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Abstract 

The advance of genome analysis bound to next-generation sequencing has allowed 
scientists to conduct research to deeper understand the biological structure of 
organisms. A problem of computationally demanding genome assembly based on a 
high volume of sequence reads is introduced. Several sequential solutions for de novo 
genome assembly are reviewed. Two fundamental types of genome assembly 
approaches exist, the sequence reconstruction via de Bruijn graph and the overlap 
graph method. We focus on parallelization of the genome assembly task using the 
overlap graph approach and the utilization of Apache Spark big data engine. We 
demonstrate that subtasks of genome assembly can be parallelized and computed in a 
distributed manner. We present the results of parallelization on a proof of concept 
implementation by executing performance and functional tests. The test results 
indicate a sufficient degree of parallelization and a satisfying assembly quality when 
compared to the referential sequential assembler. 
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Abstrakt 

Výzkum v oblasti analýzy genomu spojený se sekvenováním nové generace poskytl 
vědcům možnost provádět experimenty pro lepší porozumění biologické struktury 
organismů. Nadefinujeme problém výpočetně náročného sestavení genomů na základě 
velkého množství přečtených vzorků sekvencí. Následně prozkoumáme několik 
sekvenčních algoritmů pro de novo sestavování genomů. Dva fundamentální přístupy 
k sestavení genomů jsou známé, rekonstrukce sekvencí na základě de Bruijn grafů a 
na základě grafů překrytí. Zaměříme se na paralelizaci sestavování genomů pomocí 
grafů překrytí s využitím systému pro zpracování velkých dat Apache Spark. 
Demonstrujeme paralelizaci dílčích úkolů sestavování genů a jejich zpracování 
distribuovaným systémem. Výsledky paralelizace ověřujeme na vyvinutém konceptu 
provedením testů zaměřených na výkon a správnou funkcionalitu. Dosažené výsledky 
testů indikují dostatečnou úroveň paralelizace a uspokojivou kvalitu sestavení ve 
srovnání s referenčním řešením. 
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1. Introduction 

Next-generation sequencing has been changing how scientists look at genome analysis 
for the past ten years. It has brought very bright ideas on genomic data gathering 
and analysis, providing essential information on the evolution of organisms, the 
relationships between them, and last but not least, the personalization of medical 
treatment. In comparison with First-Generation Sequencing, obtaining data from 
biological material is massively parallel and fast. On the other hand, assembly and 
analysis of genomes are computationally demanding. Therefore, an efficient software 
depending on graph algorithms is needed. 

Sequential assembly approaches already exist. Despite high complexity of algorithms, 
their performance is often faster than the worst-case expectations. Existing 
algorithms are divided into two main groups, according to the genome reconstruction 
method. The first one depends on the further division of reads into k-mers, the latter 
reconstructs the genome based on overlaps between reads. Enhancements in their 
performance are accomplished by applying graph optimization heuristics. A great 
room for improvements still exists, originating in the parallelization of the genome 
assembly. Parallelization expands the assembly with high scalability, distribution and 
potential detachment to cluster computing resources. 

In this thesis, I focus on design, development and testing of a parallel assembly 
algorithm. An assembler capable of real biological application is out of the scope of 
this thesis. However, I try to present a proof of concept identifying the main 
assembly subtasks and challenges to be parallelized. Eventually, the design is inspired 
by a successful sequential algorithm, and I parallelize it using a big data engine. 
Although I do not outperform the initial algorithm with its full implementation 
containing numerous heuristic improvements, I show that parallelization has the 
capacity to speed up the assembly. I base this proof on the fact, that the key 
assembly steps can be efficiently distributed among available resources, and the 
measured runtime can be decreased by resource scaling. 

The distributed design of genome assembly is turned into a functional 
implementation. A workflow necessary to execute the solution is built and tested. 
The usage of the selected platform is evaluated from the practical, performance and 
quality point of view. A series of tests are executed to provide relevant information 
for the final comparison of the assembler based on a selected algorithmic approach 
and the parallelized implementation. The strengths and the weaknesses of both 
solutions are emphasized. In the end, thoughts on the further applications of big data 
engines in genomic data analysis are provided.  
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2. Next-Generation Sequencing 

Deoxyribonucleic acid (DNA) is a molecule that was first isolated by Friedrich 
Miescher in 1869 [1]. But it was not until 1953 that James Watson and Francis Crick 
discovered its structure with two helical chains [2], each curled round the same axis, 
currently known as double-helix structure. DNA is what makes each organism unique 
in the entire world by carrying its genetic information for proper functionality, 
growth, and reproduction. This explains why DNA molecule has been the subject of 
experiments and studies that provide and definitely will continue to provide essential 
information about the world around us. While ingredients of DNA are already 
known, its uniqueness responsible for differences is still a subject that is being paid 
much attention. Although before studying DNA, it has to be read on molecular level 
first. 

Initial attempts at reading DNA molecule were executed by Fred Sanger in 1955 [3]. 
He succeeded in determining the order of nucleotides for insulin protein. Afterward, 
Sanger proposed a method for sequencing with chain-terminating inhibitors [4]. This 
approach allowed only quite short strands to be sequenced, with its maximum at 
around 1000 base pairs. The shotgun sequencing mechanism overcomes these cons of 
Sanger’s sequencing by breaking up molecules into random small segments. Reads of 
DNA are executed multiple times to assure that each segment is present in numerous 
reads. In the next step, computer software is needed to reconstruct the whole DNA 
by matching subsequent reads based on overlapping. Thoughts and strategies on 
utilizing computer programs to reveal the DNA sequence from particular reads were 
shared by R. Staden in 1979 [5].  

Human Genome Project [6] was supposed to be a breakthrough in DNA sequencing. 
Starting in 1984, its goal was to sequence the whole human DNA, while identifying 
and mapping genes within it. The Human Genome Project took advantage of shotgun 
sequencing, performed in 20 research centers and universities. In 2003 the project was 
completed, providing the first sequenced human genome. It took nearly 20 years and 
$3.8 billion to sequence the first human genome containing approximately 3 billion 
base pairs. It is said to be the best single investment ever made in science [7]. 

Sanger’s sequencing method did create a breakthrough and is still widely used, but it 
has downsides mainly in its biological bias, capacity, performance metrics and cost 
[8]. That is where next-generation sequencing (NGS) methods come in place. NGS 
provides inexpensive, high throughput and high volume way of sequencing DNA. The 
development of human genome sequencing cost is visible in Figure 1. 
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Figure 1 - Cost of Human Genome Sequencing [9] 

Next-generation sequencing achieves such results by applying a set of steps consisting 
of template preparation, imaging and genome alignment. NGS technologies make 
sequencing faster and easier to execute, typically providing enormous volume. Data 
gathered from NGS usually consists of a huge number of short reads, which make it 
currently a very cheap technology with regards to base pair discovery. After 
obtaining genome fragments from the reads, reconstruction of the original genome 
must happen. The genome reconstruction is a very difficult task requiring complex 
algorithms and considerable computation resources.  
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2.1. Relevant terms 
The following chapters present important biological terms used throughout the text. 
They are explained in a limited detail sufficient to understand their role in the 
problem of genome assembly algorithms. The terms explanations are mainly based on 
the article by Niranjan Nagarajan and Mihai Pop [10]. 

2.1.1. Base pair 

Nucleotide bases in DNA sequence are connected in duplets called base pair [10]. 
These bases are created on the principle of nucleotide complementarity. During 
sequencing process, bases are discarded, and only the single stranded sequence is 
further analyzed. This is sufficient since the second strand can be easily deducted 
from the first one. 

2.1.1. Sequence 

A set of letters representing nucleotides is called a sequence [10]. The letters A, C, G 
and T drawn from the alphabet are ordered in a linear manner, defining the structure 
of the DNA. These structures are capable of carrying biological information of the 
sequence owner. Letters A, C, G and T stand in for nucleotides adenine, cytosine, 
guanine and thymine [11]. Sequences can be pushed to DNA sequencing mechanism 
for further interpretation and analysis. 

2.1.2. Read 

DNA sequencing methods provide an output consisting of reads [10]. Reads are used 
in further stages to assemble the original sequence. Reads can be of various length, 
and they do originate from throughout the sequence. The more reads are obtained for 
each position of the sequence, the higher the quality of original sequence 
reconstruction is. Reads are not ordered one after another, but they do get created 
with overlaps between each other. 

2.1.3. Overlap 

Overlap is a succession of nucleotides common for two different reads if the first read 
starts with this succession and the second read ends with it. The length of overlap 
between reads is a number defining a number of nucleotides occurring in the final 
section of precedent and as well at the beginning of descendant. Overlaps are 
essential in further assembly because the ordering of reads can be estimated based on 
their occurrence. 

2.1.4. Contig 

Overlapping reads are put together one after another resulting in a contig [10]. Th 
contig is, therefore, a subsequence of the original sequence built in a growing manner 
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by adding more and more reads to it. If no reads are left and there is only one 
continuous contig left, the original sequence has been successfully assembled. 
However, there can be multiple contigs originating from the reads’ set. That means a 
part of the original sequence is not sufficiently covered by reads and the scaffolding 
occurs. Contigs, due to their nature, are important when it comes to assessing the 
quality of genome assembly and are used in multiple quality assembly computation 
methods. 

2.1.5. Scaffold 

Scaffold [10] is a set of correctly ordered contigs, which are not connected in 
continuous linear sequence.  Scaffold consists of mentioned contigs and gaps between 
them. Gaps occur in places where relationships between reads do not pass the 
confidence threshold. Based on the complexity of the original sequence and read 
coverage, multiple scaffolds can coexist after the assembly is finished. In the ideal 
case, the output of assembly method shall provide only one scaffold, representing the 
original sequence. 

 

 

Figure 2 – Visualization of the important terms 
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2.2. Sequencing Principles 
Sanger sequencing, referred to as the First-Generation Sequencing, has reached its 
limits in terms of relatively low throughput cause by in vitro process and high cost 
bound to it. After automating almost all steps in Sanger sequencing process, it was 
clear that the limiting factor is huge and new sequencing methods must evolve. More 
on how Sanger sequencing was automated can be found in the research by Metzker 
[12]. 

Next-generation sequencing refers to newer methods that differ in ways used in 
process of obtaining DNA information from samples. The process itself is quite stable 
and consists of template preparation, sequencing, imaging, genome alignment and 
assembly steps [13]. 

2.2.1. Template preparation 

DNA sequencing starts by preparing a template consisting of genomic DNA strands. 
Todays’ NGS methods perform breaking DNA into smaller pieces. Afterward, the 
templates are attached to support altogether with other broken DNA pieces. This 
allows multiple fragments to be read concurrently, speeding up the process. To 
increase the quality of reads by imaging systems, broken DNA strands are duplicated 
in the same regions of the template. This increases the glow and recognition factor in 
later stages. The process of putting the same broken strands next to each other on 
the template creating clusters of strands is called amplification. 

2.2.2. Sequencing 

After templates with broken genomic DNA strands are inserted into NGS device, 
DNA polymerase is added. This starts up the process of building corresponding 
seconds strand to the broken piece on the template. Each nucleotide added by DNA 
polymerase is terminated with special fluorescence chemical. This chemical called 
terminator can distinguish nucleotides of DNA by shining with different light 
spectrum. Terminators are used for two important things in the process. The first 
one is controlling the building of second DNA strand, and the other one is to 
distinguish between different nucleotides located on the top of the second strand. 

2.2.3. Imaging 

In the imaging stage, the template is being photographed every time a layer of 
nucleotides is washed away. The image consists of multiple broken DNA pieces on 
the template, each piece being a consensus of multiple duplicates at the same 
position. Duplicates might be at a different nucleotide stage due to errors while 
washing away the top layer. This behavior is called signal dephasing and limits the 
size of reads to 10-1000 base pairs, depending on the platform used. 
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2.2.4. Genome alignment and assembly 

Alignment is a step performed after all NGS reads are available. There are two 
possible ways of sequence construction, either to align it to an already known 
reference genome or to perform de novo assembly [14]. The precondition of the first 
way is that there exists a trusted reference genome for DNA being sequenced, which 
means de novo assembly was done earlier. De novo assembly requires advanced 
algorithms to provide final DNA sequence. Approaches to de novo assembly task will 
be discussed further in the following chapters. 

