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Anotace 

Tato diplomová práce je zaměřena na výpočet tenzorů polarizovatelnosti. Úvod se věnuje 

představení konceptu polarizovatelnosti a jejímu využití. První část diplomové práce se 

zabývá odvozením vztahů pro výpočet těchto tenzorů. V druhé části je představena 

implementace těchto vztahů v prostředí MATLAB a následné porovnání výsledků s jinými 

autory. 

 

Klíčová slova 

Tenzory polarizovatelnosti, elektricky malé objekty, Rao-Wilton-Glisson báze, rovnice pro 

elektrické pole v integrálním tvaru, impedanční matice. 

 

 

 

 

 

 

Summary 

This diploma thesis is focused on the calculation of polarizability tensors. Introduction is 

focused on the description of the polarizability tensors and their usage. The first part of the 

diploma thesis derives relations necessary to calculate the polarizability tensors. The second 

part is focused on the implementation of these relations in MATLAB and comparison of 

obtained results with different authors. 
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integral equation, impedance matrix. 

 

  



3 

 

Čestné prohlášení 
Prohlašuji, že jsem předloženou práci vypracoval samostatně, a že jsem uvedl veškeré použité 

informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při 

přípravě vysokoškolských závěrečných prací. 

 

 

V Praze dne 26. 5. 2016      Bc. Ondřej Krátký 

    

     

  



4 

 

Poděkování 
Tímto děkuji doc. Ing. Lukáši Jelínkovi Ph.D. a Ing. Miloslavu Čapkovi Ph.D. za konzultace a 

pomoc při vypracování mé diplomové práce. Také děkuji své rodině za podporu při studiu a 

tvorbě této diplomové práce. 

  



5 

 

 

Content 
List of figures ............................................................................................................................. 6 

List of tables ............................................................................................................................... 6 

List of symbols ........................................................................................................................... 7 

List of abbreviations ................................................................................................................... 8 

1. Introduction ........................................................................................................................ 9 

2. Definition of polarizability tensors .................................................................................. 10 

3. Excitation of polarizability tensors .................................................................................. 11 

3.1. NORMALIZATION OF THE POLARIZABILITY TENSORS ......................................................................................... 13 

3.2. FEEDING ................................................................................................................................................ 14 

3.2.1. Feeding with plane waves ............................................................................................................. 14 

3.2.2. Feeding with Bessel’s waves .......................................................................................................... 16 

4. Implementation in MATLAB ........................................................................................... 17 

5. Results .............................................................................................................................. 20 

5.1. POLARIZABILITY OF A SPHERE AND A CUBE .................................................................................................... 21 

5.2. RADIATION RESISTANCE ............................................................................................................................ 22 

5.3. THE ACCURACY OF THE METHOD FOR 0ka  ........................................................................................... 23 

5.4. BCSRR ................................................................................................................................................. 24 

6. Conclusion ........................................................................................................................ 26 

7. Appendices ....................................................................................................................... 27 

7.1. ELECTRIC FIELD INTEGRAL EQUATION ........................................................................................................... 27 

7.2. TRIANGULAR MESH .................................................................................................................................. 28 

7.2.1. Process of triangulation and triangular mesh ............................................................................... 28 

7.2.2. Pair of triangles, Rao-Wilton-Glisson basis ................................................................................... 29 

7.3. BARYCENTRIC COORDINATE SYSTEM ............................................................................................................ 30 

7.4. DERIVATION OF MATRIX P IN RWG BASIS .................................................................................................... 32 

7.5. DERIVATION OF MATRIX M IN RWG BASIS ................................................................................................... 34 

7.6. IMPEDANCE MATRIX Z IN RWG BASIS ......................................................................................................... 36 

7.7. CONDUCTION MATRIX Σ  IN RWG BASIS .................................................................................................... 36 

7.8. EXCITATION MATRIX Q IN RWG BASIS......................................................................................................... 38 

8. Bibliography ..................................................................................................................... 40 



6 

 

 

List of figures 

FIGURE 4-1: WORKING DIAGRAM OF THE POLARIZABILITY CLASS; GREEN COLOUR DENOTES PUBLIC COMMANDS, RED COLOUR DENOTES 

PRIVATE COMMANDS ......................................................................................................................................... 17 

FIGURE 4-2: GUI OF THE POLARIZABILITY CLASS............................................................................................................... 20 

FIGURE 5-1: THE REAL PART OF THE NORMALIZED ELECTRIC AND MAGNETIC POLARIZABILITY OF A PEC SPHERE AND A PEC CUBE 

OBTAINED BY THE METHOD PROPOSED IN THIS THESIS (BESSEL’S WAVES FEEDING, SOLID LINES). THE RESULTS ARE COMPARED TO 

THEIR KNOWN STATIC VALUES (DASHED LINES). ....................................................................................................... 23 

