
L.S.

doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 17, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Searching for CRISPR segments using self-index

 Student: Bc. Ondřej Cvacho

 Supervisor: prof. Ing. Jan Holub, Ph.D.

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2016/17

Instructions

Create a survey of tools for storing genomes and searching for CRISPR (Clustered regularly-interspaced
short palindromic repeats) segments. Create a survey of current self-index data structures. Design and
implement a self-index for collection of genomes allowing efficient search for CRISPR segments. Perform
experimental evaluation of the implementation.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Searching for CRISPR segments using
self-index

Bc. Ondřej Cvacho

Supervisor: prof. Ing. Jan Holub, Ph.D.

9th May 2016

Acknowledgements

I would like to thank my thesis advisor prof. Jan Holub for his valuable and
constructive suggestions during the planning and development of this research
work. I would also like to thank my family and friends for their support and
encouragement throughout my study. Special thanks should be given to my
grandfather, Ing. Julius Cvacho, for being my motivation despite all his stories.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and
all persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity. However, all persons that makes use of the above license shall be
obliged to grant a license at least in the same scope as defined above with
respect to each and every work that is created (wholly or in part) based on the
Work, by modifying the Work, by combining the Work with another work, by
including the Work in a collection of works or by adapting the Work (including
translation), and at the same time make available the source code of such work
at least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on 9th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Ondřej Cvacho. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Cvacho, Ondřej. Searching for CRISPR segments using self-index. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2016.

Abstrakt

Práce se zaměřuje na využit́ı kompaktńıch datových struktur v hledáńı CRISPR
segment̊u za použit́ı self-index̊u. Hledáńı CRISPR segment̊u je srovnatelné s
přibližným vyhledáváńım řetězce za pomoci generováńı a vyhledáváńı všech
podobných segment̊u s možnou chybou až m. Navržené řešeńı se snaž́ı redukovat
takovou množinu všech podobných řetězc̊u za použit́ı De Bruijnových graf̊u.
Experimentálńı vyhodnoceńı prokázalo možnost redukce až o čtyřnásobek.

Kĺıčová slova komprese, vyhledáváńı, bioinformatika, DNA, De Bruijn
grafy, index, FM-index, kompaktńı datové struktury

Abstract

The work focuses on the succinct data structures and their use for optimizing
search for CRISPR segments using self-index. The search for segments uses
approximate string matching by generating all possible segments with m or
less mismatches and searching for each of them. I have proposed the solution
to reduce the number of possible segments using the De Bruijn graphs as a
filter. The experiments have shown that we can reduce the number of the
segments almost four times.

Keywords compression, search, bioinformatics, DNA, De Bruijn graphs,
index, FM-index, succinct data structures

ix

Contents

Introduction 1

1 Definitions 3
1.1 Basic Definitions . 3
1.2 Self-Index . 4
1.3 Suffix Array . 4
1.4 Burrows–Wheeler transform . 6
1.5 FM-Index . 8
1.6 Compressed Suffix Array . 10
1.7 Succinct Data Structures . 12
1.8 De Bruijn Graph . 19

2 Bioinformatics 25
2.1 DNA . 25
2.2 RNA . 25
2.3 FASTA . 26
2.4 CRISPR . 27

3 Existing Solutions 29
3.1 Existing Libraries . 29
3.2 Existing Applications . 30
3.3 Compare of Existing Tools . 35

4 Analysis and design 39
4.1 Approximate String Matching 39
4.2 De Bruijn Graph . 40
4.3 Design Proposal . 42

5 Implementation 45
5.1 Overall Structure . 45

xi

5.2 Settings and Input . 46
5.3 Index . 47
5.4 Off-target Generation . 47
5.5 DBG Construction . 48

6 Experiments 51
6.1 About Experiments . 51
6.2 Suffix Array . 53
6.3 FM Index and BWT . 54
6.4 De Bruijn graph . 56
6.5 Generation of the Off-targets 56

Conclusion 63

Bibliography 65

A Data 71
A.1 De Bruijn Graph . 71
A.2 FM Index . 73
A.3 Measurements . 73

B Usage 77
B.1 Installation . 77
B.2 Usage . 78

C Acronyms 79

D Contents of enclosed CD 81

xii

List of Figures

1.1 Connection between the SA and the BWT for the text T 7
1.2 Equations for updating borders of search interval 9
1.3 Wavelet tree of a string . 18
1.4 De Bruijn graph . 20
1.5 De Bruijn graph representation. 22
1.6 Equations for updating borders of search interval, De Bruijn graph 23

4.1 The number of strings with Hamming distance up to m from a
string w . 40

4.2 The size of the H5(w), |w| = l . 41
4.3 Number of nodes of the DBG for various k and input file size. . . . 42
4.4 Number of edges of the DBG for various k and input file size. . . . 43
4.5 Ratio of the number of edges to the number of nodes. 44

5.1 Structure of the application. 46

6.1 Time of suffix array construction using various algorithms. 53
6.2 Size of the input text and the resulted SA. 54
6.3 Time of the count query for RRR with the block size b. 55
6.4 Time of the construction of the succinct DBG for various k and

input file size. 56
6.5 Size of the succinct DBG for various k and input file sizes. 57
6.6 Time to generate and score off-targets using simple method. 58
6.7 Number of generated off-targets by the simple method. 58
6.8 Number of generated off-targets by the DBG method and k = 5. . 59
6.9 Number of generated off-targets by the DBG and simple methods

and m = 5. 59
6.10 Time to generate and score off-targets using simple and the DBG

method, m = 5. 60

A.1 Number of generated off-targets by the DBG method and k = 3. . 73

xiii

A.2 Number of generated off-targets by the DBG method and k = 4. . 74
A.3 Number of generated off-targets by the DBG method and k = 6. . 74
A.4 Number of generated off-targets by the DBG method and k = 7. . 75

xiv

List of Tables

1.1 Summary of time & space complexity of SA operation 6
1.2 Burrows-Wheeler tranformation using Burrows-Wheeler matrix for

string banana . 7
1.3 FM-index example: data structures 9
1.4 Compressed Suffix Array using Ψ function 12
1.5 Compressed Suffix Array using sampling 12
1.6 The space and time results for esp, recrank, vcode, sarray and darray 17

2.1 Defined symbols of FASTA format. 26

3.1 Time comparison of the CRISPR/Cas9 design tools. 37

4.1 The size of the NH
m (w), |w| = 20 40

6.1 Summary of informations about testing environment. 51
6.2 Input test files and corresponding chromosomes they were created of. 52
6.3 Time of locate query and the size of the index. 55
6.4 Total time of the DBG generator, k = 5 60

A.1 The number of nodes of DBG. 71
A.2 The number of edges of DBG. 71
A.3 Ratio of the number of edges to the number of nodes. 72
A.4 The size of succinct DBG [MB]. 72
A.5 Construction time of DBG [s]. 72
A.6 Time of count query for RRR with block size b. 73

xv

Introduction

Searching is one of the essential operations in the informatics. So, naturally
we want the operation to be as fast as possible. The indexing techniques allow
us to search in the text in almost constant time. However, the faster the index
operations are the more space it takes. The compromises are made to balance
between time and space requirements of the index of the text. The size of
the index may be reduced by using the succinct representations. The succinct
data structures allows us to reduce the size, but maintain the time of access
operations of the original data structures.

Everything gets more complicated when we need to search with possible
mismatches. This is the case, when we do not know exactly what to look
for and only have the approximate information about what we want to find.
However, the approximate string matching can be easily replaced by the exact
matching by using the clever approach.

Recent technological advancements have provided a large amount of data.
Among other biological data. For analysis and extracting meaningful inform-
ation new fast methods are required. In the bioinformatics the raise of the
amount of data is even more rapid than the other fields of the computer
science. Despite the fact that for many of the bioinformatics problems effective
algorithms are known, they do not work due to the size of the data.

The given problem we need to solve is approximate string matching for the
input string.

The thesis is divided into six chapters with following structure:

In Chapter Definitions 1 we will look at the data structures that are com-
monly used in the bioinformatics. We will discuss their effective imple-
mentations, time and space complexity.

In Chapter Bioinformatics 2 the basic introduction into the the bilogy
will be provided to understand used terminology.

1

Introduction

In Chapter Existing Solutions 3 we will overview and compare currently
used tools and applications to solve given problem.

In Chapter Analysis and Design 4 we will discuss our proposed solution
and its properties.

In Chapter Implementation 5 we will look on some of the interesting
parts of our implementation.

In Chapter Experiments 6 our implementation is test against real data.

In Conclusion the results are summarize and the possible future improve-
ments are discussed.

2

Chapter 1
Definitions

This chapter defines data structures that can be used for indexing a text. We
will discuss their construction complexity and operatins that are later used in
an implementation. For more informations or examples feel free to see Prof.
Crochemore publication [CHL07].

1.1 Basic Definitions

Definition 1.1 (Alphabet)
An alphabet Σ is a finite non-empty ordered set of symbols. We will refer to Σ
as set of symbols A, C, G, T.

Definition 1.2 (String)
A string over Σ is any sequence of symbols from Σ.

Definition 1.3 (Size of a string)
The size of a string w is the number of symbols in the text w ∈ Σ∗ and is
denoted |w|.

Definition 1.4 (Text)
The text t = t1 . . . tn is an input string that is indexed.

Definition 1.5 (Pattern)
The pattern p = p1 . . . pp is a string that we look for in the text.

Definition 1.6 (Substring)
A string x is a substring of a string y, if y = uxv, where x, y, u, v ∈ Σ∗.

Definition 1.7 (Subsequence)
A string x = x1 . . . xk is a subsequence of a string y, if y = y1x1 . . . ykxkyk+1,
where x, y, y1 . . . yk+1, x1 . . . xk ∈ Σ∗, k ≥.

3

1. Definitions

Definition 1.8 (Prefix)
A prefix of a string T = t1 . . . tn is a substring pref(m) = t1 . . . tm, where
m ≤ n.

Definition 1.9 (Suffix)
A suffix of a string T = t1 . . . tn is a substring suff(m) = tn−m+1 . . . tn, where
m ≤ n.

Definition 1.10 (K-mer)
A k-mer u is a substring of a string t of length k.

1.2 Self-Index

Self-index is a data compressed data structure that allow indexing and retrieving
any substring of the text. Indexing allows us to search through data generally
in time complexity linear to the size of the pattern p instead of linear in the
size of the text t. We suppose that |p| � |t|.

Inverted Index is an index data structure storing mapping for every unique
term to a collection of the texts. There are two types of inverted index. First is
inverted file index, that stores only information about in which the text the term
appears and second, full inverted index, that additionally stores information
about exact locations of all terms within texts. Both data structures support
quick answer to the number of the texts with the term. The term may be an
English word, a number, or a k-mer of binary sequence or a DNA sequence.
Look up time for any term is fast, it can be constant using hash tables or
logarithmic using sorted array.

1.3 Suffix Array

A suffix array (SA) is a lexicographically sorted array of all suffixes of a given
text T introduced by Manber and Myers in [MM90]. Suffix array itself contains
pointers to the start of each suffix of the text. More formaly, for every i, j, i < j
holds that suff(SA[i]) < suff(SA[j]). Using suffix array we can search for the
pattern p in the text t in O(|p|+ log(|t|)) time.

Suffix array advantage is the size of an index opposed to other uncompressed
indexing data structure. However, it may be still a lot of space to store the
SA. The number of elements of the SA is the same as the size of the indexed
text. So we need exactly |t| integers to represent SA and also the maximum
value of an integer is equal to the |t|. The most common integer sizes are 32
and 64 bits long. We can use 32 bits long integer only for texts long up to 232

characters (∼ 4GB file size of a plain text) and if the text is longer we need to
use 64 bits per integer.

The DNA base pairs alphabet contains only 4 symbols, so for representation
of the DNA we can use only 2 bits of memory for each symbol. However, for

4

1.3. Suffix Array

the SA we need to use numbers that can represent each position in the text.
Meaning that the SA, constructed for the DNA text t, requires |t| · integer size
space. For 32 bit integers, space required to store the SA, is more than sixteen
times greater than the size of the original text.

1.3.1 Construction of the Suffix Array

For the SA construction we need to have an ordered alphabet Σ with one
additional symbol $ with the lowest lexicographical value.

Before sorting suffixes, the $ symbol is appended to the end of the text
indicating its end.

Sort operation itself can be trivial but also ineffective. We can just compare
two suffixes and place them in the correct order, but for large texts more
effective algorithms were developed. Example 1.1 shows suffixes of the word
banana and resulting suffix array.

Note that arrays and vectors are zero-based (indexes starts from 0) and
string positions are one-based (positions starts from 1). Also the size of the
text |t| will be denoted as n.

Example 1.1 (All suffixes of the word banana and corresponding sorted array)
Position Suffix

1 banana$
2 anana$
3 nana$
4 ana$
5 na$
6 a$
7 $

sort−−→

Index SA Suffix
-1 7 $
0 6 a$
1 4 ana$
2 2 anana$
3 1 banana$
4 5 na$
5 3 nana$

1.3.2 Time and Space Complexity

1.3.2.1 Construction complexity

The most naive algorithm takes O(n2 logn) time to construct SA by simply
sorting all suffixes of the text t, which takes O(n logn) comparisons, where
each comparison takes O(n) time.

Time complexity of the SA construction is O(n) since 2003 by [BK03,
KS03, Morb]. Although it is asymptoticaly optimal algorithm, it contains large
hidden constant. Algorithm with construction complexity O(n logn) are also
still widely used. Most notable is [Mora].

Space required to store final the SA is O(n log(n)) of memory (see the
previous section). The algorithms are asymptoticaly always O(n) although an
additional temporary memory is required to sort the suffixes. The difference is
in the hidden constants.

5

1. Definitions

Table 1.1: Summary of time & space complexity of SA operation

Operation Time complexity Space complexity
Construction O(n) O(n log(n))
Search O(|p|) O(1)

Many existing algorithms can operate using only internal memory [Morb,
Mora]. To reduce internal memory requirements, algorithms which use also
external memory [KK14, KKP15, LTC13] were developed. For example al-
gorithm [LTC13] use only about 1.5n of internal memory at any time of a
construction of the SA but about 10n of external memory for temporary data.
Memory requirements of an algorithm that use only internal memory depends
mainly on the size of an integer that is used to represent the SA elements.
Algorithm [Mora] uses 5n or 9n for 32 or 64 bits long integer, respectively.

