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Abstract
Given the abundance of various types of
satellite imagery of almost any region on
the globe we are faced with a challenge
of interpreting this data to extract useful
information. In this thesis we look at a
way of automating the detection of ships
to track maritime traffic in a desired port
or region. We propose a machine learn-
ing approach using deep neural networks
and explore the development, implemen-
tation and evaluation of such a pipeline,
as well as methods and dataset used to
train the neural network classifier. We
also take a look at a graphical approach to
computation using TensorFlow [13] which
offers easy massive parallelization and de-
ployment to cloud. The final result is an
algorithm which is capable of receiving
images from various providers at various
resolutions and outputs a binary pixel-
wise mask over all detected ships.
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images, remote sensing
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Abstrakt
Vzhledem k velkému množství dostupných
satelitních snímků téměř z jakékoliv časti
zeměkoule se potkáváme s úkolem inter-
pretace těchto dat k extrakcí užitečních in-
formací. V této práci se díváme na způsob
automatizace detekce lodí pro sledování
námořního provozu v zadaném regionu
nebo přístavech. Navrhujeme přístup z
hlediska strojového učení s použitím hlu-
bokých neuronových sítí a vyšetřujeme
vývoj, implementaci a ohodnocení tako-
vého algoritmu, spolu s metodami a da-
tovou množinou, které jsou použité pro
trénování klasifikátoru. Také se díváme
na grafový přístup k výpočtu s použitím
TensorFlow [13], který poskytuje možnost
snadné masivní paralelizace a rozmístění
na Cloud. Konečný výsledek je algoritmus,
který je schopný přijímat obrázky od růz-
ných poskytovatelů v různém rozlišení a
vytvářet binární masku nad všechny dete-
kované lodě.

Klíčová slova: strojove uceni, satellitni
snimky, dálkový průzkum Země
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Chapter 1
Introduction

1.1 Motivation

We find ourselves surrounded by a plethora of technologies capable of inter-
acting with the environment and gathering all types of data, ranging from
motion to sound to visual data obtained by detecting various parts of the
electromagnetic spectrum. A challenge then arises in the interpretation and
extraction of useful information from various types of data. One of the most
information-rich sources and arguably most difficult to interpret is visual
data.

Nowadays we can take advantage of the growing amount of satellites in
close-earth orbit equipped with high-end cameras to infer current information
about the globe on a large scale, ranging from exploration to environmental,
social and economic trends. Being able to analyze and interpret satellite
imagery in an automated fashion can give us insights to useful information
and enable us to make better decisions whether it concerns the business,
environment or science in general.

1.2 Aims

The aim of this thesis is to design, implement and experimentally evaluate a
deep neural network pipeline for detection and classification of objects in high
resolution satellite images. The work includes algorithms and techniques for
preprocessing the images as well as reasoning, methodology and algorithms for
extraction of suitable training and test sets which are used for optimizing the
proposed neural network architectures for the given task. The work is expected
to receive large amounts of raw images and infer required information, such
as the amount of area covered in the image by those objects. Consequently
the detection and classification architecture is expected to be able to handle
images from various providers and at various resolutions. It should also able
to deal with non-ideal situations like excessive cloud coverage and defects
such as severely over/underexposed images.
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1. Introduction .....................................
1.3 Thesis structure

The following chapter gives a brief history of the advent of deep learning [30]
in image recognition as well as an overview of the theory and functionality
of convolution neural networks which make up the heart of the classification
algorithm of this work. This is followed by an overview of the field of remote
sensing, including information about how satellite technologies are used to
provide us with large amounts of rich visual data. Having that knowledge,
the reader can get an understanding of the possibilities that emerge from
having efficient automated methods of infering useful information from large
amounts of raw data.

Part II focuses on detailed methodology and implementation of the pipeline
as well as analysis of the functionality and mechanisms of the underlying
neural networks in both training and inference. We also take a look at the
implementation of the neural network in TensorFlow [13] and talk about the
advantages of implementing such a structure as a computational graph rather
than using conventional means.

Part III demonstrates the achieved results and methods that are used
to evaluate the architecture and discusses possible improvements and other
viable methods that could have been used to approach the task. It is then
followed up by a conclusion.
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Chapter 2
Related work

2.1 Deep learning in image recognition

2.1.1 A short overview of traditional image
recognition/analysis techniques

Since the advent of the field of computer vision researchers have been develop-
ing various techniques which can enable a computer program to understand
digital images. This concept is divided into various categories. The first one
is image classification, which is the task of classifying images into a predefined
category e.g. person or airplane. This usually involves using the information
from the whole image and predicting one or several labels for that image.
Object localization on the other hand is the task of predicting a bounding box
around an object or multiple objects of interest in the image. A more recent
and more difficult task in image recognition is semantic segmentation, which
is basically a pixel-wise labeling of predefined categories in the image. This
has been further developed into ‘instance’ segmentation where not only do we
want to label each pixel belonging to a predefined category with a separate
value, but we also want to distinguish between the multiple instances of those
objects in the image.

Figure 2.1: Manually annotated examples: Object localization (bounding boxes),
semantic segmentation (purple masks), instance segmentation (each ship has its
own color to distinguish between instances).
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2. Related work.....................................
Over the years researchers have been developing various techniques to

enable them to solve the above mentioned challenges. Some of them such as
the viola-Jones face detection [58] algorithm and the histogram of oriented
gradients method for pedestrian detection [48] were very successful and made
their way outside academia. The main goal is to transform the raw pixel
information into a more abstract representation, called a feature space, in
which we can use a classifier to infer useful information about the image. Most
of the techniques that achieve this consist of or include some form of convolving
a kernel across the image to aquire a feature map and statistical regional
pooling of information. In the Viola-Jones method they used Haar-features
[58] which are basically weighted adjacent rectangular regions which were slid
across the image, summing up pixel intensities in each region to extract useful
representations. In one paper [48] the authors used histograms of oriented
gradients as the primary feature extractor which was then eventually fed into
a linear SVM classifier [17]. What the above techniques have in common is
that they used shallow features that were hand-engineered by skilled people
who have experience in the field and also often required domain-expertise.
This often results in a fragile framework which only works well in a given task
and fails if the conditions change. This also means that if the task changes
even slightly, the whole feature extractor might have to be rewritten from
scratch, which is very time consuming and expensive. These disadvantages
left researchers in the field searching for a more robust and effective solution.

In 1998 Yan LeCun et al. demonstrated very effective handwritten digit
recognition [34] using neural networks that used convolutional kernels as their
transformation layers which allowed them to achieve over 99% accuracy in
the digit recognition task and re initiated interest in research of using neural
networks for image recognition. Unfortunately, at the time we were severely
limited by lack of computational power and techniques to efficiently train
neural networks to perform more complex tasks so it was largely abandoned
for many years.

The real advent and rebirth of neural networks was in 2012 when Alex
Krizhevsky et al. won the ILSVRC challenge [47] by a large margin with
his 7 layer convolutional neural network [33], code-named AlexNet hence
re-Christening the field with the name ‘Deep learning’. This success was
largely enabled by improvements in the architecture and techniques used to
train the networks and the progress and development of much more powerful
compute resources; notably acceleration by GPU’s. From there on researchers
have developed new techniques and architectures to further improve the
adaptation of deep neural networks into vision recognition with vast amounts
of success and applications in and out of academia.

2.1.2 Deep neural networks

The concept of neural networks has been around for quite a while, but as
mentioned in the previous chapters there have been some serious limitations
which discouraged their use and even completely excluded them from tasks
such as visual recognition. In this chapter we will mention the changes in
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........................... 2.1. Deep learning in image recognition

architecture and methodology, which enable us to benefit from this paradigm
in many fields, one of which is visual intelligence.

