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Abstrakt
Táto diplomová práca sa zaoberá hierarchickou zhlukovou analýzou nad dlhodobými

záznamami vytvorenými elektroencefalografom. Ciel’om práce je nájst’ takú hierar-

chickú zhlukovú analýzu, ktorá bude používat’ menej pamäte ako klasický prístup a bude

pracovat’ v rozumnom čase s objemnými dátami. V tejto práci porovnávame aglomer-

atívnu zhlukovú analýzu, ktorá reprezentuje klasický prístup, oproti dvom d’alším metó-

dam, robustné actívne zhlukovanie a hybridné zhlukovanie. Dendrogram, ktorý vzniká

ako výsledok hierarchickej zhlukovej analýzy, môže byt’ použitý na detekciu rôznych zh-

lukov reprezentujúcich artefakty v reálnom EEG signály. Na porovnanie navrhovaných

metód sú použité rôzne dáta. Jedným druhom použitých dát sú umelo vytvorené, ktoré

obsahujú tri jasné zhluky a druhým typom dát sú reálne EEG záznamy zastúpené hypno-

gramami a komatóznymi dátami. Všetky implementácie boli urobené v MATLABe a

výsledky tejto práce budú použité pri vývoji PSGlabu.

Kl’účové slová: aglomeratívny, hybridný, actívny, hierarchický, zhlukovanie, k-means++,

PCA, EEG

Abstract
This master thesis deals with hierarchical cluster analysis on brain activity recordings

created by electroencephalograph. The aim of the work is to find a hierarchical cluster-

ing method that use less memory than classical approach in the reasonable time for large

datasets. In this work the classical approach, Agglomerative Hierarchical clustering, is

compared to the two other approaches, Robust Active clustering and Hybrid cluster anal-

ysis. Dendrogram generated by the hierarchical clustering can be used to detect various

numbers of cluster that represents artifacts in the real EEG signals. Different datasets are

used for the complex comparison of the methods. We use artificial datasets with clear

clusters and real EEG datasets represented by hypnograms and comatose data. For the

implementations and comparisons we use MATLAB. The results of the work will be used

in the PSGlab toolbox.

Keywords: agglomerative, hybrid, active, hierarchical, clustering, k-means++, PCA,

EEG

ix



x



Contents

1 Introduction 1

2 EEG signal 2

2.1 Origin of the signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Measuring EEG signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Sleep stages and EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Coma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 EEG signal processing 6

3.1 Signal segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Clustering 10

4.1 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Agglomerative Hierarchical clustering . . . . . . . . . . . . . . . . . . . 12

4.3 Hybrid clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Robust Active clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 Theoretical comparison of proposed algorithms . . . . . . . . . . . . . . 22

5 Used datasets 24

5.1 HDF5 format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Hypnogram data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Comatose data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Created data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Experiments and results 28

6.1 Robust Active clustering experiments . . . . . . . . . . . . . . . . . . . 29

6.2 Hybrid algorithm experiments . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Agglomerative Hierarchical clustering experiments . . . . . . . . . . . . 35

6.4 High dimensional data experiments . . . . . . . . . . . . . . . . . . . . . 36

7 Discussion 38

7.1 Robust Active clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Hybrid clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 Agglomerative Hierarchical clustering . . . . . . . . . . . . . . . . . . . 40

xi



7.4 Overall comparison of methods . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusion 44

List of Figures

2.1 10-20 electrode placement standard . . . . . . . . . . . . . . . . . . . . 3

2.2 Example of Hypnogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Example of Coma Stages . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Example of linear segmentation . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Example of adaptive segmentation . . . . . . . . . . . . . . . . . . . . . 7

3.3 PCA geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Example of dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Work flow of the hybrid cluster analysis . . . . . . . . . . . . . . . . . . 15

4.3 Example of k-means++ initialization . . . . . . . . . . . . . . . . . . . . 17

5.1 Hypnogram dataset after PCA . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Comatose dataset after PCA . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Used datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Memory consumption of Robust Active algorithm for artificial datasets . . 29

6.2 Number of leafs of Robust Active algorithm for artificial datasets . . . . . 30

6.3 Memory consumption of Robust Active algorithm for real datasets . . . . 31

6.4 Number of leafs of Robust Active algorithm for real datasets . . . . . . . 31

6.5 Time consumption of Robust Active algorithm for artificial datasets . . . 32

6.6 Time consumption of Robust Active algorithm for real datasets . . . . . . 33

6.7 Memory consumption of Hybrid algorithm . . . . . . . . . . . . . . . . . 34

6.8 Time consumption of Hybrid algorithm . . . . . . . . . . . . . . . . . . 35

List of Tables

1 Theoretical comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Results of experiments with Agglomerative Hierarchical clustering . . . . 36

3 Performance of algorithm with comatose dataset . . . . . . . . . . . . . . 37

4 The best settings for parameters of RA clustering . . . . . . . . . . . . . 38

5 The best settings for k parameters of Hybrid clustering algorithm . . . . . 39

6 Memory consumption comparison in Kb . . . . . . . . . . . . . . . . . . 42

7 Time consumption comparison in seconds . . . . . . . . . . . . . . . . . 42

xii



8 Mutual information measurement comparison . . . . . . . . . . . . . . . 43

xiii



1 Introduction

One of the most important and most interesting parts of the human body is brain. We

can say that the brain is the center of human body, since each organ is controlled by it

and it is the center of central nervous system. Based on the previous facts, it is possible

to state that the processing and analyzing the signals produced by brains is really impor-

tant. It is helpful in diagnose illnesses connected with nervous system such as epilepsy,

sleep disorders or it helps to monitor a brain activity of patients in coma and many more

contributions. The drawback, that makes analyzing of EEG difficult for each neurolo-

gist, is that the functionality of human brain is not completely explored. Furthermore

it causes that it is not possible to fully automatize processing and analyzing the EEG

signal. Another problem comes with various artifacts. In the EEG signal are contained

eye movements, heartbeat, muscle activity and others, that makes analyzing of the EEG

signal more difficult for the neurologists. In order to get the best possible analysis of the

EEG signal, neurologist would spend a few hours with the processing.

Cluster analysis can be helpful in analyzing procedure of EEG signal. We introduce and

compare different hierarchical cluster analysis approaches that are used to find different

groups of data samples. By creating a hierarchical tree we get a strong tool to find a

different number of clusters in the data set. It is an advantage if we need to process EEG

signal that contains a various numbers of unwanted elements. These artifacts represents

separated clusters in the structure of data. There are numerous methods for performing

hierarchical cluster analysis on the data. Basically we can divide them to two different

categories divisive and agglomerative. The second one is the most common used and has

various techniques such as Complete link, Single link, Ward’s method and others.

In this work we focus on finding algorithm that has lower memory consumption and

reasonable time consumption, while the detection of clusters is similar to the classical

approach. For the purposes of this work we use Agglomerative Hierarchical clustering

based on Ward’s method as a baseline method. As a new approach we decided to use

Robust Active cluster analysis and Hybrid clustering. Results of this work will be used

in PSGlab, which is being created by Ing. Václav Gerla, Ph.D.. It is a complex toolbox

for reading, pre-processing, analyzing and classifying of EEG record.
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2 EEG signal

There is a variety of methods that can be used in order to get information about the hu-

man body. Electroencephalography (EEG) is one of the them where the main area of

interest is brain. It is basically a measurement of the electrical activity of the brain using

electrodes. The first roots of EEG can be traced to 1875 when Richard Canton measured

first signals from brains of a rabbit and a dog. In 1929, Hans Berg constructed first EEG

device.

Brain is a part of central nervous system, and it consists of various kind of cells and struc-

tures. The most important ones are considered neurons and surrounding neural tissue -

glias. The cells responsible for electrical activity in the brain are neurons that use this

kind of activity for communication between each other. [3]

2.1 Origin of the signal

As mentioned above, the main purpose of EEG is to collect information about electrical

activity of the brain. The base of such activity is an influence of chemical transmitters

on post-synaptic cortical pyramidal neurons resulting in either localized depolarization

- excitatory post-synaptic potential (EPSP), or localized hyperpolarization - inhibitory

post-synaptic hyperpolarization (IPSP). Current in EPSP is carried by Na+ inward flux.

In the case of IPSP current is carried inwards by positive ions, such as K+, and outwards

by negative ions Cl−. The flow of the ions trough the membrane causes the polarization

of the neurons, and creation of electrical dipoles.

Pyramidal neurons are located in the most superficial layer of cortex, and are spatially

organized, causing synchronization of the neuronal activity in the specific areas. Since

the electrical activity of one neuron is so small that EEG would not record it, or it can

be the mutually canceled the synchronization and orientation are important in the signal

strengthening.

