
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Diploma Thesis

Robert Pěnička

Motion planning for seabed monitoring by
autonomous underwater vehicles

Department of Cybernetics
Thesis supervisor: Ing. Vojtěch Vonásek

Prague, 2016

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Robert P ě n i č k a

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Motion Planning for Seabed Monitoring by Autonomous
 Underwater Vehicles

Guidelines:
1. Get familiar with motion planning [1] and with randomized motion planning methods like
 RRT [2] or PRM [3]. Implement selected motion planner suitable for motion planning of
 Autonomous Underwater Vehicle (AUV). Study principles of control of AUVs [4]. Consider
 motion model of AUV co-developed at Institute of Process control and Robotics, KIT,
 Germany.
2. Design motion planning for AUV based on Dubins curves.
3. Design motion planning for the docking the AUV to the recharge station.
4. Design mission planning system for up to 3 AUVs in the seabed monitoring task. The goal
 is to visit all places in a given area, so the seabed is measured by on-board sensors. AUVs
 can return to the recharging station if necessary.

Models of AUVs and environment will be provided by the advisor.

Bibliography/Sources:
[1] LaValle, Steven M.: Planning algorithms. Cambridge University Press, 2006.
[2] LaValle, Steven M., and James J. Kuffner Jr.: Rapidly-exploring random trees: Progress
 and prospects, (2000).
[3] Kavraki, Lydia E., et al.: Probabilistic roadmaps for path planning in high-dimensional
 configuration spaces. Robotics and Automation, IEEE Transactions on 12.4 (1996):
 566-580.
[4] Fossen, Thor I.: Handbook of marine craft hydrodynamics and motion control. John Wiley
 & Sons, 2011.

Diploma Thesis Supervisor: Ing. Vojtěch Vonásek

Valid until: the end of the winter semester of academic year 2016/2017

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, September 23, 2015

Declaration
I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instruc-
tions for observing the ethical principles in the preparation of university theses.

In Prague on............................. ...

Acknowledgements
I would like to thank to my supervisor Vojtech Vonasek for his great guidance
through the uneasy waters of writing this thesis. I also greatly appreciate help from
David Oertel and Sergej Neumann from KIT regarding the technical details and
data for the AUV.
Many thanks go to my family and my girlfriend for their patience and support during
long hours spent working on this thesis.

Abstract

This thesis deals with mission planning for multi-robot seabed monitoring
task with Autonomous Underwater Vehicles (AUV). The overall goal of
this work is to design a mission planner that ensures visiting all places in
a given area and keeps the AUVs in operational state by charging from
the seabed station. Key part of designed mission planner is also the mo-
tion planning. We propose two different randomized motion planners for
long distance motion planning and for planning of the docking motion.
Presented experiments verify the capabilities of individual motion planners
and also the ability to plan the whole seabed monitoring mission with the
designed mission planner.

Keywords: autonomous underwater vehicles, motion planning, robot cov-
erage, robot mission planning

Abstrakt

Tato práce se zabývá plánováním misí pro multirobotické monitorování
podmořského dna s využitím autonomních ponorek. Cílem práce je návrh
plánovače misí, jehož výsledkem je projetí zadané oblasti a nabíjení ponorek
z podmořské nabíjecí stanice. Klíčovou součástí navrženého plánovače misí
je také plánování pohybu. Byly vytvořeny dva různé pravděpodobnostní
plánovače pohybu, první pro plánování na velké vzdálenosti a druhý pro
plánování dokování do nabíjecí stanice. Provedené experimenty prokazují
schopnosti jednotlivých plánovačů pohybu a také schopnosti plánovače misí
najít plán, který pokryje zadanou oblast.

Klíčová slova: autonomní ponorky, plánování pohybu robotu, pokrytí
prostoru robotem, plánování mise robotu

Contents
1 Introduction 1

2 Robot Path and Motion Planning 3
2.1 Basic Path Planning . 4
2.2 Randomized motion planning . 6

2.2.1 Probabilistic Roadmaps . 6
2.2.2 Rapidly Exploring Random Trees 9
2.2.3 Pros and cons of sampling-based planners 12

3 Robot Coverage Planning 14
3.1 Single Robot Coverage . 14

3.1.1 Exact Cellular Decomposition Methods 14
3.1.2 Grid-Based Decomposition Methods 17
3.1.3 Alternative approaches . 19

3.2 Multirobot Coverage . 19
3.2.1 Boustrophedon multi-robot coverage 19
3.2.2 Grid-Based Decomposition Methods 20
3.2.3 Alternative approaches . 22

4 Motion Planner for AUV 23
4.1 AUV model . 24
4.2 Long distance planners . 27

4.2.1 Input-based RRT planner . 28
4.2.2 Dubins-based RRT planner 31
4.2.3 Planners Comparison . 37

4.3 Short distance docking planner . 39
4.3.1 Input-based docking . 40
4.3.2 Dubins-based docking . 42

5 Seabed monitoring 45
5.1 Designed mission planning method 46
5.2 Experimental results . 52

6 Conclusion 56

List of Figures 57

List of Algorithms 59

References 60

Appendix CD Content 65

1 Introduction
Autonomous Underwater Vehicle (AUV) is a robotic platform that allows underwa-
ter operations without remote control. The AUV can be used for various applications
such as deep sea mining, oceanographic research or surveillance of underwater con-
structions. All of these applications need mainly a precise localization system and
a motion planner that can find feasible plans between two places under water. The
design of motion planner for the AUV is one of the objectives of this work.

Very often requirement of the AUV applications is a monitoring or scanning of
specified area with an on-board sensors. For the sea mining application we need
to scan the seabed to find valuable metals. In oceanographic research, the AUVs
can for example create a precise map of sea floor or search for marine organisms.
For surveillance applications, the AUVs can inspect bases of power plants, subma-
rine cables or any other underwater constructions. This requirement for scanning or
monitoring the area leads to what is called a Robot Coverage Path Planning (CPP),
which is a problem of determining a path for robot, that passes through all places
in given area while avoiding obstacles. Implementation of the CPP for up to three
AUVs is also one of the objectives of this thesis.

Figure 1: AUV co-developed at Karlsruhe Institute of Technology (KIT) whose
model is used in all parts of motion planning for seabed monitoring (courtesy of
David Oertel)

The overall goal of this thesis is to design a mission planner for multiple AUVs
for seabed monitoring task. Such a task consists of visiting all places in a given
area in order to measure the seabed with on-board sensors, with possible returns
of AUVs to the recharging seabed station. All key parts of the mission planner for
specified task are implemented and described through this thesis.

1

The first feature the mission planner has to posses is the ability to navigate the
AUV through area without collisions. This feature is enabled by the long distance
motion planner for AUV. The second necessary feature is the ability to dock the
AUV to the recharging station. This feature is enabled by a docking motion planner
that stops the AUV next to the docking device. Once we are able to both navigate
between places and dock to the docking device for recharging, we can implement
the mission planner for seabed monitoring task. In this thesis we designed a mission
planner that combines the Robot Coverage Path Planning with a discrete task plan-
ning. The resulting mission plan for multiple AUVs contains sequence for visiting
of all places in given area and also the necessary returns to the charging station.

Figure 2 shows the structure of the designed mission planner. It also explains
why we need to design not only the mission planner, but also the motion planners
for long distances and for the docking task.

SEABED MONITORING
MISSION

TASK PLANNER

DOCKING
MOTION PLANNER

LONG DISTANCE
MOTION PLANNER

AREA COVERED

DRIVE TO POSITION TASKCHARGING TASK

GIVEN AREA
TO SCAN OR MONITOR

AUV
DYNAMICAL MODEL

WORKSPACE MAP

DATA

USER INPUT RESULT

Figure 2: Diagram showing structure of seabed scanning mission planner that con-
sists of task planning, long distance motion planner and docking motion planner

The contribution of this thesis is the novel system for the mission planning with
multiple AUVs in seabed monitoring task. The mission planning system consists
of three main parts. The first is the designed long distance motion planner for
AUVs. Second is the proposed docking motion planner that solves the crucial task
of docking to the seabed station. The last and the main contribution of this thesis
is the seabed monitoring mission task planner, that utilizes both designed motion
planners.

Later in this thesis we firstly describe and compare current approaches to the
robot path and motion planning in Chapter 2. Then in Chapter 3, we describe
current approaches for coverage path planning, because it is essential part of the
designed mission planner. The necessary feature implemented for the overall goal are
the AUV motion planning and docking. Chapter 4 describes designed AUV motion
planners for both long distance travels and for AUV docking task. Finally, the
mission planner for seabed monitoring by multiple AUVs is introduced in Chapter 5.
Experimental verification of mission planner is described also in Chapter 5.

2

2 Robot Path and Motion Planning
Path planning and motion planning are one of the crucial tasks in robotics. The
classical planning can be described as Piano Mover’s Problem, where the goal is to
find a path that moves the piano between two places inside house without hitting the
walls. Other applications where planning has key role are for example autonomous
cars [24], puzzle solving [28], protein molecule docking [26] and of course the Au-
tonomous underwater vehicles [2].

Both planning problems require that robot shape and surrounding workspace are
known. It means that we need a map of the environment where the robot moves,
otherwise we are unable to determine how the robot is supposed to move without
hitting the obstacles.

The path planning is simpler task than the motion planning. It does not require
to consider the dynamics of transition between two positions. The path planning
searches merely for sequence of positions that connects the start and goal positions.

The motion planning uses a motion model of the robot in order to to find a con-
trol actions that lead the model from start configuration to the goal configuration.
For the Piano Mover’s Problem one would seek how the movers have to use their
arms to get the piano to its goal configuration. This also requires to consider the
moments of the arms so that the movements can be executed for example on robots.

More analytically, the path and motion planning problems are defined as fol-
lows [28]. We consider robot to move inside either 2D or 3D space that we call
workspace (W), where W = R2 or W = R3. Inside the workspace one can
find robot A ⊂ W and j obstacles B1...Bj ⊂ W . The robot can be described
with its configuration q ∈ C-space, which is a vector with k parameters whose
number equals to degree of freedom (DOF) of such robot. Let pA be position of
the robot inside the workspace, then the position is function of actual configura-
tion pA = f(q). All possible configuration of robot creates a configuration space
C-space. The configuration space could be divided in two subsets. The first subset
Cobs = {q ∈ C-space|A(q) ∩Bi 6= ∅} consists of all configurations where robot
collides with obstacles. The expression A(q) ⊂ W denotes space that is occupies
by the robot in configuration q. The second is obstacle-free space Cfree that is
complementary to the first, Cfree = C-space \ Cobs. Equally we can also divide
the workspace into parts that are collision-free and that are not.

The robot can change its configurations by using actions a such that qi+1 =
qi + fmod(qi, ai), where fmod(q, a) represents the motion model of the robot. For
formulation of the path planning and motion planning tasks we also need a start
configuration qstart ∈ Cfree and a goal configuration qgoal ∈ Cfree.

The path planning is then formulated as task to find plan P = {pA1, pA2, ..., pAn}
as sequence of collision-free positions of robot inside the workspace, where the posi-
tions pA1 = f(qstart) and pAn = f(qgoal). In other words, the path planning generates
sequences of positions between start and goal configurations while avoiding collisions.

In the motion planning, we focuses more on the actions that changes the con-
figuration. The plan can be represented as sequence of actions that lead the start
configuration qstart to the goal configuration qgoal = qstart +

n∑
i=1

f(gi, ai) .
Both motion and path planning were introduced as discrete time, but both can

3

be also performed in continuous time, where the plans are functions of positions and
actions rather than the sequences as in the discrete time version.

Despite the fact that motion planning and path planning have different formu-
lations, we can often switch between each other. With plans from path planner
that obey the dynamical restrictions of robot, we can usually generate motion plans
from dynamical model knowledge. On the other hand, we should be always able to
calculate robot positions from it’s configuration in order to generate path plan from
the motion plan.

In next two subsections are presented overviews of current approaches to path
planning and motion planning.

2.1 Basic Path Planning
Basic path planning algorithms are one of the oldest in field of robotics, but they are
still very widely used because of their simplicity and robustness [28]. All presented
methods have in common that they simplify the world description by using graphs.
The task to find path between start and goal configurations is then solvable by using
classical graph search methods like Depth First Search (DFS), Breadth First Search
(BFS), Dijkstra and A*.

Based on their approaches to the path planning task, we can divide the basic
path planning into three groups a Cell Decomposition, Roadmap and Potential
field.

TheCell Decomposition approach splits the free configuration space into many
simple regions. The decomposition could be either exact, where the free space is
union of all regions, or approximate, where the regions have predefined shape and
some regions can be partly covered by obstacles. The decomposed cells are then
considered as graph vertices and each shared border of cell makes edge between
those vertices. In such a graph, the path planning task is done by searching path in
the graph between cells where are the start and goal positions.

Triangulation of the free space [16,49] is one possible way of decomposition, that
covers the space by different triangle shaped cells. Alternatively the free space can
be decomposed into trapezoidal cells instead of triangular. For both Triangular and
Trapezoidal decompositions a polygonal obstacles are required. This means that
boundary of every obstacle Bj ⊂ W must be describable as polygon.

Grid-based approximate decomposition is one of the easiest path planning tech-
niques and is also very widely used [32, 45]. The main idea behind grid-based de-
composition is covering the workspace by equal rectangular cells. The simplicity of
this method is due to easy decomposition and representation of the grid by arrays.
Also the planning could be applied directly to sensory based occupancy grid map
without any additional computation of map that consists of polynomial obstacles.
In Figure 3a we can see example path plan found using the grid-based decomposition
and the graph search. In cases where obstacles are close to each other, we can also
use Quadtree (2D) or Octrees (3D) decompositions. These methods further divide
each partially occupied cell in order to get more precisions around obstacles.

4

TheRoadmap approach firstly finds curves that lies in the collision-free workspace
and connects them together into the Roadmap. Then the robot moves only along
the roads (found curves), which ensures that the generated path is without collision.
To find path from the start configuration to the goal configuration we also use the
graph search, where edges are the roads and vertices are the intersections between
those roads.

Visibility graph (VG) [28, 34] uses polygons for describing the obstacles. The
roadmap in VG consists of all collision-free lines between vertices of obstacles and
vertices of start and goal positions. As we can see in Figure 3b, the VG approach
computes the path as close to the obstacles as possible. In order to make the gen-
erated path collision-free, we must consider bigger obstacles for example by using
Minkowski sum.