The notion of deep neural network simply extends on the model of the
multilayer perceptron (MLP) [45], [46]. By ‘deep’ we simply mean that
there is more than one hidden layer. One of the limitations of earlier fully
connected MLPs when applied to images was that we required a vast amount
of connections between every pixel and the next layer which severely limited
their use due to computational bottlenecks. As a quick example, a MLP with
an image input of size 256× 256 and 256× 256 hidden units in the first layer
would require over 4× 109 parameters for the first layer alone. Another issue
with this architecture, is that we are not exploiting spatial information which
is critical in visual data.

To adapt the notion of the MLP to visual data Yann LeCun et al. [35]
popularized the convolutional transformation layer for neural networks, the
concept of which had already been introduced in 1980 by Fukushima [24].
This technique used the idea of sliding a multiple square convolutional kernels
over the entire image to produce so called feature maps which were fed
into a non-linearity and then as input to the next layer. Using the same
kernel for the entire image meant that we were using a significantly lower
amount of parameters and performing less operations per layer as well as
respecting the spacial information of the image. In between convolutional
layers, max-pooling 1 (subsampling) layers were used which introduced an
implicit invariance to translation of the image. The final convolutional layers
were then connected to a fully connected 2 MLP which predicted output
labels for the images.

Figure 2.2: Convolutional neural network architecture [1].

There are only a handful of algorithms that can be used to train neural
networks, the most efficient of which is a supervised method called Backprop-
agation [46] . The idea is that we perform a forward pass on the network
and store the activations (values) of each neuron. We compare the output
of the network with the Ground truth and calculate the error with respect
to a predefined error function. We then backpropagate the error into every
neuron and update the weights of that neuron in the process. In essence we

1 Subsampling simply means to reduce the size of an image. In max-pooling the feature
map is divided into a grid with 4 values in each square. The maximum value in each square
is then selected for the next layer which now has a resolution of the grid that the previous
image was divided into.

2Fully connected means that every neuron is connected with every other neuron of an
adjacent layer.
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2. Related work.....................................
are looking at how much each neuron is responsible for the error of the whole
network, and correcting that neuron to minimize it.

A major hurdle that had to be overcome in training deep networks was
the issue of preserving the integrity of the gradient whilst backpropagating
it through the layers of the network. This is commonly referred to as the
‘Vanishing gradient’ problem [27] and describes the issue where the gradient
diminishes with each passing layer to the point where it is almost zero
when reaching the lower layers giving insignificant parameter updates at
each time step. This results in the network not learning anything or taking
excessively long to do so. Some attempts to remedy this were made by Hinton
et al. by training the network layer by layer in a greedy fashion [28] in
advance of training the whole network jointly. The issue of the vanishing
gradient was largely improved with the introduction of Relu activation units
by Alex Krizhevsky [33] and various papers describing proper parameter
initialization, notably the Xavier initialization [27] . Various other techniques
have been used/are being used such as batch normalization[33] which is a
layer introduced after each convolutional layer which forces the activations to
have a unit gaussian distribution. Almost all modern deep nets are trained
with SGD optimization [50] algorithms with momentum [54] . Some notable
of these include RMS prop [20] and ADAM [32] and will be mentioned in
greater detail in Part II.

A large stride in the adaptation of neural network to various tasks and
datasets is the concept of Transfer learning [59]. It turns out that the lower the
layers in a deep neural network learn more general features to the point where
the first layer almost always consists of gabor-like and blob-like color filters
[59]. This means that a deep network can be trained on a large annotated
dataset and then the lower convolutional layers can be reused on a different
task as demonstrated in detail in [59]. This is a huge advantage since there
are many tasks, such as this work, where only a very small annotated dataset
is available and that training on it from scratch gives poor results.

2.1.3 State of the art in object detection

In this chapter we will take a look at some modern methods which use deep
neural networks as classifiers for object detection in images as well as methods
that fully exploit the architecture and the advantages of having a powerful
feature extractor.

A classic simple technique of object localization in computer vision is to
simply slide a window of various sizes at all possible locations in the image
and classify the box at every step [19], [57]. This gives a result of multiple
windows, called bounding boxes which can then be post-processed by an
algorithm such as non-maxima suppression [39] to remove overlaps. The
use of a deep neural network as a powerfull classifier for each window can
lead to reliable results which was showed by Overfeat in 2013 [49] who got
state of the art results on the ILSVRC localization and detection challenge.
The obvious disadvantage of this is the very high expense of running a deep
neural net for hundreds or thousands of windows per image. Overfeat [49]
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........................... 2.1. Deep learning in image recognition

improves on this by converting the fully connected layer of the neural net into
a convolutional layer, enabling the network to be run on windows of various
sizes. Thus for a given position we can run classification on bounding boxes
of various sizes efficiently by reusing the computed feature maps, effectively
sharing computation. Bounding box approaches unfortunately do not use the
full potential of a deep neural net and unsuprisingly have been overshadowed
by other more powerfull methods like R-CNN [44].

For single or a fixed amount of objects in an image one can formulate the
localization problem into one of regression [55]. The idea is that we use attach
a regression head to the last convolutional layer in a deep conv net and use it
to regress coordinates and sizes of a fixed amount of bounding boxes and we
use the rest of the trained network, the ‘classification head’ to classify the
object present in each of those boxes. The disadvantages of this is that it is
more difficult to adapt to a variable amount of present objects. An approach
named YOLO (you only look once) [43] uses a similar technique by regressing
a fixed amount of boxes and their confidence not for the entire image, but for
each square in a fixed grid on the image. The results are then filtered and
aggregated to produce the final bounding boxes.

Probably the most efficient and accurate method for object detection is a
technique based on regional convolutional networks, R-CNN [26] . The idea
is that we use a region proposal method such as EdgeBoxes [60] or Selective
Search [56] to find regions of interest (ROI) in the image, which we would
warp innto a fixed size and use a deep neural network to predict the class of
the object that was proposed. This method was then improved by using the
network to convolve the entire image [25] , producing a higher-level feature
map onto which we then project the region proposals and use the projected
area on the feature map to classify the object. Although this exploits the
use of shared computation by only computing the feature map of the entire
image once, we find that the bottleneck of the method is then in the external
region proposal algorithms. A final improved version called faster R-CNN
[44] uses a region proposal network [44] on top of the convolved feature map
to predict scores for anchor-boxes, which are a fixed amount of n boxes of
different shapes and sizes. These boxes are then used as regions which are
classified by the top level classifier. This technique completely eliminates the
need of external region proposals [44] and cleverly exploits the flexibility of
neural network architecture, enabling almost realtime performance.

Another technique for object detection is using a segmentational approach.
The idea is that we input the entire image into the network and predict a
label map for each pixel. There are a few various approaches to this. One
of them, is to convolve the entire image to produce pixel predictions all
at once at various scales and then upsample and concatenate the results to
produce a final pixel map [22]. When using a neural network to predict spatial
information, we get a significantly smaller map than the input image due
to the subsampling layers in the network. The authors of one work [37] use
learnable upsampling layers which reconstruct the image from the high level
extracted features. They also take advantage of so called skip-connections
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2. Related work.....................................
[37], which are methods of using spacial information from higher resolution
lower layers as well as lower resolution semantic information from higher-level
layers to construct a prediction. Noh et al. [40] uses a VGG network to
extract high level features from the image and an upside down VGG network
to reconstruct the semantic map using unpooling (reusing spacial information
from the pooling activation maps) and convolution-transpose. V. Mnih and
G. Hinton used a similar approach [38] to label areal images.

