
L.S.

prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 2, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Security Analysis of BestCrypt

 Student: Bc. Jakub Souček

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2016/17

Instructions

1) Research current publicly available analyses of disk encryption software.
2) Download, install, and describe software BestCrypt by Jetico Inc. (BC).
3) Explore and evaluate the security implications inherent in BC's user interface.
4) Study the BestCrypt Development Kit provided by the developer, describe its requirements, installation,
structure, and functionality.
5) Using available information, duplicate the decryption procedure of an encrypted container using a well-
known open source crypto library.
- Describe the container's structure.
- Describe and implement the password key derivation.
- Decrypt the container key.
- Attempt to decrypt selected sectors from the encrypted volume.
6) Evaluate the impact of your findings on the developer's security claims.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

Security analysis of BestCrypt

Bc. Jakub Souček

Supervisor: Ing. Josef Kokeš

3rd May 2016

Acknowledgements

I would like to thank my supervisor, Ing. Josef Kokeš, for his constant help
with the thesis and for providing me with this topic. I would also like to thank
the Jetico development team for their help and communication.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 3rd May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Jakub Souček. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Souček, Jakub. Security analysis of BestCrypt. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2016.

Abstrakt

Práce se zabývá bezpečnostńı analýzou programu BestCrypt, který umožňuje
šifrováńı soubor̊u a složek na disku. Zaměřuje se na proces generováńı kĺıče
z hesla, operace šifrováńı a dešifrováńı a bezpečnost programu jako takového.

Kĺıčová slova kĺıč, bezpečnostńı analýza, BestCrypt, kontejner, BestCrypt
Development Kit, šifrováńı, dešifrováńı

Abstract

The thesis provides a security analysis of BestCrypt. BestCrypt is a software
that allows users to encrypt their files and folders. The analysis focuses on the
key generation process, the cryptographic processes and the overall security
of the application.

Keywords key, security analysis, BestCrypt, container, BestCrypt Devel-
opment Kit, encryption, decryption

ix

Contents

Introduction 1

1 State-of-the-art 3

1.1 TrueCrypt with an attack on keyfile algorithm 3

1.2 TrueCrypt Security Assessment 5

1.3 TrueCrypt Cryptographic Review 6

1.4 Security Analysis of TrueCrypt 6

1.5 BitLocker Security Analysis . 7

1.6 Summary and further direction 8

2 BestCrypt 9

2.1 Data manipulation process . 10

2.2 The encryption modes . 11

2.3 Algorithm drivers and keys . 13

2.4 Functionalities . 14

2.5 Installation . 16

2.6 Usage . 17

3 BestCrypt Development Kit 19

3.1 Installation . 19

3.2 BestCrypt container structure 21

3.3 BDK and container files . 22

3.4 Functionalities . 23

3.5 BDK sample illustration . 24

4 Key generation process 25

4.1 Password retrieval . 26

4.2 Password key generation . 26

4.3 Master key generation . 28

4.4 Correctness verification . 28

xi

4.5 Key store . 29
4.6 I/O commands . 29

5 BestCrypt security 31
5.1 Default encryption parameters 31
5.2 Password strength . 33
5.3 Password manipulation . 34
5.4 Container Re-encryption . 35
5.5 Hidden container creation . 36
5.6 Random number generation . 37
5.7 Network connection . 40
5.8 Security conclusion . 40

6 Cryptographic processes re-implementation 41
6.1 Covered areas . 41
6.2 Used tools . 42
6.3 Program setup . 42
6.4 How the program works . 43
6.5 Key generation . 43
6.6 Container data decryption . 44
6.7 Verification steps . 45
6.8 Necessary modifications . 46
6.9 The implementation results . 48

7 Impact evaluation 51
7.1 Data leaks prevention . 51
7.2 Transparent file encryption . 51
7.3 Strong encryption algorithms 52
7.4 Improved security in new key generator 52
7.5 Hidden part security . 52

Conclusion 53

Bibliography 55

A Acronyms 59

B Contents of enclosed CD 61

xii

List of Figures

2.1 BestCrypt realisation of the transparent encryption [1]. 10
2.2 CBC mode encryption scheme [2]. 11
2.3 CBC mode decryption scheme [3]. 12
2.4 XTS mode encryption scheme [4]. 13
2.5 BestCrypt architecture [5]. 13
2.6 Key map view. 15
2.7 BestCrypt Control Panel. 17
2.8 BestCrypt Container Properties window. 17

3.1 Creating version 8 container. 20

4.1 String D. 27
4.2 String S. 27
4.3 String P. 27

5.1 BestCrypt Plug-in Manager. 33
5.2 Warning when changing or removing a password. 34
5.3 Warning when removing the last password. 35
5.4 Re-encryption settings. 36
5.5 Hidden part discovery attack result. 39

6.1 Correctly decrypted key block. 44
6.2 Correctly decrypted Master Boot Record. 45

xiii

List of Tables

2.1 Supported encryption algorithms and their encryption modes. . . . 10
2.2 Algorithm parameters from Windows Registry Database. 16

3.1 Container file structure scheme. 21

6.1 Key block IV forms. 47

xv

Introduction

Almost anyone has sometimes encountered the problem of having some im-
portant files on their computer and wanting to be sure that these files are
accessible only by them even if someone stole the computer. There are many
solutions to this problem and one of them is a software called BestCrypt de-
veloped by Jetico Inc.

BestCrypt is the focus of this thesis. It is introduced along with its features
and the ideas behind it. All the important information about the principle of
achieving the security of the confidential files is explained in detail, but the
main idea is the same as in most of the similar software – using cryptography.

The main problem with such software is that the user who decides to use
it needs to trust that the developers created a reliable and secure software and
that he is really the only one who can access the data he chose to protect.
A common concern is the question whether the software does not contain some
sort of back door to allow some powerful third party access when requested,
for any reason.

Therefore, companies who want their data security software to be trust-
worthy need to provide some means for enabling anyone to convince themselves
that the product is secure. Security analysis can then be performed by indi-
vidual users or, more often, by professionals. What do the analyses look for
and how do they prove or disprove the credibility of the product they examine
is explained as well.

Some companies decide to make the source codes publicly available. Any-
one can then look at them, look up the part he is interested in and see how it
really works. Jetico chose a different way to enable its users to validate the se-
curity of BestCrypt by themselves: they provided the BestCrypt Development
Kit (BDK).

BDK is a library which contains all the encryption, decryption and key
generation processes. It describes data structures defining the representation
of data it works with and functions to execute the important cryptographic
operations.

1

Introduction

The main aim of this thesis is to perform a security analysis of BestCrypt.
The analysis examines three main parts of the application. It analyses the key
generation process and its security, verifies the correctness of the supported
encryption algorithms and examines the overall security of the software.

The whole process of securing data confidentiality is deeply analysed and
reimplemented using a well-known cryptographic tool to demonstrate that the
used algorithms work the same way as they should and yield the same results.

Besides cryptography, BestCrypt is analysed partially from the user’s point
of view. The focus is on areas like the resistance against options that could
lead to a weak protection, the password strength and management or the
random number generation. The BDK is used whenever possible.

The analysis re-implements the encryption algorithms to prove their cor-
rectness. Any implementation specific issues and things that differ from the
expected behaviour are mentioned and explained. In the end, Jetico’s security
claims are compared with the analysis results and a final decision is made.

2

Chapter 1

State-of-the-art

This chapter focuses on the current situation of security analyses of file en-
cryption software. It lists several important security analyses while focusing
on their aim, approach and findings. This information helps to understand
possible ways of analysing such software and their advantages and differences.

Analysing the security of this kind of software is of great importance. Any
company that creates such software should provide some way to enable anyone
to verify for themselves that they are satisfied with the product. The easiest
way to do so is to make the source code public, yet not every company can or
wants to do so. If the source code is not made available, some other way to
provide enough ground to allow a security analysis should be taken.

Several analyses of a similar software TrueCrypt [6] are the best source.
TrueCrypt serves the same purpose as BestCrypt. It helps users to secure their
files. The authors of TrueCrypt remained anonymous and that was one of the
reasons that led to the creation of Open Crypto Audit Project (OCAP) [7],
a project that decided to fully analyse the software and evaluate its security.
TrueCrypt developers agreed to make their source codes publicly available.

After some time, there appeared a warning on the official TrueCrypt web-
site declaring that ”Using TrueCrypt is not secure as it may contain unfixed
security issues”. This raised even more effort to further analyse the software
as mentioned in the article by Matthew Green, one of the OCAP leaders [8].

Some possibly unknown terms are used in this chapter. All of them are
explained in chapter 2. For a basic understanding of how TrueCrypt works,
the article by Vlastimil Kĺıma [9] could be helpful. It does not go into detail,
but it provides a solid overview of the software.

1.1 TrueCrypt with an attack on keyfile algorithm

One of the first TrueCrypt analyses is the one focusing on the Linux version
of TrueCrypt. The same organization performed private analyses of previous
versions and published the one focusing on version 7.0a [10].

3

1. State-of-the-art

Its focus is wide, ranging from general code inspection to encryption al-
gorithms examination. The authors started by a detailed description on how
to build the program under Linux and Windows operating systems. Since
they analysed previous versions, they were able to use their own findings and
compare their data with the version 7.0a.

Since TrueCrypt source codes are publicly available, the first part of the
analysis consists of fully examining the source codes statically. Since the
authors had previous version’s source codes as well, the main focus was on the
parts that differed from the older versions.

A program for analysing the headers of TrueCrypt containers was created
as a part of the analysis and published with its source code. Its usage is
described in the analysis report. The authors created test containers using
all available algorithms at least once. They tested hidden containers as well.
No backdoors or mistakes were discovered in the container encryption or its
header format.

Besides some minor issues, an increased amount of iterations when pro-
cessing the password was suggested. No weakness was found in the imple-
mentation of the encryption modes either while the main focus was the XTS
mode.

The hidden container functionality was tested as well and found completely
secure. The random number generator was found secure when used properly.
The flaw the authors mention is that while the randomness originates from
mouse movement, the user is not able to see the random generation progress
and can end the process too early. They also suggest disabling the feature to
allow the user to see the actual generated bytes since an attacker with access
to the monitor could intercept it.

There is an anomaly connected with random data filling mentioned. On
Linux computers, a specific area is filled with zero bytes while on Windows it
contains random data. The authors proved that this is not a backdoor through
the source code analysis.

A major flaw was found in the keyfile algorithm. The authors discovered
a way to modify the keyfiles so that they do not affect the password at all.
When a weak password is used (or none at all), this can lead to a successful
attack. However, no container not using keyfiles is affected by this flaw in any
way.

A fundamental problem was found in the relation between the binaries
available from the TrueCrypt website and the source codes that were pub-
lished. The issue was that the hash of the binaries compiled from the source
codes did not match with the one of the provided binaries. However, this issue
was not further analysed.

This security analysis represents a very complex approach. It analyzes the
whole software as it is based mainly on the source codes and covers topics
like the compilation process and the license distribution. It presents possible
issues while not forgetting the strong secured parts it verified and classified as

4

1.2. TrueCrypt Security Assessment

safe. Along with the main issue it offers a detailed description of the keyfile
attack and its importance and impact.

1.2 TrueCrypt Security Assessment

This is the first analysis performed by the Open Crypto Audit Project. The
report [11] offered a great summary of what the audit had been examining
and what it found.

Unlike the previous analysis, this one focuses strictly on the source code
itself. Its goal is to find and examine any weaknesses that could lead to attacks
like elevation of privilege or information disclosure. The parts of the code the
analysis focuses on are the bootloader and Windows kernel driver. Some parts
of the code are intentionally left out. The examined version is TrueCrypt
7.1a. The authors used public automated tools, manual test techniques and
performed a source code review.

Overall, 11 possible vulnerabilities were found, four of them rated as me-
dium severity, four as low severity and three as informational. The majority
of these issues were connected with data exposure and data validation. The
analysis also defines what exactly each of the severity categories means and
explains the categories the issues were divided into based on the area they are
associated with.