In contrast to the VG path planner, a Voronoi diagram approach, shown in Fig-
ure 3c, generates paths that are as far from the obstacles as possible. The Voronoi
diagram is a set of line segments and polynomial curves that are made of points
with same distance from at least two obstacles [4]. On the other hand the paths
obtained from Voronoi diagrams are really not the optimal ones because of the
maximal possible obstacle avoidance of the method.

q
start

q
goal

(a) Grid-based

startq

goalq

(b) Visibility Graph

goalq

startq

(c) Generalized Voronoi diagram

q
start

q
goal

(d) Potential Field

Figure 3: Examples of basic Path Planners

5

The Potential field approach uses artificial potential field established in the
configuration space, where the robot moves from start along a negative gradient to
the goal with the minimal potential [43]. The potential field usually consists of two
sources. The first is attractive potential that pulls the robot from start to its goal.
The second potential is repulsive, which is used around obstacles in order to get the
robot away from them. Example of path planning with potential field with both
attractive and repulsive potential is shown in Figure 3d.

The main disadvantage of Potential field approaches is possible stuck in local
minima. But even those problems can be overcome by some methods like introducing
artificial obstacles in local minima [38] or by using navigation function that has only
one global minima.

2.2 Randomized motion planning
In basic path planning task we searched for collision-free positions inside the workspace
W , which is usually R2 or R3. The motion planning that searches in configuration
space tends to be a more difficult problem. The first reason is that the obstacles
inside configurations space Cobs cannot be described as easily as in workspace. This
is why we use a collision detection algorithms that decide whether specified con-
figuration has collision position or not. The collision detection uses geometry of
robot in specified configuration A(q) and returns whether it has intersection with
any obstacle Bi. The second reason why motion planning is usually more complex
is that it needs to search in configuration space that has higher dimension than the
workspace.

The most naive motion planner consists of grid-based planner that uses configu-
ration space instead of workspace. Such approach would find motion plan, but is not
applicable for most robotic systems, because the dimension of configuration space
is so high that it is not possible to store the grid or compute the plan fast enough.
Answer to this problem is randomness. By using random samples of configuration
space we are able to generate motion plans without searching through the whole
configuration space.

One of the first randomize motion planner was Randomized potential field Path
Planner (RPP) [1]. The RPP uses potential field approach for motion planning.
The main difference from classical potential field planner is usage of random mo-
tions (random walks) with increasing length in order to get from local minima.

Nowadays there are two mostly used randomized motion planners, Probabilistic
Roadmaps (PRM) [29] and Rapidly Exploring Random Trees (RRT) [23]. Those
two algorithms are discussed more deeply in next two sections.

2.2.1 Probabilistic Roadmaps

The Probabilistic Roadmaps (PRM) [23] is very popular motion planning algorithm
for robots in static environment. It shares the idea of generating the roadmap as
had the basic roadmap path planners. We can divide the algorithm in two phases.

The first learning phase creates the roadmap inside the configuration space by

6

random sampling of the configuration space. Outcome of this phase is graph con-
sisting of vertices as points in Cfree and edges that represents collision-free path
between configurations.

Algorithm 1: PRM learning phase
input : Configurations qstart and qgoal , number of nearest neighbours k and

number of generated nodes N .
output: Roadmap as graph G=(V,E)

1 V = ∅;
2 E = ∅;
3 while |V | < N do
4 qrand = random_configuration();
5 if qrand is collision free then
6 V = V ∪ {qrand};
7 end
8 end
9 foreach q ∈ V do

10 Sq = k nearest neighbours from V to q
11 foreach q′ ∈ Sq do
12 e = (q, q′);
13 if e 6∈ E and e is collision free then
14 E = E ∪ {e};
15 end
16 end
17 end

As we can see in the Algorithm 1, we firstly generate nodes of the roadmap un-
til we have N vertices from Cfree space. Then we find k nearest neighbours to all
generated vertices and use a local planner between the vertex and it’s neighbours.
Such local planner generates path between two configurations in C-space. If there
is a path that is collision free, then the path is added to the roadmap.

The main influence on the PRM planner performance has the two parameters
k and N . The number of generated random points N usually determine whether
the plan is found or not. By undersampling of the C-space, we may not be able to
connect all parts of the space, for example because of some narrow passages. With
higher number of generated vertices we may find shorter paths, as in Figure 4d, but
with small number of nearest neighbours k we can also end up in situation where
roadmap consists of many disjoined graphs like in Figure 4c.

The PRM algorithm could be used both for motion planning and path planning,
where instead of using configuration space, we use the workspace. For both pur-
poses, the local planner is also very important. In Figure 4 are displayed roadmaps
generated with PRM as path planner with straight-line local planner. In this type
of local planner we use line segment that simply connects two configurations.
Dubins curves local planner is shown in Figure 5. In that case a Dubins curves
(discussed in Chapter 4.2.2) are used to connect positions (x, y, ϕ) in 2D workspace.

7

q
start

q
goal

(a) Roadmap with lower density of points
and small number of nearest neighbours
(N = 200, k = 3)

q
start

q
goal

(b) Roadmap with lower density of points
but with more nearest neighbours(N = 200,
k = 20)

q
start

q
goal

(c) Roadmap with many disjoined parts
(N = 1000, k = 3)

q
start

q
goal

(d) High density roadmap with high number
of nearest neighbour (N = 1000, k = 20)

Figure 4: Influence of number of neighbours k and number of generated points N
on the roadmap

After we have the roadmap from the first learning phase, the second query phase
follows. During this phase we connect the start and goal configurations with the
roadmap in same manner as the random points in previous learning phase. After
connection of the start and goal to the roadmap we can search the graph using a
Dijkstra’s algorithm. The output is the shortest path in the roadmap between start
and goal configurations. Possible failure of the Dijkstra’s algorithm is because the
start and goal configurations are in mutually separated graphs. The reason for that
is either absence of any solution or inappropriate selection of parameters k and N .

8

q
start

q
goal

Figure 5: Path found by PRM with Dubins curves local planner

2.2.2 Rapidly Exploring Random Trees

The rapidly exploring random tree (RRT) [29] is also very popular algorithm for
motion planning. The main idea behind the method is to grow a tree graph inside
the Cfree, which is rooted in the start configuration. The tree is expanded randomly
until it reaches the goal configuration. In Algorithm 2 is shown the RRT without
any modifications.
Algorithm 2: RRT
input : Configurations qstart and qgoal , maximal allowed final distance to

goal dgoal and maximal number of iterations N .
output: Sequence P of actions(positions for path planning) or failure

1 TREE.add(qstart);
2 iteration = 0;
3 while iteration < N do
4 qrand = random_configuration();
5 qnear = nearest_neighbour(TREE, qrand);
6 TREE.expand(qrand, qnear);
7 d = distance(TREE, qgoal);
8 if d <= dgoal then
9 P = backtrack from qgoal to qstart

10 returnP

11 end
12 iteration = iteration+ 1;
13 end
14 returnfailure

9

Besides the goal and start configuration, the algorithm uses two other input pa-
rameters. The maximal allowed final distance to goal dgoal defines when any tree
node is considered as the goal configuration. It also depends on which metric we
use in C-space, but when the distance of some tree node from the goal is lower or
equal to dgoal, then the goal is considered as reached and the algorithm ends. The
maximal number of iterations N in fact limits the maximal time we want to spend
on search for the plan. When the plan is easy to find, the algorithm does not iterate
after the goal is reached, but when the algorithm does not reach the goal configura-
tion in N iterations it reports failure. The problem in such case, when the failure is
reported, is that we can not decide whether the possible plan exists or the number
of iteration N was not enough. Because of the probabilistic completeness of RRT
we could decide about existence of plan only when the algorithm would iterate for
infinite time.

After initializing the tree with start configuration as a root, we iteratively ex-
pand the tree. During each iteration we generate random configuration qrand from
C-space. To the generated configuration we find nearest neighbour qnear from the al-
ready created tree. During the expansion expand(qrand, qnear) we find path between
nearest neighbour and the random configuration. If the path length is more than
dadd, then instead of random configuration we use configuration on the found path
in dadd distance from the nearest neighbour. Afterwards we also check the path for
collisions and if the path is collision-free then we add the random configuration as
a child node of the nearest neighbour. By this manner, the tree is in each iteration
expanded maximally to additional distance dadd. The algorithm terminates when
the expanded configuration is in maximal distance dgoal to the goal or the failure is
reported after N iterations.

The RRT method could be used for both path planning and motion planning.
The main difference is in expansion of the tree. In path planning we use for example
straight-line or Dubins curves local planner between random and nearest neigh-
bour positions. For motion planning we must take in account the motion model
∆q = fmod(qnn, a) and the expansion is done by using some action a from the near-
est neighbour configuration qnn.

Modifications of RRT

Very common modification of RRT to improve its speed is to attract the growth
of the tree to direction of the goal. This modification called goal-bias [46] is done
by changing the random_configuration() function to return also the goal config-
uration with probability pgoal. By this manner, the tree has tendency to grow in
direction of the goal. In Figure 6 is shown how the usage of non-zero probability
pgoal influences the planner performance. As we can see, the non-zero goal-bias de-
creases the iterations needed for finding the plan nearly by half. On the other hand
by biasing the goal too much, e.g. pgoal = 0.8, it would take much more iterations
to find the plan, because the tree would grow mainly around line between start and
goal. Unfortunately this line is not collision free, so the tree would try to expand
very frequently to the configurations with obstacle.

10

q
start

q
goal

(a) RRT with no attraction to the goal, path
found in 2933 iterations

q
start

q
goal

(b) RRT with pgoal = 0.1, path found in
1462 iterations

Figure 6: Influence of goal-biasing to RRT algorithm

As for PRM planner we can use different types of local planners between ran-
domly generated points and the nearest neighbours from the tree. In Figure 6 we
used straight line planner as the simplest local planner. However the straight line
planner is probably the most frequently used, there are also many systems with
dynamical constraints where it can not be used. For example nonholonomic mobile
robots has to use circular paths with no sharp turns. In Figure 7 we used the Dubins
curves local planner.

q
start

q
goal

Figure 7: Example of RRT

11

Besides modifications of goal-bias and the local planner we can also find other
interesting RRT approaches that modifies usually the expansion method.

In RRT-Bidirect [31] is firstly used idea of expanding two trees simultaneously
one from qstart and the second from qgoal. The main change is in expansion step,
where the same randomly generated configuration is used for both trees. Firstly
the tree rooted in qstart is expanded by random configuration and if the expansion
succeeds (is without collision), then also the second tree tries to expand to the same
configuration. The growth of the trees is terminated if their distance is less than
a threshold dgoal. Then, the trees are connected and the path/trajectory is found
as in basic RRT. The connection of the trees is not a trivial task. While for path
planning and holonomic mobile robots the interconnection is easy because the trees
are connected simply by a straight line, for the robots with dynamical constraints
the connection is nontrivial and requires further computation.

RRT-Connect [27] modifies the expansion step in such way, that the randomly
generated configuration is used repeatedly until the configuration is reached or some
obstacle is hit. By this manner the planner creates trees with long straight paths
rather than tree with many tree branches as in classical RRT. This method could
be also combined with using RRT-Bidirect approach with multiple trees.

Another very interesting idea is used in RRT-blossom [21]. In contrast to the
original RRT, this method always tries to expands into multiple configurations. For
motion planning it only requires to sample multiple possible actions a and use them
in the motion model from selected nearest neighbour. Such generated configurations
are added to the tree only if their distance to the nodes already present in the tree
are lower than distance to their parent. This requirement called regression is crucial
in order not to stuck in already explored space.

2.2.3 Pros and cons of sampling-based planners

The main advantage of randomized motion planning is that it can handle even very
complicated planning problems in high dimensional spaces, that are not solvable by
basic path planning methods. Both presented randomized motion planners share
the basic idea of random generation of configurations q ∈ Cfree and connection of
these configuration in order to get plan between start and goal configuration. The
PRM differs from the RRT in precomputation done in the learning phase. Once
we have the roadmap, we can use it repeatedly to find plans between different start
and goal configurations. This advantage is mainly because the most time-consuming
task in the whole algorithm is the search for the nearest neighbours and the collision
detection. The problem arises when the query phase fails and we are forced to run
the learning phase again with possible bigger k and N parameters. On the other
hand, the RRT is only single query motion planner. The iterative growth of RRT
planning tree could continue indefinitely until the plan is found and does not share
the complication of rerunning the learning phase as PRM. The RRT is also proba-
bly more suitable for robots with dynamical constrains because when expanding the
tree, the motion is done from a tree node to the new node. In the PRM, when con-
necting two configurations we can not determine which configuration of the motion
is initial and which is terminal.

12

The downside of randomized motion planning is that the optimality of generated
plans cannot be usually guaranteed. As the C-space is sampled randomly, the path
between start and goal configurations are generated longer and their optimality is
not guaranteed in both methods. PRM* and RRT* [22] are modifications of PRM
and RRT planners that are asymptotically optimal. It is achieved by considering
also cost of connection between points inside C-space. RRT* addresses the im-
portant aspect of optimality in the RRT motion planning task. The optimality of
RRT* is done by considering cost of expansion. When we generate new configura-
tion qnew in the expansion step by steering the nearest neighbour configuration qnear

in direction of qrand, we also checks multiple nearest neighbours of the qnew in order
to get the neighbour with the lowest cost of path to qnew. After connecting qnew to
the node with lowest cost of path, all previously selected nearest neighbours could
be reconnected in order to get smaller costs of connections.

Optimality of the plan could be also improved by post-processing [36] of the
generated plan. The smoothing of the plan is the simplest improvement, yet it is
very useful because the plans generated with probabilistic path or motion planning
tends to be very jagged.

For the two already presented randomized planners, we have guarantees of prob-
abilistic completeness, which means that they find the plan if one exists. In reality,
the plan could be so difficult to find, that it takes infinite time to find it. This hard-
ness of finding a plan is usually caused by what is called narrow passage problem.
This problem is shared among all sampling-based methods. The narrow passages
are parts of configuration space that are relatively small, the robot fits inside them
very tightly, and their removal would change connectivity of the free space. With
uniform sampling of the configuration space, those passages a usually not sam-
pled enough to get through them. One possible technique to improve performance
in narrow passages is base on their detection and adaptation of sampling inside
them [41, 42]. Other possibility to overcome narrow passage problem is retraction-
based planning [52], that uses not only samples generated in free configuration space,
but also the samples inside Cobs and moves them to the closes point in Cfree space.

The randomized motion planning is also suitable for the AUVs. As the AUV
has nonholonomic drive and its dynamical model has its constrains, the basic path
planning methods are not able to handle it. In Chapter 4 are presented several
motion planners that use the RRT approach.

13

3 Robot Coverage Planning
Robot Coverage Path Planning (CPP), also known as Robot Coverage Problem, is
task of finding a path through the free space that passes over all points in a given
area [30]. Applications of CPP can be found for example in autonomous lawn
mowing [48], vacuum cleaning [33], agriculture [18], area inspection or autonomous
underwater vehicle scanning of the seabed [14]. The crucial part of any algorithm
that solves the CPP is not only coverage of all selected points of space, but also op-
timality of the path. This optimality is mainly done by searching for a path without
overlapping parts and repetition of paths. This optimality requirement is related
to the well-known Travelling Salesman Problem (TSP) [47], whose goal is to visit
each city exactly once, use the shortest possible route and return to the original city.
As we know, the TSP is a NP-hard problem which means that also the coverage
planning is NP-hard. This is why the approaches to solve the CPP problem usually
prefer the requirement for covering all selected points before requirement for the
optimality.