An extension to semantic segmentation is instance segmentation where we
are interested in segmenting and labeling the individual object instances in the
scene. A notable work [18] which won the MS COCO 2015 challenge [36] works
by identifying the instances of the objects in the scene by a region proposal
network as in faster R-CNN and then generating a mask and segmenting
the individual instances. The pipeline is similar to object detection. The
semantic and instance segmentation techniques are significantly more difficult
and require much more work and high-quality training sets [36].

2.2 Remote sensing

Remote sensing is the acquisition of information about an object without
being in direct contact; usually by means of sonar or electromagnetic radiation.
When talking about satellite imagery, we refer to the category of remote
sensing named ‘passive sensing’ using the electromagnetic spectrum. This
means that we are not sending out any signals or information, but simply
observing the reflection of radiation from the sun using a specialized sensors
mounted on the satellite. Satellite imagery has found many uses both in
scientific fields such as Earth sciences and geology to economic, social and
military intelligence niches.

Remote sensing satellites such as the GeoEye[5] and WorldView [12] are
launched into low-earth orbit, which lies at around 600-800km from the
surface. The satellites are deployed into circular sun-synchronous near polar
orbits which means that they pass the equator multiple times a day and stay
at roughly the same angle in respect to the sun which makes it ideal for earth
imagery. At this distance the orbital periods range at about 90 minutes [5]
and satellites can revisit the same points on earth in intervals of 1.1-3.7 days
[12].

The satellites are equipped with state of the art stabilization and sensor
technologies that enable them to acquire accurate high precision images of the
desired location. The onboard sensors consist of multispectral RGB systems,
panchromatic sensors of typically higher resolution, IR sensors which give
additional temperature information and even super and hyperspectral systems
with over 10 and 100 channels respectively for monitoring precise geological
changes. Resolutions of the sensors typically range from 0.5m to 1.6m per
pixel with 0.5m being the legal limit in most countries with the exception of
the US government, who allowed image acquisition at limitless precision and
commercial sale of images at 0.25m panchromatic [11]. Additional information
from the channels could potentially make the task of object recognition easier,
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................................... 2.2. Remote sensing

but it is unfortunately more difficult to adapt because of limitations of transfer
learning [59]. Annotated datasets are difficult and expensive to obtain and
most of the times are not even available to the public. There simply aren’t
networks that are trained on multi channel inputs other than RGB and
grayscale.

The images used in this thesis come from two major providers: Digital
Globe [3] and Planetlabs [8]. The former owns and operates various major
satellites, including the GeoEye and WorldView I,II and III and provides
digital images to many big customers such as Google and Apple. These
images range in resolutions from a few meters , down to 0.5 meters per pixel.
Planetlabs, on the other hand own a constellation of smaller Cubesats [2]
which provide earth imagery at 3-5 meters per pixel. They also differ by their
repeat rates and pricing. Figure 2.3 shows a comparison of two images of the
same port from two different providers at different resolutions.

(a) : Sample from Digital Globe
size: 2000× 2000

(b) : Sample from PlanetLabs
size: 500× 500

Figure 2.3: Comparison of images from two different providers.
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Chapter 3
Methodology

3.1 A naive approach using bounding boxes

The objects that we are trying to detect are any kind of water vessel (ship)
in the image that is discernible by a human being. The most basic way
of handling such a task in computer vision is to use the sliding window
technique. As mentioned in section 2.1.3, the basic idea is that we slide a
window across the image at a fixed stride. At each iteration we extract the
patch corresponding to the location of the window in the image and use some
classifier to classify that patch. If it is classified as the object of interest
then we simply state that the object of interest exists in that patch. Usually
windows of several sizes and aspect ratios are applied to detect objects of
interest in various scales and poses. It could be said this method is basically
a brute-force approach because we are trying windows of many sizes and we
are trying them everywhere. Initially we will only use window of size 128x128
pixels and a fixed stride of (64,64) . A window that is too small does not
fit larger ships inside it and does not have enough contextual information,
whereas a window that is too large gives too much ambiguity as to what is
being classified.

3.1.1 Architecture

We use a simple convolutional neural network (convnet) as a robust classifier
for the sliding window approach in the task of detecting ships. With the
following architecture we attempted to classify the image into 3 classes: ships,
sea and land. For testing we bundle the classes sea and land into a single
background class. The net consists of 3 convolutional layers with 32, 64 and
128 feature maps respectively, followed by dropout [53] after each activation
function with a keep probability of 0.6. The final feature maps are flattened
into a 1-dimensional vector and fed into two fully connected layers 32 units
wide, also each with dropout after the activation with a keep probability of
0.8. The output consists of a vector of size 3 which is fed into a softmax
activation.
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3.1.2 Dataset generation

The dataset is generated manually. An application written in python allows
the user to open a desired image in an interactive figure, select a desired
class, save path and start clicking/dragging across the image to select patches
for the training set. Care has to be taken not to gather false/ambiguous
samples as they can negatively influence the training process. Using this
method a set of about 3000 patches of 128x128 for each class from about 12
different images from image set A 5.1 were obtained giving a total set size of
about 9000 patches. This set is also augmented at training time by random
horizontal, vertical flips and by adding various types of noise to the image
[33]. The feature space size then becomes [128 × 128 × 3 × 256] assuming
RGB input and 8bit pixel color depth.

3.1.3 Training and inference

The architecture is trained with a gradient descent optimizer (α = 10−2) with
momentum [54] with a batch size of 48 for 4500 iterations which is about
25 epochs. On TensorFlow this takes approximately 1 hour on a low-tier
machine with GPU acceleration. The dataset is split with a ratio of 9 to 1 of
training to validation respectively. For every port we subtract the mean for
each color channel before dividing it into patches. No other preprocessing
is done. On the test set of 1000 random patches extracted from image set
A this architecture achieves a true positive rate (TPR) of 92 % and false
positive rate (FPR) of 3 %. However, on a test set of 1000 random patches
extracted from image set B we get a TPR of 60% and FPR of 7% .This
experiment is done to get an idea of how a 5-layer convnet will perform on
such a dataset. It showed that the network is not able to generalize well, i.e.
doesn’t perform well on examples that are very different to the ones that it
has been trained on. This is obviously due to the small, low variance training
set that we have used and because we are training the network from scratch.

Taking a look at the filters of the first layer in Fig. 3.1 we can note that
there are duplicate or similar features and generally there is not much variance
in the range. This is understandable since the network was trained on a
relatively small set which was taken from less than 12 ports. We can compare
the filters to the first layer of the VGG [52] network trained on ILSVRC [47].
The pixels in the image are interpolated because it makes it arguably more
interpretable by the human eye.

We can see from Fig. 3.1 that the weights trained from scratch exhibit
a much smaller variance of colors and have similar or redundant patterns
such as the filter with a single blue dot in the middle which appears almost 4
times.

3.1.4 A slightly different approach

A more targeted way of tackling the issue of object detection is to use a
region proposal method which detects salient points (points of interest) in
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......................... 3.1. A naive approach using bounding boxes

(a) : First
layer weights
of the trained
network

(b) : First layer weights of
the VGG 16 D network

Figure 3.1:

the image and then attempts to use a more narrow classifier on those regions.
This is in contrast to trying a window everywhere in the image, as in the first
approach. As our saliency point detector we use the Difference of Gaussians
(DOG) algorithm with a sigma range of 3 to 5 and threshhold of 0.02 which
were found by trial and error to trigger on most of the objects of interest.
The range is limited to only small blobs. The reason for this is that there is
a large variety in size of the ships and large blobs falsely trigger on clusters
of smaller ships and other larger structures which do not give us any useful
information. After finding the salient points we attempt to classify each point
of interest with a narrower rectangular classifier.