Based on the report, the source code did not meet the expected standards
for secure code. The authors mention problems like lack of comments, usage of
deprecated functions or inconsistent variable types. They also advise against
using checksums in place of hash functions or HMAC.

Aside from listing the findings, the authors also mention their recommend-
ations to improve TrueCrypt. These are mainly updating the build environ-
ment and improving the source code quality.

This analysis goes into more detail when describing the vulnerabilities.
After introducing them, it explains each one in detail, suggests how an exploit
could happen and offers recommendation on how to solve the issue. In some
cases it even highlights the problematic parts of the code.

The last part of the analysis focuses on the source code quality. It men-
tions issues like signed and unsigned variables mismatch or inconsistent integer
variable types and provides highlighted source code parts where such issues
can be seen. The unnecessarily complicated and long functions are mentioned
too.

This approach provides significant results. It is important to know whether
the code itself is vulnerable to attacks of any kind. It consists of static analysis
methods since the source code is examined and the application does not need
to run. There are many great tools to perform static analysis that can be
used to help the process. As seen in this case, it is not necessary to examine

5

1. State-of-the-art

the whole software. Analysing only a few important or possibly weak parts is
sufficient if it provides reasonable results.

1.3 TrueCrypt Cryptographic Review

This analysis [12] is the second one that the Open Crypto Audit Project
performed. Its structure is very similar to the first one.

It focuses strictly on the cryptographic processes. The authors analysed
the source code statically again to discover any vulnerabilities that could lead
to a possible attack to break or bypass the cryptographic operations.

Overall, 4 issues were found, two of high severity and one of low. The
remaining issue’s severity was undetermined. Since the first analysis did not
find any vulnerabilities rated higher than medium, this one discovered two
important issues. Similar to the first analysis, for each issue an exploit scenario
is offered while providing specific tips on how to solve the issue.

Similar to the analysis 1.1, issues with the keyfile algorithm as well as the
improper data integrity checks using checksums are mentioned in this report.
The recommendations the authors suggested are simplifying the application
logic, additional error handling and improvements to the code quality.

One high-severity-rated issue is connected to the random number gener-
ator. The analysis discovered an improper call to one of the Windows API
functions that could in some cases lead to a failure that would not be noted
by TrueCrypt. The impact would be weaker random numbers and possibly
an option for a brute force attack. The other major vulnerability was found
in some of the AES algorithm implementations that were found vulnerable to
the cache-timing attacks [13].

Compared to the analysis 1.1, it is safe to say that both reports indicate
the same results. Since both analyses were done on different versions and the
latter was performed 4 years after the first, these issues apparently persisted
in the software.

To summarize this approach, it is a very specifically focused one. Similar
to the analysis 1.2, it takes only a part of the application to examine. Cryp-
tography is without a doubt one of the essential parts of such software and it
deserves an analysis dedicated only to it. As proved in this analysis, it can
provide significant results.

1.4 Security Analysis of TrueCrypt

Probably the most comprehensive analysis [14] is the one performed by the
Fraunhofer Institute for Secure Information Technology. The main reason
for this analysis was the warning that appeared on the TrueCrypt official
website as mentioned earlier. Since there is other software that originates

6

1.5. BitLocker Security Analysis

from TrueCrypt, such as Trusted Disk, any errors found in TrueCrypt could
be there as well.

The focus is the software as a whole. Part of the analysis is based on the
results of the Open Crypto Audit Project. Besides that it tests the crypto-
graphic processes, the code quality, documentation and architecture. It uses
the previous analyses reports, the source code review and automated static
analysis tools.

First of all, it defines the differences between versions 7.0a and 7.1a (the
versions that the previously mentioned analyses were based on). The code
differs in two areas. Outdated encryption algorithms were removed as a com-
mand line option and choosing the files for the the keyfile algorithm ignores
hidden files.

The authors provide their own notes to the findings of both the Open
Crypto Audit Project analyses. They confirm the presence of all the findings
and agree with the previous classifications and results.

The cryptographic processes are tested using an open source cryptographic
library libgcrypt [15]. The goal behind it is to ensure that the algorithms work
correctly (meaning the output data from TrueCrypt encryption match the
one from libgcrypt). Detailed examination is dedicated to the random number
generator and the key derivation process.

It provides additional information besides the analysis itself. Some sections
are dedicated to the explanation of related attacks and their techniques. The
automated tools for static code analysis are explained as well.

The analysis covers the whole application including the hidden containers,
the boot code and the TrueCrypt driver. The weak code spots analysis similar
to the one performed in 1.2 is included as well. In addition to what the
previous analyses reported, this analysis mentions unnecessarily complicated
application logic. It provides a list of too complicated functions and even
identifies code duplicities.

This approach is the most robust one. Every aspect of the application is
examined and evaluated. It is not always possible to perform such complex
analysis due to lack of resources, yet it often provides all the results that are
expected from a security analysis.

1.5 BitLocker Security Analysis

The TrueCrypt website currently offers only a tutorial on how to migrate
from TrueCrypt to BitLocker. BitLocker is a Microsoft Windows feature for
disk encryption included in some versions of the operating system. Fraunhofer
Institute performed a security analysis of BitLocker too, focusing on attacking
its boot process [16].

The authors focus on the boot process. Rather than implementing an at-
tack or examining source code, they examine some possibly vulnerable scen-

7

1. State-of-the-art

arios and describe how an attack could be executed in theory. Overall, six
possible ways of gaining unauthorized access to the confidential data via ma-
nipulating the boot process are mentioned.

Besides a brief description of BitLocker, the analysis offers the description
of the attacks it proposes. Each attack scenario is described and its require-
ments and impact are discussed. A special section is devoted to discussing the
vulnerability causes and contribution factors in general.

In the end, this analysis does not present a specific issue but rather provides
a basis for further examination. Issues like the attack implementation difficulty
or how to prevent them are left for further analysis. The authors themselves
claim they plan to continue in their research related to BitLocker.

This approach did not provide security proof, but rather a basis another
analyses can build on. Overall, presenting possible attacks can be very useful
if the scenarios would be examined more deeply.

1.6 Summary and further direction

No security analysis of BestCrypt itself was mentioned. The reason for it is
that none has been published yet. Only discussions and articles were pub-
lished, but none went into some details. There were speculations about issues
like parts of the password being stored inside the container in plain text form,
but they were all confirmed false [17].

Based on the mentioned analyses, several different approaches were presen-
ted and explained. The security analysis does not need to cover every aspect
and can focus only on an important part. It can point out weaknesses or
design attacks against its target to prove a vulnerability.

Every analysis needs to provide a conclusion where it summarizes its find-
ings. The importance and risk of these findings should be evaluated and, in
the best case, solutions offered.

The problem with BestCrypt analysis is that the source code is not public.
However, that issue is partially solved by the BDK that was designed to allow
analysing the security. This analysis is based on it and analyses three main
areas – the key generation, the encryption correctness and the overall security
from the user’s point of view.

8

Chapter 2

BestCrypt

BestCrypt is a software designed to provide additional security for any im-
portant files on disk. Using cryptographic techniques it offers protection for
any sensitive information such as private correspondence, secret documents or
any other data that the user decides to keep confidential for any reason.

The main principle is the following: the user is allowed to create a con-
tainer, a file representing an encrypted disk image. This file can be mounted
to a virtual drive that will be managed by BestCrypt. When done, it can be
used as a standard drive. New files can be added and existing files can be
edited or removed. The container file contains data in encrypted form even
while it is mounted, so the data are always secured. Upon dismounting, any
remaining changes are written to the container file and the container becomes
inaccessible again.

Creating a container requires one to create a password associated with it.
Knowing the correct password is the necessary step to access container data,
otherwise the container cannot be mounted or accessed. There is no way to
recover a forgotten password, such as a safety question or any other similar
mechanism. Once the password is forgotten, the data is not accessible in any
way.

One container can have more than one password associated with it. That
allows multiple users to access the same data without knowing each other’s
password. Passwords can be managed (added, removed or changed) at any
time after the container creation.

BestCrypt allows the user to choose the parameters of the container en-
cryption mechanism. This includes the encryption algorithm, the encryption
mode, the key generator and the hash algorithm. Three possible encryption
schemes are available: password based encryption, public key encryption and
the secret-sharing scheme. The password based encryption is the only con-
sidered scheme further on, since it is the most common used one.

Table 2.1 shows the default available algorithms and modes. It is not
a complete list because more can be added using the BestCrypt Plug-in Man-

9

2. BestCrypt

Enc. Mode
Encryption Algorithm

3DES Blowfish GOST RC6 AES Serpent Twofish

CBC X X X X X X X
LRW X X X X X X X
XTS 5 5 5 X X X X

Table 2.1: Supported encryption algorithms and their encryption modes.

ager. It is even possible to develop a new algorithm and use it for the con-
tainers encryption.

2.1 Data manipulation process

BestCrypt uses the approach known as transparent encryption [18]. It means,
that when reading from the virtual drive, only the requested data are decryp-
ted in memory and when writing, the data to be written are encrypted and
stored into the container file. This method leads to the data being stored in
the container in the encrypted form at all times.

In practice, it is done in the following way. BestCrypt Driver intercepts any
I/O operation directed towards a device managed by BestCrypt and performs
the necessary encryption or decryption in addition. Therefore, when reading,
the driver reads the requested data from the container file, decrypts it and
passes it out as the result. Similarly, when writing, the driver first encrypts
the data and then writes it into the container file.

Figure 2.1: BestCrypt realisation of the transparent encryption [1].

Another result of this is that any application can use the container data
in the most simple way. When the password is verified and the container
is mounted, there is no more authentication required. Since the BestCrypt
Driver intercepts all the I/O commands directed towards the mounted con-

10

2.2. The encryption modes

tainer, it does not matter which application requests the access. Therefore,
all applications have the access to the data until the container is dismounted
again using the BestCrypt Control Panel.

2.2 The encryption modes

Three encryption modes, often known as block cipher operation modes, are
supported, though not every algorithm is available for every mode. The re-
lation between ciphers and the supported modes for them can be seen in
table 2.1. All of the operation modes are briefly described in this section.

2.2.1 CBC

The first and probably the best known supported operation mode is the Cipher
block chaining mode [19]. Images 2.2 and 2.3 show the encryption and de-
cryption schemes.

Figure 2.2: CBC mode encryption scheme [2].

The disadvantage of this encryption scheme is that it allows only sequen-
tial processing. Every block can be encrypted only with the knowledge of
the previous encrypted block. Therefore, encrypting larger amount of data
can take significantly more time than using the other modes. In addition, if
any bit of the plaintext (or IV) is corrupted, it does not only affects the cur-
rent ciphertext block, but all the following blocks too, because the corrupted
ciphertext block is being propagated further.

On the other hand, decryption can be done in parallel, because the cor-
rect plaintext block can be recovered from two consecutive ciphertext blocks.
While decrypting, the corrupted ciphertext block affects only the current and
the following block. Therefore, with the correct key and one incorrect cipher-
text block, only two plaintext blocks will be decrypted incorrectly.

Because of the fact that a correct block of plaintext can be obtained from
two consecutive ciphertext blocks, the mode itself is often modified by other
mechanisms, such as propagating the IV or processed blocks forward to af-

11

2. BestCrypt

Figure 2.3: CBC mode decryption scheme [3].

fect a wider area of data. The most common modifications are PCBC and
CBCC [20].

2.2.2 LRW

The Liskov, Rivest, Wagner mode [21] is an example of a tweakable cipher. It
uses two keys: encryption key K and an additional key (tweak) F. The tweak
serves in the place of an IV in the CBC mode. K is the key the block cipher
uses and F is a key of the length of a block. The encryption of a block P with
index I into block C is defined as follows

X = F ⊗ I
C = EK(P ⊕X)⊕X
All the operations are done in GF (2k), where k is the length of the block.

From the encryption rules, it is obvious that no two blocks are mutually
dependent. The encryption of one block requires only the computation of the
correct value X based on the tweak. The decryption rules would be similar,
replacing the encryption for decryption and reversing the process.

