
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 4, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Qt Desktop Google Contacts

 Student: Taras Petrychkovych

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

Perform analysis, design, and implementation of a desktop GUI application using the Qt library. It should be
able to manage Google Contacts using its API. The required features are:

- synchronisation of all contact information,
- fields editing,
- command line operation variant for finding, adding and editing,
- seamless offline mode with synchronisation when online,
- incremental search, including substrings,
- export and import functionality in a suitable format,
- lightweight, low-resources, fast app,
- effective UI, configurable keyboard shortcuts for all actions,
- reliability.

Document your solution and tests.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Qt Desktop Google Contacts

Taras Petrychkovych

Supervisor: Ing. Robert Pergl, Ph.D.

17th May 2016

Acknowledgements

I would like to thank my supervisor for valuable advices and support during
the development process and writing the thesis text. I also would like to thank
my friends Firuz Ibragimov and Alzhan Turlybekov for their support and help
in testing the program.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 17th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Taras Petrychkovych. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Petrychkovych, Taras. Qt Desktop Google Contacts. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2016.

Abstrakt

Ćılem této bakalářské práce je navrhnout, implementovat a otestovat multi-
platformńı program pro operačńı systémy Windows a Linux. Daný program,
prostřednictv́ım Google Apps servisu, umožňuje uživateli pracovat s Google
Contacts v on-line/off-line režimu a také podporuje synchronizaci s Google
databáźı kontakt̊u uživatele. Aplikace je vytvořena pomoćı multiplatformńı
knihovny Qt a je napsána v jazyce C++.

Kĺıčová slova Google Contacts, Google Apps, Qt, C++, QxOrm, OAuth
2.0.

Abstract

The aim of this bachelor’s thesis is to design, implement and test cross-
platform application for Windows and Linux operating systems. The program,
by using the Google Apps service, allows users to work with the ”Google Con-
tacts” in online/offline mode and also supports synchronization with user’s
Google Contacts database. The application was developed by using a cross-
platform Qt library and was written in C++.

Keywords Google Contacts, Google Apps, Qt, C++, QxOrm, OAuth 2.0.

ix

Contents

Introduction 1

1 Goal and methodology 3

2 Review 7

2.1 Google Apps . 7

2.2 OAuth 2.0 . 9

2.2.1 How does the OAuth 2.0 work? 9

2.2.2 Pros . 10

2.2.3 Cons . 10

2.2.4 Summary . 10

2.3 Qt . 10

2.4 QxOrm . 12

2.5 Boost . 13

2.6 Qt Creator . 13

3 Analysis 15

3.1 Requirements specification . 15

3.1.1 Functional requirements 15

3.1.2 Non-functional requirements 16

3.2 Domain Model . 16

3.3 Application processes . 16

3.4 Use cases . 18

4 Design 23

4.1 Wireframes . 23

4.2 Database . 23

5 Implementation 27

5.1 Application architecture . 27

xi

5.1.1 Application layer . 27
5.1.2 Data layer . 28
5.1.3 Presentation layer . 29
5.1.4 Realization of application logic 30

5.1.4.1 Synchronization of contacts 31
5.1.5 Command line version of the application 33

6 Testing 35
6.1 Unit tests . 35
6.2 Manual testing on different operation systems 37

7 Adaptation for other platforms 39

8 Features 41

Conclusion 43

Bibliography 45

A Acronyms 47

B Contents of enclosed CD 49

xii

List of Figures

1.1 Google Contacts old view . 3
1.2 Google Contacts preview . 4
1.3 GooBook . 5

2.1 Using OAuth 2.0 for Installed Applications 11

3.1 Domain Model . 17
3.2 Search contacts application process 18
3.3 Login process in application . 19
3.4 Create contact application process 20
3.5 Synchronize use case . 20
3.6 Contact use case . 21

4.1 Main window wireframe . 24
4.2 Add new contact wireframe . 25
4.3 Database model . 26

5.1 Application overview diagram . 28
5.2 Main window of Application . 30
5.3 Edit contact dialog . 31
5.4 Google Contacts options dialog . 32

6.1 Assertion failed . 35
6.2 Unit tests . 36

xiii

Introduction

What is Google Contacts you may ask? Google Contacts is Google’s contact
management tool that is available in its free email service Gmail, as a stan-
dalone service, and as a part of Google’s business-oriented suite of web apps
Google Apps [1]. So in other words your contacts from Gmail, Google+ circles,
your mobile phone and other Google’s services are stored and synchronized in
one database and they all are called Google Contacts.

The main purpose is to create reliable desktop application with effective
and similar to Contacts preview user interface and possibilities of adding,
editing and searching contacts. Application also should allow user work with
contacts in offline mode with synchronization when online, import and export
contacts to XML or CSV formats and support command line operation variant
for adding, editing or searching contacts. For more convenience it should also
support keyboard shortcuts for all these actions.

1

Chapter 1

Goal and methodology

Nowadays for working with Google Contacts you might use standard Google
Contacts view web page https://www.google.com/contacts/#contacts (see
Figure 1.1) or the new one https://contacts.google.com/u/0/preview/all
(see Figure 1.2) named Contacts preview.