We use a window of size 86× 26 pixels which we rotate in 12◦ increments
at each point of interest. The size of the window was decided by manually
measuring 50 randomly selected ships from various ports and taking an av-
erage. The classifier is trained to classify a whole (or most) of a ship that
is reasonably aligned ( ±15◦) with the window against a ‘background’ class.
Fig. 3.3 shows some positive samples for class ‘ship’

Figure 3.3: Positive samples for class ‘ship’

It is already ominous from Fig. 3.3 that the classifier does not have enough
context 3.3.4 to make an accurate prediction in many cases. Fig. 3.4 shows
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3. Methodology.....................................
an attempt of detection using this method.

Figure 3.4: Classification results using bounding boxes

Due to multiple redundant detections at each point we use a Non-maxima
suppression algorithm [39] modified to allow for rotated boxes. The result is
unsatisfactory due to many reasons. First of all, the ships vary heavily in size
and trying many different boxes for each is computationally infeasable. Due to
the fact that there are regions of the image with many ships of different sizes
stacked against each other, this also means that loose boxes might shadow
smaller ships which eludes their detection.

Figure 3.5: Poor performance due to tightly packed ships

Another issue is that the points of interest are not necessarily in the middle
of the ship and sometimes there is no box that sufficiently captures the entire
ship. As mentioned above, the smaller the box the less context, which means
that the predictions are much less reliable. As a consequence of this, we
see many false positives on land regions of the image. Finally, the search of
salient points of interest can take up to a few minutes on a 1000×1000 image,
which can put the total processing time for an image to over 10 minutes.
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Making use of the first approach of classifying wider regions we can alleviate
some of the above issues. The idea is that we first pass the convnet over
the image and create a binary mask of regions that have been positively
classified to have ships in them. We then multiply the mask with the original
image, effectively performing a logical ’and’ function and then apply the
above algorithm. This significantly reduces the amount of computation time
on the DOG algorithm, the amount of patches that have to be tried using
the expensive neural network and also many of the false positives on land. It
must be noted that the binary mask is first blurred using a Gaussian filter
with a σ = 30 to smooth out the edges of the mask to prevent the DOG
algorithm triggering along them.

Figure 3.6: Using the earlier approach as region proposals before applying blob
extraction. Left most image shows positive samples trigger as ‘ships’ which are
shown in red squares, followed by a binary mask of the triggered regions in black
and white. The third image shows the saliency points found using the DOG
algorithm and the last image shows those points filtered using the binary mask.

3.1.5 Discussion

We can clearly see that the above methods are not the best choice to detect
objects in these types of images due to the many disadvantages that they
present. The external region proposal algorithms are unacceptably slow for
large images and unreliable due to the variety in the statistics of the images.
The results also need a substantial amount of post processing to remove
redundant hits as well as a lot of manual tuning to make it work. The above
methods also do not make use of the full potential of neural networks, but
rather use it as a classifier with a confidence rating. Taking into account
our initial task of tracking maritime traffic, we realize that it is not entirely
necessary to find segment each ship and draw a bounding box around it.
Instead we could simply find the amount of area of the image covered by
ships using other methods, such as semantic segmentation. Due to the above
reasons we did not pursue or look deeper into more advanced methods that
can ameliorate some of the issues.

One more very important thing to note is that the classifier is poor due to
the small size and poor variance of the set and training a deep neural network
on such a dataset does not usually produce good results due to overfitting.
In the next chapter we take a look at a method to overcome these issues.
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3.2 Feature extraction using VGG

3.2.1 Transfer learning

The notion of transfer learning has been around for over 2 decades [41]
in the realm of machine learning and basically describes the ability to use
information gained from one task and applying it to another. In deep learning
this is used very often. It has been found that the features that are learned
by the convnet in the first layer are always the same and resemble color
blobs and gabor filters [59]. This implies that the low level features are
general and understandably the higher up we go in the network the more
task-specific the features are [59]. Yosinski et al.[59] also quantifies the degree
to which a particular layer is general or specific and generally described the
transferability of features between tasks using convnets.

The idea of using transfer learning in deep learning is the following: We
initially train a neural network on a high quality and large size dataset such as
Imagenet [21] . This forces the network to learn a wide range of features that
help it perform that task that it was trained on. We assume that the features
in the lower layers of the network are general and can be ‘transfered’ to our
task. We use the lower part of the trained network as a feature extractor on
top of which we can train another neural network or linear classifier such as
SVM [29] for other regression or classification tasks. The work of Razavian
et al. [42] shows state of the art results in using this technique.

3.2.2 VGG architecture and training

In this thesis we have chosen to use a VGG 16-layer network D [52] as our
feature extractor. This network gets an error of about 8.5% on the ILSVRC
[47] . This is about a full 1% higher than the 19 layer version but in interest
of easier handling and computation speeds the 16 layer net has been used
for most of the work. The VGG has been chosen over Alexnet and other
architectures for its simplicity, consistent 3x3 convolutions and depth, giving
hope that we can tap from more general features. VGG was chosen over
Resnet, the state of the art at that time with about 3.5% on the ILSVRC
once again in interest of simplicity and computational flexibility.

The VGG network was trained (by the original authors) on the well known
ILSVRC-2012 dataset from Imagenet [21] which consists of 1.3 million images,
divided into 1000 classes which makes it a good feature extractor. The
authors also used various type of image augmentation during training such
as scale-jittering.
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...............................3.3. Gridwise semantic labeling

3.3 Gridwise semantic labeling

3.3.1 Concept

In this chapter we will take a look at a different approach to detecting desired
objects in satellite images. The method draws on the concept of semantic
segmentation and uses the structure of the deep neural network to make a
prediction in image space in contrast to simple classification as in the previous
approach. The input image is fed to the network by m× n patches and the
network outputs a prediction grid for each patch. The prediction grid is
essentially a binary mask classifying each pixel as to whether the image at
that point contains the object or not. The grid is of a lower resolution than
the actual image itself and it is projected into image space by simple resizing
by an appropriate factor.

3.3.2 Dataset generation

The training set for the initial experiments consists only of 10 ports from
image set B . The task is to detect ships of all shapes and sizes present
in the image. The images are annotated manually using GIMP [6] image
manipulation software. A binary mask is applied on top of the image using a
simple paint brush and then exported separately. The image-mask pairs are
then loaded and random m× n patches are extracted with random rotations
and random scale-jittering [33]. The per-image mean is subtracted from
each image before the patches are segmented. The patches from various
ports are then randomly shuffled and saved as 1000-sample patches for fast
loading during training. The set is split into training - validation sets with
a 9 to 1 ratio, giving a total of 9000 training and 1000 validation samples.
During training, the convnet is evaluated on the entire evaluation set every
50 iterations. The necessary use of the entire validation set is due to the
sparse presence of ships in many regions and taking smaller batch sizes gives
noisy and misleading evaluation results. During training the patches are
also randomly flipped horizontally and vertically to synthetically expand the
dataset.

3.3.3 Architecture overview

We make use of the VGG network as a powerful feature extractor for the task
of the gridwise semantic segmentation. The feature extractor consists of 13
convolutional layers which feature 4 pooling layers in between as can be seen
in Fig. 3.7. One should note though that the Number of parameters shown in
the figure for each network includes the last 3 fully connected layers. Without
them, network D has only 14 710 464 parameters. We initially tapped the
feature maps at layer 10 which for a patch size of 128× 128 gives 512 feature
maps of size 16× 16 . These are then fed into 2 more convolutional layers
with 64 feature maps each and filter sizes of 3× 3. The final layer has only 1
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3. Methodology.....................................
feature map which corresponds to the prediction. At this point no activation
function was used at the final layer.

Figure 3.7: VGG architecture [52] . Each column, labeled with letters A through
E represents the layers of that specific network. Each row denotes a layer, with
the maxpool and FC (fully connected) shown as common for all the networks.
The bottom table shows the total amount of parameters including the FC layers
which we don’t use.