2.2.5. Sequencing errors  

Sequencing process is not error-free, and some flaws in the sequencer output may 
occur. Physical or chemical thresholds mostly cause the nature of these errors.  This 
can be either wrong recognition of the nucleotide or addition of a base that is not 
terminated by blocking polymerase.  Therefore, it is necessary to assign a quality 
value to each nucleotide that has been sequenced. FASTQ format for next generation 
sequencing provides such option and is explained in Chapter 2.3. 

As mentioned earlier, NGS converted domain of DNA analysis to an entirely different 
level, making it a commercial technology easily usable by research labs all over the 
world. Most NGS methods provide as many as one billion reads per instrument run. 
This makes obtained data cheap and ready for further analysis. Sequencing 
technologies were the focus of the research in many commercial and state centers, 
which means that various methods are available, each having its strength in specific 
use cases. There are two main methods, clonally amplified templates and sequencing 
by synthesis [13]. The latter one is more widely used, though each has its pros and 
cons. 

Next-generation sequencing process was described in a limited manner due to nature 
of this text. For more information on NGS processes, methods and tools, please refer 
to the more detailed overview provided in the paper Sequencing technologies – the 
next generation [13]. 
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2.3. Data Input 
FASTQ data format is the golden standard when it comes to storing reads produced 
by sequencers [15]. Each sequence read is saved in four lines, each having its specific 
function. The first line starting with ‘@’ character is defined as read identifier, with 
no limitation to character types or length. Therefore, this line can also store 
additional comments referring to particular read. 

The second line is reserved for the particular sequence read; that means a set of 
nucleotides represented by A, C, G and T. Uppercase is the convention for storing 
read sequence. The length of this line depends on how long reads the sequencer can 
produce. 

The third line starts with the ‘+’ character and signals the end of the sequenced 
read. It can also contain the copy of read description and comment from the first 
line, but lately, this has been omitted due to storage savings reasons. 

The last comes the line specifying read quality. It contains a subset of ASCII 
characters, where each character defines the quality for one nucleotide. That is why 
the length of the quality line must be equal to the read length. The encryption of 
quality into ASCII character is easy and efficient and works based on equation 

Q=-10*log10e 

where e is the estimated probability of the wrong classification of read base and Q is 
the character encoding in ASCII [15].  
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3. Distributed Systems for Parallel Processing 

Massive parallel processing is the key to big data analytics. There are three views 
which define big data, these are velocity, variety and volume [16]. To establish a data 
source as big data, at least two properties must be met. For DNA sequence reads, it 
is mainly volume and variety of data, though velocity can be also taken into account 
when real-time sequencing is to be discussed. Massive parallel processing not only 
provides parallelism, but it also divides huge task into small pieces making real-time 
analytics available. Big data could not be a phenomenon on its own. Indeed, it 
requires distributed parallel systems to help get value out of it. That is why big data 
analytics and cloud computing go and develop hand in hand [17]. The following 
chapters present available cloud computing technologies and their relevance to 
processing NGS datasets. 

3.1. NGS in Cloud 
Cloud is providing shared configurable resources, scalability and optimization of 
resource usage. Cloud is not only something that is available in a third party data 
center, but cloud can also be hosted inside an organization, so-called “on-premise” 
cloud. There are three different service models in which cloud services can be offered. 

3.1.1. Infrastructure as a Service 

Provider of Infrastructure as a Service (IaaS) runs a solution that offers 
infrastructure ready for deployments. Users are abstracted from the physical layer of 
data center and storage, physical servers, network and other data center related 
resources are provided. On the other hand, end users are responsible for Operating 
System installation and patches, including OS and application level management. 
Machines in IaaS model are provided using virtualization technologies. 

From the perspective of deploying distributed algorithms for DNA sequencing into 
IaaS platform, one could rent resources from a provider and install analytical tools of 
choice onto it. This option provides least limitations in terms of tools used. 

3.1.2. Platform as a Service 

If specific developer tools and application programming interfaces are provided for 
usage, cloud is available via Platform as a Service (PaaS) model. In this case, user 
receives a limited number of tools which can be used. There is no management 
overhead for user when it comes to hardware and middleware, all patching, upgrades 
and availability is ensured by cloud provider. 

Various platforms are targeting DNA analysis on PaaS. Amazon Web Services 
provide data from 1000 Genomes project available. Researchers then pay only for 
additional resources needed to process and analyze data [18]. Google Genomics 
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project also provides API to store, process, explored and share DNA sequence reads 
on cloud utilizing Google’s cloud infrastructure [19]. 

3.1.3. Software as a Service 

Software as a Service (SaaS) model provides user access to third party software and 
data. Available software is hosted and managed by the cloud provider, giving users 
only permissions to access functionality. Therefore, end users can start working 
without the need of gaining computer resources and without performing any 
installation. SaaS is also called on-demand software. 

Next generation DNA sequencing and analysis is making its way to SaaS platforms, 
one of the first is GenomeNext [20] which provides online software for cost-effective, 
reproducible and deterministic DNA analysis. Algorithms for sequencing, gene 
expression and molecular diagnostics are available as well [20]. More SaaS providers 
for DNA sequencing and analysis can be found at [21]. 

3.2. MapReduce 
Cloud development has provided computing power for the era of big data, but it 
would not be essential without creating a new style of application design. MapReduce 
was first proposed by Google in 2004 at the Operating systems design and 
implementation conference [22]. MapReduce technology can process huge volumes of 
data by performing Map and Reduce steps, all of this on commodity hardware. Map 
step takes key and value pairs and computes auxiliary result. Reduce step then 
collects all auxiliary results by common key and provides final result. 

3.3. Hadoop 
Hadoop is an open-source computing environment based on distributed file system 
[23]. Hadoop implements MapReduce programming style, which makes it an effective, 
highly scalable system able to run on commodity hardware. Hadoop strength is in its 
design, where huge file objects are traversed and functions are applied as close to 
data location as possible. This way functions can be applied to enormous volume of 
data, while satisfying redundancy and mentioned horizontal and vertical scalability. 
Files are stored in specific file system component called Hadoop Distributed File 
System (HDFS). 

Hadoop-BAM is a novel library for the scalable manipulation of aligned next-
generation sequencing data in the Hadoop distributed computing framework. It acts 
as an integration layer between analysis applications and BAM files that are 
processed using Hadoop. Hadoop-BAM solves the issues related to BAM data access 
by presenting a convenient API for implementing map and reduce functions that can 
directly operate on BAM records.  Hadoop-BAM can be utilized for coverage 
calculation, variant detection or many other analysis tasks to be executed on next-
generation sequencing data [24]. 
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3.4. Apache Spark  
Apache Spark is an open-source cluster computing framework with in-memory 
processing capabilities. The main properties of Apache Spark are speed, ease of use 
and sophisticated analysis of big data. It was originally developed in 2009 in UC 
Berkeley’s AMPLab and open sourced in 2010 as an Apache project [25]. Spark offers 
big data processing framework that is able to process diversified data, in terms of its 
structure as well as source. In other words, Spark can provide data analysis on text 
data, graph structures and on other raw formats. MapReduce is implemented by 
Spark as well, but on the top of standard MapReduce, it provides multi-step data 
pipelines using a directed acyclic graph pattern and enables in-memory sharing across 
directed acyclic graphs. Standard Hadoop MapReduce jobs have to be executed in 
defined order so that data from actual computation job are fully processed until 
handed over to next MapReduce job. This is the reason why Spark is multiple times 
faster than other big data technologies in specific use cases [26].  

Spark’s strengths come from its features [27], which include: 

- Support for MapReduce functions as well as standard algorithms 
- In-memory allocation of frequently accessed data 
- Lazy evaluation of big data queries 
- API in Java, Scala and Python 
- Compatibility with HDFS 
- Interactive shell for Python and Scala 
- Sandboxed runtime inside Java Virtual Machine 

The hidden secret of Spark’s performance lays in a simple fact, rather than writing 
temporary results to disk, it saves them in memory. This becomes even more efficient 
when the temporary results are used more times. However, Spark is not only limited 
to in-memory data storage. In specific cases, it can store data directly to disk or 
potentially to Hadoop cluster. As a result of that, Spark can handle computation 
which are much larger than its available in-memory storage, while still maintaining 
performance advantage due to the utilization of in-memory capabilities for some 
temporary results. 

Spark supports lazy evaluation as well. Big data queries are optimized since their 
execution depends on the specific workflow in which they are processed. The 
evaluation time is triggered by lower levels of the framework, from which the 
application developer is shadowed by using high-level APIs [25]. 

Resilient Distributed Datasets (RDD) is the foundation of Spark framework. RDD is 
a data storing structure, similar to a table that can store any type of data. RDDs are 
immutable and partitioned. They are used to relocate data over the cluster and 
optimize it for processing. RDDs are highly available and fault tolerant, because 
RDD can be recreated by a finite number of steps from another RDD. The creation 
of a new RDD has two possible scenarios, either it is created from data in persistent 
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storage or through deterministic operations on a different RDD. In general, there are 
two operations supported on Resilient Distributed Datasets [25]. 

1) Actions 

Actions executed on an RDD will return a new value. All data computation required 
to produce this value are executed immediately, and the result of an action are 
returned. Examples of action commands are reduce, collect, count, first, take, 
countByKey and foreach. 

2) Transformations 

Transformation executed on an RDD will result in creation of new RDD. Also 
transformation tasks do not get executed at the time they are called, but they do 
create a relationship between the old and new RDDs for further computations. 
Examples of transformation commands are map, filter, flatMap, groupByKey, 
reduceByKey, aggregateByKey, pipe and coalesce. 

Spark comes with multiple additional tools that extend its capabilities to enable 
graph processing with GraphX framework, advanced machine learning algorithms 
available via Mllib, SparkSQL to enable support of query language and many more. 

3.4.1. GraphX 

GraphX is a distributed graph processing library built on the top of Spark [28]. 
GraphX provides a framework for implementing new algorithms to model 
relationships between objects. GraphX together with Spark creates an environment 
that has the functionality available for graph processing as well as for table-
structured data. GraphX extends standard Spark RDD with Resilient Distributed 
Property Graph. Such multi-graph has properties assigned to each node and edge. 
GraphX comes bundled with a significant number of algorithms for graph analysis, 
including PageRank, ConnectedComponents and many more. 

 

Figure 3 - GraphX framework position in the Spark framework [28] 
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Abstract
In pursuit of graph processing performance, the systems
community has largely abandoned general-purpose dis-
tributed dataflow frameworks in favor of specialized graph
processing systems that provide tailored programming ab-
stractions and accelerate the execution of iterative graph
algorithms. In this paper we argue that many of the advan-
tages of specialized graph processing systems can be re-
covered in a modern general-purpose distributed dataflow
system. We introduce GraphX, an embedded graph pro-
cessing framework built on top of Apache Spark, a widely
used distributed dataflow system. GraphX presents a fa-
miliar composable graph abstraction that is sufficient to
express existing graph APIs, yet can be implemented us-
ing only a few basic dataflow operators (e.g., join, map,
group-by). To achieve performance parity with special-
ized graph systems, GraphX recasts graph-specific op-
timizations as distributed join optimizations and mate-
rialized view maintenance. By leveraging advances in
distributed dataflow frameworks, GraphX brings low-cost
fault tolerance to graph processing. We evaluate GraphX
on real workloads and demonstrate that GraphX achieves
an order of magnitude performance gain over the base
dataflow framework and matches the performance of spe-
cialized graph processing systems while enabling a wider
range of computation.