Generally we can divide the algorithms that solve the coverage problem to online
and offline. The offline algorithms use static information about the environment and
do not assume any change of the environment. The online coverage also utilizes sen-
sors placed on the robot in order to cover the area. Further we can also distinguish
between heuristic approaches, that do not guarantee the full coverage, and complete
approaches that have proven coverage of the whole free space.

In following two sections, Single Robot Coverage and Multirobot Coverage, are
presented selected methods for solving CPP. Methods are organized based on pre-
vious surveys in robot coverage planning [7,15] and also based on their similarity in
dealing with the coverage problem (especially how the workspace is partitioned).

3.1 Single Robot Coverage
Single robot coverage uses only one robot for covering the area. Advantages of using
only one robot are lower costs and no need for cooperation of multiple robots. The
algorithms presented bellow focus mainly on the completeness and optimality of the
coverage plans. Differences between individual algorithms are mainly in way how
they partition the workspace and also in the way how these parts of workspace are
selected during the coverage. Disadvantages of using single robot for coverage are
longer coverage time and vulnerability to robot failures.

3.1.1 Exact Cellular Decomposition Methods

The exact cellular methods uses very similar idea as the exact decomposition path
planners mentioned in section 2.1. The free area for coverage is decomposed into
smaller cells that covers the whole area. From this decomposition we can create a
graph, where nodes are the cells and the vertices between two cells represent their
adjacency. Then each cell can be covered by simple plow-like sweeping algorithm
that drives the cell using zigzag path as in Figure 9a.

14

Trapezoidal decomposition
This type of decomposition for coverage planning is the same one as for the path

planning mentioned previously. Trapezoidal decomposition is capable to cover only
workspaces with polygonal obstacles. Its outcome are trapezoidal or in some cases
also triangular cells. The graph of adjacency is created from the cells. Then using
exhaustive walk through the graph, e.g. with Depth-first search (DFS), we can
determine in which order the cells are covered. In Figure 8a we can see trapezoidal
decomposition of workspace together with lines between cell centres that indicate
order in which the cells are covered. The final plow-like path that robot uses in
order to cover the workspace is in Figure 8b.

Weak point of this method are connections of cells where we sometimes have to
use already covered paths or backtrack in order to get from the end of plow-like
path in first cell to the start of plow-like path in second cell.

(a) Trapezoidal decomposition coverage
with order of cell coverage

(b) Trapezoidal decomposition coverage
robot path

Figure 8: Trapezoidal decomposition coverage

Boustrophedon decomposition
The word boustrophedon comes from Greek and it means “the way of the ox”.

This name refers to way how one cell is covered by plow-like sweep algorithm, ex-
actly the same method as trapezoidal decomposition used 9a. The boustrophedon
decomposition coverage [8,37] is quite similar to the trapezoidal decomposition, but
it generates lower number of cells. The cells are determined by using a vertical line
called slice that sweeps the workspace from left to right and detects events IN and
OUT. The IN event is detected when the slice line is divided by obstacles into more
parts than was before. This happens when new obstacle is reached. OUT event is
when multiple parts of slice line joins together, which usually happens when the line
gets out of the obstacle. On places where those evens occur we end previous cells
and start new cells.

15

(a) Plow-like coverage of one cell

IN event OUT event
slice

cell 1

cell 2

cell 3

cell 4

(b) Vertical line (slice) sweeps the
workspace

Figure 9: Boustrophedon decomposition principles

Finally, after the cells are created, their order is determined as in trapezoidal
decomposition with an exhaustive walk through the graph.

The boustrophedon decomposition produces less number of cells than the trape-
zoidal decomposition, which means that search through graph is easier. Also prob-
lematic parts of plan where a robot has to traverse between two cells through already
covered area are reduced.

In Figure 10 are shown difference in decompositions by using boustrophedon
and trapezoidal decompositions. Even the cells are created little differently, the
final robot path is in both cases almost the same.

(a) Boustrophedon decomposition (b) Trapezoidal decomposition

Figure 10: Comparison of Trapezoidal and Boustrophedon Decompositions

Morse-based cellular decomposition
Both the Trapezoidal decomposition and Boustrophedon decomposition could be

done by simple line sweep algorithm [20] as shown in Figure 9b. While the Bous-
trophedon decomposition only detects changes of connectivity of the line, in the
Trapezoidal decomposition we also detect changes in shortening and lengthening of
the parts of slice line that passes through the free space.

16

Last method presented among exact cellular decomposition methods is Morse-
based cellular decomposition [6]. This method is in fact generalization of Boustro-
phedon decomposition. In previously mentioned Boustrophedon decomposition we
used line slice to determine cell borders in places where the connectivity of the slice
changes. The same approach is used in Morse-based decomposition with change
that the slice could vary in its shape. We can define the slice as real valued function
h : Rm → R. In the Boustrophedon decomposition the slice was line defined as
h(x, y) = x.

The Morse-based decomposition is named after morse functions that have in
common that their critical points (places with zero differential) are isolated from
each other. This feature is critical to find the decomposition, because the cell bor-
ders are placed where slice connectivity changes which is in critical points of the
morse function that sweeps the workspace. It means that we can define the slice
arbitrarily as long as it is morse function.

The advantage of Morse-based decomposition is that the obstacles could be of
any shape and not only polynomial. We can also define the morse-based decompo-
sition in 3D space.

In Figure 11 we can see morse-based decomposition using concentric circle slice
defined as h(x, y) =

√
x2 + y2. This slice could be used for example for nonholo-

nomic robots where sharp turns are not possible.

Figure 11: Concentric circles Morse decomposition with critical points

3.1.2 Grid-Based Decomposition Methods

The workspace that we want to cover by the robot can be also decomposed by us-
ing a grid. This means that we divide the workspace into square-shaped cells as
we did in Grid-based approximate decomposition path planning. The advantage
of this idea is simplicity of decomposition compared to previously described exact
cellular decomposition methods. On the other hand there is also disadvantage in
handling with grid cells that are partially occupied by obstacles. We have to consider
such cells as obstacles which could lead to uncovered parts of workspace. Then the
completeness of coverage depends mainly on grid resolution. Finally the coverage
around obstacles, where such partially occupied cells occurs, can be also improved
during execution of coverage plan by extending the path as close to the obstacles as
possible.

17

For the exact cellular decomposition we used exhaustive walk through the graph
in order to find order in which cells are covered. In grid-based decomposition we
use different approach.

Spanning-Tree Coverage
In the Spanning-Tree Coverage (STC) method [13] is used search of minimal

spanning tree of the grid adjacency graph. In such graph the grid cells represent
vertices and the graph edges mean that the cells are next to each other. The min-
imal spanning tree (MST) is tree graph that has all vertices as original graph and
has the minimal possible weight of edges. Finding of MST could be done by various
algorithms, for example by using well known Prim’s, Kruskal’s or Borůvka’s algo-
rithms. As edge weights we use distance between vertices, which is in our case the
grid spacing.

For the spanning tree algorithm we uses cells of size 4D called mega cell. Each
mega cell contains four smaller cells of size D. The parameter D is very important,
because it has to be of same size as robot or as the area that robot can cover by
coverage sensor.

mega cell

smaller
cell

Figure 12: Spanning-Tree Coverage Mega Cell

When we have spanning tree that connects centres of mega cells, we can create
coverage path for the robot by simply driving around spanning tree in counterclock-
wise direction. By this manner we create path that goes through all centres of small
grid cells and the path is also smallest possible, because it was generated by using
minimal spanning tree. In Figure 13 is shown spanning tree and generated coverage
path that circumnavigates the spanning tree.

(a) Spanning tree of the grid (b) Circumnavigate coverage path

Figure 13: Spanning tree coverage

18

As we can see, the off-line algorithm omits some partially occupied cells. In
Spiral-STC [12], which is an on-line STC algorithm, are covered also such partially
occupied cells. The Spiral-STC firstly generates the spanning tree also in partially
occupied cells and then the final ’spiral’ path is deformed in those cells in order to
avoid the obstacles.

In Backtracking Spiral Algorithm (BSA) [17] the coverage of partially occupied
cells is done by using wall-following procedure and by backtracking to cells where
coverage is incomplete.

3.1.3 Alternative approaches

In alternative coverage approaches are mentioned some other robot coverage meth-
ods that are rather heuristic than algorithmic. Among such methods could be
included bio-inspired or randomized methods.

Random coverage path planning is one possible heuristic method for robot
coverage. Its implementation is very simple, because it only uses random motion
patterns, for example turn randomly and go straight, to cover the workspace. This
approach is widely used in cleaning robots [39]. Such generated paths are far from
optimality in their length, but with increasing time the full coverage is ensured.
Because of this fact, the applications of random coverage are limited to those where
time and path costs are not important.

Neural networks approach is another approach that is provably capable of
solving the CPP [50]. The approach uses grid of the workspace where in each cell
is placed one neuron that has connection to its neighbours. From the input of
actual robot’s position, the neural network can determine move based on activity of
neurons.

3.2 Multirobot Coverage
In multi-robot approaches to robot coverage path planning we consider using mul-
tiple robots mainly in order to decrease the coverage time. Despite the fact that
multi-robot applications require increased costs, there are also other advantages like
fault tolerance and capability of mutual localization. In this chapter are presented
some basic algorithms with increased focus on the ones that are used further in this
work.

3.2.1 Boustrophedon multi-robot coverage

The boustrophedon multi-robot coverage [40] uses exactly the same decomposition
of workspace as the version of this algorithm for single robot. After decomposition
we have graph representation of cells inside workspace. In order to utilize multiple
robots, the Boustrophedon multi-robot Coverage consider two options.

The first option is to use a team-base multi-robot coverage. In this case, we find
order in which the cells are covered as in single robot approach. Then we cover
each cell by using simultaneously all robots as in Figure 14. The first two robot

19

that enter the cell are explorers and cover boundaries of the cell and possible critical
points where coverage is complicated due to for example narrow passages. Other
robots are used as coverers that use plow-like path and cover the internal of the
cell. By this manner all cells are covered using all robots. For case with only two
robots, the both robots serves firstly as explorers and afterwards as coverers. The
team-based approach is most useful in workspaces where cells are big enough to
contain all robots, otherwise we can not utilize all robots during the coverage.

Top
Explorer

Bottom
Explorer

Coverers

Figure 14: Team coverage of a single cell

The second option is a distributed approach. In this case the robots are spread
out in the workspace. To each robot a part of workspace called stripe is assigned,
which may or may not correspond with the cells created by previously presented
Boustrophedon decomposition. Initially the robot tries to cover the outline of the
stripe and then the robot performs single robot coverage of the interior of the stripe.
Finally if some part of assigned stripe is not covered, for example because it is
blocked by obstacle, the uncovered part is assigned to other robot by greedy auction
mechanism.

3.2.2 Grid-Based Decomposition Methods

The grid-based method uses decomposition of workspace into square-shaped cells
that form the grid. The two methods mentioned bellow are both base on mini-
mal spanning trees search as we have seen in the single robot grid decomposition
approaches.

Multi-robot Spanning Tree Coverage
The Multi-robot Spanning Tree Coverage (MSTC) [19] is an extension of the

single robot STC method for multiple robots. The algorithm is based on spanning
tree of the grid adjacency graph. For the single robot version we let the robot to
drive around the spanning tree in counterclockwise direction which creates shortest
path possible while covers whole grid.

In non-backtracking MSTC all robots drive along the spanning tree in counter-
clockwise direction until they reach starting position of other robot. In this way the
grid workspace is covered as with single robot, but the utilization of robots mainly
depends on their starting positions. When the robots start near to each other, then

20

there is one robot that covers almost whole workspace while the other robots only
cover small space between each other. The best case scenario is when the robots are
spread equidistantly in path around the spanning tree. In that case, with using n
robots, the cover time is n times smaller than in single robot version.

The backtracking MSTC reduces the cover time in cases where robot starts close
to each other. When there is robot that has to cover more than half of the whole
path around the spanning tree, then this long part is covered by two robots. One
of them is still covering the long part in counterclockwise direction and the other
covers the long part in clockwise direction. By using this backtracking approach the
the worst-case scenario for n cells is covered in n/2− 1 steps for k = 3 robots or for
k = 2 robots in 2n/3− 1 steps.

In following Figure 15b are shown paths for two robots that uses MSTC method.
Robot’s start positions are in left and right upper corners so the coverage algorithm
does not have to use backtracking approach. We can also see, that some parts of the
workspace are not covered because the cells there are partially occupied by obstacle.

(a) Spanning tree on the grid (b) Coverage path for two robots

Figure 15: Multi-robot Spanning Tree Coverage

Multi-robot Forest Coverage
The second important method that uses grid-based decomposition of workspace

in multi-robot coverage is the Multi-robot Forest Coverage (MFC) [53]. The main
difference from the MSTC is that the MFC method finds a rooted tree cover, which
is forest of k trees that covers the grid. All k robots then circumnavigate only their
own tree.

The search for rooted tree cover is NP-complete because it can be reduced to bin-
packing problem. The reason for this is that we need k trees that cover the space
with minimum possible vertices and we also want the trees to be of nearly same
length in order to utilize all robots equally. The presented MFC algorithm does not
find the rooted tree coverage by hard, but instead it uses polynomial-time TREE
COVER algorithm [11]. The TREE COVER does not find the minimal cover tree,
but its worst case coverage distance is maximally four times larger than optimal.

The TREE COVER itself works as follows. Firstly we removes all edges of size
larger than some value B. Then we find minimum spanning tree of this graph with

21

contracted all roots into one. The minimum spanning tree is afterwards split to
k trees. All trees are then decomposed into subtrees with weight in range [B, 2B)
and possible leftover subtrees with weight bellow B. The non-leftover trees are con-
nected with their roots with edge of maximally B weight using maximum matching
approach. If there are some non-leftover trees that cannot be connected using actual
value of B, then we know that the rooted tree with maximal weight of B does not
exists. In the end the algorithm returns trees that each has maximal weight of 4B
and consists of root, one non-leftover tree and path to the leftover subtree. Key
factor of algorithm described above is search of smallest possible value B in order
to get minimal rooted tree cover.

As we can see in Figure 16, the algorithm finds the coverage for two robots that
have their starting positions next to each other.

(a) Spanning Tree for MFC

(b) First Robot Coverage Path (c) Second Robot Coverage Path

Figure 16: Multi-robot Forest Coverage

3.2.3 Alternative approaches

Also in multi-robot coverage we can use heuristic approaches. As in single robot
methods we can use the random coverage path planning that uses random
motion patterns. The only difference from approach where only one robot is used,
is requirement for avoiding other robots.