The algorithm that sorts only within internal memory is generally faster
than the algorithm that use also external memory (because it is rapidly slower
to read data from external memory). However, they are extremely useful when
we don’t have enough internal memory to process long input.

1.3.2.2 Search operation complexity

Search over sorted suffix array can be performed in O(|p| log(n)) time using
binary search algorithm (comparing |p| characters in total). This was improved
to O(|p| + log(n)) by [MM93] using additional longest common prefix array
(LCP array) information (O(n) additional space) and even faster search achived
by [AKO04] that needs only O(|p|) time using table called child-table (both
LCP array and child-table can be stored in additional O(n) bytes, but is
asymptoticaly still O(n logn)).

Table 1.1 summarizes time and space complexity of construction and search
operation for best known algorithms today.

Comparison of construct algorithms can be found online here [sac, Morb,
PST07] and in Chapter 4.

1.4 Burrows–Wheeler transform

The Burrows-Wheeler transformation was invented by Michael Burrows and
David Wheeler [BW94] (in short BWT) can be defined as follows, given a
string T of length n, sort all its n cyclic rotations in the same way as suffix
array in Section 1.2. Sorting is exactly the same because comparision of a
cyclic rotated strings terminates at the $ symbol. All cyclic rotations of the
text forms so called burrows-wheeler matrix (in short BWM) and BWT is the
string constructed from the last column.

6

1.4. Burrows–Wheeler transform

1 2 3 4 5 6 7
b a n a n a $
a n a n a $ b
n a n a $ b a
a n a $ b a n
n a $ b a n a
a $ b a n a n
$ b a n a n a

1 2 3 4 5 6 7
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

Table 1.2: Burrows-Wheeler tranformation using Burrows-Wheeler matrix for
string banana

BWT[i] =
{
TSA[i]−1 SA[i] > 1
T|T | SA[i] == 1

(1.1)

Figure 1.1: Connection between the SA and the BWT for the text T .

More formaly, the BWT can be construct using the suffix array and the
original text as defined in Equation 1.1.

The BWT has become very popular for the text compression application,
because of two important properties. First the BWT tends to have same
symbols grouped together so it is more suitable to compress transformation
using techniques as move to front or run-length encoding. In an Example 1.2
we can observe that after the BWT is applied to the text t resulting string
tends to have same symbols grouped. However, this property depends on the
input text. For highly repetitive strings there are longer sequences of similar
symbols and so better compression ratio is be achieved.

Note that the symbol $ is used only for sorting suffixes and resulting BWT
may or may not include it. It works either way.

Example 1.2 (BWT [GS12])
T: now is the time for the truly nice people to come to the party

BWT: oewyeeosreeeepi mhchlmhp tttnt puio yttcefn ooati rrolt

The second property is that BWT is inversible, allowing us to regenerate
all rotations and so the original text. To make inverse operation possible, we
need to store the index of a non-rotated original text in the SA. This index is
presented as I. Without this information it would be imposible to guess where
the text starts because all rotations have same resulted BWT.

1.4.1 Inverse of BWT

Reconstruction of the original text from the BWT can be done in several ways.
The first method use reconstruction of the BWM by sorting and appending

7

1. Definitions

columns. It is important to realize that when we sort the BWT we get the first
column of the BWM. We append it to the right of the BWT so two columns
of the BWM are now reconstructed. Next i+ 1 column is reconstructed by
sorting previous i columns, remember only last ith column and append that
column to the right of the not sorted i previous columns. The original text is
at row I or where the $ symbol is at the last position.

The second method is the last-to-front mapping (LF mapping). By applying
the BWT on the text, all occurrences of each symbol in the BWT have the
same relative order as in the original text. It is something similar to the stable
property of sorting algorithms. This can also be formulated as Lemma 1.1.

Next, we need to create addtitional array C of length |Σ|, such that C[c] =
the number of occurrences of all symbols lexically smaller than c in the text,
that is defined for all symbols from Σ and a function Occ(c, i) = the number
of occurrences of the symbol c in the prefix BWT[0 . . . i]. Then we can define
a function LF(i) as follows.

LF(i) = C[BWT[i]] + Occ(BWT[i], i) (1.2)

Lemma 1.1 (LF mapping property)
The ith occurrence of a symbol c in the BWT has the same rank as the ith
occurrence of c in the original text.

The previous equation 1.2 can be interpreted as that the symbol c at
position i in the BWT is located in the text at position LF (i). We say that
the symbol c is symbol tj from the original text at position j. Using the LF
mapping we can get symbol tj−1 (symbol right before c in the original text) by
BWT[LF(i)]. We can now reconstruct the original text by applying the LF
mapping, starting at the last position of the original text (position I of BWT),
n times or until the $ symbol is reached.

1.5 FM-Index

The FM-index is a self-index created by Paolo Ferragina and Giovanni Man-
zini [FM00]. They describe how the BWT, together with additional data
structure, can be used as a space-efficient index of the text t. The FM-index
use the LF mapping to perform backward search to find both the number of
occurrences of the pattern and their locations.

Example 1.3 is used to define and demonstrate operations on the FM-
index. Indexed text is banana. The FM-index consists of the Burrows-Wheeler
transformation of the text, table C[c] and function Occ(c, i) as defined in the
previous section.

8

1.5. FM-Index

i F BWT
0 $ a
1 a n
2 a n
3 a b
4 b $
5 n a
6 n a

c $ a b n
C[c] 0 1 4 5

Table 1.3: FM-index example: data structures

sp = C[c] + Occ(c, sp− 1) + 1
ep = C[c] + Occ(c, ep)

Figure 1.2: Equations for updating borders of search interval

1.5.1 Searching

We want to search for occurrences of a pattern p = ana over the text t. The
operation iterates backwards over the pattern. At the beginning of the search,
variables sp = 1, ep = |t| and i = |p| are defined. Variables sp and ep (starting
and ending position, respectively) are used as an interval where a suffix of the
pattern is found in the BWT of the text.

Every step of the search operation starts by defining c = pi, ith symbol of
the p. The sp and ep are updated by Equations 1.2 and i is decreased. At
this point Lemma 1.1 was used. The sp and ep are boundary positions of the
interval over BWT. Repeat the steps until either i == 0 or sp > ep is reached.

Simple example: First proceed by finding the rows beginning with the last
character of the pattern p|p|, a in the example. Update sp = C[a] + Occ(a, 0) +
1 = 2 and ep = C[a] + Occ(a, 3) = 4 to get new sp and ep. i is decreased 1. At
the end of every step sp and ep form boundary positions of the suff(i) of the p.
The number of steps is |p|.

In short, we apply the LF mapping repeatedly to find the range of rows
that starts with the suff(i) of the p until suff(0) or the range becomes empty,
in which case p does not occur in t.

For more detailed example you can visit [Bow11a].

1.5.1.1 Time complexity

Lookup to the table C needs constant time, the function Occ(c, i) can be
performed in constant time by remembering the number of the occurrences
for every position and every symbols of the alphabet. Time complexity of the
funtion Occ is also O(1). These operations are done for every character of the
pattern p with length |p|.

9

1. Definitions

Time complexity of search is O(|p|). We need to mention here that constant
lookup time for the function Occ takes too much space and it is not suitable
for DNA data or long texts in general. This means that time complexity of
search operation in our case will be defined as O(|p|γ), γ is time complexity
for the function Occ and will be discussed at Section 1.7.2.

1.5.2 Locating

When we find all occurrences of the pattern p we can easily determine their
positions in the text from the SA. We already have range of the indexes to the
BWT for all occurrences and by just looking at the same indexes to the SA we
will get the position within the text for each index.

1.5.2.1 Time complexity

For locating we use search operation (O(|p|γ) time) and then determine posi-
tions from the SA. This operation also takes constant time but we need too
much space to sacrifice for it.

Time complexity is therefore O(search + location) = O(|p|γ).

1.5.3 Extracting

Extract operation using complete BWT is trivial. We just use LF mapping
from any position of the BWT and we will get string as long as we need.
However, later representation of the BWT will need slightly different approach.

Time complexity is O(search) +O(lτ), where l is a length of the extracted
string and τ is time complexity of the LF mapping operation (O(1)).

Simplified as O(|p|γ + l).
SA is memory consuming. The bright side we don’t have to keep the whole

SA but just some of its elements. This is so called Compressed Suffix Array
(CSA) which we will discussed lates at Section 1.6.

1.6 Compressed Suffix Array

1.6.1 Ψ based compression

Space requiremens of the suffix array led to creating a concept of compressed suf-
fix array (CSA). Introduced by [GV00] with motivation to create space-efficient
text indexing method that support fast string search. Their representation of
the CSA is a hierarchical data structure composed of the levels k ≥ 0. The
“zero” level (k = 0) is the original SA. The first level (k = 1) stores half of the
original information, n

2 elements. The kth level stores exactly n
2k elements of

the SA. As we can observe, at every level k + 1 we have to store half of the
elements of the level k. Authors recommend to use level l equal to dlog logne.

10

1.6. Compressed Suffix Array

Construction of a level SAk+1 contains four main steps to transform level
SAk into an equivalent but more succinct representation:

Step 1 Produce a bit vector Bk of nk bits, such that Bk[i] = 1 if SAk[i] is
even and Bk[i] = 0 if SAk[i] is odd.

Step 2 Map each 0 in Bk onto its companion 1. (We say that a certain 0
is the companion of a certain 1 if the odd entry in SA associated with
the 0 is one less than the entry in SA associated with the Bk = 1.)
We can define for this Ψ function as follows:

Ψk(i) =
{
j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3 Compute the number of 1s for every prefix of Bk.

Step 4 Create new SAk+1 with elements from SAk that have 1s in Bk.
Divide each of them by 2.

Succinct representation contains only SAl, Bl and function Ψ. The previous
levels are discarded.

When we want to reconstruct element from original SA at index i we use
Algorithm 1 for CSA with level l. Example of construction of a CSA where
level l = 3 is in Tables 1.4.

Algorithm 1 Recursive lookup of entry SAk[i] in a CSA. Variable l is level of
the CSA.

procedure rlookup(i, k)
if k = l then return SAl[i]
elsereturn 2 · rlookup(rankk(Ψk(i)), k + 1) + (Bk[i]− 1)
end if

end procedure

Time complexity is O(log logn) when we use level l = dlog logne. Time
complexity therefore depends on level l. Other operations are considered to be
constant time.

1.6.2 Sampling based compression

Another way to reduce space requirements is to simply sample the SA. Sampling
takes every kth position of the SA, discarding others and re-creating them as
needed. Example 1.5 shows sampled CSA with sample rate equals to 3.

As opposed to the Ψ based CSA, sampled CSA needs the BWT with the
array C to be able to reconstruct missing elements.

11

1. Definitions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
B1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0

rank1 1 2 2 3 4 5 5 5 6 6 6 7 7 8 8 8
Ψ1 1 2 9 4 5 6 1 6 9 12 14 12 2 14 4 5

1 2 3 4 5 6 7 8
SA2 4 7 1 6 8 3 5 2

B2 1 0 0 1 1 0 0 1
rank2 1 1 1 2 3 3 3 4

Ψ2 1 5 8 4 5 1 4 9

1 2 3 4
SA3 2 3 4 1

Table 1.4: Compressed Suffix Array using Ψ function

If we want to look up SA[i] but it has not been sampled, we can use LF
mapping LF(i) to step one position to the left in the text and to index j in
the BWT and look if element CSA[j] is sampled, if not, we apply LF mapping
until reaching sampled position. To reconstruct the position from the CSA[i]
we simply add the number of steps that were used to reach CSA[j] from CSA[i]
to the position from CSA[j]. CSA[i] = steps + CSA[j].

i F BWT
1 $ a
2 a n
3 a n
4 a b
5 b $
6 n a
7 n a

i F BWT CSA
1 $ a 7
2 a n -
3 a n -
4 a b 2
5 b $ -
6 n a -
7 n a 3

Table 1.5: Compressed Suffix Array using sampling

Time to recalculate any position of the SA from sampled CSA is equal to
the number of LF mapping steps we have to use. The maximum number of
steps is limited by constant k, so in the worst case we need to apply k-times
LF mapping to get to the sampled element. If we choose k as small constant,
we can consider operation to perform in O(1) time.

1.7 Succinct Data Structures

According to [Mun], a succinct data structure is a data structure which uses
an amount of space of representation close to the information theoretic lower

12

1.7. Succinct Data Structures

bound, but is still time-efficient for query operations. The goal is to perform in
the same time as the “normal” data structure without such space constraints.

The concept was originally introduced by Jacobson [Jac88] on static graphs,
trees and bit vectors. Defined two functions rank and select. Unlike lossless
data compression algorithms, succinct representation do not need data to be
decompressed before performing operations on them.

1.7.1 Rank and Select

Rank & select data structures are one of the fundamental building blocks for
many modern succinct data structures. Asymptotic space requirement for
these two data structures is same as asymptotic lower bound of information
theory.

1.7.1.1 Rank

Data structure rank with defined function rank(c, i) is constructed over the
text t returns the number of occurrences of the symbol c in the prefix pref(i)
of the text. The function Occ defined in the same way was used in the LF
mapping and it can be replaced by the rank. Example 1.3.

Example 1.3 (Example of the rank operation)
↓

i 0 1 2 3 4 5 6 7 8 9
0 1 1 0 1 0 1 0 0 1

rank(0) = 0

↓
i 0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 0 1 0 0 1

rank(5) = 3

The Occ function can be performed without any additional space, but at
the cost of the query time (O(|t|)). A constant time query is achieved by
storing the number of occurences for each position of the text, but it uses too
much space.

A trivial representation of the rank is to store precomputed every kth

position of the array. Query rank(i) to a position i, which is precomputed,
is performed in constant time by simple access to the table. Query to any
position between two precomputed, j, i < j < i + k, need to scan the text
from the position i to the position j using linear algorithm, find the number of
occurrences within the interval and add it to rank(i) value.