1 Introduction

The growing scale and importance of graph data
has driven the development of numerous specialized
graph processing systems including Pregel [22], Pow-
erGraph [13], and many others [7, 9, 37]. By exposing
specialized abstractions backed by graph-specific opti-
mizations, these systems can naturally express and ef-
ficiently execute iterative graph algorithms like PageR-
ank [30] and community detection [18] on graphs with
billions of vertices and edges. As a consequence, graph
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Figure 1: GraphX is a thin layer on top of the Spark
general-purpose dataflow framework (lines of code).

processing systems typically outperform general-purpose
distributed dataflow frameworks like Hadoop MapReduce
by orders of magnitude [13, 20].

While the restricted focus of these systems enables a
wide range of system optimizations, it also comes at a cost.
Graphs are only part of the larger analytics process which
often combines graphs with unstructured and tabular data.
Consequently, analytics pipelines (e.g., Figure 11) are
forced to compose multiple systems which increases com-
plexity and leads to unnecessary data movement and du-
plication. Furthermore, in pursuit of performance, graph
processing systems often abandon fault tolerance in fa-
vor of snapshot recovery. Finally, as specialized systems,
graph processing frameworks do not generally enjoy the
broad support of distributed dataflow frameworks.

In contrast, general-purpose distributed dataflow frame-
works (e.g., Map-Reduce [10], Spark [39], Dryad [15]) ex-
pose rich dataflow operators (e.g., map, reduce, group-by,
join), are well suited for analyzing unstructured and tabu-
lar data, and are widely adopted. However, directly imple-
menting iterative graph algorithms using dataflow oper-
ators can be challenging, often requiring multiple stages
of complex joins. Furthermore, the general-purpose join
and aggregation strategies defined in distributed dataflow
frameworks do not leverage the common patterns and
structure in iterative graph algorithms and therefore miss
important optimization opportunities.
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3.4.2. SparkSeq 

SparkSeq is a fast, scalable and cloud-ready tool for the interactive genomic data 
analysis [29]. It utilizes Spark’s MapReduce capabilities to provide genomic analysis 
in an interactive way via Spark shell. It also opens possibility for applying Spark 
ecosystem tools like Machine learning to next-generation sequencing data. SparkSeq 
combines pros of Hadoop-BAM and Spark to improve filtering of sequence reads, 
summarizing genomic features and additional statistical analyses. Particular 
algorithms offered by SparkSeq are Position encoding, Exon encoding and Coverage 
calculations. 

3.4.3. ADAM 

ADAM is a fast, scalable genome analysis library for exploring genomic data [30]. 
ADAM defines a new data type meant for storing and processing genomic data, 
which is called ADAM format. This new format saves up to 50% of space which 
brings another plus in terms of processing and transfer performance. ADAM is rather 
good at detecting variants in genomes. Variant is a difference between two genomes 
which causes uniqueness of DNA samples per each human. ADAM offers 
functionality to convert from most standard genomic data formats into its own, but 
what is more, it implements algorithms for genome sorting, base quality recalibration, 
duplicate marking and other read quality recalibration functions. To sum up, ADAM 
is scalable, data is compact, read performance is improved and code is simpler. 
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3.4.4. Spark Internals 

To write efficient map-reduce applications in Apache Spark, one must study how 
submitted jobs are internally handled within Spark cluster. It is quite obvious that 
submission of tasks to the whole cluster does happen from a master node. The master 
node is aware of all spark worker nodes and data location amongst them. That is the 
reason why it can efficiently distributed the code closest to the data, minimizing the 
runtime and movement of data over network. Following sections will explain, what 
exactly happens to a job after being submitted to Spark master node [31]. 

3.4.4.1. Spark Cluster Setup 

Spark cluster consists of three different types of nodes, each having its specific 
function. Master node is responsible for managing cluster resources and keeping the 
cluster available. Spark driver node requests cluster resources from master node and 
executes applications on worker nodes provided for computation by master node. 
Spark worker nodes are nodes, which process the tasks assigned by the driver node. 
Worker nodes are effectively doing all the productive work. 

 

Figure 4 - Spark cluster setup [32] 

3.4.4.2. Directed Acyclic Graph Creation 

Each action on an RDD triggers a necessary creation of directed acyclic graph, which 
specifies the stages of execution that must be passed for a valid termination of 
requested action. A stage is a set of actions that cannot be pipelined, i.e. stage can be 
completed only with full set of data used in the stage already available. Stages can 
also be referred to as super-operations. 

3.4.4.3. Logical Plan of Execution 

Shuffling, redistribution of data, and directed acyclic graph validations happened 
during the planning step. During this step, a plan how to move data to particular 
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nodes is created, in order to have relevant data for relevant stages easily and quickly 
accessible. The data movement is an expensive operation and it can be optimized by 
partial aggregations or by minimizing the actual data flow by proper partitioning. 
The partitions are subsets of data, which cannot be further divided. These subsets 
provide concurrency, because different partitions can withstand on different nodes in 
the cluster. Setting the correct number of partitions is crucial to overall performance, 
since a number too high can reduce concurrency which will lead to resource lower 
utilization of available hardware. On the other hand, a high number of partitions 
might suffer from data skew and operational overhead. 

3.4.4.4. Scheduling 

The main purpose of scheduler is to assign tasks to machines in the cluster based on 
data availability and location. As stated earlier, the speedup of map-reduce 
programming style is by sending code, in this case tasks, directly to data. This is 
what scheduler is responsible for. Since dealing with distributed system, failures must 
be considered as a part of normal operation. In case of task failure on one of the 
nodes, the scheduler retries running the task on another node, where the replica of 
the corresponding partition resides. 

 

Figure 5 – Spark execution flow [33]
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4. Genome Assembly 

In the following chapters, algorithmic approaches to genome assembly are addressed. 
First, a general view of assembly principles is discussed, followed by specific 
algorithms that are currently available for implementing de novo assemblers. The 
first algorithm is based on the Overlap graph, whereas the latter takes advantage of 
de Bruijn graphs. A description of ways to improve performance by optimizing input 
dataset is provided as well. In the end of this Chapter 4, both algorithms are 
compared and based on the comparison, one is chosen for further distributed 
implementation, evaluation and performance testing. 

4.1. General Approach 
The output of a sequencer is a set of short reads which is used to reconstruct the 
genome. This means reads should be ordered in a way they occur in the original 
genome sequence. These reads cover each section of genome multiple times with some 
overlap, which is the key to deciding on the order of reads. The overlap between two 
reads is a property of their relationship while read content is its representation 
amongst the set. The length of the overlap increases the probability of co-occurrence 
of these reads one after another and strengthens the relationship between them. This 
all leads to the creation of a graph, which will represent the relationships between 
reads in an effective way. Multiple ways of representing nodes, edges and 
relationships between them exist [13]. All of them are essentially focused on the same 
thing, and that is to truly reflect genome that was at the input of the sequencer. On 
the other hand, all of these representations take a different way and shortcuts on how 
to provide a high-quality output. 

 

Figure 6 – A set of overlapping reads 

4.2. Sequence Assembly Algorithms 
The most popular algorithms for sequence assembly are explained in the next 
chapters, including issues that may occur during algorithm usage and how to avoid 
them or fix them. Firstly Overlap Layout Consensus (OLC) algorithm is discussed, as 
it is more traditional than the de Bruijn approach and has been widely used for 
longer reads in the first generation sequencers. After that, de Bruijn algorithm 
introduced with next-generation sequencing is addressed. 
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4.2.1. Overlap Layout Consensus Algorithm 

The OLC algorithm relies on the construction of overlap graph [34]. The overlap 
graph is a directed graph representing reads and relationships between them. The 
approach using this technique dates back to Sanger sequencing methods and was 
used mainly due to good performance with longer reads. OLC algorithm requires 
discovery of all overlaps between all reads. That is why the graph may get huge and 
impractical. Due to this property, numerous optimization algorithms are applied to 
make this method more time and memory efficient. These methods will be further 
described in the chapters below. 

4.2.1.1. Input Specification 

The algorithm expects all reads provided by sequencing machine on input, including 
their quality assessment on a base level. Further on, it is necessary to provide an 
identity function that will reflect quality into the comparison of reads. In the ideal 
case of no expected errors in the input read set, the identity function can be set to 
exact matching only. An important input parameter requiring tuning is the minimum 
overlap of reads. Minimum overlap is a threshold that needs to be met to identify 
two reads as overlapping.  

4.2.1.2. Pre-processing of Input Data 

Before building the actual overlap graph, overlaps between all pairs of reads need to 
be identified based on input conditions. The overlap length defines how many bases 
of a read suffix are identical to some others read prefix. Only the longest overlap is 
considered, preventing multiple relationships between the same pair of processed 
reads. The overlap discovery starts from the minimum overlap threshold and grows 
until the maximum possible value, also called as the seed and extend strategy [34]. 

4.2.1.3. Graph Construction 

The vertices in the overlap graph are referring to reads in the input dataset. This 
means the graph can have as many vertices as there are reads provided. The edges 
connecting vertices define the relationship of the overlap, where each edge has an 
integer property specifying the length of the overlap. The higher the number, the 
more similar the reads are. The resulting graph is a multigraph in the most of the 
cases. 

4.2.1.4. Optimization of Graph Structure 

Multiple optimization techniques exist to improve OLC algorithm performance. Some 
implementations focus on minimizing the dataset even before the graph construction, 
by deleting duplicated reads from the input dataset [35]. This is very likely to speed 
up the graph construction and sequence assembly due to fewer comparisons executed 
when looking for overlaps between reads. 
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Other approaches focus on minimizing the graph size by pruning spurs [35]. Spurs are 
dead ends  to which a path exists only due to sequencing errors. The constructed 
overlap graph can also contain small disconnected structures, which could be 
essentially removed due to their short length. Moreover, multiple edges can contain 
the same information, creating transitive edges in the graph. This transitive edges 
can be eliminated, because by removing them no information about original genome 
is lost. Bubbles in the graph occur when there are two very similar subsequences of 
the genome. These bubbles can be collapsed into a linear structure in order to 
compress the graph, but the genome information from the bubble must be stored in 
the linear structure [34]. 

4.2.1.5. Sequence Assembly 

Once the graph is constructed and optimized for sequence assembly, the graph 
represents the approximate layout of reads. To generate the sequence, maximal 
simple paths in the graph must be found. Finding a maximal path in the graph is an 
NP-hard problem that can be reduced from Hamiltonian path [36]. In the special case 
of a directed acyclic graph, the longest path problem can be transformed into the 
shortest path problem that is polynomial [37]. This is achieved by the negation of 
every edge weight, where the cost of each edge ei is calculated as an inverse value of 
overlap between vertices v1 and v2, where ei is the connecting edge between these 
vertices. The assumption, in this case, is that the longest overlaps will provide the 
most probable order of vertices [38]. 

The output of the sequence assembly is not one single sequence. The cause of this are 
repeats present in the sequence, which make the sequence assembler unable to decide 
how many times the repeat is occurring in the sequence, or in other words, how many 
times should the cycle be iterated. This problem is nowadays practically unsolvable 
in the OLC algorithm, and therefore, the output of assembly is a list of maximal 
simple paths, each being a separate contig. 

4.2.1.6. Overview 

The OLC algorithm based on Overlap graphs is a traditional, well-performing 
algorithm that is very suitable for larger genomes and deals efficiently with longer 
reads. In the case of the input consisting of short reads, its advanced heuristics for 
optimization of stored data structure helps performing similarly to de Bruijn graph 
based algorithms described in the next chapter [39].  
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4.2.2. De Bruijn Algorithm  

The algorithm for sequence assembly based on de Bruijn graph dates back to the 
introduction of machines producing short reads from input genome. K-mer structures 
are the ground elements on which de Bruijn graph assemblers rely. By design, the 
approach does not store and utilize reads during graph creation and analysis, but it 
rather uses compressed k-mers for the benefit of more compact graphs. Even more, 
not all overlaps within all k-mers are necessary to be discovered, and the produced 
graph compresses repeated parts of the genome. The final assembly is also not an 
exhaustive operation, it is considered as a byproduct of graph construction. 