A bee pheromone signaling approach [3] is biological inspired method that
tries to imitate the bees covering the area. Another bio-inspired approach uses ants
alarm pheromones [35].

22

4 Motion Planner for AUV
The first goal of this thesis is to realize a motion planning for Autonomous Under-
water Vehicle (AUV). Generally, the motion planning of AUVs in seabed monitoring
task is used in two different scenarios. First, the motion planning is used for local
(short-range) maneuver, e.g. during docking of AUV to the charging station. The
second utilization of motion planning is designed for long distanced plans, where
the vehicles have to travel several hundreds meters and more. For both scenarios we
use the Rapidly Exploring Random Tree (RRT) method. The reason why we chose
RRT rather than PRM is that the connection of nearest neighbour configurations
in PRM’s learning phase would require a special metric because of the dynamical
constraints of the AUV (described in Chapter 4.1). In the RRT we could use the
Euclidean metric for selecting nearest neighbour qnear and then expand this node
by using a set of possible inputs to the AUV drive system. The second reason for
choosing the RRTmethod is that the single query motion planning is sufficient for us.

Figure 17: AUV 3D CAD model used by motion planners (courtesy of David Oertel)

Two different approaches were tested for solving the motion planning task for
AUV. The first approach, described in Chapter 4.2.1, uses the RRT-blossom idea
of expanding the selected nearest neighbour qnear into multiple nodes using set of
possible inputs to the AUV drive system. In this approach we used the dynamical
model of AUV inside the planner. By applying multiple inputs to thr dynamical
model from nearest neighbour configuration qnear the RRT tree is expanded until
the goal configuration is found.

The second approach described in Chapter 4.2.2 uses RRT path planning with
the Dubins curves local planner. In this approach, the motion planner designs a
motion plan as a sequence of curves that are obtained using Dubins-based local
planner. The plan is represented by a set of 3D points. The AUV then navigates
along the plan by using a simple Lookahead steering controller [5, 25].

23

4.1 AUV model
Motion planning for the AUVs is a challenging task due to the dynamics of the
vehicles. To generate suitable motion plans, the dynamics needs to be considered
in the motion planner. The chosen RRT method searches the configuration space
by incrementally expanded tree. To ensure that the final plan is feasible, the tree
has to be expanded using the motion model. In this work we used provided Matlab
Simulink model of the AUV in order to guarantee the feasibility of designed motion
plans. The AUV dynamical model was developed by David Oertel from Institute of
Process control and Robotics, KIT, Germany.

The AUV model is governed internally by equations for 6-DOF marine craft [9,
10]:

η̇ = J(η)ν

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ .
The generalized position η = [N,E,D, φ, θ, ψ]T and velocity ν = [u, v, w, p, q, r]T
represent actual state of the AUV. Figure 18 illustrates the North East Down (NED)
coordinate system, that is used in marine craft equations. The velocity ν represents
speed in according NED position.

x
y

-z

Pitch
θ

Yaw
ψ

Roll
Φ

y
East

z
Down

x
North

NED
World frame

AUV frame

Figure 18: NED world frame system with AUV frame

Other parameters of the equations are Euler angle velocity transformation ma-
trix J(η), System inertia matrix M , Coriolis-centripetal and Damping matrices
C(ν), D(ν), vector of gravitational/buoyancy forces g(η) and control inputs τ .
We can control the AUV by three actuators: a vertical/horizontal rudder and a
forward thrust.

The AUV is nonholonomic, which means that it can not move in any direction,
but the direction of movement depends on its actual position. This property is
caused by lower number of controllable degrees of freedom (DOF) than the total
degrees of freedom. The controllable DOF is only three and consists of two rudders

24

and one shaft inputs. On the other hand, as previously mentioned, the total degrees
of freedom is six which represents actual AUV position inside the space.

To design a suitable motion planner, behaviour of the motion model needs to be
investigated. The most important are responses to control inputs (height rudder,
yaw rudder and thrust). Resulting behaviour of diving speed and turning diameter
are then used to determine resolution of motion planner.

The height rudder is responsible for ascent and descent of the AUV depth. Its
effects on the AUV is important, because it determines how fast the AUV can dive
to a certain depth. This therefore determines time required to reach positions on
different depths. The real AUV maximal diving speed determined from measured
data is approximately 0.21 m/s. Using the motion model, the maximal diving speed
was measured to be almost 0.2 m/s with forward speed of 1.5 m/s. The minimal
speed of AUV is 0.51 m/s, because in smaller speeds the AUV is not able to dive
dynamically and the height rudder has no control over the diving speed. As is shown
in Figure 19, the diving speed is maximal for height rudder at angle −0.48 rad. The
behaviour for going up is symmetrical with the diving behaviour, so further in the
planners we consider the height rudder to use only angles in range (−0.48, 0.48) rad
and the diving speed to be maximally 0.2 m/s. From the maximal diving speed we
can also derive that the maximal diving is approximately 0.13 m per one meter of
forward motion.

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.05

0.1

0.15

0.2
Dependance of diving speed on height rudder angle

height rudder angle [rad]

di
vi

ng
 s

pe
ed

 [m
/s

]

Figure 19: Dependence of diving speed on height rudder setting (with forward speed
of 1.5 m/s)

The second (yaw) rudder is responsible for AUV turning around z axis. If the
AUV would use only the yaw rudder without changing the depth of dive with the
height rudder, then the behaviour of the AUV is similar to car-like or Dubins car
mobile robot. In that case, AUV moves along circular trajectories. If the yaw rudder
is set to zero angle then the AUV moves straight on circular trajectory with infinite
diameter. The fact that AUV moving in same depth behaves like car-like robot
motivates us to design a motion planner for long distances similarly as for car-like
mobile robots. One of the possible solutions is to employ the Dubins planner [30].
For this planner, we need to investigate the minimal turning diameter. As shown

25

in Figure 20, there exists angle of yaw rudder that generates trajectory with the
minimal diameter.

Figure 20 also shows, that the provided model versions differ in their response
to the yaw rudder setting. The first version used in the planners, denoted as ’older
model version’, has very similar behaviour to the height rudder and the minimal
diameter of turning is 30 m with 0.48 rad angle of yaw rudder. In contrast to this,
the actual AUV model continues to decrease the turning diameter even after angle
of π/2, which is not what we would expect. In reality the angle over π/2 supposes to
change direction of turning from right to left, which does not happen in the model.
This is why we consider the yaw rudder angles to be in range (−0.48, 0.48) rad. The
minimal turning diameter used further in both planners and seabed monitoring is
25 m which is the turning diameter of newer model with 0.48 rad yaw rudder angle.
In the motion planners we use the newer model, but with respect to the minimal
turning diameter found in the older version.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700
Dependance of turning diameter on yaw rudder angle

yaw rudder angle [rad]

tu
rn

in
g

di
am

et
er

 [m
]

older model version
actual model

Figure 20: Dependence of turning diameter on yaw rudder setting (with forward
speed of approximately 1.5 m/s)

The third AUV input, which is the shaft speed, that creates the forward thrust,
is not so important because in planners described in next chapters the speed is
considered to be constant around 1.5 m/s. This speed is used based on average
forward speeds of the real AUV. For approximately constant speed of AUV we can
use constant shaft speed input. The only case where we also consider non-constant
shaft speeds is the docking task described in Chapter 4.3.

Utilization of Simulink model for RRT-based planner

In order to use the model inside the planner, the model was modified in a way
that all internal states are both controllable and observable. It required integrators
to be modified so that the internal states of them are both inputs and outputs of the
model. As the AUV moves in 6-DOF space, both position and velocities, that are
the internal states, consists of six parameters like in the equations for marine craft.

26

It means that the inputs of the AUV model are not only the drive control signals for
height rudder, yaw rudder and shaft speed, but also the initial position and velocity.
Also the outputs of AUV model had to be extended to consists of both position and
velocity. This modification enables to save the whole description of state in which
is the AUV model.

Finally, as shown in Figure 21, the model also allows to set external current ve-
locities in order to simulate the deep water environment more realistically. Despite
the fact that the influence of water currents was tested, it is not mentioned later
because of lack of model behaviour of deep water currents and only static velocity
currents could be simulated.

In1height

In2yaw

In3shaftRPM

In4InitX

In5InitY

In6InitZ

In7InitRX

In8InitRY

In9InitRZ

In10InitVX

In11InitVY

In12InitVZ

In13InitVRX

In14InitVRY

In15InitVRZ

In16current_x_velocity

In17current_y_velocity

In18current_z_velocity

Out1x

Out2y

Out3z

Out4rx

Out5ry

Out6rz

Out7vx

Out8vy

Out9vz

Out10vrx

Out11vry

Out12vrz

AUV

X

Y

Z

RX

RY

RZ

Start Position
vX

vY

vZ

vRX

vRY

vRZ

Start Velocities

Position Scope

vX

vY

vZ

Currents

Velocity Scope

SHAFT_RPM

Shaft RPM

YAW_RUDDER

Heigth rudder

HEIGHT_RUDDER

Heigth rudder2

Figure 21: AUV Matlab Simulink model

Besides the motion (dynamical) model, the RRT planner also needs a 3D model
of the vehicle in order to implement collision detection. The used 3D model is
depicted in Figure 17. Both dynamical and 3D models of AUV are used with the
permission of KIT.

4.2 Long distance planners
In this Chapter are presented two different approaches to AUV motion planning
on long distances inside space with obstacles. The intended plan distances are in
hundreds of meters or more. Both planners are capable of planning collision free
motion plans that consist of both AUV state together with inputs to the AUV drive
for transition to the next state. The first RRT motion planner in Chapter 4.2.1
uses multiple inputs to AUV model in order to grow the planning tree until the tree
reaches the goal position. The second RRT planner 4.2.2 uses Dubins curves motion
primitives to plan a path that is afterwards traversed by a steering controller that
creates the final plan. Both planners are compared in Chapter 4.2.3.

27

4.2.1 Input-based RRT planner

The first implemented and tested RRT planner approach to solve the path planning
problem for the AUV is planner that we call input-based. The reason for this name
is that we use multiple different inputs to the AUV drive in order to grow the plan-
ning tree. This approach is similar to the RRT-blossom described in Chapter 2.2.2.
The main difference is that we use Simulink AUV simulation in order to get AUV
state using those different inputs.

As in the standard RRT, the planning tree starts with initial state sstart (con-
figuration) of the AUV. Then in each step of the RRT algorithm, we find nearest
neighbour state snear in the tree to a randomly generated position prand. Then we
use combination of control inputs to AUV (i.e. angles of rudders) and run the sim-
ulation of the AUV from nearest neighbour state for a constant time step tsim. By
this manner the planning tree expands throughout the space until it reaches the final
required position. The Algorithm 3 summarizes how the input-based RRT planner
works.
Algorithm 3: Input-based RRT planner
input : AUV start state sstart and desired goal position pgoal , maximal

allowed final distance to goal dgoal, maximal number of iterations N ,
rudder step rstep, constant input AUV shaft speed shaft_RPM and
simulation time tsim.

output: Sequence P of AUV states and inputs or failure
1 TREE.add(sstart);
2 iteration = 0;
3 while iteration < N do
4 prand = random_position(); // random (N,E,D, ψ)
5 snear = nearest_neighbour(TREE, prand); // nearest AUV state to prand

6 for yaw_rudder = −0.48 to yaw_rudder = 0.48 using rstep do
7 for height_rudder = −0.48 to height_rudder = 0.48 using rstep do
8 τ = (yaw_rudder, height_rudder, shaft_RPM);
9 sexpand = simulateAUV (snear, τ, tsim);

10 newNode = {sexpand, τ};
11 TREE.expand(snear, newNode);
12 end
13 end
14 d = distance(TREE, pgoal);
15 if d ≤ dgoal then
16 sgoal = nearest_neightbour(TREE, pgoal);
17 P = backtrack from sgoal to sstart;
18 return P ;
19 end
20 iteration = iteration+ 1;
21 end
22 return failure

The nearest neighbour search algorithm(nearest_neighbour(TREE, prand)) ef-
fectively uses only four coordinates of AUV, the three dimensional position of AUV
centre of gravity and rotation of AUV around z axes (N,E,D, ψ). The other two

28

position parameters, the rotations around x and y axes (roll φ and pitch θ), are ne-
glected because their values are usually close to zero and they are not so important
in term of distance between two positions of AUV. The state of AUV also contains
another six parameters of AUV speed, but we also do not consider them in search
for the nearest neighbour state because we use constant speeds, otherwise the plan-
ning would get even more complicated with higher dimension. For all four used
parameters (N,E,D, ψ), we use Euclidean distance with higher scale for ψ and D
parameters, because it is more difficult for the nonholonomic AUV drive to change
them, so they have higher importance in terms of distance between two states.

In the algorithm, we also use the goal-bias method inside the random_position()
function, that attracts the growth of tree in the direction of the goal position. The
only required modification compared to the standard goal-bias is, that instead of
random generation of the goal position, we also generate positions in cubic neigh-
bourhood of the goal. The reason for this modification is that the AUV drive is
nonholonomic, so the euclidean nearest neighbour does not have to be the closest
state for the AUV drive. Size of the cubic neighbour is derived from the minimal
turning diameter of the AUV. By using this type of goal-bias, we ensure a denser
growth of planning tree around final position and also allows nonholonomic AUV
drive to turn to right final ψ position.

As was shown in the previous Chapter 4.1 describing AUV model, the most ef-
fective inputs to yaw and height rudders are angles in range (−0.48, 0.48) rad. For
this reason we used them as boundary values in simulation of AUV from nearest
neighbour state snear. We used equidistantly distributed inputs to AUV rudders
where the rudder step parameter rstep defines how much the planning tree branches
out. The smaller the rudder step is used, the more expanded state we have and
also the space is covered much denser. On the other hand, using too many rudder
inputs leads to significantly slower search as more simulations must be computed.
Because of these factors, we used rstep = 0.24 rad for states far from goal and smaller
rstep = 0.12 rad for positions that are close to the goal. This increased number of
simulated rudder inputs near to the goal positions allow closer approach of AUV to
the final required position.

The designed input-based planner was verified in canyon-like environment. The
size of the canyon is almost 1 km2. Size of the AUV is approximately 3.5×0.8×0.8 m.
Plan found in the canyon-like environment by using described algorithm is shown
in Figure 22. The plan was found in approximately ten minutes within 646 itera-
tions and with 321025 nodes in planning tree. The threshold for reaching the goal
position was set to dgoal = 5 mu, where mu is combination of four used position
parameters (N,E,D, ψ) with increased scale for ψ and z parameters as was used
in the nearest_neighbour(TREE, prand) function. For each rudder input we used
simulation time tsim = 15 s, where every 0.5 s the position of AUV is tested for
collision and the state is added to the planning tree. If the collision was detected,
then the simulation for given rudder input was stopped and the AUV state was
not added to the tree. The collision detection every 0.5 s is important, because
of the AUV dimensions. With bigger collision detection period, the AUV could
pass through obstacle without detected collision. The shaft rotation per minute was
shaft_RPM = 250 in order to get approximately 1.5 m/s forward speed of AUV.