While on the one side of neuron there is a membrane repolarizing back to the resting

potential −70mV , on the other side the neuron is being depolarized to more positive

values. This effect causes the creation of dipoles that conduct current. One dipole is

usually created of up to thousands of neurons. There are two possible orientations of the

dipole in the brain - radial, which is orientated from the center of the brain to the surface
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and tangential, which is parallel to the brain surface. Layer of the dipoles is responsible

for the electric activity that is recorded by the EEG.[16, 13]

2.2 Measuring EEG signals

Previous subsections explain emergence of the electrical signal in the brain. To acquire

such signal, we have a recording system. The interface between biological signal and

recording system compromises of electrodes and conductive jelly. Right behind the elec-

trodes are located amplifiers with filters that should amplify useful signal and suppress

noise. The last part of recording chain is A/D converter and a computer that works as a

recording device.

Electrodes

As mentioned above, electrodes are crucial part of the recording system. There are sev-

eral types of them, such as disposable and reusable disc electrodes, electrode caps (used

for multi-chanel recording), and headbands. The common material used for the elec-

trodes is Ag-AgCl that also allows recording of the slow changes in potential. To measure

potential changes over time we need at least 2 electrodes. One of them is active, and sec-

ond one is a reference electrode. Sometimes it is possible to use third one, called ground

electrode, to get differential voltage. Position of the electrodes is also important, and it is

internationally standardized as a 10−20 system (Figure 2.1).

Figure 2.1: 10-20 electrode placement standard
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The labels mark a position of the electrode. The letters stand for an area of the head

that is being recorded by the specific electrode (F - frontal, C - central, T - temporal, P -

posterior, O - occipital, A - earlobe, Pg - nasopharyngeal, Fp - frontal polar). Numbers

explain the side of the head where the electrode is placed. Even number means that the

electrode is on the right side, and the odd number marks electrodes that are on the left

side. In the case if an electrode is in the middle, there is a letter z with no number.[19, 13]

Mathematical approach

The mathematical concept used for the explanation of the relation between dipoles and

EEG potentials is called lead-field. The main idea of the concept is to construct lead-

field matrix that expresses relation between discrete locations on the skull and potential

measurements at discrete recording sites. Positive and negative electrodes are connected

by virtual lines that cross all of the points in the brain. One of the disadvantages of the

EEG is decrease in the intensity of acquired signal with increasing distance from the

surface of the brain. [20]

2.3 Sleep stages and EEG

EEG signals acquired from the brain nowadays are used mainly for the diagnostic pur-

poses and one application is to measure activity of the brain during the sleep. Using

EEG records, it is possible to classify sleep into stages: wakefulness, REM (Rapid Eye

Movement) and non-REM. Non-REM sleep is divided into 3 different stages (earlier

classifications used 4 stages, but stages 3 and 4 were merged due to their similarities).

These stages are also known as deep sleep or slow wave sleep, especially stage 3 where

more than 50% of signal consist of delta waves. On the other hand, in REM sleep the

EEG signal looks more like wakefulness, but body is completely immobilized. In this

stage we usually see dreams. [3, 14]

0  0.5 1  1.5 2  2.5 3  3.5 4  4.5 5  5.5 6  6.5 7  7.5

Time [h]

NREM3

NREM2

NREM3

REM
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Figure 2.2: Example of Hypnogram
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2.4 Coma

Coma data is another kind of signal that can be measured from the brain. Coma is a state

of unconsciousness with missing wakefulness. Typical characteristic feature of coma is

lack of arousal from internal or external stimuli. This state can be caused by various

reasons (such as traumatic head injury, stroke, brain tumor, and drug or alcohol intoxica-

tion). Usually patient needs life support and is not able to communicate. Comatose data

can be classified into 10 different stages, with C1−C10 describing how deep the coma

is. [8] An example of the coma stages can be seen in the following figure.

Figure 2.3: Example of Coma Stages
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3 EEG signal processing

Even though the signal is already filtered when it is recorded, it has to be processed to

obtain reasonable and meaningful data. Signal processing, in general, starts with digital

filtration, then the signal is usually segmented and in the end the feature extraction and

selection is done. If the information in the features is redundant it is feasible to reduce

dimensionality of the data. There are various ways for the digital filtration but this is not

in the scope of this work

3.1 Signal segmentation

Real signals are usually non-stationary. The same fact also stands for the EEG signals

where statistical values vary over the time. Segmentation means division of the signal

into smaller parts. In our case parts are so small that we can say that each segment is

almost a stationary signal. Especially this pre-processing is necessary in the task of clus-

tering and feature selection. In general there are two ways how to segment signal. In

segments equal in length or various in length. In the case of same length of the segments

we are talking about linear segmentation (for example see figure 3.1). The length of the

parts is usually set according to empirical observations. In the case of EEG signals, we

can consider segments that are approximately 10 seconds long as quasi-stationary sig-

nals. In this work we set the length of the segments to 30 seconds.

Another approach is adaptive non-linear segmentation. The advantage of adaptive seg-

mentation is that the segments are more stationary than the ones we obtain from linear

segmentation. The signal is divided by its changes. There are several algorithms for

adaptive segmentation. The example of adaptive segmentation is in the figure 3.2. In

case of this kind of signal separation we most probably get more segments than with

linear segmentation. For example, if we take a linear segmentation of 7 hours long EEG

signal with segments of 30 seconds, we get 885 segments. With adaptive segmentation

this number can be easily few times higher.[8]

Figure 3.1: Example of linear segmentation
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Figure 3.2: Example of adaptive segmentation

3.2 Features

After segmentation, we can represent each segment of the signal by its parameters. The

basic and most commonly used features are statistical parameters such as mean, stan-

dard deviation, maximum, minimum, kurtosis and skeweness or median. Another type

of parameters obtained by interval or period analysis. In these methods, the distribution

is situated between maxima and minima. We also know many other kinds of segment

representation e.g. Hjorth parameters, Frequency analysis, Wavelet transform etc.

In general, we can we can get many different parameters and features that represents the

segment. Each feature represents one dimension of the data. Since the higher dimension

brings higher requirements for computation , it is important to select the most important

features. There are several ways for choice of a feature selection. One of the possibilities

is to use data mining software such as Weka, where you can apply one of the various

feature selection algorithms (for example, Info Gain Attribute Evaluation). [8]

3.3 Dimensionality reduction

Another way to reduce a number of features is to reduce dimensionality. In the compar-

ison to the features extraction, where the most useful dimensions are selected and used,

here we take all dimensions, and project them to the new dimensions and features, that

carry almost the same information, but their amount is significantly lower. One of a such

projection methods is a Principal Component Analysis (PCA).

Principal Component Analysis

As mentioned above, we need to find a projection that maps d−dimensional space to new

k−dimensional space where k < d, and the loss of information is minimal. In the case of

7



PCA, we maximize the variance. If x is data point, and w is the new direction, then the z
is projection

z = wT x (3.1)

If we mark w1 as a first principal component then after projection of the sample it is most

spread out, since the aim of this method is to maximize variance. If we want to get unique

solution, then it is necessary to set ‖w1‖ = 1. Let z1 = wT
1 · x and Σ = Cov(x), and the

variance of z1 can be written as

Var (z1) = wT
1 ·Σ ·w1 (3.2)

Since we want to maximize variance of z1 we can take it as a Lagrange problem

max
w1

wT
1 ·Σ ·w1−α

(
wT

1 ·w1−1
)

(3.3)

By taking the partial derivative ∂

∂w1
of the equation 3.3 and putting it equal to 0 we get

following

Σ ·w1 = α ·w1 (3.4)

Previous equation holds only in a case when the α is eigenvector of Σ, and w1 is eigen-

vector of covariance matrix. Then we can say that the first principal component w1 is the

eigenvector of the covariance matrix Σ with the largest eigenvalue λ1 = α . The similar

conclusion stands also for the second principal component w2, which is the eigenvector

of the covariance matrix Σ with the second largest eigenvalue λ2 = α . By taking k eigen-

vectors of Σ with k largest eigenvalues we get the new reduced space. As the last step

in the projection, to the last step we need to subtract the mean value of original samples.

This operation centers the data on the origin.

z = WT (x− x̄) (3.5)

As displayed in the figure 3.3, PCA after centering the sample lines up the axes in the

direction of the highest variance. In the case that z2 is too small it is ignored.

8



Figure 3.3: PCA geometry

As mentioned in the beginning of this subsection, the aim of this method is to project

data to new reduced space with minimal information loss. To check the amount of lost

information we use proportion of variance (PoV ).

