
L.S.

prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 2, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Attacks on White-Box AES

 Student: Jean-Gaël Rigot

 Supervisor: Ing. Jiří Buček

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2016/17

Instructions

Create a white-box AES implementation according to Luo, Lai, and You [1] in C/C++.
Reproduce some attacks demonstrated by Bos, Hubain, Michiels, and Teuwen [2] using a suitable emulation
tool for instrumentation.
Try to perform the Differential Computation Analysis attack on the white-box AES of [1].

References

[1] Luo, Rui, Xuejia Lai, and Rong You. "A new attempt of white-box AES implementation." Security, Pattern Analysis,
and Cybernetics (SPAC), 2014 International Conference on. IEEE, 2014.
[2] Bos, Joppe W., et al. Differential computation analysis: hiding your white-box designs is not enough. Cryptology
ePrint Archive, Report 2015/753, https://eprint. iacr. org/2015/753, 2015.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

Attacks on White-Box AES

Jean-Gaël Rigot

Supervisor: Ing. Jǐŕı Buček

17th May 2016

Acknowledgements

First I would like to thank my thesis advisor Ing. Jǐŕı Buček who always
provided me with very valuable advice both on the technical and organiza-
tional aspect of the project. He was always there to answer my questions and
give me suggestion for improvement and interesting leads while allowing this
thesis to be my own work.

I would also like to thank my family and friends for their unconditional
support without which I could not have been able to realize this work.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 17th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Jean-Gaël Rigot. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Rigot, Jean-Gaël. Attacks on White-Box AES. Master’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2016.

Abstrakt

Využit́ı kryptografie (šifrováńı) je v zabráněńı př́ıstupu k datem bez př́ıslušného
oprávněńı. V některých př́ıpadech jsou ale šifrovaćı algoritmy spuštěny na
neznámém zař́ızeńı, např́ıklad v př́ıpadě př́ıstupu k obsahu, chráněnému autorskými
právy, na osobńım poč́ıtači (hudba, filmy...). V tomto př́ıpadě tradičńı šifrovaćı
modely nestač́ı zajistit bezpečnost dát. Ochranou dát v těchto podmı́nkách
se zabývá white-box kryptografie (šifrováńı). Práce prezentuje r̊uzné návrhy
ochranných prvk̊u, jako i možnosti útoku na ně. Nedávný návrh dle Luo et
al.[1] k ochraně AES (Advance Encryption Standard)[2] byl implementován v
C a studován v souvislosti s typy útok̊u dle Bos et al.[3].

Kĺıčová slova white-box kryptografie, white-box šifrováńı, AES, white-box
implementace šifry, diferenciačńı komputačńı analýza

Abstract

Cryptography is used to prevent people accessing data they are not author-
ized to access. However in some case the algorithm used for encrypting data
are performed on an untrusted device for example in the case of access to
copyrighted content on a personal computer (music, films...). In this case the
traditional cryptographic model is not enough to assure the security of the

ix

data and the study of protection under this context is called white-box cryp-
tography. This thesis presents different designs found in the llitterature as
well as attacks to break those implementation. The recently proposed design
by Luo et al.[1] to protect AES (Advance Encryption Standard) [2] has been
implemented in C and studied in regards to the types of attacks introduced
by Bos et al.[3]

Keywords white-box cryptography, AES, white-box cipher implementa-
tion, differential computation analysis

x

Contents

Introduction 1

1 Cryptography and AES Cipher 3

1.1 Cryptography . 3

1.2 Block Cipher . 5

1.3 Advanced Encryption Standard (AES) 6

2 White-Box Cryptography and AES Implementations 9

2.1 Black-box and White-Box Attack Context 9

2.2 White-Box Secure AES Implementations Attempts 11

3 Attacks on White-Box Implementations 21

3.1 Results against Perturbated White-Box AES 21

3.2 Algebraic Attacks against Table Lookup Implementations . . . 22

3.3 Differential Fault Analysis . 26

4 AES Implementation of Luo-Lai-You 29

4.1 Presentation of Luo-Lai-You White-Box AES 29

4.2 Implementation . 31

4.3 Results and Performance . 35

5 Differential Computation Analysis 37

5.1 Differential Power Analysis . 37

5.2 Adaptation to Memory Trace 38

5.3 Demonstration of the Attack on a Non-Protected Implementation 40

5.4 Attempt on Luo-Lai-You Implementation 42

Conclusion 45

Bibliography 47

xi

A Acronyms 51

B Contents of CD 53

xii

List of Figures

1.1 Exchange of an encrypted message m over an insecure channel . . 4
1.2 Encryption with ECB mode . 5

2.1 White-box cryptography model . 10
2.2 One round of Chow’s white-box AES 15
2.3 The different types of table in Chow’s implementation from [17] . . 16
2.4 The table Tableri in Xiao-Lai implementation 17
2.5 One round of Xiao-Lai implementation 18
2.6 Example of a modified table with dual cipher from [4] 19

3.1 How the tables of Chow’s implementation are considered for the
BGE attack . 23

4.1 nTMC table for round 1 to 9 . 30
4.2 TSR table for round 2 to 9 . 31
4.3 One round of the implementation of Luo et al. 32
4.4 The construction of the encryption program 33

5.1 Visualization of a simple memory trace of an assembly program . . 39
5.2 Visualization of a memory trace of execution of a white-box DES

program . 40
5.3 Zoom on the stack where the 16 rounds of DES are identifiable . . 41
5.4 Points where the attacks are performed 42
5.5 Examples of correlations for one byte of the key for different guesses 43

xiii

List of Tables

1.1 the AES S-box . 7

4.1 Configuration of the virtual machine 35
4.2 Comparison of running time with software AES 36

xv

Introduction

In today’s world, the security of information is a critical issue for public and
private organizations as well as for individuals. In order to keep an import-
ant piece of information secret, cryptographic techniques have been developed
to transform this piece of information in a form that will be understandable
only by the person possessing another information, the key, that will allow
him to transform back the information to its original, meaningful content.
The area of cryptography saw major developments for more and more secure
encryption methods and more performant types of attacks since the advent
of computers and performant algorithms have been designed to encrypt the
data such as today’s standard Advance Encryption Standard (AES) [2] for
symmetric cryptography and RSA named after the initials of its creators for
asymmetric cryptography. And with its democratization and massive adop-
tion by companies and consumers, these cryptographic methods are more and
more performed on open devices (PC, smartphones) that are not always to be
trusted.

One typical case of when the device should not be trusted concerns Digital
Rights Management (DRM). In the modern digital economy (movies, music,
video games) there are some case when someone can have access to a purchas-
able content but should not be able to use it because he does not have the
key in order to access it; but this person might want to access it nevertheless
and could try to attack the cryptographic software. Another possibility is
that a machine performing encryption has been infected by a malware with
the goal to recover the key to be able to decipher messages encoded by this
software. This fact is not taken in account in traditional cryptography that
concerns mostly about the impossibility of practically finding the key when
presented with pairs of original input and encoded input. In order to protect
the encrypted content against this type of threats another attack model needs
to be developed and studied. This model is called white-box cryptography
where the attacker has total control of the machine during the execution of
the program performing the encryption.

1

Introduction

It was introduced in 2002 by Chow et al. who proposed an implementation
of the two most known block ciphers (AES and the Data Encryption Standard
(DES)) supposed to resist attacks in this configuration. Both have been proved
to be broken a few years later and since, different proposal of implementation
and improvements have been made, and different attacks have been developed
against it. It remains an open problem to find a proven secure implementation
of AES in the white-box context and interesting proposals have been made
in the recent past. Different attacks also have been developed recently. The
original idea of this master thesis was to study the resistance of the design
proposed by Luo et al. in 2014 [1] to the attack developed by Bos et al. in
2015 [3]. However, as I could not find an implementation of this design and
did not received a reply to the mail I sent to the author, I decided to program
this implementation and then to perform the analysis.

After a brief introduction to the goal of cryptography in general and a
focus on the cipher AES in chapter 1, this thesis will present the different
designs that have been proposed to construct an implementation that could
resist attacks in the white-box context in chapter 2. The different attacks
developed against these designs will be presented in chapter 3. The design
given in [1] will be explained in chapter 4 along with the presentation of my
program implementing it. Finally the chapter 5 will present the type of attacks
introduced in [3] and demonstrate the results obtained against the previous
implementation.

2

Chapter 1

Cryptography and AES Cipher

This chapter will briefly describe the basic vocabulary used when speaking
about cryptography and more specifically about block ciphers, and quickly
describe the goal of an attacker when attempting to break a block cipher. It
will then provide a description of the most widely used standard block cipher,
the Advanced Encryption Standard.

1.1 Cryptography

From its origin, the goal of cryptography is for two persons (traditionally
named Alice and Bob for example purposes) to communicate in a way that
prevents someone intercepting the message (Oscar) to understand its con-
tent. Cryptography has been used and improved since about 4000 years, and
played an important role in military and diplomatic communications and so
has cryptanalysis, its counterpart that attempts to “break” the code and allow
the attacker to read the message, as proven in World War 2 with the Enigma
machine for example. In order to describe the methods used some vocabulary
is necessary: A communication channel where a message can be intercepted
is called insecure. The original content Alice wants to send to Bob is called
plaintext, its encoded version not understandable by Oscar is called ciphertext
and is obtained using an encryption algorithm with a predetermine key. Bob
who possess information about the key can use the corresponding decryption
algorithm to recover the plaintext. This mechanism is presented in Figure 1.1
and is called a cryptosystem. This term is given the following mathematical
definition by Stinson [5]:

Definition 1 A cryptosystem is a five-tuple {P, C,K, E ,D} where the follow-
ing conditions are satisfied:

1. P is a finite set of possible plaintexts;

2. C is a finite set of possible ciphertexts;

3

1. Cryptography and AES Cipher

Alice BobEncryption Decryption

Oscar

m eK(m)
dK(eK(m)) = m

Key source

Figure 1.1: Exchange of an encrypted message m over an insecure channel

3. K, the keyspace, is a finite set of possible keys;

4. For each K ∈ K there is an encryption rule eK ∈ E and a corresponding
decryption rule dK ∈ D. Each eK : P → C and dK : C → P are functions
such that dK(eK(x)) = x for every plaintext element x ∈ P.

A broader definition of cryptography is given by Menezes, van Oorschot
and Vanstone[6]:

Definition 2 Cryptography is the study of mathematical techniques related to
aspects of information security such as confidentiality, data integrity, entity
authentication, and data origin authentication.