FIGURE 5-2: THE REAL PART OF THE NORMALIZED ELECTRIC AND MAGNETIC POLARIZABILITY OF A PEC SPHERE. TWO DIFFERENT 

EXCITATIONS OF THE DYNAMICAL EXTRACTION METHOD ARE USED, SEE SECTION 3.2. THE RESULTS ARE COMPARED TO THEIR 

KNOWN STATIC VALUES. ..................................................................................................................................... 24 

FIGURE 5-3: THE REAL AND IMAGINARY PART OF THE NORMALIZED MAGNETIC POLARIZABILITY OF THE BCSRR MADE OF PEC. THE 

RESULTS ARE COMPARED TO ANALYTICAL MODEL (DASHED LINES). RESULTS OBTAINED BY THE METHOD PROPOSED IN THIS THESIS 

ARE PRESENTED AS SOLID LINES. ........................................................................................................................... 25 

FIGURE 5-4: THE REAL AND IMAGINARY PART OF THE NORMALIZED MAGNETIC POLARIZABILITY OF THE LOSSY BCSRR. THE RESULTS ARE 

COMPARED TO ANALYTICAL MODEL (DASHED LINES). RESULTS OBTAINED BY THE METHOD PROPOSED IN THIS THESIS ARE 

PRESENTED AS SOLID LINES. ................................................................................................................................. 26 

FIGURE 7-1: FORMING RWG FUNCTION ........................................................................................................................ 29 

FIGURE 7-2: BARYCENTRIC COORDINATE SYSTEM ............................................................................................................. 31 

FIGURE 7-3: SKETCH OF THE M-TH RWG FUNCTION (A) AND OF AN OVERLAP (B, C, D, E) BETWEEN THE M-TH AND THE N-TH RWG 

FUNCTION. AN ARROW DENOTES THE ORIENTATION OF THE RWG FUNCTIONS. THE VERTICES ARE DENOTED BY CORRESPONDING 

RADIUS VECTORS VM. THE GREY COLOUR REPRESENTS THE OVERLAP REGION. ................................................................ 38 

 

List of tables 

TABLE 3-1: SOLUTIONS OF EQUATION (3.16), PART 1 ....................................................................................................... 15 

TABLE 3-2: SOLUTIONS OF EQUATION (3.16), PART 2 ....................................................................................................... 15 

 

  



7 

 

List of symbols 

   permittivity 

0ε   vacuum permittivity 

   permeability 

0μ   vacuum permeability 

0Z   impedance of vacuum 

c0 speed of light in vacuum 

a   radius of the smallest sphere which completely surrounds the object 

0V   volume of the smallest sphere which completely surrounds the object 

k   wave number 

f   frequency 

   angular frequency 

ka  electric size 

α   polarizability tensor 

eeα
 

electric polarizability tensor 

mmα
 

magnetic polarizability tensor 

emα
 

electro-magnetic polarizability tensor 

meα
 

magneto-electric polarizability tensor 

Ω geometrical object 

 E r   incident electric field 

 B r  incident magnetic induction 

p electric dipole moment of a scatterer 

m magnetic dipole moment of a scatterer 

P electric dipole moment matrix 

T   triangle 

M magnetic dipole matrix 

F feeding matrix 

Q excitation matrix 

I   vector of current expansion coefficients 

C centre of a triangle 

V vertex of a triangle 

A   area of a triangle 

ρ   vector describing the RWG basis 

r   radius vector 



8 

 

N   number of triangles 

 K r   surface current density 

l   length of an RWG edge of a triangle 

j imaginary unit 

Z   impedance matrix 

Σ   loss matrix 

U   identity matrix 

Jn   
Bessel’s function of the first kind and order n   

   penetration depth 

 f r
  

basis function 

 

List of abbreviations 

BCSRR broadside-coupled split ring resonator 

BW Bessel’s wave 

EFIE electric field integral equation 

GUI graphical user interface 

PEC perfect electric conductor 

PW plane wave 

RWG Rao-Wilton-Glisson 

  



9 

 

1. Introduction 

 The interest of scientists and engineers in scattering properties of electrically small 

objects and in evaluation of their polarizability tensors accompany the electromagnetic theory 

from its very beginning [1], [2]. The polarizability tensors are an indispensable tool for 

designing artificial materials [3] and frequency selective surfaces [4]. Thanks to the relation 

of the polarizability tensors to the radar cross-section [5]  of a scatterer and to the radiation 

quality factor [6], the polarizability tensors also well describe the radiation properties of 

electrically small antennas. The precise evaluation of the polarizability tensors is thus of 

major interest for many branches of applied electromagnetism. 

In canonical cases, there exist analytical models for polarizability tensors [7], [8]. 