PoV =
λ1 +λ2 + · · ·+λk

λ1 +λ2 + · · ·+λk + · · ·+λd
(3.6)

Basically, it is a summation of all used eigenvalues (since the eigenvalue is the variance

explained by the eigenvector) divided by the summation of all eigenvalues of the covari-

ance matrix Σ. [1]

Regardless of availability of such function in MATLAB, we are using own implementa-

tion of PCA. It is attached in the folder My_PCA and it is used before conducting each

experiment for dimensionality reduction.
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4 Clustering

Cluster analysis is one of the machine learning methods that finds data labels. In general,

clustering is used for dividing data into groups (clusters) that are useful, or meaningful,

in a desired way. Assigning particular subjects to the groups is called classification, or, as

mentioned above, finding the labels for data. The main characteristic of the group is that

the subjects within the group have got common or similar properties. In more technical

words, it is an abstraction from individual data objects to the clusters where particular

data objects belong.

Classifiers and cluster analysis have different approach for data handling. Cluster anal-

ysis labels data only based on information gathered from the data, while classifiers are

firstly trained with ground truth data. When some information on the groups, such as

training dataset, is available, it is possible to use classification. Such situation is called

supervised learning problem. Since we have no group information on the given data,

we have unsupervised learning problem which is a subject to cluster analysis or shortly

clustering. Clustering is the main topic of present thesis therefore we focus only on this

labeling method.

As there is not only one method for labeling, there is also not only one kind of cluster-

ing. Usually the cluster analysis is divided into two different strategies - hierarchical and

partitional. As the names of the cluster analysis methods suggest, the partitional clus-

tering divides objects into clusters that do not overlap. Every object belongs to exactly

one group. On the other hand, we have hierarchical clustering that creates clusters with

subsets (smaller clusters), so the groups are organized into the hierarchy. Each subset is

a node that contains all of the object that are in the lower level branches of the tree that

goes from it. Since the goal of the thesis is to find a hierarchical clustering method we

discuss only used methods in present work.[1, 17]

4.1 Hierarchical clustering

Previous part mentions two different methods. While the partitional cluster analysis is

based on the reconstruction error, hierarchical clustering uses proximity between objects

(or as more widely used similarities). There are two classical approaches for hierarchical

cluster analysis - agglomerative and divisive. Both of them are represented in the work

by one method.
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Distance and similarity function

Distance function is crucial tool in the hierarchical clustering. As mentioned above,

we need to use similarities that come from the distances. Higher distance means lower

similarity and vice versa, which means that for distinct objects, similarity is high. Math-

ematically, the distance d (x, y) is a function d : X × X → R with the input that consists

of two data points x and y from the set of points X that is called space. This function

satisfies following axioms

1. d (x, y)≥ 0, no negative distances

2. d (x, y) = 0, only in the case x = y

3. d (x, y) = d (y, x)

4. Assuming that we have third point z, triangle inequality must hold d (x, y)≤ d (x, z)+

d (y, z)

Most commonly used distance measure in n−dimensional Euclidean space is Lr−norm

(Minkowski distance) which is defined as following

d ([x1, x2, . . . xn] , [y1, y2, . . . yn]) =

(
n

∑
i=1
|xi− yi|r

) 1
r

(4.1)

Usually used norms are Manhattan distance, where r = 1 or Euclidean distance for which

r = 2. Another generally used norm is L∞, where the distance is taken as a maximum of

|xi− yi| over all dimensions i. There are many other types of distance measures but we

are not going to discuss them since we use only L2−norm in each approach.

Now when we know the distance function, it is easy to define similarity function. For our

purposes the similarity function s : X × X → R is defined as

s(x, y) = 1−d (x, y) (4.2)

so the similarity s ∈ (−∞, 1]. [11]

Mathematical definition

Before we proceed to the concrete cluster analysis methods, general mathematical defi-

nition needs to be given. Let us assume that we have a dataset A = {xi}N
i=1, where xi is a

data object and N is number of data objects and the number of clusters is k. A hierarchi-

cal clustering C, on the dataset A, is a collection of clusters such that C0 , {xi}N
i=1 ∈ C
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and for each Ci, C j ∈ C either Ci ⊂C j, C j ⊂Ci or Ci∩C j = /0. For any cluster C, if ∃C′

with C′ ⊂C, then there exists a set {Ci}k
i=1 of disjoint clusters such that

⋃k
i−1Ci =C.[9]

Dendrogram

The beginning of this section mentions a representation of hierarchical clustering inn a

form of tree. This tree is called dendrogram. A root node of the tree is whole dataset

A. At every level of the tree, the node represents subset of the previous node in the tree

(only root node does not have ancestors). The last nodes that have no followers are called

leaves. Nodes between levels are connected with branches that usually have a distance

between them. In this work we use binomial dendrogram, which is a type of the tree

where each node has exactly 2 followers (except of the leaves). The example of the

dendrogram is in the figure 4.1. Data for the dendrogram are cut from the classical iris

dataset [6]. [15]
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Figure 4.1: Example of dendrogram

4.2 Agglomerative Hierarchical clustering

As mentioned in the previous section, there are two possible approaches to hierarchical

clustering with agglomeration being one of them. Basic idea of the Agglomerative Hier-

archical clustering is following. In the beginning each data object is in one own cluster.

In each step two closest clusters are merged to one cluster until all data points are not in

one cluster. In the dendrogram representation, every data point is in one leaf and every
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cluster that was produced as a combination two clusters is node and branches represents

distance between two merged clusters. More formal representation is in Algorithm 1.

[17]

Algorithm 1 Basic algorithm for agglomerative hierarchical clustering
1: Create similarity (proximity) matrix

2: while there is more than one cluster do

3: Group together two nearest clusters

4: Update similarity matrix in a way that it contains new (grouped cluster) and dis-

tances between it and already existing ones. New similarity matrix does not contain

two clusters that created a new one

5: end while

Proximity

The most important part in Agglomerative Hierarchical cluster analysis is to choose cor-

rect cluster proximity. Most common used is a distance between two clusters. For exam-

ple, Single Link that takes minimal distance between two objects in two different clusters

as a proximity between two clusters or a Complete Link that takes a maximal distance

between any two points from those two clusters as a distance between two clusters (each

point is from other cluster). However, based on the posterior knowledge, this work uses

alternative technique called Ward’s method.

While classical methods for measuring proximity take distance between points, Ward’s

method is interested in the error sum of squares (SSE). The definition of SSE for multi-

variate data is in the equation 4.3. This makes the method similar to k-means since the

objective function is the same, but it is still a hierarchical cluster analysis. The method

evaluates proximity between two clusters using increase in SSE when it tries to minimize

it. So in each step two clusters are merged such the increase in SSE is minimal.

SSE =
K

∑
i=1

ni

∑
j=1

(y j− ȳ j)
2 (4.3)

K is actual number of clusters and ni is number of data points in i− th cluster. [17, 5]
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Time and memory requirements

Before we compare algorithms on the experimental level we need to discuss differences

in theoretical level. For this purpose, we use big O notation which represent the upper

bound of complexity i.e. the worst possible case.

Basic Agglomerative Hierarchical clustering on n data points needs in the beginning store
1
2 ·N

2 of similarities which for the memory in the terms of O notation means O
(
N2
)
.

Since in the each step the similarity matrix becomes smaller, that is the maximum mem-

ory requirement. Since we want to work with large datasets (e.g. N = 15000), we need

to reduce this requirement in other algorithms.

Another characteristic of the algorithm in a need to track its time consumption. Although

the most important parameter for us is memory, time consumption should not be too high.

In the case of Agglomerative Hierarchical clustering the time complexity is O
(
N3
)

where

again n is number of data points. [17]

Implementation

Since our motivation is to find an algorithm that has better memory and time require-

ments for a large dataset than classical approach has, we use Agglomerative Hierarchical

clustering as a reference or baseline for comparison. In this work, we use MATLAB

implementation linkage.m to compare new approaches with classical one. The function

settings in MATLAB are linkage(X(:,1 : end−1), ′ward′, ′euclidean′). Settings for the

linkage function are based on the knowledge from the paper of V. Gerla et al. [7].

4.3 Hybrid clustering

The second approach tested and compared against classical hierarchical cluster analysis

is a Hybrid algorithm. It is not purely hierarchical clustering, but the output is the desired

dendrogram that denotes hierarchy in the dataset. The idea comes from the work of Olga

Tanaseichuk et al. described in the article An Efficient Hierarchical Clustering Algorithm

for Large Datasets [18]. However our implementation is different from proposed in the

article. The algorithm can also be described by the following picture
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Figure 4.2: Work flow of the hybrid cluster analysis

Under hybrid clustering algorithm, it is possible to imagine method that consists of two

levels. In the first step the k-means cluster analysis is done to split dataset into k clusters.

In the second step, the clusters from the first step are hierarchically clustered in a way that

they represent leaf clusters. For the second step we use the basic hierarchical clustering.