2.2.3 XTS

The XTS mode [22] represents another tweakable cipher. It is a mode de-
signed specifically for disk encryption purposes. It differs from the previous
modes in using two keys, both for encryption. One key is used to encrypt the
sector number, the second one is used for the remaining encryption operations.
Mathematically, the encryption rules for encrypting block j with keys K1 and
K2 of sector i are the following

X = EK2(i)⊗ αj

C = EK1(P ⊕X)⊕X
The element α is the primitive element in GF (2128). Again, each block can

be encrypted independently, except for the last two where ciphertext stealing
takes place. The size of key K2 is the same as the size of a block, K1 is the
key for the block cipher.

12

2.3. Algorithm drivers and keys

Figure 2.4: XTS mode encryption scheme [4].

The principle does not differ much from the LRW mode. The difference is
in the usage of the tweak (second key). LRW uses it instead of the primitive
element α while XTS uses it to encrypt the sector number.

2.3 Algorithm drivers and keys

Each encryption algorithm is represented by a driver. The reason for it is
that drivers are located in kernel mode, so they are not easily accessible from
user mode. Therefore, each driver offers the implementation of one specific
algorithm and each functionality is requested via communication with that
driver.

Figure 2.5: BestCrypt architecture [5].

It was said in the beginning that a password is necessary for creating
a container. Similarly, a cryptographic key is required to decrypt container

13

2. BestCrypt

data. This key is derived from the password and other parameters upon the
container creation. With the knowledge of the key, one can decrypt the whole
container even without knowing the password. The method of how the key is
generated is described in chapter 4 in detail.

To protect the generated key, BestCrypt uses an approach that guaran-
tees the key can not be easily recovered from memory: it introduces the key
handles. A key handle is a unique identifier for a cryptographic key. Since
a key is associated with a specific algorithm, the keys are stored inside the
driver of the algorithm they belong to. Upon their creation, a handle is asso-
ciated with them. When the key should be used for encryption or decryption,
only the key handle is passed to the algorithm driver. The driver then takes
the correct key from a memory storage and uses it for the necessary operations.

The content of the drivers is not be described in the thesis, because it
would require to reverse engineer them. The focus is rather their functionality
as a black box.

2.4 Functionalities

The functionalities listed below represent the basic possibilities BestCrypt
offers for a container. All of them can only be performed while the container
is not mounted.

The mentioned functionalities are all connected with cryptography very
tightly and are mentioned because the analysis examines them. BestCrypt
offers more advanced functionalities like the key files mechanism or some spe-
cial settings of the software itself. All these functionalities are described in
the BestCrypt documentation [1], but since they are not important for the
purpose of the analysis, they are not explained here.

2.4.1 Hidden containers

A hidden container can be understood as a container within another container.
When the user is asked for password when mounting such container, he has
two choices. If he enters the password for the original (outer) container, the
container behaves just as expected and offers the content of the outer con-
tainer. When the hidden container password is entered, BestCrypt recognizes
it and mounts the hidden container. The data stored inside the hidden con-
tainer is different from the data in the outer one. The outer container does
not show in any way a presence of a hidden container nor that the container
would contain some other key.

When a user would be somehow forced to give up the container password,
he can give the password to the outer container. It will look like everything is
in order and the intruder will not be able to get to the hidden container data
or even find out if there is any hidden container.

14

2.4. Functionalities

The limitation is that once a hidden container is created, no data should be
written into the original container. No one, not even BestCrypt, will have any
knowledge of whether there is a hidden container, therefore its data cannot be
protected. When writing into the original container, the data could overwrite
the hidden data and damage them or destroy the whole container.

2.4.2 Re-encryption

BestCrypt allows the user to re-encrypt the whole container. Besides being
able to change the algorithm and encryption mode, the user needs to choose
a new password. The data will be kept unharmed, but probably needless to
say that any hidden containers will be lost, since there is no way to protect
them. For larger containers, this process may take quite some time, because
the whole container needs to be encrypted all over again.

2.4.3 Password management

BestCrypt offers several ways to manage passwords. First of all, the list
of information about all keys associated with the original container can be
displayed. This information consists of their number, type and the key block
size.

Figure 2.6: Key map view.

A password can be changed as well as removed, assuming the user has
a password to access the container. New passwords can be added as well
due the possibility of having multiple user accesses to the container data as
mentioned earlier.

15

2. BestCrypt

2.4.4 Header encryption

Another feature related to cryptography is the possibility to encrypt the con-
tainer header. The container files (as is described in section 3.2) have a part
of its data decrypted by default. This part is called the header and BestCrypt
uses it to identify decryption parameters and to find container files on disk.

The header gives away some important information and enables anyone
to easily distinguish a container file from any other file. This functionality
encrypts the header too, resulting in a container file consisting of what looks
like random data.

2.5 Installation

There is nothing special about the installation process itself. Nevertheless,
two things should be mentioned as they may not be expected

1. The drivers are placed into the Windows system directory

2. Drivers information is written into the Windows Registry Database

The algorithm drivers and the BestCrypt driver will require a system re-
start as well to be loaded into memory.

display name algorithm ID key length block size

IDEA 32 128 8

DES 64 64 8

CAST 224 128 8

BLOWFISH 128 256 8

BLOWFISH-128 128 128 8

SERPENT 232 256 16

RC6 230 256 16

GOST 170 256 8

Triple DES 208 192 8

BLOWFISH-448 176 448 8

TWOFISH 160 256 16

AES 240 256 16

Table 2.2: Algorithm parameters from Windows Registry Database.

LOCAL MACHINE/SOFTWARE/Jetico/BestCrypt/Algorithms is the import-
ant registry key where BestCrypt stores information for algorithm drivers. The
information consists of the service name (used when communicating with the
driver), the display name, algorithm ID, key length and block size. Table 2.2
shows the most important information useful to further usage. Note that

16

2.6. Usage

on systems with active UAC the registry key is virtualized and therefore the
location will be different.

2.6 Usage

Figure 2.7: BestCrypt Control Panel.

Figure 2.8: BestCrypt Container Properties window.

This section briefly explains how to use BestCrypt. A BestCrypt Con-
trol Panel is the window that appears after running BestCrypt. Everything
can be done via this panel. To create a container, use Container→New. In
the Advanced options part of the first window to appear, the encryption al-
gorithm and operation mode can be changed. Upon clicking Create, a pass-
word is requested. Again, under the Advanced options parameters related to

17

2. BestCrypt

the container protection (type, salt, hash algorithm) can be modified. Fi-
nally, BestCrypt generates a random seed by random key pressing or mouse
movement.

The right part of the BestCrypt panel will show available containers. If the
container to mount is not there, BestCrypt offers to let the user browse the
file system and find it or let BestCrypt find available containers in a specified
path. To mount a container, right click it and choose Mount or double click
it.

Once a container is mounted, not much can be done besides manipulating
and using its data. However, once it was dismounted, the user can right
click it and choose Properties. That is an option that hides all the main
additional functionalities like password managing, hidden part creation or
re-encryption. For notes on how to use them please refer to the BestCrypt
Container Encryption guide [1].

18

Chapter 3

BestCrypt Development Kit

The BestCrypt Development Kit (BDK) [23] is a library Jetico released to
enable anyone to verify the safety and correctness of BestCrypt. It contains the
source codes of the key generation, the encryption and decryption processes
and other useful information. Additionally, it contains important definitions
of structures that are used to represent the container file data correctly.

That said, it is probably clear why the BDK plays a major part in under-
standing how BestCrypt containers work and how to use the container files.
It is the main source of information about how the container is processed and
it describes the details of transforming a password into a key. Therefore, this
section is devoted to a deeper explanation of how it works and how to use it.
Unfortunately, the BDK lacks some detailed reference or documentation. The
help file associated with it uses links that are no longer active so one has to
more or less rely on the source code comments that in some cases do not tell
much.

It is important to mention right at the beginning that the BDK was re-
leased when BestCrypt version 8 was active. Therefore, containers created by
a newer version of BestCrypt will not be acknowledged as correct. Keeping
this issue in mind, Jetico offers an option to create version 8 compatible con-
tainers. When choosing a container password, the Advanced Settings allow
the user to do so, as shown on picture 3.1. Version 8 compatible containers
are also cross-platform compatible, unlike the newer containers, which makes
them still useful for a variety of users; by no means can they be considered
obsolete.

3.1 Installation

The zip archive containing the BDK can be downloaded from the official BDK
website [23]. The archive contains two main folders. The first one, doc,
contains the help file, but as mentioned earlier the links are no longer active,
so it does not offer much. The second folder, sources, contains five folders of

19

3. BestCrypt Development Kit

Figure 3.1: Creating version 8 container.

source codes divided according to the area of usage. The description of what
each folder represents can be found in the !readme.txt file.

For building the library on Windows, the best way is to use the Microsoft
Visual Studio solution sources/kgghost.sln. Simply build the solution after
loading it. Administrator privileges are required, otherwise it fails with insuf-
ficient write privileges.

When the build finishes, the result can be found at C:/Program Files

(x86)/Jetico/BestCrypt. Overall four files are created:

1. KGGhost.ilk

2. KGGhost.dll

3. KGGhost.exp

4. KGGhost.lib

The most important are the KGGhost.dll, which is the dynamic library
that provides the BDK functionalities, and the KGGhost.lib, which is the
import library for the DLL.

In some versions of Visual Studio the error ”cannot open include file
afxres.h” can appear. In that case the easiest solution is to add Microsoft

20

3.2. BestCrypt container structure

foundation classes. This can be done by going to Control Panel→Programs
and Features→Microsoft Visual Studio Professional→Change→Modify where
the Microsoft Foundation Classes has to be added.

The BDK requires BestCrypt to be installed on the computer as well.
BDK functions use the algorithm drivers and these need to be provided by
BestCrypt. Besides the usage of the drivers, no other relation to BestCrypt
has to be explicitly specified.

3.2 BestCrypt container structure

part offset field name content

DATA BLOCK

0 header Basic container info
704 reserved Reserved area
1024 pool CBC mode pool
1536 key block area Key blocks

Container data
4096 sector 1 Master Boot Record

...
sector n Last sector

Table 3.1: Container file structure scheme.

As mentioned earlier, BestCrypt creates the so called containers. Using
the BDK, the overall structure of a container can be determined.

The table 3.1 shows the overall structure of the container file. The second
part contains simply disk sectors one after the other in encrypted form start-
ing with the Master Boot Record. Because the content of this part depends
entirely on the data inside the container, nothing else can be said about it
without decrypting it.

The first part, the DATA BLOCK, contains all the necessary information
about the container and its key(s). This structure is defined in the BDK
as follows.

struct DATABLOCK
{

encBlock<dbHeader> header ;
BYTE reserved 1K [1024− s izeof (encBlock<dbHeader>)] ;
BYTE pool [5 1 2] ;
BYTE keyTab [1 0] [2 5 6] ;

}

The first part is the dbHeader. By default, the header is decrypted, but
BestCrypt offers a way to keep the header encrypted too. It contains mainly
the encryption algorithm identifier, the encryption mode identifier and the
hash algorithm identifier. The dbContInfo determines the offset of the begin-
ning of the second part and its length within the container file.

21

3. BestCrypt Development Kit

Since the BDK works with version 8, the only acceptable hash algorithm is
SHA-256. The algorithms identifiers were listed in table 2.2 and the encryption
mode identifiers are defined in the BDK.

struct dbHeader
{

BYTE bus iedFlag [3] ;
char s i gna tu r e [8] ;
BYTE conta inerID [4] ;
char busiedName [2 8] ;
char volumeLabel [1 1] ;
DWORD keyGenId ;
DWORD ve r s i on ;
wchar t de s c r i p t i o n [de sc r ip t i onLength] ;
dbContInfo cont In fo ;

DWORD contAlgId ; // Encryption algorithm
DWORD encModeId ; // Encryption mode
DWORD hashAlgId ; // Hash algorithm

dbKeyId keyMap [DB maxKeyQ] ; // Key b lock information
}

The keyMap holds the used keys parameters. For each key it stores its size,
type and a parameter. The type determines the encryption scheme. In this
analysis, the password based encryption is the only acceptable scheme.