Unfortunately, realistic scatters have complex geometry and their polarizability tensors can 

only be extracted through numerical methods or measurements. In the current state-of-art, 

there are many numerical implementations available, see [9], [10] and the references there in. 

Existing methods however commonly operate in static limit [9], ignore losses and magneto-

electric tensors and very importantly lack freely available codes for polarizability tensors 

evaluation. As for the polarizability measurements, the pioneering work has been done Cohn 

[11], in which the scatterer is placed in an electrolyte. For recent methods, which use the 

vacuum environment, we mention [12], [13] which obtain the particle polarizability from a 

measurement of the scattering parameters of a waveguide segment loaded by the analysed 

body or [14] which uses a measurement of the scattering parameters of a two-dimensional 

square array of analysed bodies. All the aforementioned methods are however able to measure 

only some components of the polarizability tensors and assume highly restrictive symmetries 

of analysed bodies. 

In this thesis, we propose and verify general method for extraction of all four 

polarizability tensors of arbitrarily shaped bodies with finite conductivity. The presented 

scheme uses full-wave numerical evaluation, automatically accounting for ohmic and 

radiation losses. The thesis also discusses the implementation of this method in the Rao-

Wilton-Glisson basis [15], which results in a freely available code.  
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2. Definition of polarizability tensors 

 This Chapter briefly introduces the polarizability concept. Let us assume an 

electrically small scatterer, which is fully enclosed in a sphere of radius   1a ka  centred in 

the coordinate system with k being the free space wave number [16]. Under the assumption of 

time-harmonic steady state [16]       Re exp jF t F t   with angular frequency ω, the 

illumination of a standalone scatterer by an incident electromagnetic wave with electric field 

   3 1
E r  and magnetic field 

   3 1
B r  gives rise to an electric and a magnetic dipole 

moments 
   3 1 3 1

,
 

p m  according to [1] 
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 (2.1) 

 

where  3 3

ee


α ,  3 3

mm


α ,  3 3

em


α  and  3 3

me


α  are the second order polarizability tensors [7], [8]. The 

electric and magnetic fields are generally changing in the space but, under the assumption of 

electrically small size, they can be considered constant in the volume of the scatterer. The 

field at origin  0E  and  0B  is used as a reasonable approximation, since the scatterer is 

centred at the origin of the coordinate system.  

 Under the assumption of a scatterer made of highly conductive material, the electric 

and the magnetic dipole moments, needed for (2.1), can be evaluated from the knowledge of 

the induced surface current density  K r  as 

 

  
1

d ,
j

S

S


 p K r  (2.2) 

 

  
1

d .
2

S

S m r K r  (2.3) 

 

Notice that the polarizability tensor α fully characterizes the scattering properties of an 

electrically small scatterer [9], [8]. The main topic of this thesis is a calculation of α of a 

solitary and highly conducting scatterer. 
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3. Excitation of polarizability tensors 

  This Chapter demonstrates how the polarizability tensor α  can be evaluated. The 

derivation starts with imagining six different excitation scenarios 

 

 
 

 

 

 
1 6

1 6

0 0
... ,

0 0

 
  
 

F
E E

B B
 (3.1) 

 

producing six different polarizations of the scatterer according to (2.1). If these excitations are 

chosen as to make the columns of the feeding matrix F linearly independent, the polarizability 

tensors can be evaluated as 

 

 
ee em 61

me

1

6mm 1

.   
   

   
F

pp

m

α

m

α

α α
 (3.2) 

 

The next step is the evaluation of the surface current density  K r  needed for (2.2) 

and (2.3). Throughout this thesis,  K r  is obtained from the electric field integral equation 

(EFIE) (see Appendix 7.1) [17], discretized in a given basis 

 

    ,n n

n

IK r f r  (3.3) 

 

where 
 1N

I  is the vector of expansion coefficients with unit 1A m    and  nf r  is a suitable 

dimensionless basis function.  
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The expansion (3.3) transforms the EFIE into [17] (it is shown for all six incident waves) 

 

   
1 1 1

1

6

1 6

6

, ,

,

,, NN

 
 
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 

Σ Z I I Q

f E f E

f Ef E

 (3.4) 

 

with  6N
Q  as an excitation matrix with unit  V m  ,  N N

Z  as the well-known impedance 

matrix [17], with  N N
Σ  as the matrix representing ohmic losses of a lossy conductor and with 

 

    *, d
S

S f g f r g r  (3.5) 

 

as the scalar product. The construction of the matrices Z  and Σ  is detailed in Appendices 7.6 

and 7.7. 

Substitution of (3.3) into (2.2), (2.3) and utilization of (3.4) allow us to write 

 

    1
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6

1

1

1

6
,
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where matrices 
   3 3

,
N N 

P M are representations of (2.2) and (2.3) in the basis (3.3). The 

construction of matrices P and M is detailed in Appendices 7.4 and 7.5. 