Next thing that can help you to manage your Google Contacts is Thun-
derbird add-on named ”Google Contacts”. This extension accesses to Google
contacts and synchronize them with Thunderbird address books. After you
installed the extension, it detects all the Gmail accounts which have already
set up on Thunderbird and accesses to the contacts for them. When you
update cards in the address books, the changes are immediately applied to
the contacts in Google; if you delete a card, the contact will be remove from

Figure 1.1: Google Contacts standard view

3

https://www.google.com/contacts/#contacts
https://contacts.google.com/u/0/preview/all

1. Goal and methodology

Figure 1.2: Google Contacts preview

Google; if you add a new card to the address book, a contact is added to
Google. If you delete the address book, the contacts for the account are no
more synchronized [2]. But unfortunately it is not managed by Google alone
it was developed by author ”H.Ogi” which warnings you that it may involve
serious bugs and since last updated was in June 20, 2013 it is not suppor-
ted well anymore and what is worse it is not compatible with Thunderbird
v38.1.0 or more and Google new security policies (i.e., OAuth 1.0 stopped
being supported).

One more useful way to work with your Google Contacts, especially if
you are a big fan of the command-line, is ”GooBook” which purpose is to
make it possible to use your Google Contacts from the command-line and
from MUAs1 such as Mutt2 (see Figure 1.3). It is very primitive, but you can
manage Google Contacts without the need for a browser as an intermediary.
Which is always a good thing. Created by ”Christer Sjöholm” who still holds
it up and adds new features.

So the goal is to create desktop application using Qt libraries. It should
combine existing ways of using Google Contacts and make Google Contacts
managing more comfortable. The required features are:

• Synchronisation of all contact information.

• Editing Google Contacts.

• Command line operation variant for finding, adding and editing Google
Contacts.

1MUAs (Mail User Agent) — is a computer program in the category of groupware
environments used to access and manage a user’s email.

2Mutt (The Mutt E-Mail Client) — is a small but very powerful text-based mail client
for Unix operating systems.

4

Figure 1.3: GooBook

• Seamless offline mode with synchronisation when online.

• Incremental search, including substrings.

• Export and import functionality in a suitable format.

• Effective user interface, configurable keyboard shortcuts for all actions.

Creating this application is based on using Google Contacts API and
OAuth 2.0 authorization to communicate with Google Contacts, Qt libraries
to create program with GUI, QxOrm to store data into database and Boost.
The program must be written using Qt Creator.

5

Chapter 2

Review

2.1 Google Apps

API stands for Application Programming Interface. Basically it is doorway
through which only people with the right key can pass. For example this
application needs to get Google Contacts data, so it appeals to Google’s API
and the API lets it to come in and checks to make sure that it have a right key
if it don’t the API kick application back, but if this application have a right
key it will resend the request of application to Google Contacts and then will
send back the reply in the way that application can understand it. Application
can use key just for reading or it can use key for reading and modifying Google
Contacts.

Because user’s contacts are mostly private, the application can access them
only by using an authenticated request. That is, the request must contain an
authentication token for the user whose contacts application wants to retrieve
[3]. The application uses OAuth 2.0 protocol with authentication option for
installed applications to get the token.

Steps to get authentication token:

1. Redirect a browser to a Google URL. The URL query parameters indic-
ate the type of Google API access that the application requires.

2. Google handles user authentication and consent, upon success it re-
sponds with authorization code as a query string parameter to the local
web server.

3. The application creates POST request with the authorization code, its
client ID and client secret (obtained from the Google Developers Con-
sole) and send it to Google API to obtain access and refresh tokens.

4. Application uses the access token to make calls to a Google API and
stores the refresh token for future use.

7

2. Review

To see these steps as overview diagram, (see Figure 2.1)

But before application can receive the token it needs to be register as a
client on the Developers Console or in other words Google APIs Console. Once
application is registered, it will cover all users. Each user must authorize the
application to access their individual data.

Functionality of Google Contacts API with contacts:

• To retrieve contacts application send an authorized GET request to the
URL3 with special parameter which depends on the required data:

– Retrieving all contacts

∗ parameter is set to ”null”;

∗ upon success, the server responds with a HTTP 200 OK status
code and the requested contacts feed.

– Retrieving contacts using query parameters

∗ parameter is set to ”updated-min=2007-03-16T00:00:00”;

∗ the server returns an HTTP 200 OK status code and a feed
containing any contacts that were created or updated after the
date specified.

– Retrieving a single contact

∗ parameter is set to ”contactId”;

∗ upon success, the server responds with an HTTP 200 OK status
code and the requested contact entry.

• To create a new contact the application send an authorized POST re-
quest to the user’s contacts feed URL with contact data in the body.
Upon success, the server responds with an HTTP 201 Created status
code and the created contact entry with some additional elements and
properties (shown in bold) that are set by the server, such as id, various
link elements and properties.

• To update a contact the application first retrieve the contact entry,
modify the data and then send an authorized PUT request to the con-
tact’s edit URL with the modified contact entry in the body.

– parameter is set to ”contactId”;

– upon success, the server responds with an HTTP 200 OK status
code and the updated contact entry.