If confidentiality expresses the goal previously stated that only authorized
people should be able to access the information, other aspects are also in-
cluded in this definition. Data integrity means that it is possible to verify
that the information has not been modified by unauthorized people, entity
authentication means that the identity of said entity (a person, a computer
terminal...) can be confirmed without any doubts and data origin authentic-
ation express the same notion about the source of the information.

There is a variety of mathematical tools called primitive that are used to
achieve a better security of the information, they can be separated in three
main categories depending on the type of key used:

• unkeyed primitives, that do not require a key

• symmetric-key primitives, that require a key shared by the sender and
receiver, generally exchanged over a secure communication channel (or
at least two keys e and d respectively for encryption and decryption that
are computationally “easy” to determine knowing only the other one)

• public-key primitives, that requires a key in two parts, one is public
(known to everyone), the other private (only known by the user)

The focus here will be put on symmetric cryptography and more specifically
symmetric-key ciphers.

4

1.2. Block Cipher

Figure 1.2: The original mascot, its encrypted version by Lunkwill using ECB
mode and using another mode of operation on [9]

1.2 Block Cipher

There are two types of symmetric ciphers, stream ciphers and block ciphers.
The former operates on individuals plaintext digits while the latter works on a
bigger chunk of data of a fixed size.[7] Often the stream cipher is implemented
using exclusive OR (XOR) operation with a pseudorandom generated digit
stream called the keystream. We will now consider the second category in
more details.

A block cipher can be defined this way:[8]

Definition 3 A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n

It means that a block cipher transforms n bits of plaintext and k bits of key
into n bits of ciphertext, the numerical values of this number being specified
by the algorithm used. It is important to consider that block ciphers are
not directly usable by end-user and need to be integrated correctly into the
system to protect in order to guarantee its security. In order to do so, several
modes of operation have been defined. The most direct use of the cipher is
called Electronic Codebook (ECB) and consists in splitting the plaintext into
chunks of the required size n and encrypting each block separately. This mode
of operation is not recommended to use for a message longer than one block
if the same key is to be reused, since it conserves pattern in the plaintext as
demonstrated on the Wikipedia article of block cipher encryption modes with
the encrypted version of the Linux mascot designed by Larry Ewing with The
GNU Image Manipulation Program (GIMP) in Figure 1.2. Therefore we can
see that a secure cipher does not guarantee a secure implementation. A more
recommended mode is Cipher Block Chaining (CBC) where the cipher text
of one block (or the initialisation vector for the first block) is XORed to the
plaintext of the following one therefore preventing two identical blocks to be
encrypted the same way. There exist also other modes like Counter (CTR) or
Cipher Feedback (CFB).

5

1. Cryptography and AES Cipher

The traditional goal of cryptanalysis of block cipher is to recover the key
that was used under different attacks hypotheses: mainly the known plaintext
attack where the attacker has knowledge of pair of plaintext and ciphertext
and the chosen plaintext attack where the attacker can choose the plaintext
he wants to know the result of encryption and adapt his strategy. We will
see later how the white-box context differ from these two attacks scenarios.
The attack can be performed using brute-force (trying every possible key) or
exploiting a weakness of the cipher to reduce the search space.

The most known and used block ciphers used to be the DES, standardized
in 1977. It is no longer recommended because of its small keyspace and has
been replaced by the cipher that superseded it, the AES.

1.3 Advanced Encryption Standard (AES)

AES was designated a standard by the U.S. National Institute of Standards
and Technology (NIST) in 2001 following a competition to choose a replace-
ment for DES. It is a part of the Rijndael family of block ciphers with different
block and key lengths designed by Joan Daemen and Vincent Rijmen for this
selection process. It is described in the Federal Information Processing Stand-
ard (FIPS) Publication 197[2]. Its blocks are 128 bits long and the key can
be 128, 192 or 256 bits long. The 128 input bits are considered by the al-
gorithm as a 2-dimensional array of 4 × 4 bytes which represent elements
of the AES field: the finite field GF (28) using the irreducible polynomial
m(x) = x8 + x4 + x3 + x + 1 as a modulus. This means the addition is rep-
resented by a XOR function between 2 bytes that represent polynomials with
coefficient in GF (2) = {0, 1} and degree strictly less than 8, and the mul-
tiplication that does not have a simple equivalent to a byte operation is the
result of polynomial multiplication (using addition modulo 2) reduced modulo
m(x) which is represented as {01}{1b}. The 4 × 4 array also called state of
the algorithm can also be considered as an array of 32-bits words of length 4
and represented by its columns.

Several operations are defined on this state:

• SubBytes() is the non-linear operation of AES. It operates independ-
ently on each byte and substitutes a byte by the result of an affine
transformation applied to the byte’s inverse. As these values are fixed,
they can be directly looked up in a table, the so-called S-box shown in
Table 1.1.

• ShiftRows() is an operation where the different rows of the array are
cyclically shifted from an index depending on the position of the row.
The first row, r = 0 is unchanged, the second row r = 1 shifted once to
the left and so on.

6

1.3. Advanced Encryption Standard (AES)

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 1.1: the AES S-box

• MixColumns() is an operation on the columns of the state. Each
column is considered as a polynomial with coefficients in GF (28) and
is multiplied with a fix polynomial a(x) = {03}x3 + {01}x2 + {01}x +
{02} modulo x4 + 1. This operation is often represented as a matrix
multiplication: 

s′0,c
s′1,c
s′2,c
s′3,c

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



s0,c

s1,c

s2,c

s3,c

 (1.1)

• AddRoundKey() is the only key-dependent operation applied to the
state. It consists on applying a bitwise XOR operation between the
columns of the state and a word of the round key generated from the
key according to a key schedule.

The key schedule is defined using the S-box substitution of byte, cyclic
rotations and XOR operation with a round constant Rcon[i] determined as
a power of x({02}) to the round. The algorithm consists of 10 rounds for
AES-128, 12 rounds for AES-192 and 14 for AES-256. It is described in the
NIST publication as the pseudo-code in Algorithm 1, where Nr describes the
number of rounds, Nb is the number of columns of the state which is always
4, Nk the number of 32-bit words in the key (4, 6 or 8) and w[] contains the
different round keys.

Since its introduction AES has been extensively studied to find a potential
weakness that would allow to recover the key faster than a brute force search
(i.e. with time complexity of 2128 for AES-128), and though some results
have been achieved on reduced-round AES or exploiting encryption with two

7

1. Cryptography and AES Cipher

Algorithm 1 AES Cipher

Cipher(byte in[4*Nb], byte out[4*Nb], byte key[4*Nk])
byte state[4,Nb]
word k[(Nr+1),Nb]
k[0,(Nr+1)*Nb-1] = ExpandRoundKey(key)
state = in
AddRoundKey(state, k[0, Nb-1])
for round = 1 step 1 to Nr–1 do

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, k[round*Nb, (round+1)*Nb-1])

end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, k[Nr*Nb, (Nr+1)*Nb-1])
out = state

different key k and k⊕δ with known difference δ in the related-key model[10],
as today there is no threat to the practical use of AES.

8

Chapter 2

White-Box Cryptography and
AES Implementations

This chapter will describe the white-box attack context and how it differs from
the traditional model. Then the different design proposed for the implement-
ation of AES will be presented.

2.1 Black-box and White-Box Attack Context

The traditional key-recovery attack model on block cipher assumes only know-
ledge of plaintext-ciphertext pairs, chosen or not. This is called the black-box
model: it is like the cipher is a black-box from which we know only the input
and output (the encryption algorithm is known too, but not the important
parameter: the key that we want to recover). But sometimes the attacker has
more power than that and can also perform measurements and even inject
a fault during the execution of the cipher implementation. This is the case
for example with power measurements or electromagnetic disturbances [11].
Therefore it is also important to study the security of ciphers and their imple-
mentation under different threat models than the classical one. Allowing the
attacker to perform these side-channel attacks in the analysis can be referred
to as the grey-box model.

The white-box model grants even more power to the attacker, because in
these scenarios, he has full control over the environment that executes the
program and can use as many tools he wants (like debugger, disassembler,
instrumentation framework..) in order to recover the key. This changes of the
model reflects on the Figure 2.1. This context was defined by Chow et al. in
2002 [12] together with a first proposal implementation for AES cipher. The
same year they also proposed a DES implementation in an attempt to find
solutions against these newly studied attacks. They give the following list of
threats that are applicable in the white-box attack context:

9

2. White-Box Cryptography and AES Implementations

Alice BobEncryption Decryption

Oscar

m eK(m)
dk(eK(m)) = m

Key source

Figure 2.1: The possibilities of Oscar change in the white-box model. He has
a total access to the encryption and/or decryption process (Oscar could even
be Alice or Bob in the scenario of DRM and copyright violation for example).
In the grey-box model, he would only have access to partial information about
this process through side-channel attacks.

1. fully-privileged attack software shares a host with cryptographic software,
having complete access to the implementation of algorithms

2. dynamic execution (with instantiated cryptographic keys) can be observed

3. internal algorithm details are completely visible and alterable at will

If some cryptographic software is run in on an untrusty host, we need to
protect it against such threats. This is the case mainly with digital rights
management (DRM) to prevent unauthorized access to music or films, but is
also useful for client software running in the cloud. The attacker in this model
could be either the user of one of the endpoints or a malware installed on the
host. However other interesting applications are possible like transforming a
secret-key encryption into a public-key encryption scheme or transforming a
Message Authentication Code (MAC) into a digital signature under certain
conditions. This is done by distributing the white-box implementation of the
algorithm (encryption or MAC) as public while keeping the key secret.[13]
Study of this field can also lead to the development of techniques for protec-
tion against software tampering which means modifying a software’s program
in order to modify its functionality. Some protection can be achieved by
considering the executable code as the encryption key used to generate the
white-box implementation.[14] However white-box cryptography implementa-
tions are not suitable for every use. They are generally orders of magnitude
slower than hardware implementations, need more resources than traditional
implementations and it is important to correctly evaluate the requirements of
the system before deciding if a white-box implementation is suited.[13]

White-box cryptography, code obfuscation, and tamper-resistance are all
related and complementary techniques to achieve different security goals. For
white-box cryptography the goal is to prevent the extraction of the key of a
cryptographic algorithm; for code obfuscation it is to protect against reverse

10

2.2. White-Box Secure AES Implementations Attempts

engineering of the algorithm and for tamper-resistance it is as said before to
prevent modification of some functionality of the program. Some theoretical
results have been obtained in this field: It was shown in 2001 by Barack et
al.[15] that it is impossible to construct a general obfuscator that could turn
any existing program to a virtual black box that does not leak information
not contained in its input and output. This is however not a reason to give up
attempts to construct white-box implementation of common ciphers. Indeed,
we do not know if they are part of the class of functions that cannot be ob-
fuscated or not and more favorable results have been obtained under different
definitions of obfuscation.