 Putting all together, we have 

 

  
1ee em

me

1

mm

.
    

    
  

P
Σ Z QF

M

α α

α α
 (3.7) 

 

The only pending issue is to find six suitable excitations generated by incident electric fields 

 iE r  . Note, that magnetic fields  iB r   cannot be chosen freely as they are connected to 

the electric fields via free space Maxwell’s equations. 
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3.1. Normalization of the polarizability tensors 

As it stands, formula (3.7) is not well suited for an implementation in finite numerical 

precision. The reason are different units of four polarizability tensors involved and thus a 

varying number of achievable significant digits. To solve this issue, a suitable removal of 

units is necessary. As a by-product, one also obtains quantities independent of the absolute 

dimensions of the scatterer. 

For numerical implementation of (3.7) and for presentation of results in Chapter 5 we 

first transform 

 

 

0

0

0

c ,

,

V

V





P
P

M
M

 (3.8) 

 

where 
0V  is defined as  

 

 
3

0

4
π .

3
V a  (3.9) 

 

Second, the feeding matrix F  is transformed according to 

 

 0c .B B  (3.10) 

 

Third, the loss and impedance matrix are transformed as 

 

 
0

,
Z


 

Σ Z
Σ Z  (3.11) 

 

where 0Z  is the impedance of vacuum. 

Lastly, the polarizability tensors are transformed as 

 

 

1
ee em 0 ee 0 em
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3.2. Feeding 

Final step in the calculation of the polarizability tensors is to obtain the excitation 

matrix Q and the feeding matrix F. At beginning of Chapter 3 it was mentioned that exactly 

six linearly independent excitations are needed. Six independent waves produce regular 

matrix F, and only regular matrix has its inverse matrix 1
F . This Section introduces two 

excitation options. 

 

3.2.1. Feeding with plane waves 

First option is to use plane waves. Elementary relations for plane waves read 

 

 
0 j

0 0

e ,
c

k    
   

   

n r
E E

B n E
 (3.13) 

 

where n is a unit vector in the direction of the plane wave propagation and 
0E  is a vector in 

the direction of polarization. Here we assume 1

0 1 V m E . The direction of electric field is 

further restricted by 

 

 0 0. n E  (3.14) 

 

As a particular case, we chose waves propagating and being polarized solely along coordinate 

axes, i.e. 
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F  (3.15) 

 

where 
61h h  are constants with values of plus or minus unity. The columns of (3.15) need to 

be linearly independent, i.e. we require 
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    2 3 6 1 4 5det 0.h hh h h h  F  (3.16) 

 

The equation (3.16) has 32 solutions, which read 

 

Table 3-1: Solutions of equation (3.16), part 1 

1h  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2h  1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 

3h  1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 

4h  1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 

5h  1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 

6h  −1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 

 

Table 3-2: Solutions of equation (3.16), part 2 

1h  −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 

2h  1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 

3h  1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 

4h  1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 

5h  1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 

6h  1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 

 

Under the assumption of electrical small scatterer, all the above excitations are like and quite 

arbitrarily, we choose 

 

 

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 1 0 0

0 0 0 1 0 1

0 1 0 0 1 0

1 0 1 0 0 0

 
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 

  
 

 
 
 

F  (3.17) 

 

for the later calculations. 

 Calculation of the excitation matrix Q is detailed in Appendix 7.8. 
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3.2.2. Feeding with Bessel’s waves 

An interesting possibility would be to have normalized feeding matrix F equal to the 

identity matrix. This can be accomplished by using cylindrical waves as an excitation. 

As an example, the incident wave belonging to the third column of F, e. g.   00  zE , 

0 0c 0B  can be obtained by  

 

  0 0J ,k zE  (3.18) 

 

where 2 2x y    and Jn   is the Bessel's function of the first kind and order n. 

Faraday’s law leads to  

 

  0 0 1c j J .k φB  (3.19) 

 

Similar procedure leads to the excitation corresponding to the sixth column of the excitation 

matrix F. In this case, one chooses  

 

 
 

 0 0 0

1

0

0j J ,

c c J .

k

k





 



φ

z

E

B
 (3.20) 

 

The excitation corresponding to other columns of matrix F can easily be obtained by rotation 

of (3.18) – (3.20). Calculation of the excitation matrix Q is detailed in Appendix 7.8. 
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4. Implementation in MATLAB 

All necessary expressions have been implemented in MATLAB [18] in a class named 

“Polarizability”. Figure 4-1 shows a working diagram of the class. 