• To delete a contact the application send an authorized DELETE request
to the contact’s edit URL.

3https://www.google.com/m8/feeds/contacts/default/full?[parameter]

8

https://www.google.com/m8/feeds/contacts/default/full?[parameter]

2.2. OAuth 2.0

– parameter is set to ”contactId”;

– upon success, the server responds with an HTTP 200 OK status
code.

Managing photos and groups is similar to working with contacts [3].

2.2 OAuth 2.0

OAuth is a HTTP-based security protocol that allows you, the User, to grant
access to your private resources on one site (which is called the Service Pro-
vider), to another site (called Consumer, not to be confused with you, the
User). While OpenID is all about using a single identity to sign into many
sites, OAuth is about giving access to your stuff without sharing your iden-
tity at all (or its secret parts) [4]. Instead of unsafe password-sharing, OAuth
offers a much more secure delegation protocol. OAuth 2 is the must-know
security protocol on the web today and it’s the worldwide standard.

2.2.1 How does the OAuth 2.0 work?

Like the first version, OAuth 2.0 is based on the basic web technologies:
HTTP-requests, redirects, etc. Therefore, the usage of OAuth is possible
on any platform with access to the Internet and browser: on websites, mobile
and desktop-applications, browser plug-ins ...

The major difference from the OAuth 1.0 is simplicity. The new version
has no large circuits signature, reduced the number of requests required for
the authorization.

The general scheme of the application that uses the OAuth, is as follows:

• obtaining authorization

• request protected resources

The result of authorization is access token - a key (usually just a set of
characters), which represents live pass to protected resources. In the simplest
case it is appealed over HTTPS set in titles or as one of the access token
parameters.

There are several authentication options that are suitable for different
situations:

• Web server applications.

• Installed applications.

• Client-side (JavaScript) applications.

• Applications on limited-input devices.

9

2. Review

Authentication of this application is based on using authentication option
for installed applications. This is the most complex authentication option,
but only it allows the server to uniquely identify application that is currently
applying for authorization. In all other cases, authorization is totally on the
client side, what is fine, because sometime you might need mask one applica-
tion under another [5].

2.2.2 Pros

There are two main advantages of being a trusted client [6]:

• More security: — The key is shared only between the service pro-
vider and server-side of the client application. It never gets sent to the
browser, and so has much less of a chance of being intercepted.

• Long-term and offline access: — Because the client is able to se-
curely store information, they can store the keys and properties neces-
sary for long-term, and even offline, access to a user’s data.

2.2.3 Cons

Unfortunately, there is a disadvantage associated with this [6]:

• More complexity: — To achieve the added security features that make
this workflow so beneficial, a more complex infrastructure must be in
place to facilitate the more complex key exchange that this workflow
utilizes.

2.2.4 Summary

OAuth - simple authentication standard based on the basic principles of the
Internet, which makes possible to use authorization on almost any platform.
The standard has the support of major platforms and it is clear that its
popularity will only grow. If you are thinking about an API to your service,
the authorization using OAuth 2.0 is a good choice.

2.3 Qt

Qt (/kju:t/ ’cute’) — is a comprehensive C++ application development frame-
work for creating cross-platform GUI applications using a ”write once, compile
anywhere” approach. Qt lets programmers use a single source tree for applic-
ations that will run on Windows 98 to Windows 10, Mac OS X, Linux, Solaris,
HP-UX, and many other versions of Unix with X11 [7].

One of the things that makes Qt a pleasure to use is its online document-
ation. You can find describing of all classes with sample examples online or

10

2.3. Qt

Figure 2.1: Using OAuth 2.0 for Installed Applications

11

2. Review

you can download source code and browse it manually. Qt creator also allows
you to see all documentation just pressed key F1 on needed class, signal, slot,
method etc. The documentation is so good that if you have a basic know-
ledge of C++, Java, or C# programing languages you can easily start write
program without reading any Qt tutorial book.

Next big advantage of Qt is signals and slots system which are used for
communication between objects. Qt uses a code generator (the Meta-Object
Compiler or moc) to implement flexible signals/slots. Classes can mark them-
selves as moc’eable with the Q OBJECT macro (and must inherit QObject),
then indicate that some functions in the class are slots, and some are signals.
Slots have declarations and definitions just like normal functions; signals are
essentially just a function prototype, and have no definitions (the moc provides
them) [8].

2.4 QxOrm

QxOrm library is an Object Relational Mapping database library for C++/Qt
developers. With a simple C++ setting function per class (like Hibernate
XML mapping file in Java), you have access to the following features:

• persistence — communication with databases (support 1-1, 1-n, n-1
and n-n relationships)

• serialization — binary, XML and JSON format

• reflection (or introspection) — access dynamically to classes defini-
tions, retrieve properties and call classes methods

QxOrm library is designed to make easier C++ development and provides
many functionality. Advantages of QxOrm library :

• The C++ setting function per class doesn’t modify class definition,
QxOrm can be used in existing projects.

• No XML mapping file.

• Classes doesn’t need to inherit from a ’super object’.

• Template meta-programming.