The pool of the DATA BLOCK is very important when using the CBC en-
cryption mode. It is used to modify initialization vectors and also plays a part
in sector decryption. Section 6.8.3 describes its usage in detail.

The third important field of the DATA BLOCK is the keyTab, which will be
referred to as the key block area. It holds the encrypted key blocks for the keys
specified by keyMap in the header. Each key block holds a key information
structure and is explained in sections 4.2 and 4.3.

3.3 BDK and container files

One important thing needs to be mentioned here. The BDK does not change
the container file in any way. In some cases it modifies the DATA BLOCK, but
only in memory. That is why the DATA BLOCK is required as a parameter to
many functions, as will be seen in the following section. When a function
requests a container file name as well, it is because it will display a dialogue
window and use the name to display what container it is dealing with.

An example can be seen when changing the container password. The
BDK asks the user to enter current password, new password and changes
it successfully by modifying the key block in the DATA BLOCK. But without
actually rewriting the container file with the newly created DATA BLOCK, the
change will not be promoted into the container file itself and the old password
will be the correct one.

22

3.4. Functionalities

3.4 Functionalities

This section concentrates on what can be achieved using the exported func-
tions. The BDK offers 18 exported functions. Not all of them are necessary
for the purpose of the analysis and some have been left there for compatibility
reasons.

The CreateKeyHandle V2 function serves many purposes. Using different
flags, it can do the following:

• Create new DATA BLOCK

• Load and verify a key to a container

• View content of the key block

• Add, change or remove container password

This is the most important function for the purpose of this analysis since
the encryption or decryption is done inside the algorithm drivers that are not
available.

When loading and verifying a key, the whole key generation process is
shown. One can see the key generation, the verification steps to ensure the
key is correct, the final key check and the key creation. All these information
are most useful and this function is used to describe the process in detail in
chapter 4.

Creating a new DATA BLOCK may be useful for better understanding of each
field of its structure. When creating one, a new password needs to be specified,
since it is in fact creating a new container. The cryptographic parameters are
not requested by a dialogue, as they are when creating a container using
BestCrypt, but rather retrieved from the parameters passed to the function.

Viewing the key block content means viewing how many keys of which
types are associated with the container. Manipulating passwords can be useful
to observe changes in the key block. It corresponds to the same functionality
offered by BestCrypt in container properties described earlier.

The DataBlockAllocate and DataBlockFree functions can be used to
allocate and destroy the DATA BLOCK structure. These are simple functions to
allocate and free the space for a DATA BLOCK.

The FreeKeyHandle function releases the previously created key. It is done
via sending the IOCTL PRIVATE FREE KEY HANDLE command to the algorithm
driver. As mentioned earlier, BestCrypt does not keep keys stored in user
space, but rather in the kernel space of the algorithm driver. Calling the
CreateKeyHandle V2 returns the key handle; when destroying the key, the
handle is passed to this function and the key is released and no longer available.

The UpdateHeader function encrypts or decrypts the header part of the
DATA BLOCK. This corresponds to the BestCrypt’s feature to encrypt the con-
tainer header, so even the container information will not be visible. However,

23

3. BestCrypt Development Kit

BDK requires the user to know the encryption parameters or try all the com-
binations manually in contrast to BestCrypt where this is done automatically.

The CreateHiddenPartEx is related to the hidden container functionality.
It corresponds to creating new hidden part inside the container. The process
is exactly the same as when doing this in BestCrypt. A seed is generated,
new key is created from it and stored inside the DATA BLOCK. No container
file modification is done, therefore the hidden part will not really exist. It is
important to note here that the contInfo in the parameters structure has to
have the length set to 4096. The reason for this requirement is explained in
chapter 4.

3.5 BDK sample illustration

To use the BDK in any application, just link the library to it. If the application
should use the BDK structures as well, change the include directory to the
root folder of the source codes.

A small program was developed to demonstrate the basic BDK usage. It
offers the basic operations like key verification, password managing, header
encryption or DATA BLOCK creation.

One has to provide a container file created by BestCrypt as an argument.
The program will not modify the file in any way, but will use it to load
the DATA BLOCK. The program simplifies the understanding of each specific
parameter by deriving it from the container file and user input. The container
file is not required for new DATA BLOCK creation.

24

Chapter 4

Key generation process

The key generation process is a process of creating a master decryption key
from a password. Two main terms need to be understood regarding this
process. The first term is the master key. That is the key stored in encrypted
form inside a key block. It is used for the whole container data encryption and
it can be recovered by decrypting the key block using the password key. The
password key is a byte sequence generated from the password and the salt.

The BDK offers the CreateKeyHandle V2 function that can be used to
retrieve a key handle. The process includes the key generation so it is a great
source of information for understanding how it works in detail.
BOOL CreateKeyHandle V2 (

HWND hWnd,
const wchar t∗ text , // container f i l e name
const wchar t∗ caption , // d ia log window caption
DWORD contAlgId ,
DWORD createFlag ,
BYTE ∗∗pDataBlock ,
DWORD ∗pDBSize ,
DWORD ∗pKeyHandle ,
DWORD ∗pErrCode ,
DWORD ∗pFlags ,
sCKHParams MP AI ∗pParams // the container parameters

) ;

First, let’s examine the function’s parameters. The hWnd is a handle to
the parent window of the password dialogue that will appear. This is meaning-
less to the analysis and can be set to NULL. The text and caption represent
strings that will appear in the dialogue window and have no greater meaning
as well. The contAlgId defines the encryption algorithm. The createFlag

determines what the function will do (see the BDK functionalities in sec-
tion 3.4). The pDataBlock and pDBSize hold the DATA BLOCK and its size.
The pKeyHandle will contain the key handle if the function succeeds.

It may be noticed that in the function declaration here, a different para-
meter type of the parameters than in the BDK is used. The reason for it is
that the sCKHParams MP AI is actually used, being a subclass of the original
that was used in the previous versions. It is important that the parameters
are filled with correct values, since the function relies on them.

25

4. Key generation process

When the CFLAG VERIFY AND LOAD KEY flag is used, the function does the
following:

1. Ask for the password to the container

2. Generate the password key

3. Decrypt the master key data using the password key

4. Verify that the process succeeded

5. Store the key inside the algorithm driver

6. Return the handle to the created key

Amongst the steps mentioned above, data integrity is checked multiple
times. These steps are noted as well.

4.1 Password retrieval

There is nothing special about retrieving a password. The important part
is the form the password must be transformed to afterwards. The password
must be a big-endian widechar string terminated with a zero double-byte.
That means, if the password is ”abc”, the retrieved password will take the
form of byte array [0x00, 0x61, 0x00, 0x62, 0x00, 0x63, 0x00, 0x00].
The ending zero is regarded as a part of the password.

4.2 Password key generation

Password key is the first step. It is generated from the password and salt, but
before going further it is necessary to clarify how the key block area works, so
that we know where to find the necessary data and how to deal with it. When
describing the DATA BLOCK, it was explained that the header contains key
blocks information. A password based key block has the following structure:
struct PBE KeyBlock
{

BYTE s a l t [8] ;
encBlock< sKeyInfo > keyIn fo ;

} ;

The key block area consists of key blocks and random data. How do we
tell which one is correct when there can be more of them? The function
goes through all the key blocks and tries them all until all were tried or the
decrypted data were correct. Why examine all the key blocks and not just
the ones defined by the header? Because hidden containers keys are stored in
key blocks too, but they are not mentioned in the header.

The length of the password key is equal to the length of the key that
the chosen encryption algorithm requires with regard to the encryption mode.

26

4.2. Password key generation

Figure 4.1: String D.

Figure 4.2: String S.

Figure 4.3: String P.

That concerns the LRW and XTS modes, because they use two keys. Both
keys need to be retrieved, so the password key will have the length of a sum
of both key lengths.

Let’s see how the key is derived. The salt is taken from the beginning of
the password based key block. The diversifier string D is created. It is a 64
bytes long string of values 0x01. The salt string S is a 64 bytes long string
of the salt bytes repeating until the required length is reached. Similarly,
the password string P is also a 64 bytes long string, but consists of copies of
the password. It is important to notice the format of the password described
earlier and the fact that the ending zero double-byte is considered a part of
the password. For more understanding refer to the images 4.1, 4.2 and 4.3.

The S string is concatenated with the P string into the I string. The
following operation is then performed.

int c = (pwdKeySize + d i g e s t s i z e − 1) / d i g e s t s i z e ;
Buf f e r A[c∗ d i g e s t s i z e] ;
Bu f f e r B[v] ;

for (i = 0 ; i < c ; i++)
{

BYTE ∗Ai = A + i ∗ d i g e s t s i z e // current pos i t i on
Ai = H(H(H (. . .D | | I))) , 256 t imes

for (i = 0 ; i < v ; i++)
B[i] = Ai [i % d i g e s t s i z e] ;

for (j = 0 ; j < I . b u f f e r S i z e ; j += v)
{

BYTE ∗ I j = I . bu f f e r + j ;
I j = (I j + B + 1) mod 2ˆv

}
}
memcpy(passwordKey , A. bu f f e r , pwdKeySize)

This pseudocode is in a signified form, but the result is the same as should
be. Buffer A holds the password key at current state, buffer B is used to modify
the I string after every iteration. The main step is the first one where strings
D and I are joined and their hash is calculated 256 times. This value is then
stored as the current digest size bytes of the buffer. Based on that, buffer
B is created and the whole string I is modified by it for the next iteration.

If you want to look up the original password key generation process in the
BDK, it is a function P12 producePseudoRandomBytes in the pkcs12 funcs.cpp
file.

27

4. Key generation process

4.3 Master key generation

Using the password key, master key can be obtained. To do that, the key in-
formation needs to be decrypted. It can be found as the encBlock<sKeyInfo>
part of the PBE KeyBlock. For the decryption process, the initialization vector
IV is required. The IV is located in the m tail field of the encBlock<sKeyInfo>.

template < class TT > class encBlock
{

TT m body ;
BYTE m reserved [RoundTail (s izeof (TT) , DB MaxEncBlockSize)] ;
EBTail m ta i l ;

}

struct EBTail
{

BYTE m digest [3 2] ;
BYTE m iv [1 6] ;

}

The IV is required for the decryption. It is stored in the m tail.m iv field
in plaintext form. When decrypting the encBlock<sKeyInfo> structure, the
IV is left out and the rest of the data is decrypted. After decryption, m body

contains the decrypted sKeyInfo that holds the key information. Besides the
fields already understood, the master key itself can be found in the key field.
That is the first time the master key appears in memory.

struct sKeyInfo
{

BYTE s i z e ;
BYTE hashAlgId ;
DWORD keyAlgId ;
DWORD encModeId ;
dbContInfo cont In fo ;
BYTE key [6 4] ;

}

Why is the container info here as well when it was already present in
the dbHeader? Because the key could belong to a hidden part. If so, the
container information would differ and hold the information where the hidden
part starts1.

4.4 Correctness verification

After this process, its correctness is verified. This is done by calculating the
hash value of the m body field of the key block and checking the value against
the m tail.m digest field. Note that the latter was decrypted as well in the
previous step. The used hash algorithm is the one specified in the DATA BLOCK

header. If the values match, the result is considered correct.

The BDK shows that a further verification using a verification block is
used. That part is left out of the analysis, but can be examined using the
library.

1The hidden part key information will have the container length always set to 4096.
That is how it is determined whether it is a key for hidden part in the BDK.

28

4.5. Key store

4.5 Key store

As mentioned earlier, BestCrypt uses key handles instead of plain text keys
because of higher security. When the master key is successfully generated and
classified as correct, the key bytes are sent to the algorithm driver and the key
handle is created. The driver itself has the key stored and associated with the
correct handle. The IOCTL PRIVATE CREATE KEY HANDLE command is used to
create the key.