3.3.4 Importance of context

By context we basically mean everything that surrounds and helps us classify
an object of interest. An example of context surrounding ships in a satellite
image would be a homogeneous, sometimes wavy surface (sea), other ships
and textured edges that look like a port dock.

In terms of the input to the neural network, the context is the entire region
that the patch represents. One of the major things that differ this task from
other object detection tasks is that although the images are of high resolution
most of the time, the objects of interest are sometimes very small and hard
to discern, even for the human eye. Another issue is that the images are
taken by satellites at different at varying lighting conditions and in various
places on earth, which means that we cannot depend on natural landmarks
to take their assumed color. The color of the sea, for example, can vary
anywhere from a shade of gray, through blue, to brown, as can bee seen in
Fig. 3.8. Because of this, adequate image context around the object is critical
for successful inference.
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(a): (b): (c): (d):

Figure 3.8: Comparison of the variety of images

3.3.5 Training and inference

The way we implement the notion of context into our architecture is that we
do not design the network to predict a map for the whole patch of m×m ,
but instead we design it to predict a sub-patch of (m− q)× (m− q) where q
is the amount of pixels left on each side of the prediction window which acts
as the ‘context’. This is shown in Fig. 3.10

Figure 3.10: Mean squared error (MSE) extraction. The yellow region on the
ground truth mask shows the region that we extract the cost from.

A naive way to do this is to simply state that since all the neurons in the
final feature map fmo are differentiable functions of the input and that we
can simply draw an error function as shown in 3.1 and 3.10.

mean((fmo − P (q : m− q, q : m− q))2) (3.1)

where P is the ground truth binary segmentation mask corresponding to the
whole input patch S. It turns out that although this should work in theory,
the network has hard time adapting and does not train very efficiently, or
even fails to converge.

The above problem is mostly because we are only training a few layers
on top of a fixed deep network whose features in the convolutional layers
correspond spatially to the input. By trying to undo this in the last few layers
we are not respecting the structure of the feature maps and therefore getting
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3. Methodology.....................................
poor results. This can be resolved by adding the following modification to the
architecture: Instead of drawing an error function from the entire output layer
fmo we treat fmo as the prediction of the entire input patch S but penalize
only the predicted pixels that correspond to the projection of the ground
truth sub-patch P(q:m-q, q:m-q) onto fmo . This is shown in Fig. 3.11.

Figure 3.11: Improved MSE extraction. The yellow square shows the valid
regions from which we extract the cost.

So far we have looked at the error function as mean of the l2 distance
between the prediction and the ground truth, with the output layer fitted
with a tanh 3.13 activation function. We could also treat the problem as
a pixelwise class detection problem where the final feature map fmo is of
dimension i× j × k where k is the amount of predicted classes (in this case
2). We can then use standard classification metrics such as crossentropy on a
softmax activation which are superior to l2 metrics [7] for classification. The
initial results of this work, however, use a mean squared error (MSE) metric.
Fig. 3.12 shows an example of the result using the above setup. The setup
was trained on the annotated dataset with a batchsize of 60 for a total of
1400 iterations. A visual inspection of the result of a few test images showed
that output prediction is too crude and lacks structure.

3.3.6 Suggested improvements

Two simple ways how to improve the above architecture for gridwise semantic
labeling are to increase the patch size and to decrease the size of the prediction
space in relation to the patch itself. We use a window size of 256× 256 and
predict a grid of only 128× 128 which is centered in the patch. This gives
us an arguably adequate context of 64 at least pixels on either side of the
prediction grid.

Another clever technique, inspired by [37] is to combine the features of the
network from various layers, called ‘skip connections’ [37] . Due to the multiple
downsampling layers in the network, a lot of the spacial information about
the original image is lost at the higher layers due to their low resolution. To
preserve the output structure information and predict a more accurate output
mask we can use the higher layers for semantic information and the lower
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...............................3.3. Gridwise semantic labeling

Figure 3.12: Initial results for gridwise semantic labeling. Coarse output,
innacurate.

ones for structural information. In the above architecture we tap the network
at the 10th convolutional layer. We expect that additional information from
the 13th layer will help the network determine whether the objects in the
scene are ones that we are interested in and that the additional information
from the 7th convolutional layer will help us draw a more accurate grid. The
feature maps at layers 7,10 and 13,which we will denote as ll, lm, lu (with
the subscripts meaning ‘lower’, ‘mid’ and ‘upper’ ) for a patch of 256× 256
are 64× 64 , 32× 32 and 16× 16 respectively. This means that layers lm and
lu will have to be upsampled (we use bilinear interpolation, compared to the
learnable upsampling in [37] ) to the size of ll. The feature maps from layers
ll, lm, lu are then taken separately and convolved twice using 3x3 convolutions
to produce 64 feature maps at each layer. The final feature maps from all
three layers are concatenated and convolved using a 1x1 filter to produce a
map in the prediction space. We add a tanh 3.13 activation on the output
to limit the prediction to a range of {1,−1}. It was experimentally found
that predicting the pixels with tanh in the range of {1,−1} provides superior
results and trains better than predicting in the range {0, 1}. Fig. 3.14 shows
the final architecture with the combined feature maps from layers 7,10 and
13. The Relu activation functions are omitted for brevity.

The final architecture was trained in batches of 60 for 1600 iterations (5
epochs) by freezing the VGG extraction layers and training only the skip
connections 3.15. The training error is not too far from the validation error
which is good because we know that we are not overfitting the dataset. It
should be noted, however, that the validation set and training sets are very
similar to each other so this is expected.

It was experimentally found that after training the newly added convolu-
tional layers, the performance was significantly increased by freezing the new
layers and fine-tuning the last 3 convolutional layers of the VGG network
for 1000 iterations using a smaller learning rate, followed by a last joint
training of the new layers and the last 3 convolutional layers for another 3000
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Figure 3.13: tanh activation function. tanh = ez−e−z

ez+e−z

Figure 3.14: Gridwise semantic labeling architecture. Nodes represent operations
(I/O, transformation, sub/up-sampling), arrows represent layers. Yellow blocks
represent the VGG feature extractor. Blue blocks represent learnable convolution
filters. Purple blocks denote upsampling and downsampling operations. Green
blocks represent I/O.
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Figure 3.15: MSE cost function of training and validation set of the architecture
shown in Fig. 3.14 trained in batches of 60 for 1600 iterations (5 epochs). VGG
feature extractor is left frozen and only skip connections are trained

iterations. Fig. 6.2 shows some results using the architecture with the above
improvements.

3.4 Network analysis

In this section we take a look at some interesting details of the network.

3.4.1 Effective receptive field

A key question asked when designing such an architecture is whether the
network has enough information to make a reasonable prediction in the task
that it is designed for. When using a neural network for image classification
we use the information from the entire image to make a prediction. In our
task what we are basically doing is asking the network to make a prediction
for each output pixel based on the input image. For this to be possible we
have to make sure that the effective receptive field (ERF) of each final neuron
is looking at sufficient spacial information in the input image to make a
prediction. In other words, we want to examine the projection of each neuron
into pixelspace.

One way to do this is to mathematically examine the equations that lead
up to the output of that neuron. Since we are using 3× 3 convolutions we
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can say that a neuron in a feature map in layer li has an effective receptive
field of 3× 3 on the layer li−1. Since we are using maxpooling with strides of
(2, 2) throughout the architecture we can say that pooling doubles the ERF
of the neurons after the pooling in respect to the previous layer. We can then
attempt to form a table of the ERF at each layer.