2.2 White-Box Secure AES Implementations
Attempts

This section will present the publicly available description of white-box imple-
mentations. Other design have been made by companies like Irdeto but they
have not been publicly disclosed[16].

2.2.1 General Considerations

If we managed to construct a program that looks up the value of the ciphertext
in a table given the value of the plaintext, it will not give more information
to the attacker than the cipher in the black-box model. Unfortunately, it is
impossible to construct such a big table in practice as AES has 128 bits input.
This observation still is the base of the different white-box implementations
as they convert the algorithm into a succession of smaller lookup tables per-
forming the different steps of the algorithm. As all the published white-box
implementations of AES are using lookup tables, there are some terms and
common techniques that we can define. The tables are protected with different
operations [17]:

• Encodings: these are non-linear permutation in order to encipher inter-
mediate states of the algorithm, therefore achieving confusion. They are
chosen so they cancel with the next.

• Mixing bijections: these are linear bijections generally represented by
matrices over GF(2) used to improve diffusion for tables containing in-
formation about round key bytes.

• External encodings: these are encodings applied on the external bound-
aries of the program in order to prevent plaintext and ciphertext to
appear during the execution

Confusion and diffusion are terms introduced by Shannon [18] considering here
a table containing bytes of the key as a small block cipher. The former means

11

2. White-Box Cryptography and AES Implementations

that the relation between ciphertext and encryption key should be complex
and the latter states that a small change in the plaintext should result in
change of 50% of the bits of the ciphertext in probability.

Chow et al. also defined the equivalent to keyspace in the white-box con-
text when it is achieved with a network of lookup tables, i.e. the upper bound
of the research space to recover the key with the concept of white-box di-
versity and white-box ambiguity. The white-box diversity of a type of table
expresses how many distinct constructions there are for a table (it represents
how many choices there are for each parameter of a table and not how many
different tables, as different constructions can lead to the same table). The
white-box ambiguity of a type of table expresses then how many distinct con-
structions will result in the exact same table and measure how many possible
interpretation of one table are possible for an attacker who wants to find the
true one.[12]

The implementation of Chow et al. will be described in more detail as it
is the first one, most of the other are based on it proposing improvements or
bigger modification, and it has been explained in great details with bytes flow
scheme by Muir and his tutorial could be consulted as a reference[17].

2.2.2 Chow’s Implementation

The implementation described here is for AES-128 as it is the main example
used in papers, but the idea could easily be applied to AES-192 or AES-256.
The first step in the construction of Chow et al. is to reorder the operations
of AES after the following observations:

• The first AddRoundKey(state, k0) can be brought in the loop while the
last of the loop AddRoundKey(state,k9) is moved outside.

• SubBytes and ShiftRows commute because ShiftRows only change the
positions of the bytes and SubBytes their values, therefore we can ex-
change their position.

• ShiftRows is a linear operation, so we can apply it before AddRoundKey
if we also apply it on AddRoundKey which give us a different key sched-
ule, we note k̂ the round keys that have been shifted according the rules
of ShiftRows from the round 1 to 10.

This give us the equivalent algorithm to AES-128 presented as Algorithm 2.
Once this step is done we can construct the different lookup tables of the

implementation. The goal is to prevent the key to appear in memory and
in the register during computation and so we precompute the outputs for all
possible inputs of different operations and protect all key-dependent variables.
In order to do so, we combine the SubBytes() and AddRoundKey() operations
to define what are called T-boxes that are all different for each byte of each
round :

12

2.2. White-Box Secure AES Implementations Attempts

Algorithm 2 AES-128 Equivalent Algorithm used for white-box implement-
ation

Cipher(byte in[4*4], byte out[4*4], byte key[4*4])
byte state[4,4]
word k[11,4], k̂[10,4]
k[0,11*4-1] = ExpandRoundKey(key)
k̂[0,10*4-1] = ShiftRoundKey(k[0,10*4-1])
state = in
for round = 1 step 1 to 9 do

ShiftRows(state)
AddRoundKey(state, k̂[(round-1)*4, round*4-1])
SubBytes(state)
MixColumns(state)

end for
AddRoundKey(state, k̂[9*4, 10*4-1])
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, k[10*4, 11*4-1])
out = state

T ri (x) = S(x⊕ k̂r−1[i]), for i = 0...15 and r = 1...9,

T 10
i (x) = S(x⊕ k̂9[i])⊕ k10[i], for i = 0...15

The MixColumns() operation, which is the matrix product presented in
Equation 1.1 can be decomposed into a XOR of 32 bits values, that are all
dependent of one single byte of the state in the following way :


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3

 = x0


02
01
01
03

⊕ x1


03
02
01
01

⊕ x2


01
03
02
01

⊕ x3


01
01
03
02

 (2.1)

For each of the 4 different multiplications, we compute a so called Ty table
and store 4 copies for each of the 9 rounds where MixColumns is applied. We
proceed to directly connect the T-boxes previously computed to these Ty
tables when it is the case, forming one type of table taking 8 bits as input
and exiting 32 bits output. The values will then be XORed using XOR tables
taking two nibbles (4 bits) as input and resulting in one as an output. It
will consist of two stages in order to reduce 32 bits to 8: first 16 XOR tables
will reduce 32 bits to 16, then 8 XOR tables will reduce 16 bits to 8. The
ShiftRows() operation is realized by controlling the bytes flow and carefully
choosing which input should be used by the tables.

13

2. White-Box Cryptography and AES Implementations

In order to protect the tables, mixing bijections are added to it: an 8-bit
to 8-bit named L-1 in entrance and 32-bit to 32-bit named MB before the
exit of the T-box/Ty table. However they need to be canceled out in order to
perform the AES operations on the correct values, leading to the creation of
another type of table. The same technique of decomposing the matrix product
(recall from Section 2.2.1 that mixing bijections are linear) into XORs of 32-
bit vectors is used, and 4 bijections L are concatenated paying attention to
use the correct one considering that ShiftRows() operation will be applied
in the next round. The bijections can be generated uniformly at random by
generating an invertible matrix of the right size. These two operations are
composed in order to form a table. Their outputs will be reduced back to 8
bits using the same technique as before. The bytes flow of one round can be
seen in a schema presented in the tutorial of Muir in Figure 2.2 .

Then, each table has its input and output encoded. The input encoding
cancelling the output one of the previous table which means that the XOR
tables will all be different and it is not possible to use only one. Finally
external encodings are applied to the entrance and exit tables. This raises the
number of table’s type to 5 also presented in the tutorial of Muir in Figure
2.3.

This implementation results in the following number of tables:

• 9*(16+16) = 288 tables with 8-bit input and 32-bit output (tables with
MixColumns and Mixing bijections)

• 9*4*(16+8+16+8) = 1728 tables with 8-bit input and 4-bit output
(XOR tables)

• 16 tables with 8-bit input and 8-bit output (for the last round)

The storage requirements for a n-bit to m-bit table being 2n ∗m, we can
compute the minimum memory needed to store the tables: 288∗28∗32+1728∗
28 ∗ 4 + 16 ∗ 28 ∗ 8 = 508 kB. Regarding the two measurements of security, the
table with the smaller white-box ambiguity is the one performing the XOR
operation which has a white-box ambiguity of about 248. It has also the
smallest white-box cryptography of about 2132.8. However, as we will see in
the next chapter, some attacks have been found against this implementation
reducing the meaning of those numbers.

2.2.3 Perturbated White-Box AES

A totally different approach was taken in 2006 by Bringer et al. following the
work of Billet and Gilbert in 2003 who introduced a traceable block cipher.

14

2.2. White-Box Secure AES Implementations Attempts

Figure 2.2: Round 2 of Chow’s white-box AES implementation from [17].
It is similar to other rounds, round 1 and 10 are differents due to external
encodings

15

2. White-Box Cryptography and AES Implementations

Figure 2.3: The different types of table in Chow’s implementation from [17]

1 In order to strengthen the security of these ciphers, Bringer et al. in-
troduced perturbations to the original equations which lead them to apply
the same ideas to an AES implementation in order to make it white-box
resistant.[20] They modified the cipher in the following way:

• Random variables are introduced in every round but the last one to hide
the interesting information.

• Specific terms taking often a predetermined value are added to the first
round and carried away up to the last round.

• Polynomials that canceled when this value is reached are added to the
last round.

The result of the evaluation of the polynomial will then be added to the res-
ult of the traditional cipher at the end, giving the right result only when the
predetermined value is reached. Then a majority voting algorithm is used to
determine the right result, the one the original cipher would have returned.
For their AES implementation, they realize this by choosing correlated poly-
nomials so that two of them will cancel, while the others will take different
values to help attain the predetermined value frequently and so that the right
input could always be determined.

1A traceable cipher can support a tracing scheme: many equivalent key can be generated
from a ‘meta-key’ to be used for decryption, but it is computationally difficult to find the
meta-key or generate another valid equivalent key only by knowing up to k keys, the ‘meta-
key’ allowing to find at least one of the key used to generate the equivalent description.
This type of cipher can be used for example to find a ‘traitor’ for example in the context of
broadcasting encrypting content to multiple user like with paying television.[19]

16

2.2. White-Box Secure AES Implementations Attempts

Lr
i

Tr
2i

Tr
2i+1

MCimod2

Rr
bi/2c

16

32

Figure 2.4: The table Tableri in Xiao-Lai implementation

2.2.4 Xiao-Lai Implementation

In 2009, another implementation based on the concept of network of lookup
tables is proposed by Xiao and Lai [21], but with a different arrangement of
the operations into the tables. It is still based on the equivalent algorithm
of AES presented in Algorithm 2 . The ShiftRows() operation is now per-
formed as a matrix multiplication with the matrix M r. It is embedded in the
phase cancelling the mixing bijection, which is computed during the encryp-
tion and not stored as a lookup table. Another difference is that 2 T-boxes
are embedded in one single table whereas in Chow’s implementation there
was only one by table. The MixColumns operation is again split but dif-
ferently than in Equation 2.1. Here it is split by columns of 2 as specified
in Equation 2.2 There is only one type of table shown in Figure 2.4 in this
implementation which does not use non-linear encodings. The flow of the al-
gorithm is shown in Figure 2.5. This implementation is the basis of the one
designed by Luo, Lai and You which will be discussed in the chapter 4 as
implementing this design was one of the requirements of this thesis. Storing
the 11 128*128 matrices and the 8 tables for each of the 10 rounds requires
10 ∗ 8 ∗ 216 ∗ 32 + 11 ∗ 128 ∗ 128 = 20502 kB.