 

 

Figure 4-1: Working diagram of the Polarizability class; green colour denotes public commands, red colour denotes 

private commands 

 

  

obj.save('name');

obj.getBWpolarizabilities;

obj.fillPrivateProperties;

obj.getPolarizabilities;

obj.electricSize = values;

obj.feeding = 'string';

obj.conductivity = value;

obj.readNastran('fileName.nas');

obj = Polarizability;

initialize calculation of 

polarizability tensors 

calculate matrices: , , ,P M Z Σ   

class constructor 

import triangular mesh 

set conductivity 

set type of feeding 

set electric sizes 

 

save results 

calculate BW polarizability 

tensors 
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For calculation of polarizability tensors, the user have to first call the constructor of 

the class 

 

obj = Polarizability(); 

 

Class Polarizability has several required inputs; the main input is a triangular mesh of 

the studied object. Allowed format is a NASTRAN [19] file. User can easily import data from 

NASTRAN with command  

 

obj.readNastran('nameOfFile.nas'); 

 

Imported mesh can be shown in a figure  

 

obj.plot(); 

 

Second input is a conductivity of the scatterer. It can easily be set by  

 

obj.conductivity = value; 

 

The class supports two types of feeding. If user wants to calculate the tensors with 

plane waves feeding then he sets feeding to 'PW'. If he wants to use Bessel’s wave so he sets 

feeding to 'BW'. If he wants to use both feeding he can use 'PWBW'. The command reads 

 

obj.feeding = 'string'; 

 

The last input is a vector of electric sizes ka. The first possibility is to set electric sizes 

directly with command 

 

 

The second possible way is to set frequencies of the object by command 

 

obj.frequency = values; 

obj.electricSize = values; 
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Property “frequency” is dependent property with setter and getter methods, it depends on 

“electricSize”, the relation between them is 

 

 
0

π

c
,

2

ka
f

a
  (4.1) 

 

where a is calculated automatically from the supplied triangular mesh. 

 When all inputs are given in the object then the calculation can start with command  

 

obj.getPolarizabilities(); 

 

In the first step, this method calls method “fillPrivateProperties”. This method calculates 

matrices , ,Z Σ P  and M. When calculation of private properties is finished, then the 

calculation of the excitation matrix and polarizability tensors begins. Two methods handle this 

job, one for plane waves and one for Bessel’s waves. Their names are “getPWpolarizabilities” 

and “getBWpolarizabilities”. 

 Polarizability tensors are stored in two structure arrays, the first for plane waves and 

the second for Bessel’s waves. User can access these variables as 

 

struct1 = obj.polBW; 

struct2 = obj.polPW; 

 

Results can be saved in a .mat file as 

 

obj.save('nameOFfile'); 

 

This command saves both polarizability structure arrays, electric sizes and some additional 

information about triangular mesh. 

 Graphical user interface (GUI) was also developed. Print screen of GUI can be seen in 

Figure 4-2. 
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Figure 4-2: GUI of the Polarizability class 

 

5. Results    

 The code presented in the last Chapter has been used for calculating polarizability of a 

sphere, a cube and a broadside-coupled split ring resonator (BCSRR) [20]. These shapes were 

used for verification purposes since their polarizabilities are known analytically, for 

polarizability of a sphere see [7], for polarizability of a cube see [9] and for polarizability of a 

BCSRR see [20], [21]. All the results presented in this Chapter are normalized according to 

(3.12). If we do not state otherwise all object are assumed to be made of perfect electric 

conductor (PEC). 
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5.1. Polarizability of a sphere and a cube 

Normalized static polarizability matrices for a sphere are analytically given by [7] 

 

 
ee 3 , Uα  (5.1) 

 

 
mm

3

2
,  Uα  (5.2) 

 

where U is the identity matrix. 

For the numerical evaluation, a PEC sphere of electrical size 0.01ka   was discretized 

into 1504 triangles (see Figure 5-1) and its polarizabilities have been evaluated (with Bessel’s 

feeding) via the code described in Chapter 4. The results are: 

 

 
ee 3.0 7 ,15 Uα  (5.3) 

 

 
mm 1.5072 .  Uα  (5.4) 

 

 To the best of author's knowledge, an analytical formula for the polarizability of a 

cube does not exist. There however exist very precise numerical evaluation of its static 

polarizability [9], [10] 

 

 
ee 1.3394 , Uα  (5.5) 

 

 
mm .600 22 .  Uα  (5.6) 
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For a numerical evaluation, PEC cube of electrical size 0.01ka   was discretised into 

1584 triangles (see Figure 5-1) and its polarizabilities have been evaluated (with Bessel’s 

feeding) via the code described in Chapter 4. The results are: 

 

 
ee 1.3 0 ,52 Uα  (5.7) 

 

 
mm 0.6095 .  Uα  (5.8) 

 

Excellent agreement with analytical result can be observed in both aforementioned cases. 