Layer OP ERF
l1 conv 3× 3 3× 3
l2 conv 3× 3 5× 5
l2p maxpool(2, 2) 10× 10
l3 conv 3× 3 12× 12
l4 conv 3× 3 14× 14
l4p maxpool(2, 2) 28× 28
l5 conv 3× 3 30× 30
l6 conv 3× 3 32× 32
l7 conv 3× 3 34× 34
l7p maxpool(2, 2) 68× 68
l8 conv 3× 3 70× 70
l9 conv 3× 3 72× 72
l10 conv 3× 3 74× 74
l10p maxpool(2, 2) 148× 148
l11 conv 3× 3 150× 150
l12 conv 3× 3 152× 152
l13 conv 3× 3 154× 154

Table 3.1: Effective receptive field of neurons in each layer

The tapped layer ltu receives feature maps from the highest layer and
performs two more convolution operations, which means that each neuron
in the output has an ERF of only 158× 158. This is sub-optimal since we
are using 256 × 256 patches. This also means that larger objects that are
partially outside the ERF of that particular region might get misclassified.
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3.4.2 Visualization

To get a clearer and more accurate view we can use the network to visualize
the ERF of a particular output neuron. One way to do that is to perform a
forward pass on the network until we reach the desired neuron and then find
the gradient 3.2 on the image S with respect to the neuron qij in layer l.

W =
∂S

∂ql
ij

(3.2)

By doing that we can see which part of the image influenced the activation
of that particular neuron. We can implement equation 3.2 by nulling the
gradients of all the neurons in the layer except of the one that we are interested
in, and then backpropagating the gradient back into RGB pixelspace. We
then perform an argmax on the absolute value of the RGB channels 3.3 to
get a heatmap of the gradient [51].

Mij = maxc|Wh(i,j,c)| (3.3)

Figure 3.16: From left to right: Random noise input, gradient mask at classifi-
cation layer, gradient at image, natural log of gradient at image

In Fig. 3.16 we can see the extent of the receptive field for a single output
‘pixel’. Taking the natural log of the heatmap shows that the field reaches out
across most of the patch but decays fast from the corresponding midpoint.
This 3.16 is a curious result because it shows us that the ERF is larger than
what we calculated in table 3.1.

We can use another visualization technique to get a rough glimpse as to
what features in an image make it activate a certain output. We can do this
using the same supervised backpropagation algorithm as we do for optimizing
the weights of the neural network, except that in this case the weights are
kept static and instead we optimize the image. In essence we are trying to
find an image that most activates a certain output pattern by minimizing
the error on the prediction.

In Fig. 3.17 we fed in a patch as an image prior and the annotated ground
truth mask. The third and fourth images show the patches that would
maximally activate the given mask after 300 iterations of minimization using
the ADAM [32] optimizer 4.3.4 in TensorFlow. A learning rate of α = 0.01
was used as well as l2 regularization on the image so that optimized values
do not grow too large.
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Figure 3.17: Image patch (prior), annotated mask (the output pattern that we
are trying to activate), gray scale optimized image, RGB optimized image

We can see that the network looks for a well-defined border and prefers
to see wave-like background around the ships. Interestingly enough it cares
about the wavy property only up to a certain proximity to the ships. Using
these images we get a rough idea of what our algorithm is looking for in the
image to classify an object as a ship.
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Chapter 4
Computation as a graph

In this chapter we will take a look at the software that the experimental
detection pipeline was implemented in and talk about an approach to computa-
tional algorithms in TensorFlow that is different to the traditional procedural
programming paradigm.

4.1 TensorFlow

The experimental object detection pipeline is almost entirely implemented in
TensorFlow [13] using a python front end API. TensorFlow is an open source
machine learning framework by Google which allows the user to quickly and
efficiently implement various algorithms. This framework was chosen over
other well known and widely used frameworks such as Caffe [31] and Torch
[16] for various reasons. One of them is the wide choice of functions and
operations that the framework provides, ranging from simple convolutions to
whole optimizers which can be applied and adapted anywhere with a single
line of code. Another reason is the potential to parallelize the computation
on a heterogeneous set of devices which is made possible by the architecture
of the framework.

As mentioned in the introduction, TensorFlow uses a different approach
to the standard imperative programming paradigm in which the user writes
code which is sequentially executed. Instead, in TensorFlow the user declares
the computational architecture as symbolical operations and equations which
are then compiled into a computational graph and is then run as many times
as required. This type of computation is already implemented in Theano [14],
[15] and is improved upon in TensorFlow.

The computational graph in TensorFlow is a directed graph which consists
of Nodes and edges. Nodes are operations which take in and output tensors.
Almost all operation kernels are defined as both CPU and GPU implementa-
tion so that they can be executed on the appropriate device depending on
the data. Edges are tensors themselves or special dependency control edges
which do not contain data [13]. By tensors we mean multidimensional arrays
of various supported data types. Most tensors are immutable and do not
live past a single execution. TensorFlow also provides variables, which are
tensors that live on the appropriate device, minimizing unnecessary memory
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transfers. Since the architecture is compiled into a computational graph
consisting of basic operations, we can get automatic gradients at any edge in
the graph in respect to any other because gradient flow across basic mathe-
matical operations can be defined according to simple rules. This is a huge
advantage for numeric methods that require gradients, be it for simulation or
for optimization such as training a neural network. Fig. 4.1 shows a code
example in TensorFlow.

Figure 4.1: Simple code example in TensorFlow showing a computation of
y = ax2 + bx+ c along with the generated computational graph. Code example
taken from [10]

4.2 TensorBoard

TensorBoard is a very convenient visualization tool natively provided by
TensorFlow. During a TensorFlow session a user may choose to log various
variables and statistics at each iteration of an optimization algorithm. This
data is logged into a file which can be opened by TensorBoard in any browser
on a localhost in an HTML format. Figure 4.2 shows a print screen of the
TensorBoard 1.

4.3 Implementation

In this section we will take a quick look at the functions in TensorFlow used
to implement the neural network pipeline.

4.3.1 VGG implementation

The VGG feature extractor network consists of 13 convolutional transforma-
tions with activations and 4 maxpool operations. The convolutions use 3× 3
filters with stride 1 with ‘SAME’ padding [10] . This means that the layer
is padded with zeros such that the resulting feature map dimension doesn’t

1TensorBoard: Visualizing Learning [9]
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Figure 4.2: A screenshot of the TensorBoard opened in an internet browser
showing part of the generated computation graph. On the top right corner are
tabs to windows that enable us to see the histograms of our parameters and
other useful information such as the training error and images.

shrink. The convolutional dot products are followed by a ReLu activation
[33]. The weights of the VGG network are loaded from a file provided by the
VGG.

4.3.2 Skip connections

As described in the architecture section 3.3.6, we can make a better prediction
on the output by using information from various layers in the network; lower
for structure and higher for semantics. We tap feature maps from layers 7,10
and 13 which are the last layers in the last 3 slices of the network. By a
slice we mean the layers which do not have pooling operations between them
and therefore have the same resolution. At each tap point we convolve the
feature maps twice. We decided that the final prediction map will be of the
same resolution as layer 10. This means that the results from layers 7 and 13
have to be downsampled and upsampled accordingly. The downsampling is
done by maxpooling and the upsampling is done by unpooling. Unfortunately
at the time of implementing the pipeline there is no official support for an
unpooling layer in TensorFlow so we make due with an image resize function
which uses bilinear interpolation to upsample a given feature map. The
function is not intended to be used as an unpooling layer but it is fully
differentiable so we can pass gradients through it. The resized feature maps
are then concatenated using a concatenation operation and then put through
a final 1× 1 convolution and fed into a tanh 3.13 activation function. This
produces a two-dimensional prediction map which corresponds spatially to
the the input patch. Note: At inference, as during training only the centered
subpatch is valid.
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4.3.3 Backpropagation algorithm

We use backpropagation [46] to train our network. As mentioned in section
2.1.2, in each iteration of the algorithm we perform a forward pass on a
training example and observe the effect of each neuron on the output error.
For each neuron we calculate the gradient with respect to the output and
then jointly update all neurons. The update rule for each neuron is shown
in equation 4.1 where wij is the ijth weight between two neurons i, j in two
adjacent layers, α is the learning rate and E is the cost function

wij = wij − α ·
∂E

∂wij
(4.1)

It is unfortunately computationaly inefficient to calculate the gradient for
each neuron separately. That is why the transformations between the layers
are treated as dense matrix multiplications which can be efficiently computed
and parallelized on both CPU and GPU.