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3

 =


02 03
01 02
01 01
03 01

[x0
x1

]
⊕


01 01
03 01
02 03
01 02

[x2
x3

]
(2.2)

The white box diversity of the tables is 21293 and its white-box ambiguity
2270, these measurements being much higher for the matrices.

17

2. White-Box Cryptography and AES Implementations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

128

16

32

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mr
i

⊕

Tableri Tableri+1

Figure 2.5: Example of one round of Xiao-Lai implementation. The multi-
plication by M r

i and XOR operations are performed at run time and not as
lookup tables

2.2.5 Karroumi Dual-cipher Implementation

Another white-box AES implementation based on the one designed by Chow
et al. was proposed in 2010 by Karroumi [22] and has been implemented and
studied in his master thesis by Klinec [4] in 2013. The improvement made to
the original design are due to the observations that the operations performed
during the AES encryption are simple algebraic operations in GF (28) and
changing the constants involved (i.e. the irreducible polynomial, the matrix
coefficient or the affine transformation involved in the computation of the S-
box) allow to construct a new family of ciphers that are tightly correlated to
the original AES by linear mappings relating byte of the state of AES cipher
to the one of the newly created cipher. These ciphers are called AES dual-
ciphers[23, 24], and allow to have a different computation of AES operations,
they are used to improve the security of the white-box implementation. For
every round of AES, a different dual-cipher is chosen amongst the 61200 pos-
sible, the constants involved in SubBytes() and MixColumns() are changed to
the one used in the dual cipher and these changes are taken into consideration
when expanding the key. Then for each round, the tables performing these
operations are modified to use the dual-cipher chosen. This requires encoding
and decoding the bytes of the state with the linear mappings relating AES
cipher with the dual cipher. The encodings are mixed together with the mix-
ing bijections resulting in tables modified from the original implementation
shown in Figure 2.6. This implementation has exactly the same number of
tables as the original ones, thus requiring the same storage capacity and the
bytes are flowing in the same way.

18

2.2. White-Box Secure AES Implementations Attempts

Figure 2.6: Example of a modified table with dual cipher from [4]

2.2.6 Conditional Re-encoding

A recent proposition in 2015 has been made from Lee et al.[25] to protect the
AES implementation against the different cryptanalyses developed. It is also
based on the original design of Chow et al. and modifies the encoding strategy
of the bytes exiting the tables of type XOR in the last part of the round.
After the traditional non-linear encoding applied they propose to conditionally
encode this result again depending on some defined function deciding from
the inputs of the table if the second encoding should be applied or not. They
introduce a satellite variable γ in order to track if the second encoding has
been applied or not and if it should be cancelled in the next table. They claim
that this technique protects against three different cryptanalysis techniques
which will be discuss in the next chapter and are the BGE attack, Michiels et
al. attack generalizing it and the collision attack.

19

Chapter 3

Attacks on White-Box
Implementations

This chapter will focus on the different attacks developed to break the designs
presented in the previous chapter. The emphasis is on key-recovery attack that
have been more studied. However it is important to mention that a possible
way to circumvent the security of a specific program for plaintext-recovery is
to practice code-lifting which means extracting the code or calling the library
itself to perform the decryption without having to recover the key. This is the
main reason for the external encodings[26].

3.1 Results against Perturbated White-Box AES

In the original paper describing the concept of perturbated white-box [20] ,
is already mentioned a possible attack against the AES implementation: If
the attacker can fix all the bytes of the input of an intermediate round but
one, the byte not fixed can be consider as a variable x. Then the computation
performed in the round are involving 16 polynomials in x from which a linear
combination can leads to the knowledge of SubBytes(x+ v). From there it is
possible to obtain an overdefined system that can be solved by trying all the
values of v, leading to the discovery of one byte of the round key. This attack
apparently does not generalize well to white-box AEw/oS 2 implementations
also presented in the paper, but other attacks were proved possible based on
the fact that the last round does not contain the random equations which
can lead to recovery of the different encodings which ultimately leads to the
recovery of the key-dependent S-boxes [27].

2 Advance Encryption without standard S-boxes (AEw/oS) is a generalized AES cipher
where the S-boxes are part of the key.

21

3. Attacks on White-Box Implementations

3.2 Algebraic Attacks against Table Lookup
Implementations

There have been some attacks developed against the table-lookup implement-
ations as well. One class of these attacks is exploiting algebraic analysis of the
tables in order to cancel the encodings and recover the round-key embedded
in the tables.

3.2.1 The BGE Attack

The first kind of these attacks was developed in 2004 by Billet, Gilbert and
Ech-Chatbi from whom the initials were taken to give a name to the at-
tack: the BGE attack [28]. They noticed that the mixing bijections and
input/output encodings were somehow redundant and could be considered as
a whole as an 8-bit non-linear encoding, referred to as P and Q respectively
for the input and output shown in Figure 3.1. Therefore if we rename T ′i
the operation consisting of Ti ◦ Pi, we get the following relationships for the
MixColumns table :

y0 = Q0(02 · T ′0(x0)⊕ 03 · T ′1 ⊕ 01 · T ′2(x2)⊕ 01 · T ′3(x3)),

y1 = Q1(01 · T ′0(x0)⊕ 02 · T ′1 ⊕ 03 · T ′2(x2)⊕ 01 · T ′3(x3)),

y2 = Q2(01 · T ′0(x0)⊕ 01 · T ′1 ⊕ 02 · T ′2(x2)⊕ 03 · T ′3(x3)),

y3 = Q3(03 · T ′0(x0)⊕ 01 · T ′1 ⊕ 01 · T ′2(x2)⊕ 02 · T ′3(x3));

They found that it was possible to recover the output encodings up to
an affine transformation using the relations obtained. By fixing x2 and x3 to
00 and constructing the lookup table for the two functions giving y0 with x1

set to 00 and 01 we can derive the following equations where β00 and β01 are
unknown bytes:

f00(x0) = Q0(02 · T ′0(x0)⊕ β00),

f01(x0) = Q0(02 · T ′0(x0)⊕ β01);

Then we can form another lookup table by composing f01 and f−1
00 which

give us an interesting result:

f01 ◦ f−1
00 = (Q0 ◦ ⊕β01 ◦ 02 · T ′0) ◦ ((02 · T ′0)−1 ◦ ⊕β00 ◦Q−1

0)

= Q0 ◦ ⊕β ◦Q−1
0

with β = β01 ⊕ β00

We can repeat this process to other values of x1 to obtain elements of a
group from which there is an isomorphism to (GF (28),⊕) that can be used

22

3.2. Algebraic Attacks against Table Lookup Implementations

Figure 3.1: How the tables of Chow’s implementation are considered for the
BGE attack from [17]. The mixing bijection and encodings from the original
description on the left are considered as general encodings P and Q on the
right.

to form an approximation of each Qi up to an affine transformation. We can
then use the inverse of these new approximations in order to construct lookup
tables with weaker (affine) encodings. From these tables it is possible to fully
determine the encodings and so to compute the output of the T-box. If we also
know the output encodings from the previous round, we can also have its input
and so recover one byte of the round key. Performing this on two successive
rounds (and so determining the output encodings of three consecutive rounds)
allows to fully recovering the key, even on an improved version adding byte
permutation to the design. The authors estimate the work factor being about
230, the most intensive part being to build the approximation of each output
encodings (about 224 operations being repeated 16*3 times).

Their attack has been improved in 2012 by Tolhuizen proposing a more
efficient algorithm to recover the encoding up to an affine transformation [29]
and further improved by Lepoint et al. in 2013, these two improvement redu-
cing the work factor of the attack to 222. Lepoint et al. developed a method
to recover the round key of the round r + 1 more quickly once the one of the
round r has been recovered and to reorder the bytes of the round key. They
also introduced a faster way to test if a mapping from GF (28) to itself is affine

23

3. Attacks on White-Box Implementations

or not by performing an initial test to reduce the number of mappings tested
by the original algorithm [30]. This is needed to fully determine the encoding.
They and Klinec showed that the design of Karroumi with dual ciphers was
also vulnerable to the BGE attack.

The attack was generalized in 2008 on the class of Substitution-Linear
Transformation (SLT) 3 cipher with Maximum Distance Separation matrices
4 used for diffusion implemented in the same way as Chow’s white-box AES,
and is based on the same first phase of recovering the encodings up to an affine
part. Then solving linear equivalence problems is needed to recover the key
[31].

3.2.2 Collision Attack

Another attack against Chow’s implementation was introduced in 2013 by
Lepoint et al. exploiting collisions of internal variables on the output of the
first round [32, 30]. We denote S1,0

i as the composition of decoding (in the same
notation P as the BGE attack) a byte, adding the round key and substituting
the byte thanks to the S-box:

Si(·) = S(k
(1,0)
i ⊕ (P

(1,0)
i)(·)) for 0 6 i 6 3

It is possible to inject into the tables of one column values like (α, 0, 0, 0)
and (0, β, 0, 0), then by inspecting the output of the first byte we can obtain
relations about the functions Si and as they are bijective we obtain exactly
256 pairs (α, β) including the trivial one (0, 0) satisfying the relation:

02 · S0(α)⊕ 03 · S1(0) = 02 · S0(0)⊕ 03 · S1(β)

Repeating these operations also for different positions of input bits, we can
form a system of 4*255 equations with maximum rank 509 (and very probably
with this rank according to the results obtained by Lepoint et al.) and 510
unknowns. It is possible to find the coefficients expressing each unknown in
relation to one of them. The system can then be solved for the non-trivial
solution exploiting some property of the function S0 that are not satisfied if
the value of the unknowns are replaced by a wrong guess. This fact makes the
solving equivalent to test the functions with a guessed value of the unknowns
to know if they are equals to the null function or not.