If we choose the k small enough time complexity of the rank query is
assumed to be O(1). Besides original text we need additional table K of

13

1. Definitions

precomputed elements. Table K has l = |t|
k elements and every element needs

to be big enough to store the largest number of occurrences of the symbol over
entire text. Let say x is the largest number of occurrences than each element
needs dlog xe bits of space. Overall space required |t|+ ldlog xe|Σ|.

Less trivial and more interesting representation of the rank data structure
performs query operation also in O(1) time, but space requirements are slightly
better. An idea is similar to the range minimum query. For simplicity we will
define it only for bit vectors with function rank(i) defined as the number of
occurrences of the bit 1 in the prefix pref(i) of the text t ∈ {0, 1}∗.

Divide an array into the blocks of length b = b log n
2 c. Consecutive blocks

are grouped into the superblocks of length s = bblognc. For each superblock
j, 0 ≤ j ≤ b |t|s c we define a table Rs[j] = rank(j · s), which is the number of
occurrences of the 1 within pref(j · s). Next, for every block k of the superblock
j, 0 ≤ k ≤ b |t|b c, we define a table Rb as follows Rb[k] = rank(k · b)− rank(j · s),
number of 1s from start of the superblock j to the position k · b.

We have one table Rs and for every superblock one table Rb. The table Rs

needs O(|t|
log |t|) bits and the Rb O(|t| log log |t|

log |t|) bits. Asymptoticaly it has same
space requirements as previous representation, but may be better on real data.
We can find different definitions with slightly different space requirements, for
example in [GGMN05].

1.7.1.2 Select

The Select is an inverse operation to the rank. The function select(c, i) answers
the question at which position is ith occurrence of the symbol c. Example 1.4.

Example 1.4 (Example of the select operation)
i 0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 0 1 0 0 1
↑

select(0) = 0

i 0 1 2 3 4 5 6 7 8 9
0 1 1 0 1 0 1 0 0 1

↑
select(5) = 9

A simple solution in O(logn) time only requires to use rank data structure.
If we want a jth position of the symbol c, select(c, j), we use binary search over
rank structure to find rank(c, i) = j and rank(c, i− 1) = j − 1.

The rank query is constant, but we need to use binary search with time com-
plexity O(logn). Overall time complexity is O(logn) without any additional
space.

14

1.7. Succinct Data Structures

Constant time version of the select is more complex than the rank solution.
Some of the solutions, like [Cla98], uses too much space overhead to enable
constant time select query to be practical.

In the next section we will overview some of the most used representations
for the bit vectors that supports both rank and select queries in constant time.

1.7.1.3 RRR

The RRR data structure, introduced by [RRR02], supports both rank and
select queries in O(1) time and requires B(n,m) + o(n) +O(log logm) bits to
store the text of size n, where B(n,m) = dlog

(m
n

)
e is the minimum number of

bits required to store any n-element subset from a universe of size m.
The construction of the RRR structure is similar to the previous one. We

divide bit vector into blocks of the size b. Blocks are grouped into superblocks
of size f . This already allows us to construct an index to enable O(1) rank
query. In the Example 1.5 the first step is shown for block size b = 5 and
superblock of three blocks, f = 3.

Example 1.5 (RRR construction)
Superblocks s0 s1 s2

Blocks b0 b1 b2 b3 b4 b5 b6 b7 b8
00101 00110 10110 10000 01001 01001 10110 00101 10110

As the first step, we replace each block with a pair of values. A class value
C and a offset value O. We use C with O together as a look up key into the
table of precomputed ranks. For every block i, 0 ≤ i < b |t|b c, we define C to be
C(i) = popcount(i), where function popcount() returns the number of set bits
in the block i. Each block is now in exactly one class c, 0 ≤ c < b.

Example 1.6 show this process. Bit vector is divided into three blocks and
converted to pair representation of a class and an offset.

Example 1.6 (RRR construction)

1 0 0 1 1 1 0 0 1 0 1 1 0 0 0y
1 0 0 1 1 1 0 0 1 0 1 1 0 0 0y

c o c o c o
3 4 1 4 2 9

The class number is used as a direct index to the table G of the size b. For
the class c, 0 ≤ c < b, G contains a table at G[c] with

(b
c

)
elements. Table G[c]

corresponds to all possible permutations of 1s bits within a single block which

15

1. Definitions

have popcount equal to c. Example 1.7 shows all possible permutations for the
block bi of the size b = 5 and popcount(b) = 2.

Example 1.7 (All permutations for block of size 5 and popcount = 2.)
block class
00011 2
00101 2
01001 2
10001 2
00110 2
01010 2
10010 2
01100 2
10100 2
11000 2

Example 1.8 (RRR data structures)

c o c o c o.

5
4
3
2
1
0

classes
00011

00101

01001

10001

00110

01010

10010

01100

10100

11000

block values

00012

00112

01112

11112

00122

01122

11122

01222

11222

12222

12345

cumulative rank

For every element of the top level of table G we need dlog be bits, overall
b ∗ dlog be, but asymptoticaly O(log b). Offset values vary in the size. Every
class c needs asymptoticaly O(log

(b
c

)
) bits on element of G[c]. The number of

elements is
(b

c

)
.

We still can’t perform rank query in the constant time, but at least we
have achieved a possible compression, because we can use variable length code
to store offset O values. Thanks to C value we know how many bits follow for
paired O value.

To be able to perform asymptoticaly constant time query we use a method
discussed by [Mun96]. For every superblock with start boundary i we store
the rank over the pref(i) (from the start up to the superblock boundary i).

16

1.7. Succinct Data Structures

method size (bits) rank select
esp nH0(S) + o(n) O(1) O(1)

recrank 1.44m log n
m +m+ o(n) O(log n

m) O(log n
m)

vcode m log n
log2 n

+ o(n) O(log2 n) O(logn)
sarray m log n

m + 2m+ o(m) O(log n
m) +O(log4 m

log n) O(log4 m
log n)

darray n+ o(n) O(1) O(log4 m
log n)

Table 1.6: The space and time results for esp, recrank, vcode, sarray and darray

Additionally, we store a prefix sum of the bits, this allows us to iterate only over
the blocks within the required superblock. Now we can perform asymptoticaly
constant time rank query.

To calculate rank(i) we use procedure as defined in [Bow11b]:

Step 1 We calculate in which block our index is as ib = i
b .

Step 2 Calculate which superblock our block resides in as is = ib
f , f is a

number of the blocks within one superblock.

Step 3 Use pre-calculated sum of previous ranks up to the superblock is
boundary and add it to the result.

Step 4 For every block before ib, we add its class value c to the result. It
is equal to the rank query over entire block.

Step 5 We perform rank(j) query over block ib from block start to the
position j = i mod b.

Only non-constant operation is iteration over the blocks within one super-
block. The number of blocks is bound to the constant f . Other values are
pre-computed. We have O(1) time rank query with reasonable additional space
requirements.

For the select(i) query, it can be answered in O(1) time, it will need
additonal space. Practical implementation by [CN09] uses binary search over
pre-calculated prefix sum of the bits to find superblock is, prefix sum < i.
Then iterate over the blocks within the superblock until we found block where
ith symbol is.

In the worst case, time complexity is O(log |t|f) and O(1) on average.

1.7.1.4 SD Array

Another rank and select representations were introduced by [OS06]. Represent-
ations are summarized in the Table 1.6 for an ordered set S ⊂ {0, 1, . . . , n− 1}
with m elements. H0(S) ≤ 1 is the zeroth order empirical entropy of S.

17

1. Definitions

root
string: ACAAGATGCCACGGCCTCCTGCTGTTGGCACGGCCACCCTGCC
vector: 0000101100001100100110111111000110000001100

node0
ACAAACCACCCCCCCACCCACCCCC
0100011011111110111011111

node00
AAAAAAA

node01
CCCCCCCCCCCCCCCCCC

node1
GTGGGTTGTGTTGGGGTG
010001101011000010

node10
GGGGGGGGGGG

node11
TTTTTTT

Figure 1.3: Wavelet tree of a string

Notable representation is so called SDarray. The idea is to use two different
techniques for sparse and dense vectors. Sarray is used for sparse vectors.
For an vector B of n elements and m ones bits (set bits, 1s), we define table
x[0 . . .m− 1] such that x[i] = select(i+ 1), 0 ≤ i < m, over vector B.

1.7.2 Wavelet Tree

The wavelet tree is a data structure representing a string using a hierarchy of a
bit vectors. The data structure were introduced by [GGV03]. It generalizes the
rank and select operations for better representation of an arbitrary alphabet.

It the original paper it was used to represent suffix array, but it is usable for
any string over any alphabet Σ0. Wavelet tree converts a string into a balanced
binary tree of a bits vectors. Recursively divides an alphabet Σi into two
subsets, Σi

l and Σi
r, at each level until leaf subsets contains only one symbol c

from original alphabet. Every node of the tree represents a subsequence tj of
original the text t, contains symbols from particular subset Σj . Bit 0 replace
symbols from the Σj

l and bit 1 replace symbols from the Σj
r.

Figure 1.3 of a preparation and construction of an wavelet tree of a string
ACAAGATGCCACGGCCTCCTGCTGTTGGCACGGCCACCCTGCC.

1 We start with alphabet Σ0 = A,C,G, T and a string t0 = ACAAGATGCC
ACGGCCTCCTGCTGTTGGCACGGCCACCCTGCC.

2 We divide Σ into two subsets Σl = A,C and Σr = G,T .

3 We create bit vector b0 by replacing all symbols ∈ Σl with 0 bit and
symbols from Σr with 1 bit.

18

1.8. De Bruijn Graph

4 Root node b0 = 0000101100001100100110111111000110000001100,
0 ∈ Σl, 1 ∈ Σr.

5 We create a subsequence of the t0 where b0[i] = 0 as t1l and t1r =
t0[j], ∀j that b0[j] = 1.

6 t1l = ACAAACCACCCCCCCACCCACCCCC with alphabet Σ1 = A,C, t1r =
GTGGGTTGTGTTGGGGTG with Σ1 = G,T .

7 For t1l we divide Σ1 into Σl = A and Σr = C and repeat previous
steps for t0.

8 We repeat these steps for all subsequences until alphabet of a node
contains only one symbol.

We do not store substring for all nodes and also bit vectors of the leafs
nodes. All bit vectors are represented as RRR data structures for fast rank
and select queries.

Rank query is super simple. If we want rank(A, 30), we start from the
root node. As we know that A is in the Σl, we need to get the number
of 0s in the text up to 30th position. We use Rank(30) to get the number
of 1s bits. The number of 0 is a complement to the 30, occurrences0 =
30− rank(30) = 16. At the next level, node0, to find occurrences of 0s up to
the 16th, occurrences1 = 16− rank(16) = 6. As we are at the last stored node,
result of the rank(A, 30) = 6.

Asymptotic time complexity of the rank is O(log Σ) if we use balanced
binary tree.

Select query starts from the leaf. For example select(A, 6), at the node
node0 finds number of all bits up to 6th 0 bit, 16 bits. At the root node, we
simply finds position of the 16th 0 which is the result, select(A, 6) = 30.

Asymptotic time complexity, if we consider select over the RRR structure
as O(1), is the same as the rank query O(log Σ).

1.8 De Bruijn Graph

The De Bruijn graph is a directed graph, where each node represents a k-mer.
An edge from a node u to a node v only exist if they overlap with k−1 symbols.
A node u is denoted by (u1, . . . , uk) where u1, . . . , uk ∈ Σ. For any pair of
nodes u = (u1, . . . , uk) and v = (v1, . . . , vk) such that u2 = v1, . . . , uk = vk−1,
the graph has a directed edge from u to v labeled with vk symbol.

We will consider the De Bruijn graph as a subgraph of complete De Bruijn
graph that contains only nodes of k-mers that occurs in the text. Example 1.4
shows De Bruijn graph of a string ACGCGCGCTACGTTACGT.

As we can see, k-mers ACG, CGC, GCG, TAC and CGT occurs more than once
in the text, but in the De Bruijn graph we use only one node to represent each

19

1. Definitions

CTA

TACTTA

ACG CGC

GCG

GCT

CGT

GTT

C

C

G G

TC

T

C

A

T

A

Figure 1.4: De Bruijn graph

k-mer. The maximal number of the output edges for each node is size of the
alphabet |Σ|.

The maximal number of nodes is |Σ|k. Every node represents k length
subsequence of the text. As we traverse the graph, the last k edges define the
current node.

In the bioinformatics De Bruijn graph is used in DNA assembly technique
De novo [LFB+14].

1.8.1 Succinct De Bruijn Graph

Besides other succinct or compressed representations of the De Bruijn graph [CB11,
CR13], we will discuss representation of a succinct De Bruijn graph introduced
by [BOSS12].

Let G be k-dimentional De Bruijn graph of a string t on alphabet Σ, n be
the number of nodes and m be the number of edges. By definition succinct
representation of G supports the following operations:

20

1.8. De Bruijn Graph

- Forward(i) return index of the last edge of the node pointed to by
edge i.

- Backward(i) return index of the first edge that points to the node
that the edge at i exits.

- Outdegree(v) returns the number of outgoing edges from the node v.

- Outgoing(v, c) returns the node w pointed to by the outgoing edge of
the node v with the edge label c. If no such node exist returns −1.

- Indegree(v) return the number of incoming edges to the node v.

- Incoming(v, c) return the node w = (w1, . . . , wk) such that there is
an edge from w to the node v and w1 = c. If no such node exists
return −1.

- Index(p) return the index i of the node whose label is the string p of
length k.

1.8.1.1 Construction

For constructon, lets consider that the De Bruijn graph is represented as an
array H of pairs. Each pair consists of a node and an edge label. If a node
i has more edges J , we will have |J | pairs for the node i and ∀j ∈ J . An
edge label of a pair l is denoted as Edge[l] and a node label as Node[l]. Also
we add k dummy symbols $ at the start of the text. Nodes are sorted in the
lexicographic order of reversals of associated node labels. Figure 1.5 shows an
example.