4.2.2.1. K-mer Creation 

K-mers are defined as all substrings of a given string with length k. Given a read 
with length L and a required k-mer with length k, there are L-k+1 k-mers for each 
such read. In practice, this means each read is divided into smaller chunks that are 
used instead of input reads during overlap calculations. The read length L is given by 
sequencing machines, whereas k-mer size is one of the algorithm inputs. The correct 
choice of length k is essential for further successful assembly and depends on the 
preliminary assessment of genome structure. The lower size of k-mers produces a 
smaller set of unique k-mer and therefore results in smaller de Bruijn graph with 
fewer edges. On the other hand, small k-mers are more probable to cause issues 
during sequence assembly due to generally higher input and output degrees of edges. 
Longer k-mers negatively impact the graph size by increasing the number of edges. 
Also preferring larger k-mer may lead to a situation of more contigs in the assembly 
because more k-mers are less likely to have sufficient overlap. The pros are that 
shorter repeats are absorbed and less likely to cause incorrect repeat ordering in the 
final sequence assembly. 

4.2.2.2. Graph Construction 

De Bruijn graph construction can be initiated once all k-mers for given reads are 
available. The next step is to extract left and right (k-1)-mers from given set of k-
mers. Given this step, the output of such operation consists of two (k-1)-mers 
containing bases i1..ik-1 and i2..ik, where k is the length of original k-mer and 
ij is the base i on j-th position. These extracted (k-1)-mers will become vertices of 
the de Bruijn graph. Directed edges are placed between left and right vertices of (k-
1)-mers respectively. In the end, for each original k-mer of length k, there is a 
corresponding edge in de Bruijn graph. Also, it is important to note that there is a 
vertex for each unique (k-1)-mer extracted from the original k-mer set. Another fact 
is that multiple edges can exist between two vertices, caused by the same k-mers in 
the original set. 

Given this process of graph construction, it is visible that repeats in the genome will 
reflect as cycles in the de Bruijn graph. It is as well essential to keep (k-1)-mers in a 
separate data structure so that it is not necessary to traverse the whole graph to 
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identify distinct edge. The compressed structure of the graph is guaranteed by the 
uniqueness of edges and the fact that k-mers are smaller than reads and that k-mers 
repeat in the worst case as many times as reads.  

4.2.2.3. Sequence Assembly 

The reconstruction of the original genome from de Bruijn graph corresponds to a 
path in the graph meeting the criteria that each edge is visited exactly once. The 
path starts in an edge and restricted by edge direction, passes through all edges. 
Since edges are indeed a representation of k-mers, each k-mer is present in the final 
path one time. The final genome assembly is the concatenation of k-mers in the order 
they are visited during path construction. 

The construction of path explained above is called Eulerian walk. Eulerian walks 
exist only in Eulerian graphs. The issue is, that de Bruijn graph for sequence 
assembly is Eulerian graph only in the ideal case of k-mers with no errors and full 
coverage of the genome. In real-life sequencing, Eulerian graphs are not common 
since the data is more complicated. The issue hides in natural genome structure, 
where repeats are common. Repeats are problematic from a simple point. They create 
cycles in de Bruijn graph, resulting in the existence of multiple Eulerian paths. As 
stated earlier, cycles can be limited by choosing longer k-mer sizes. Some other 
approaches refer to original reads for deciding on correct path when the path is 
interfered by cycles. 

4.2.2.4. Overview 

De Bruijn graph based algorithm provides a way of saving sequenced data in 
compressed form and minimizes storage and computation requirements for assembly. 
On the other hand, it introduces input variable k-mer length and by its nature is 
more suitable for short reads. In addition to all these facts, handling of repeats is an 
important part of each assembly utilizing de Bruijn graphs. 
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4.3. Comparison of Assembly Algorithms 
Both de Bruijn graph (DBG) based and Overlap Layout Consensus algorithms have 
the majority of their features common. They both rely on overlaps of reads and 
represent data as directed graphs. OLC algorithm stores direct connections between 
reads, whereas DBG prefers storing overlaps between k-mers. Both algorithms require 
cleaned and pre-processed data at the input, and also both implement post-processing 
techniques on created graph to reduce errors and the size of resulting graphs. DBG 
algorithm is very sensitive to choosing a correct k-mer length, but the similar applies 
to OLC with its minimum overlap length threshold input parameter. 

The biggest difference lies in the expected read length on the input. While OLC 
algorithm prefers longer reads (100 to 800 base pairs) with smaller coverage 
acceptable, the DBG algorithm is suited for today’s next-generation sequencing reads 
ranging from 25 to 100 base pairs per read [39]. On the other hand, the OLC 
algorithm with its advanced heuristics discovered lately competes with DBG 
algorithms quite well even on this field. 

None of these sequence assembly algorithms is perfect, as both have their issues that 
have not been fixed yet. DBG algorithm’s performance strongly depends on the 
length of the Eulerian path in the graph, which can get very short for repetitive 
genomes [39]. OLC algorithm also has problems identifying repeats longer than read 
length. 

In the future, a technical advance in sequencing machines will bring longer reads that 
would better deal with repetitive genomes [40]. Once the supplied reads are long 
enough to house the whole repetitive subsequence inside it, the OLC algorithm might 
have a very strong benefit on its side. However, the main task will still be to provide 
a well-performing algorithm for rapidly changing conditions in the area of next-
generation sequencing. The algorithms must work and scale well with provided read 
length and quality, adapt to increasing volume and utilize growing computation 
resources effectively. 
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4.4. Existing Assemblers 
The next chapters are providing an insight into today’s most popular sequence 
assembly software. Each tool is briefly described and its key advantages and 
disadvantages are highlighted for easier understanding of their usage. 

4.4.1. SOAPdenovo2  

SOAPdenovo2 [41] is an assembly method specializing on Illumina GA short reads. 
The tool’s performance has been presented by building a de novo draft assembly of a 
human-sized genome based on short reads. SOAPdenovo2 is based on de Bruijn 
graph construction, with a high focus on read error correction and decrease in 
memory consumption. SOAPdenovo2 works best with reads from 35 to 50 base pairs, 
has embedded scaffold identification algorithm and excels in assembly speed. It is 
known to be deployed on supercomputers and is widely used [41]. 

4.4.2. MEGAHIT 

One of the most advanced single computer time and cost efficient de novo assemblers 
is MEGAHIT [42]. It can perform a de novo assembly of large and complex 
metagenomics data, but has its bounds in terms of machine memory capacity. 
MEGAHIT uses improved compressed representation of de Bruijn graph, also known 
as succinct de Bruijn graphs [43]. Also, additional edge properties are added to make 
a dynamic removal of edges more efficient. There are a lot of pros to MEGAHIT, but 
the main construction of succinct de Bruijn graphs is still a very expensive task. 
These graphs are built iteratively, from k-mers of small sizes to very large. Due to 
improvements to standard algorithms that MEGAHIT provided, it guarantees great 
completeness and contiguity, and at the same time, efficient assembly of large and 
complex metagenomics data [42]. 

4.4.3. Velvet 

Another assembly method utilizing de Bruijn graphs and focusing on very short reads 
is Velvet [44]. The key distinguisher for Velvet is its ability to produce valid 
assemblies leveraging very short reads while taking into account read pairs and 
removing errors that could appear during de novo assembly. Velvet is fairly easy to 
setup and run, can handle reads of various length, but its main drawbacks remain the 
extensive usage of memory and sensitivity to the setting of input parameters [44]. 

4.4.4. MIRA 

MIRA is a powerful tool capable of both sequence assembly and mapping [45]. It has 
extensive documentation and can be used for many use cases due to its modularity 
and configuration possibilities. MIRA uses a unique trace signal analysis routines 
which are suitable for shotgun sequencing. It has acceptable performance for smaller 
genomes, but can struggle when dealing with larger ones. 



26 
 

4.4.5. AbySS 

MPI is a message parsing protocol used by AbySS to be able to run de novo 
sequencing on multiple nodes [46]. While this can be considered as a distributed 
approach, it still suffers from extensity of message sizes. The protocol is highly 
specific and tailored for ABySS, but in connection with de Bruijn graph usage, its 
performance struggles in comparison with other assemblers. From the bright side, a 
set of commodity hardware can be used for assembling larger genomes. The algorithm 
behind ABySS works in two basic steps. The first step extends contigs until it is no 
longer possible. In the second step, these contigs are merged. ABySS comes the 
closest to distributed de novo genome assembly, but it still has its downsides in error 
correction, performance and deployment architecture. 

4.4.6. SAGE 

SAGE (String-overlap Assembly of Genomes), unlike others, performs de novo 
assembly via the construction of overlap graphs. SAGE is inspired by advanced 
research completed in string overlap graph construction, analysis and maximum 
likelihood assembly. Moreover, it adds on improvements such as graph reduction. 
Due to its improvements, SAGE is highly competitive with de Bruijn assemblers [47]. 
The process of de novo assembly with SAGE includes error correction followed by 
construction of bi-directed graph. In the bi-directed graph, read and its reverse 
complement are described by the same edge. Once string overlap graph is built, the 
optimizing part of the process is invoked. This consists of reduction of transitive 
edges, simplification of graph and removal of duplicated information. In the end, 
maximum likelihood is used to determine the final sequence. Successful assemblies of 
short to medium-sized genomes are currently supported by SAGE while the 
misassemblies are still impacting its overall quality. SAGE is developed in C++, is 
platform independent and does not support distributed deployments on cluster [47]. 
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4.5. Misassembly 
Two leading causes of misassemblies can be distinguished. The first one is caused by 
collapsing or expanding repeated reads, originating in incorrect estimation of how 
many repeats of genome part shall be present in the final assembly. The final 
assembly can either contain too many or not enough copies of reads. Sequence 
rearrangement and inversion cause the second main type of misassembly, originating 
in the wrong order of subsequences, e.g. not putting a subsequence in the correct 
position of the final assembly. It is essential to take misassemblies into account when 
performing analysis of the assembly since this can prevent invalid conclusions when 
examining the final assembled sequence. A good metric of identifying assembly with 
many misassemblies is to check whether sequencing errors do occur in regular 
locations across multiple reads. 

4.5.1. Repeat collapse and expansion 

If a collapse misassembly happens, reads that refer to distinct locations of the 
sequence are joined into a single location [48]. This results in a higher density of 
reads in a specific location of the sequence. The effect of collapsing is unpredictable 
since reads attached to a specific location take more reads to the same location with 
them. The other effect of this kind is an expansion, happening when reads that are 
the same repeatedly occur in the assembly. The effect of expansion causes 
subsequences with a lower density of reads due to their relocation to locations with a 
higher density. 

4.5.2. Rearrangements and inversions 

Misassemblies are not limited only to correct placing of the reads within the 
sequence. Other special cases can cause a sequence structure to be broken. An 
example is an inversion of two reads, putting the two reads in an incorrect 
orientation. This triggers a process that inverts the whole region where these reads 
are occurring. In addition to the wrong direction of the sequence, mate-pair 
constraints can be wrongly oriented as well. Mate-pairs are known to identify such 
issues in early stages, but a whole assembly can be constructed without violating any 
mate-pair constraint. In that case, it is difficult to identify such misassembled 
sequences [48]. 
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4.6. Assessment of Assembly Quality 
To measure the quality of genome assembly, various methods are present. The most 
traditional one is called N50. It is a statistical method taking into account lengths of 
contigs and scaffolds. The value of N50 represents the smallest contig (or scaffold) 
meeting the condition that 50% of contigs (or scaffolds) is the size of N50 value or 
higher. To compute the exact value of N50 for assembled contigs, the following 
procedure shall be performed: 

1) Order all assembled contigs of the sequenced genome by their length in 
descending order. 