The only time the key exists in user mode memory is from its decryption by
the algorithm driver until its correctness is verified and it is actually created.
This approach prevents the necessity of creating an unverified and possibly
invalid key and having to destroy it right after. The downside of it is that the
key actually appears in memory, which could be avoided. The key info could
be decrypted by the algorithm driver and the key stored immediately so only
the handle would be returned and not the actual key bytes.

4.6 I/O commands

BOOL DeviceIoContro l (
HANDLE hDevice ,
DWORD dwIoControlCode ,
LPVOID l p InBuf f e r ,
DWORD nInBuf f e rS i ze ,
LPVOID lpOutBuffer ,
DWORD nOutBufferSize ,
LPDWORD lpBytesReturned ,
LPOVERLAPPED lpOverlapped

) ;

Now when the whole process is known, let’s see how the I/O commands
are used. The DeviceIoControl function takes the control code, input buffer
and output buffer. Let’s examine how it is used during the two commands sent
during the key generation – decryption command and create key command.

The IOCTL PRIVATE ENCRYPT DECRYPT V8 is used for the encryption and
decryption. In BDK, the Alg Decrypt function in the alg.cpp file executes
the command along with correct data passing. The input buffer is used to
tell the driver the encryption parameters. It contains mainly the requested
operation id, the key handle, the IV and the operation mode. The output
buffer contains the actual data to encrypt or decrypt.

The IOCTL PRIVATE CREATE KEY HANDLE is used for the key creation. In
BDK, this operation is done by the Alg GetKeyHandler function in the alg.cpp
file. It is a bit different in this case. Both input and output buffers contain
the same information. The data that are passed consists mainly of the key
and key length.

29

Chapter 5

BestCrypt security

Now that the functionalities and their usage and limitations and container
structure have been explained, let’s look at how BestCrypt provides the se-
curity it claims to offer. The security is evaluated based on the user interface
and the actions are compared to the corresponding BDK source code whenever
it is possible. All the analysed parts are related to cryptography.

Specifically, the covered topics are the password strength, the default cryp-
tographic parameters, security against making the container data accidentally
inaccessible, the password management and network communication. Random
number generation is examined as well with regard to the BDK.

It is also important to mention that by the time the thesis was finished,
the BestCrypt Control Panel version 9.02.9 and BestCrypt driver version 4.54
were the most recent software versions. The current version can be found in
Help → About BestCrypt.

5.1 Default encryption parameters

The first possible weakness could lie in the default encryption settings. An
inexperienced user who wants to create a container is not likely to change the
advanced settings. Therefore, the security depends on the default settings and
these should provide the ideal level of security. By default, BestCrypt offers
the AES encryption in the XTS operation mode.

The default key generation parameters are hash algorithm Whirlpool-512
with 16384 iterations. Salt is 32 bytes long and is created randomly. These
parameters are valid for the newest BestCrypt version. Since the thesis focuses
on version 8, it is important to observe how this settings change when creating
the version 8 compatible container: the only acceptable hash algorithm is
SHA-256 and the only possible iterations count is 256 then.

The default encryption parameters change when the user changes them
and clicks Create. After that, the software remembers the changed parameters

31

5. BestCrypt security

and offers them as default ones for future attempts. For ciphers that do not
support the XTS mode, LRW is the default choice.

According to NIST password key derivation recommendations [24] from
2010, the password key length should be at least 112 bits long, salt should be
at least 128 bits long and the iterations count should be at least 1000. Let’s
observe how well are these conditions met.

Since all the encryption algorithms use keys at least 128 bits long (except
DES, which is not available unless added manually), the first requirement is
met, because the password key is of the same length as the encryption key
(or double the size for the XTS mode). Note that the password key is the
concern here and not the master key, because master key is stored encrypted
while the password key is generated.

The salt is 64 bits long which does not meet the required minimum. How-
ever, the too short salt in version 8 does not represent a significant problem.
The general purpose of the salt is that two users with the same password do
not have the same password key (or password hash). This aspect is import-
ant in applications that expect a large amount of users to log in, but not in
BestCrypt where a container never holds two matching passwords.

The iteration count represents a more important problem. The version 8
iteration count is 256, which is even less than the NIST document recommends
as a lower bound. It was an issue in one of the TrueCrypt analyses mentioned
in chapter 1 where the authors considered 1000 iterations insufficient and re-
commended 100000 iterations. 256 iterations do not represent enough security
against current brute force attacks and the count should be increased.

To illustrate why this is a problem, let’s look at SHA-256 benchmark [25].
The data are to be represented as number of bytes that can be processed per
second given the block size. The data to process at the beginning are at most
64 × 3 = 192 bytes long (algorithm with 32 bytes long key in XTS mode).
If the speed should be for example 70 MB/s, the following calculation would
apply:

P = 70×220

2×(192+255×32) ≈ 4394[pwdKeys/sec]

This calculation corresponds to the algorithm presented in section 4.2.
Note that this applies for situations where only one average computer is used
to the brute force computation. If the password should be 8 characters long
and consist only of the small characters of the alphabet, it would take at most
D days to crack it by such computer based on the following computation (key
block decryption is not taken into account):

D =
268

P
3600∗24 ≈ 550[days]

Additional algorithms can be added using the BestCrypt Plug-in Manager.
Simply select an algorithm and check the Use for new containers checkbox.
The changes become visible after restarting the Control Panel. The security
of such algorithms is left for the user to consider.

32

5.2. Password strength

Figure 5.1: BestCrypt Plug-in Manager.

5.2 Password strength

Typical requirements [26] for password strength are that it has to contain at
least one character from at least three of the following categories:

• Upper case letters

• Lower case letters

• A digit

• Non-alphanumeric characters

Additional requirements about the password length can be made as well.
Usually the minimum password length is considered about 7 or 8 characters.
Other well known requirements like the password age or password history do
not apply to this kind of software. There is no password history kept nor any
mechanism to determine the password age. These criteria apply to different
type of applications.

BestCrypt requires the password to be at least 8 characters long and
256 characters long at most. This meets the typical requirements for pass-
word length. No shorter or longer password is accepted.

There are no requirements about the password form nor any indication
about the password strength. It is left for the user to decide how strong

33

5. BestCrypt security

a password he wants to apply to the container. A password strength indica-
tion could help inexperienced users to create strong password, but it is just
a possible recommendation.

5.3 Password manipulation

This section focuses on how the password manipulation processes are done. It
examines how the access is verified and also observes how actions which would
remove all access to the container are handled.

Figure 5.2: Warning when changing or removing a password.

The first tested scenario is changing the container password. BestCrypt
warns user that changing the password does not affect the encrypted container
data. That means the container will not be re-encrypted. This is important,
because key block backups can be created and the container will still be ac-
cessible using the backups (and therefore the old password). The warning
also prompts the user to re-encrypt the container manually to prevent any
unwanted access. This is a correct approach since it informs an inexperienced
user about the risk.

The same warning is displayed when the user tries to remove a password.
The reasons for it are the same. Nevertheless, what if the user decides to
remove the last password? That would mean that the container would become
accessible only using a key block backup if one was created. This scenario is
addressed as well and a corresponding warning displayed too.

BestCrypt does not allow two matching passwords associated with one
container. The reason for it is quite simple. The container data do not differ
when different passwords are used with the exception of hidden containers. So
BestCrypt checks whether the password the user wants to add is already in
use (by using it to decrypt all the key blocks and check if the decrypted data
correspond to a correctly decrypted key information) and if it is, it prompts
the user to enter a different one.

34

5.4. Container Re-encryption

Figure 5.3: Warning when removing the last password.

5.3.1 User Interface interaction

All these actions are performed from the Properties menu of the container
the operations are to be performed on. It was already said that this can be
done only while the container is dismounted. When the user opens this menu
and performs any of the password operations, he is asked to enter a container
password first. This allows BestCrypt to verify the access right.

BestCrypt drops the authentication confirmation when the user closes the
Properties menu. When opened again, the password is requested once again.
The second discovered case when the authentication is lost is when a successful
password change is completed, regardless of the number of passwords present
in the container.

This is a correct approach since it seems that BestCrypt does not store
the authentication confirmation in memory which could lead to some possible
issues regarding faking the authentication process.

5.4 Container Re-encryption

While BDK provides a flag that could be used to execute the re-encryption
process, it does not do anything. On the other hand, since BDK does not
change the container files in any way, this is a logical behaviour.

Re-encryption can be executed from the Properties menu. The user is
presented with four possible changes (see image 5.4). That seems like a good
approach since the user can see the current settings and choose to change only
the ones he decides to.

The only issue is based on the fact that not every algorithm is supported in
every operation mode. Imagine the situation where user creates a container
with AES-XTS and then chooses to re-encrypt. He goes to the Properties
option and chooses to change the AES algorithm to TripleDES. XTS mode is

35

5. BestCrypt security

not supported for TripleDES algorithm, yet the settings allow such configura-
tion. Upon clicking Reencrypt, an error reporting ”Undefined Key Generator
Error” appears. More thorough encryption settings validation could be per-
formed here.

Figure 5.4: Re-encryption settings.

When re-encrypting a version 8 compatible container it is important to
check the compatibility creation checkbox when entering the new password,
otherwise the container will be changed to a current version and will lose its
compatibility.

The re-encryption removes all the previous passwords and creates a new
one. That is the only way because BestCrypt does not store the passwords
in plain form which would be necessary to re-encrypt the corresponding key
blocks as well.

5.5 Hidden container creation

To create a hidden container, one has to have the administrative privileges.
It is required for the first part of the process where BestCrypt obtains a map
of the container’s free space.

The BDK can be used to observe where the hidden keys are stored. The
idea is that passwords to the outer part are stored one after another from the
beginning and the hidden part keys are stored at the end of the key block
area. When the password is being checked, the key blocks are traversed from
the first to the last one.

With that in mind, if a hidden container should be created using the
same password used for the original one, the hidden container would become
inaccessible. The password would be recognized as a password to the original
part before it would even come to checking it against the hidden part one.

To prevent the problem, BestCrypt checks all the present key blocks and
verifies that the password is not used already. If it is used, a warning is
displayed, informing the user and requiring him to choose a different password.

36

5.6. Random number generation

This is the same approach as when the user wants to add a password that is
already present in the container.

The same behaviour can be observed in the BDK. There is no difference
to what BestCrypt does. No flaw considering the hidden part creation was
found, but there is an issue connected with the hidden part existence. It is
explained in section 5.6.2 in detail.

5.6 Random number generation

Random values are used in several scenarios. They are required when creating
a new container to fill the empty key blocks, to fill the key blocks of removed
passwords or to generate the encryption key upon container creation. It is
important to ensure that the randomness is good enough to make any kind of
attack based on it impossible.

5.6.1 Encryption key generation

First of all, let’s see how a master key is generated when a new container is
being created. The first step is to generate a random seed. The generation
reacts to the user’s mouse movement and keyboard input and based on it,
random data are created. The user is allowed to see the generation progress.
The BDK contains this process as well. The functions getRandomDlgProc and
progressSubclassProc present in the GenerateSeed.cpp file prove that the
generation really relies on user activity, which is a good source of randomness.
A total of 128 random bytes is generated.

The master key is generated in the same way that a password key is, with
three differences: no salt is used, the seed is used in place of a password and
only one iteration is done. The result is the key used for the encryption.

Jetico confirmed that this is the approach in the current version as well,
with only two differences: the seed is longer (1 kB) and user is allowed to stop
the process. This can be confirmed in the user interface - the process takes
longer than when using the BDK and the Stop button stops the generation.

One of the analyses from section 1 mentioned a problem in TrueCrypt when
the user was not able to see the random generation process and could create
a container with poor randomness. In BestCrypt, the generation process is
visible, but stopping it could be harmful. The seed is initialized to zeros
and then filled from the beginning as BDK shows. When the process ends
(or is stopped), the remaining bytes remain zero. This can lead to insufficient
randomness and a possible attack, because the seed (used as a password) would
be very short. Combining this with only one hashing operation could lead to
obtaining the master key without even knowing the password. Anyway, it is
important to stress out that this does not affect the keys that were generated
using enough randomness generation at all.