• Works with Visual C++ on Windows, GCC on Linux, Clang on Mac
OS X, and MinGW on Windows.

• Only one file <QxOrm.h>to include in precompiled-header.

12

2.5. Boost

For modelling entities and relations for the QxOrm framework there is
a graphical interface named QxEntityEditor. It is multi-platform (available
for Windows, Linux and Mac OS X) and generates native code for all en-
vironments : desktop (Windows, Linux, Mac OS X), embedded and mobile
(Android, iOS, Windows Phone, Raspberry Pi, etc.). QxEntityEditor is based
on plugins and provides many ways to import/export your data model :

• generate C++ persistent classes automatically (registered in QxOrm
context)

• generate DDL SQL script automatically (database schema) for SQLite,
MySQL, PostgreSQL, Oracle and MS SQL Server

• manage schema evolution for each project version (ALTER TABLE,
ADD COLUMN, DROP INDEX, etc.)

• transfer your data model over network and create quickly client/server
applications, using QxService module

• import existing database structure (using ODBC connection) for SQLite,
MySQL, PostgreSQL, Oracle and MS SQL Server databases

• because each project is different, QxEntityEditor provides several ways
to customize generated files (especially a JavaScript engine and an in-
tegrated debugger)

2.5 Boost

Boost is a set of libraries for the C++ programming language that provide
support for tasks and structures such as linear algebra, pseudorandom number
generation, multithreading, image processing, regular expressions, and unit
testing. Boost gives you a lot of the tools you need to compose stuff easily.
Smart pointers, functions, lambdas, bindings, etc. It was not necessarily to
use Boost except QxOrm which actually depends on it, but it’s truly become
helpful.

2.6 Qt Creator

Why Qt Creator? Well I have a half year experience with working on Qt
Creator and since I have known it I truly like it. Qt Creator has great object
support (help, navigation, etc.), GUI editor, nice features like mouse navig-
ation, really fast IDE, very great debugger and fantastic possibility of using
keyboard shortcuts so it is really simply and comfortable to use. Also Qt
Creator is a lot more Qt-oriented. Every common operation while developing
with Qt is bound to be easier in Qt Creator since it’s primary goal was to be
a tool for developing Qt applications.

13

Chapter 3

Analysis

3.1 Requirements specification

3.1.1 Functional requirements

Functional requirements are the statements of services that the system deliv-
ers. These statements describes how the system should react to inputs and
how it should behave in particular situations. They also are known as capab-
ilities or features [9].

Google Contacts functional requirements:

• Adding, deleting and editing contacts.

• Synchronization of all user’s contacts.

• Substring searching.

• Creating groups and adding contacts to them. The application should
have four groups defined by Google: Family, Friends and Coworkers.

• Displaying all data in offline mode.

• Command line versions for all previous described functional require-
ments.

• Keyboard shortcuts.

• Status bar displaying actual status of synchronization process.

• Importing and exporting contacts from file.

• Validation of user’s entered data.

15

3. Analysis

3.1.2 Non-functional requirements

Nonfunctional requirements are sometimes known as restriction or quality re-
quirements. They do not affect the functionality of the system [9].

Application non-functional requirements:

• Intuitive graphical user interface.

• Command line manual.

• Cross-platform application.

• Handle errors during synchronization process.

3.2 Domain Model

The domain model (see Figure 3.1) for the application is represented by class
diagram. The purpose of the diagram is to show and explain program struc-
ture, staff, relationships with users, and user contacts.

The ContactEntry entity describes Google Contact Entry and contains
ID, Google ID, name, nickname, organization name, organization title and
flag to mark whether the contact was locally deleted. On the diagram a
ContactEntry could has different ContactProperty entities. ContactProperty
must have only one ContactEntry object. The ContactProperty class on the
diagram describes the interface with ID, label, value and type members for
representing email or telephone number.

Contact could be assign to any number of groups. Diagram groups are
represented by the ContactGroup class contains ID, Google ID, title, updated
time, flag to mark whether the group is system and flag to mark whether
the group was locally deleted. The ContactGroup could has any number of
contacts represented by the ContactEntry entity.

To communicate with the server are required access token, refresh token
and user email. For these purposes there is a User class contains all needed
information.

3.3 Application processes

This section describes processes in the application.

• Search process (see Figure 3.2) — user set cursor to the searching line
edit field and type substring of user emails by which he wants to find
needed contact. The application will react on every key pressed and will
immediately display the results.

16

3.3. Application processes

ContactEntry

- deleted: boolean
- fileAs: String
- googleId: String
- id: long
- name: String
- nickName: String
- orgName: String
- orgTitle: String
- updatedTime: DateTime

ContactProperty

- id: long
- label: String
- type: String
- value: String

ContactGroup

- deleted: boolean
- googleId: String
- id: long
- isSystemGroup: boolean
- title: String
- updatedTime: DateTime

User

- accessToken: String
- email: String
- id: long
- refreshToken: String

0..*

0..*1

0..*

Figure 3.1: Domain Model

• User login process (see Figure 3.3) — when the application starts
user can log in using either already saved Google account or can log
in using new one. It is a usual web browser authentication proses. If
authentication was succeeded Google Contacts asks user to confirm the
application access to his private data. Which is Google profile, email
address and Google contacts. If authorization was succeeded too the
application starts communication with Google Contacts API and main
window dialog will be shown.