In this section we talk only about k−means since classical (Agglomerative) hierarchical

clustering is discussed in the section 4.2.

k−means and k−means++

As mentioned in the introduction of this subsection, in the first step of this method we use

k-means which has upgraded initialization phase (k−means++). Algorithm k−means is

the simplest and well known example of the partitional cluster analysis. Basically, for

given dataset X consisting of n objects xi ∈ Rd , i = 1, . . . , N, we try to find k clusters

centers that represent by clusters in a such way that the total squared distance φ between

data objects and their nearest centers is minimized.

Algorithm for solving k−means problem was proposed by Lloyd 30 years ago in the pa-

per Least squares quantization in PCM [12], and it is still widely used. Essentially, in

the beginning the k initial centers are randomly chosen and each data object is assigned

to one of it. The total squared distance φ is calculated and position of centers is recal-

culated. Centers represent the mass of points. Assigning of the points to the centers and

recalculation of the centers is repeated until the centers stop to change.

Let us have k centers C = (c1, c2, . . . , ck) that represent cluster C1,C2, . . . ,Ck with ob-

jective function φ defined as

15



φ = ∑
x∈X

min
c∈C
‖x− c‖2 (4.4)

that is minimized. Then we can write a formal representation of k−means algorithm in a

following way

Algorithm 2 Lloyd’s algorithm for k-means
1: Choose uniformly randomly k centers

2: repeat

3: For each data object xi, i=1,...,n, find the nearest center c j ∈ C

4: For each cluster C j, j=1,...,k, update its center c j: c j =
1
|C j| ∑

x∈C j

x

5: Recalculate objective function φ

6: until objective function φ convergates

In the step 1 of algorithm 2 we can see that the initialization of the centers is done uni-

formly randomly. If the centers of the clusters are chosen wrongly, k-means does not

return proper groups of data objects. Usually, to prevent from wrong initialization, the

random choice of the centers is done multiple times. In this work we use other approach

of initialization, known as k−means++. Its basic idea is to choose first initial center

uniformly at random but others are chosen based on squared distance from the centers

chosen so far.

If we denote distance between data point x and closest center c as D(x) the k−means++

algorithm can be formally written as

Algorithm 3 k-means++ initialization algorithm
1: Choose uniformly at random first center c1

2: for i=2 to k do

3: Choose a new center ci with probability D(x)2

∑
x∈X

D(x)2

4: end for

When we want to use it with k−means, we need to replace initialization in the first step

of algorithm 2 with k−means++ initialization. [2]
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Figure 4.3: Example of k-means++ initialization

The biggest drawback of this method is sensitivity to outliers but it is still more reliable

than running initialization more times. An example of successful k−means++ initializa-

tion is in the figure 4.3, where the first chosen center is red point, second chosen centroid

is green point and the last chosen initial center of cluster has cyan color.

Time and memory requirements

As with the previous approach, it is necessary to discuss complexity of time and memory

on the theoretical level. We use again big O notation to characterize Hybrid algorithm. In

the first phase of algorithm we use k−means++. It is based on classical k−means algo-

rithm which means that time and memory complexities have the same basis. Assuming

that we have N data points in d dimensions and we want to find k clusters and we use

euclidean distance, the complexity analysis is as follows.

In the each iteration we need to evaluate the distance between each centroid and data point

which takes N ·k ·d time, we also need to compare distances which takes (k−1) ·d ·N of

time and in the end we also need to compute new centroids which takes k · ((d−1)+1) ·
N. If we sum it up together, in the O notation we get following complexity for each

iteration. O (k ·N ·d). If we assume that k−means algorithm finishes up in i iterations it

is O (k ·N ·d · i).

Memory complexity is strongly dependent on the dimensionality d, number of data points

N, and number of clusters k since the only thing that we need to remember are data
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points and cluster centers in the vectorized format. It makes the memory complexity

O ((k+N) ·d). In the comparison to the time complexity, number of iterations does not

affect memory requirement at all.

In the initialization step we use k−means++ initialization. Since in the initialization we

evaluate distances between points and centers, and comparing distances between each

other as in the clustering part of algorithm, the memory consumption is not higher than

in the one with classic k-means. The same stands for the time complexity, which means

that the time and memory complexity in the terms of big O notation does not change with

k−means++.

In the second phase of the Hybrid algorithm we use Agglomerative Hierarchical cluster-

ing in order to get hierarchy of subclusters. Since here the subclusters are represented

with k centroids, the time complexity of this step is O
(
k3
)

and memory complexity is

O
(
k2
)
. In the terms of the rules of big O notation and with assumption that k � N

we can state that time and memory requirements of this algorithm are O (k ·N ·d · i),
O ((k+N) ·d) respectively. For more detailed analysis of Agglomerative Hierarchical

clustering see subsection 4.2.

Implementation

The most crucial part of implementation of Hybrid algorithm was to implement k−means++.

Implemented algorithm for the k−means++ is based on the formal algorithm 3. It is

an implementation in the MATLAB. In the folder My_Hybrid_Algorithm all necessary

scripts can be find. As in the previous algorithm, for the second level of this approach we

use MATLAB function for Agglomerative Hierarchical cluster analysis implemented as

linkage.m with the same settings as in the subsection 4.2.

4.4 Robust Active clustering

The last approach proposed in this work is a Robust Active cluster analysis. This algo-

rithm was created and described by Brian Eriksson et al. in Active Clustering: Robust

and Efficient Hierarchical Clustering using Adaptively Selected Similarities [4]. Unlike

methods in the previous chapters, this method does not use all similarities for hierarchical

clustering.
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Before we proceed to further explanations, we need to define a Tight Clustering (TC)

condition. Let us have triple (A, C, S), where C is we defined hierarchical clustering, on

dataset A and S is similarity matrix and cluster C which is any subset of A and C ∈ C.

We say that the triple holds the TC condition if for every combination of xi, x j and

xk, such that xi, x j ∈ C and xk /∈ C the pairwise similarities si, j, si,k and s j,k satisfies

si, j > max
(
si,k, s j,k

)
. Consequently all similarities within the cluster are higher than the

similarity between any object from the cluster and the object outside of it.

Outliers

In the introduction to this subsection we stated that the main advantage of this method

is lower memory consumption achieved by not using all of the pairwise similarities. If

we assume that TC condition holds, then the active clustering method that adaptively

chooses similarities makes an efficient hierarchical cluster analysis possible. To run such

algorithm, we firstly need to define outlier function.

Let us have tree data points as a triple (xi, x j, xk), then with the assumption that TC

condition is satisfied, we call data object xk a leader or outlier, if the path from the root to

xk does not pass nearest common ancestor of xi and x j. More formally, the functionality

of outlier can be defined as

outlier (xi, x j, xk) =


xi : max(si, j, si,k)< s j,k

x j : max
(
si, j, s j,k

)
< si,k

xk : max
(
si,k, s j,k

)
< si, j

(4.5)

Algorithm description

Above, we stated that Robust Active cluster analysis assumes that the Tight Clustering

condition is satisfied. With real dataset we cannot assume it, so the assumption needs

to be changed. We assume that particular part of the similarities produces correct outlier

test. Such similarities are consistent with hierarchy C, and the outlier test on them returns

leader of any triple (xi, x j, xk) in C.

Essentially, algorithm quantifies how often two data points agree on outlier test. Data

points are chosen from the small subset. If they agree on the outlier test, frequently they

are clustered together. Formally, we can characterize Robust Active clustering as follow.

Firstly, we have to define balance factor for non-leaf cluster C ∈ C that has subclus-
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ters CL and CR such CL ∩CR = /0 and CL ∪CR = C. Then the balance factor of C is

ηC = min{|CL|,|CR|}
|C| . Now, let us have δ ′ ∈ (0, 1), threshold γ ∈ (0, 0.5) and balance

factor ηC ≥ η . By assuming that the pairwise similarity are consistent with proba-

bility at least 1− q (for q ≤ 1− 1√
2(1−δ ′)

) and in the same time for q and η hold(
1− (1−q)2

)
< γ < (1−q)2 ·η , then with the probability at least 1− δ ′ we get cor-

rect subclusters CL and CR.

Previous definition is the most important part of the method. Function is called split (C, m, γ),

and it is defined in the algorithm 4. As we can see there is parameter m on the input of

the function split. It is used for declaring of the maximum size of the leaf cluster and it is

constrained as m ≥ c0 log
(4n

δ ′

)
, where c0 > 0 and n > 2m. Small n stands for the size of

the cluster C that is split. Third parameter on the input of split is γ that depends strongly

on q and η . Based on the source paper, in practice it is user-selected parameter in the

range (0, 0.5).

The last function that we need to define is a function for Robust Active clustering itself. It

basically uses recursion on the split function with initially given the whole dataset A until

the subclusters are larger than 2m. Algorithm 5 formally defines RAcluster (C, m, γ).
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Algorithm 4 split (C, m, γ)

Input:
1. A single cluster C consisting of n items

2. Parameters m < n/2 and γ ∈ (0,1/2)

Initialize:
1. Select two subsets SV ,SA ⊂Cuniformly at random (with replacement) containg

m item each

2. Select a seed item x j ∈ C uniformly at random and let C j ∈ CR,CL denote the

subcluster it belongs to.