37

5. BestCrypt security

This matter was brought to Jetico and they proposed a solution for the
next release. The user will be able to stop the generation only after at least
four times the key length bytes were generated. If the process is stopped,
the rest of the seed will not remain zero, but will be filled using the same
function that generates the password key. The source for the function will be
the previously generated byte sequence. This solves the problem sufficiently.

5.6.2 Empty data initialization

When creating a DATA BLOCK the ShredData function from the Kblock.cpp file
is used. It is used as well when removing a password to wipe the corresponding
key block.

void ShredData (BYTE∗ data , int dataLength)
{

srand ((DWORD) time (NULL) ˆ (DWORD) c l o ck ()) ;
for (int i = 0 ; i < dataLength ; i++){

data [i] = (BYTE) rand () ;
}

}

That is not the correct way to initialize data. There are many sources [27]
claiming that the rand() function does not meet the requirements for a secure
pseudo-random number generator. The period is 232 at most, which is not
sufficient compared for example to the Mersenne Twister algorithm2 [28] that
has the period of 219937.

The performed analysis discovered that this usage allows an attack. The
attack does not lead to getting unauthorized access to the container data, but
it allows to determine whether there is a hidden part inside the container or
not. That violates the principal idea of a hidden part, because it should not
be possible to detected its existence in any way3. Let’s see how the attack
works.

The key is not marked in the key block header, but it is stored encrypted
in the key block area. The idea how to keep it safe is that an encrypted key is
not recognizable from random data of the empty key blocks. However, using
rand() allows an attacker to distinguish an empty key block from a stored
encrypted key.

The rand() implementations differ, yet all of them allow 232 possible seeds.
Using srand() the seed can be set. The attack looks like follows

for (seed = 0 ; seed < UINT MAX; seed ++){ // try a l l the seeds
srand (seed) // se t the seed
for (i = 0 ; i < s izeof (keyBlock) ; i++){ //and check the key b lock

i f (keyBlock [i] != (BYTE) rand ())
break ;

}
}

2However, Mersenne Twister is not a cryptographically secure pseudo-random generator
either.

3This is called Plausible deniability

38

5.6. Random number generation

Figure 5.5: Result of the attack on the ShredData function. The container
contains one normal and one hidden key and the existence of a hidden part
key is discovered.

If for any seed the key block matches the pseudo-random byte sequence,
it almost certainly does not contain a key. Each number of the rand() se-
quence depends only on the previous one (seed in the case of the first number).
Therefore, for every sequence there is a seed that can generate it. This is the
reason why this attack works. The only problem could be with the rand()

settings, but trying all does not increase the computation complexity.

This issue was brought to Jetico as well and they changed the empty blocks
filling in the same way as the seed generation – using the same function that
generates the password key. The source for the function will be a combination
of system time and clock, which is similar to the current seed used for srand().

39

5. BestCrypt security

5.7 Network connection

Observing BestCrypt behaviour regarding any network communication is im-
portant for assurance that container information is not being sent anywhere.
This analysis observes network communication during container creation, its
password manipulation, changing its name or location and deleting the con-
tainer. Wireshark [29] was used as a tool to monitor the network traffic.

It should be mentioned first that BestCrypt works perfectly fine without
any active internet connection. While this provides some assurance, it is
not possible to conclude that no network communication would be done if
a connection were available.

However, based on performed scenarios and the network traffic observa-
tions it is safe to say that BestCrypt does not communicate anyhow over the
network. All the scenarios were tested while the traffic was being monitored
and no communication was discovered.

5.8 Security conclusion

Let’s summarize what this part of the analysis has achieved. BestCrypt se-
curity was tested. The focus was on the parts of the application related to
cryptography. The analysis was done based on the user interface and the BDK
was used whenever possible.

The analysis found no issues regarding the password manipulation. The
password strength requirements are low, yet this does not lead directly to any
issue. It could be helpful to add some password strength notification in some
future release.

More serious problem was found regarding the hidden parts. It was dis-
covered that currently the existence of a hidden part can be proved or dis-
proved due to insecure empty key blocks filling. That stands against the main
idea of it. A specific guide on how to reveal such information was presented,
implemented and tested. The issue was consulted with Jetico and the authors
acknowledged it and prepared a solution for the next release. The solution
was presented as well and evaluated as sufficient.

A possible problem was found regarding the premature stopping of the seed
generation process. The seed is initialized to zeros, so stopping the process
too early could result in insufficient randomness and lead to attack on the
encryption key itself. This problem was brought to the authors as well and in
this case a solution was offered too. This solution was presented as well.

The analysis found no backdoor or suspicious behaviour in the areas it
tested. No network communication was discovered during the container’s
manipulation and modification.

As a side effect, it was verified everywhere where it was possible that the
BDK corresponds to what BestCrypt does.

40

Chapter 6

Cryptographic processes
re-implementation

To verify the cryptographic correctness, the key generation and data decryp-
tion have been implemented without using the BestCrypt algorithm drivers
or any BDK functions. The process helped to really understand all the ideas
behind the BestCrypt principles. All the basics of the created program and
how it works are presented in this chapter as well as all the modifications that
are required for correct behaviour but may not be obvious.

In chapter 1, some of the analyses used the source code to analyse the
cryptographic processes and did not implement their own version of them.
The reason why this is not a possible approach with BestCrypt is that the
BDK contains source codes for the important parts of the application, but the
whole software can not be built using it. Therefore the analysis can not just
rely on it without verifying that the code corresponds to what BestCrypt and
the algorithm drivers do somehow.

Re-implementing the encryption and hashing is the way to do so. The first
step is to verify that the independently implemented key generation process
generates the same key as the BDK. If this step is done, the second step is to
try to decrypt the actual container data. Actual container data decryption is
not documented in the BDK and relies on different verification mechanisms.

6.1 Covered areas

Two main areas need to be implemented independently to enable the crypto-
graphic processes to work correctly – decryption and hash functions. Only the
SHA-256 hash function is necessary for previously mentioned reasons. As for
the encryption algorithms, all of them are well known and well documented
so many cryptographic tools offer them for use.

All the three supported encryption modes are well known as well. The

41

6. Cryptographic processes re-implementation

problem is that since most of the tools focus on network security and the XTS
and LRW modes are used mainly for disk encryption and almost never for
network communication, almost no tool offers them. Since it would leave out
two of the three supported modes, only the LRW mode was left out since it
is older than XTS and in most cases XTS replaced it.

Due to issues not directly related to the analysis, the GOST algorithm is
left out. All the remaining algorithms were tested.

6.2 Used tools

OpenSSL [30] is probably the best known cryptographic tool. However, it
offers only AES-XTS encryption and several algorithms with the CBC mode,
but using it would not cover even a half of the algorithm and operation mode
combinations that BestCrypt offers.

Crypto++ [31] is used as the reference cryptographic library instead. None
of the other well known cryptographic libraries provides all the required al-
gorithms. Crypto++ is widely used [32] and very easy to use in any applica-
tion.

TrueCrypt source codes [33] are used for the XTS mode implementation.
While this approach may seem to be improper, it causes no issue. While
the TrueCrypt implementation of the operation mode is used, encryption and
decryption is done using Crypto++ and the XTS code only controls the whole
encryption process. To ensure its correctness, AES-XTS from OpenSSL was
used to verify that both implementations yield the same results.

The BDK is used only for the structures it offers that are necessary to
represent the DATA BLOCK and the key block. The structures could be re-
implemented too, but it would not make any difference.

6.3 Program setup

A few things may be required to modify in the Project Properties to make the
program work. First of all, the BDK must be added to the include path in
order to use its structured. However, it does not need to be linked since none
of its functions is used.

Next, Crypto++ needs to be linked. It is compiled as a static library and
it needs to be added by setting path to cryptlib.lib in Linker → Input →
Additional Dependencies.

All the required files are included in the project. It is just necessary to
verify that the paths are correctly set before using the program.

42

6.4. How the program works

6.4 How the program works

Now that the preliminaries are completed lets see how to use the program. It
requires two parameters – a container file and a correct password for it. The
container file is not changed in any way. It is used only to read the DATA BLOCK

from and use it to generate the key.

Using it, the program tries to generate the key and decrypt the container
data. The result is not a container that can be mounted using some appro-
priate tool, but a decision whether the data is correct or not.

The third parameter is an optional one. If provided, the program assumes
that BestCrypt is installed and the container is mounted as the device specified
by the parameter. The program then opens the container as a device and
reads its data. Since this operation is intercepted by the BestCrypt driver,
the received data are already decrypted by the corresponding algorithm driver.
These data are used for further verification of correctness by comparing it with
the independently decrypted data.

The program accepts all containers encrypted by any of the algorithms
and encryption modes mentioned. The algorithm parameters are the same as
the BDK or BestCrypt define them. Hidden container keys are recognized as
well and DATA BLOCK headers can be decrypted. Only the containers created
to be version 8 compatible are supported.

6.5 Key generation

The first necessary thing to implement is the key generation. The whole
process corresponds to the one used in the BDK. The password the user enters
is transformed to the correct form and the password key is derived from it. The
password key generation can be found in the PasswordKeyGeneration.cpp

file as the generateKeyFromPassword function.

When generating a password key, the only thing that has to differ is the
hashing. The SHA-256 hashing is implemented in CryptoFuncs.cpp file as
the hashSHA256 function. The password key length has to be calculated with
regard to the algorithm (based on the algorithm key length) and the operation
mode (XTS mode requires key size doubled).

The master key decryption is a bit simplified compared to the BDK version,
because not all of the verifications and complex operations are necessary. In
fact, only decrypting the sKeyInfo part of the key block is required. The hash
digest is then verified to ensure the master key correctness.

Containers with multiple passwords are supported as well. As the BDK
does, the implementation also iterates over all the key blocks and tries to
decrypt them with the password key. The program detects hidden part keys
too, but does not decrypt its sectors since they are not of the same form

43

6. Cryptographic processes re-implementation

Figure 6.1: Correctly decrypted sKeyInfo data. The fields are marked red
and the master key content green.

as in original containers. The master key generation can be found in the
MasterKeyGeneration.cpp file as the retrieveMasterKey function.

To determine whether the key belongs to the normal part or the hidden
one, one has to look at the container offset and length present in the decrypted
key information. If the length is 4096, it is a key to a hidden part and the
offset tells where it starts. The data at this offset do not represent a Master
Boot Record, but an allocation map containing the locations of the hidden
part sectors.

6.6 Container data decryption

With the master key, the actual container data can be decrypted. The data
are to be interpreted as 512 bytes long disk sectors starting with the Master
Boot Record. Each sector has been encrypted separately using the algorithm
and encryption mode specified by the header. That way it is possible to use
the transparent encryption approach mentioned earlier, because it is easy to
decrypt or encrypt only a part of the data and leaving the rest untouched.

The program does not go on with decrypting the whole container. It is
sufficient to get the information from the Master Boot Record, the Partition
Boot Record(s) and check whether they are valid either by guessing by the look
of the data, or by comparing it to the correct data if BestCrypt is available
as well. Sectors from the beginning, middle and end of the partitions are
compared with the real ones if the third parameter is supplied to further
verify it matches.

This process is not described in the documentation or anywhere else.
Communication with Jetico was the only source of information on how to
decrypt the sector data. In some cases some modifications are necessary to
enable a proper decryption. All of them are mentioned later on. The sec-
tor decryption code can be found in the SectorDecryption.cpp file as the
decryptSector function.

Let’s see how to represent the data. This is not a BestCrypt specific
approach, but it is important to know how to retrieve the interesting sectors.
When decrypted manually, the Master Boot Record is in the form where

44

6.7. Verification steps

Figure 6.2: Correctly decrypted Master Boot Record. The partition entries
are marked red, the signature green. The boot code is unmarked.

the boot code has not been executed yet. The important part are the four
partition entries. Each entry contains mainly the starting sector number and
total count of sectors of that partition.

The first sector of the partition is the Partition Boot Sector. Besides the
signature to check it, the file system type is found here. All the mentioned
structures can be found in the Defs.h file.

6.7 Verification steps

There are a few verification steps to decide, whether the data we work with
are correct or whether an error occurred or the password is invalid.