• Create contact process (see Figure 3.4) — user clicks on the ”Create
new contact” button and ”Create new contact” window will be shown.
After that user has to fill the required fields, such as telephone and
email, and other contact information. When editing is finished he can
save new contact by clicking on the ”Save” button or he can discard
data by clicking on ”Cancel” button. Save button will provoke valida-
tion of required fields, i.e., it will check if they are not empty and if so

17

3. Analysis

ApplicationUser

Start

Focus on the search field

Find all contacts matching
entered substring

Stop

Type name, email or telephone
number

Show result

Figure 3.2: Search contacts application process

then check if they are filled in the correct way. If validation was suc-
cessful then new contact is saved to a local database and will be pushed
to Google Contacts with the next synchronization . Otherwise error
message describing the problem will be shown and line edits containing
invalid data will be red marked. ”Cancel” button will show dialog with
the warning message and two buttons, ”Cancel” and ”Discard changes”.
”Cancel” button will allow user to continue creating new contact and
”Discard changes” button will discard changes and stop creating new
user. Clicking anywhere outside the dialog is equal to pressing ’Cancel’
button.

3.4 Use cases

This section describes Google Contacts use cases.

• Synchronization use case (see Figure 3.5) — synchronizes contacts
and groups with Google.

• Contact use case (see Figure 3.6) — user can create, edit, merge,
delete, import or export selected contacts.

18

3.4. Use cases

ApplicationUser

Start

Login

Authorization and
autentification on the

Google Contacts server

Download and persist
data

Show main window

End

Success?
Show error message

Select account

No

No

Yes

Yes

Is there any saved users?

Figure 3.3: Login process in application

19

3. Analysis

ApplicationUser

Start

Click on "Create new contact"
button

End

Show "Create contact"
window

Enter new contact data

Click on "Save" button

Validate entered data

Success?

Show "Error message"
window

Save changes to local
database

Yes

No

Figure 3.4: Create contact application process

Synchronize contacts
and groups

Google Contacts

User

(from
Users)

Figure 3.5: Synchronize use case

20

3.4. Use cases

Edit contact

Google Contacts

User

(from
Users)

Delete contact

Create new contact

Import contact

Export contact

Figure 3.6: Contact use case

21

Chapter 4

Design

This chapter contains description of design Google Contacts application.

4.1 Wireframes

Wireframes is a standard technology that is used to design user interface. Main
window wireframe (see Figure 4.1) includes table view with names, emails and
phone numbers of user contacts. By checking radio button in the left side of
main window it is possible to see all contacts specified by group. Add new
contact wireframe (see Figure 4.2) defines layout of the functional elements
such as input name, nickname and other fields. Field ”File as” gets string
which will be used for sorting contacts. New contact can be added to the
selected groups by check boxes.

4.2 Database

Database is an organized collection of data. Database model determines the
logical structure of a database and determines in which manner data can be
stored, organized and manipulated.

Google Contacts database model (see Figure 4.3) is created by QxEntityEd-
itor. QxEntityEditor is a graphic editor for QxOrm library. The editor
provides a graphic way to manage the data model. The price of it’s license
key is 300 e per developer and 12 months of free updates. But thankfully, it
is free up to 5 entities per project and Google Contacts database has just 4
entities [10].

Relation many-to-many between ContactEntry and ContactGrop will not
be effective. Because database relation many-to-many is implementing by
usage third table. So relation between ContactEntry and ContactGroup is
unidirectional many-to-many relationship.

23

4. Design

Figure 4.1: Main window wireframe

24

4.2. Database

Figure 4.2: Add new contact wireframe

25

4. Design

Figure 4.3: Database model

26

Chapter 5

Implementation

5.1 Application architecture

Application architecture divides into presentation, application and data layers.
To explain how the application works I have designed the following overview
diagram (see Figure 5.1). Communication between different objects in the
application are based on Qt signals and slots. So there was no need to use
multithreading.

5.1.1 Application layer

There are many client libraries that make easier to use Google APIs. And
if your program is on Java, .Net or PHYTON it is much more easier for
you to communicate with Google Contacts API. Unfortunately, there are no
such libraries for C++ or even for C which would be still supported. So to
communicate with Google Contacts API the application uses it’s own classes.

The application layer contains three classes that are responsible for com-
munication with Google Contacts API:

• AuthManager - class responsible for access and refresh tokens. It gets
refresh token for new user and update the access token when it expires.

• AuthServer - helper class inherited from QTcpServer. It helps to con-
figure the connection between the application and Google Contacts API.

• AuthSettings - helper class used to parse and store data from creden-
tial file.

AuthManager is a main object in communication with Google Contacts API.

AuthManager generates authorization URL and creates AuthServer that
starts listening on some free port for reply of Google API. When AuthServer
gets the reply it will parse it and emit signal with authorization code it got.