4.3.4 Optimization

Optimizing (training) a deep neural network can be a tedious process due
to the non-convexity of the problem and the diminishing gradient [27] as it
gets propagated to the lower layers. Traditionally, the SGD algorithm [50] is
used to optimize neural networks but for deeper networks it starts becoming
essential to add momentum [54] to the optimization model. TensorFlow
provides us with efficient ready optimizers that we can use to minimize a cost
function. The one used in this work is an implementation of the ADAM [32]
algorithm. ADAM is an optimizer that uses SGD with adaptive momentum.
We can compare the basic update rule of SGD 4.1 with the update rules of
ADAM 4.2,4.3,4.4 . We can see that the variable x is not updated directly
from the noisy gradient vector dx, but rather from the estimated lower-order
moments m, v. The ε constant is there to avoid division by zero.

m = β1 ·m+ (1− β1) · dx (4.2)
v = β2 · v + (1− β2) · d2

x (4.3)

x = x− α · m√
v + ε

(4.4)

4.3.5 Out of core training

It was found by trial and error that the training batch size was critical for the
optimization of the neural net. For a larger network an adequate batchsize
needs to be used. A size of 60 was found to work decently. A batchsize that
is too low results in erratic progress or even complete failure to converge.
This is because for a deep network, a small batchsize gives very sharp, noisy
gradients which constantly knock the network off the data manifold and make
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the training difficult. This is especially true for a dataset such as the one
described in this task where the objects of interest are very sparsely located.

Most of the experiments were done on a mid-tier desktop machine with a
low-end GPU with 2GB memory. Usually when performing an optimization
proceedure in TensorFlow we define an optimizer on a cost function and
then we iteratively calculate the gradients and apply updates for the given
batch. Due to memory limitations on the GPU it is not possible to buffer
the activations and gradients for the required batch size onto the GPU and is
therefore necessary to accumulate gradients on smaller batches (microbatches)
or individual examples and then perform the update.

4.4 Parallelization

As was stated earlier in this chapter, upon compilation of the computation
graph, TensorFlow spreads out the computation across multiple devices if
available which allows it to take advantage of model parallelism 2. For a
regular desktop PC these devices are a CPU and a single or multiple GPU(s).
TensorFlow allows the user to explicitly define variables and operations on
specific devices using context tags such as ‘with tf.device(’/gpu:1’):’ which
means that we can spread the computation out as we desire. TensorFlow also
released support for computation across a cluster of servers which is called
‘Distributed TensorFlow’. [4]

4.5 Timing tests

Table 4.1 of training passes (using GPU) on the proposed object detection
network using the VGG network as a feature extractor is shown in figure 3.14.
The table shows the training passes per sample of size 256× 256 pixels for
the various microbatch 4.3.5 sizes for the out of core training.

b = 8 b = 6 b = 4 b = 2 b = 1
Skip connections only 97 ms 100 ms 102 ms 115 ms 136 ms
Skip + last 3 layers VGG 125 ms 132 ms 135 ms 182 ms 226 ms

Table 4.1: Table showing forward + backward pass times for the various b
microbatch sizes.

We can see from Tab 4.1 from that training into the VGG network requires
significantly more time and resources than just training the skip connections
because we have to propagate the gradient further. This also demonstrates
that higher batch sizes require smaller compute times per sample. The
forward pass only for the gpu per patch is about 85ms.

We also compare the forward and backward passes on this architecture
on the CPU. The forward pass is about 1250 ms per sample and the full

2Model parallelism here means that parts of the computation graph are executed on the
CPU and some on the GPU
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4. Computation as a graph ................................
pass is about 1750ms. This is approximately 14 times slower than on the
GPU which makes it impractical to perform any experiments with this sort
of architecture without having access to GPU acceleration.
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Chapter 5
Results & evaluation

5.1 Image sets

Throughout the course of this work we train and test our model on two
different sets of images. The first set is compiled out of 35 images of size
1500 × 1500 pixels but contains only about 12 unique ports, provided by
Digital Globe at a resolution of 0.5m. This set contains regions that are
densly packed with ships, with up to 20 % of area covered in some images.
The images exhibit similar color statistics and contain ships that have roughly
the same profile and size, with most being about 70-100 pixels long. This
imageset will be referred to as set A 5.1.

(a):

Figure 5.1: Examples from Image set A. All shown patches are of size 500× 500

The second set consists of 25 images of size 2000×2000 pixels which contain
25 unique ports, and includes mostly images provided by Digital Globe at
a resolution of 0.5m, with a few images from Planet Labs at a resolution of
3m. This set contains regions that are mostly sparsely packed with ships.
These images exhibit very diverse color statistics and contain ships that have
very different profiles and sizes, ranging all the way from tens of pixels long
up to 500 pixels long. This imageset will be referred to as set B 5.3 and is
considered as a more ‘difficult’ set than set A.

5.2 Evaluation metrics

To test the performance and generalization of our network we use image set
B. The set is annotated in the same fashion as the training set. The images
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(a):

Figure 5.3: Examples from Image set B. All shown patches are of size 500× 500

are then tiled up in patches of 256× 256 with strides of (128, 128) (stride is
half of the patch because we are only predicting the inner subpatch of each
patch) and saved into a 4-dimensional tensor for quick access and evaluation.

5.2.1 Total mean square error

The mean square error (MSE) is the most basic error metric for our network
and gives us a general idea on how well it is doing. The metric is used as the
validation metric during training. The error is given by equation 5.1

E = 1
k

∑
N

(
∑
m

∑
n

(P j
sm,n
−Gj

sm,n
)2) (5.1)

where k is the batchsize, m and n index the rows and columns of the patches
respectively, N is the set of all elements in the batch, j indexes the jth element
in the batch, Ps and Gs are the prediction and ground truth subpatches. The
‘s’ subscript denotes that it is indeed the subpatch from which we calculate the
error and not the whole patch. Note that we do not threshold the classification
in any way and therefore this metric takes into account the classification
confidences of each pixel.

5.2.2 ROC curve

To evaluate a binary classifier on a dataset with disproportionate distribution
of classes we cannot simply use an accuracy metric. This is because for a very
sparse occurrence of class A versus class B, a classifier that always predicts
B will be very accurate. To evaluate such a classifier we can use a ROC
(Receiver operating characteristic) [23], which is a plot of the true positive
rate (TPR) against false positive rate (FPR) for all classification thresholds
in the range of the output of our classifier. The TPR and FPR in our case are
calculated on a pixelwise basis and are shown in equation 5.2, where TP is
the total amount of positively predicted (ship) pixels, P is the total amount
of positive pixels, FP is the amount of background pixels that were predicted
as positive and F is the total amount of background pixels. The output of
the network is fed into a tanh 3.13 activation function which means that for
each pixel in the grid we get an output which ranges from -1 to 1. We can use
the AUC (area under curve) to evaluate our classification. The area ranges
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from 0.5 to 1, with an area of 0.5 meaning random classification and an area
of 1 meaning a perfect classification. Using the ROC curve we can also get a
visual idea of how the rates change with the various thresholds.