We also need to define a set Σ− of the size |Σ|, Σ− ∩ Σ = ∅. For each
symbol c ∈ Σ we define c− ∈ Σ− and a function σ(c−) = c. We use symbols
from Σ− as an edge symbols for some nodes instead of symbols from Σ. If any
of two nodes i and j have the same suffix suff(k − 1) and the same edge label
c, we exchange the edge label c in the second node with corresponding symbol
c− ∈ Σ−, σ(c−) = c. In other words, for every two nodes that can get to the
node j using the same edge label c, we want to have only one edge symbol c
in the edge array to maintain the Lemma 1.1.

The succinct representation consists of a three arrays. Let m be the number
of pairs in the H. An array W of the size m, an array last of the size m over
the binary alphabet 0, 1 and an array F of the size |Σ|.

The array W [i] = Edge[i], 0 ≤ i < m, represents the labels of the edges.
The last array is defined as follows: last[j] = 1 if j = m or the label of the
node j is different from label of the node j − 1, Node[j] 6= Node[j − 1] and
last[j] = 0 otherwise. The array F represents cumulative occurrences of the
last symbols of node labels Node[j]k, defined exactly like the C array from the
Section 1.4.1.

21

1. Definitions

c F[c]
$ 0
A 1
C 3
G 7
T 10

index Last Node Edge
0 1 $ $ $ T
1 1 C G A C
2 1 $ T A C
3 0 G A C G
4 1 G A C T
5 1 T A C G−
6 1 G T C G
7 0 A C G A
8 1 A C G T
9 1 T C G A−

10 1 $ $ T A
11 1 A C T $
12 1 C G T C

Figure 1.5: De Bruijn graph representation.

The array W is represented using the wavelet tree, the bit vector last as
RRR data structure and the F as simple table with constant access time.

In the next section we will discuss only operations forward and index.
Remaining operations are defined in [BOSS12].

1.8.1.2 Forward

The last symbol of the node labels maintain the same relative order as the edge
labels. Following an edge from the node i is simply finding the corresponding
relatively positioned node j. For that the rank and select queries over arrays
W and last are used.

First we access W [i] to get the edge label c, then calculate rank(c, i) to
get the number r of occurrences of the symbol c up to the position i. Now to
find rth occurrence of the symbol c in the nodes, we take position j of first
occurrence from the table F and select rth occurrence using the last array.
This require us to count how many 1s are before j, occ = rank(c, j) and then
select (occ + r)th occurrence, forward(i) = select(c, occ + r).

22

1.8. De Bruijn Graph

sp = pred(last,Outgoing(succ(last, sp), cd+1)) + 1
ep = Outgoing(ep, cd+1)

Figure 1.6: Equations for updating borders of search interval, De Bruijn graph

1.8.1.3 Index

The algorithm is similar to the FM index search defined in Section 1.5.1. Only
difference is Equations 1.6 for updating the sp and ep interval boundaries.

The function pred(c, i) = select(c, rank(c, i)) returns the position of the
first occurrence of the symbol c when we scan the text from the position i to
the start and the function succ(c, i) = select(c, rank(c, i− 1) + 1) returns the
position of the first occurrence of the symbol c when we scan the text from
the position i to the end.

23

Chapter 2
Bioinformatics

This chapter provides brief introduction into the biology needed orient in the
terminology. The bioinformatics field is focused on developing methods and
algorithms to understand biological data.

2.1 DNA

DNA is a double helix structure consisting of four types of the molecules called
nucleotides. The DNA is a long sequence of nucleotides of about 3 billion pairs.
The nucleotide bases are Adenine, Cytosine, Guanine and Thymine. We can
define them to form a four-letter alphabet Σ = {A, C, G, T}.

The pairs are two nucleotides attached together. Base A pairs only with
T and C pairs only with G. We can say that A and T are complementary and
the same holds for C and G. DNA have two strands of the complementary
sequences. We can view the strands as two strings over the alphabet Σ. Given
one strand we can construct the other strand by complementing its the bases.
So we can only represented DNA by one strand to reduce the size.

DNA is wrapped into the structure called chromosomes. The number of
chromosomes depends on specie. Human DNA is made from 23 chromosomes
and all chromosomes form together the genome.

2.2 RNA

RNA is important molecule that is used to transfer genetic information. RNA
has only one strand and the same four-letter alphabet with one change. The
nucleotide T is replaced by uracil (U).

RNA has different types and these types are called by their function. For
example mRNA is a messenger RNA that transmits the information from the
DNA to the reproduction.

25

2. Bioinformatics

symbol corresponding nucleotides
A A
C C
G G
T T
U U
R A or G
Y C, T or U
K G, T or U
M A or C
S C or G
W A, T or U
B C, G, T or U
D A, G, T or U
H A, C, T or U
V A, C or G
N A C G T U
- gap

Table 2.1: Defined symbols of FASTA format.

Before we can process DNA sequences in computers, it needs to be digitized.
This process is called DNA sequencing. While sequencing reading errors may
occurs. Instead of guessing values these regions are represented by “dont know”
symbols. Another type of error is produced by organisms itself by mutation.
Mutation of single nucleotides is called single nucleotide polymorphism (SNP).

To describe the sequence of nucleotides we will use the nt prefix. For
example, 20-nt string is a sequence of 20 nucleotides.

2.3 FASTA

A sequence in FASTA format begins with a single-line description, followed
by lines of sequenced data. To represent one symbol from DNA is use 1 B for
each symbol. Besides five nucleotides symbols, FASTA support another 12
symbols that represent different set of nucleotides. Table 2.1 shows all defined
symbols with their corresponding set.

The description line always starts with > symbol.
Some of the other formats are using binary representation of the DNA,

where each nucleotide (without U) can be represented by only 2 bit of memory.
Binary formats are harder to process, but uses significantly less space.

26

2.4. CRISPR

2.4 CRISPR

The CRISPR/Cas9 system is a genome engineering approaches, that supports
genome editing. The systems consists of two components, a guide RNA (gRNA)
and a Cas9 enzyme. The gRNA is a short synthetic RNA sequence necessary
for Cas9 binding of a 20-nt user defined sequence which defines the genomic
target to be modified.

The Cas9 is used as a carrier that locates specific regions. These regions
are defined by the gRNA followed by the PAM sequence. We can change the
genomic target of Cas9 by changing the target sequence gRNA.

PAM sequence has lenght of 3 to 6 nucleotides and is defined in FASTA
format. For example PAM sequence NGG represents all possible strings of the
length 3 where N is expanded by all possible symbols it represent.

To be more technical, the gRNA, Cas9 and PAM are strings over the
DNA alphabet and targeting their location in the genome is equal to searching
operation. Therefore, CRISPR/Cas9 system is a string matching problem.

A guide is a target region in the genome we want to edit. Due to the SNP
we need to be able to search also for the sequences that are similar to the guide
but they have one or more SNP. All sequences that have m or less SNPs from
the guide are called off-targets.

The CRISPR/Cas9 system can be used for various purposes. It can cut or
enable targeted regions. For the cut operation, we can use single or double
strand gRNA targeting sequences. Double strand targeting is more effective.

Using a gRNA to target specific region, we need to be able to score how
likely it is to succeed. This is why we need the off-targets. The input guide is
scored based on the occurrences of its off-targets. The more occurrences the
lower chance that the guide succeed.

To actualy score single guide all of its off-targets needs to be scored first.
Single off-target is scored based on the number of occurrences in the genome
and the number of SNPs.

In the thesis all sequences are represented by FASTA format.

27

Chapter 3
Existing Solutions

All CRISPR/Cas9 design systems are using the same main process. The input
is a sequence or multiple sequences. If the input is multiple sequences each of
them is considered as individual case and is processed separately.

First, all applications try to find potential guide RNA sequences in the
input sequence. The input sequence is scanned for the PAM sequence, the
guide is extracted as region before PAM sequence. For every possible guide,
we scan entire genome to find the all off-targets with possible SNP mismatches.
After the off-targets for each guides are found, the application scores guides
and off-targets. Most applications uses scoring as defined in [HSW+13].

A lot of tools that exists now for CRISPR design are available only online
through web interface. For the tools that do not haves public information
about implementation or source code, we will write something about their
features.

Summary of the process of designing CRISPR guides:

1. Scan input sequence for all possible guides and their PAM sequences.

2. For every guide x find all occurrences of the x with maximum k mis-
matches. The sequences are called the off-targets.

3. Score every off-target.

4. Score every guide.

5. Show results.

3.1 Existing Libraries

3.1.1 Bowtie

The Bowtie introduced by [LTPS09, LTPS] is a software library that is widely
used in the bioinformatics for sequence alignment an sequence analysis. The

29

3. Existing Solutions

Bowtie indexes the genome with the FM Index.
Thanks to its ease of integration and speed, many applications for CRISPR

Design use the Bowtie to perform scans of the genome to find the off-targets.
The design of the Bowtie search algorithm use some heuristics and thus is
not that good for exhaustive search in the entire genome and may miss many
potential off-targets.

3.2 Existing Applications

3.2.1 ZiFiT

Author Zinc Finger Consortium [SMR+10]
Web page http://zifit.partners.org/ZiFiT/

Mismatches 3 (fixed)
Available Online

Year 2013

ZiFiT was originally published in 2013 as a tool for enabling identification of
potential zinc finger nulcease (ZFN) sites in specific target sequences. Later
extended by support for the CRISPR/Cas taget sites identification and con-
struction of gRNA. The application is available online through web interface.

ZiFiT supports only one to one design, one gRNA to one target site (this
is common for all tools with few exceptions which will be mentioned). Also is
able to design a pair of gRNAs for a double strand approach.

The application input is single or multiple FASTA sequences. ZiFiT
only scan some regions of the genome for off-targets up to 3 mismatches.
The maximum number of mismatches is fixed and cannot be adjusted. The
application supports only one PAM sequence NGG.

Output of the application is a list of possible target sites with found off-
target sites. Each off-taget site has a position where occurs, a number of
occurrences and highlighted mismatch position.

A list of currently supported species: Human, mouse, zebrafish, rat, mos-
quito, fly, roundworm.

3.2.2 CRISPR Design

Author Zhang Lab, MIT [RHW+13]
Web page http://crispr.mit.edu/

Mismatches 5
Available Online

Year 2013

30

http://zifit.partners.org/ZiFiT/
http://crispr.mit.edu/

3.2. Existing Applications

An application CRISPR Design is mainly notable for being the first published
tool for sgRNA design. The CRISPR Design tool is a web application created
to simplify the process of CRISPR guide selection in an input DNA sequence.

Input of the application is a sequence (or sequences), the user e-mail address
and a custom name of a search. A link to the results is send to the e-mail
adress after the evaluation of the input. The output contains a list of target
sites with score and corresponding off-target sites.

The CRISPR Design uses prior information about occurrences so it does
not guarantee to find all off-target. The application supports only one PAM
sequence NGG. CRISPR Design uses off-target scoring based on [HSW+13].

A list of currently supported species: Human, mouse, zebrafish, c. elegans,
rat, fly, rabbit, pig, possum, chicken, a. thaliana, dog, mosquito and stickleback.

3.2.3 Cas9 Design

Author Ming Ma, Adam Y. Ye, Weiguo Zheng, and Lei
Kong [MYZK13]

Web page http://cas9.cbi.pku.edu.cn/
Mismatches 1

Available Online
Implementation Java, Bowtie, Tabix (SAMTools), Vienna RNAfold

Year 2013

Tool introduced by [MYZK13]. Authors created a database of gRNAs and
their corresponding efficiency with many elements freely available. Application
is written in Java programing language and Tomcat web server.

The first step is to obtain all candidate sequences from the input based
on the N20NGG template pattern, that represents all possible combinations
of 20-mer sequence ending with NGG PAM sequence, by using Java regular
expression matching. In the second step, program puts all candidate guides to
a FASTA file and try to map them onto target genome using the Bowtie. The
next steps are check for any SNPs and predicting RNA secondary structures
for candidate guide RNA. The output is similar to previous tools, a list of
possible target sites with location on the genome. The Cas9 Design does not
look for the off-targets.

Cas9 Design tool provides limited features compared to the alternatives.
For example the maximum number of mismatches is only 1.

A list of currently supported species: Human, mouse, zebrafish, rat, fruitfly,
tomato, sheep, honeybee.

31

http://cas9.cbi.pku.edu.cn/

3. Existing Solutions

3.2.4 CasOT

Author PKU Zebrafish Functional Genomics Group, Peking Uni-
versity [RHL+13, MAS+13, XCK+14]

Web page http://eendb.zfgenetics.org/casot
Mismatches 6

Available Offline (Windows, OSX, Unix)
Implementation Perl script

Source code http://eendb.zfgenetics.org/casot/download.php
Year 2014

CasOT is a Perl script that can run on any main platform (Windows, Unix
systems or OS X). The application provides searching mode as single gRNA
design, paired gRNAs (double strand approach) design and a target-and-off-
target searching mode.

In the first two modes the application input is a single target site. The
third searching mode is for helping to design target sites from a sequence up
to 1kb.

The input for the first two methods is a FASTA sequence x of 21 up to 33-nt
symbols, where last three symbols are a PAM sequence and a genome sequence
t file to search for off-target sites. We can find several widely used genomes
available at the official website. A user can also specify several parameters like
PAM type and the maximum number of mismatches.

The program reads input sequence x, parses it into a hash table that
contains all possible 12-nt long sequences similar to the x with up to user
defined mismatches. The genome sequence is than scanned linearly to find any
occurrence of sequences in the hash table. For any found occurrence of the
off-target site, check if PAM sequence match and then calculate the off-target
score, highlight mismatches positions and add to the output.

The CasOT supports any species, we just need a local copy of the genome
sequence.

3.2.5 Cas-OFFinder & Cas-Desiner

Author Bae, Sangsu and Park, Jeongbin and Kim, Jin-
Soo [BPK14]

Web page http://www.rgenome.net/cas-offinder/
Mismatches 9 (Online version only)

Available Online and offline (Windows, OSX, Unix)
Implementation C++, OpenCL

Source code https://github.com/snugel/cas-offinder
Year 2014

32

http://eendb.zfgenetics.org/casot
http://eendb.zfgenetics.org/casot/download.php
http://www.rgenome.net/cas-offinder/
https://github.com/snugel/cas-offinder

3.2. Existing Applications

The Cas-OFFinder was introduced by [BPK14]. This application is available
online through web interface and also as offline command line version. The
application is written in C++ and OpenCL and so requires OpenCL device to
run properly.