Split:
1. For each xi ∈C and xk ∈ SA \ xi, compute the outlier fraction of SV :

ci, j =
1

|SV \{xi,xk}| ∑
xl∈SV \{xi,xk}

1{outlier(xi,xk,xl)=xl}

where 1 denotes the indicator function.

2. Compute the outlier agreement on SA

ai, j = ∑
xk∈SA\{xi,x j}

(
1{ci,k>γ and c j,k>γ}+1{ci,k<γ and c j,k<γ}

)
/
∣∣SA \{xi, x j}

∣∣
3. Assign item xi to sublucster according to

xi ∈

{
C j : i f ai, j ≥ 1/2

C/C j : i f ai, j < 1/2
Output:

subclusters C j,C/C j

Algorithm 5 RAcluster (C, m, γ)

Given:
1. C,n items to be hierarchically clustered

2. parameters m < n/2 and γ ∈ (0,1/2)

Partitioning:
1. Find CL,CR = split(C,m,γ)

2. Evaluate hierarchical subtrees, CL,CR of cluster C using:

CL =

{
RAcluster(CL,m,γ) : i f |CL|> 2m

CL : otherwise

CR =

{
RAcluster(CR,m,γ) : i f |CR|> 2m

CR : otherwise
Output:

Hierarchical clustering C = mathb fCL,mathb fCR containing sublusters of size

> 2m
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Memory requirements

As mentioned in the introduction to this section, Robust Active cluster analysis does not

use whole similarity matrix which drastically reduces memory consumption. Unluckily,

there is no time complexity analysis in the source paper so we do not provide any other

information on it in this section.

In the first step of this algorithm, we use function split that needs only O(n · logn) similar-

ities where n = |C|(C is cluster that is being split). By assuming that splits are balanced,

we get complete cluster tree with depth equal to O (logN). During the tree construction

function split called O
(
2l
)
times. At level l it involves cluster of size n = O

(
N/2l

)
.

By substituting n to the O(n · logn) we get O(N · log2 N) which means that we need

O(N · log2 N) similarities in the worst case.

Implementation

Like with the previous methods, MATLAB was used to implement the defined func-

tions. The main function is called RAcluster.m, and the support functions are split.m and

outlier.m. Everything is attached in the folder RAalgorithm. The output of the RAcluster-

ing.m is the hierarchical tree saved in the structure. To get comparable and useful results,

the function linkage.m was used for creating the same hierarchy as MATLAB generates.

We include linkage function the comparison of the time and memory consumption .

4.5 Theoretical comparison of proposed algorithms

In the previous section we analyzed proposed algorithms in the terms of time complex-

ity and memory consumption using big O notation. In the table is overall theoretical

comparison of all three defined approaches.

Algorithm Memory Time
Agglomerative Hierarchical clustering O

(
N2
)

O
(
N3
)

Hybrid clustering O ((k+N) ·d) O (k ·N ·d · i)
Robust Active clustering O(N · log2 N) NaN

Table 1: Theoretical comparison
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If we assume that for hybrid cluster analysis, we have k�N and d�N then the memory

consumption can be considered as linear in N which means that in the worst case, it is

O (N). In that case, the hybrid clustering has the best theoretical precondition.

Mutual information

The last property of the algorithm that we check is how accurate does it find clusters. Here

we use mutual information [10] which tells us how much are two variables dependent on

each other. Formally, let us have two discrete variables X and Y . If we denote their joint

probability is PXY (x, y) then mutual information I (X , Y ) is defined as follow

I (X , Y ) = ∑
x,y

PXY (x, y) · log
PXY (x, y)

PX (x) ·PY (y)
(4.6)

,where PX (x) and PY (y)are marginal probabilities of discrete variables X and Y

PX (x) = ∑
y

PXY (x, y) (4.7)

PY (y) = ∑
x

PXY (x, y) (4.8)

In this work one of the discrete variables is original labels of samples and the second one

is label of cluster where does the sample belongs based on cluster analysis. Higher mutual

information means more accurate cluster analysis. For purposes of this thesis MATLAB

toolbox Mutual Information computation created by Hanchuan Peng was used.
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5 Used datasets

To verify and compare all of the approaches to hierarchical cluster analysis, we need to

run them over various datasets of different volumes. For the purposes of this work we

have decided to use three different sets of data. First one, hypnogram, is obtained from

the real EEG signal and represents relatively small dataset. The second one is also gained

from real EEG record, and it is comatose data. It represents large real dataset. The last

one is a set of data artificially created with clear clusters. Biological data are given in the

HDF5 format which is discussed in the following section.

5.1 HDF5 format

Hierarchical Data Format is a file-format developed by HDF group. It is able to store

various datatypes, and high volume and complex scientific data. In our case, we use this

data-format to store polysomnographyc data, especially hypnogram and attributes of each

segment of hypnogram. The advantage of the HDF5 format is the logical organization

to data-types, data-spaces, properties and (optional) attributes. As following example

shows, the structure of the file is clear and easy to read. Since MATLAB contains all

necessary implementations and scripts to read HDF5 format we do not need to create our

file reader or use external tool.

Group ’ / hypno−da ta ’

A t t r i b u t e s :

’ number−of−c l a s s e s ’ : 5

D a t a s e t ’ hypnogram ’

S i z e : 885 x1

MaxSize : 885 x1

D a t a t y p e : H5T_STD_I16LE ( i n t 1 6 )

ChunkSize : [ ]

F i l t e r s : none

F i l l V a l u e : 0

5.2 Hypnogram data

In section 2.3 we discussed creation of the hypnogram and the meaning of the stages.

This kind of dataset is one of possible types of datasets that we can use in the connection

with EEG signals. dataset used in this work is obtained from the BioDat Research Group
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from CTU in Prague and their partners. Since hypnogram has various features for each

channel (e.g. spectrogram or statistical features), we need to use dimensionality reduc-

tion to plot data. PCA was explained in the section 3.3, and is used to obtain first two

dimensions. For two dimensions, proportion of variance PoV = 0.50, and as can be seen

in the figure 5.1a the clusters cannot be recognized based on two principal components.

In the clustering task we use PCA to reduce dimensionality to 10 for hypnogram data

with.
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(a) First dataset
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(b) Second dataset

Figure 5.1: Hypnogram dataset after PCA

In order to test algorithms, two different datasets were used (Hypnogram_5_Cluster

dataset is in the figure 5.1a and Hypnogram_4_Cluster dataset is in the figure 5.1b). In

each of them one data point represents 30 seconds long interval of real EEG data. Mea-

surement of the first dataset lasted for approximately 7 hours (25350 seconds), and the

second one was recorded for 7.3 hours (26550 seconds). The main difference between

those two sets is the number of classes. While the first dataset has all 5 sleeps stages, the

second one omits Non-REM3 phase. For the first dataset PoV = 0.91, and for the second

one it is PoV = 0.95. For the visualization purposes PoV was same for both of them.

5.3 Comatose data

Another type of real data obtained from EEG are comatose stages, described also in the

previous section 2.4. From our point of view, the main difference between hypnogram

data and comatose data is in the volume of dataset. While hypnogram has around 900

data points in 87 dimensions, comatose dataset has 5858 data points in 2044 dimensions.
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Most of the attributes (one attribute is one dimension) are statistical characteristics of the

segment. Attributes for comatose data are created by combination of 13 different chan-

nels. Here the dimensionality reduction for cluster analysis was done to reduce attribute

space to 100 with PoV = 0.77. In this case, we need to use higher dimensionality to keep

information (represented by proportion of variance). As previously, for visualization are

used only first two principal components with PoV = 0.34 that is reflected in the quality

of visualization in the figure 5.2.
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Figure 5.2: Comatose dataset after PCA

In this work we use dataset obtained from the University Hospital Na Bulovce. EEG

activity was recorded using 10−20 system at sampling frequency 128Hz. The length of

record is approximately 7.8 hours (28166 seconds). Signal is split using linear segmen-

tation into 5 seconds long intervals. dataset is denoted in this work as Comatose_Data.

Even though the fact that there are ten different comatose stages, this dataset contains

only first five (C1-C5)

5.4 Created data

Previous sections showed us that real datasets do not have clear clusters. Based on this

finding, the artificial dataset was created. As it is possible to see, we have two dif-

ferent datasets and they differ only in the number of data points. It was necessary to

test clustering algorithms on various volumes of data since the main goal of this work

is to find efficient approach that has feasible memory and time consumption require-

ments. Each artificial dataset contains 3 clusters that consist of the same amount N of

data points in five dimensional space. Objects are generated using three basic points -
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c1 = (1, 1, 1, 1, 1), c2 = (100, 100, 100, 100, 100) and c3 = (300, 300, 300, 300, 300).