29

The path needed between start position (N,E,D, ψ) = (−260, 400,−90,−1.57) and
goal position (N,E,D, ψ) = (100,−400,−80,−1) has length of 1564 m.

Figure 22: Plan found in the canyon-like environment using input-based planner

In Figure 23 we can see the planning tree used during the search for previously
shown plan. We can see that the tree spans almost entire canyon. Also the input-
base approach is clearly visible. As the single state branches into multiple states
using different inputs to rudders, it creates a cluster of states that looks like a hand
fan.

Figure 23: Planning tree in the canyon-like environment using input-based planner

30

The input-based method presented in this chapter is able to plan between two
long distance positions. By using RRT-blossom approach and simple enhancements
of goal-bias, we were able to find collision free motion plan in canyon-like environ-
ment with length of 1564 m and final position error bellow 5 m.

4.2.2 Dubins-based RRT planner

The second approach to RRT motion planner for AUV uses the Dubins curves [30].
These curves quite accurately describe the paths that creates the AUV when using
the rudders and the shaft for control of forward speed and orientation. In fact these
curves can be used as motion primitives that satisfies the dynamical constrains of
the AUV drive and its nonholonomicity. The basic idea behind the planer is to firstly
plan a path using Dubins curves and then use a Lookahead steering controller to
traverse the path with the Simulink AUV simulation. The final plan consists of both
AUV states and inputs from the steering controller and is qualitatively same as plan
from the first input-based planner.

In following paragraph, the Dubins curves used for the path planning are firstly
described. Then, the Lookahead steering controller used to drive the AUV along the
planned path is described. Afterwards, the algorithm of Dubins-based RRT planner
is presented together with an experiment.

Dubins curves

The Dubins curves [30] are the shortest curves that connect two position in-
side workspace W = R2, where the robot position is described by three parameters
p = (x, y, ϕ). The (x, y) parameters are robot’s position in workspace and the pa-
rameter ϕ is the heading angle of the robot.

Originally, the curves were used for nonholonomic car-like robot where the main
dynamical constraint is a maximum steering angle which causes a minimum turning
radius. This is why the AUV model was explored mainly in order to get the mini-
mum turning diameter, because it is the only parameter of the Dubins curves.

There are a total number of six different Dubins curves types. Each type can
be described by three motion primitives. The first primitive S is when the robot
drives straight ahead. Primitives R and L stand for turning right and turning left,
using the minimal turning radius. With these acronyms for motion primitives the
six possible Dubins curves are LRL, RLR, LSL, LSR, RSL and RSR. In Figure 24
are shown all six Dubins curves between two positions. Important fact is that all
six Dubins curves are not always possible especially for positions that are close to
each other.

31

−40 −30 −20 −10 0 10 20 30 40 50 60
−40

−20

0

20

40

60

80

x [m]

y
[m

]

Dubins paths between start and goal positions in 2D

start position
start orientation
goal position
goal orientation
LSR
RSL
LSL
RSR
LRL
RLR

Figure 24: Types of Dubins curves

The Dubins curves can be easily extended for the workspace W = R3 to enable
their usage for AUV. For this extension we need the second important parame-
ter, the maximal ascending/descending distance per forward driven distance, which
corresponds to the maximal diving speed. The value of this parameter was also in-
vestigated in Chapter 4.1. Introduction of the depth position of AUV is then solved
by using linear decrease of the depth on 2D Dubins curve. If the difference in depth
is too high, so that the linear decrease has to be bigger than the allowed by maximal
ascending/descending distance per forward driven distance, then we use following
strategy. The AUV circles up or down using the maximal possible ascending/de-
scending speed until it reaches depth, where the linear decrease of the depth for rest
of Dubins curve is possible without violation of the maximal diving speed.

AUV steering controller

The Lookahead steering controller [25], also known as Follow-the-carrot, is a
very simple controller. As the Dubins curves, we can find main usage of this con-
troller in car-like robots with nonholonomic steering, but can be also used for AUV.
Figure 25 ilustrates the idea behind the Lookahead controller.

32

x

y

Lookahead point (carrot)

Heading error

Lookahead
distance

Desired
path

Figure 25: Lookahead steering diagram

In every step, the controller selects a lookahead point on the desired path. The
point is found in a lookahead distance from the point that is nearest to the actual
position of robot. Then a proportional control is used in order to minimize the
Heading error. For the AUV the proportional control uses the yaw rudder to min-
imize the heading error. An extension of this controller to 3D space is simple and
uses the same principle. In 2D we minimized only one heading error angle ψ in (x, y)
reference frame. While in 3D, we try to minimize two heading error angles, the first
ψ in (x, y) and the second θ that relates to z axis, for the AUV depth. The second
vertical heading error supposes to be minimized by the height rudder. Because the
fact, that the AUV θ oscillates while using the height rudder, we used a different
method. Instead of controlling the pitch, we used a proportional-integral control
to minimize a depth difference to lookahead point. By this change, the oscillations
were minimized, which resulted in better precision in driving to the desired depth.

33

−10
0

10
20

30
40

50
60

70

−20

0

20

40

60

80

0

2

4

6

8

10

12

y [m]

Comparison of desired path with path driven by Lookahead controller

x [m]

z
[m

]

Desired Dubins curve in 3D
Path driven by Lookahead Steering Controller
Start Position
Goal Position

Figure 26: Lookahead steering controller used on two Dubins curves in 3D

A desired path composed of two 3D Dubins curves is shown in Figure 26. The
figure also shows trajectory obtained by the Lookahead steering controller. The
values from proportional and proportional-integral controls are limited in order to
produce angle of rudders in range (−0.48, 0.48) rad. The lookahead distance used
in the experiments was L = 5 m. As we can see in the Figure 26, the controller
is always a little delayed behind the desired path, which is caused by the fact that
controller always aims to a point in front. Also the vertical control is more imprecise
than the horizontal one because of the oscillations made by height rudder control.

Despite these inaccuracies cased by oscillations of the controls, the Lookahead
steering is able to traverse the Dubins path. This allows us to simplify the motion
planner, so it provides the result as a sequence of Dubins manoeuvres.

Dubins-based planner algorithm

The algorithm of Dubins-based RRT planner works similarly as the standard
RRT planner with two main differences. The first difference is, that it uses Dubins
curves local planner to create connection of two position prand and pnear. The second
is, that the final motion plan is created from path plan Ppath using the Lookahead
steering controller.

Instead of using planning tree that consists of AUV states (both position and
velocities), as we did in the input-based planner, in Dubins-based planner the plan-
ning tree consists of AUV position η = [N,E,D, φ, θ, ψ]T . The algorithm starts
with adding of AUV start position pstart to the planning tree. Then in every step,
the algorithm generates the random position prand using only four parameters of
AUV position (N,E,D, ψ).

Using the random position prand we find a nearest neighbour position pnear out of
the planning tree. The nearest neighbour function nearest_neighbour(TREE, prand)

34

works quite differently from the version we used in input-based planner. The func-
tion still uses Euclidean distance with higher scale for ψ and D parameters, but
instead of searching for one nearest neighbour it searches for k nearest neighbours
and afterwards it calculates Dubins curves to each of them and uses the one with
shortest Dubins curve. By this method we overcome the fact that the nearest posi-
tions in Euclidean distance is usually not the nearest position using Dubins curves.
The advantage of using k-Nearest Neighbours is that we do not have to calculate
Dubins curves to all positions in planning tree, but only to k nearest. We also know
that the nearest neighbour position using Dubins curve is probably among those
k nearest neighbours using Euclidean distance. In the algorithm we used k = 16
which is the maximal value for used k-Nearest Neighbours implementation [51].

When the nearest neighbour position pnear is selected, the algorithm creates Du-
bins curve from the nearest neighbour position pnear to prand. The curve is returned
as a sequence of positions that are in distance dsample to each other. In order to
limit growth of the planning tree, only dadd initial length of the curve is used. Then
in expansion of the planning tree TREE.expand(pnear, Pdubins) in Algorithm 4, the
positions in the Dubins curve are added to the tree consecutively until any position
is in collision.

Finally when the planning tree reaches a position whose distance is less than
dgoal, the Lookahead steering controller is used. Starting in AUV initial state sstart,
the controller drives the previously created path plan Ppath and in this way creates
the motion plan.
Algorithm 4: Dubins-based RRT planner
input : AUV start state sstart and desired goal position pgoal , maximal

allowed final distance to goal dgoal, maximal number of iterations N ,
maximal additional expand distance dadd and Dubins curves
sampling distance dsample.

output: Sequence P of AUV states and inputs or failure
1 TREE.add(pstart); //position part of AUV state sstart

2 iteration = 0;
3 while iteration < N do
4 prand = random_position(); // random (N,E,D, ψ)
5 pnear = nearest_neighbour(TREE, prand); // nearest AUV position to prand

6 Pdubins = dubinsLocalP lanner(pnear, prand, dadd, dsample); //returns Dubins
curve between pnear and prand or its dadd length from pnear

7 TREE.expand(pnear, Pdubins);
8 d = distance(TREE, pgoal);
9 if d ≤ dgoal then

10 Ppath = backtrack from pgoal to pstart;
11 P = LookaheadSteer(sstart, Ppath);
12 return P ;
13 end
14 iteration = iteration+ 1;
15 end
16 return failure;

35

Plan found in the canyon-like environment by using Dubins-based RRT planner
is shown in Figure 27. The experiment was performed with the same starting state of
AUV and goal position as we did for the input-based planner. The growth of RRT
planning tree was limited by maximal additional expand distance dadd = 10.0 m
and the Dubins curves used sampling distance dsample = 0.5 m. The sampling
distance was chosen with respect to the dimension of AUV in order to prevent
passing through obstacles without collision detection. The plan was found between
position (N,E,D, ψ) = (−260, 400,−90,−1.57) and goal position (N,E,D, ψ) =
(100,−400,−80,−1) and its length is 1966.74 m. To the algorithm it took 62 s
to find the plan with maximal allowed final distance to goal dgoal = 5 mu. The
parameter dgoal is, as in the input-based method, the combination of four used
position parameters (N,E,D, ψ).

Figure 27: Plan found in the canyon-like environment using RRT Dubins-based
planner for AUV

In the plan found in the canyon-like environment we can also see a loop that the
AUV takes. What is not visible is, that it is taken mainly because the AUV has to
go up by approximately 60 meters in a relatively small region, in order to continue
towards goal position.

The Figure 28 shows the planning tree that expands through the whole canyon.
The higher concentration of nodes around the goal position in the bottom left corner
indicates that the algorithm spent longer time to connect the goal position.

36

Figure 28: Planning tree in the canyon-like environment using RRT Dubins-based
planner for AUV

4.2.3 Planners Comparison

The both proposed motion planners (input-based and Dubins-based) are compared
using the canyon-like environment. As we used the RRT randomized motion plan-
ner, the plans found by both methods are different every time the algorithm is run,
even when the same method is used. For this reason, we ran both methods repeat-
edly using the same start and goal configurations in order to properly compare the
methods. Figure 29 shows results of this experiment. All the experiments have been
performed on Notebook Intel Core i5 @ 1.7 GHz.

37

−1

0

1

2

3

4

5
D

is
ta

nc
e

[m
,r

ad
]

Input−base
d

Dubins−
base

d

Final distance to goal

10
3

10
4

Ite
ra

tio
n

co
un

t

Input−base
d

Dubins−
base

d

Number of iterations

0

200

400

600

800

1000

1200

1400

1600

R
un

tim
e

[s
]

Input−base
d

Dubins−
base

d

Planning time

Long Distance Planners Comparison

1400

1500

1600

1700

1800

1900

2000

2100

2200

Le
ng

th
 [m

]
Input−base

d

Dubins−
base

d

Plan length

Figure 29: Comparison of Input-based and Dubins-based RRT planners

As the Input-based method uses simulation of AUV for many values of inputs to
the yaw and height rudders, the planning time is significantly higher compared to
the runtime of the Dubins-based method. The reason is that the AUV simulation
is very complex and need time for computation. One second of simulation takes
approximately 2 ms to compute, but to cover the whole configuration space with
the planning tree it is time consuming. The Input-based method Runtime was in
average around 8.9 min, while it takes in average only 23 s to the Dubins-based
method.

Other very significant advantage of the Dubins-based method is the lower mem-
ory consumption. The Input-based method uses the simulation of AUV dynamics,
where the whole state of AUV has to be saved. Every node in the planning tree has
to hold the whole AUV state that consists of six parameters for position, six param-
eters for velocity and three input parameters. In contrast to this, the Dubins-based
method effectively uses only four parameters for the position (N,E,D, ψ), which
means that it is almost four times less memory consuming.

On the other hand the Input-based RRT planner has an advantage in producing
shorter plans than the Dubins-based method. The Dubins-based method has in
average plans with length of 1965 m while the Input-based has only 1624 m average

38

plan length. This is caused by two facts. In the Input-based method, by using the
the inputs to the AUV to expand the planning tree, we also minimize number of
inputs needed to reach a certain positions in space. The second reason is that the
Dubins-based method is able to connect any two positions by a Dubins curve, but
using this, it also adds some curves that are unnecessary and in the end it enlarges
the final plan. We can see this unnecessary enlargement of plan as the loop in plan
depicted in Figure 27.

In the randomized motion planners we can sometimes observe a failure when
the plan is not found within specified number of iterations N , which we chose for
comparison experiments to be N = 100000. The Input-based approach found plan
in 95 % cases for maximal allowed final distance from goal dgoal = 5 mu. On the
other hand, the Dubins-based method succeeded in finding plan in the whole set of
experiments.

From the comparison of final distance from goal, shown in Figure 29, we can
see that the Input-based method achieves the higher average final distance of 3.5 m
compared to 0.5 m average of Dubins-based method. The Dubins-based method is
supposed to find a path between any two positions of AUV, but a problem arises
when all the six Dubins curves are in collision. Then the method has to wait un-
til such problematic area is sampled enough to expand using different collision free
Dubins curve.

The second reason why the Dubins-based method does not always find a plan
with zero final distance to goal, is that even by using k = 16 nearest neighbours, the
algorithm can miss the position with the shortest Dubins curve. This miss can lead
to a deadlock in region around goal, where many tree nodes has small Euclidean
distance to the goal, but longer Dubins curve.

As we have shown above, the Input-based method needs longer time to find a
plan, but in average the plans from this method are shorter. The Dubins-based
method has the advantages in faster planning, smaller memory consumption and
smaller final distance to goal. Using these observations, we can conclude that the
Dubins-based method is more suitable for determination whether any plan between
two positions exists. On the other hand the Input-based method is useful when we
know that the plan exist and we want to find some shorter plan.