2) Start putting contigs into a set and summing up their contig lengths from the 
beginning. Stop when the growing summation is equal or higher than 1/2 of 
all contigs lengths summed up. 

3) The value of N50 is equal to the length of the shortest contig in the set. 

A similar procedure can be applied to calculating N50 value based on scaffold 
lengths, the only difference is that scaffold lengths are used. In case N50 value is 
equal to half of the genome length, it can be said that 50% of the genome will be 
present in a single contig. N50 value of an assembly which resulted in a single contig 
is the length of the contig. The reads prior to assembly have the N50 length equal to 
read length. 

The quality of assembly grows with N50 value, with increasing N50 value the quality 
of genome assembly is considered as better. Such way of quality assessment directly 
prefers larger contigs to be of higher quality. The issue is that contigs of greater 
length can be erroneous and therefore decrease the quality of the whole assembly. 
Each sequence assembly algorithm is deciding on the contig merging during its run. 
Therefore, some of the assemblers may apply an optimistic strategy for contig 
merging in trade off higher assembly quality. This risk must be accepted when using 
N50 for assessment purposes. On the other hand, conservative assemblers preferring 
shorter contigs with increased probability of correct merges may score very low in 
N50 criteria. All in all, N50 may be a misleading statistics under particular 
circumstances, but it is considered as the leading quality evaluation criterion when it 
comes to evaluating genome assembly [49]. 
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5. Implementation of Distributed Assembly 
Algorithm 

 

The subsequent chapter offers an insight into the implementation of the distributed 
assembly algorithm using a specific big data workflow. The scope of the task is 
defined, and the building blocks of the workflow are introduced, including the 
description of use during the development and testing process. Further on, the 
assembly algorithm implementation is described, focusing on the explanation of each 
executed task and implementation details. The runtime aspects of the workflow are 
provided. Chapter 5 concludes with more information on the executing process of the 
solution. 

5.1. Scope 
The target of this implementation is to utilize an existing distributed computing 
platform to develop a sequence assembly software taking advantage of its parallel 
capabilities. The proposed solution must be scalable and reusable from the platform 
and source code perspective. This means the platform is a multi-purpose computing 
instance and the source code can be further enhanced to support more functionality. 
All these aspects must be taken into account when choosing suitable tools, algorithms 
and processes during implementation 

The scope of the implementation is defined as follows: 

1. develop a distributed sequence assembler tool based on one of the known 
sequence assembly algorithms, 

2. extend the algorithm with heuristics to improve its performance and assembly 
quality, 

3. use exact matching during overlap identification, 
4. propose and commission scalable platform, 
5. assess the scalability and resource distribution of the proposed solution, 
6. accomplish performance testing and compare it with the referential solution, 
7. perform analysis of sequence assembly quality and compare it with a similar 

existing solution. 

Following requirements are out of scope of this implementation: 

1. correct errors in input reads, 
2. read quality assessment during the whole assembly process, 
3. Re-implement all assembly heuristics available in the referential solution, only 

the functionality that mostly contributes to the parallelization will be 
considered. 
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5.2. Workflow Preparation 
Prior to the start of the implementation, the setup of environments and workflow is 
necessary. Technologies and tools described in the following chapters provided a good 
starting point. Two separate environments needed to be built, the first one is a 
development environment running on the development computer. The development 
environment must be flexible, easily accessible and must support execution with low 
volume data. The second environment needed for experiments is test environment. 
Requirements for the test environment are entirely different. It must be vertically 
and horizontally scalable, versatile and able to work with medium to high volumes of 
data. 

5.2.1. Development Environment 

The development environment and usage of proper technologies are the keys to an 
effective solution. Next chapters provide an overview and a swift description of tools 
used within the development of assembly program. 

5.2.1.1. Big data processing engine 

For development purposes, a single node standalone Apache Spark cluster was 
installed on the development computer. Version 1.6 with pre-built Hadoop 2.6. was 
chosen as the latest version at the time of download. The package comes with an 
executable shell and submit scripts and can be easily installed based on the guide on 
the official Apache Spark site [50]. The package also contains required library 
GraphX. 

5.2.1.2. Programming language 

Spark can accept jobs written in JAVA, Python or Scala programming languages. 
The Spark shell is available only for Python and Scala. Scala was chosen due to the 
availability of interactive shell and its similarity with JAVA. Spark itself is written in 
Scala and GraphX library is also Scala based [51]. 

5.2.1.3. Integrated Development Environment 

IntelliJ IDEA was a definite choice when it came to choosing IDE, due to its support 
of Scala via an easily installable plugin and ability to deploy directly to local or 
remote Spark clusters [52]. 

5.2.1.4. Build and Packaging 

SBT is an exclusive tool for building Scala applications. It offers continuous 
compilation, integration with IntelliJ and most importantly it is easy to set up and 
use [53]. 
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5.2.2. Deployment On Cloud 

Development and testing purposes required building a specific infrastructure for 
execution of Spark applications. Since the shared cluster can result in affecting of 
performance testing by applications submitted by other users, an exclusive cluster 
just for the needs of genome assembly was built. The environment for performing test 
was provisioned on the infrastructure provided by MetaCentrum [54]. It offers private 
cloud services with a self-service portal for provisioning cloud servers with pre-
installed images. 

The logical design is as per following diagram in Figure 7, details about exact HW 
and SW configuration of servers used during performance testing is stated in Chapter 
6.1 within environment description.  

 

Figure 7 - Spark infrastructure diagram for the test environment

Spark Worker
node 1

Spark Master & Spark Driver
Shared storage

Spark Worker
node 2

Spark Worker
node 3

Spark Worker
node 4

Spark Worker
node 5

Spark application 
submit



32 
 

5.3.  Implementation 
For the implementation purposes, an instance of OLC algorithm is chosen. In 
particular, I use the SAGE assembler described in Chapter 4.4.6 as the reference. 
This is due to its numerous advantages in comparison with de Bruijn graph based 
algorithms and future potential, as described in Chapter 4.3. The following chapters 
are focused on walking through the distributed implementation of OLC algorithm 
with regards to efficient usage of the Spark framework. The functionality is developed 
according to details provided in Chapter 5.1. 

5.3.1. Application Configuration 

Spark applications offer a variety of configuration to be present during runtime. This 
implementation uses application name property to identify it easily in application 
scheduler during runtime on Spark cluster. Additionally the implementation benefits 
from using Kryo serialization library [55], which is more memory and speed efficient 
library for serialization and deserialization of registered objects. This means 
serialization times are lower and data transfer between worker nodes is reduced. 

Since it is expected that the implementation can be executed on a shared Spark 
cluster, the mode of job scheduling is set to FAIR. Such mode introduces Round 
Robin scheduling [56] of jobs within the application, as well as within all concurrently 
running applications on the cluster. 

5.3.2. Input 

The application expects three parameters on the input. The first one is the source of 
reads in FASTA or FASTQ format. It can be either an address to a file stored on a 
local disk or an address of the file in Hadoop HDFS storage. The input file is loaded 
directly into Resilient Distributed Dataset (RDD). The second input argument is the 
location where the output of the application is saved, which can also be a local 
directory or a Hadoop HDFS address. The last argument is an integer specifying the 
minimum allowed overlap of reads, used in overlap detection between reads. 

5.3.3. Pre-processing of Reads 

The pre-processing of input data starts with removing all the unused information 
from the input file. Since quality assessment on base pair level is out of scope, all the 
input lines except those containing base pairs are removed. Input file cleaning is 
performed via filter operation, only lines satisfying given regular expression are left in 
RDD. The next steps are to optimize the number of reads for further processing. 
Firstly distinct operation is used to delete all duplicated reads, as duplicates carry 
only a copy of input data and would result in duplicated nodes and edges. Onwards 
each read stored in RDD is assigned with a unique number identification, which is 
used instead of read string for read identification during graph related operations. 
Map operation creating a hash code of read string can easily assign a unique id to 
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each read. RDD with pre-processed reads is cached into memory for fast access, due 
to its usage in multiple following operations. Mentioned operations on the input 
dataset are shown in Listing 1. In the end of the pre-processing stage, essential 
information is computed from reads, namely the read length and the range of overlap 
lengths to be considered. The range is defined as an interval from minimum overlap 
to read length. 

val reads = rawReads.filter{ case (line) => line.matches("[ATGC]+")}. 
  distinct. 
  map(read => (read.hashCode.toLong, read)). 
  cache(); 

Listing 1: Pre-processing of raw reads loaded from the input file 

5.3.4. Overlap Discovery 

An important task of the application is to discover overlaps between reads. This task 
is executed by iterating over the range of allowed overlap lengths and performing an 
all-to-all comparison of read suffixes and prefixes. The prefix is extracted as first n 
characters of read, the suffix as last n characters of read, where n is iterated over the 
range of overlap lengths. Both suffix and prefix strings are hashed into an integer for 
faster comparison with each other. That means exact string matching is used during 
the comparison. If an overlap meeting the criteria between a suffix and prefix exists, 
identification of both reads and the length of respective overlap quality between them 
is saved. Listing 2 represents actions performed during overlap detection of reads 
with the length of overlap equal to overlapSize parameter. Figure 8 provides a 
graphical representation of overlap discovery on an example set of reads. Overlap 
quality is defined as the length of overlap subtracted from read length. Such 
computation of quality parameter guarantees that the shortest path algorithm 
described in the further chapters finds the path with longest overlaps. The lower the 
attribute, the longer overlap length between reads is. 

 
val readPrefix = reads.map { case (id, read) =>  
 (read.take(overlapSize).hashCode, id) } 
val readSuffix = reads.map { case (id, read) =>  
 (read.takeRight(overlapSize).hashCode, id) } 
val readEdges = readSuffix. 
  join(readPrefix). 
  map { case (readSubstring, (sourceId, destinationId)) =>  
 (sourceId, destinationId, overlapLength) } 

Listing 2: Overlap detection algorithm 
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Figure 8 - Example identification of overlaps  
(minimum overlap equals 2) 

Once lists of overlapping reads with the respective length of overlap are constructed 
for each allowed overlap length, all these overlaps are joined. The edges where the 
identification of prefix and suffix match are deleted. Items in the list represent edges 
in the overlap graph. Therefore, they can be converted to Edge objects provided by 
GraphX library. The process of edge creation is as per Listing 3. 

 
val edges = rawEdges. 
  repartition(partitionSize). 
  distinct(). 
  filter { case (sourceId, destinationId, overlapLength) =>  
 sourceId != destinationId }. 
  map { case (sourceId, destinationId, overlapLength) => 
 Edge(sourceId, destinationId, overlapLength) }; 

Listing 3: Pre-processing and cleaning of raw edges 
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5.3.5. Graph Construction 

Edges of Overlap graph are identified during the overlap discovery. Graph nodes are 
represented by reads. Before creating a graph object, there is one more optimization 
that can be performed on the list of nodes. All nodes that are not present in any of 
edges can be removed from the list since they are remote with no overlap between 
them and any other read. Implementation depends on edges object, from which the 
destination and the source vertex ids are mapped and joined to create a unique set. 
The creation of this unique set is visible in Listing 4. Graph node objects require an 
attribute, but to decrease storage requirements an empty string is used instead. The 
removal of vertices is a heuristics referred to as removing disconnected structures in 
the OLC algorithm description in Chapter 4.2.1.4. It guarantees that constructed 
graph contains only connected reads. After performing this optimization, graph 
object can be initialized as shown in Figure 9. 

 
val connectedNodes = edges.map { case Edge(sourceId, _, _) => 
 (sourceId, "") }. 
  join(edges.map { case Edge(_, destinationId, _) =>  
 (destinationId, "") }). 
  map { case (id, attribute) => (id, "") } 

Listing 4: Removing disconnected nodes 

 

Figure 9 - Example of constructed overlap graph 
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5.3.6. Graph Optimization 

The constructed graph is rather big, and there are multiple ways it can be made 
more effective for computation and suitable reaching a result of a better quality. The 
first import task is to identify cycles in the constructed overlap graph that do result 
in subsequence with an unknown number of repeats. This is performed by subtracting 
all strongly connected components from the original graph computed by GraphX 
function for finding strongly connected components. A strongly connected component 
of size 2 or higher corresponds to a part of the graph containing a cycle, in Figure 10 
component SCC3 matches the criteria. Therefore, a sub-graph is created, containing 
only strongly connected components of size equal to 1.  