27

5. Implementation

Figure 5.1: Application overview diagram

Then AuthManager generates GET request which consists the authorization
code and some credentials data. On reply AuthManager gets access token
and refresh token and it sends first request to Google Contacts to get email
of authorized user. Upon success AuthManager creates new user with taken
tokens and email. And emit signal newUserInitialiazed with new created user
sent as parameter. So basically, its purpose is to initial new user and refresh
access token.

During program life MainWindow asks AuthManager to refresh access
token when it is expired.

5.1.2 Data layer

This layer is represented by four classes:

• ContactEntry - class represented one entry in contact list. This class
holds user to whom it belongs.

28

5.1. Application architecture

• ContactGroup - class represented group.

• ContactProperty - helper class. It is a container for contact list values
such as telephones, emails, dates etc.

• User - class represented one user. It holds access, refresh tokens and
email of user.

All these classes are saved in database. The database is represented by Data-
base class which consists all needed methods for saving, reading, searching and
updating objects. For example, Database class provides method for getting
all users which are in database. This method uses QxOrm fetch all function
that gets all users and returns them as container of pointers to User (see
Listing 5.1).

When application needs to manipulate with objects it uses Database class.
Inside of each four classes there is another layer properly QxOrm. So in other
words Database class hides this complex logic and allows application works
with objects as themselves, but inside objects are using QxOrm library.

QList<boost::shared ptr<User>> Database::getUsers()
{

QList<boost::shared ptr<User>> users;
qx::dao::fetch all(users);
return users;

}
Listing 5.1: Getting all saved users in database

5.1.3 Presentation layer

This layer is represented by dialogs:

• MainWindow — the main window of the application and all other
dialogs are called from this dialog. It works with GoogleContacts class to
get needed information from Google API and works with Database class
to get or save contacts. User’s contacts are displayed in the table. User
could filter contacts by substring or by selected group. At the bottom
of window is status bar which displays actual status of synchronization
process.

– green - synchronization was successful;

– red - synchronization failed;

Status bar also displays date of last synchronization (see Figure 5.2).

• SelectUserDialog — dialog for selecting existing users. This dialog
will be shown only if database contains some users.

29

5. Implementation

Figure 5.2: Main window of Application

• LoginDialog — simple dialog which contains only QWebView and dis-
plays web page by specified URL. This dialog is shown when new user
needs to be authorized.

• EditContactEntryDialog — dialog for editing existed or creating new
contact (see Figure 5.3).

• OptionsDialog — dialog that allows user to manage keyboard short-
cuts (create, edit, delete, export, import, synchronize contacts) and
automatic synchronization interval (see Figure 5.4).

5.1.4 Realization of application logic

Application logic is represented by class GoogleContacts. It does all the work
of reading data from database, manipulations on them and communicates with
Google API.

GoogleContacts class is created at the beginning of program with the user
entry we will work with. Then it reads data from Database, i.e, contact groups,
entries. User works with contacts but changes are not promptly synchronized,
they are stored in list, and will be applied with the next synchronization with
Google Contacts. Synchronization call the syncGroupsAndContacts method.
Which synchronize both sides (local database and Google Contact database).
Synchronization process looks as follow:

30

5.1. Application architecture

Figure 5.3: Edit contact dialog

5.1.4.1 Synchronization of contacts

• application sends request to gets the contacts;

• upon success, it gets reply and pars it;

• check if some of contacts are marked as deleted, and if so then deletes
contact in the local database;

• check if contact is new, and if so then creates the new contact and save
it to the local database;

• while all user changes that were saved to list are not fulfilled, the ap-
plication will do the next:

– sends request to Google API;

– gets reply;

– analyze reply;

– react on the reply.

31

5. Implementation

Figure 5.4: Google Contacts options dialog

• GoogleContacts class emits one of these four signal types:

– void groupsSyncSuccessful() - groups synchronization passed
successful;

– void contactsSyncSuccessful() - contacts synchronization passed
successful;

– void authorizationError() - authorization error, could be emit-
ted when access token is no more valid;

– void otherError(QNetworkReply::NetworkError error) - other
type of error.

These signals will provoke to some actions on presentation layer. For
example the table with contacts will be updated or some error message will
be shown and so forth.

GoogleContacts class suggests that authorization is already pass and all
needed data for communication is stored in the user. If it turns out that user
is not authorized, GoogleContacts emits authorization error. Such kind errors
are handled in application layer namely by AuthManager. AuthManager will
processed the problem and emit result. Upon success it’s signal will awake
syncGroupsAndContacts method. So this synchronization method just trying

32

5.1. Application architecture

to load data with valid token but if such token does not exist, it will not try
to resolve the problem.

The ConsoleOperator class performs a similar role to GoogleContacts class
but it communicates with command line.

5.1.5 Command line version of the application

This version of the application is a separate program which can be launched
from command line with one of the arguments.

Commands and their arguments:

• -f ”substring” - search contacts.

• -c ”name” - create new contact.

• -d ”substring” - delete contact.

• -e ”fileName” - export contacts.

• -i ”fileName” - import contacts.