The online version of the application supports up to 9 mismatches, requires
to input query sequences with length between 15 to 25 nt in FASTA format.
A PAM sequence we can choose from six types (NGG, NRG, NNAGAAW, NNNNGMTT,
NNGRRT, TTTN). The online version supports almost 90 species for genome
sequence.

The command line tool supports technicaly unlimited number of mis-
matches. The input of the application is a genome sequence and an input
sequence. The Cas-OFFinder alternates between C++ and OpenCL. First,
the application reads genome sequence and prepare the data for the second
stage, that includes deviding the data into units of smaller size to overcome
the memory limitation. Second, an OpenCL code searches through entire
genome to find all PAM sequences. The next stage collects the informations
about specific sites containing PAM sequences and delivers to the next stage,
which counts the number of mismatched for each sites. The last stage selects
potential off-targets based on number of mismatches.

The Cas-Designer is a Python script upon the Cas-OFFinder. The input
is sequence where Cas-Designer find all possible guides and for each guide run
the Cas-OFFinder.

One of the many features of the Cas-OFFinder is that it scans entire
genome to find possible off-target sites, but disadvantage is lack of score of the
off-targets neither of the target sites.

3.2.6 CHOPCHOP

Author Tessa G. Montague, José M. Cruz, James A. Gagnon, George
M. Church, and Eivind Valen [MCG+14]

Web page https://chopchop.rc.fas.harvard.edu
Mismatches 2

Available Online
Year 2014

The CHOPCHOP is a web based application with many advanced options. The
CHOPCHOP accepts three forms of input: gene name, genomic coordinates
or DNA sequence. A gene name is converted into genomic coordinates in
the selected organism using various sources (for example [UCS]). Genomic
coordinates are converted into the DNA sequence and if the user provides DNA
sequence it is scanned for all potential target sites. The off-targets are searched
using the Bowtie tool with up to 2 mismatches. Each sgRNA is scored based

33

https://chopchop.rc.fas.harvard.edu

3. Existing Solutions

on three criteria. The number of off-targets, the number of mismatches within
the off-targets and presence of GC at the start of off-targets.

The output is a list of possible guides within input sequence with highlighted
mismatches, position and a sequence. CHOPCHOP operates only on the input
sequence.

A list of currently supported species: Human, mouse, zebrafish, Droso-
phila melanogaster, c. elegans, Saccharomyces, Arabidopsis thaliana, Xenopus
tropicalis, rat.

3.2.7 Benchling

Author Benchling, Inc.
Web page https://benchling.com/
Available Online

Year 2014

The Benchling is a commercial tools with a lots of features not only for gRNA
design. Designing features include single or paired gRNA design, off-target
and on-target scores, but only from 16 to 24-nt long guides and limited option
of the PAM sequences. Also number of mismatches can’t be adjusted neither
is known.

The Benchling is not only for CRISPR/Cas9 design but provides tools for
other fields of biology as well. The users can also write all their research into
build in notebook. All these features make Benchling one of more promising
commercial options that provides a whole laboratory workbench.

The user interface is realy smooth and intuitive even for Informatic. 7
PAM sequences are supported and over 50 species. For the off-target score
they use the same method as the CRISPR Design tool and also refers to it as
a source.

3.2.8 GT-Scan

Author O’Brien, Aidan and Bailey, Timothy L [OB14]
Web page http://gt-scan.braembl.org.au/gt-scan/
Available Online & Offline

Mismatches 3
Implementation Python, Bowtie

Year 2014

GT-Scan is a web based application. The input sequence, template of guides,
number of mismatches and off-target filter can be specified as the parameters of
the application. The application scans an input genomic sequence for candidate

34

https://benchling.com/
http://gt-scan.braembl.org.au/gt-scan/

3.3. Compare of Existing Tools

targets and ranks them in terms of the number of exact or approximate off-
targets in the genome the same way as the other applications.

The only supported PAM sequences are NGG and NAG. The GT-Scan first
step is to convert the target rules into regular expression and then finds all
the candidate targets in the input sequence using regular expression. For each
possible guides generates a list of all possible off-targets that have up to 3
mismatches from the guide and apply the user defined off-target filter to reduce
the number of possible off-targets. The GT-Scan combines all off-targets for
all target guides into a single list of sequences and uses the Bowtie to identify
matches in the genome sequence. The output contains all possible guides with
scored off-targets.

The offline version is a local web server that can be installed on any
computer and is opearted through web browser.

A list of currently supported species: Human, mouse, zebrafish, chimpanzee,
mouse, cat, dog, horse, pig, guinea pig, pika, rabbit, rat, tasmanian devil,
chicken, zebra finch and 16 others.

3.2.9 CCTop

Author Stemmer, Manuel AND Thumberger, Thomas AND del
Sol Keyer, Maria AND Wittbrodt, Joachim AND Mateo,
Juan L. [STdSK+15]

Web page http://crispr.cos.uni-heidelberg.de/index.html
Available Online

Mismatches 5
Implementation Python, Bowtie

Year 2015

The CCTop is a web based application with a lot of parameters that the user
can define. Besides the usual input as an input sequence, a PAM sequence and
a genome sequence, the user can also specify a lot of other informations about
the guides and the off-targets. The both sides of a guide can be limited by two
symbols (nucleotides), lenght of the guide from 15 to 22 and off-targets filter.

The CCTop supports 22 species for the guide design.
We covered only a fragment of a CRISPR design tools. Sites like [Add, OMI]

maintaine a list of existing tools.

3.3 Compare of Existing Tools

To compare the existing tools we used a total elapsed time of each application.
We started to measure the time as the application started and stopped when
the output was completed. This type of measurement was used because most

35

http://crispr.cos.uni-heidelberg.de/index.html

3. Existing Solutions

of the applications are web based and therefore, another method was not
applicable.

We must take into account that not all applications are using the same
versions of the genomes or that some of them may have the genome loaded
into the main memory already or provide different output. The results may
not have the corresponding value. More accurate comparison would require a
biologist who would divide applications into the groups of the same type and
then compare them within one group.

We used the same input data, parameters and additional options for all test-
ing applications. The input sequence was GGAGCTGCAGGGACCTCCATGTCCTGGGACT
GTTTGTGCAGGGCTCCGAGGGGACCCATGTGGCTCAGGGTGGCTAAGGGGGCAATGCTGCCCCC
ACCCGCTGGATGAC, the input guide was CTGTTTGTGCAGGGCTCCGA, the number of
mismatches set to 3 where possible, the PAM sequence NGG and the off-targets
were searched in the human genome.

ZiFiT We used the input sequence. Does not provide score of the possible
guides, does not search entire genome for off-targets. Lenght of the guide
is 20-nt. In the input sequence, ZiFiT founds in total 7 guides and 180
off-target sites.

CRISPR Design We used the input sequence. Lenght of the guides is 20-nt.
The 22 guides were found and tested with an average of 300 off-targets.

Cas9 Design We used the input sequence, 20-nt guide lenght. The application
only scan input sequence for possible guides sites and try to map them
into the genome sequence without any scoring. 22 guides found.

CasOT We used the input sequence. The number of possible mismatches
was set to 3, the target-and-off-target searching mode. Other parameters
have default values. Building of the hash table for the input sequence
took 1 second.

Cas-OFFinder & Cas-Designer The online versions: The input for Cas-
OFFinder was single guide. The input for Cas-Designer was the input
sequence.
The offline versions: The input for Cas-OFFinder CPU version was a
single guide. The GPU version and Cas-Designer coud not be tested.
For all versions the output contained only few off-targets.

CHOPCHOP We used the input sequence. All parameters were left with
default values. 22 guides were found without a list of the off-targets.

Benchling We used the input sequence. The user can only specify some of
the parameters: guide length, genome, PAM sequence and design type
(single or paired). The output includes 22 guides with the on-target and
off-target scores.

36

3.3. Compare of Existing Tools

Application Time
ZiFiT 4s

CRISPR Design 2m 25s
Cas9 Design 6s

CasOT 17m 35s
Cas-OFFinder (online) 9s
Cas-Designer (online) 7m 5s

Cas-OFFinder (offline CPU) 5m 26s
CHOPCHOP 9s

Benchling 10s
GT-Scan 13s

CCTop 35s

Table 3.1: Time comparison of the CRISPR/Cas9 design tools.

GT-Scan We used the input sequence. The GT-Scan found 22 guides in the
input sequence with an average of 35 off-targets. The off-targets have a
score and highlighted position of mismatches.

CCTop We used the input sequence. No filter of the off-targets was used. The
ouput contained 22 possible guides with (probably) the top 20 off-targets
for each guide. Neither the off-targets nor guides were scored.

We have got a really not comparable results. The main time difference is in
the search for the off-targets. The applications that do not score the off-targets
neither do guides and not search entire genome for the off-targets have better
running time, but may not be always accurate. Our goal is to find all possible
off-target sites like CRISPR Design, CasOT and GT-Scan.

37

Chapter 4
Analysis and design

4.1 Approximate String Matching

To solve the given problem of scoring guides and their off-targets we need to be
able to search for the guide in the text with any number of mismatches. The one
method is to build an index over the input text that directly supports search
query with mismatches. This is usefull mainly for short texts and small number
of mismatches. Possible choice for such index is to use a finite automaton.
The finite automaton is a computing model that can be represented as a
graph. However, the finite automaton is constructed for the specific number of
mismatches and the size of resulting structure can be huge.

A finite automaton is an computational model. Its purpose is to determine
whether an input word belongs to a language described by the finite automaton.
The automaton for the text t and m mismatches can accept all prefixes of the
text t with possible m mismatches. We also want to search for any substring
of the text and at this point the automaton solution is simply not practical.

The better solution for our problem is to use an index build over the text t
without mismatches, then generate all possible strings up to m mismatches
from the pattern and search each of them using the exact index.

4.1.1 m-neighborhood

A m-neighborhood of a string w is defined as a set of all strings with m and
fewer mismatches from the w. We will denote the m-neighborhood set of the
string w as Nm(w).

The advantage of this solution is that we can use indexes for exact string
matching, like FM index with succinct representations of data structures, that
have smaller size than the original text. M -neighbourhood Nm(w) is generated
and all strings of Nm(w) are searched for using the exact index.

The number of mismatches between two string w and v is a distance.
The SNP in biology is equal to the definition of a Hamming distance. The

39

4. Analysis and design

NH
m (w) =

m∑
n=0

((|w|!
n!(|w| − n)!

)
(|Σ| − 1)n

)
(4.1)

Figure 4.1: The number of strings with Hamming distance up to m from a
string w

m Size of NH
m (w)

0 1
1 81
2 3121
3 76081
4 1316401
5 17192497
6 175953457
7 1446041137
8 9701611057
9 53731317297

10 247462024753
...

Table 4.1: The size of the NH
m (w), |w| = 20

Hamming distance is defined for two strings of equal length and it is the number
of positions at which corresponding symbols mismatch. The m-neighborhood
for the string w using the Hamming distance will be denoted as NH

m (w). The
NH

m (w) is a set of all possible off-targets for a guide w.
The maximum number of elements from a NH

m (w) is equal to Equation 4.1.
In Table 4.1 it is shown how many possible strings can be in the NH

m (w), where
|w| = 20. Figure 4.2 shows the size of a 5-neighborhood (NH

5 (w)) of a string
with a length l.

As we can see from Table 4.1, the size of a NH
m (w), even for relatively

short strings, is growing rapidly and so the number of the off-targets we need
to process. The time complexity of the FM index count query is O(|p|), for
pattern p, which is for short pattern really good. However, if we have guide w,
|w| = 20, and number of mismatches m = 5, we need to generate and score
over 17 million possible off-targets of the guide w.

4.2 De Bruijn Graph

The De Bruijn graph (DBG) over the text t contains all k-mers that occur in
the t. If an edge e from node i to node j exists in the DBG, we know that in
the text must be a substring of the length k + 1 ((k + 1)-mer) that equals to

40

4.2. De Bruijn Graph

1024

4096

16384

65536

262144

1.04858× 106

4.1943× 106

1.67772× 107

6.71089× 107

2.68435× 108

5 10 15 20 25 30

Lo
ga

rit
hm

ic
siz

e
of

5-
ne

ig
hb

or
ho

od

l

Figure 4.2: The size of the H5(w), |w| = l

the label of node i with appended symbol e to the end.
Let Ei be a set of edge symbols of a node i and Li be a label of the node i.

The Ei contains all symbols that occurs in the text after the Li. Let G be the
DBG over the text t of k-mers. The number of all (k+ 1)-mers of the t is equal
to the

∑N−1
i=0 |Ei|, where N is the number of the nodes in the G. Therefore, if

we follow all edges from all nodes we will generate a set of all (k+ 1)-mers and
we can be sure that it is exactly the same (k + 1)-mers of the text. However,
if we want (k + j)-mers, j > 1, we have to traverse all nodes the G j times
and at this point we can’t guarantee that generated set of (k + j)-mers will
contain only the substrings of the t.

The number of the nodes of the DBG increase depends on the choosen k
as shown in Figure 4.3 and Figure 4.4 shows how the number of edges increase.
The input files are created from the real DNA sequence of the human genome.

The maximum number of nodes of the DBG of k-mers is equal to Equa-
tion 4.1 where |w| = k, or simply to |Σ|k. However, as we can see in Tables A.1
and A.2, for the DNA data the actual number of nodes is smaller already for
k > 3. For example all 9-mers can theoretically have 1953125 nodes, but for
all input files we observed the number about 265000, which is nearly 7.5 times
smaller. And even the number of edges is lower than the theoretical maximum.

In Figure 4.5 we can see ratio between the number of edges to the number
of nodes. This shows that DBG can be a very efficient filter for DNA sequences.