 

Figure 10 - Strongly connected components in an overlap graph 

The implementation provided also in Listing 5, alters each vertex identification to its 
respective strong component id and attribute 1 is added. Afterward, a reduction by 
id is performed while summing the attributes, resulting in the list of strongly 
connected components and the number of vertices in them. Then filtering is 
performed to identify those strongly connected components with size exactly 1, 
creating a list of component ids. A sub-graph is created by keeping only those 
vertices, whose strongly component ids are present in the created list. 

val oneNodeSCCs = scc.vertices. 
  map { case (id, sccId) => (sccId, 1) }. 
  reduceByKey { case (a, b) => a + b }. 
  filter { case (sccId, sccSize) => sccSize == 1 }. 
  map { case (sccId, sccSize) => sccId }. 
  collect; 

Listing 5: Creating list of strongly connected components with exactly 1 vertex 

The resulting sub-graph is directed and acyclic as well. The identification of 
respective connected component is added to each vertex as an additional attribute, 
all edges are preserved. 

Before the actual finding of the longest paths in the graph, it is essential to cut the 
graph into distinctive sub-graphs, that means into multiple graphs that are not 
connected by any edge. This task can be transformed into the identification of all 
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weakly connected components. The algorithm for connected components will parse 
the graph into smaller pieces, in which algorithm for finding the longest path is 
applied in parallel. During this step, small distinct parts of the graph are removed, 
that means removing connected components which size does not pass the pre-defined 
threshold. Weakly connected components present in the graph after removing cycles 
are visible in Figure 11. 

 

Figure 11 - Weakly connected components in overlap graph 

Additionally, transitive reduction of edges can be performed at this stage of the 
algorithm. The proposed algorithm uses greedy implementation, which always selects 
the edge with maximum edge attribute heading to a processed node. 

5.3.7. Identification of the Longest Paths 

Identification of the longest path in the graph can be translated as a path with the 
longest overlaps due to the setup of edge attributes and the fact that all cycles were 
removed during graph optimization. This means edge attributes can be set to 
negative numbers without causing infinite loops in the implementation.  The 
reformulation of the problem allowed using algorithms for finding shortest paths in a 
directed graph. To initialize the search for the long path, source node must be 
known. Since the source node, which is the start of the genome sequence, cannot be 
directly identified, a list of potential source nodes is created. A node becomes a 
potential source node, if it belongs to nodes with zero in degree value, i.e. no edges 
are heading to this node. 
The longest path discovery is iteratively executed from all potential source nodes to 
all other nodes present in the graph. To identify all longest paths from a source node 
including the nodes passed on the way, firstly all nodes are extended with additional 
attributes defining the length of the path from the source node to themselves and a 
list of nodes visited on the path. Initial values for the longest path are zero for source 
node and infinity for all other nodes. The list is initialized as empty. 
The computation of the longest paths from source nodes is executed via Pregel 
operator [28], which sends a message with a specific task to each triplet. The triplet 
is a structure containing information about two vertices and the respective edge 
between them. The first step is to define vertex program choosing the vertices for 
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which computation is happening. In the current implementation, the computation 
starts from the source node with path length attribute equal to zero and continues to 
nodes with higher values of the attribute. Since path length attributes are initialized 
as infinity, consequently all nodes are processed in this vertex program. The next 
operation is to send the message with computation details to all triplets. This 
message contains information how edges’ attributes should be updated once being 
processed. The path length attribute is equal to the path length in the source nodes 
added with current edge attribute in the triplet, if source node attribute is smaller 
than destination attribute subtracted by the triplet attribute. Additionally, the path 
steps attribute is updated with values of source nodes joined with the source node 
itself. This will guarantee that the triplet attribute always comes from the longest 
known path at the time of computation. Tasks for updating triplet attributes are 
merged for each triplet, which has final path length attribute that is not a subject to 
change. This ensures the computation of the longest path is deterministic. The exact 
implementation is provided in Listing 6. 
 
val graphShortestPaths = graphInfinite.pregel(( 
  Double.PositiveInfinity,  
  List[VertexId]()),  
  Int.MaxValue,  
  EdgeDirection.Out)( 
  (nodeId, distance, newDistance) => 
    if (distance._1 < newDistance._1) distance 
    else newDistance, 
  triplet => { 
    if (triplet.dstAttr._1 - triplet.attr > triplet.srcAttr._1){ 
       Iterator((triplet.dstId,  
  (triplet.srcAttr._1 + triplet.attr, 
    triplet.srcAttr._2 :+ triplet.dstId))) 
    } else { 
      Iterator.empty 
    } 
  }, 
  (a, b) => if (b._1 > a._1) a else b); 

Listing 6: Identification of the longest path 

Executing the discovery of the longest paths outputs a graph structure with 
computed attributes for each node, i.e. how to get to the node and what is the path 
length. The graph can still contain unvisited nodes that are not connected to the 
graph structure. These are identified by having their path length attribute equal to 
infinite and are consequently removed from the working set. In the following steps, 
the longest path is found for each source node, paths connecting less than three nodes 
are deleted, and all remaining paths are sorted from the longest to the shortest for 
further analysis and performing contig discovery. 
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5.3.8. Contig Discovery 

Contigs are iteratively discovered by processing the list of all long paths. The 
processing is executed while there is a long path, extracted by the process described 
in the previous chapter, left in the set. One of the long paths is chosen according to 
ordering by primarily the number of nodes in the longest paths. If two paths with the 
same number of visited nodes exist, the one with higher path length is considered as 
more superior. 

Once a path is being analyzed, all other long paths containing any of the nodes being 
currently processed are deleted. Therefore, the list of long paths is getting smaller 
after each iteration. Furthermore, the nodes present in the path are filtered to enable 
concatenation of resulting contig. Before the actual contig is provided, overlaps 
between duplets of nodes are found and substituted by relevant sequence string. In 
the end, the first read is taken as a whole and concatenated with suffixes of all other 
reads visited on the analyzed path. The contig is then written to disk with a unique 
identification. The process is repeated until the set of long paths is empty. Output 
file on disk can, therefore, contain multiple contigs. 

  



40 
 

5.4. Execution 
The genome assembly application is submitted to the Spark cluster via the spark-
submit program from development computer. Prior to the submission of the 
application, it is necessary to place input data, the application binary file and all 
required libraries on shared storage available to the whole cluster. The Spark submit 
program has a wide range of configuration that can be applied on submitting an 
application. Each parameter has a significant effect on application execution. 
Therefore, much testing was performed to fine tune parameter configuration to suit 
developed genome assembly application perfectly. Description of used parameters and 
advised values are following. 

Parameter deploy-mode defines the location of Spark driver node. Mainly due to 
latency issues, cluster mode is selected. In cluster mode, the driver is started and 
runs within the cluster. The address of master node managing the cluster where the 
application is executed is configured by the master parameter. Respectively, 
executor-memory and executor-cores specify the maximum amount of RAM and 
CPU cores to be available per worker node during the application runtime. The total 
number of executors utilized is set up by num-executors. Since Spark driver 
handles delegation of computation to worker nodes, it needs additional resources for 
bigger tasks. RAM available to the driver can be increased by 
spark.driver.memory. The driver is also responsible for gathering results of 
operations on serialized data. If the result is higher than the configuration of 
spark.driver.maxResultSize, the execution of the job is halted. Movement of data 
between workers and disk I/O operations are very expensive from the time 
perspective, but fortunately the size of data can be lowered using compression 
controlled by spark.rdd.compress switch. 

Partitioning and caching of data turned out to be a crucial aspect of execution. 
Caching preserves selected data structure in RAM memory of worker nodes for easy 
and fast access. Only structures accessed frequently should be cached to save RAM 
memory for other computations. Caching is enabled for objects on code level by using 
cache() function. The number of partitions of created RDDs is defined by 
spark.default.parallelism parameter. RDD is split into chunks and configured level 
of parallelism is provided on the data level, meaning that all partitions are processed 
concurrently if enough resources are available. Too many partitions may cause a 
communication overhead between worker nodes and the driver. Also, the testing 
indicates that the size of partitions should be at least 10 MB. For larger datasets, 
calculating parallelism as executor-cores * num-executors works perfectly fine. 

Spark submit program also requires specification of the main class in the binary file 
by parameter class followed by the location of the binary file. Afterward, arguments 
for application are provided in the following order 

<input file> <output directory> <minimum overlap> 
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The input file contains reads in FASTA or FASTQ format that are assembled during 
execution. Output directory is a location where assembled genome is saved. Minimum 
overlap defines the minimum number of the same base pairs between reads to 
consider them as overlapping. 

The configuration of submitting program was studied from Spark documentation [57], 
and testing was performed on a Spark standalone cluster later used for testing 
purposes. An illustration of submit command is provided in Listing 7. 

 
spark-submit \ 
    --deploy-mode cluster \ 
    --master spark://147.251.253.10:6066 \ 
    --executor-memory 8G \ 
    --executor-cores 4 \ 
    --num-executors 5 \ 
    --conf spark.driver.memory=16g \ 
    --conf spark.driver.maxResultSize=16g \ 
    --conf spark.default.parallelism=4 \ 
    --conf spark.rdd.compress=true \ 
    --class "main.scala.run.CCAssemblyJob" \ 
    /ngs/run/assembly_2.10-1.0.jar \ 
    /ngs/input/ecoli.fastq /ngs/output/ 90 

Listing 7: Example of the Spark submit command 

The result of genome assembly execution is a set of contigs. The Spark 
implementation groups found contigs into a single file and saves it into specified 
output directory. The output file consists of separator lines, lengths of each contig 
and respective contig sequence as shown in Listing 8. 

 
############## CONTIG ################# 
 Length=185bp 
GGAGGAGCACGAAGGTTGGCTAATCCTGGTCGGACATCAGGAGGTTAGTGCAATGGCATAAGCCAGCTT
GACTGCGAGCGTGACGGCGCGAGCAGGTGCGAAAGCAGGTCATAGTGATCCGGTGGTTCTGAATGGAAG
GGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAACAGGCTGAT 
 
############## CONTIG ################# 
 Length=172bp 
TTGCTGATTACGTGCAGCTTTCCCTTCAGGCGGGATTCATACAGCGGCCAGCCATCCGTCATCCATATC
ACCACGTCAAAGGGTGACAGCAGGCTCATAAGACGCCCCAGCGTCGCCATAGTGCGTTCACCGAATACG
TGCGCAACAACCGTCTTCCGGAGACTGTCATACG 

Listing 8: Example of genome assembly output consisting of 2 contigs 
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5.5. Beyond the Assembly 
The huge amount of data produced by next-generation sequencing requires an 
effective and targeted analysis to be implemented. After the reads are provided by a 
sequencer, some analysis can be done without even constructing the whole sequenced 
genome. One of such points of interest could be to classify a set of reads into two 
groups, those which contain positive and negative samples of a disease or DNA 
subsequence. The simple approach would be to assemble the whole sequence and to 
search for a particular part of the genome within its content. However, there is a 
second possibility brought by PN algorithm [58]. Using this algorithm, classification 
can be done even without gene assembly by analyzing the short reads. The next 
chapters suggest a parallel implementation of the PN algorithm. 