Program is cross-platform same as GUI version of the application. The
main function of this program works with ConsoleOperator class providing
functions for commands described above. These functions in ConsoleOperator
class do not work directly with application or data layers, instead they work
with GoogleContacts class.

33

Chapter 6

Testing

Testing is the process of evaluating a system or its component(s) with the
intent to find whether it satisfies the specified requirements or not. It is ex-
ecuting a system in order to identify any gaps, errors, or missing requirements
in contrary to the actual requirements.

To catch bugs during debugging the application uses it’s own asserts.

ASSERT (condition, ”Assert message.”);

If condition is false it shows warning dialog with error message (see Fig-
ure 6.1).

6.1 Unit tests

Unit testing is a software development process in which the smallest testable
parts of an application, called units, are individually and independently scru-
tinized for proper operation. Unit testing is often automated but it can also
be done manually [11]. Executing unit tests is very fast and therefore can
be run after any major change of code and verify that maintaining functions
work correctly. Unit tests are not appropriate for testing parts of code, which
require changing data in the database. Before you can run the tests again
data in the database must be returned to its original state, and hence the
difficulty of tests is much more higher.

Figure 6.1: Assertion failed

35

6. Testing

Figure 6.2: Unit tests

GoogleContacts class is tested using Qt Test framework which provides
classes for unit testing Qt applications and libraries. All public methods are
in QTest namespace. In addition, the QSignalSpy class provides easy intro-
spection for Qt’s signals and slots [12].

Test GoogleContacts is a testing class that consists unit tests to test
GoogleContacts class methods:

• Parse ContactEntry.

• Validate Google API reply.

Test Database is a testing class that consists unit tests to test Database
class methods:

• Save User to database.

• Save ContactEntry to database

All unit tests are automatically run before every program launch (see Fig-
ure 6.2).

36

6.2. Manual testing on different operation systems

6.2 Manual testing on different operation systems

The application was tested by many users on some major platforms, i.e.,
Windows 7, Windows 8, Windows 10, Mac OS X El Capitan and Ubuntu
16.04. Found bugs was fixed and now Google Contact application works on
these OSs’ more smoothly, without errors and really quickly.

For manual tests was created test Google account with one thousand con-
tacts.

username: petrytar.tester.0@gmail.com
password: testPassword

37

Chapter 7

Adaptation for other platforms

Because Qt is a cross-platform application framework the program can be
built and run on the different platforms. Before building, you will have to go
through the next steps:

1. Download QxOrm library (for example from: http://www.qxorm.com/
qxorm_en/download_details.php).

2. Download Boost library (for example from: https://sourceforge.net/
projects/boost/files/boost/1.60.0).

3. In QtCreator add variable BOOST INCLUDE with path to downloaded
Boost library.

4. In QtCreator build release version of QxOrm library.

5. Add just compiled QxOrm libraries to project.

Now you can build and run the program. Depending on the operation system
that you have you might will have to add some libraries or install utilities. To
create independent release version just build program in release mode and copy
some of standard Qt libraries into the output folder. You can find inspiration
in attached Compact Disc.

39

http://www.qxorm.com/qxorm_en/download_details.php
http://www.qxorm.com/qxorm_en/download_details.php
https://sourceforge.net/projects/boost/files/boost/1.60.0
https://sourceforge.net/projects/boost/files/boost/1.60.0

Chapter 8

Features

These are new features that will be added in Google Contacts 1.0:

• Copy, cut, paste and merge selected contacts.

• Create, edit, delete and merge groups.

• Delete all contacts from selected group.

• Seeing contacts from multiple accounts.

• Multi-editing contacts.

• Add user photo.

• Change user without closing the program.

• Auto log in possibility.

• Improve getting entries from Google Contacts.

41

Conclusion

The result of this bachelor thesis is an application that allows user to work
with Google Contacts. It is cross-platform application, but the application
compiled for one Unix flavor will probably not run on a different Unix system,
so I decided do not add release version for Unix system. In repository there
is only release version for Windows. The application has GUI and command
prompt single request versions. It’s design is nice and simple, easy to under-
stand and use. Configurable keyboard shortcuts improve contacts managing.
The application also remember users that was logged on. It allows switching
between users without going through the authorization process. With avail-
able import and export to XML format function it is now possible to create
backups of contacts, transfer contacts between users and so on. User can
also operate the database directly. It is a standard SQLite database and it is
created with the first application start.

It wasn’t all romantic. Because I didn’t have experience on working with
APIs and there are no helping libraries that make communication easier for
C++ I had had to spend a lot of time on studying and implementing applic-
ation layer. But now I am really glad to have chosen this bachelor’s thesis. It
was really interesting to implement and I am happy that I was able to create
a stable program which can be improved in future. Some functionality that
wasn’t required but might be useful for users are added to features which I
am planning to implement.

The application was tested on different platforms and showed good per-
formance in reliability and speed. Even specially created Google test account
with around 1000 contacts does not slow filtering contacts. But getting them
from Google Contacts was long enough.

The application is available in the public repository on GitHub.