4.3 Short distance docking planner
The second goal of this thesis is to implement a docking task for the AUV in order
to enable recharging from a seabed station. This task is crucial for the AUV to
work autonomously without cable connection or necessary rising to the see surface
to recharge. The seabed station (shown in Figure 30) will be placed on the sea floor
in an accessible area and the AUV has to stop above the station and connect to
charging device (module).

From the previously described motion planning task on long distances, the dock-
ing task is different in the fact that also the velocities ν = [u, v, w, p, q, r]T of AUV
must be considered. Then the goal of the docking planner is to stop in a specified
position, where the docking device is placed, without collisions with docking station
or other obstacles.

39

Figure 30: Seabed station with charging device (courtesy of David Oertel)

As we have described before in Chapter 4.1, the dynamical diving is possible only
with forward speed above 0.51 m/s. This limitation is the main reason for selecting
the following strategy for the docking task. In order to stop in a certain position,
we expect that the planner firstly drives the AUV to desired depth and afterwards
the final approach to docking device is ideally on a straight path with deceleration.
Using this strategy we tested both previously introduced long distance planners with
slight modifications that enable to plan with respect to AUV velocities.

4.3.1 Input-based docking

We firstly explored the possibility of using Input-based planner for solving the dock-
ing task. For using this planner, we needed to make some improvements, because
the docking task differs in several key aspects. The first is that we need to control
the AUV speeds in order to stop above the docking device. Secondly, we need a
very precise motion plan that stops accurately where it is desired.

As the docking task needs to consider the AUV velocities, we introduced them
to the planner. In the simulation function simulateAUV of the Input-based RRT
Algorithm 3 we used a linear decrease of shaft_RPM based on distance to goal
position of the docking device. In long distance Input-based method, we used a
constant shaft speed, because it creates almost constant AUV forward speeds. In
the Input-based docking task, we calculate the distance to the docking device in
every step of the simulation and based on its value we set the shaft_RPM .

To make the Input-based method work for the docking task, we also modified
some parameters. The simplest modification was to significantly decrease the maxi-
mal allowed final distance dgoal to 5 cm. The function random_position() needs to
generate only positions that are in the area for docking, otherwise the planning tree
would grow unnecessarily to other parts of the workspace. We increased the simu-
lation time tsim that is used for each rudder input up to 30 s, but together with this
modification we also added an interruption of the simulation when it drives more
than four meters from the nearest neighbour state snear. The increased simulation
time and interruption of the simulation were used, because in positions close to the
docking device the AUV is moving slowly and we need to run the simulation long
enough to change the position. On the other hand, in positions far from docking
device the AUV is moving fast and we need to limit the planning tree growth.

40

Using modification described above, we were able to plan the docking task so
that the AUV starts in the same depth as the docking device and it stops over it.
In Figure 31 is shown an example of computed plan.

0 5 10 15 20 25 30 35 40 45
−4

−2

0

2

4

6

8

10

x [m]

y
[m

]

Docking task solved by Input−based RRT

Planning Tree
Found Plan
Start Position
Goal Position

Figure 31: Path found for docking with Input-based planner

0 10 20 30 40 50 60 70 80
0

0.5

1

t [s]

fo
rw

ar
d

sp
ee

d
[m

/s
] Forward speed of AUV

X: 72.3
Y: 0.02237

0 10 20 30 40 50 60 70 80
0

20

40

60

t [s]

di
st

an
ce

 to
 g

oa
l [

m
]

X: 72.3
Y: 0.02696

Distance to goal

Figure 32: AUV forward speed and distance to docking device

The final speed and distance to the charging device are very important in the
docking task. These values are supposed to be zero in order to enable successful
connection to the docking station. Figure 32 shows progress of both speed and
distance from goal for plan from Figure 31. The final distance and speeds achieved
in shown experiment were 2.24 m/s and 2.7 cm. Because the docking device is
still in the development and the maximal allowed error in position and speed is not
specified, we assume that achieved accuracy is sufficient for the docking.

As the Input-based RRT planner is randomized algorithm, we ran the experiment
multiple times and measured the results. The planner was able to find the plan in
70 % of trials, which is less than for the long distance planning, but for the required

41

dgoal = 5 cm maximal allowed final distance from goal is this success rate satisfactory.
Figure 33 shows achieved results only for the successful runs, because the failed runs
makes the other unreadable in the graph.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Final distance to goal

D
is

ta
nc

e
[m

]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of iterations

Ite
ra

tio
n

co
un

t

0

50

100

150

200

250

300

350

400
Planning time

T
im

e
[s

]

Input−based docking performance indicators for succesfull runs

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

Speed in Goal

S
pe

ed
 [m

/s
]

Figure 33: Performance of Input-based method in AUV docking task

As we can see, the average error in the final position is approximately 4 cm, but
there were also some plans with error much lower. The final speed in the goal was
in average 2.5 cm/s.

Based on the measured data, we can say, that the input-based planner is suitable
not only for the long distance planning, but also for the short distance docking task.
The method was able to almost stop the AUV in aproximately 70 s with final distance
error of 4 cm.

4.3.2 Dubins-based docking

The second planner we tested for the docking task is the Dubins-based method
described in Chapter 4.2.2. In order to get a precise final approach to the docking
device, we modified both the Dubins curve local planner and the Lookahead steering
controller. The Dubins curve generator was modified to create a path with bigger
turning radius r = 20 m and also much slower diving speed per forward driven
path. For the Lookahead steering control it is then easier to drive such a path,
because it does not have to use the maximal rudder inputs in order to follow the

42

path. The previously described Lookahead steering controller was adjusted for the
docking task by reduction of proportional gains in order to get less greedy controller
that is good for driving with minimal turning radius, but is not so good for precision
of the docking task.

The Figure 34 shows docking with the Dubins-based method with Lookahead
steering controller.

0 5 10 15 20 25 30 35 40
−1

0

1

2

3

4

5

x [m]

y
[m

]

Planned Dubins curve driven by Lookahead steering controller

Desired Dubins Path
Path driven by Steering Controller
Start Position
Dock Position

Figure 34: Docking with Dubins-based planner and Lookahead steering controller

The final speed and distance from docking device is shown in Figure 35. As we
can see the Lookahead controller was able to slow down the AUV to final speed of
3 mm/s. The final error in distance to goal was approximately 3.2 cm.

0 10 20 30 40 50 60 70 80
0

1

2

t [s]

fo
rw

ar
d

sp
ee

d
[m

/s
] Forward speed of AUV

X: 78.6
Y: 0.003075

0 10 20 30 40 50 60 70 80
0

20

40

60
Distance to goal

t [s]

di
st

an
ce

 to
 g

oa
l [

m
]

X: 78.6
Y: 0.03212

Figure 35: Docking with Dubins-based planner and Lookahead steering controller

The Dubins-based planner with Lookahead steering controller performed with
same final error distance to the docking device as the input-based planner. The
final speed was significantly smaller compared to the input-based planner which is
probably caused by fact, that the input-based method uses only the proportional
control of speed based on distance to the goal. The Lookahead steering controller

43

uses the proportional-integral control which results in more precise speed control.
As we showed above, both long distance planners are useful for the AUV docking

task and require only few modification to work properly. By introducing the AUV
velocities to the planner, we were able to stop above the docking device with distance
error less than 5 cm. To further decrease the final speed, the thrust motor could be
driven in a reverse motion. This is however not considered in the employed motion
model, so this option was not tested in this thesis.

44

5 Seabed monitoring
The last objective of this work is to design a mission planning system for up to 3
AUVs for the seabed monitoring task. The overall goal is to utilize multiple AUVs for
scanning the whole seabed in a specified area with on-board sensors. For maintain-
ing continuous operation of the AUVs, the mission planning system has to consider
the AUV state of charge and drives the AUVs to the docking station for recharging
if needed. Possible applications of described task are autonomous oceanographic
imaging, deep sea mining or surveillance of underwater constructions such as power
plant bases, offshore drilling and submarine cables.

In the designed mission planning system, we need to use the previously imple-
mented motion planners. In order to plan the mission that contains visiting of
specified positions, we need the long distance motion planner that we designed and
described in Chapter 4.2. To enable the recharging from the seabed station, we
previously implemented the docking motion planner in Chapter 4.3. The docking
motion planner was designed by modifying the long distance motion planners to
stop the AUV in desired position above charging device.

In Chapter 3.2 we showed several multi-robot approaches for the Robot Coverage
Path Planning. We selected the Spanning-Tree Coverage as the main inspiration for
the coverage part of the mission planning system. For simplification of the coverage
planning for the AUV, we plan the coverage only in planar 2D space. The final
coverage path in 3D can be then constructed from the 2D coverage plan by placing
the 2D coverage plane to required distance above the seabed. This plane can be
also modified to follow the seabed ascent and descent as long as the depth change
is relatively smaller than the distance in 2D plane. All Spanning-Tree coverage ap-
proaches use the grid-based decomposition of the workspace for its planning. For
the AUV the main restriction in the Spanning-Tree coverage is the nonholonomicity
of the robot. We have to use a grid cells large enough, so that the AUV is able to
turn inside the cell. From the grid cell size and the distance of the planar coverage
above the seabed, we can derive which sensor we can use for the coverage in order
to cover the entire cell with the sensor signal.

Although the Spanning-Tree approach would work in the coverage path planning
for AUVs, we have to consider an additional methods to allow the AUVs to recharge
during the mission, because the traditional coverage methods do not consider this
option. The additional method is a discrete task planning, which is able to create
a mission plan that consists of several different tasks such as the coverage and the
recharging. However, using only the task planning approach is also not possible, be-
cause for the coverage planning it leads to the NP-hard Travelling Salesman Problem
which is not solvable for grids with hundreds of cells.

As we can not use only the robot coverage path planning or only the task plan-
ning, we designed a mission planner for AUVs that combines both Spanning-Tree
coverage planning and the task planning. In Chapter 5.1 we describe how the com-
bined mission planner works and then we show the method performance in concrete
scenario in Chapter 5.2.

45

5.1 Designed mission planning method
The task of the vehicles in the considered seabed monitoring scenario is to cover a
predefined area. The vehicles start in a known depot (usually a docking station)
and they have to cooperatively visit the area. As the considered missions can cover
large area, it is required that the AUVs can automatically return to the docking
station if necessary.

The novel method designed in this thesis for mission planning for up to 3 AUVs
is combination of the multi-robot coverage and task planning approaches. As we
discussed before, the multi-robot coverage methods do not deal with possible re-
turns to the docking station in order to charge the robot. Also using only the task
planning approach is not possible, because the number of possible solutions grows
rapidly with the size of covering area.

We propose a new approach that is inspired by the Multi-robot Forest Coverage
(MFC) and Spanning-Tree Coverage (STC) from Chapters 3.1 and 3.2. In the same
time the approach also uses a task planning for search of feasible coverage mission
plan that not only contains the coverage of entire area, but also charges the AUVs
during the mission if it is necessary. To compute the mission plan the proposed
method firstly decomposes the area into a grid and finds multiple tree graphs that
cover the entire grid. Afterwards, we use the A* algorithm for discrete task plan-
ning that uses multiple possible actions like CHARGING, DRIVING_TREE(i) and
WAITING to plan the mission. Finally the found mission plan, that consists of
these actions, covers the entire area by circumnavigating the trees and also keeps
the AUVs charged.

Our method starts with splitting the area using the Grid-Based Decomposi-
tion 3.1.2. The result is an adjacency graph of rectangular cells with side length of
ls. This parameter has to be chosen based on the AUV dynamic constrains, because
we need the AUV to be able to move between centres of adjacent cells. We also
have to establish a second grid that consists of mega cells, the same we introduced
in STC method description in Chapter 3.1. Once we have the grid adjacency graph
of the area, we can find the minimal spanning tree graph G = (V,E) inside the
graph of mega cells grid. The spanning tree graph contains the vertices V , which
are the centres of mega cells, and the minimal number of edges E to connect these
vertices.

As the key future of our mission planning is the ability to return to docking
station for recharging, we choose the root vertex Rg of the spanning tree graph to
be the cell where is placed the docking station. By using this spanning tree root,
we know that by circumnavigating around the spanning tree we always return to
the docking station. We use the Prim’s algorithm for the spanning tree search. It
uses the distance between cells as a weights of edge in the adjacency graph and finds
the minimal spanning tree which then creates the minimal coverage of the area.
By adjusting those weights a little bit, for example in hundredths, we can modify
the resulting spanning tree, while the minimality stays unchanged. We increased
each weight of edge based on its distance from the cell with docking station. Us-
ing higher weight increase for edges far from the docking station caused, that the
Prim’s algorithm always tries to add firstly the edges closes to the dock, because
they have smaller weights. The resulting spanning tree is branching more around

46

the root compared to the unchanged edges weights and also the maximal depth of
the spanning tree is reduced.

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

x [m]

y
[m

]

Spanning tree with modified weights

Spanning Tree
Dock
grid

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

x [m]

y
[m

]

Spanning tree with normal weights

Spanning Tree
Dock
grid

Figure 36: Comparison of spanning trees with modified and unmodified weights

Previous adjustments of the spanning tree search are essential, because after the
spanning tree is found, we recursively go through the tree in order to decompose
it into smaller trees. The inspiration by the Multi-robot Forest Coverage (MFC)
is because the MFC approach also decomposes the spanning tree in order to get
one tree for each robot (described in Chapter 3.2). Our method decomposes the
spanning tree into unspecified number of trees to get multiple trees, where each tree
has number of edges below specified value and is rooted in the original minimal
spanning tree root. Starting from the original spanning tree root, we recursively go
deeper into the spanning tree while controlling the number of edges rooted in actual
node and the depth of actual node in order to get trees with specified number of
edges.
Algorithm 5: Spanning tree decomposition
input : Spanning tree graph G = (V,E) with root Rg and maximal allowed

number of edges ne

output: Set of tree graphs S rooted in Rg

1 decomposeSpanningTree(G , ne)
2 S = ∅;
3 S = decomposeNode(G,S, ne, Rg, 0) ;
4 return S

5 decomposeNode(G,S, ne, actualV ertex, depth)
6 numChildEdges = countSubtreeEdges(G, actualTreeV ertex);
7 if numChildEdges+ depth ≤ ne then
8 newTree = vertexSubtree(G, actualV ertex);;
9 S = S ∪ newTree;

10 else
11 foreach child vertex of actualTreeV ertex do
12 S = S∪ decomposeNode(G,S, ne, child, depth+ 1);
13 end
14 end
15 return S

47

As we can see in the Algorithm 5, the decomposition starts with empty set of
trees and then go recursively through the spanning tree and creates trees with max-
imal number of edges ne. Function countSubtreeEdges(G, actualTreeV ertex) at
line 6 returns the number of edges in subtree rooted in vertex actualTreeV ertex.
Every time the node decomposition calculates that the actualTreeV ertex would
create a tree with less of equal number of edges than required by ne, then the tree is
decomposed in this vertex. The Function vertexSubtree(G, actualV ertex) at line 8
returns such a decomposed tree consisting of both tree rooted in actualV ertex and
edges between actualV ertex and the root of spanning tree Rg.