In the beginning N basic points of each kind are created and then the points are moved

in all dimension by random number from interval 〈−100, 0〉. Again, we used PCA for

dimensionality reduction for visualization. However, in this case it was not used for the

dimensionality reduction before cluster analysis.
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(a) Randomly generated dataset N = 3000
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(b) Randomly generated dataset N = 15000

Figure 5.3: Used datasets

For testing two different datasets were created. First one with N = 1000 that means

the total number of data points is 3000 (figure 5.3a) is called Random_Data_3000. The

second one with N = 5000 (total number of objects in dataset is 15000) is in figure 5.3b

and is named as Random_Data_15000. The second one is considered for our purpose as

a large dataset since in the reality it could represent dataset consisting of 15000 segments

of 2 seconds which is possible to get if the adaptive segmentation is done over data.
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6 Experiments and results

For the comparison of proposed methods we use datasets from the previous section. In

this section we propose the results of various experiments conducted on the algorithms

from section 4. Since the main goal of the work is to find an algorithm that is better in

memory consumption and is working in reasonable time and with approximately same

performance in the cluster analysis as the classical approach, we measure these proper-

ties on various sets.

To acquire memory and the time that algorithm needs, we used built in MATLAB func-

tions. For time it is tic (start timer) and toc (end timer). In the case of memory we used

profile viewer that can easily track used memory by each script. It measures peak mem-

ory of the whole script, which means that we have peak memory for each function, that

is called during the algorithm. Peak memory is the maximum number bytes used by the

function.

Each algorithm was run 5 times with each setting, to get correct results. Sometimes pro-

file viewer did not record used memory (result was 0b), so we had to run it several times

and make an average over the recorded memory (zeros were left out). Time consumption

was recorded also 5 times and it was averaged over it.

The last characteristic of algorithm used for comparison is mutual information, which is

explained in the section 4.5. Mutual information is used to compare how well algorithms

split data set to clusters. This property is used only for overall comparing of methods.

Since the real memory and time performance of the algorithm is also dependent on the

computer where it runs, we decided to use only one computer. It has installed 16Gb of

the memory, the processor works at frequency 2.4GHz and it has 4 cores. Operating

system is 64−bit version as well as MATLAB.

Special case are large datasets with high dimensionality. This kind of data is represented

by comatose data in this work. We do not use it for general comparison and for parameter

settings but we use it to illustrate performance of proposed methods on the high dimen-

sional data. As it is mentioned in the section 5.3, dimension is reduced from 2044 to

100 with very low PoV . We can not go lower with dimensionality because it would loose

meaning to make a cluster analysis on such data.
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6.1 Robust Active clustering experiments

Most of the experiments were done with Robust Active cluster analysis, because it has

more parameters that other two proposed approaches. For these experiments, we used

four different datasets (Random_Data_3000, Random_Data_15000, Hypnogram_4_Clu-

ster and Hypnogram_5_Cluster), with three different settings of gamma (γ = 0.1, γ = 0.3

and γ = 0.45). The second parameter, that was changed, is m, which affects the maximal

size of leaf cluster. For the artificial data it was chosen from the range 〈10, 490〉, starting

with m = 10 every 20th number was taken.

In the experiments involving Robust Active clustering we decided to also take into ac-

count the memory and time consumption of the linkage function, since it is used to rebuild

the tree.

Memory consumption

Firstly, we did experiments with artificial data, since they are large and help us to recog-

nize how does the algorithm behaves with bulky dataset. In the figures 6.1a and 6.1b is

possible to see, that the memory use for the settings with smaller m (from 10 to 130) is

dependent on the γ setting. After m = 130 the claim for the memory is approximately

same for each γ . The theoretical memory complexity has logarithm inside. By taking a

look at the figure 6.1a we can see that the shape of each line representing different γ value

has the shape of logarithm. It is also be possible to see the same shape for the random

dataset 15000 but it is misrepresented by the higher consumption for the smallest m.
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Figure 6.1: Memory consumption of Robust Active algorithm for artificial datasets

29



In the previous figures (figure6.1a and 6.1b) we can see that for the smallest m (from 10 to

50) the memory consumption is decreasing. It is caused by the use of the agglomerative

hierarchical cluster algorithm on the leaf centroids to reconstruct the tree. In the figures

6.2a and 6.2b we can see, that for smallest m the number of leaf is quite high (200−350

leaf clusters for random data 3000 and 1500−2000 leaf clusters for random data 15000).

On the other hand, it is logical, since m sets the maximum size for the leaf cluster, so

with small m we get more leaf clusters. It causes that the memory consumption of the

whole algorithm is worse for the smallest m, and that the clear logarithmic shape can not

be seen for the random dataset 15000 (figure 6.2b)
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(a) Random data 3000
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Figure 6.2: Number of leafs of Robust Active algorithm for artificial datasets

Real datasets are not large enough to test higher m than 100 so we decided to take as a first

m = 10 and take every 10th number until 100. By comparing the results for the different

settings of γ we can see, that now the best results we get with γ = 0.3 for hypnogram with

5 clusters (figure 6.3b). On the other hand, while for the hypnogram with 5 clusters the

performance of algorithm is worst for γ = 0.1, for the hypnogram data with 4 clusters,

based on the results in the figure 6.3a, it is the best option.
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(a) Hypnogram data with 4 clusters
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Figure 6.3: Memory consumption of Robust Active algorithm for real datasets

However, if we compare the real data results to the performance of the algorithm on the

artificial data, we can see that the behavior of the method does not change. Although

the dataset is not as large as the real one, used memory is affected by setting of m. The

memory consumption for the smallest m (from 10 to 40) is higher than it is for other small

settings of m. Again it is possible to see that number of leafs (figure 6.4) is decreasing

with increasing m.
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(a) Hypnogram data with 4 clusters
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Figure 6.4: Number of leafs of Robust Active algorithm for real datasets
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Time consumption

The outcomes are from the same experiments as the memory results. In the figure 6.5 is

possible to see that with increasing value of m, the time needed to run the whole algorithm

is also increasing. Here, the most important parameter is γ . In the figure 6.5 we can notice

that for the artificial dataset with increasing γ parameter also time consumption increases,

since γ has effect on the balance factor η in the tree. On the other hand, the plot in the

figure 6.5b shows that for certain m (from 150 to 350) we get higher time complexity

for γ = 0.30 than for γ = 0.45. Unlike memory consumption, time complexity is not

affected by the linkage function which means that number of leafs has no effect on the

time performance.
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Figure 6.5: Time consumption of Robust Active algorithm for artificial datasets

As for the artificially generated data the same stands for the real data. With increasing γ ,

time consumption is increasing. Here, the interesting is running time for the algorithm

with γ = 0.1. For both datasets (figures 6.6a and 6.6b), the time is more or less same of

each possible value of m.
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(a) Hypnogram data with 4 clusters
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Figure 6.6: Time consumption of Robust Active algorithm for real datasets

6.2 Hybrid algorithm experiments

Second proposed method was tested on the same datasets as a Robust Active clustering.

Here, the only parameter that was changed is k from k−means++ algorithm. For Ran-

dom_Data_3000 and Random_Data_15000 we take k from the range 〈10, 490〉. Starting

from 10, every 10th number was used. For hypnogram datasets we used same range as

in the experiments with previous method.

As it is mentioned in the section about implementation of Agglomerative Hybrid algo-

rithm, which is second stage of this method, we use linkage.m with following settings

linkage(X(:,1 : end−1), ′ward′, ′euclidean′).

Memory consumption

Based on the theory, in the worst case, memory complexity should be O (N), if we assume

that k� N. Here we have two large datasets (artificially created one) and two relatively

small datasets (hypnograms). Since the number of data points N does not change, the

next thing that affects memory usage is number of clusters k.

If we focus on the Random_Data_3000 and Random_Data_15000 we can see that de-

pendency is clearly linear (with increasing k also used memory is increasing). From the

figure 6.7a is also possible to say that the with higher N we get higher memory consump-

tion. Basically, we can say that with smaller k we get better performance, but we have

33



to have in mind, that with k, that is too small accuracy could be bad (if we choose k too

small to split dataset into enough initial clusters for the second stage of method)

Figure 6.7b shows the plot with the results from experiments with Hypnogram_4_Cluster

dataset and Hypnogram_4_Cluster dataset. Although it is not as clear as with artificial

datasets, we also can say that with higher k the memory consumption is also higher. Here

we also can see the influence of number of data points N. While Hypnogram_4_Cluster

has N = 885, Hypnogram_5_Cluster N = 845, which is small difference, but we can see

that for almost all proposed settings for k, memory consumption is higher for Hypno-

gram_4_Cluster than for Hypnogram_5_Cluster.
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Figure 6.7: Memory consumption of Hybrid algorithm

Time consumption

Like with the Robust Active clustering experiments, the same experiments for the time

consumption as for the memory usage experiments were used also. Theory says, that

in the worst case the memory consumption should be O (k ·N ·d · i), which essentially

means that if k� N and we are working with low dimensional data (d� N), it depends

only on the number of iterations i and number of data points N.