Besides the ratio, another interesting observation from the measured data

41

4. Analysis and design

0

50000

100000

150000

200000

250000

300000

3 4 5 6 7 8 9

N
um

be
r

of
no

de
s

k
50 100 200 400 800

Figure 4.3: Number of nodes of the DBG for various k and input file size.
Each line represent one input file. Name of the input file is dna.XMB where

X is label of the line.

is that for all input files the number of nodes and edges is still about the same.
And as we previously mentioned the number of nodes of the (k + 1)-mers is
equal to the number of edges of k-mers (and vice versa).

All measured data used for visualizations are attached in appendix Sec-
tion A.1. The number of the all k-mers in the genome can be approximated as
shown in [CHG+09].

4.3 Design Proposal

Our motivation is to create an application of the index that supports the count
query as fast as possible with the second criteria of space required to store and
use the application. We also want to be able to filter some of the off-targets
which certainly can not be in the text.

To create the fast index we simply pick one of the presented implementation
of the FM index as it is small in size but still supports fast count queries. For
the final aplication we use the FM index. However, all parts of the application
can be replaced by another implementation with the same interface.

The information about what substrings are not in the text, would allow us
to reduce the number of possible off-targets to be checked. We do not have
that information, but we know what every k-mer of the text and every symbol

42

4.3. Design Proposal

0

200000

400000

600000

800000

1× 106

1.2× 106

3 4 5 6 7 8 9

N
um

be
r

of
ed

ge
s

k
50 100 200 400 800

Figure 4.4: Number of edges of the DBG for various k and input file size.
Each line represent one input file. Name of the input file is dna.XMB where

X is label of the line.

that follows for all of the k-mers. So by traversing DBG we can generate
sequence that is composed only of (k + 1)-mers from the text.

The proposed solution for generating the off-targets, is by traversing the
DBG of k-mers to generate strings of length n, n ≥ k. This is why we want to
have the smallest possible ratio between edges and nodes, because we would
have less edges for node to follow when generating the off-targets.

43

4. Analysis and design

3

3.2

3.4

3.6

3.8

4

4.2

3 4 5 6 7 8 9

R
at

io

k
50 100 200 400 800

Figure 4.5: Ratio of the number of edges to the number of nodes.
Each line represent one input file. Name of the input file is dna.XMB where

X is label of the line.

44

Chapter 5
Implementation

5.1 Overall Structure

The core of the application is composed of two parts. The one that generates
the k-neighborhood and the second part that finds the number of occurrences
of the off-target using the FM index. The scheme of the application is shown
in Figure 5.1.

The input of the application is one guide w, the number of possible mis-
matches m and the length of a k-mer to used by the DBG denoted as k.

The library SDSL [GBMP14] (Succinct Data Structure Library 2.0) de-
veloped by Simon Gog was used to create the FM index over the input file. The
SDSL contains various implementations of data structures and their succinct
representations.

The performance and size of the FM index the most important part is used
representation of the WT and the SA. For the SA creation, SDSL support
two sorting algorithm. The first is based on [Mora] and operates only in the
main memory. The second one was introduced by Simon Gog [BZGO13] as
one of co-authors and its advantage is it uses external memory to be more
main memory efficient, but also maintain relatively good construction time.

For generation of the off-targets we chose to compare the simple and DBG
generation method. For the input guide w, |w| = n, we need to traverse the
DBG n− k times starting at every “opening” node and by following all edges
from each of visited node. The opening node is a node i with label Li that is
equal to the prefix pref(k) of the guide w and its m-neighborhood.

For the input we currently support only alphabet Σ = {A, C, G, N, T} for the
input texts and guides. The genomes in the FASTA format are commonly
contains only this five symbols so it is sufficient. However, this restriction is
easy to remove. Also the size of the input guides must be greater or equal to
the length of a k-mer of the DBG.

45

5. Implementation

generator

index

scoring

guide

text

DBG

count

create

create

score

filter

Figure 5.1: Structure of the application.

For the implementation we used the C++ programming language. The
SDSL library is also written in the C++. The application can be compiled and
run on any major architectures for which the C++ compiler can compile to.

5.2 Settings and Input

The application has only a command line interface. The configuration of the
application is done via a configure file in the specific format. The format is
shown in Example 5.1. The first line specifies the input guide w, the second
line is the number of possible mismatches m and the last is the length of the
k-mers of the DBG k.
Example 5.1 (Structure of the input file.)

1 CTGTTTGTGCAGGGCTCCGA
2 5
3 4

The settings of the application are done by three parameters. The parameter
-b needs an input file name and it is indicating that the index and DBG will
be build for the input file. The parameter -i needs an input file name, but it
assumes that the index and DBG is already created. The last parameter -c
specify the path to the configure file.

The calling Example 5.2 shows use of the parameters.

Example 5.2 (Use of the application parameters)
./application -b input -c config_file
./application -i input -c config_file

46

5.3. Index

5.3 Index

The index is build over the WT with the rank & select support. The shape
of the WT is based on the Huffman coding. The Huffman coding uses the
number of occurrences to assign a code to the symbol. If the symbol occurs
more often, Huffman coding will assign a shorter code to it. In the WT it
is equal to the “path” from the root to the leaf of the symbol. However, our
alphabet contains only 5 symbols so the shape is more likely to be balanced
anyway, but the Huffman shape performs best. For the alphabet with only
4 symbols the WT has only two levels of the nodes, but with 5 symbols we
need one more level for two least occurrence symbols. The size of the alphabet
affects the overall speed of the application and different shapes of the WT can
performs the time.

The rank support is build on top of simple bit vector with the superblock
size of 2048 bits and each superblock is subdivided into the 5 blocks.

For the count query we need only the constructed WT from the SA. So to
save the memory, we do not store the original SA as part of the index.

5.4 Off-target Generation

To be able to score the input guide, we need to know the number of occurrences
of its all possible off-targets. The set of the off-targets is equal to NH

m (w).
The input guides can be of any length, but the most common length of

the guides is 20-nt and mismatches up to 5. We know that for the string w,
|w| = 20, the size of the NH

m (w) is equal to more than 17 millons of the possible
off-targets. We naturaly feel that this number is too large, so out goal is to
reduce the size while maintain the same running time. Another problem is to
actualy generate and even operate with the entire set NH

m (w).

5.4.1 Using Recursion

A straightforward solution is to generate all possible off-targets, store them
into the set then iterate through the set and score each off-target and as the
last step to score the input guide based on the score of the off-targets.

For generation of the off-targets, we can use a recursive algorithm. Starting
generation from the position 1 of the guide w to the last position and generated
string is denoted as o. Possible symbol we can use at every position is any
from the alphabet Σ. We choose one of the symbols for the position i and
recursively call the same function to process i+ 1 position. After we generate
string of the length |w| we add it to the set of the off-targets. The mismatch is
at the position i where oi 6= wi. We can track the number of mismatches while
generation of the string o and if we reach the maximum number of mismatched
before the |w| position, the string o is not from the NH

m (w).

47

5. Implementation

The recursive algorithm is very similar to the Depth-First search, where we
traverse a graph by starting at the root node and explores it as far as possible
with the backtracking.

The general problem when generating the off-targets is the size of the
set. If we want to generate the NH

5 (w), |w| = 20, the size of the set is
17192497 ∗ string size, where the string size is equal to 20 B. The resulting
size is approximately 50 MB. For 6 mismatches and the same input guide,
the amount of memory needed is nearly 440 MB. However, instead of storing
all of them, we can directly score any found off-target and store only the
accumulated result.

We will refer to this method as simple method.

5.4.2 Using DBG

The solution we proposed use the DBG to reduce the generated off-targets. Let
G be the DBG of a k-mers, the input guide w and the number of mismatches
m.

The first step is to find all opening nodes for the input guide. To do it,
we generate the NH

m (prefix(k)), the m-neighborhood of the prefix of the guide
of the length k. For all k-mers from the NH

m (prefix(k)) we try to find if the
k-mer is in the DBG. If yes, we store the k-mer with the information about
how many mismatches it already contains to the set T . All k-mers from the T
are opening nodes.

The generation of the off-targets continue by traversing the DBG from the
opening node in the T as a starting node s. We follow all edges from the node
s to get to the |Es| new nodes. Every node expansions defines position i of
the off-target and i is number of expansions from the s to the current node.
The edge symbols in Es+i are candidates for the position i in the off-target

The generation use the same technique as the simple generator for the
number of mismatch and lenght of the off-targets.

5.5 DBG Construction

To construct the DBG we need to scan the input text for every k-mer. We use
a sliding window of size k and linear pass through the text. For every sliding
windows position we take current k-mer and check if is already in the DBG
and if not we add. The last step is to add the edge symbol that is right after
the current k-mer.

After the DBG construction, we need to interate through the nodes and
mark edges of the nodes that if we follow we get into the same node. From
the nodes and edges we then create the succinct representations, where the
nodes are represented only as the bit array last and the table F of the symbols
occurrences. The edge array is stored as the WT.

48

5.5. DBG Construction

The time complexity of the DBG construction depends on the size of the
k-mers set and the input text length. Because we need to have only one node
for every k-mer, we need to for every position of the sliding window check if
the k-mer is already in the set.

Time complexity of sliding through the genome is O(n · k), because of the
shift of the sliding window at every n position of the input text. Managing
the set of nodes and edges takes O(log ν) in every step, where ν is the number
of all k-mers. Overall time complexity is O(nk · log ν).

The Cosmo [Bow] library version 0.5.1 contain the implementation of the
DBG that we use, but the construction from the text and index operation were
not implemented. We also had to reimplemented some of the other functions
to correctly support our representation.

49

Chapter 6
Experiments

6.1 About Experiments

The motivation of our work was to create the application that support DNA
data. This brings us benefits in terms of small alphabet and repetitive sequences.
We have redured the experiments to only DNA sequences. The common length
of guides is 20 symbols long sequence of nucleotides and the number of possible
mismatches is 5. We will use this combination as the input.

6.1.1 Environment

All tests and measurements were made on a 64bit computer running the OS
X version 10.11.4 with 8 GB of main memory and up to 60 GB of external
memory used as a swap. In Table 6.1 all informations are summarize.

OS OS X 10.11.4
CPU Intel Core i5, 2.7 GHz

Main memory 8 GB
Swap 60 GB on SSD

Table 6.1: Summary of informations about testing environment.

6.1.2 Dataset

As the input texts we used real sequenced human genome from which files
with various size were created. Table 6.2 shows from which parts of the human
genome the input files were created and their length n. Each of the input file
is created from another part of the genome for more generality. We will refer
to the input files by their size in a graph measurements.

All the input texts have an alphabet Σ = {A,C,G,N, T}. Also all testing
guides are over the same alphabet.

51

6. Experiments

Input file Chromosomes n

dna.50MB 22 50818468
dna.100MB 15 107043718
dna.200MB 3 198295559
dna.400MB 1, 6 404997317
dna.800MB 2, 4, 5, 21, X 806536819

Table 6.2: Input test files and corresponding chromosomes they were created
of.

The human genome can be obtained from many sites, but we used data
from the Ensembl [Ens]. The Ensembl is a public database for the genomes of
many species. The guide sequence was taken from the random position within
the genome.

6.1.3 Time measurement

To accurate measure the time we need to perform time measurement for the
same input multiple times and take the average value to reduce the possible
error.

The time itself was measured by C system function getrusage and wrapped
see code 6.1. The function getrusage returns, among others, user and system
time. The user time indicates how long the code itself run and the system
time indicates how long code spends in the kernel (file operations, kernel calls,
. . .).

The sum of both user and system time gives us real time from the beggining
of the measurement to its end.

Listing 6.1: Time measure function
1 double getTime (void) {
2 double usert ime , syst ime ;
3 s t r u c t rusage usage ;
4
5 ge t rusage (RUSAGE SELF, &usage) ;
6
7 usert ime = (double) usage . ru ut ime . t v s e c +
8 (double) usage . ru ut ime . tv u s e c / 1000000 .0 ;
9

10 syst ime = (double) usage . ru s t ime . t v s e c +
11 (double) usage . ru s t ime . tv u s e c / 1000000 .0 ;
12
13 re turn (usert ime + syst ime) ;
14 }

52

6.2. Suffix Array

0

50

100

150

200

250

300

350

400

450

50 100
200

400
800

T
im

e
[s]

file size
sais

DivsufSort32
DivsufSort64

External

Figure 6.1: Time of suffix array construction using various algorithms.

6.2 Suffix Array

The construction of the SA is one of the most consuming part of the index
creation. We compared four SA construction algorithms.

The first SAIS [Morb] by Yuta Mori that runs in O(n) worst-case time and
uses maximum 2n or 4|Σ| of additional working space, where n is an input text.
This algorithm was one of the first that achieved linear time construction.

The second DivSufSort [Mora] also by Yuta Mori that runs in O(n logn)
worst-case time and using only 5n+O(1) additional space. The DivSufSort is
currently one of the best known construct implementations for the SA. It uses
divide and conquer principle and bucket sorting technique 1. We have tested
both 32 and 64 bit implementation.

The third construct algorithm [BZGO13] by Timo Beller and co-authors
aims to be space-efficient that uses on average about 1.5n main memory and
10n external memory (hard drive space not swap).

Figure 6.1 shows time comparison of the construct algorithms and Figure 6.2
shows the difference between sizes of the input text and resulted SA.

We can see difference in hidden constant. The SAIS is slower than the
DivSufSort even that the worst-case running time is asymptoticaly better.

1Brief introduction to the bucket sort can be found at Wikipedia: https://
en.wikipedia.org/w/index.php?title=Bucket_sort&oldid=707560846

53

https://en.wikipedia.org/w/index.php?title=Bucket_sort&oldid=707560846
https://en.wikipedia.org/w/index.php?title=Bucket_sort&oldid=707560846

6. Experiments

0

500

1000

1500

2000

2500

3000

3500

4000

50 100
200

400
800

Si
ze

[M
B

]

file size
original SA

Figure 6.2: Size of the input text and the resulted SA.

6.3 FM Index and BWT

The actual time required to perform queries on the FM index greatly depends
on used representations of data structures. If we want a small index size and
fast query operations, the succinct representation is our best choice.