Once the function Si has been recovered it is possible to recover the output
encodings Qi of the first round, that leads to discover the input encodings of

3Substitution-Linear Transformation cipher is a class of cipher composed of multiple
rounds consisting in a bijection on GF (2n). This bijection being the composition of a XOR
operation with a round key followed by a substitution by a non-linear S-box and then a
multiplication of the result with an invertible matrix for diffusion. AES and Serpent are two
examples of SLT ciphers.

4A Maximum Distance Separation matrix represents a function with some diffusion
properties and is often used in cryptography

24

3.2. Algebraic Attacks against Table Lookup Implementations

the second round. Exploiting the same property of a given function involving
the key that is not verified with wrong value of the key, it is possible to recover
the round key by testing the nullity of different functions.

The most work-intensive part of the attack is the total recovery of the
function Si which requires about 220 operations. As it must be done for each
column of the AES state, this leads to a total work factor of 4 ∗ 220 = 222.

3.2.3 Cryptanalysis of Xiao-Lai White-Box Implementation

The design of Xiao and Lai (see Section 2.2.4) was made to resist the BGE
attack by preventing the possibility to reduce encodings to small parts. This is
the reason why their tables are working on 2 T-boxes in order to benefit from
the effect of ShiftRows() [21]. However, a cryptanalysis of their implementa-
tion was demonstrated in 2012 by De Mulder et al. [33]. The first step of the
attack is to recover the input linear encoding by solving a linear equivalence
problem as explained below. The TMC tables are transformed in order to be
key-independent tables noted TMC and related to the concatenation of two
modified S-boxes S̄ embedded in the table by two linear applications A and
B in the way that:

TMC = B ◦ S̄ ‖ S̄ ◦A
where A = Li, B = R|i/2| ◦MCimod2

and S̄ ‖ S̄ is the concatenation of the modified S-boxes

Solving the Linear Equivalence (LE) problem here means to recover A and
B. De Mulder et al. provide an algorithm in order to do that, based on the
one by Biryukov et al. [24]. And so can be recovered the input encodings of
the first round.

It is then possible to recover bytes of the shifted round key for the first
round by finding the value that give a null result xi0 from the TMC table which
respects the formula:

xi0 = (L1
i)
−1((k̂1

2i ⊕ 52) ‖ (k̂1
2i+1 ⊕ 52))

Reversing the ShiftRows operation on the modified round key gives the original
first round key which is the AES key.

It is even possible to recover the input and output encodings. Once we
know the linear input encodings of the first round we can reverse the construc-
tion of the first matrix M1 to find the input encoding via the formula:

k̂1
2i ‖ k̂1

2i+1 = L1
i (x

i
0)⊕ (52 ‖ 52)

And once the input encoding and the key have been found, we can recover
the output encoding by decrypting all the base vector of 128 bits output by

25

3. Attacks on White-Box Implementations

regular AES, then applying the input encoding to the result and providing
this to the white-box AES in order to construct the matrix from the final
results yi:

yi = OUT (AESk(IN
−1(IN(AES−1

k (ei))))) = OUT (ei)

The phase of the attack requiring the more operations is the algorithm solving
the linear equivalence problem to find the input encoding of each tables of the
first round. It is of the order of 229 for a single execution. As there are 8 tables
in one round, it means that the work factor of the attack is 8 ∗ 229 = 232.

3.3 Differential Fault Analysis

Apart from the algebraic attacks exploiting the structure of the lookup tables
and their relations in the implementation, it is also possible to use techniques
developed in the grey-box model. One possibility is to adapt Differential Power
Analysis (DPA). This will be discuss in more detail in the chapter 5. Another
possibility is to use Differential Fault Analysis (DFA) as presented in [34]. This
approach consists in injecting faults into the execution of the algorithm and
analyzing the differences of the results with the expected result under normal
conditions. A typical method to inject fault on hardware implementation
would be to modify the voltage of reference over a short amount of time.

In order to realize this attack on a white-box software implementation, it
is needed that the output of the cipher is not encoded because the “faulty”
ciphertext must be compared with the regular one under known conditions.
Then the attacker needs to determine the position of the code where to inject
the error, in order to do so, he can perform a static and a dynamic analysis of
the code or also inject error randomly and observe how it modifies the result.
Once this is done, the attacker will want to inject the fault. To do so he can
choose among several techniques depending on the software he wants to break,
like directly modifying the code if he can lift it in high level language, or use
instrumentation tools, a scriptable debugger or a whole system emulator as it
is explained in [34].

Different attacks exploiting differential fault analysis on AES have been
described in the literature [35, 36], the one presented in [34] that has been ap-
plied to white-box implementations and is described in [37] involves injecting
a fault in one byte of a column before the last MixColumns operation. After
being propagated to the whole column, the 10th round key is added, then the
rows are shifted and the last round key is added. This results in expression of
the form:

S(2X ⊕ 3B ⊕ C ⊕D ⊕K10,0)⊕K11,0 = O′0

where B,C,D represent bytes of the state, X is a faulty byte replacing A

and O′0 the modified output

26

3.3. Differential Fault Analysis

That can be compared to the original output by applying XOR between the
two equations, which will lead to a set of relations, for each fault injected of
the type:

S(2A⊕ 3B ⊕ C ⊕D ⊕K10,0)⊕ S(2X ⊕ 3B ⊕ C ⊕D ⊕K10,0) = O0 ⊕O′0

One fault allows writing 4 different relations each about a different byte of
the key. By repeating these operations multiple times the attacker can re-
cover the bytes of the 10th round key in one column. He can then repeat the
process for different columns of the state. The authors of [34] successfully at-
tack different AES (and DES) challenges proposed notably one implementing
Karroumi dual-cipher scheme, where the output was available in non-encoded
form. They required less than 100 fault injection for each experiment to re-
cover the key.

27

Chapter 4

AES Implementation of
Luo-Lai-You

This chapter will introduce the implementation of Luo, Lai and You that I
programmed in C as a part of this project. The programs are publicly available
for further improvements or to be used as a test for attacks and can be found
on my Github repository5. Then the program and its design is explained.
Finally the performance and results of the program is examined.

4.1 Presentation of Luo-Lai-You White-Box AES

The design was proposed in 2014 and is largely based on the implementation
of Xiao and Lai presented in section 2.2.4 [1]. As before, the reordered AES
algorithm presented in Algorithm 2 is used. The tables containing two T-
boxes (recall it is the composition of AddRoundKey and SubBytes) and the
operation of MixColumns for two columns of the matrix is modified by adding
non-linear encodings and is now called nTMC. There are 8 nTMC tables by
round, the last round being slightly different as there are two round key in the
T-boxes and there is no MixColumns operation. The structure of the tables
can be seen in Figure 4.1.

In order to cancel the non-linear encodings a new type of table is in-
troduced as it is no longer possible to simply merge the results. The table
essentially performs the same operation as the M r matrix in the previous im-
plementation with non-linear encodings on top of it. They are called TSR
(for table ShiftRows) and they consist of cancelling the mixing bijection, then
applying the ShiftRows operation as a matrix form and applying a mixing
bijection to cancel the one of the next nTMC table. If the table is at the
boundary (i.e. first or last round) it performs the external input decoding or
output encoding. As the output of each of these tables is 128-bit long, the

5https://github.com/JeanGa128/AES-whitebox

29

https://github.com/JeanGa128/AES-whitebox

4. AES Implementation of Luo-Lai-You

Lr
i

Tr
2i

Tr
2i+1

MCimod2

Rr
i

4

4

Figure 4.1: nTMC table for round 1 to 9. The last round will not have a part
of MixColumn matrix but of the Identity matrix.

output encodings are a block diagonal matrix. The blocks are 16×16 bits long
and they are the inverse function of the mixing bijection of the next nTMC
table. The input encodings are a strip of the output mixing bijection of the
previous nTMC table and are composed of two 32×4 matrices from which the
output are added with XOR. That can be represented by concatenating the
two 4 columns matrices into an 8 column matrix and the two input nibbles
into one byte. One important thing to notice is how a byte of the output of
a nTMC table is split between two TSR tables as it is necessary to add the
corresponding nibbles that are result of different part of the multiplication
with MixColumns. The structure of the TSR table is shown in Figure 4.2.

The outputs of the TSR tables are then reduced using XOR tables in
order to form the input of the next nTMC tables which is 16 bytes long and
corresponds to the encoded version of the AES state right after each ShiftRows
operation. In order to reduce the number of lookup tables during the phase of
reduction, a new type of table is introduced as TXOR3 which accepts 3 nibbles
as input and exits the nibble corresponding to a XOR operation between the
3 inputs. The flow of bytes in the structure is schematized in Figure 4.3.

This implementation requires 8 ∗ 10 ∗ 32 ∗ 216 + (16 + 10 ∗ 32) ∗ 128 ∗ 28 +
(160 + 10 ∗ 416) ∗ 4 ∗ 28 + (160 + 10 ∗ 288) ∗ 4 ∗ 212 = 28444 kB. Regarding
the security of this implementation, the table having the smaller white-box
diversity and ambiguity are the TXOR tables with respectively 2132.8 and
248.2. Furthermore, the author claims that it is resistant against the BGE
attack as well as the one proposed by De Mulder et al. on the previous Xiao-
Lai implementation.

30

4.2. Implementation

(Rr−1
2i)−1

j (Rr−1
2i+1)

−1
j

⊕

(LLr)−1

4

4(×32)

SRi

Figure 4.2: TSR table for round 2 to 9. The first round has external input
encodings and the last round does not have ShiftRows but also has external
encoding.

4.2 Implementation

I wrote the programs in C. Parts of the code implementing a standard AES
have been taken on [38] for basic operations in AES field, the S-box and the
standard key schedule. The global strategy was to construct one program gen-
erating all the tables into a file table.h that will be compiled with the program
in charge of the encryption, the goal being that there is no information about
the key leaking from this second program. The construction process of the
final encryption program is shown in Figure 4.4.