 

5.2. Radiation resistance 

Figure 5-1 presents the numerical polarizability extraction for a given frequency sweep. 

It can be seen that results are very close to the known static values for small electric sizes. The 

small discrepancies can be attributed to meshing. Differences grow with increasing ka, the 

reason being the radiation resistance of the scatterer. In this case, the results obtained via the 

method of this thesis should be considered as correct ones, since the analytical formulas for 

polarizabilities are strictly valid only at 0ka   and are not supposed to be precise at 0ka  . 
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Figure 5-1: The real part of the normalized electric and magnetic polarizability of a PEC sphere and a PEC cube obtained 

by the method proposed in this thesis (Bessel’s waves feeding, solid lines). The results are compared to their known static 

values (dashed lines). 

 

5.3. The accuracy of the method for 0ka  

When the electrical size approaches zero, the dynamical formulation of the presented 

method brings unpleasant numerical issues. First problem comes from a frequency 

dependence of the impedance matrix Z (see Section 7.6), which becomes ill-defined at 

0.ka  Second possible issue relates to the Bessel’s feeding. In that case the sole excitation 

by magnetic field at 0ka  in fact produces no excitation at all in the EFIE 

formulation (3.7). These two problems were explored and results can be seen in Figure 5-2 for 

both, the Bessel's wave and plane wave feeding. It can be seen that for ka smaller than 610 , 

the used double precision numerics breaks down, producing meaningless results. This 

numerical problem comes from the impedance matrix and it is common to both excitations 

types. As a result, the Bessel's feeding brings no practical issues in the ka ranges allowed by 

the impedance matrix and it can be safely used for calculating the polarizability tensors. 
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Figure 5-2: The real part of the normalized electric and magnetic polarizability of a PEC sphere. Two different excitations of 

the dynamical extraction method are used, see Section 3.2. The results are compared to their known static values. 

 

5.4. BCSRR 

Encouraged by the good performance of the method on canonical objects, we can try to 

test it in more complicated scenario, when radiation effects become important. In that respect, 

the PEC resonant scatterers of non-negligible electrical sizes are interesting testing grounds. 

As one example, we have chosen the BCSRR [20], extensively used in the design of magnetic 

metamaterials [22]. The geometry of the scatterer is illustrated in Figure 5-3. Formula for the 

magnetic polarizability tensor, which is presented in [20], [21] and is used for comparison 

with numerical results, reads 

 

 

14 22

0 rad
mm ext 2

0

0μ ,
2

π
1 jzz Rw

r
L VL




 



  
   

  
 


  (5.9) 

 

where extr  is an external radius of the ring, w is the width of the strip, L is the self-inductance 

[21], 0  is the angular frequency at resonance, 0μ  is the permeability of vacuum and 

 

 

44

0
rad ext

Z
,

6 2

π w
R r

k  
  

 
  (5.10) 
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represents the radiation losses [8], [23]. An excellent agreement can be observed between 

analytical model and results from the method of this thesis.  

 

 

Figure 5-3: The real and imaginary part of the normalized magnetic polarizability of the BCSRR made of PEC. The results 

are compared to analytical model (dashed lines). Results obtained by the method proposed in this thesis are presented as 

solid lines. 

 

The BCSSR can also be used to test the presence of the ohmic losses. In this case, the 

analytical model (5.9) can easily be extended with rad rad lossR R R  , where 

  

 loss ext

2

2

π w
R r

w

 
  

 
 (5.11) 

 

represents the conduction losses [21], with   as conductivity of the used material and 

 02 μ   as the penetration depth. The results from the analytically model and from 

the numerical extraction are compared in Figure 5-4. In order to keep the problem scalable, 

the ratio  0ε   has been fixed at 710 . Again, very good agreement can be observed. 
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Figure 5-4: The real and imaginary part of the normalized magnetic polarizability of the lossy BCSRR. The results are 

compared to analytical model (dashed lines). Results obtained by the method proposed in this thesis are presented as solid 

lines. 

 

6. Conclusion 

 We have become acquainted with the definition of polarizability tensors and derived 

relations for their extraction for an arbitrarily shaped electrically small scatterer. The relations 

have been implemented in MATLAB and the codes have been used for calculation 

polarizability tensors of electric small objects as a sphere, a cube and a BCSRR. These objects 

were chosen for their known polarizability tensors. Excellent agreement between our 

numerical results and analytically models has been observed in static and dynamic ranges. 

The implemented numerical method have important advantage of considering radiation and 

ohmic losses. 

 All codes, which were programmed for the thesis, are freely available on CD, which is 

attached to the diploma thesis and can be found on MATLAB file exchange, the link is 

http://goo.gl/LVWTjc. This fast and effective evaluation of polarizability tensors invites for 

various optimization tasks concerning electrically small scatterers, which purpose can be 

found in the design of artificial media, radio identification tags and beam-forming arrays. 