43

Bibliography

[1] Wikipedia. Google Contacts [online]. March 2016, [Cited 2016-04-03].
Available from: "https://en.wikipedia.org/wiki/Google_Contacts"

[2] h.ogi blog. Synchronizing Google contacts and Thunderbird ad-
dress books [online]. May 2008, [Cited 2016-05-01]. Available from:
"http://hogiblog.blogspot.cz/2008/05/synchronizing-google-
contacts-and.html"

[3] Google Developers. Google Contacts API version 3.0 [on-
line]. March 2016, [Cited 2016-04-03]. Available from: "https:

//developers.google.com/google-apps/contacts/v3/"

[4] OAuth. What is it For? [online]. September 2007, [Cited 2016-04-03].
Available from: "http://oauth.net/about/"

[5] Google Developers. Using OAuth 2.0 for Installed Applications [on-
line]. February 2016, [Cited 2016-04-03]. Available from: "https://

developers.google.com/identity/protocols/OAuth2InstalledApp"

[6] Bihis, C. A Bird’s Eye View of OAuth 2.0, volume 205. PACKT, 2015,
ISBN ISBN 978-1-78439-540-7, 29 pp.

[7] Blanchette, J.; Summerfield, M. Foreword, volume 752. Prentice Hall,
2008, ISBN ISBN-10: 0-13-235416-0, 7 pp.

[8] Qt Documentation. Signals & Slots [online]. January 2016,
[Cited 2016-04-29]. Available from: "http://doc.qt.io/qt-5/
signalsandslots.html"

[9] Abran, A.; Bourque, P.; Dupuis, R.; et al. Software Requirements, volume
200. Angela Burgess, 2001, ISBN ISBN 0-7695-2330-7, 35 pp.

[10] Marty, L. QxEntityEditor [online]. 2016, [Cited 2016-05-02]. Available
from: "http://www.qxorm.com/qxorm_en/download.html"

45

"https://en.wikipedia.org/wiki/Google_Contacts"
"http://hogiblog.blogspot.cz/2008/05/synchronizing-google-contacts-and.html"
"http://hogiblog.blogspot.cz/2008/05/synchronizing-google-contacts-and.html"
"https://developers.google.com/google-apps/contacts/v3/"
"https://developers.google.com/google-apps/contacts/v3/"
"http://oauth.net/about/"
"https://developers.google.com/identity/protocols/OAuth2InstalledApp"
"https://developers.google.com/identity/protocols/OAuth2InstalledApp"
"http://doc.qt.io/qt-5/signalsandslots.html"
"http://doc.qt.io/qt-5/signalsandslots.html"
"http://www.qxorm.com/qxorm_en/download.html"

Bibliography

[11] Rouse, M. What is unit testing? [online]. Janu-
ary 2007, [Cited 2016-05-10]. Available from: "http://

searchsoftwarequality.techtarget.com/definition/unit-testing"

[12] Company, T. Q. Qt Test 5.6 [online]. April 2016, [Cited 2016-05-10].
Available from: "http://doc.qt.io/qt-5/qttest-index.html"

46

"http://searchsoftwarequality.techtarget.com/definition/unit-testing"
"http://searchsoftwarequality.techtarget.com/definition/unit-testing"
"http://doc.qt.io/qt-5/qttest-index.html"

Appendix A

Acronyms

API Application Programming Interface

CSV Extensible Markup Language

DDL Data Definition Language

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

MUA Mail User Agent

Mutt The Mutt E-Mail Client

ODBC Open Database Connectivity

OS Operating system

SQL Structured Query Language

SSL Secure Sockets Layer

URL Uniform Resource Locator

XML Extensible Markup Language

47

Appendix B

Contents of enclosed CD

49

B. Contents of enclosed CD

readme.txt the file with CD contents description
release..........................the directory with application release

platforms............................. the directory with platforms
sqldrivers the directory with sql drivers
gcontacts.exe..the directory with command line release executables
GoogleContacts.exe.......the directory with gui release executables
*.dll...................................the files with shared library

resources.................................the directory with resourses
OAuth 2.0 client ID.json..................the file with credentials
resources.qrc the file with application resources in qrc format
executables

*.png..............the icons that are used in program in png format
src.......................................the directory of source codes

3rdParty..............................the 3rd part helping libraries
Data..............................the directory of data source codes

Auth.................... the part responsible for application layer
Model the part responsible for data layer

MainApp...................the part responsible for presentation layer
MainAppConsole.......... the part responsible for command line app
Tests.............................the part responsible for unit tests
thesis..............the directory of LATEX source codes of the thesis
GoogleContacts.pro the file with configurations for the project codes

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

50

	Introduction
	Goal and methodology
	Review
	Google Apps
	OAuth 2.0
	How does the OAuth 2.0 work?
	Pros
	Cons
	Summary

	Qt
	QxOrm
	Boost
	Qt Creator

	Analysis
	Requirements specification
	Functional requirements
	Non-functional requirements

	Domain Model
	Application processes
	Use cases

	Design
	Wireframes
	Database

	Implementation
	Application architecture
	Application layer
	Data layer
	Presentation layer
	Realization of application logic
	Synchronization of contacts

	Command line version of the application

	Testing
	Unit tests
	Manual testing on different operation systems

	Adaptation for other platforms
	Features
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

