn(l’))dSJ:
(7.25)
1 I I
=D == (rxp,)dS+—"—|(rxp,)dS |.
S50 [(reailese e [l
Equation (7.25) can be rewritten into the matrix form
m =MI,
M=M"+M",
+ In +
M = j(rx,)n)ds, (7.26)

where MLM]ILM] corresponds to the magnetic dipole moment of the n-th RWG function.
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The integral describing M, is evaluated as follows

M: = v)ds =

4'?1‘\: _[(rx(r—vlvn))ds Z

Ay

I(V xr)dS
L ) (7.27)
an (Vlnxr)dS 4,&: XOA_[(yl,nz—zlyny)dsJr

n

Yo _[ (zlynx—xlvnz)ds +2, I (%Y - ylvnx)ds],
Ay

A}
Transforming triangle T,* to the barycentric coordinate system (see Section 7.3), gives

M:,x = 4I'A\1 A+(yln Zl,ny)dS =

ll-a

%o 4IA; 2(a.f)-2,Y(a f))dpda = (7.28)
11
= 43(y1n( 2n+23,n)—21'n(y21n+y3‘n)),

Integrations for y and z directions are similar thus,

yl,nzz,n - Zl,n yz,n + yl,nzs,n - Zl,n ya,n
+ _ + + + _ "
Mn - Mn,x + I\/In,y + Mn,z _E Zl,nXZ,n _Xl,nZZ,n + Xl,nz3,n - Z1,nx3,n : (729)
Xl,nyz,n - yl,nXZ,n + Xl,n y3,n - yl,nXS,n

The result for My* in (7.29) also corresponds to (see (7.20))

M =Z”(V1,n xCp). (7.30)
An analogous procedure gives
I _
M- = Z(‘Vm xC; ) (7.31)



Putting all together,

Mn:M;+I\/I;:Z”(VlvnxC;—VMxC;). (7.32)

7.6. Impedance matrix Z in RWG basis

Impedance matrix Z determines electromagnetic interaction between different RWG
basis functions and depends on a geometry Q and frequency. The size of the impedance
matrix is equal to the number of RWG basis function.

Effective ways of evaluating the matrix terms in (7.5) have been proposed by many
authors. We utilize the scheme of Makarov [27], which applies to the RWG basis [15].

7.7. Conduction matrix X in RWG basis

In the first step is to show the evaluation of the scalar product (7.6) within the RWG
basis for off-diagonal terms. Figure 7-3 shows four cases, which are formally different. Figure
7-3 b was chosen to demonstrate the derivation, thus

(W
f . f ~epr)dS =
(T T) = 4AﬂAnA[(p ;)
LI, (7.33)
Y Aj(( ~Vio)-(r=V,,))ds.
Transforming triangle T,* to the barycentric coordinate system (see Section 7.3), gives
Imln 1ll-«
(f. f, _2A2£ !( Voo )-(r(@ )~V ))dpde. (7.34)
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The solution of (7.34) is lengthy but straightforward and corresponds to

f.n

(|
<fm’fn>=;(2nlln—Am:(9Cm'(Cm_Vf,m_Vf,n)+‘Vf,m +V 2+5Vf,m'vf,n)’ (735)

where index f denotes free vertices (the vertices V1 and V4) belonging to the triangle common

to the m-th and the n-th RWG function. The coefficient y,. . isequal to one for cases depicted

in Figure 7-3 b, ¢, to minus one for cases depicted in Figure 7-3 d, e and to zero for RWG
functions with no common triangle.
The evaluation of the scalar products (7.6) within the RWG basis for diagonal terms,

read

12 - 12 -
" [ (o -pn)ds + (Pn- ). (7.36)
J

<fm’fm>: 2 12
dA) 4A) &

The integral over the positive triangle is transformed to the barycentric coordinate system (see
Section 7.3), read

12 12
Vi =4(/:;)2 An(p; poJas = ZAJ;((r Vin ) (r=Vin))ds =
o (7.37)
2/23! ! ((r(a, )=Vin):(r (. B) Vlm))dﬂda
The solution of (7.37) is lengthy but straightforward and corresponds to
2
l//r:r = ZL:-%A:(C% (gch;l _15Vl,m)+ 7‘\/1,m 2 _VZ,m 'V3,m)' (738)
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The integral over negative triangle gives us similar result, thus final relation for diagonal

term is

IZ + +
(£, f)= S (c (9C; -15V,., )+ 7]V,

|2

24A,

_Vz,m 'VS,m)+
(7.39)

2
(c:m-(9c:m ~15V, )+ 7|V, .| —vzym.v&m).

AN N

\A\‘ﬂ
AN

AN

A4

Figure 7-3: Sketch of the m-th RWG function (a) and of an overlap (b, c, d, e) between the m-th and the n-th RWG

function. An arrow denotes the orientation of the RWG functions. The vertices are denoted by corresponding radius

vectors Vm. The grey colour represents the overlap region.

7.8. Excitation matrix Q in RWG basis

In our case of RWG basis scalar product in (3.4) is defined as

.- E(r) ds, (7.40)

1" is column of matrix Q[NXG], every column is for one wave. Since the scale of

where g™
triangles is assumed to be smaller than the scale of the important spatial variations of the

incident electromagnetic field, we can write

(C)- [y ds. (7.41)

A

n

I +
%~ op (C)A[pn

n

38



The integrals in (7.41) are the same as integrals in (7.15), thus

[ ias=2p(C;),
o (7.42)

o
AJ:‘pn dS :Epn (Cn)

Putting all together

0, = 2(E(C;)-p1C)+E(C.) 1 (C))) (7.43)

and we obtained one column of excitation matrix Q. Then we repeated this procedure for

every six waves and we finally obtained the excitation matrix.
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