 

http://goo.gl/LVWTjc
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7. Appendices 

 

7.1. Electric field integral equation 

The continuous form of the electric field integral equation (EFIE) [17] used throughout 

this thesis reads 

 

          2 ,SZ k L L   K r E r K r K r  (7.1) 

 

with  K r  being the surface current density induced on the scatterer,  E r  being the 

incident electric field and with operator L defined as 

 

     
j '

'

j e
' ' d

π
'.

4 '

k

S

L S


 





r r

F r F r
r r

 (7.2) 

 

The quantity    S 1 jZ    represents the surface impedance of the conducting half-space 

[1] with  2   being the penetration depth (we consider only non-magnetic 

materials, thus 0μ  .). The left side of (7.1) thus approximates the reaction of a lossy 

conductor in the cases when the penetration depth is negligible with respect to the thickness 

and with respect to the curvature radius of any part of the scatterer. Utilizing expansion 

 

    ,n

n

nIK r f r  (7.3) 

 

the integral equation (7.1) is recast into its matrix form [24] 

 

  
1,

,

,N

 
 

   
 
 

Σ Z I

f E

f E

 (7.4) 

 

where 

 

    2 , ,m n m nk L L       Z f f f f  (7.5) 
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is the so-called impedance matrix [17], [24] and where 

 

 ,S m nZ    Σ ff  (7.6) 

 

is the matrix representing the reaction of a lossy conductor. 

 

7.2. Triangular mesh 

Proposed numerical method for extraction of polarizability tensors needs suitable basis 

functions  nf r  and a suitable discretization of the scatterer. This Section introduces the 

triangular mesh and the Rao-Wilton-Glisson basis, which are used in the thesis. 

 

7.2.1. Process of triangulation and triangular mesh  

 Triangulation [25] is a process, which discretizes smooth surface Ω to a finite number 

of triangles Tn which are able to represent the original structure in computer's memory. The 

process can mathematically be described as 

 

 

 

1

Ω Ω, ,

, ,

, ,

Ω,

i

i

N

j

n

n

n

j i

N T

T T i j

T T T i j

T


 

  

  



 (7.7) 

 

in which  denotes the discretization scheme and N is the number of triangles T. 

 Triangular mesh is commonly defined by two matrices  3M
p  and 

 3N
t  . Matrix 

 3M
p  consists of radius vectors of all M mesh points. Matrix 

 3N
t  gives information on 

which three nodes from p form a triangle. 
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7.2.2. Pair of triangles, Rao-Wilton-Glisson basis 

Triangulation gave us a triangular mesh. We then use pairs of triangles with common 

edges and define Rao-Wilton-Glisson (RWG) function [15], see Figure 7-1, as 

 

 

, 

,  

2
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2

0, otherwise,

n

n

n
n

n

n
n n

n

T

T

l

A

l
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
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
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
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



r

r

ρ

f r ρ  (7.8) 

 

where ln, An
± denote the edge length and area of triangle, respectively. Vectors n


ρ  are defined 

as 

 

 
1

4,

, ,

,

n

n n

n





 

 

V

V

ρ r

ρ r
 (7.9) 

 

where V1 and V4 are free vertices according to Figure 7-1. The triangle containing 1V  is 

denoted as positive, while the triangle containing 4V  as negative. The expansion coefficients 

nI , see (7.3), represents surface current density flowing normally to the common edge defined 

by vertices V2 and V3. 

 

 

Figure 7-1: Forming RWG function 
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 Majority of triangles are shared between three or more RWG functions, only boundary 

triangles are shared between two or only one RWG function. This property gives the RWG 

basis great flexibility for describing surface current density  K r  in the form (7.3).  

 

7.3. Barycentric coordinate system 

 Barycentric coordinate system [26] can help us with solving integrals over arbitrary 

triangle, which become very handy in dealing with the RWG basis. Barycentric coordinates 

, ,    are defined by three vertices V1, V2, V3 and transformation 

 

 .

x

y

z





   
   

    
   
   

Tr  (7.10) 

 

 
1 2 3

1 2 3

1 2 3

,

x x x

y y y

z z z

 
 
 
 
 

T  (7.11) 

 

where columns of the matrix T are the Cartesians coordinates of vertices V1, V2, V3. 

Important attribute of the barycentric coordinates is their normalization 

 

 1 .      (7.12) 
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The graphical representation of the barycentric coordinates is depicted in Figure 7-2 

and shows how an arbitrary triangle is transform into a rectangular isosceles triangle. 