5.5.1. Problem Definition 

Two types of reads can be considered as an output of NGS machine. Each read from 
the initial multiset S can either belong to a negative SN or a positive SP group. The 
reads coming from the negative samples, e.g. cover healthy samples, can be described 
as 

SN = {{s1,s2,…,sn}} 

where si are particular reads, the reads coming from positive samples, e.g. diseased 
samples, as 

SP = {{s1,s2,…,sm}} 

The training set contains samples marked with corresponding negative or positive 
label. The goal is to compute PN ratio PNi for each single read in the input multiset 
S such that 

PNi = nPi / nNi 

Where nPi is the number of occurrences of read i in positive set SP and nNi is the 
number of occurrences of read i in the negative set SN. A trained classifier consists of 
distinguished sets of positive and negative reads and a threshold value Θ. If the PN 
ratio is higher than proposed threshold Θ, then the sample is marked as positive. In 
the other case, the sample is marked as negative [58]. 

5.5.2. Distributed Implementation 

The proposed distributed implementation of PN algorithm utilizes MapReduce 
programming style using the map and reduce jobs available in Spark. First of all,  
negative and positive samples are loaded into Spark RDDs, creating  RDDs that 
represent sets SN and SP. In the later step, each read sequence is mapped to value 1, 
which is later used to represent the number of occurrences of that particular read 
inside the set. The same is done for positive and negative sample sets. 
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In the reduce step, the read string is used as a key. All occurrences of the key are 
counted and new RDDs are created, consisting of key si and value ni, where si is 
the read string and ni is the number of occurrences within the particular set. 

The final stage of the proposed distributed PN algorithm using MapReduce has two 
functions applied to the dataset. Both positive SN and SP RDDs are joined and at the 
same time the occurrence count is mapped to calculate PN ratio for each of the read 
strings presented in any of the RDDs creating final RDD SPN. Figure 12 shows step 
by step the execution of actions including temporary results. 

 

Figure 12 - MapReduce implementation of the PN Algorithm 
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5.6. Summary 
Deliverables of the implementation consist of end-to-end assembly workflow and 
commissioned test environment. The implementation covers main steps of de novo 
genome assembly, starting with filtering of the input dataset. Only unique reads are 
preserved and cached. The next step is to identify overlaps between reads that are 
further used to build edges between reads. An overlap graph with only connected 
edges is created. Identification of strongly connected components is used to remove 
unwanted cycles in the graph. Subgraphs, each consisting of exactly one weakly 
connected component, are extracted for the discovery of the longest paths. The 
longest path for each such subgraph is found and contigs are reconstructed based on 
the visited nodes in the path. Additionally, an example of possible genomic data 
analysis represented by PN algorithm is developed in a distributed manner. 

On the one hand there are the strengths of the solution, which are a generally 
parallelized approach to tasks and usage of standard and verified libraries where 
applicable. On the other hand, unavailability of heuristics such as pruning of spurs or 
the usage of exact matching can be considered as solution weaknesses. 

The expectations before executing tests are that proposed distributed solution will 
perform worse than the referential application on the same amount of computation 
resources, due to Spark cluster overhead and omit of some heuristics. Though, it is 
expected that the scalability on a growing number of computation resources will be 
clearly visible. An identity function implemented as exact matching might produce 
shorter contigs, resulting in a lower N50 quality value. These are only preliminary 
expectations, which can be denied or confirmed by test results. 
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6. Assembler Evaluation 

The subsequent chapters describe the comparison testing between a referential 
sequential assembler and the distributed assembler developed per description in 
Chapter 5. Referential sequence assembler will be represented by SAGE, described in 
detail in Chapter 4.4.6. SAGE is selected because it is also based on the construction 
of an overlap graph. Also, it implements many of graph optimization techniques 
currently available for overlap graphs. This makes it a very powerful representative 
of overlap graph based de novo assemblers. 

Firstly the environment setup and test details are provided, following by the 
definition of test scenarios and metrics. There are 2 separate groups of performed 
tests, one focusing on the performance and scalability, the second one on sequence 
assembly quality. Additionally, the distribution of tasks across available resources is 
examined as well to identify the level of parallelism. In the end, test results are 
analyzed and strong points of both compared solutions are identified. The goal is not 
to outperform SAGE, but rather to indicate the correct routing of Spark based 
assembler and fulfillment of requirements in the scope stated in Chapter 5.1. 

6.1. Environment Description 
The test environment for SAGE was a CentOS based server scaled from 1 CPU with 
4GB RAM up to 8 CPUs with 32GB RAM. Runs comparing the performance with 
the distributed solution were executed with the top configuration. 

The distributed implementation ran on a standalone Spark cluster built specifically 
for the purpose of testing and not used by any other users. It consisted of one master 
node and 5 additional worker nodes. Each node had the same configuration, 4 CPUs 
and 16GB RAM. The shared storage was implemented as a shared file system located 
on the master node. Limiting of resources during scalability testing was done by 
setting maximum available resources via configuration during submitting jobs to 
Spark cluster. 

The testing input data in FASTQ format was obtained from Assemblathon 
challenges [59], it is an ecoli bacteria reads set with total 6,355,877 reads. These reads 
were cleaned before the test execution, each read had length 101 base pairs. During 
the execution, the minimum overlap length for both compared solutions was set to 
90. To identify the behavior of algorithms with different size of input data, FASTQ 
file was truncated to 100,000 reads and then gradually incremented by 100,000 reads 
up to the total length. The file size in a non-compressed format was 766MB. 
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6.2. Performance 
During performance testing, scalability of both solutions is evaluated. The scaling is 
considered from the data perspective as well as increasing computation resource. 
Both viewpoints provide outlook how solutions behave in very data and resource 
complex applications in genome assembly field. The main purpose is to assess, 
whether the Spark based assembler is heading the correct way to provide a 
computationally scalable solution while making no trade-offs in quality. To support 
this, a series of figures and comparisons with SAGE assembler are set up and 
evaluated. 

6.2.1. Data Growth 

The test consisted of providing both solutions with equal resources for computation 
and iteratively executing the run with changing size of the input dataset. At the 
start, 100,000 reads were used. Each following run, additional 100,000 reads were 
added to the dataset, until 5 million reads input dataset was reached. Every run was 
repeated 10 times to approximate the results. The main observed metric for this 
particular test was runtime. Available computation resources were 8 CPU cores and 
32 GB of RAM. 

 

Figure 13 - Data growth test results 

Figure 13 provides the number of reads in the input dataset on the horizontal axis 
and time needed to assemble the reads on the vertical axis. It is clearly visible that 
SAGE has a faster performance throughout the growing dataset. The solution based 
on Spark seems to perform especially slower than SAGE on small datasets up to 900 
thousand reads, being more than 3 times slower. The slowdown ratio gets lower with 
growing dataset and stabilizes between 1,5 and 1,9 slowdown rate on datasets with 
more that 1,5 million reads. The figure also shows that runtimes for the same dataset 
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differ per runs for both solutions. Whereas SAGE shows minimal differences for small 
datasets and stays under 5% for datasets over 1,5 million reads, the Spark based 
assembler runs with a higher deviation of assembly times reaching up to 10%. 

There are a couple of reasons behind the gap between the two implementations. The 
first one is that SAGE uses more graph optimizations and not all of them were 
implemented into the Spark based assembler. An example of such graph optimization 
technique missing in Spark implementation is the removal of dead ends. Further 
improvements and optimizations may shrink the runtime gap or completely remove 
it. Another reason for gap occurrence is the architecture difference between the two 
solutions. SAGE, based on C++, runs directly on a host system as a process with no 
middleware layer. On the other hand, to run a Spark application, it is necessary to 
have a Java Virtual Machine (JVM) started on all cluster nodes. Spark nodes are 
then started within these JVM and only after that application can be deployed to 
Spark cluster. This provides an overhead in resource consumption and 
communication between nodes, but thanks to this a high level of scalability is 
available. 

6.2.2. Scalability 

The focus of hardware scalability test was to investigate and compare runtime of 
both assembly solutions while changing the number of available computation 
resources. The entry tests were performed with the configuration of 1 CPU core with 
4 GB of RAM. For testing of SAGE, it was necessary to alter the whole server 
configuration via the cloud self-service portal after each test execution. It means that 
the server configuration was changing from 1 CPU core with 4 GB of RAM up to 8 
CPU cores with 32 GB RAM, which was the maximum available server configuration 
at the time of test execution. The resource unit added after each test was 1 CPU core 
with 4 GB of RAM. Performing the scaling test on Spark cluster was rather simpler 
since the Spark application submit command provides a configuration for resources to 
be used during computation.  The configuration of parameters executor-memory and 
executor-cores was gradually increased to model growing resources. The starting 
configuration was 1 CPU core with 4 GB of RAM, and by the same unit size, it was 
increased up to 16 CPU cores with 64 GB of RAM. The resources could grow even 
higher by adding more nodes, but stated configuration was sufficient to investigate 
scalability possibilities. Each test was executed 10 times to approximate the results. 
The input dataset used for all tests consisted of 1 million reads. 

The scalability test discovers that SAGE has a very limited scalability potential. It is 
able to run only on one server and can utilize only one CPU core. Adding more CPU 
cores does not result in any significant improvements. Also, SAGE uses only an 
amount of RAM proportional to the amount of input data. Once all input data can 
be stored in RAM, no advance in runtime is visible. Although Spark implementation 
still preserves a runtime gap after SAGE, it proves that it is scalable. When running 
the Spark assembler on 1 or 2 CPU with up to 8 GB of RAM, the speed of assembly 
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is extremely poor. A huge decrease in runtime is visible after adding third CPU core 
and increasing RAM to 12 GB.  This boosts up performance and starts a gradual 
decline in the time needed for assembly. From this point, the scaling results in a 
decrease of runtime until it is at half of its origin. In other words, the algorithm 
works two times faster on 10 CPU cores with 40 GB RAM than on 3 CPU cores with 
12 GB RAM. After this point, no significant decline was recorded, and runtimes 
oscillate around 3 minutes. 

 

Figure 14 - Resource scalability 

The results of resource scaling test can be divided into three segments from the Spark 
assembler perspective. The first segment is during the tests with 1 and 2 CPU cores. 
These assemblies suffer from insufficient resources and therefore a lot of cache 
clearing and usage of persistent storage for temporary data. Since file access times to 
move data from and to persistent storage is higher than the operations within RAM, 
total runtimes are heavily impacted. This issue is overcome by adding sufficient 
resources, which in this test are 3 CPU cores and 12 GB of RAM. From this point, 
the second segment of results is visible, characterized by efficient scaling. From 3 
CPU cores and 12 GB of RAM up to 10 CPU cores and 40 GB of RAM, adding 
resources results in the dropping of processing time. Effective scaling happens during 
this segment, where resources are utilized efficiently to provide the best possible 
runtime. Afterward, over-allocation of resources happens. The same runtime 
characterizes the over-allocation segment despite increased computation power. Since 
all resources are already allocated efficiently, adding more does not improve runtime 
and results only in unused computing power. 
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6.3. Quality  
The quality of genome assembly was measured by the standard technique N50, which 
is described in detail in Chapter 4.6. N50 quality assessment depends on a contig 
length. The contig length can be controlled by minimum overlap threshold input 
parameter of both assemblers. Lower values of the parameter give the assembler more 
flexibility during overlap identification since lower thresholds generally mean more 
options how to organize reads into the overlap graph. Input dataset for the quality 
test consisted of 1 million reads  and the minimum overlap parameter was iterated 
from 66 up to 95. 

Figure 15 represents an evaluation of N50 assembly quality, higher values are 
considered of better quality. As it is visible, quality strongly depends on the selection 
of the proper value for the minimum overlap parameter. 

 

Figure 15 - N50 quality assessment 

SAGE managed to obtain the highest N50 value in the investigated parameter 
interval. Spark generally assembles output of a better quality and is less turbulent 
during the changes of minimum overlap parameter. Also, the maximum N50 value of 
Spark implementation is exactly for the same minimum overlap value as in SAGE’s 
case. Spark based assembler achieved excellent results and well-assembled contigs 
from N50 quality perspective. 