As it is possible to see in the figure 6.8a, for Random_Data_3000 the memory con-

sumption can be considered as linear and increasing only with k. If we focus on Ran-

dom_Data_15000, we can see that, especially for the higher k, linearity is loosing, and
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the shape of the curve reminds more quadratic function. It is caused by the rapid increase

of iterations of the k−means++ algorithm. Like with the memory consumption, here we

also can say that lower k means shorter time but it should be again take into account that

we should set k too low.
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Figure 6.8: Time consumption of Hybrid algorithm

By focusing on the real datasets (see figure 6.8b) we can see, that nonetheless in memory

consumption number of data points is reflected, here it does not play any role. In both

cases the time consumption is almost the same and it is rising with the increasing k.

The curves are approximately linear. Interesting finding is, that time consumption is

extremely low for each dataset. The same stands for larger datasets (Random_Data_3000

and Random_Data_15000), although the time is slightly higher. It is caused by larger

datasets.

6.3 Agglomerative Hierarchical clustering experiments

The last algorithm that was tested is the baseline method Agglomerative Hierarchical

cluster analysis. Here we do not need to set any parameters since the settings for the

linkage function are given based on the work mentioned in the section 4.1(V. Gerla et al.

[7].) In the table 2 are resulting performances for various datasets. Complete discussion

on result can be find in the section 7.3.
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Dataset Used Memory [Kb] Time [s] Accuracy [-]
Random_Data_3000 35216 0.15 1.59
Random_Data_15000 880568 2.05 1.59
Hypnogram_4_Cluster 3068 0.05 0.21
Hypnogram_4_Cluster 2792 0.05 0.48

Table 2: Results of experiments with Agglomerative Hierarchical clustering

6.4 High dimensional data experiments

Real dataset might have various number of data objects, from tens to thousands. Mem-

ory and time consumption does not depend only on the volume of dataset, but also on the

dimension of the data space. For example, if we take a look at the theoretical time and

memory complexity of Hybrid cluster analysis, dimensionality has influence on both of

them. It is possible to avoid high dimensionality by using dimensionality reduction, but

we have to take into account also information carried by data in reduced dimensions.

In this work we use comatose dataset (Comatose_Data), that has 5858 data points in

2044 dimensions. Using PCA we reduce number of dimensions to 100 which is still

too high, but proportion of variance (PoV = 0.77) is becoming too low. There are more

convenient methods for dimensionality reduction for cases like this, such as Info Gain

attribute evaluation or χ2 attribute evaluation, but it is not contained in this work. Since

the number of data points in the set is 5858 and we know that the number of clusters is

5, based on the previous results we decided to use proposed algorithms with following

settings

• Robust Active clustering: γ = 0.1, m = 40

• Hybrid clustering k = 30

• Agglomerative Hierarchical clustering linkage(X(:,1 : end−1), ′ward′, ′euclidean′)

Recorded memory usage, time consumption and mutual information are listed in the

following table
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Dataset Memory [Kb] Time [s] Mutual Information [-]
Robust Active clustering 4636 95.69 0.10

Hybrid clustering 4588 0.70 0.13
Agglomerative Hierarchical clustering 134292 1.02 0.04

Table 3: Performance of algorithm with comatose dataset

As it is possible to notice, memory consumption is for Robust Active clustering and Hy-

brid clustering higher with this dataset as with Random_Data_15000 where the number

of data points is almost three times higher. It is caused right by higher dimensionality

which cause higher memory demands for the distance evaluation.
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7 Discussion

7.1 Robust Active clustering

Based on the experiments in the previous section, we can choose the optimal settings for

the parameters of the Robust Active clustering algorithm. The main parameter, that was

used for deciding, is memory. Secondary, real time complexity of algorithm was used.

The values are in the table 4.

Since the cluster analysis is intended to find groups of similar objects in the data set,

we also need to discuss how well the algorithms find clusters. As it is mentioned in the

beginning of this subsection, we use mutual information for this purpose which are listed

in the table 4. We show mutual information only for the selected settings of the algorithm.

However, since the random datasets have three clear clusters the mutual information is

almost the same for each setting that was used.

Dataset m [-] γ [-] Mutual Information [-]
Random data 3000 50 0.3 1.58
Random data 15000 90 0.1 1.59

Hypnogram with 4 clusters 40 0.1 0.22
Hypnogram with 5 clusters 50 0.3 0.38

Table 4: The best settings for parameters of RA clustering

As it is possible to see from the plot in the figure 6.1a, used memory for m = 50 and

m = 90 is lower for this dataset. In the same figure we can see, that for both m values

we get best results for two different γ values (0.1 and 0.3). By taking closer to specific

numbers we find out that the best results in the terms of memory for γ = 0.3 and m = 50.

However, in the terms of time complexity the best setting of parameters is m = 50 and

γ = 0.1, we use values for parameters with lowest memory consumption. Difference in

time between those two settings is approximately 5 seconds.

For Random_Data_15000 it is similar as with Random_Data_3000. The best perfor-

mance in the terms of memory usage we get for γ = 0.3 and m = 70. We can see (figure

6.1b), that we also get good memory requirements with γ = 0.1 for m = 90. On the other

hand, even though we get for the first setting (γ = 0.3 and m = 70) memory consumption

equal to 260Kb, and for the second setting (γ = 0.1 and m = 90) it is 316Kb, the time
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consumption is disproportionately higher for the first setting. While for γ = 0.1 it takes

to run algorithm 80.83 seconds, for γ = 0.3 it is 155.60 seconds. In this case we have to

take into account time complexity, so as the best setting we take γ = 0.1 and m = 90.

Hypnogram_4_Cluster dataset has more straightforward decision making about parame-

ter settings. In the all terms the best results we get for the m = 40 and γ = 0.1. Since for

that parameters the memory consumption is the lowest the time complexity did not play

a big role in here. Moreover it is approximately the same for each m value for γ = 0.1

(see figure 6.6a)

The choice of the parameters for the last dataset that was used for testing Robust Active

clustering (Hypnogram_5_Cluster) is a bit tighter. Although the time consumption is

the best again for the γ = 0.1 for every m setting (see figure 6.6b) the memory usage is

highest for every m. Since the memory consumption is main parameter for choosing the

parameter setting we use for this dataset γ = 0.3 and m = 50.

7.2 Hybrid clustering

Like with the previous method, we choose the best settings for various datasets. Since the

memory usage has linear character (it is linearly increasing with k) it is not the primary

characteristic for parameter settings. We also have to consider time consumption and

mutual information. All of the settings are listed in the following table

Dataset k [-] Mutual Information [-]
Random data 3000 30 1.58
Random data 15000 30 1.59

Hypnogram with 4 clusters 30 0.14
Hypnogram with 5 clusters 20 0.43

Table 5: The best settings for k parameters of Hybrid clustering algorithm

Here the situation with mutual information is similar as with Robust Active cluster anal-

ysis. For Random_Data_3000 and Random_Data_15000 it is almost the same for each

setting of k.

Experiments in the section 6.2 show that for Random_Data_3000 memory consumption

is linear. Running time of the Hybrid clustering algorithm has linear character also. Here
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we need to select k with respect to the expected number of clusters. In other words, al-

though we know that number of clusters is 3 we need to set k to higher value to obtain

full and correct dendrogram from linkage function. For these reasons we use as the best

setting k = 30. Also time consumption (0.12 seconds) is slightly lower than for k = 10

(0.17 seconds).

Results of experiments for Random_Data_15000 have same characteristics as the results

with Random_Data_3000. Memory usage is strictly linear, however time consumption

is more quadratic than linear. It means that here we need to necessary choose small k.

Even trough the time consumption for k = 10 is higher than for k = 20, we use it as a

best possible setting. We do so for the same reason, as with previous dataset (we cannot

take k = 10 because it can be too small for finding correct dendrogram).

With real datasets, it is usually harder to set parameters to get best possible performance,

since we do not know how many clusters do we have. Here it is more important than in

previous two cases to choose higher k. Although, we know that it is hypnogram, where

we can have in general 5 clusters there can be a lot of unknown clusters created by dif-

ferent artifacts. For the Hypnogram_4_Cluster we decided to use k = 20. In the favor

of k = 20 talks not only higher mutual information between output of cluster analysis

and expert classification of hypnogram but memory consumption is also lower than for

k = 10.