 

 

Figure 7-2: Barycentric coordinate system 

 

 Transformation (7.10) together with (7.12) allows then to write an integration of an 

arbitrary function over a given triangle as 

 

     1 2 3

11

0 0

d 2 1 ,dd
T

f A f



     


       VV Vr r  (7.13) 

 

where A is area of the triangle and 2A is the Jacobian. This result follows from the fact that a 

rectangle in barycentric coordinates corresponds to a quadrilateral in Cartesian coordinates, 

and the ratio of the areas of the corresponding shapes in the corresponding coordinate systems 

is given by 2A. 

 

  



32 

 

7.4. Derivation of matrix P in RWG basis 

The substitution of (3.3), (7.8) into (2.2) leads to 
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 (7.14) 

 

Equation (7.14) can be rewritten into the matrix form  
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 (7.15) 

 

where    3 1 1 1

n nI
 

P  corresponds to the electric dipole moment of the n-th RWG function. 

The integral describing n


P   is evaluated as follows 
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 (7.16) 
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Transforming triangle Tn
+ to the barycentric coordinate system (see Section 7.3), gives 
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 (7.17) 

 

Integrations for y and z directions are similar, thus 
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The result for Pn
+ in (7.18) also corresponds to 
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where n


C  is the centre of the positive triangle 
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An analogous procedure gives 
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where n


C  is the centre of the negative triangle 

 

 
3, , 4,2

.
3

n n

n

n 
V

C
+ V + V

 (7.22) 

 



34 

 

Putting all together, 
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Now we use (7.20), (7.22) and write 
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7.5. Derivation of matrix M in RWG basis 

The substitution of (3.3), (7.8) into (2.3)  
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Equation (7.25) can be rewritten into the matrix form 
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where 
   3 1 1 1

n nI
 

M corresponds to the magnetic dipole moment of the n-th RWG function. 
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The integral describing n


M   is evaluated as follows 
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Transforming triangle Tn
+ to the barycentric coordinate system (see Section 7.3), gives 
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Integrations for y and z directions are similar thus, 
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The result for Mn
+ in (7.29) also corresponds to (see (7.20)) 
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An analogous procedure gives 
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Putting all together, 

 

  1, 4, .
4

n
n n n n n nn

l        V CM CM VM  (7.32) 

 

7.6. Impedance matrix Z in RWG basis 

Impedance matrix Z determines electromagnetic interaction between different RWG 

basis functions and depends on a geometry Ω and frequency. The size of the impedance 

matrix is equal to the number of RWG basis function. 

 Effective ways of evaluating the matrix terms in (7.5) have been proposed by many 

authors. We utilize the scheme of Makarov [27], which applies to the RWG basis [15].  

 

7.7. Conduction matrix Σ  in RWG basis 

In the first step is to show the evaluation of the scalar product (7.6) within the RWG 

basis for off-diagonal terms. Figure 7-3 shows four cases, which are formally different. Figure 

7-3 b was chosen to demonstrate the derivation, thus 
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 (7.33) 

 

Transforming triangle Tn
+ to the barycentric coordinate system (see Section 7.3), gives 
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The solution of (7.34) is lengthy but straightforward and corresponds to  

 

   , , , , ,

2

,, 9 5 ,
24

mn m n
m n m m m m mf f n f f n f f

m

n

l l

A


       C C V V V V V Vf f  (7.35) 

 

where index f denotes free vertices (the vertices V1 and V4) belonging to the triangle common 

to the m-th and the n-th RWG function. The coefficient mn  is equal to one for cases depicted 

in Figure 7-3 b, c, to minus one for cases depicted in Figure 7-3 d, e and to zero for RWG 

functions with no common triangle. 

 The evaluation of the scalar products (7.6) within the RWG basis for diagonal terms, 

read 
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The integral over the positive triangle is transformed to the barycentric coordinate system (see 

Section 7.3), read 
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 (7.37) 

 

The solution of (7.37) is lengthy but straightforward and corresponds to  
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The integral over negative triangle gives us similar result, thus final relation for diagonal 

term is 
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 (7.39) 

 

 

Figure 7-3: Sketch of the m-th RWG function (a) and of an overlap (b, c, d, e) between the m-th and the n-th RWG 

function. An arrow denotes the orientation of the RWG functions. The vertices are denoted by corresponding radius 

vectors Vm. The grey colour represents the overlap region. 

 

7.8. Excitation matrix Q in RWG basis 

In our case of RWG basis scalar product in (3.4) is defined as 
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where 
 1N

q  is column of matrix 
 6N

Q , every column is for one wave. Since the scale of 

triangles is assumed to be smaller than the scale of the important spatial variations of the 

incident electromagnetic field, we can write 
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The integrals in (7.41) are the same as integrals in (7.15), thus 
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Putting all together 

 

     ( ) ( )
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n n n n
n
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and we obtained one column of excitation matrix Q. Then we repeated this procedure for 

every six waves and we finally obtained the excitation matrix. 
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