100 

150 

200 

250 

300 

350 

400 

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

N5
0 

Minimum overlap [bp] 

SAGE Spark 



50 
 

6.4. Parallelization Properties 
Parallelism assessment of Spark based assembler is done via Spark’s history event 
user interface [60]. The investigation provides information at all execution levels, on 
all jobs level, in the specifically selected jobs, and on the stage level. 

Overall execution of jobs that together represent application run is provided in 
Figure 16. The main application functions such as pre-processing of reads, overlap 
discovery, graph optimization, identification of the longest paths and assembly of 
contigs are identified and highlighted. It is also visible that five executors are added 
at the beginning of runtime and utilized throughout the whole execution. Parallelism 
in Spark can be represented on job, stage and data level. Figure 16 presents 
parallelism property on the job level and clearly shows that concurrent job execution 
occurs.  

 

Figure 16 - Overview of all executed jobs 

Job length and number of jobs in three highlighted parts of application differ. The 
reasons behind this are data operations executed on the dataset. During data loading 
and all to all read overlap discovery, the application works with a relatively huge 
amount of data in one structure that is processed within one job. The parallelism in 
such jobs happens on stage and data levels. Further in the algorithm, data is split 
into smaller chunks due to their attachment to various connected components. Such 
granulated data is then processed via multiple jobs at once since graph optimizations 
or the longest path discoveries run in each weakly connected component separately. 
Jobs performing tasks on different connected components can run concurrently and 
are rather quick, resulting in short jobs in the second part of the application run. The 
last part of application responsible for contig assembly based on provided paths looks 
up read strings based on their identification and concatenates them into final contigs. 
Jobs executing this part of the application are highly parallelized, atomic and fast. 
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The last job in Figure 16 in the bottom right represents saving assembled sequence to 
file. 

To gain more information on long running jobs, a breakdown to the stage level is 
essential. Stages of long running jobs such as the one provided in Figure 17 consist of 
particular transformations and actions, for example map, reduce, collect or 
repartition. Map tasks can be executed in parallel since they are applied per partition 
and do not depend on each other. On the other hand, repartition task needs all map 
tasks to be finished due to its dependence on the result. Only after that, repartition 
is performed. Following repartition, the dataset is processed to remove duplicates 
leaving only distinct values in the result. The distinct action also waits until all 
preceding stages are completed. The map, repartition and distinct actions described 
refer to the part of the application, where all to all read comparison is performed to 
identify all overlaps and create unique edges out of the results. Repartition is applied 
to lower the increased number of partitions obtained while joining the overlap sets. 

 
 

 

Figure 17 - Job detail 

The details for each stage in Figure 18 show how partitions of data are processed 
within its execution. Parallelism on data partition level is the lowest visible 
concurrency available on Spark cluster. Partition level parallelism means that same 
stage is applied to data present in different partitions on worker nodes. 

 

 

Figure 18 - Stage detail  
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6.5. Result Discussion 
The performance and quality tests were executed successfully. It was possible to 
generate a sufficient amount of runtime data for the comparison of solutions. During 
the test execution, a few additional metrics were discovered and assessed, which are 
not directly connected to sequence assembly itself, but are generally important for 
product evaluation. These metrics are ease of use, configuration possibilities, 
deployment and portability properties. 

During the performance testing, a runtime gap between SAGE and the Spark 
implementation in favor of the first solution was revealed. SAGE implementation 
gains its advance due to more heuristics applied during the graph optimization. 
However, it is important to note, that overall complexity of both solutions is similar 
and therefore the gap can be closed by adding more heuristics to the Spark 
assembler. Moreover, Spark introduces additional computation layers for the 
purposes of resiliency and vertical scalability. These layers consist of the big data 
computing engine, communication between Spark nodes and Java virtual machines. 
Despite the overhead and runtime gap, no significant issues of the Spark 
implementation were identified when the input dataset is growing. 

The tests also indicate, that the Spark implementation of genome assembler can 
efficiently lay out over available resources. It scales with growing resources until the 
optimal allocation is reached. Available Spark cluster resources can, therefore, be 
utilized evenly and solution adapts well to changing conditions. 

When analyzing the assembly quality with N50 criteria, the tests show no impact of 
parallelization to the overall quality. SAGE and Spark assemblers use different 
approaches to assembly, but the quality results on different datasets and with 
different input parameters have the same trend for both solutions. Generally, Spark 
constructs longer contigs, but the maximum N50 value measured during testing was 
produced by SAGE. The tests reveal that the quality of assembly using the Spark 
implementation is comparable to the referential assembler’s quality. This is even 
emphasized by the maximum and minimum quality points achieved with the same 
settings of the two solutions. 

The parallelism of Spark solution is on a very high level and is visible throughout all 
monitored layers, from jobs down to data location. The distribution of work over 
available executors does happen as well, providing horizontal scalability. Vertical 
scalability on Spark nodes is also essential and results in improved performance. 

The comparison of assemblers from deployment perspective is difficult because the 
installation of environment differs. SAGE requires a Linux-based system with 
numerous installed libraries to be prepared. On the other hand, Spark assembler 
requires ready to use Spark instance or cluster installed and properly configured. The 
advance of the Spark assembler is that it can be deployed to any Spark cluster 
available, either public or built on-premise. Also, such Spark clusters can be reused 
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for multiple purposes, not only for genome assembly. Additional positives of using 
Spark based assembler are high availability and resilience to node failures. That 
means genome assembly on Spark cluster will not be negatively affected in case of 
node failure or outage. 

Spark based assembler also excels in the field of easy usage. It gives a very practical 
insight into application runtime via monitoring tool of the cluster with its graphical 
user interface. Location of large files in very common HDFS storage can be retrieved 
only by Spark based assembler, which is a significant advantage. Spark applications 
can also be remotely executed on a cluster from development computer using submit 
actions, which is a feature not available in SAGE. SAGE must be executed directly 
from the machine with the data and computation resources. Both assemblers provide 
easily readable output ready for further analysis. 

From the configuration perspective, both assemblers expect the same parameters on 
the input. Spark excels in configuration on job level, making it possible to set 
resource handling based on specific dataset being processed. 

 

Figure 19 – Overall results illustration 

In order to sum up the overall results taking into account all investigated metrics, 
Figure 19 is extracted. The review is based on the individual test results and 
experience with both assembly solutions. A brief analysis of the figure shows SAGE 
outperforming the Spark implementation in runtime and achieving slightly better 
N50 quality values in certain cases. Spark assembler accomplishes much better rating 
in scalability and configuration perspective. It also has improved portability and ease 
of use, when compared with SAGE. 
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7. Future Work 

The evaluation of distributed Spark implementation for de novo genome assembler 
shows that the chosen direction and idea have a potential to bring cloud computing 
closer to the genome assembly and analysis. Though the provided implementation is 
not yet ready for genome assembly commercial use, it does provide a concept that 
can be further enhanced. 

Further improvements shall be mainly focused on closing the runtime gap between 
traditional assemblers and the Spark implementation. This can be achieved by 
further optimizing the overlap graph. Suitable candidates for implementation are 
reducing of bubble structures and removing dead ends that will result in faster 
traversing of a more compact graph. Other used heuristics can also be improved to 
perform better, such as a more advanced implementation of transitive edge reduction. 
Quality assessment of base pair level was put out of scope for this implementation, 
but for the Spark solution to be competitive in the future, it should be added to 
consider read quality during assembly. Today’s DNA sequencers provide reads output 
of a high quality, but there is still a risk of specific read being sequenced with an 
error. 

As for any application focused on great performance, it is necessary to debug and 
profile it using available tools. Despite studying vast information about the correct 
distributed design and Spark’s functionality, current distributed implementation 
should be assessed by experts on distributed data processing. This may result in 
further improvements in the performance. Also, there are multiple tools on the 
market for application profiling and application performance monitoring, which could 
be applied to find weak spots requiring further design and development 
modifications. 

From the usage perspective, the developed application can be extended to support 
multiple input and output formats. The most common were chosen and implemented, 
but there are many other that could be enabled to widen the supportability of 
multiple DNA sequencers. 

What is more, the applicability of big data computing engines on the cloud should 
not be limited only to sequence assembly. Multiple other problems can benefit from 
distributed computation. Classification of reads is one of the possible applications 
that was provided in  5.5. However, there are tons of other opportunities waiting for 
big data challenges, starting from searching of specific subsequences in large genomes 
up to clustering of organisms based on their DNA structure and similarity. 
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8. Conclusion 

Next-generation sequencing is changing the world around us. The biological footprint 
of the technology is enormous, diagnostic medicine based on DNA is about to enter 
our daily lives. The sky is the limit when it comes to next-generation sequencing, due 
to applicability in fields such as agriculture, forensics, studying of organisms’ 
evolution and much more. Innovation happening in the field of genomics is enormous, 
strongly impacting the rapid development of sequencing and analysis technologies. 
The bioinformatics sector must keep pace with these developments in order to 
support the constantly growing requirements. This thesis shows that using big data 
technologies can be the way forward, putting de novo sequence assembly as an 
example. 

A truly distributed, scalable and cloud-ready de novo sequence assembler was 
developed. The chosen engine for big data processing and cluster setup was Apache 
Spark. This choice was a perfect fit for this purpose since additional Spark libraries 
for graph processing efficiently utilized distributed architecture. Scalability was 
provided out of the box and development was pleasant thanks to interactive shell 
and monitoring interface. Spark also seamlessly integrates with existing big data 
solutions including, but not limited to Hadoop. Similarly to NGS, Apache Spark is an 
innovative service improving big data solutions in terms of in-memory capabilities, 
resiliency, multi-tenancy and development speed. 

A de novo sequence assembly application designed on top of the Spark framework 
was built with parallelism, performance, quality and innovation in mind. A lot of 
available solutions and approaches were analyzed to choose the right strategy. The 
final decision was to build a solution based on overlap graph, utilizing heuristics 
based on graph theory, especially strongly and weakly connected components to parse 
the overlap graph. This turned out to be a very good decision that provided 
fulfillment of the requirements. Algorithmically, the distributed solution remains a 
proof of concept. Sequence assembly is an intricate task whose complete resolution 
lies outside the scope of this thesis. 

Spark cluster setup was one of the most important work items performed during 
workflow preparation. A dedicated cluster on standalone servers was built and 
configured for maximum performance for developed application. The application was 
deployed to the Spark cluster and deeply analyzed during functional and performance 
testing. All test results were evaluated and compared with traditional de novo 
assembler based on the OLC algorithm. The application developed on the top of 
Spark framework proved to be competitive, but still having points in which it could 
be improved. 

The gained knowledge during the design, implementation and testing is an enormous 
benefit for myself. I have extended my knowledge of distributed computation engines 
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and learned how to build, configure and execute big data processing jobs. Also, I 
studied under the hood properties of Spark engine, which helped me better 
understand distributed systems and develop a better application for that purpose. My 
knowledge improved not only in the field of big data, but I also made a huge step in 
learning about next-generation sequencing and how it works from the biological 
perspective. Deeply studying the sequence assembly problem and available solutions 
helped me understand the challenges bioinformatics and geneticists face when it 
comes to DNA assembly. 

The usage and importance of next-generation sequencing are rising and there is no 
sign of this trend to be changed. Cloud computing is bringing NGS-related processes 
into the future, and Spark sequence assembly solution developed within this thesis 
fits into this landscape. By combining high-throughput sequencing technologies with 
cheap cloud computing resources, maximum potential can be achieved. This way 
NGS solutions and DNA analysis could be really available to everyone. 
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Appendix A 

CD Content 
 

Attached CD contains: 

• Assembler Source Code - /Source code/Assembly 
• PN algorithm Source Code - /Source code/PNRatio 
• Example input and output dataset - /Data 
• Thesis in PDF - /Thesis 