The input for all measurements of the performance of the FM index was
used testing file of DNA from the Pizza & Chili corpus [FN]

6.3.1 Count

The count query mainly depends on the chosen representation of the BWT
and rank & select data structures. We discussed use of the wavelet tree with
RRR data structure previously and Figure 6.3 shows how the time of the
count depends on chosen block size b of the RRR structure. We remind that
block size directly affects how many of precomputed elements will be stored
for the rank & select support. The bitvector in the figure is a simple bit vector
representation that for the rank support builds similar blocks/superblocks
scheme, but as two individual tables.

6.3.2 Locate

The locate query is more interesting because we need to use the SA. Instead
of entire SA we used the CSA representation. Table 6.3 shows how the time of

54

6.3. FM Index and BWT

0.012
0.014
0.016
0.018
0.02

0.022
0.024
0.026
0.028
0.03

0.032

bitvector

8 16 32 64 128

T
im

e
[m

s]

block size

Figure 6.3: Time of the count query for RRR with the block size b.

the query varies depending on the sample rate of the CSA and also the size of
created index.

sample rate time [ms] size [MB]
4 0.9 435
8 1.1 249

16 2.7 155
32 6.2 107
64 13.4 83

128 24.0 70
256 45.2 64

4 1.1 432
8 1.8 246

16 4.4 152
32 9.8 104
64 20.9 80

128 42.0 67
256 85.1 61

Table 6.3: Time of locate query and the size of the index.
The first half shows WT with each level represented using the bitvector and

the second half using the RRR with block size b = 16.

55

6. Experiments

6.4 De Bruijn graph

We have introduced algorithm to build the DBG by linear passage through the
text and storing all unique k-mers with corresponding edges. The bottleneck
of our current solution is maintain of the set of k-mers, because we do not
want duplicity.

In Figure 6.4 we can observe the construction time of the DBG for k from 3
to 9. The lower k is meaning less and bigger k takes too much time. Figure 6.5
show the size of constructed succinct representation of the DBG.

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7 8 9

C
on

st
ru

ct
io

n
tim

e
[s

]

k
50 100 200 400 800

Figure 6.4: Time of the construction of the succinct DBG for various k and
input file size.

6.5 Generation of the Off-targets

6.5.1 Simple Method

We have discussed that scoring off-targets is done within their generation
to reduce the main memory requirements. The simple method will always
generate the same set of the off-targets. So the time of the simple generator
mainly depends on the number of mismatches and secondly on the index.

Table 6.6 shows how the time of generation and scoring depends on the
number of possible m mismatches using the DBG with k = 5 (all 5-mers of

56

6.5. Generation of the Off-targets

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

3 4 5 6 7

Si
ze

[M
B

]

k
50 100 200 400 800

Figure 6.5: Size of the succinct DBG for various k and input file sizes.

the text). The time does not change much for other values of k and remains
similar.

The number of generated off-targets by the simple method does not change
at all. This is logical because it does not use any information about the input
and simply generates entire m-neighborhood and can be see in Table 6.7.

6.5.2 DBG Method

The generation using the DBG of k-mers uses informations about the text to
reduce the number of generated off-targets.

The time of the DBG methods depends on heavily on the input text and
chosen k. To reduce the number of possible off-targets we need to choose k for
which the DBG has the smallest possible ratio between edges and nodes (all
nodes have the least number of edges). We then do not need to follow so many
edges from each node and thus the set of the off-targets would be smaller.

The effect on the number of possible off-targets generated using the DBG
method is shown in Figure 6.8 where k = 5 and in Figure 6.9 comparison
between the simple and the DBG generator for the input dna.800MB and
m = 5.

The time that DBG need to generate and score the off-targets is shown by
Table 6.4 for various mismatches m. We can see that the time strongly depends
on the number of possible mismatches and not so much on the input file size.

57

6. Experiments

0

50

100

150

200

250

300

1 2 3 4 5 6

T
im

e
[s]

m
50 100 200 400 800

Figure 6.6: Time to generate and score off-targets using simple method.

32

1024

32768

1.04858× 106

3.35544× 107

1.07374× 109

1 2 3 4 5 6

To
ta

ln
um

be
r

(lo
ga

rit
hm

ic
sc

al
e)

m
50 100 200 400 800

Figure 6.7: Number of generated off-targets by the simple method.

58

6.5. Generation of the Off-targets

16
64

256
1024
4096

16384
65536

262144
1.04858× 106

4.1943× 106

1.67772× 107

6.71089× 107

1 2 3 4 5 6

To
ta

ln
um

be
r

(lo
ga

rit
hm

ic
sc

al
e)

m
50 100 200 400 800

Figure 6.8: Number of generated off-targets by the DBG method and k = 5.

4× 106

6× 106

8× 106

1× 107

1.2× 107

1.4× 107

1.6× 107

1.8× 107

3 4 5 6 7

N
um

be
r

of
ge

ne
ra

te
d

off
-t

ar
ge

ts

k
simple DBG

Figure 6.9: Number of generated off-targets by the DBG and simple methods
and m = 5.

59

6. Experiments

m 50 100 200 400 800
1 0.001251 0.002012 0.001441 0.001629 0.001791
2 0.024536 0.023509 0.022552 0.028701 0.040977
3 0.308728 0.311608 0.340084 0.354423 0.353836
4 3.32457 3.33958 3.60343 3.77214 4.07731
5 28.5578 29.0358 31.4737 32.0798 32.0626
6 188.924 197.577 205.613 219.085 231.679

Table 6.4: Total time of the DBG generator, k = 5

20

25

30

35

40

45

50

55

60

65

70

3 4 5 6 7

T
im

e
[s]

k
simple DBG

Figure 6.10: Time to generate and score off-targets using simple and the DBG
method, m = 5.

This is due the fact that constructed DBG are very similar for all input files.
The more interesting is comparison in Figure 6.10 that shows differences in
time generators simple and DBG for the input file dna.800MB and m = 5.

The results are not satisfying, although the number of off-targets is reduced,
the time of the DBG generator is above the simple generator which must score
entire m-neighborhood.

We have tested the DBG generator for the k from 3 to 7 and possible
mismatches m from 1 to 6. The best results were achieved by the DBG of
5-mers with the lowest generation time and generated number of the off-targets
is comparable to the DBG with higher k.

The time result for the DBG method with k = 3 is also interesting, but not

60

6.5. Generation of the Off-targets

surprising. The input files dna.400MB and dna.800MB have the worst ratio
for the DBG with 3-mers and this is the consequence of it. From the results
we may say that the ratio above 4 is not practical for our problem.

The data shown in this section are for the best possible k or m. The test
for other combinations are very similar to these presented, but they would
cover a lot of pages with only graphs and tables. However, some of them are
included in Section A.3.

61

Conclusion

My motivation to write the thesis in the bioinformatics field was the interest
in combination of biology and computer science. The bioinformatics is a
constantly evolving field where many problems are not efficiently solvable,
mainly because lack of attention from the informatics. However, in recent
years the situation has been changing and the mentioned field has become
more attractive.

During writing the overview of the current tools used for CRISPR systems
designing, I found out about the current state-of-art and that all applications
are using very similar process. All the optimizations are done in the index to
filter the regions which have a low probability that the guide or off-targets can
occur in.

I focused on the possibilities of reduction of the number of the off-targets.
The De Bruijn graph is great concept to know more informations about the
input text that help to reduce the possible off-targets. Experiments show
that the idea is promising and in the comparison to all the off-targets the
number of generated off-targets using DBG was always smaller. Unfortunately,
the generation time of the DBG method is currently higher than the simple
method.

The application is successfully implemented to perform the scoring of the
input guide for any input genome. All application modules are independent so
that any can be replaced by another.

I successfully experimented with the DBG generator method for practical
length of the k-mers and show optimal k and practical ratio of the edges and
nodes. The current implementation works correctly for tested file sizes and
may even work for larger files. However, the construction needs a lot more
memory and time.

In the future work I suggest to focus on the DBG operations speed optim-
ization at the expense of its size and construction time. Another interesting
improvement would be to use the indexing method that dramaticaly reduces
the size of the index for two or more genomes from the same species. This

63

Conclusion

would create unique concept among CRISPR design tools which will support
fast and small index of multiple genomes.

64

Bibliography

[Add] Addgene. The crispr software matchmaker: A new
tool for choosing the best crispr software for your
needs. http://blog.addgene.org/the-crispr-software-
matchmaker-a-new-tool-for-choosing-the-best-crispr-
software-for-your-needs. Accessed: 2016-04-23.

[AKO04] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohle-
busch. Replacing suffix trees with enhanced suffix arrays. Journal
of Discrete Algorithms, 2(1):53 – 86, 2004. The 9th International
Symposium on String Processing and Information Retrieval.

[BK03] Stefan Burkhardt and Juha Kärkkäinen. Combinatorial Pat-
tern Matching: 14th Annual Symposium, CPM 2003 Morelia,
Michoacán, Mexico, June 25–27, 2003 Proceedings, chapter Fast
Lightweight Suffix Array Construction and Checking, pages 55–69.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[BOSS12] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tet-
suo Shibuya. Succinct de bruijn graphs. In Proceedings of the
12th International Conference on Algorithms in Bioinformatics,
WABI’12, pages 225–235, Berlin, Heidelberg, 2012. Springer-
Verlag.

[Bow] Alexander Bowe. Cosmo. https://github.com/cosmo-team/
cosmo. Accessed: 2016-04-30.

[Bow11a] Alexander Bowe. Fm-indexes and backwards search. http://
alexbowe.com/fm-index/, 2011. Accessed: 2016-01-03.

[Bow11b] Alexander Bowe. Rrr – a succinct rank/select index for bit vectors.
http://alexbowe.com/rrr/, 2011. Accessed: 2016-04-16.

65

http://blog.addgene.org/the-crispr-software-matchmaker-a-new-tool-for-choosing-the-best-crispr-software-for-your-needs
http://blog.addgene.org/the-crispr-software-matchmaker-a-new-tool-for-choosing-the-best-crispr-software-for-your-needs
http://blog.addgene.org/the-crispr-software-matchmaker-a-new-tool-for-choosing-the-best-crispr-software-for-your-needs
https://github.com/cosmo-team/cosmo
https://github.com/cosmo-team/cosmo
http://alexbowe.com/fm-index/
http://alexbowe.com/fm-index/
http://alexbowe.com/rrr/

Bibliography

[BPK14] Sangsu Bae, Jeongbin Park, and Jin-Soo Kim. Cas-offinder: a fast
and versatile algorithm that searches for potential off-target sites
of cas9 rna-guided endonucleases. Bioinformatics, 30(10):1473–
1475, 2014.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data
compression algorithm. Technical report, 1994.

[BZGO13] Timo Beller, Maike Zwerger, Simon Gog, and Enno Ohlebusch.
Space-efficient construction of the burrows-wheeler transform.
In Proceedings of the 20th International Symposium on String
Processing and Information Retrieval - Volume 8214, SPIRE
2013, pages 5–16, New York, NY, USA, 2013. Springer-Verlag
New York, Inc.

[CB11] Thomas C. Conway and Andrew J. Bromage. Succinct data struc-
tures for assembling large genomes. Bioinformatics, 27(4):479–
486, 2011.

[CHG+09] Benny Chor, David Horn, Nick Goldman, Yaron Levy, and Tim
Massingham. Genomic dna k-mer spectra: models and modalities.
Genome Biology, 10(10):1–10, 2009.

[CHL07] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq.
Algorithms on Strings. Cambridge University Press, New York,
NY, USA, 2007.

[Cla98] David Richard Clark. Compact Pat Trees. PhD thesis, University
of Waterloo, Waterloo, Ont., Canada, Canada, 1998. UMI Order
No. GAXNQ-21335.

[CN09] Francisco Claude and Gonzalo Navarro. Practical rank/select
queries over arbitrary sequences. In Proceedings of the 15th
International Symposium on String Processing and Information
Retrieval, SPIRE ’08, pages 176–187, Berlin, Heidelberg, 2009.
Springer-Verlag.

[CR13] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de
bruijn graph representation based on a bloom filter. Algorithms
for Molecular Biology, 8(1):1–9, 2013.

[Ens] Ensembl. Ftp download - dna sequences. http://
www.ensembl.org/info/data/ftp/index.html. Accessed: 2016-
04-30.

[FM00] P. Ferragina and G. Manzini. Opportunistic data structures
with applications. In Proceedings of the 41st Annual Symposium

66

http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html

Bibliography

on Foundations of Computer Science, FOCS ’00, pages 390–,
Washington, DC, USA, 2000. IEEE Computer Society.

[FN] P. Ferragina and G. Navarro. Pizza and chili corpus - compressed
indexes and their testbeds. http://pizzachili.dcc.uchile.cl/.
Accessed: 2016-04-29.

[GBMP14] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri.
From theory to practice: Plug and play with succinct data struc-
tures. In 13th International Symposium on Experimental Al-
gorithms, (SEA 2014), pages 326–337, 2014.

[GGMN05] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and
Gonzalo Navarro. Practical implementation of rank and select
queries. In In Poster Proceedings Volume of 4th Workshop on
Efficient and Experimental Algorithms (WEA’05) (Greece, pages
27–38, 2005.

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-
order entropy-compressed text indexes. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’03, pages 841–850, Philadelphia, PA, USA, 2003. Society
for Industrial and Applied Mathematics.

[GS12] Joseph Yossi Gil and David Allen Scott. A bijective string sorting
transform. CoRR, abs/1201.3077, 2012.

[GV00] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix
arrays and suffix trees with applications to text indexing and
string matching (extended abstract). In Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing, STOC
’00, pages 397–406, New York, NY, USA, 2000. ACM.

[HSW+13] Patrick D Hsu, David A Scott, Joshua A Weinstein, F Ann
Ran, Silvana Konermann, Vineeta Agarwala, Yinqing Li, Eli J
Fine, Xuebing Wu, Ophir Shalem, Thomas J Cradick, Luciano A
Marraffini, Gang Bao, and Feng Zhang. Dna targeting specificity
of rna-guided cas9 nucleases. Nat Biotech, 31(9):827–832, 09
2013.