Figure 37 shows the decomposed spanning tree into multiple trees that covers
the area. All trees obtained from the decomposition are rooted in the position of
the docking station. In this example of tree decomposition, the maximal allowed
number of edges was set to ne = 12 and the algorithm produced trees with maxi-
mally ten edges (blue in the Figure). As the minimal turning diameter of AUV is
below 30 m, we used cell decomposition with cell side length ls = 32 m.

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

x [m]

y
[m

]

Decomposed spanning tree

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4
Tree 5
Dock
grid

0 200 400

0

100

200

300

Tree 0

0 200 400

0

100

200

300

Tree 1

0 200 400

0

100

200

300

Tree 2

0 200 400

0

100

200

300

Tree 3

0 200 400

0

100

200

300

Tree 4

0 200 400

0

100

200

300

Tree 5

Figure 37: Decomposed spanning tree into multiple trees

48

Once we have the set of trees covering the area, we can use a task planning that
creates the mission plan to cover the area while staying in the operational state by
recharging. The parameter of maximal allowed number of edges in tree ne used in
spanning tree decomposition is very important and relates to the requirement to
recharge the AUVs during the mission. As in classical STC, the path for robot is
created by circumnavigation around the spanning tree in counterclockwise direction.
We use the same strategy on the decomposed trees. When we specify the ne, we
also know that the path that circumnavigates the tree is approximately 2 · ne · lm,
where lm = 2 · ls = 64 m is the length of the tree edge that connects the mega cells.
This we know, because the AUV has to pass along one edge exactly twice while
circumnavigating the tree. Then we need the maximal distance that AUV can drive
during one charge cycle and we are able to determine the parameter ne. It means
that each decomposed tree can be circumnavigated by initially fully charged AUV
without risk of getting discharged during the mission.

As we mentioned before, we use several possible actions in the discrete task
planning to obtain the mission plan. The actions are following.

• DRIVING_TREE(i) - the action represents that the AUV is actually allo-
cated for circumnavigation of tree with id i. This action can not be interrupted
during execution and has to be completed before AUV can select next action.
The AUV also needs to be charged enough to start the action for given tree.

• WAITING - action that is used in initial and final planning state. Beside
this, it can be also used when one AUV is already charging and the other
has to wait for recharging, because we expect only one concurrently charging
AUV. The action can be interrupted in any time.

• CHARGING - represents the charging of the AUV. Can be interrupted any
time.

Above mentioned actions are actually a part of the state in which are the AUVs. The
state further contains a parameter that represents how much of the action is already
competed (further denoted as completeness) and also the state of charge (SoC) of
AUV. Then for each AUV we can describe its state as (action, completeness, SoC)
vector, where action is one of the three action types and both completeness and
Soc are in range 〈0, 1〉. The zero value of completeness means that the action
has not started yet and the value of 1 means that the action is completed. The
same applies to SoC, where zero value means fully discharged and one means fully
charged. The action DRIVING_TREE(i) is in fact a representation of multiple
actions, because it depends on which tree we use the action on. For WAITING
action is the completeness and SoC unnecessary, because we always consider the
action to be completed and for simplicity we do not apply any discharge when the
AUV is WAITING.

Diagram in Figure 38 is a state transition diagram, that is used for each AUV
inside the mission planner.

49

CHARGED
FOR ANY

AVAILABLE
NEXT TREE i

WAITING

FREE
CHARGING

DOCK
CHARGING

 NO

DRIVING_TREE(i)

FULLY
CHARGED

 YES

AVAILABLE
UNCOVERED

TREE

YES YES

 NO
 NO

YES

TREE i COVERED

CHARGED
FOR ANY

AVAILABLE
NEXT TREE i

YES NO

NO

END

START

Figure 38: State transition diagram for a single AUV in task mission planner

For the mission planner, we also use a state of the mission mn, that consists of
all AUV states and also of tree ids i that are not yet covered. The initial state of
mission is when all AUVs are WAITING close to the seabed station and no tree is
covered. The goal state of the mission is when all AUVs are WAITING and all trees
are covered, which means that also the whole area is covered. Using these initial
and goal mission states, the discrete task planner implemented as the A* search has
to find a sequence of mission states that leads from the initial to the goal state. For
the A* algorithm we use the cost function f(mn) = g(mn) + h(mn), that represents
a time that it would take to finish the mission in state mn. The g(n) is the time
that it took to get from initial mission state to the actual mission state mn. The
heuristic h(mn) is estimated time to the goal state from state mn. For our mission
state the g(mn) is sum of times that the AUVs needed for already done actions.
Time needed for DRIVING_TREE(i) action is always calculated based on the tree
i length of circumnavigation path and used average speed. Both WAITING and
CHARGING actions do not hold predefined time, because they can be interrupted
in any time. Their time length is always calculated during expansion to the next
state. The estimated time to goal state h(mn) can be calculated based on length
of still uncovered trees and time we need to spend in CHARGING action in order
to cover those uncovered trees. Using the described cost function f(mn), the task
planning algorithm works as the normal A* search. It always expands the mission
state from open set with the smallest cost and keeps doing so until the goal mission
state is expanded.

Algorithm 6 shows the expansion of single mission state that is used inside the
A* discrete task planning. It uses the state transition from Figure 38 for each AUV
to obtain next possible AUV states (getNextStates(mn) at line 3 of Algorithm 6).
Using Cartesian product of those next AUV states we create a set of next mission
states. All states are also checked for feasibility, because the states with for example
multiple AUVs in CHARGING action or DRIVING_TREE(i) same tree are not
allowed. Finally we also has to recalculate the cost function f(mn) for each newly
expanded state.

50

Algorithm 6: Mission state expansion
input : Mission state mn, number of AUVs k
output: Set M of mission states expanded from input mission state mn

1 M = {};
2 foreach AUV j = 1...k do
3 nextAUV Statesj = getNextAUV States(mn);
4 end
5 Spossible = CartesianProduct(nextAUV States);
6 foreach newstate in Spossible do
7 if isfeasible(newstate) then
8 recalculateCost(newstate);
9 M = M ∪ newstate;

10 end
11 end
12 return M ;

Using previously described expansion of mission state in the A* task planning
algorithm, our method is able to plan the coverage mission. Final task plan consist
of action schedule for each AUV. The A* algorithm also minimizes the time needed
to complete the mission while satisfying the mission requirements. All AUVs stay
operational by recharging during the mission from the seabed station. Figure 39
shows possible mission plan, which is the outcome of the A* task planning.

0 500 1000 1500 2000 2500

AUV1

AUV2

0 2

1 3 5 4

time [s]

Mission plan produced by A* task planning

DRIVING_TREE
CHARGING
WAITING

Figure 39: Example mission plan produced by A* task planning (the number in
actions DRIVING_TREE(i) represents id of tree from Figure 37)

The final part of our approach is the path planning for the AUVs based on the
mission plan. For the action DRIVING_TREE(i), we can find a path that circum-
navigates the specified tree i by one of our long distance motion planning approaches
from Chapter 4.2. Because of the faster performance, we used the Dubins-based
method to get the path that circumnavigates the tree using Dubins curves between

51

centres of gird cells. Figure 40 shows how a single decomposed tree is circumnavi-
gated using the Dubins-based motion planner.

150 200 250 300 350 400 450 500 550
120

140

160

180

200

220

240

260

280

300

320

x [m]

y
[m

]

Tree
AUV Path
Dock
grid

Figure 40: Circumnavigation path of a single decomposed tree

Finally the mission planner uses also the docking task from Chapter 4.3 to plan
the connection to the docking device. The CHARGING action, we used in the task
planner, consists of both docking task and then the actual charging of the AUV.

In next chapter, we present the experimental results obtained by using the de-
signed mission planner.

5.2 Experimental results
In previous chapter, we proposed a novel mission planner for up to 3 AUVs in the
seabed monitoring task. The key features of planned missions are coverage of the
entire selected area and also recharging of the AUVs to keep them in operational
state. In this section we show how the algorithm works in an experimental workspace
with obstacles by simultaneously using 3 AUVs during the mission. For the exper-
iment we use the same workspace as in Chapter 3 to allow comparison with other
approaches for multi-robot coverage.

The algorithm starts with the grid-based decomposition of the desired area. For
the experiment we used workspace with area of approximately 1 km2, which re-
sulted in a grid with almost one thousand cells. Using these cells we found the
minimal spanning tree rooted in cell with docking station, which we placed to po-
sition (x, y) = (160, 160) m. Then using the Algorithm 5 for decomposition of the
spanning tree, we obtained 13 different trees that are all rooted in cell with the
docking station. For the spanning tree decomposition algorithm we used maximal
allowed number of edges ne = 93. This number of edges was simply derived from
maximal distance that AUV can drive when fully charged. For this value we used
6000 m although the real AUV can probably stay charged for longer paths. The
resulting decomposed trees are shown in Figure 41.

52

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

x [m]

y
[m

]

Tree 0
Tree 1
Tree 2
Tree 3
Tree 4
Tree 5
Tree 6
Tree 7
Tree 8
Tree 9
Tree 10
Tree 11
Tree 12
Dock

Figure 41: Example workspace covered by decomposed trees

With the decomposed trees, we were able to plan the whole mission to cover
the entire workspace and in the same time recharge the AUVs if necessary. The
resulting mission plan consist of action sequence for each AUV. The possible actions
are DRIVING_TREE(i), CHARGING or WAITING, where the action for driving
tree can be for one of the thirteen trees. The concrete plan obtained from the A*
discrete task planner is shown in Figure 42. The types of actions in this figure are
colour coded with number of driving tree for the action DRIVING_TREE(i). What
is not visible in the mission plan is that in both initial and final states the AUVs
have WAITING action.

0 2000 4000 6000 8000 10000 12000

AUV1

AUV2

AUV3

3 0 10 7

6 12 5

2 1 4 8 11 9

time [s]

Mission plan

DRIVING_TREE
CHARGING
WAITING

Figure 42: Found seabed monitoring mission plan

53

The main reason for using the task planning for the seabed monitoring is the
ability to charge AUVs during the mission. It is important for the planner to keep the
information about the state of charge of each AUV in order to plan the CHARING
action before the AUV gets discharge. Additionally we also allow only one charging
AUV a time. For the CHARGING action we used a charging speed four times larger
than discharging speed. It means that when one AUV is circumnavigating the tree,
it travels for one meter while in the same time the second AUV in CHARGING
actions gets charged for additional four meters. The selection of charging speed
is important for the algorithm, because it influences how often the AUVs have to
expand to the CHARGING state. With too small charging speed, the mission plan
would contain plans with AUVs WAITING for recharging. Figure 43 shows for how
many meters are the AUVs charged during the found mission. We can clearly see,
that the AUVs are discharging during the DRIVING_TREE(i) action. Also the
higher charging than discharging speed can be observed from comparison of the
graph inclination in CHARGING and DRIVING_TREE(i) actions. Finally we can
also see, that the WAITING action has no effects on the state of charge, as we
expect no discharge during this action.

0 2000 4000 6000 8000 10000 12000
0

1000

2000

3000

4000

5000

6000

time [s]

ch
ar

ge
d

fo
r

pa
th

 le
ng

th
 [m

]

Progress of state of charge expressed as distance to drive

AUV1
AUV2
AUV3

Figure 43: AUVs state of charge in mission plan

The overall goal of the mission was to cover the entire workspace. Once we have
the task plan, we can find a path plan for each AUV. In the DRIVING_TREE(i)
action we use the tree i for circumnavigation. The actual path that circumnavigates
the tree is created from segments that are in fact the Dubins curves between centres
of cells that surrounds the tree. For the action CHARGING, the AUV plans its
path to the position of the seabed station, where the actual docking can be done
by using one of the short distance docking planners from Chapter 4.3. Also the
planning of the tree circumnavigation can be done not only by using Dubins-based
planner, but also by the Input-based AUV planner from Chapter 4.2.1. Figure 44
shows the entire path for each AUV in the experiment. We can see that around
the seabed station, the area is used many times by all AUVs. This is caused by
the necessary charging from the seabed station. We can also see that the entire
workspace is covered by the AUV paths.

54

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

x [m]

y
[m

]

AUV1
AUV2
AUV3
Dock

Figure 44: Paths taken by AUVs in coverage mission

The performed experiment showed, that the designed mission planner for AUVs
fulfils the task. During the mission, all AUVs stayed in operation state by recharging
from the seabed station and the AUVs covered the whole workspace.

55

6 Conclusion
In this thesis, we developed a solution for mission planning for up to three AUVs in
the seabed monitoring task. The outcome plans consist of visiting all positions in
given area with necessary returns to docking station for recharging.

The first key features of designed mission planner is the ability to navigate the
AUV to desired position without collision. For this purpose, we designed two dif-
ferent long distance motion planners. The first Input-Based planner uses the RRT-
blossom approach to find the motion plan for AUV. By applying multiple possible
inputs to the AUV dynamical model from randomly selected AUV state, the RRT
algorithm finds the plan between start and goal position. The second Dubins-based
planner uses the Dubins curves as a motion primitives inside the RRT path plan-
ner to generate path plan. The final motion plan is then created by Lookahead
steering controller, that traverse the previously found plan. By comparing the ex-
perimental results of both planners, we found out that both planners are suitable
for AUV motion planning. The Input-Based planner generated shorter paths than
the Dubins-based planner. On the other hand, the Dubins-base method is nearly
four times less memory consuming and also nearly 23× faster than the Input-Based
method.

The second key feature required in the missions is the ability to dock the AUV to
a charging station. For the docking task, we modified previously used Input-Based
and Dubins-based planners to create more precise plans for short distances. In the
long distance motion plans we used average speeds of the AUV. For the docking task,
we need to stop the AUV next to the docking device in order to start the charging.
By introducing the AUV velocities to the planners, we were able to plan the docking
motion with both planners, with approximately the same resulting accuracy.

Finally we introduced a novel mission planner together with experimental re-
sults. Current robot coverage path planners do not count with possible returns to
the docking station for recharging. Also using only discrete task planning is not
possible for robot coverage path planning, because it leads to NP-hard problem
which is unsolvable for hundreds of cells. The proposed mission planner combines
the Spanning-Tree coverage path planning with the discrete task planning to plan
the seabed monitoring missions. Using the grid as a representation of given area, the
mission planner firstly decomposes the minimal spanning tree of the grid into smaller
trees. Then it uses the A* algorithm for search in state space of AUVs actions to
find the mission plan. Possible actions for the AUVs are to cover one of decomposed
trees, to charge from the seabed station or to wait. The final mission plan consists
of sequence of these actions for each AUV. The coverage of given area is minimal
possible with respect to the constraints, such as the maximal driven distance per
one charging cycle or restriction to charge only on AUV in same time.