The first step of the verification lies in ensuring the master key is correct.
This can be done after the key block decryption. Since it cannot be simply
compared to the correct value, the same verification as in the BDK is used.
The hash of the decrypted data is computed and compared to the requested
value contained in the key block.

The Master Boot Record is checked by verifying the correct signature and
by verifying the partition list holds plausible information. There is no other

45

6. Cryptographic processes re-implementation

way to be sure the data are correct without analysing the boot code.

The Partition Boot Sector(s) are checked by verifying the signature as well.
Besides that, the file system type is verified. The only two possibilities are
NTFS and FAT. BestCrypt offers to format the container after its creation
and lets the user choose the file system type.

When BestCrypt is available and the container mounted, the further veri-
fication is done by comparing the blocks in memory. Since the first sector read
from the container as a device will be the Partition Boot Sector, the Master
Boot Record can not be checked the same way. Besides that, sectors from the
beginning, middle and end of the container are compared as well to further
ensure correctness.

6.8 Necessary modifications

Now that the principle of the implementation was introduced, let’s see what
steps are necessary to take that are not obvious, but are essential for the
program to work correctly. None of the modifications mean that the Best-
Crypt algorithms would differ from its official definition. Some of them are
mechanisms applied on top of the decryption and some require to alter the
IV.

6.8.1 Correct data form

Not all the algorithm drivers expect data in the same form. Passing the correct
data in a wrong form to the driver will result in incorrect decryption.

All of the tested algorithm drivers request little-endian data form, except
for Blowfish-448. The Blowfish-448 algorithm driver requires big-endian data,
so before passing it to the driver, it is necessary to swap the data to big
endian (if not swapped already) and similarly swap it back after decryption.
According to Jetico, the CAST and IDEA algorithm drivers expect the same
data form.

6.8.2 The IV for key block decryption

The initial vector in the key block is 16 bytes long, though it is used in different
ways based on the used algorithm or the encryption mode. Note that this is
the IV for the key block decryption, not the IV for sector decryption.

First of all, in any case only the first 8 bytes are used. Since the IV needs
to be the same size as the block the cipher uses, it often needs to be prolonged.
When using the XTS mode, it is simple. The first 8 bytes are used as the first
part and the rest are zeros. The IV represents the ‘sector number‘ in the
meaning of the operation mode even though it is no sector.

This is different if the CBC mode is used. The first 8 bytes are used in
the same way, but are copied as the second 8 bytes as well.

46

6.8. Necessary modifications

The Blowfish-448 algorithm requires big-endian data, so the IV has to be
in the correct form. Table 6.1 should clarify this.

type IV

original 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

XTS 00 11 22 33 44 55 66 77 00 00 00 00 00 00 00 00

CBC 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77

BFISH-448 33 22 11 00 77 66 55 44 33 22 11 00 77 66 55 44

Table 6.1: Key block IV forms.

The different approaches to the IV form may be confusing, but hopefully
the table helps to understand how to set the IV correctly. Since some al-
gorithms use the 8 bytes long blocks, only the first 8 bytes are used. This is
the only necessary modification regarding the key block decryption IV spe-
cifically.

6.8.3 The pool usage

There is the field pool of the DATA BLOCK that has not been discussed yet.
It is used when decrypting a sector using the CBC mode regardless of the
algorithm and when decrypting a container header. It has two usages.

The first usage is simple. After the decryption is done, the result is mod-
ified by the pool using XOR. Since the pool is 512 bytes long, there is no
confusion with this.

The second usage is to modify the IV. When decrypting a sector in XTS,
the sector number is used as the IV. In CBC, it is the same, but the IV is
further modified then. An offset in the pool is obtained and the IV is modified
by a part of the pool. The following code shows how it is done.

void transformIV (BYTE ∗ iv , BYTE ∗pool){
unsigned int o f f s e t = (iv [0] & 0x3F) ∗ 8 ;
for (i = 0 ; i < 8 ; i++{

i v [i] = iv [i] ⊕ pool [o f f s e t + i] ;
}
memcpy(iv + 8 , iv , 8) ;

}

As the code shows, six bits of the sector number determine the offset in
the pool and the IV is then modified by the following 8 bytes. After that the
second 8 bytes are the copy of the first 8. No further modifications need to be
done in the CBC mode implementation. The usage for the header decryption
is the same.

The whole pool is used and an overflow is not possible, because

0x3F× 8 = 63× 8 = 504 = 512− 8

47

6. Cryptographic processes re-implementation

6.8.4 XTS modification

A slight modification has to be done to the XTS mode taken from TrueCrypt
source code. Besides having to retype some variables because of the lack of
TrueCrypt definitions, there is one more important issue. The original code
decrypts data blocks 256 bytes long. After each 256 bytes it increases the
sector number and decrypts the following 256 bytes. Since the sectors are 512
bytes long, the result would be wrong. It was verified that the first 256 bytes
were being decrypted correctly while the second 256 bytes were not.

The modification lies in increasing the block count for one iteration. When
doubling it (modifying from 16 to 32), everything works exactly as meant to.
How the resulting code looks can be seen in the decryptXTS function in the
CryptoFuncs.cpp file.

This is only a TrueCrypt’s implementation specific feature. It does not
mean that the BestCrypt’s implementation of the XTS mode is incorrect.

6.9 The implementation results

The previous sections explain how the created program works and what modi-
fications are necessary. This section summarizes what the program was used
for and what were the gained results.

Containers using all the possible combinations of algorithms and encryp-
tion modes were created using BestCrypt. All of them were tested with the
program except the ones using LRW operation mode and the ones that use
the GOST algorithm. All the test containers were version 8 compatible.

The program was able to successfully retrieve a master encryption key for
every tested container. In all cases it was able to decrypt the data part of
the container and conclude that the data were correctly decrypted. All of the
containers were mounted and then their data were read. Even in this case the
data matched.

Based on the previously obtained results it is safe to conclude that all the
drivers representing the tested algorithms work correctly and yield the expec-
ted results. The SHA-256 hash algorithm was used for password generation
and therefore the BestCrypt version of it works properly in all tested cases.
With regard to the necessary modifications that were provided by Jetico, it is
also safe to conclude that both XTS and CBC operation mode work correctly
in all tested cases.

Special features were tested as well. A container containing multiple pass-
words was successfully decrypted using all of them (all of them resulted in
the same decryption key). A hidden key was correctly identified in the key
block of a container with a hidden part. The header of a container with an
encrypted header was successfully decrypted using the correct password and
encryption parameters.

48

6.9. The implementation results

Besides that, in all the possible cases the program results were compared
with the ones provided by the BDK. It is safe to say that in these cases the
BDK shows the same behaviour that BestCrypt has.

To conclude it, the analysis found nothing suspicious about the algorithms,
encryption modes and hashing processes that would result in any strange
behaviour. The algorithms work exactly as they are required to by their
specifications.

49

Chapter 7

Impact evaluation

This chapter summarizes all three parts of the analysis and compares the
results to what Jetico claims. The analysis focused on key generation, security
evaluation using the user interface and the BDK and cryptographic processes
re-implementation and verification. Relevant security claims are taken into
account, commented on and compared with the analysis.

7.1 Data leaks prevention

The authors claim that there is no way to access the data without having the
correct password or key. That part is true considering that without having
the password, the key can not be generated and without having the key the
container data can not be decrypted.

The authors do not mention how hard it would be to gain this information
using some sort of attack. The analysis concluded that the key generation
process itself is secure, but the iteration count 256 is too low and should
definitely be increased to prevent possible brute force attacks. It concerns
the version 8 compatible containers only, but since they are used for cross-
compatibility as well, they should be secured as well. The possible solution
with keeping the compatibility with older versions could be to separate the
version 8 and cross-platform compatibility.

7.2 Transparent file encryption

According to Jetico, the container data should be accessible transparently by
any application after verifying the access. This was confirmed during the re-
implementation phase of the analysis. The container was opened as a device
after being mounted by BestCrypt and the data read from the container were
already correctly decrypted, yet the container file remained unchanged, so the
data inside remained protected.

51

7. Impact evaluation

The way how it is done in theory is described in section 2.1.

7.3 Strong encryption algorithms

BestCrypt should use strong and verified encryption algorithms with the
largest possible key size and utilize the XTS encryption mode when possible.
This claim was verified by the implementation part of the analysis. Since
BestCrypt utilizes encryption via algorithm drivers, the algorithms were in-
dependently implemented and tested.

In all cases the results matched and the analysis concluded that the al-
gorithms work properly as their specifications require. Minor modifications
were necessary to enable correct decryption in all cases, but none required to
change the algorithm logic. These modifications can not be found anywhere
in the documentation nor the BDK. Jetico was the only source of how they
work and when they are used.

7.4 Improved security in new key generator

The authors claim that the iterations count was increased. The truth of this
was verified using the version 9 to create containers. The higher iteration
count solves the problem that was discovered in version 8 where the iteration
count is just 256. This count is too low and enables a brute force type of
attack.

The random seed was increased from 128 B to 4 kB. The ability to stop the
process was added as well. Possible protection weakness based on stopping
the generation too early was discovered. The authors acknowledged it and
proposed a solution.

7.5 Hidden part security

The BestCrypt documentation states that ”The potential intruder cannot
prove whether an additional (hidden) container exists or not: the informa-
tion stored in the hidden container is regarded as random data.” [1]. This
claim was shown to be incorrect.

The analysis found out that the empty key block filling is not done properly
and enables an attack to discover the hidden key(s). The attack was presented,
implemented and tested. The results proved that this is an issue.

The problem was brought to the authors and they acknowledged it and
prepared a solution for future release immediately. The solution was found
sufficient.

52

Conclusion

The thesis focused on BestCrypt Container Encryption by Jetico Inc., a soft-
ware designed for files encryption. That is achieved via creating contain-
ers protected by passwords, that are used as virtual drives that files can be
stored in. The thesis presents a security analysis of this software to determine
whether it is safe to use or not.

The whole analysis was done with Jetico’s approval. Many issues were
communicated with them throughout the the analysis and they were very
responsive regarding any problem or help request.

Different analyses of a similar software TrueCrypt were presented. Each
analysis represented a different approach that a security analysis can take.
The approach that this analysis took was determined from a combination of
the presented ones.

Unlike in the case of TrueCrypt, Jetico did not make the source code
publicly available. Instead, they created a library, the BestCrypt Development
Kit, to enable anyone to do their own security examination. Both BestCrypt
and BestCrypt Development Kit were described in detail along with necessary
information about their usage, functionalities and features. In the case of the
BestCrypt Development Kit, a sample program to show how to use it correctly
was created.

After the initial necessary software introductions, the first important part
of the analysis was done. The process of how a cryptographic key is generated
from the password was examined and explained in detail. This process is
a necessity for any further actions. The process consists of two parts. In the
first part the so called password key is derived from the password and in the
second one the corresponding data are decrypted using the password key to
retrieve the master key, that is used for the actual container data encryption
and decryption.

The second part of the analysis focused on BestCrypt itself from the user’s
point of view. Since the whole application can not be independently built, the
analysis chose a different approach. It tested all the actions (password chan-

53

Conclusion

ging, adding or removing, container creation and deletion, container header
encryption etc.) using the user interface and used the BestCrypt Develop-
ment Kit when it was possible to compare what BestCrypt does with what
the library shows it should do.

In this part of the analysis, two flaws were discovered. The first one is
connected with the hidden part functionality. It was discovered that an unsafe
approach was used to fill the empty key blocks upon the container or key block
initialization. This enables an attack that is able to determine whether there
is or is not a hidden part in the container. Since this stands against the idea
of hidden parts, it presents a serious problem.

The second problem was discovered in the random seed generation. The
process is based on user’s mouse movement and keyboard clicks, which is
a correct way to gain randomness. However, the process can be stopped.
Stopping the process too early can result in an insufficient randomness and
could lead to a possible attack.

Both these problems were brought to the authors. They acknowledged
them both and prepared a solution for them. These solutions were mentioned
as well and considered sufficient by the analysis.