[Jac88] Guy Joseph Jacobson. Succinct Static Data Structures. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1988.
AAI8918056.

[KK14] Juha Kärkkäinen and Dominik Kempa. Lightweight external
memory suffix array construction algorithm. In In Proc. 2nd
International Conference on Algorithms for Big Data, ICABD
2014, pages 53–60, 2014.

67

http://pizzachili.dcc.uchile.cl/

Bibliography

[KKP15] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Com-
binatorial Pattern Matching: 26th Annual Symposium, CPM
2015, Ischia Island, Italy, June 29 – July 1, 2015, Proceedings,
chapter Parallel External Memory Suffix Sorting, pages 329–342.
Springer International Publishing, Cham, 2015.

[KS03] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix
array construction. In Proceedings of the 30th International Con-
ference on Automata, Languages and Programming, ICALP’03,
pages 943–955, Berlin, Heidelberg, 2003. Springer-Verlag.

[LFB+14] Bo Li, Nathanael Fillmore, Yongsheng Bai, Mike Collins, James A.
Thomson, Ron Stewart, and Colin N. Dewey. Evaluation of
de novo transcriptome assemblies from rna-seq data. Genome
Biology, 15(12):1–21, 2014.

[LTC13] Felipe A. Louza, Guilherme P. Telles, and Cristina Dutra
De Aguiar Ciferri. Combinatorial Pattern Matching: 24th Annual
Symposium, CPM 2013, Bad Herrenalb, Germany, June 17-19,
2013. Proceedings, chapter External Memory Generalized Suffix
and LCP Arrays Construction, pages 201–210. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[LTPS] B Langmead, C Trapnell, M Pop, and SL. Salzberg. Bowtie, an
ultrafast memory-efficient short read aligner. http://bowtie-
bio.sourceforge.net. Accessed: 2016-04-24.

[LTPS09] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg.
Ultrafast and memory-efficient alignment of short dna sequences
to the human genome. Genome Biology, 10(3):1–10, 2009.

[MAS+13] Prashant Mali, John Aach, P Benjamin Stranges, Kevin M Esvelt,
Mark Moosburner, Sriram Kosuri, Luhan Yang, and George M
Church. Cas9 transcriptional activators for target specificity
screening and paired nickases for cooperative genome engineering.
Nat Biotech, 31(9):833–838, 09 2013.

[MCG+14] Tessa G. Montague, José M. Cruz, James A. Gagnon, George M.
Church, and Eivind Valen. Chopchop: a crispr/cas9 and talen web
tool for genome editing. Nucleic Acids Research, 42(W1):W401–
W407, 2014.

[MM90] Udi Manber and Gene Myers. Suffix arrays: A new method
for on-line string searches. In Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, pages
319–327, Philadelphia, PA, USA, 1990. Society for Industrial and
Applied Mathematics.

68

http://bowtie-bio.sourceforge.net
http://bowtie-bio.sourceforge.net

Bibliography

[MM93] Udi Manber and Gene Myers. Suffix arrays: A new method for on-
line string searches. SIAM Journal on Computing, 22(5):935–948,
1993.

[Mora] Yuta Mori. libdivsufsort. https://github.com/y-256/
libdivsufsort. Accessed: 2016-04-12.

[Morb] Yuta Mori. Sa-is suffix array construction algorithm. https:
//sites.google.com/site/yuta256/sais. Accessed: 2016-03-
22.

[Mun] Ian Munro. Succinct data structures. https://cs.uwaterloo.ca/
˜imunro/cs840/SuccinctDS.pdf. Accessed: 2016-04-14.

[Mun96] J. Ian Munro. Foundations of Software Technology and Theoretical
Computer Science: 16th Conference Hyderabad, India, December
18–20, 1996 Proceedings, chapter Tables, pages 37–42. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996.

[MYZK13] Ming Ma, Adam Y Ye, Weiguo Zheng, and Lei Kong. A guide rna
sequence design platform for the crispr/cas9 system for model or-
ganism genomes. BioMed Research International, 2013(270805):4,
2013.

[OB14] Aidan O’Brien and Timothy L Bailey. Gt-scan: identifying unique
genomic targets. Bioinformatics, 30(18):2673–2675, 09 2014.

[OMI] OMICtools. Crispr/cas9 tools. http://omictools.com/crispr-
cas9-category. Accessed: 2016-04-23.

[OS06] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-
compressed rank/select dictionary. CoRR, abs/cs/0610001, 2006.

[PST07] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A
taxonomy of suffix array construction algorithms. ACM Comput.
Surv., 39(2), July 2007.

[RHL+13] F Ann Ran, Patrick D Hsu, Chie-Yu Lin, Jonathan S Gootenberg,
Silvana Konermann, Alexandro Trevino, David A Scott, Azusa
Inoue, Shogo Matoba, Yi Zhang, and Feng Zhang. Double nicking
by rna-guided crispr cas9 for enhanced genome editing specificity.
Cell, 154(6):1380–1389, 09 2013.

[RHW+13] F Ann Ran, Patrick D Hsu, Jason Wright, Vineeta Agarwala,
David A Scott, and Feng Zhang. Genome engineering using the
crispr-cas9 system. Nat. Protocols, 8(11):2281–2308, 11 2013.

69

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
https://sites.google.com/site/yuta256/sais
https://sites.google.com/site/yuta256/sais
https://cs.uwaterloo.ca/~imunro/cs840/SuccinctDS.pdf
https://cs.uwaterloo.ca/~imunro/cs840/SuccinctDS.pdf
http://omictools.com/crispr-cas9-category
http://omictools.com/crispr-cas9-category

Bibliography

[RRR02] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
indexable dictionaries with applications to encoding k-ary trees
and multisets. In Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’02, pages
233–242, Philadelphia, PA, USA, 2002. Society for Industrial and
Applied Mathematics.

[sac] Suffix array construction benchmark. http://
homepage3.nifty.com/wpage/benchmark. Accessed: 2016-
03-22.

[SMR+10] Jeffry D. Sander, Morgan L. Maeder, Deepak Reyon, Daniel F.
Voytas, J. Keith Joung, and Drena Dobbs. Zifit (zinc finger
targeter): an updated zinc finger engineering tool. Nucleic Acids
Research, 38(suppl 2):W462–W468, 2010.

[STdSK+15] Manuel Stemmer, Thomas Thumberger, Maria del Sol Keyer,
Joachim Wittbrodt, and Juan L. Mateo. Cctop: An intuitive,
flexible and reliable crispr/cas9 target prediction tool. PLoS
ONE, 10(4):1–11, 04 2015.

[UCS] UCSC. Ucsc genome browser. https://genome.ucsc.edu/. Ac-
cessed: 2016-04-23.

[XCK+14] An Xiao, Zhenchao Cheng, Lei Kong, Zuoyan Zhu, Shuo Lin,
Ge Gao, and Bo Zhang. Casot: a genome-wide cas9/grna off-
target searching tool. Bioinformatics, Jan 2014.

70

http://homepage3.nifty.com/wpage/benchmark
http://homepage3.nifty.com/wpage/benchmark
https://genome.ucsc.edu/

Appendix A
Data

A.1 De Bruijn Graph

k 50MB 100MB 200MB 400MB 800MB
3 102 92 107 127 127
4 343 313 346 513 530
5 1163 1115 1160 1612 1692
6 4291 4222 4280 5004 5155
7 16644 16546 16616 17579 17800
8 65870 65735 65816 66999 67287
9 262240 262285 262463 263872 264232

Table A.1: The number of nodes of DBG.

k 50MB 100MB 200MB 400MB 800MB
3 343 313 346 513 530
4 1163 1115 1160 1612 1692
5 4291 4222 4280 5004 5155
6 16644 16546 16616 17579 17800
7 65870 65735 65816 66999 67287
8 262240 262285 262463 263872 264232
9 1020172 1033087 1042516 1049665 1050900

Table A.2: The number of edges of DBG.

71

A. Data

k 50MB 100MB 200MB 400MB 800MB
3 3.36275 3.40217 3.23364 4.0394 4.17323
4 3.39067 3.5623 3.3526 3.1423 3.19245
5 3.6896 3.78655 3.68966 3.1042 3.04669
6 3.87882 3.919 3.88224 3.513 3.45296
7 3.95758 3.97286 3.961 3.8113 3.78017
8 3.98118 3.99004 3.98783 3.9384 3.92694
9 3.89022 3.9388 3.97205 3.9779 3.97719

Table A.3: Ratio of the number of edges to the number of nodes.

k 50MB 100MB 200MB 400MB 800MB
3 0.0031271 0.00311184 0.0031271 0.00328732 0.00328732
4 0.00369167 0.00366879 0.00369167 0.00396633 0.00401974
5 0.0057745 0.00573635 0.00576687 0.00615597 0.00626278
6 0.0145006 0.014432 0.0144777 0.0149965 0.0151339
7 0.0574894 0.0573978 0.0574589 0.0580692 0.0582371
8 0.19711 0.187963 0.197332 0.198057 0.198256
9 0.661063 0.668688 0.674221 0.754849 0.755621

Table A.4: The size of succinct DBG [MB].

k 50MB 100MB 200MB 400MB 800MB
3 4.11351 9.04654 18.2553 36.1622 72.383
4 5.61691 12.3857 25.4802 52.1411 104.245
5 7.24875 16.3671 33.5676 69.3549 135.148
6 10.1439 22.8455 47.1628 95.5646 188.901
7 14.5103 33.5487 68.7645 144.011 283.758
8 25.1581 59.0816 125.034 247.287 505.028
9 37.3674 89.8241 196.153 388.072 822.302

Table A.5: Construction time of DBG [s].

72

A.2. FM Index

A.2 FM Index

b Time [ms]
bitvector 0.0138

8 0.0167
16 0.0140
32 0.0201
64 0.0243
128 0.0302

Table A.6: Time of count query for RRR with block size b.

A.3 Measurements

32

1024

32768

1.04858× 106

3.35544× 107

1.07374× 109

1 2 3 4 5 6

To
ta

ln
um

be
r

(lo
ga

rit
hm

ic
sc

al
e)

m
50 100 200 400 800

Figure A.1: Number of generated off-targets by the DBG method and k = 3.

73

A. Data

16
64

256
1024
4096

16384
65536

262144
1.04858× 106

4.1943× 106

1.67772× 107

6.71089× 107

1 2 3 4 5 6

To
ta

ln
um

be
r

(lo
ga

rit
hm

ic
sc

al
e)

m
50 100 200 400 800

Figure A.2: Number of generated off-targets by the DBG method and k = 4.

16
64

256
1024
4096

16384
65536

262144
1.04858× 106

4.1943× 106

1.67772× 107

6.71089× 107

1 2 3 4 5 6

To
ta

ln
um

be
r

(lo
ga

rit
hm

ic
sc

al
e)

m
50 100 200 400 800

Figure A.3: Number of generated off-targets by the DBG method and k = 6.

74

A.3. Measurements

16
64

256
1024
4096

16384
65536

262144
1.04858× 106

4.1943× 106

1.67772× 107

6.71089× 107

1 2 3 4 5 6

To
ta

ln
um

be
r

(lo
ga

rit
hm

ic
sc

al
e)

m
50 100 200 400 800

Figure A.4: Number of generated off-targets by the DBG method and k = 7.

75

Appendix B
Usage

B.1 Installation

The SDSL library needs to be installed on the system to be able to build the
application. The SDSL library is located in code sources in the directory src/
crispr-tool/external/sdsl. To build the SDSL a modern C++ compiler
that supports C++11 and 64 bit operating system is required.

Installation is done by following this commands:

cd src/crispr-tool/external/sdsl
mkdir build
cd build
cmake ..
make
make install

The installation of the CRISPR tool is similar:

cd src/crispr-tool
mkdir build
cd build
cmake ..
make crispr

This will build the application into the exe/ directory. All possible execut-
able that can be build are shown in next table.

crispr is a main application that runs scoring of the input guide on specified
input using both simple and DBG generator.

benchmark dbg creates the DBG from the input text.

benchmark sa runs SA construction for tested algorithms.

77

B. Usage

debruijn test was used for testing the DBG as it supports continuous
input.

rawer is used to remove comment lines and new line symbols from FASTA
files. It also currently removes all symbols that are not A, C, G, T, N.

B.2 Usage

CRISPR tool interface is simple. It supports three parameters -i, -b and -c.

-b INPUT FILE indicates to create index and DBG from the input file.
Resulted index will be stored in the same directory with suffix .index
and DBG stored with suffix -k.dbg. k is equal to the k specified in
the configuration file.

-i INPUT FILE if the index and DBG files are already created.

-c configuration file.

Note that the index and DBG for input files are already precreated in the
input directory, so use only -i parameter. If we want to create index and DBG
from the input, make sure, that the same directory as input file, also contains
directory sdsl (used to store temporary files during building process).

78

Appendix C
Acronyms

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

PAM Protospacer adjacent motif

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

EOF End Of File symbol

OS Operating System

79

Appendix D
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

crispr-tool................................implementation sources
bin the directory with bash script for measurements
external.......................the directory of external libraries
input the directory with input files
output.............the directory with results of all measurements
src.................................the directory of source codes
CMakeLists.txt ... the file for automative build of the application

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

81

	Introduction
	Definitions
	Basic Definitions
	Self-Index
	Suffix Array
	Burrows–Wheeler transform
	FM-Index
	Compressed Suffix Array
	Succinct Data Structures
	De Bruijn Graph

	Bioinformatics
	DNA
	RNA
	FASTA
	CRISPR

	Existing Solutions
	Existing Libraries
	Existing Applications
	Compare of Existing Tools

	Analysis and design
	Approximate String Matching
	De Bruijn Graph
	Design Proposal

	Implementation
	Overall Structure
	Settings and Input
	Index
	Off-target Generation
	DBG Construction

	Experiments
	About Experiments
	Suffix Array
	FM Index and BWT
	De Bruijn graph
	Generation of the Off-targets

	Conclusion
	Bibliography
	Data
	De Bruijn Graph
	FM Index
	Measurements

	Usage
	Installation
	Usage

	Acronyms
	Contents of enclosed CD