In the case of second real dataset Hypnogram_5_Cluster we can observe similar difficul-

ties with the choice of the right k. Again we need to use accuracy as a helping parameter

in decision making since time and memory consumption are increasing approximately

linearly with increasing k. Here we decided to use k = 30. It would seem that k = 20

is better since time consumption is lower but if we focus on the figure 6.7b memory

consumption higher for k = 20 (240Kb) than for k = 30 (286.4Kb).

7.3 Agglomerative Hierarchical clustering

Baseline experiments were done on the same datasets as the previous experiments with

other two methods. Based on the theory memory consumption should be in the worst

case O
(
N2
)

and time consumption should be in the worst caseO
(
N3
)
. MATLAB im-

plementation of Agglomerative Hierarchical algorithm is optimized for the purposes of

MATLAB, so the time consumption is lower as it can be seen in the table 2.
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In the same table we also can see that real memory consumption is higher than the theo-

retical one. Here we can see the main drawback of the MATLAB implementation and the

reason why it cannot proceed higher volumes of datasets. As an example of this draw-

back is possible to show memory consumption for dataset with 30000 data objects. MAT-

LAB function linkage(X(:,1 : end− 1), ′ward′, ′euclidean′) used 3522388Kb which is

approximately 3.4Gb of memory.

7.4 Overall comparison of methods

For general comparison of the methods we use the best settings for each dataset. Best

settings are selected in the previous subsections. Since the main task is to find an algo-

rithm with lower memory usage, reasonable time consumption and approximately same

mutual information measures as classical approach (Agglomerative Hierarchical cluster-

ing), we take used memory by algorithm as a main characteristic in the comparison of

the methods.

If we take a look at the table 6 we can see that for each dataset, that was used, memory

consumption is lowest for Robust Active cluster analysis. The biggest differences are

for the Random_Data_15000 where the Robust Active clustering needs 316Kb which

is 2787 times less memory than Agglomerative Hierarchical clustering (880568Kb). In

addition memory used by Robust Active clustering is approximately 11 times less mem-

ory than Hybrid clustering. If we take a look at real datasets there is also significant

difference in the memory consumption. For Hypnogram_4_Cluster dataset Robust Ac-

tive clustering uses only 32Kb while Hybrid clustering consumes 286Kb and classical

approach needs 2792Kb.

Although Hybrid clustering algorithm has higher memory requirements than Robust Ac-

tive clustering, we can see, that it is still better than classical approach. For example if

we focus on the largest dataset Hybrid algorithm needs approximately 250 less memory

than Agglomerative Hierarchical clustering, which still can be considered as a reasonable

result.
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Robust Active Hybrid Agglomerative
Dataset clustering clustering Hierarchical

clustering
Random data 3000 116 784 35216
Random data 15000 316 3524 880568

Hypnogram 4 clusters 32 477 3068
Hypnogram 5 clusters 36 286 2792

Table 6: Memory consumption comparison in Kb

While in the terms of memory consumption is method using Robust Active cluster anal-

ysis unbeatable, we can definitely say that in the terms of time complexity it is the worst

one. By taking a look on the table 7 we can see that Robust Active clustering needs

usually from units of seconds to tens of seconds, while other two approaches need only

fractions of seconds to create dendrogram and find clusters. Even through the time con-

sumption of the Robust Active clustering is higher than the time used by other two algo-

rithms, in reality it is still reasonable time.

The most interesting set is again the largest one that was used. If we focus on the run-

ning time of algorithms for Random_Data_15000 we can see, that unlike for the other

datasets here Hybrid clustering is the fastest one. Moreover for the Random_Data_3000

it has almost the same time consumption. If we were using even larger datasets (for ex-

ample N = 100000) the difference would be higher than with the dataset with 15000 data

objects.

Robust Active Hybrid Agglomerative
Dataset clustering clustering Hierarchical

clustering
Random data 3000 14.96 0.13 0.15
Random data 15000 80.83 0.49 2.05

Hypnogram 4 clusters 3.31 0.09 0.05
Hypnogram 5 clusters 9.65 0.09 0.05

Table 7: Time consumption comparison in seconds

The last, but not least parameter, that needs to be discussed is mutual information between

the original labels of clusters and the results of cluster analysis. Part of the whole task
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in the work, is to find algorithm with approximately same performance as the classical

approach. In the table 8 is possible to see an overview on mutual information measures

of all three algorithms with selected settings.

The most straightforward results we get for Random_Data_3000 and Random_Data_15000,

where we have three clear clusters so the cluster analysis task should not be problem for

algorithms. As we can see in the table 8, mutual information is for each method almost

the same (1.58−1.59). Based on this, we can say that the results of the proposed meth-

ods is almost the same

More interesting are results for the real datasets. For Hypnogram_4_Cluster we get

higher mutual information using Robust Active algorithm than using classical approach.

For this dataset the accuracy of Hybrid cluster analysis was worse than using Agglomer-

ative hierarchical clustering. On the other hand, if we focus on the result obtained from

the experiments with Hypnogram_5_Cluster dataset, we can see that mutual information

is highest for Agglomerative Hierarchical algorithm. Here, if we want to compare Ro-

bust Active clustering and Hybrid clustering, the highest mutual information, for results

of cluster analysis and real labels, we get for the Hybrid clustering.

Robust Active Hybrid Agglomerative
Dataset clustering clustering Hierarchical

clustering
Random data 3000 1.58 1.58 1.59

Random data 15000 1.59 1.59 1.59
Hypnogram 4 clusters 0.22 0.14 0.21
Hypnogram 5 clusters 0.38 0.43 0.48

Table 8: Mutual information measurement comparison

43



8 Conclusion

As mentioned in the begging of this work, we are focused on finding the algorithm that

would use less memory than the classical approach in the reasonable time and the cluster

analysis itself would be similar. By finding such method we can make an artifact detec-

tion easier, moreover it can help in the work of neurologists. We decided to compare

Agglomerative Hierarchical clustering to Robust Active clustering and Hybrid method.

Firstly, we found a best settings for each algorithm and the we compared them generally

on the different datasets.

First discussed algorithm is Robust Active clustering, where we had to find an optimal

setting for parameters γ and m for each dataset. As it is possible to see from the results in

the table 4, there is nothing like universal setting for this algorithm. While for the smaller

data sets (Random_Data_3000, Hypnogram_4_Clusters, Hypnogram_5_Clusters), we

set m between 40 and 50, for the higher volume data set it is m = 90. It is possible to say,

that for datasets with higher volumes of data object we use higher m. On the other hand,

we still can say that setting of the m is straightforward and it should not be higher than

100, when the running time of the algorithm started to be too high for large data sets (see

figure 6.5b). Finding of optimal setting for γ is not as clear as setting of m. By taking a

look at a table 4 we can see, that in two cases it is γ = 0.1 and for other two datasets it is

γ = 0.3. Here, the mutual information measurement can be helpful in the decision which

γ setting is better to use.

Next proposed algorithm in this work was Hybrid algorithm, which was based on the

combination of k−means++ and Agglomerative Hierarchical clustering. Here, we had

to find an optimal setting for number of initialized clusters k. It is more clear than with

Robust Active clustering, when in the table 5 we can see, that in the most of the cases

is k = 30 (only for Hypnogram_5_Clusters we have k = 20). The most important infor-

mation obtained from the experiments with this method is that k should not be too high,

because with increasing k we have linearly increasing memory consumption. For high

volume datasets it means not acceptable amount of used memory.

By comparing the performance of the two proposed algorithms and Agglomerative Hi-

erarchical clustering, we can say from the first sight that both methods are obviously

better than classical approach. The largest difference is in the memory consumption,

when for the largest used dataset (Random_Data_15000) is memory used by Agglomer-
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ative Hierarchical cluster analysis 2787 times higher than memory used by Robust Active

clustering and 250 times more than Hybrid clustering approach. By taking a look at a

time complexity of each algorithm we can see that MATLAB implementation of classical

approach is fastest method. On the other hand time used for the both proposed methods

is not too high and we can consider it reasonable (see table 7). If we focus on the mutual

information measurement, that represents how well methods are dividing data into clus-

ters) we can see in the table 8 that for artificial datasets all of the methods have almost

same performance. In the case of real data resulting cluster division is less accurate than

Agglomerative Hierarchical clustering, but it is still good enough to say that methods are

able to find clusters as good as classical approach.

In general it is possible to state, that we succeed in finding the methods, which has lower

memory consumption, especially Robust Active clustering consume significantly lower

volume of memory than Agglomerative Hierarchical clustering. On the other hand we

get higher time consumption and worse cluster detection. In general, even trough we

get lower memory consumption with new methods, each dataset needs slightly different

settings to get optimal results. Based on results of this work is possible to conclude that

lower memory consumption costs us other performance in other areas.
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