4.2.1 Matrices Operations

In order to construct the tables in the program generating them, some mat-
rix operations were needed. Apart from the matrix multiplication, selecting
stripes of a matrix and concatenating two matrices, it was necessary to pro-
gram the inversion of a matrix of GF (2). In order to inverse a matrix I used
Gaussian elimination which in GF (2) only requires 2 operations, swapping
rows of the matrix and adding a row to another, as there is no other coeffi-
cient than 0 and 1 the operation of multiplying by a constant is not needed
here and similarly there is no necessity to determine the inverse of an element

31

4. AES Implementation of Luo-Lai-You

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nTMCr
0 nTMCr

1 nTMCr
6 nTMCr

7

TSRr+1
0,0 TSRr+1

0,1 TSRr+1
3,7

TXOR(3)S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8

4

128

128

Figure 4.3: Example of bytes flow for one round of Luo et al. implementation.
There are 8 nTMC tables feeding to 4×8 TSR tables. TXOR(3)S represents
a cascade of TXORs and TXOR3s tables to reduce the output of TSR tables.

in order to find the correct coefficient. The Gaussian elimination is performed
on the matrix that need to be inversed while the same operations are per-
formed on a matrix of the same size that started as the identity and will finish
as the inverse of the original matrix. The need for the inversion motivated my
decision to work considering bits as a prototype implementation as it is easier
to write and understand the code (especially testing if a given coefficient is
null or equal to one and going over a loop) that if it were more optimized
working directly on bytes. However this would be a nice optimization to the
code to perform matrix multiplication in the same way they are performed in
the encryption program and could speed up the operation that is very used
during the generation of the TSR and nTMC tables.

32

4.2. Implementation

Figure 4.4: The construction of the encryption program

4.2.2 Generation of the Tables

This program realizes the precomputation of the tables that will be used
during runtime by the encryption program. The strategy I used concerning
the construction of the tables in the generation program was to define all of
them as global variables, to construct them, then encode them and record
them into the file table.h that will be used for compilation of the encryption
program. As the number of TSR tables in the first round is different than in
the rest of the algorithm they were given a special variable and so were the
TXOR and TXOR3 tables for the same reason. It means there is one variable
containing TSR tables of round 1, one containing the remainding TSR tables,
one containing the nTMC tables, one containing the TXOR tables for round
1, one containing the other TXOR tables, one containing the TXOR3 tables
for the round 1, and one containing the rest of TXOR3 tables. The different
mixing bijections and encodings (internal and external) are also defined as
global variables that are constructed before they are needed in the construction
or modification of the tables. The random permutations were generated using
Fisher-Yates shuffle algorithm presented in [39] and in its modern version in
[40, 41]. The algorithm is slightly modified to work on an increasing loop
and is shown in Algorithm 3. It is applied on an array containing an ordered
sequence from 0 to 15. The inverse permutations were computed by directly
looking at the value given by an index i and storing i it at the position of this
value in the inverse table.

An crucial part of the work was to connect the number of the table (ordered
by their indexes) with the correct input encodings once the output encodings
of the previous tables have been determined. It was indeed an important
part of the task as there are 18 784 different encodings if the external encod-
ings are included. This fact led to several equation present in the function

33

4. AES Implementation of Luo-Lai-You

Algorithm 3 Adaptation of the Fisher-Yates shuffle algorithm used to gen-
erate the encodings with an array initialized to 0...n-1

Shuffle(array[n])
int j
byte temp
for i = 0 step 1 to n-2 do

j = rand() %(n-i) # r andom number between 0 an n-i
temp = array[i]
array[i] = array[i+j]
array[i+j] = temp

end for

encodeEverything(). The way encodings are affected to one specific nTMC
tables is demonstrated as an example in algorithm 4. The table number is
determined by the round and the index of the table inside the round i. The
number of the encodings are determined with an equation with 3 terms added:
the “offset” of the first tables and inside the round (offset is meant here as the
number of encodings previously used), the number of tables per round times
the number of the current round (starting numbering the rounds at 0) and the
part that is dependent of the index. As said before there is choice in the last
part when deciding output encodings, but the next input encodings has to be
chosen carefully to cancel the correct encoding. It is possible to separately
enable or disable the application of mixing bijections, encodings and external
encodings by modifying the values of the #define on top of the file.

Algorithm 4 Affectation of encodings to nTMC tables

affectEncodingsnTMC()
int nTMCNumber
for round = 0 step 1 to 9 do

for i = 0 step 1 to 7 do
nTMCNumber = 8*round+i # The number of the table concerned
for k = 0 step 1 to 3 do

nTMCInIndexes[k]=832+1792*round+4*i+k
The indexes of input encodings, 832 is the “offset”,

1792 the number of encodings per round and 4*i+k the specific part
to the table

end for
for k = 0 step 1 to 7 do

nTMCOutIndexes[k]=832+1792*round+8*i+k
end for
encodenTMC(nTMCNumber,nTMCInIndexes,nTMCOutIndexes)

end for
end for

34

4.3. Results and Performance

Operating system: Debian GNU/Linux 8.3
Processor: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
Memory: 3590MB

Table 4.1: Configuration of the virtual machine

4.2.3 Encryption

The program that performs the encryption starts by processing the 16 bytes
input, encode it, performs the encryption then decode the output so it would
be the one given by the standard AES. Here the matrix multiplication needed
for the input encoding and output decoding are performed on the bytes using
bitwise AND for multiplication and bitwise XOR for addition (the operation
are on elements of GF (2)), then the parity of the byte is computed which
is in fact the result of XOR between all bits. Different variables were used
to represent the input and output of the different phases of lookup tables
depending on the required length to store the data. Here again it is important
to follow the bytes flow to plug the correct input to a table as shown for
example with the preparation of the input of the TSR table in the variable
inputStage1 2 that takes one nibble from the output of one nTMC table and
another one from a different table. An additional example is the reduction
with TXOR tables where it is important that these are used with the same
numbering used to encode them during the generation of the tables by the
first program.

4.3 Results and Performance

The tests were conducted in a virtual machine with the configuration describe
in Table 4.1. The first thing to see is that the program encrypts correctly the
data the same way AES would do which is indeed the case.

The article in which the implementation was introduced specifies that the
memory space required to store all the tables is 28444kB. The file table.h which
contains the tables as well as the external encodings is much bigger than that
with about 124 MB due to inefficiency when storing the data as text format,
however once compiled the size of the program is nearly 36 MB. The difference
with the 28 MB can be explained by the fact that in my program the values of
TXOR and TXOR3 tables are stored as full bytes when they are only 4-bits
long. If we compute again the storage requirements with this fact in mind,
the result obtained is: 8 ∗ 10 ∗ 32 ∗ 216 + (16 + 10 ∗ 32) ∗ 128 ∗ 28 + (160 + 10 ∗
416) ∗ 8 ∗ 28 + (160 + 10 ∗ 288) ∗ 8 ∗ 212 = 35064 kB which is consistent with
the size of the program.

The second compilation requires some time and resources, but it can be
considered a precomputation step and its performance is not as crucial as the

35

4. AES Implementation of Luo-Lai-You

Regular (Software) AES 0.68 ms

White-box AES of Luo et al. 1.5 ms

Table 4.2: Comparison of running time with software AES

encryption program one. To measure the performance of this one, I compared
its execution time with the one of the regular AES found on [38] which is
a simple classical software implementation of AES. Both program were run
with random input 1000 times and the execution time was measured using
the time built-in shell command and adding the user and system time. The
results were in this way averaged over 1000 measurements. They can be seen
in Table 4.2. The white-box program will obviously perform worse against
more optimized version of AES or hardware implementation.

36

Chapter 5

Differential Computation
Analysis

As said previously, one possibility to attack white-box implementation is to
adapt the techniques that have been developed in the grey-box attack context.
Another possibility than differential fault analysis presented in section 3.3 is
to adapt Differential Power Analysis (DPA) to the white-box context with
the so-called Differential Computation Analysis (DCA). This chapter will
focus on explaining the principle of differential power analysis and how it can
be applied to white-box implementations before looking at the first results
obtained against the implementation presented in the previous chapter.

5.1 Differential Power Analysis

The differential power analysis is described in [42, 43]. It is based on the
fact that most of the implementations of cryptographic systems are made on
electronic devices and these devices may consume a different amount of power
depending on the operation they are performing. This observation leads to
the idea that if we record the power consumption during the execution of an
algorithm in a so-called power trace, we can deduce information about the
operations that were performed. This would be called Simple Power Analysis
(SPA) and it is efficient if the flow of instruction is dependent of the key. But in
the case there is no key-dependent branching in the algorithm, it is necessary
to exploit how the power is depending on the data that are manipulated.
However the change of data in the power consumption is often smaller and
the analysis can be perturbed by the noise. That is the reason why it is
necessary to apply statistical techniques in order to reduce the influence of
the noise on the result.

In its form presented in [42] DPA needs a selection function D(C, b,Ks)
that models the system and says if the bits b should take the value 1 or 0

37

5. Differential Computation Analysis

depending on the ciphertext C and the guessed key Ks. The difference of
average power between when b should take the value 1 and when it should
take the value 0 is computed. This value should tend to 0 when the guessed
key is wrong and the sample of traces is big enough because the selection
function will be uncorrelated to the power measurement.

A variant of DPA attack, originally called Correlation Power Analysis
(CPA), requires forming a power consumption model depending on the data
processed in order to compare it with the real measurement. The most com-
mon models are the Hamming weight that computes the number of “1” in a
byte (it seems logical that 1 being represented by a higher voltage the more
bits set to one, the more power the device operating on the byte will consume)
and the Hamming distance that correspond to the bits that changed between
two values (or the Hamming weight of the result of XOR on the two values).

Once this is done, it is necessary to find a point in the algorithm where
data depending on a small part of the key and on a known quantity (plaintext
or ciphertext that needs to be recorded at the same time during the attack) in
an easily predictable way so we can make a guess what this value should be for
every trace if we suppose a value for the part of the key. Then a correlation is
performed between the power measurements recorded and the guessed value
for the point previously mentioned for every possible value of the part of the
key we want to determine. That should indicates which is the real value of the
part of the key and also the moment in time when the value is computed or
used. This approach is applied to attack DES and AES for example in [44]. In
order for the attack to succeed it is important that the traces are sufficiently
aligned (that the same operations are performed at the same time) but some
techniques can be used to circumvent this problem, sometimes at the price of
needing more traces.

5.2 Adaptation to Memory Trace

A methodology has been described by Bos et al.[3] in order to apply similar
techniques in the white-box context, and Sanfelix et al. [34] also described
how to perform such attacks. In this context, we can directly access the data
that have been computed by recording the memory operations that are made
during the execution. It is possible to extract information by looking at the
values that are written or read to the stack, or looking at the lower bits of
addresses that vary with indices when a lookup table operation is done. Such
information can be obtained using many different tools like debugger scripting,
binary instrumentation tools (PIN, Valgrind) or system emulation recording
(QEMU, unicorn)

The method starts with disabling Address Space Layout Randomization
(ASLR) which randomizes the address space of the executable, its data, heap,
stack and libraries. This is done in order to have the traces aligned in memory.