For the future work, we would like to introduce other types of actions to the mis-
sion planner, so that the mission plan can contain arbitrary actions such as driving
to the sea level or even manipulation with underwater objects. Other challenging
task we would like to try is implementation of designed coverage mission planner on
different robotic platforms.

56

List of Figures
1 AUV co-developed at Karlsruhe Institute of Technology (KIT) whose

model is used in all parts of motion planning for seabed monitoring
(courtesy of David Oertel) . 1

2 Diagram showing structure of seabed scanning mission planner that
consists of task planning, long distance motion planner and docking
motion planner . 2

3 Examples of basic Path Planners . 5
4 Influence of number of neighbours k and number of generated points

N on the roadmap . 8
5 Path found by PRM with Dubins curves local planner 9
6 Influence of goal-biasing to RRT algorithm 11
7 Example of RRT . 11
8 Trapezoidal decomposition coverage 15
9 Boustrophedon decomposition principles 16
10 Comparison of Trapezoidal and Boustrophedon Decompositions . . . 16
11 Concentric circles Morse decomposition with critical points 17
12 Spanning-Tree Coverage Mega Cell 18
13 Spanning tree coverage . 18
14 Team coverage of a single cell . 20
15 Multi-robot Spanning Tree Coverage 21
16 Multi-robot Forest Coverage . 22
17 AUV 3D CAD model used by motion planners (courtesy of David

Oertel) . 23
18 NED world frame system with AUV frame 24
19 Dependence of diving speed on height rudder setting (with forward

speed of 1.5 m/s) . 25
20 Dependence of turning diameter on yaw rudder setting (with forward

speed of approximately 1.5 m/s) . 26
21 AUV Matlab Simulink model . 27
22 Plan found in the canyon-like environment using input-based planner 30
23 Planning tree in the canyon-like environment using input-based planner 30
24 Types of Dubins curves . 32
25 Lookahead steering diagram . 33
26 Lookahead steering controller used on two Dubins curves in 3D . . . 34
27 Plan found in the canyon-like environment using RRT Dubins-based

planner for AUV . 36
28 Planning tree in the canyon-like environment using RRT Dubins-

based planner for AUV . 37
29 Comparison of Input-based and Dubins-based RRT planners 38
30 Seabed station with charging device (courtesy of David Oertel) 40
31 Path found for docking with Input-based planner 41
32 AUV forward speed and distance to docking device 41
33 Performance of Input-based method in AUV docking task 42
34 Docking with Dubins-based planner and Lookahead steering controller 43

57

35 Docking with Dubins-based planner and Lookahead steering controller 43
36 Comparison of spanning trees with modified and unmodified weights . 47
37 Decomposed spanning tree into multiple trees 48
38 State transition diagram for a single AUV in task mission planner . . 50
39 Example mission plan produced by A* task planning (the number in

actions DRIVING_TREE(i) represents id of tree from Figure 37) . . 51
40 Circumnavigation path of a single decomposed tree 52
41 Example workspace covered by decomposed trees 53
42 Found seabed monitoring mission plan 53
43 AUVs state of charge in mission plan 54
44 Paths taken by AUVs in coverage mission 55

58

List of Algorithms
1 PRM learning phase . 7
2 RRT . 9
3 Input-based RRT planner . 28
4 Dubins-based RRT planner . 35
5 Spanning tree decomposition . 47
6 Mission state expansion . 51

59

References
[1] Jérîme Barraquand and Jean-Claude Latombe. Robot motion planning: A dis-

tributed representation approach. Int. J. Rob. Res., 10(6):628–649, December
1991.

[2] C.V. Caldwell, D.D. Dunlap, and E.G. Collins. Motion planning for an au-
tonomous underwater vehicle via sampling based model predictive control. In
OCEANS 2010, pages 1–6, Sept 2010.

[3] Ipek Caliskanelli, Bastian Broecker, and Karl Tuyls. Multi-robot coverage: A
bee pheromone signalling approach. In Christopher J. Headleand, William J.
Teahan, and Llyr Ap Cenydd, editors, Artificial Life and Intelligent Agents,
volume 519 of Communications in Computer and Information Science, pages
124–140. Springer International Publishing, 2015.

[4] John Canny. A voronoi method for the piano-movers problem. In Robotics and
Automation. Proceedings. 1985 IEEE International Conference on, volume 2,
pages 530–535, Mar 1985.

[5] Chieh Chen and Han-Shue Tan. Steering control of high speed vehicles: dy-
namic look ahead and yaw rate feedback. In Decision and Control, 1998. Pro-
ceedings of the 37th IEEE Conference on, volume 1, pages 1025–1030 vol.1,
1998.

[6] H. Choset, E. Acar, A.A. Rizzi, and J. Luntz. Exact cellular decompositions in
terms of critical points of morse functions. In Robotics and Automation, 2000.
Proceedings. ICRA ’00. IEEE International Conference on, volume 3, pages
2270–2277 vol.3, 2000.

[7] Howie Choset. Coverage for robotics – a survey of recent results. Annals of
Mathematics and Artificial Intelligence, 31(1-4):113–126, 2001.

[8] Howie Choset and Philippe Pignon. Coverage path planning: The boustrophe-
don decomposition. In International Conference on Field and Service Robotics,
1997.

[9] Thor I. Fossen. Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons, 2011.

[10] Thor I. FosseN. Mathematical models of ships and underwater vehicles. In
John Baillieul and Tariq Samad, editors, Encyclopedia of Systems and Control,
pages 1–9. Springer London, 2014.

[11] J. Könemann R. Ravi G. Even, N. Garg and A. Sinha. Min-max tree covers of
graphs. In Operations Research Letters, pages 309–315, 2004.

[12] Y. Gabriely and E. Rimon. Spiral-stc: an on-line coverage algorithm of grid
environments by a mobile robot. In Robotics and Automation, 2002. Proceed-
ings. ICRA ’02. IEEE International Conference on, volume 1, pages 954–960
vol.1, 2002.

60

[13] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Annals of Mathematics and Artificial Intelligence,
31(1-4):77–98, 2001.

[14] E. Galceran and M. Carreras. Efficient seabed coverage path planning for
asvs and auvs. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 88–93, Oct 2012.

[15] Enric Galceran and Marc Carreras. A survey on coverage path planning for
robotics. Robot. Auton. Syst., 61(12):1258–1276, December 2013.

[16] Faming Gong and Xin Wang. Robot path-planning based on triangulation
tracing. In Intelligent Information Technology Application Workshops, 2008.
IITAW ’08. International Symposium on, pages 713–716, Dec 2008.

[17] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara. Bsa: A complete
coverage algorithm. In Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, pages 2040–2044, April 2005.

[18] I.A. Hameed, A. la Cour-Harbo, and O.L. Osen. Side-to-side 3d coverage path
planning approach for agricultural robots to minimize skip/overlap areas be-
tween swaths. Robotics and Autonomous Systems, 76:36 – 45, 2016.

[19] N. Hazon and G.A. Kaminka. Redundancy, efficiency and robustness in multi-
robot coverage. In Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on, pages 735–741, April 2005.

[20] W.H. Huang. Optimal line-sweep-based decompositions for coverage algo-
rithms. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 1, pages 27–32 vol.1, 2001.

[21] M. Kalisiak and M. van de Panne. Rrt-blossom: Rrt with a local flood-fill
behavior. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, pages 1237–1242, May 2006.

[22] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. Int. Journal of Robotics Research, 30(7):846–894, June 2011.

[23] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. Robotics
and Automation, IEEE Transactions on, 12(4):566–580, Aug 1996.

[24] D. Kiss, G. Csorvasi, and A. Nagy. A planning method to obtain good quality
paths for autonomous cars. In Engineering of Computer Based Systems (ECBS-
EERC), 2015 4th Eastern European Regional Conference on the, pages 104–110,
Aug 2015.

[25] J. Kosecka, R. Blasi, C.J. Taylor, and J. Malik. Vision-based lateral control of
vehicles. In Intelligent Transportation System, 1997. ITSC ’97., IEEE Confer-
ence on, pages 900–905, Nov 1997.

61

[26] K.D. Kotay and D.L. Rus. Algorithms for self-reconfiguring molecule motion
planning. In Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings.
2000 IEEE/RSJ International Conference on, volume 3, pages 2184–2193 vol.3,
2000.

[27] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Robotics and Automation, 2000. Proceedings. ICRA
’00. IEEE International Conference on, volume 2, pages 995–1001 vol.2, 2000.

[28] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Norwell, MA, USA, 1991.

[29] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path plan-
ning. Technical report, 1998.

[30] Steven M. LaValle. Planning Algorithms. Cambridge University Press, New
York, NY, USA, 2006.

[31] Steven M. Lavalle, James J. Kuffner, and Jr. Rapidly-exploring random trees:
Progress and prospects. In Algorithmic and Computational Robotics: New Di-
rections, pages 293–308, 2000.

[32] Hyoung-Ki Lee, WooYeon Jeong, Sujin Lee, and Jonghwa Won. A hierarchical
path planning of cleaning robot based on grid map. In Consumer Electronics
(ICCE), 2013 IEEE International Conference on, pages 76–77, Jan 2013.

[33] Chaomin Luo, Simon X. Yang, and Xiaobu Yuan. Real-time area-covering
operations with obstacle avoidance for cleaning robots. In Intelligent Robots
and Systems, 2002. IEEE/RSJ International Conference on, volume 3, pages
2359–2364 vol.3, 2002.

[34] Yingchong Ma, Gang Zheng, and W. Perruquetti. Cooperative path planning
for mobile robots based on visibility graph. In Control Conference (CCC), 2013
32nd Chinese, pages 4915–4920, July 2013.

[35] Ronaldo Menezes, Francisco Martins, Francisca Emanuelle Vieira, Rafael Silva,
and Márcio Braga. A model for terrain coverage inspired by ant’s alarm
pheromones. In Proceedings of the 2007 ACM Symposium on Applied Com-
puting, SAC ’07, pages 728–732, New York, NY, USA, 2007. ACM.

[36] Ekmanis M. Liekna A. Nikitenko, A. Rrts postprocessing for uncertain envi-
ronments. In Proceedings of the 2013 International Conference on Systems,
Control and Informatics (SCI 2013), pages 171–179, 2013.

[37] A. Ntawumenyikizaba, Hoang Huu Viet, and TaeChoong Chung. An online
complete coverage algorithm for cleaning robots based on boustrophedon mo-
tions and a* search. In Information Science and Digital Content Technology
(ICIDT), 2012 8th International Conference on, volume 2, pages 401–405, June
2012.

62

[38] MinGyu Park and MinCheol Lee. A new technique to escape local minimum
in artificial potential field based path planning. KSME International Journal,
17(12):1876–1885, 2003.

[39] Erwin Prassler, Arno Ritter, Christoph Schaeffer, and Paolo Fiorini. A short
history of cleaning robots. Autonomous Robots, 9(3):211–226, 2000.

[40] Ioannis Rekleitis, AiPeng New, EdwardSamuel Rankin, and Howie Choset. Ef-
ficient boustrophedon multi-robot coverage: an algorithmic approach. Annals
of Mathematics and Artificial Intelligence, 52(2-4):109–142, 2008.

[41] Z. Sadeghi and H. Moradi. A new sample-based strategy for narrow passage
detection. In Intelligent Control and Automation (WCICA), 2011 9th World
Congress on, pages 1059–1064, June 2011.

[42] M. Saha and J.-C. Latombe. Finding narrow passages with probabilistic
roadmaps: the small step retraction method. In Intelligent Robots and Sys-
tems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pages
622–627, Aug 2005.

[43] Subramanian Saravanakumar and Thondiyath Asokan. Multipoint potential
field method for path planning of autonomous underwater vehicles in 3d space.
Intelligent Service Robotics, 6(4):211–224, 2013.

[44] K.S. Senthilkumar and K.K. Bharadwaj. Spanning tree based terrain coverage
by multi robots in unknown environments. In India Conference, 2008. INDI-
CON 2008. Annual IEEE, volume 1, pages 120–125, Dec 2008.

[45] K. Tanakitkorn, P.A. Wilson, S.R. Turnock, and A.B. Phillips. Grid-based ga
path planning with improved cost function for an over-actuated hover-capable
auv. In Autonomous Underwater Vehicles (AUV), 2014 IEEE/OES, pages 1–8,
Oct 2014.

[46] C. Urmson and R. Simmons. Approaches for heuristically biasing rrt growth.
In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, volume 2, pages 1178–1183 vol.2, Oct
2003.

[47] K. Vicencio, B. Davis, and I. Gentilini. Multi-goal path planning based on
the generalized traveling salesman problem with neighborhoods. In Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 2985–2990, Sept 2014.

[48] M. Weiss-Cohen, I. Sirotin, and E. Rave. Lawn mowing system for known
areas. In Computational Intelligence for Modelling Control Automation, 2008
International Conference on, pages 539–544, Dec 2008.

[49] Hongyang Yan, Huifang Wang, Yangzhou Chen, and G. Dai. Path planning
based on constrained delaunay triangulation. In Intelligent Control and Au-
tomation, 2008. WCICA 2008. 7th World Congress on, pages 5168–5173, June
2008.

63

[50] Simon X. Yang and Chaomin Luo. A neural network approach to complete
coverage path planning. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 34(1):718–724, Feb 2004.

[51] A. Yershova and S.M. LaValle. Improving motion-planning algorithms by effi-
cient nearest-neighbor searching. Robotics, IEEE Transactions on, 23(1):151–
157, Feb 2007.

[52] Liangjun Zhang and D. Manocha. An efficient retraction-based rrt planner. In
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on, pages 3743–3750, May 2008.

[53] Xiaoming Zheng, S. Jain, S. Koenig, and D. Kempe. Multi-robot forest cover-
age. In Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ
International Conference on, pages 3852–3857, Aug 2005.

64

Appendix CD Content
Directory or file name Description
diplomaThesis.pfd diploma thesis in pdf
matlab dynamical model of AUVs, model analysis scripts, dubins

curves scripts and others
src source codes for motion and task planners
videos simulation video

65

	Introduction
	Robot Path and Motion Planning
	Basic Path Planning
	Randomized motion planning
	Probabilistic Roadmaps
	Rapidly Exploring Random Trees
	Pros and cons of sampling-based planners

	Robot Coverage Planning
	Single Robot Coverage
	Exact Cellular Decomposition Methods
	Grid-Based Decomposition Methods
	Alternative approaches

	Multirobot Coverage
	Boustrophedon multi-robot coverage
	Grid-Based Decomposition Methods
	Alternative approaches

	Motion Planner for AUV
	AUV model
	Long distance planners
	Input-based RRT planner
	Dubins-based RRT planner
	Planners Comparison

	Short distance docking planner
	Input-based docking
	Dubins-based docking

	Seabed monitoring
	Designed mission planning method
	Experimental results

	Conclusion
	List of Figures
	List of Algorithms
	References
	Appendix CD Content