TPR = TP

P
, FPR = FP

N
(5.2)
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Figure 5.5: ROC evaluation on imageset B using the 3.14 architecture. Legend
shows the position on the curve of three thresholds. The blue dashed line shows
the points where the FPR and TPR are equal.

5.3 Choosing a threshold

To help us choose a threshold for our classifier we can make use recall versus
precision plot5.3. The point where the precision and recall have the same
value is called the break-even point. We choose the threshold that corresponds
to the break-even point.

Precision = TP

TP + FP
, Recall = TP

TP + FN
(5.3)

where TP, FP, FN denote true positive, false positive and false negative
respectively.

Fig. 5.8 shows a plot of the precision vs recall calculated for thresholds
ranging from -1 to 1 in increments of 0.01. We can see that the break-even
point is at about 0.69, giving us a TPR of 0.69 and FPR of 0.005 This
corresponds to a classification threshold of -0.6, meaning that we classify
every pixel that is predicted above -0.6 as ships. Fig. 5.6 shows classification
results with various thresholds.
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(a) : Original image (b) : Ground truth (c) : Raw predicted
mask

(d) : T = −0.99 (e) : T = −0.89 (f) : T = −0.6 .

Figure 5.6: Effect of different thresholds on classification. Threshold is denoted
by T and ranges from -1 to 1. We can see that decreasing the threshold triggers
pixels mostly around the ships.
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Figure 5.8: Precision-recall break-even point on test set of size 10 from imageset
B
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Chapter 6
Discussion

6.1 Network performance

We saw that given the task of distinguishing only one type of object from a
background, we can expand on the notion of using a region proposal network
[44] (weak classifier) into an object detector by modifying the architecture.
Since we are predicting a mask for a given input patch we have to choose at
which layer we will use the feature maps for the reconstruction. Using our
understanding of hierarchical abstraction in neural networks, we can state
that using feature maps that are closer to the input will give us more accurate
structural information and higher level layers will give us more semantic
information [40]. It was shown that tapping from layer 10 in the VGG feature
extractor gives crude results both structurally and semantically. We saw
that adding skip-connections [40] from the 7th and 13th layers significantly
improves performance in both structure and semantics respectively.

During the development of the neural network architecture for this task
it was noted that besides the actual choice of layers and connections, small
details play a crucial role in the training and performance of the algorithm.
Details such as the dropout, learning rate and batch size during training,
which when inappropriately configured, can result in a network that fails
to converge or that simply outputs a blank prediction grid. We also noted
that the generation of the training set dictates the performance and training
process of the network. If the training set is too severely distorted/augmented
from the start then the network might fail to converge or take a very long
time before the gradients start flowing as can be seen in the flat region in the
graph of the validation error in TensorBoard 6.1.

One of the most important things that we noted during the development of
the algorithm is that when using deep neural networks for more complicated
tasks it is crucial to respect the structure of the network. We talked about
an example of this in the initial attempt at the gridwise prediction where
we attempt to project a prediction of an input subpatch into the whole
output grid 3.3.5. This was unsuccessful because the output prediction grid
corresponds to the entire input patch, not just the subpatch.

Overall, the performance of the network exceeds expectations considering
that the training dataset consists of 25 annotated images. We have observed
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Figure 6.1: TensorBoard screenshot showing training of the network on a harshly
augmented dataset. We can see a flat period of cost function before gradients
start to flow. MSE on the y axis and iterations on the x axis.

that it is capable of generalizing to ships and environments which it has
not seen before. Fig. 6.2 shows the performance at various resolutions from
highest ( 0.5m) to lowest ( 3m).

We can see in 6.2 that the issue with the large ships is that they do not fit
inside our 256× 256 context window and so are detected mostly on the front
and back where the characteristic of the bow and stern are more prominent.
The medium sized ships are reliably detected because they are most prevalent
in the training set. The algorithm also attempts to generalize to much lower
resolution images from PlanetLabs even though the training set includes
no such images 6.2. Fig. 6.4 shows the performance of the algorithm on
crops of three test ports from image set A 5.1 with heavy cloud coverage. A
break-even point of 0.64 is calculated on this set with a FPR of 0.008 but a
TPR of only 0.62. The low TPR is expected because many of the ships are
heavily obstructed by the clouds.

6.2 Future work

As the method in this work was partially inspired by Faster RCNN [44]
one could note that it would also be possible to take it one step further
and predict bounding boxes around each object, hence enabling counting
objects. This could work by regressing scores for a set of anchor boxes for
each pixel in the predicted grid, alongside the semantic prediction of whether
that pixel is a region of interest or not. The semantic region proposal would
be trained separately and then the box regression would be trained on top.
A classification metric or intersection over union could be used as the cost
function for the predicted anchor boxes. The tricky part would be to the
post-process and merge the predicted boxes into the final result.

44



..................................... 6.2. Future work

(a) : Image size: 2k x 2k pixels, provider: Digital Globe, resolution: 0.5m. Big
ships are up to 500 pixels long which is too big for the 255× 255 context window.
We can see that the network detects the characteristic bow and stern of the ships
but is unable to discern the bay most of the times.

(b) : Image size: 1k x 1k pixels, resolution: 0.5m, provider: Digital Globe. The
largest ships are about 170 pixels long. We can see that the network does very
well for ships this size and resolution.

(c) : Image size: 500 x 500 pixels, resolution: 3-5m, provider: Planet Labs. The
algorithm attempts to generalize to images at this resolution even though such
images are not in the training set.

(d) : Image size: 1000 x 1000 pixels, resolution: 0.5m, provider: Digital Globe.
Result on a grayscale image. No grayscale images appear in the training or test
sets.

Figure 6.2: Comparison of the variety of test images from image set B. From
left to right: Original image, Ground truth, raw prediction by algorithm.
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(a):

(b):

(c):

Figure 6.4: Performance on test images from image set A with high cloud
coverage. From left to right: Original image, Ground truth, raw prediction by
algorithm. Precision-recall break-even point at 0.64. TPR: 0.62 , FPR: 0.008.
No cloud covered images appear in the training set.
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Chapter 7
Conclusion

In this work we demonstrated a successful attempt at designing and imple-
menting a deep neural network pipeline in TensorFlow for detection of objects
in high resolution satellite images. The initial task of producing a bounding
box around each object of interest was scrapped due to difficult conditions
such as very tightly packed ship clusters and ambiguous regions where the
boundary between the ships is blurred. We instead showed a working method
for pixelwise labeling of the scene. The method is able to distinguish between
the object of interest and the rest of the background and can be used to track
the maritime traffic in a chosen port or region. The network, trained on a
small set of only 25 annotated images, was tested on a dataset of 10 ports
from various regions with ship sizes ranging from 30 pixels to 500. The result
is a precision-recall break-even point of 0.69, with an FPR of 0.69 and FPR
of 0.005, which is a satisfactory result given the small size of the dataset.
We conjecture that this result can be vastly improved simply by training
the network on a larger dataset and increasing the context window to detect
larger ships.

Due to the lack of annotated datasets and metadata to determine resolution
we are unable to thoroughly quantify the generalization of the network
to specific resolutions. A visual observation 6.2 shows that the algorithm
generalizes well to test images of a similar resolution (0.5-1m) as the training
set but does not perform so well on images of much lower resolution (3-5m).
We conjecture that this can easily be improved by including low resolution
images in the training set. We also observe that the algorithm can deal
with defects in the image and obstructions such as clouds without additional
preprocessing as can be seen in Fig. 6.4. By ‘deal’ we mean that it has lower
performance but does not falsely trigger on the obstructions. It has to be
noted, however, that corrupt and bad quality images are scrapped at the time
of inference on the basis of provided metadata. At the moment the input is
limited to RGB and grayscale images and more research will have to be done
to adapt it to additional channels.
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