38

5.2. Adaptation to Memory Trace

5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109 3.0 × 109
Memory Address

50000

100000

150000

Operation Number

Figure 5.1: Visualization of a simple memory trace of an assembly program

Then a single trace is recorded in order to analyze when the block cipher is
used and it can help determine which one is used (for example the number
of round). Visualization can be useful for that if it is possible to examine
correctly the memory space. Then it is needed to record multiple traces with
random plaintexts, keeping track of the plaintext or ciphertext for each trace
depending if the first or the last round is attacked (it allows to recover the key
by small part to attack the border rounds). The end of the description of their
method explained how to use classical DPA tools on the traces obtained by
serializing the values recorded which means converting the bytes values into
series of bits in order to exploit the results on classical DPA software.

I decided to use bochs[45] to record the traces, as it is possible to record the
memory operations and to my knowledge it was not used to attempt this type
of attacks before. Bochs is a system emulator written in C++. After multiple
attempts on already existing images and creating images with different Linux
distributions, I created an image of Debian Wheezy that could run well both
in VirtualBox and bochs in order to set up correctly and run the different
program I wanted to attack. The image needed to be light in order to boot in
a reasonable time and run fast enough after, as the slowdown is the biggest
problem I encountered with bochs. To ensure that it was possible to use
bochs for the purpose I wanted, I traced a very simple assembly program that
pushes a value from the program data to the stack then pops it. The results
can be seen on figure 5.1 where the horizontal axis represents the memory
addresses, the vertical axis represents time increasing upward and the black
dots represent the operation when the interesting data were processed. In
blue are the read operations and in orange the write (they have been printed
above the read).

In order to train, I recorded the execution of the white-box DES program

39

5. Differential Computation Analysis

5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109 3.0 × 109
Memory Address

200000

400000

600000

800000

1 × 106

Operation Number

Figure 5.2: Visualization of a memory trace of execution of a white-box DES
program

by Wyseur on [46] that was attack in both article mentioned earlier. A visu-
alization of the traces can be seen in Figure 5.2. On the global picture it is
possible to see the data and program instructions on the left part, then the
heap and the stack on the right. On a zoom on the stack in Figure 5.3 it is
possible to observe the 16 rounds of DES as in the article presenting the at-
tack; it is also possible to find the input bytes represented as black dots. The
traces were recorded using bochs debugger option “trace-mem on”, filtered
using the grep command in order to record only the operations performed in
the user ring and not in kernel ring (the filter was pl=3) and redirected to a
file for saving.

5.3 Demonstration of the Attack on a
Non-Protected Implementation

In order to explain the attack on a simple example, a version of AES un-
protected against white-box attack obtained on [38] and modified in order to
accept command-line input was used. 30 traces were recorded using a script
inside the bochs machine that generates and saves a plaintext, performs the
encryption and saves the ciphertext, then prints “hell” (32-bit word begin-
ning hello world, used in order to separate the different traces in a following
phase) and starts again with a different plaintext. The same method as in
the previous section was used to record the trace. The traces were separated
in multiple files each time a sequence 0x6C6C6568 (representing “hell”) was
encountered; the small files were deleted as the sequence appears 5 times in
memory for printing it one time. Then the program was inspected to determ-
ine the address in the stack in which the first byte of the input was written.

40

5.3. Demonstration of the Attack on a Non-Protected Implementation

Figure 5.3: Zoom on the stack where the 16 rounds of DES are identifiable
and the input can be found just before

This information was used to remove the beginning of the files to keep the
interesting part only. Similarly finding the output values made it possible to
find an approximate number of memory operations per round; it was then
possible to keep only the first round, keeping a margin of security.

The point of the algorithm chosen for attack is classical for AES: the
output of the S-Box of the first round, after adding the first round key (which
is equal to the key) as showed in Figure 5.4. Mathematica was used to extract
the valuable information from the traces and perform the correlation between
the key guesses and the values written or read from the memory. As the
measurements are exact and without noises, only 4 traces were necessary to
find all the bytes of the key correctly. In Figure 5.5 is shown an example
of the correlation coefficient for different key guesses on one byte computed
with 4 traces and 30 traces. The value returned by the program is the one
maximizing the absolute value of the correlation coefficient for one moment
in the traces.

It is also possible to try to recover the key by exploiting the value right
after adding the round key because it is used as an index to lookup the value
from the S-box as shown in the Figure 5.4. The last bits of the memory can
be observed as they will be related to this index. This method proved less
successful although giving honorable results. With 30 traces, Mathematica
returned 4 bytes of the key correctly without ambiguity, for 8 other bytes the
right value was amongst the 2 possible values returned, for 2 other bytes it
was amongst 4 and for the 2 last bytes the correlation coefficient was printed
as 1 but for precision reason it was not returned by Mathematica in the set of
possible values, but the exact negation which had a correlation coefficient of

41

5. Differential Computation Analysis

Figure 5.4: Points where the attacks are performed

-1 was returned. Interestingly for the values guessed correctly with only one
value returned their negation also had a correlation coefficient of -1 but was
not returned by Mathematica for the same precision reason.

5.4 Attempt on Luo-Lai-You Implementation

Unfortunately bochs was not suited to perform the attack on the two imple-
mentation of AES presented in the two articles. As said before, the major
problem encountered with bochs was its lack of speed. One of the programs
required a graphical environment to run and it was extremely long only to start
the xserver inside bochs without enabling the tracing of memory which slow
down bochs even more. The other program was the one written by Klinec in
[4] and could be run perfectly in bochs. However when the recording of traces
was turned on it proved to be extremely long to record only one execution;
and even if another problem encountered with storage of the traces in the
memory could have been avoided with a finer filtering, the duration was a
serious problem to record 160 traces needed in [3] let alone the 2000 traces
used in [34].

Fortunately, the C implementation described in chapter 4.2 was light
enough to record a meaningful number of traces in order to attempt the attack
on the implementation of Luo, Lai and You. As the implementation differs
significantly from the other one from the perspective of DPA attack, a first
phases was performed against an unprotected version of the program: the
mixing bijections and encodings were set to identity using the #define at the
beginning of the program generating the tables. In this implementation, the
first appearance of a key-dependent value is after the first nTMC table where

42

5.4. Attempt on Luo-Lai-You Implementation

Figure 5.5: Examples of correlations for one byte of the key for different
guesses. The top one has been computed with 4 traces, the bottom one with
30

the key is embedded inside the T-Boxes used during the construction of the
table. However, here two bytes of the key are used in the same table and
are already mixed together within two columns of the MixColumns operation.
This makes the job of the attacker more difficult as this situation is not typ-
ical for studying AES and now the hypotheses on the value of the key have
to be made on 2 bytes which means 216 possible values instead of 28. The
model that will be used for correlation also needs to be changed as here the
targeted point is the output of the first nTMC table which would correspond
to an intermediate computation in MixColumns process. I chose to attack the
simplest line consisting of two 1 and present in both halves of the matrix. The
value computed from the plaintext for each possible value for 2 bytes of the

43

5. Differential Computation Analysis

key will then be the XOR of the result of two AddRoundKey and SubBytes
operation, the first ShiftRows being taken in account by carefully choosing
the plaintext bytes involved.

Again 30 traces have been recorded and the same operations as in the pre-
vious section have been made to separate the traces in different files, and align
them on the first operation copying a byte of the plaintext on the stack. But by
the time the interesting operations are performed the traces were misaligned.
In order to realign them and also to reduce the number of points examined
during the correlation computation, a filter was applied on the addresses to
keep only the lower ones corresponding to the data of the program where the
lookup tables are saved. The attack was performed using the values read from
the memory. Identically as in the previous section the measurements are exact
and the guessed value really appears in the traces; so 6 traces were enough to
determine all the values. Performing the attack on a more protected version
proved to be harder as I was not able to recover the key with 30 traces and
probably more traces would be needed to achieve a result, but it would require
more time to capture a significant amount of data with bochs. It would be
interesting to study if the fully protected version also leaks the same kind of
information that would allow a recovery of the key or if the encodings and
mixing bijections are sufficiently obfuscating the intermediate results to pre-
vent the realization of this kind of attack. However I would not advice to use
bochs for this purpose because although it is a really powerful tool from which
I exploited only a very small part, the lack of speed can be a real issue if the
program is too big or if the number of trace needed is high, which is the case
with more protected program.

44

Conclusion

In this thesis several existing attempts of white-box attack resistant imple-
mentations have been presented along with different types of attacks against
these implementations. Apart from the latest implementations that have
therefore not been studied for long (Luo-Lai-You design and conditional re-
encoding), all have been proven to be broken in the literature and the principle
of the attacks have been explained here.

I wrote one program in C in order to generate the tables for the design of
Luo et al. and one other also in C to use these tables to perform the encryp-
tion. These programs can be used for future analysis of the security of this
implementation particularly concerning differential computation analyses and
differential fault injection. Indeed if the algebraic analyses can be performed
from the description of the implementation, it is necessary to have a software
implementation of the design to test its resistance against these techniques
adapted from side-channel attacks.

I made a first analysis of the program using bochs to record memory traces.
It has been noticed that two bytes of the key are involved for the first time in
the computation at the same moment, making the job of the attacker more dif-
ficult than in traditional cases for DPA on AES. Even if only the unprotected
version without mixing bijections and encodings has been broken, this is not
enough to say that the global scheme is secure against this type of attacks as I
had issues recording a bigger number of traces that would be needed to attack
it. I would recommend for this purpose using more suited tools than bochs,
one that could record the traces faster as it was the issue for me. However a
big number of traces would results in longer time to perform the correlation
with the issue that 65536 (216) hypotheses for the key should be tested against
the usual 256 (28).

Further work could consist on attempting to break the fully protected
program with either DFA or DCA or study the global security of the imple-
mentation. The other recent scheme with conditional re-encoding could also
be studied to test and compare its resistance against this type of attacks. Un-

45

Conclusion

like the design of Luo et al. this proposal involves only one byte of the key at
a time like the original design by Chow.

46

Bibliography

[1] Luo, R.; Lai, X.; You, R. A new attempt of white-box AES implementa-
tion. In Security, pattern analysis, and cybernetics (SPAC), 2014 inter-
national conference on, IEEE, 2014, pp. 423–429.

[2] NIST, A. Advanced encryption standard. FIPS Publication, volume 197,
2001.

[3] Bos, J. W.; Hubain, C.; Michiels, W.; et al. Differential computation
analysis: Hiding your white-box designs is not enough. Technical re-
port, Cryptology ePrint Archive, Report 2015/753, https://eprint. iacr.
org/2015/753, 2015.

[4] Klinec, D.; et al. White-box attack resistant cryptography. Dissertation
thesis, Master’s thesis, Masaryk University, Brno, Czech Republic, 2013.
https://is. muni. cz/th/325219/fi m, 2013.

[5] Stinson, D. R. Cryptography: theory and practice. CRC press, 2005.

[6] Menezes, A. J.; Van Oorschot, P. C.; Vanstone, S. A. Handbook of applied
cryptography. CRC press, 1996.

[7] Robshaw, M. J. Stream ciphers. 1995.

[8] Bellare, M.; Rogaway, P. Introduction to modern cryptography. UCSD
CSE, volume 207, 2005: p. 207.

[9] Block cipher mode of operation. https://en.wikipedia.org/wiki/
Block_cipher_mode_of_operation, accessed: 2016-09-05.

[10] Jean, J. Cryptanalyse de primitives symétriques basées sur le chiffrement
AES. Dissertation thesis, Citeseer, 2013.

47

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Bibliography

[11] Barenghi, A.; Breveglieri, L.; Koren, I.; et al. Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Proceed-
ings of the IEEE, volume 100, no. 11, 2012: pp. 3056–3076.

[12] Chow, S.; Eisen, P.; Johnson, H.; et al. White-box cryptography and an
AES implementation. In Selected Areas in Cryptography, Springer, 2002,
pp. 250–270.

[13] Joye, M. On white-box cryptography. Security of Information and Net-
works, 2008: pp. 7–12.

[14] Michiels, W.; Gorissen, P. Mechanism for software tamper resistance: an
application of white-box cryptography. In Proceedings of the 2007 ACM
workshop on Digital Rights Management, ACM, 2007, pp. 82–89.

[15] Barak, B.; Goldreich, O.; Impagliazzo, R.; et al. On the (im) possibil-
ity of obfuscating programs. In Advances in cryptology—CRYPTO 2001,
Springer, 2001, pp. 1–18.

[16] Wiener, M. J. Applying Software Protection to White-Box Cryptography.
In Proceedings of the 5th Program Protection and Reverse Engineering
Workshop, ACM, 2015, p. 1.

[17] Muir, J. A. A Tutorial on White-box AES. In Advances in Network Ana-
lysis and its Applications, Springer, 2012, pp. 209–229.

[18] Shannon, C. E. Communication theory of secrecy systems*. Bell system
technical journal, volume 28, no. 4, 1949: pp. 656–715.

[19] Billet, O.; Gilbert, H. A traceable block cipher. In Advances in
Cryptology-ASIACRYPT 2003, Springer, 2003, pp. 331–346.

[20] Bringer, J.; Chabanne, H.; Dottax, E. White Box Cryptography: Another
Attempt.

[21] Xiao, Y.; Lai, X. A secure implementation of white-box AES. In Com-
puter Science and its Applications, 2009. CSA’09. 2nd International Con-
ference on, IEEE, 2009, pp. 1–6.

[22] Karroumi, M. Protecting white-box AES with dual ciphers. In Informa-
tion Security and Cryptology-ICISC 2010, Springer, 2010, pp. 278–291.

[23] Barkan, E.; Biham, E. In how many ways can you write Rijndael? In
Advances in Cryptology—ASIACRYPT 2002, Springer, 2002, pp. 160–
175.

[24] Biryukov, A.; De Canniere, C.; Braeken, A.; et al. A toolbox for cryptana-
lysis: Linear and affine equivalence algorithms. In Advances in Crypto-
logy—EUROCRYPT 2003, Springer, 2003, pp. 33–50.

48

Bibliography

[25] Lee, S.; Choi, D.; Choi, Y.-J. Conditional Re-encoding Method for
Cryptanalysis-Resistant White-Box AES. ETRI Journal, volume 37,
no. 5, 2015: pp. 1012–1022.

[26] Brecht, W. White-box cryptography: hiding keys in software. NAGRA
Kudelski Group, 2012.

[27] De Mulder, Y.; Wyseur, B.; Preneel, B. Cryptanalysis of a perturbated
white-box AES implementation. In Progress in Cryptology-INDOCRYPT
2010, Springer, 2010, pp. 292–310.

[28] Billet, O.; Gilbert, H.; Ech-Chatbi, C. Cryptanalysis of a white box AES
implementation. In Selected Areas in Cryptography, Springer, 2004, pp.
227–240.

[29] Tolhuizen, L. Improved cryptanalysis of an AES implementation.
In Proceedings of the 33rd WIC Symposium on Information Theory
in the Benelux, Boekelo, The Netherlands, May 24–25, 2012, WIC
(Werkgemeenschap voor Inform.-en Communicatietheorie), 2012.

[30] Lepoint, T.; Rivain, M.; De Mulder, Y.; et al. Two attacks on a white-
box AES implementation. In Selected Areas in Cryptography–SAC 2013,
Springer, 2013, pp. 265–285.

[31] Michiels, W.; Gorissen, P.; Hollmann, H. D. Cryptanalysis of a generic
class of white-box implementations. In Selected Areas in Cryptography,
Springer, 2008, pp. 414–428.

[32] Lepoint, T.; Rivain, M. Another Nail in the Coffin of White-Box AES
Implementations. IACR Cryptology ePrint Archive, volume 2013, 2013:
p. 455.

[33] De Mulder, Y.; Roelse, P.; Preneel, B. Cryptanalysis of the Xiao–
Lai white-box AES implementation. In Selected Areas in Cryptography,
Springer, 2012, pp. 34–49.

[34] Sanfelix, E.; Mune, C.; de Haas, J. Unboxing the White-Box.

[35] Tunstall, M.; Mukhopadhyay, D.; Ali, S. Differential fault analysis of
the advanced encryption standard using a single fault. In Information
Security Theory and Practice. Security and Privacy of Mobile Devices in
Wireless Communication, Springer, 2011, pp. 224–233.

[36] Kim, C. H.; Quisquater, J.-J. New differential fault analysis on AES key
schedule: two faults are enough. In Smart Card Research and Advanced
Applications, Springer, 2008, pp. 48–60.

49

Bibliography

[37] Dusart, P.; Letourneux, G.; Vivolo, O. Differential fault analysis on AES.
In Applied Cryptography and Network Security, Springer, 2003, pp. 293–
306.

[38] kokke. Small portable AES128 in C. https://github.com/kokke/tiny-
AES128-C, accessed: 2016-09-05.

[39] Fisher, R. A.; Yates, F.; et al. Statistical tables for biological, agricul-
tural and medical research. Statistical tables for biological, agricultural
and medical research., , no. Ed. 3., 1949.

[40] Durstenfeld, R. Algorithm 235: random permutation. Communications
of the ACM, volume 7, no. 7, 1964: p. 420.

[41] Knuth, D. E. The art of computer programming II. 1997.

[42] Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Advances in
Cryptology—CRYPTO’99, Springer, 1999, pp. 388–397.

[43] Kocher, P.; Jaffe, J.; Jun, B.; et al. Introduction to differential power
analysis. Journal of Cryptographic Engineering, volume 1, no. 1, 2011:
pp. 5–27.

[44] Hnath, W. Differential power analysis side-channel attacks in crypto-
graphy. Dissertation thesis, Worcester Polytechnic Institute, 2010.

[45] Bochs. http://bochs.sourceforge.net/, accessed: 2016-11-05.

[46] WhiteBoxCrypto. http://www.whiteboxcrypto.com/challenges.php,
accessed: 2016-11-05.

50

https://github.com/kokke/tiny-AES128-C
https://github.com/kokke/tiny-AES128-C
http://bochs.sourceforge.net/
http://www.whiteboxcrypto.com/challenges.php

Appendix A

Acronyms

AES Advance Encryption Standard

AEw/oS Advance Encryption without standard S-boxes

ASLR Address Space Layout Randomization

CBC Cipher Block Chaining

CFB Cipher Feedback

CPA Correlation Power Analysis

CTR Counter

DCA Differential Computation Analysis

DES Data Encryption Standard

DFA Differential Fault Analysis

DPA Differential Power Analysis

DRM Digital Rights Management

ECB Electronic Codebook

FIPS Federal Information Processing Standard

GF Galois Field

GIMP GNU Image Manipulation Program

LE Linear Equivalence

MAC Message Authentication Code

NIST National Institute of Standards and Technology

51

A. Acronyms

nTMC Table MixColumns with non-linear encodings

SLT Substitution-Linear Transformation

SPA Simple Power Analysis

TSR Table ShiftRows

TMC Table MixColumns

XOR exclusive OR

52

Appendix B

Contents of CD

readme.txt the file with CD contents description
img...........the directory with the image of the bochs virtual machine

bochsrc.txt............................ the bochs configuration file
debian wheezy.img................................the bochs image
users.txt.....................................users and passwords

src.......................................the directory of source codes
whiteboxAES..........the directory of source code of the C programs
DCA............... the directory of data and notebooks of the attacks

preprocessing.sh...example script for preprocessing traces’ data
StackAnalysis the directory for the assembly program
wbDESAnalysis................the directory for the DES program
AESAnalysis................... the directory for the regular AES
unsafeAESAnalysis . the directory for unprotected white-box AES
mixingAESAnalysis . the directory for white-box AES with mixing
bijections

thesis..............the directory of LATEX source codes of the thesis
figures.............................. the thesis figures directory
*.tex.................... the LATEX source code files of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

53

	Introduction
	Cryptography and AES Cipher
	Cryptography
	Block Cipher
	Advanced Encryption Standard (AES)

	White-Box Cryptography and AES Implementations
	Black-box and White-Box Attack Context
	White-Box Secure AES Implementations Attempts

	Attacks on White-Box Implementations
	Results against Perturbated White-Box AES
	Algebraic Attacks against Table Lookup Implementations
	Differential Fault Analysis

	AES Implementation of Luo-Lai-You
	Presentation of Luo-Lai-You White-Box AES
	Implementation
	Results and Performance

	Differential Computation Analysis
	Differential Power Analysis
	Adaptation to Memory Trace
	Demonstration of the Attack on a Non-Protected Implementation
	Attempt on Luo-Lai-You Implementation

	Conclusion
	Bibliography
	Acronyms
	Contents of CD