In the last part of the analysis, ensuring the proper behaviour of the used
algorithms and encryption modes was the focus. The key generation pro-
cess and the container data decryption were implemented independently of
BestCrypt using Crypto++, an independent cryptographic tool to do so. Be-
stCrypt realizes encryption and decryption by algorithm drivers, so it was
important to verify that the algorithms work as they are supposed to.

This part of the analysis tested two of the three operation modes and all
but one algorithms. Using created sample containers it verified that all the
algorithms work properly. The encryption modes are used correctly as well
and the hashing is done right too.

The analysis did not discover any sort of a back door nor any way that
could lead to container data leakage. Besides the mentioned issues regarding
the random number generation, no problematic parts were identified.

The data are protected by strong algorithms that work properly and no
way how to bypass them was found. No backdoors were found either. The
master key generation process is secure, although the iteration count for the
version 8 containers definitely should be increased. The issues with the seed
generation and the data initialization were promised to be fixed in the next re-
lease. To conclude it, BestCrypt can be considered secure once the mentioned
issues are fixed.

54

Bibliography

[1] Jetico Inc. BestCrypt Container Encryption User Manual. [cit. 21.4.2016].
Available from: https://www.jetico.com/web_help/PDF/BCCE.pdf

[2] Wikipedia. Image of Cipher Block Chaining (CBC) mode encryp-
tion. [cit. 21.4.2016]. Available from: https://upload.wikimedia.org/
wikipedia/commons/8/80/CBC_encryption.svg

[3] Wikipedia. Image of Cipher Block Chaining (CBC) mode decryp-
tion. [cit. 21.4.2016]. Available from: https://upload.wikimedia.org/
wikipedia/commons/2/2a/CBC_decryption.svg

[4] Wikipedia. Image of XEX with tweak and ciphertext steal-
ing (XTS) mode encryption. [cit. 21.4.2016]. Available from:
https://upload.wikimedia.org/wikipedia/commons/b/b5/XTS_
mode_encryption.svg

[5] Jetico. BestCrypt Help. [cit. 21.4.2016]. Available from: http://

www.jetico.com/linux/bcrypt-help/index.htm

[6] TrueCrypt official website. May 2014, [cit. 21.4.2016]. Available from:
http://truecrypt.sourceforge.net/

[7] Green, M.; Hoffman, M.; White, K. Open Crypto Audit Project. [cit.
21.4.2016]. Available from: https://opencryptoaudit.org/

[8] Green, M. Another update on the Truecrypt audit. Feb-
ruary 2015, [cit. 21.4.2016]. Available from: http://

blog.cryptographyengineering.com/2015/02/another-update-
on-truecrypt-audit.html

[9] Kĺıma, V.; Rosa, T. Šifrováńı USB flash disk̊u zdarma. August 2007, [cit.
21.4.2016]. Available from: http://crypto-world.info/klima/2007/
ST_2007_08_09_09.pdf

55

https://www.jetico.com/web_help/PDF/BCCE.pdf
https://upload.wikimedia.org/wikipedia/commons/8/80/CBC_encryption.svg
https://upload.wikimedia.org/wikipedia/commons/8/80/CBC_encryption.svg
https://upload.wikimedia.org/wikipedia/commons/2/2a/CBC_decryption.svg
https://upload.wikimedia.org/wikipedia/commons/2/2a/CBC_decryption.svg
https://upload.wikimedia.org/wikipedia/commons/b/b5/XTS_mode_encryption.svg
https://upload.wikimedia.org/wikipedia/commons/b/b5/XTS_mode_encryption.svg
http://www.jetico.com/linux/bcrypt-help/index.htm
http://www.jetico.com/linux/bcrypt-help/index.htm
http://truecrypt.sourceforge.net/
https://opencryptoaudit.org/
http://blog.cryptographyengineering.com/2015/02/another-update-on-truecrypt-audit.html
http://blog.cryptographyengineering.com/2015/02/another-update-on-truecrypt-audit.html
http://blog.cryptographyengineering.com/2015/02/another-update-on-truecrypt-audit.html
http://crypto-world.info/klima/2007/ST_2007_08_09_09.pdf
http://crypto-world.info/klima/2007/ST_2007_08_09_09.pdf

Bibliography

[10] Ubuntu Privacy Remix Team. Security Analysis of TrueCrypt 7.0a with
an Attack on the Keyfile Algorithm. Technical report, August 2011, [cit.
21.4.2016]. Available from: https://www.privacy-cd.org/downloads/
truecrypt_7.0a-analysis-en.pdf

[11] Junestam, A.; Guigo, N. Open Crypto Audit Project, TrueCrypt Se-
curity Assessment. Technical report, iSECpartners, February 2014, [cit.
21.4.2016]. Available from: https://opencryptoaudit.org/reports/
iSec_Final_Open_Crypto_Audit_Project_TrueCrypt_Security_

Assessment.pdf

[12] Balducci, A.; Devlin, S.; Ritter, T. Open Crypto Audit Project,
TrueCrypt Cryptographic Review. Technical report, nccgroup, March
2015, [cit. 21.4.2016]. Available from: https://opencryptoaudit.org/
reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf

[13] Bernstein, D. Cache-timing attacks on AES. Technical report, The Uni-
versity of Illinois at Chicago, [cit. 21.4.2016]. Available from: http:

//cr.yp.to/antiforgery/cachetiming-20050414.pdf

[14] Baluda, M.; Fuchs, A.; Holzinger, P.; et al. Security Analysis of
TrueCrypt. Technical report, Fraunhofer Institute for Secure Informa-
tion Technology, November 2015, [cit. 21.4.2016]. Available from: https:
//www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
Studies/Truecrypt/Truecrypt.pdf?__blob=publicationFile&v=2

[15] Libgcrypt. August 2015, [cit. 21.4.2016]. Available from: https://

www.gnu.org/software/libgcrypt/

[16] Türpe, S.; Poller, A.; Steffan, J.; et al. Attacking the BitLocker Boot Pro-
cess. Technical report, Fraunhofer Institute for Secure Information Tech-
nology, [cit. 21.4.2016]. Available from: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.149.5116&rep=rep1&type=pdf

[17] Jetico, Inc. Discussion about BestCrypt security. 1998, [cit. 21.4.2016].
Available from: https://groups.google.com/forum/#!topic/
sci.crypt/mgIDq3gWmqY

[18] Microsoft. Transparent Data Encryption (TDE). 2016, [cit. 21.4.2016].
Available from: https://technet.microsoft.com/en-us/library/
bb934049%28v=sql.110%29.aspx

[19] Fruhwirth, C. New Methods in Hard Disk Encryption. Tech-
nical report, July 2005, [cit. 21.4.2016]. Available from: http://

clemens.endorphin.org/nmihde/nmihde-A4-os.pdf

[20] Schneier, B. Applied Cryptography, Second Edition: Protocols, Algorithms
and Source Code in C. 1996, ISBN 0471128457, [cit. 21.4.2016].

56

https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://opencryptoaudit.org/reports/iSec_Final_Open_Crypto_Audit_Project_TrueCrypt_Security_Assessment.pdf
https://opencryptoaudit.org/reports/iSec_Final_Open_Crypto_Audit_Project_TrueCrypt_Security_Assessment.pdf
https://opencryptoaudit.org/reports/iSec_Final_Open_Crypto_Audit_Project_TrueCrypt_Security_Assessment.pdf
https://opencryptoaudit.org/reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf
https://opencryptoaudit.org/reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Truecrypt/Truecrypt.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Truecrypt/Truecrypt.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Truecrypt/Truecrypt.pdf?__blob=publicationFile&v=2
https://www.gnu.org/software/libgcrypt/
https://www.gnu.org/software/libgcrypt/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.5116&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.5116&rep=rep1&type=pdf
https://groups.google.com/forum/#!topic/sci.crypt/mgIDq3gWmqY
https://groups.google.com/forum/#!topic/sci.crypt/mgIDq3gWmqY
https://technet.microsoft.com/en-us/library/bb934049%28v=sql.110%29.aspx
https://technet.microsoft.com/en-us/library/bb934049%28v=sql.110%29.aspx
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf

Bibliography

[21] Liskov, M.; Rivest, R. L.; Wagner, D. Tweakable Block Ciphers. Technical
report, Massachusetts Institute of Technology, [cit. 21.4.2016]. Available
from: http://people.csail.mit.edu/rivest/LiskovRivestWagner-
TweakableBlockCiphers.pdf

[22] Jain, R. Block Cipher Operation. Technical report, Washington Uni-
versity in Saint Louis, 2011, [cit. 21.4.2016]. Available from: http:

//www.cse.wustl.edu/~jain/cse571-11/ftp/l_06bco.pdf

[23] Jetico. BestCrypt Development Kit. [cit. 21.4.2016]. Available from:
http://www.jetico.com/support/bestcrypt-development-kit

[24] Turan, M. S.; Barker, E.; Burr, W.; et al. Recommendation for
Password-Based Key Derivation. Technical report, NIST Spe-
cial Publication 800-132, December 2010, [cit. 21.4.2016]. Avail-
able from: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-132.pdf

[25] Harold, T. G. MD5 vs SHA-1 vs SHA-256 performance. 2015, [cit.
21.4.2016]. Available from: http://tgharold.blogspot.cz/2015/05/
md5-vs-sha-1-vs-sha-256-performance.html

[26] CERN Computer Security Team. Password Recommendations. 2016, [cit.
21.4.2016]. Available from: https://security.web.cern.ch/security/
recommendations/en/passwords.shtml

[27] Eternally Confuzzled. Rand usage. [cit. 21.4.2016]. Available from: http:
//www.eternallyconfuzzled.com/arts/jsw_art_rand.aspx

[28] Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. Technical
report, Keio University, [cit. 21.4.2016]. Available from: http://

www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf

[29] Combs, G. Wireshark. [cit. 21.4.2016]. Available from: https://

www.wireshark.org/

[30] OpenSSL. [cit. 21.4.2016]. Available from: https://www.openssl.org/

[31] Dai, W. Crypto++ Library 5.6.3. August 2015, [cit. 21.4.2016]. Available
from: https://www.cryptopp.com/

[32] Dai, W. Crypto++ usage in products. [cit. 21.4.2016]. Available from:
https://www.cryptopp.com/wiki/Related_Links

[33] TryeCrypt source codes. [cit. 21.4.2016]. Available from: https://

sourceforge.net/projects/truecrypt/files/TrueCrypt/Other/

57

http://people.csail.mit.edu/rivest/LiskovRivestWagner-TweakableBlockCiphers.pdf
http://people.csail.mit.edu/rivest/LiskovRivestWagner-TweakableBlockCiphers.pdf
http://www.cse.wustl.edu/~jain/cse571-11/ftp/l_06bco.pdf
http://www.cse.wustl.edu/~jain/cse571-11/ftp/l_06bco.pdf
http://www.jetico.com/support/bestcrypt-development-kit
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
http://tgharold.blogspot.cz/2015/05/md5-vs-sha-1-vs-sha-256-performance.html
http://tgharold.blogspot.cz/2015/05/md5-vs-sha-1-vs-sha-256-performance.html
https://security.web.cern.ch/security/recommendations/en/passwords.shtml
https://security.web.cern.ch/security/recommendations/en/passwords.shtml
http://www.eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://www.eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
https://www.wireshark.org/
https://www.wireshark.org/
https://www.openssl.org/
https://www.cryptopp.com/
https://www.cryptopp.com/wiki/Related_Links
https://sourceforge.net/projects/truecrypt/files/TrueCrypt/Other/
https://sourceforge.net/projects/truecrypt/files/TrueCrypt/Other/

Appendix A

Acronyms

AES Advanced Encryption Standard

BDK BestCrypt Development Kit

CBC Cipher block chaining encryption mode

DES Data Encryption Standard

LRW Liskov, Rivest, Wagner encryption mode

XTS XEX with tweak and ciphertext stealing encryption mode

59

Appendix B

Contents of enclosed CD

readme.txt.....................................CD contents and usage
programs............................the programs used for the analysis

BestCryptAnalysis the main analysis program files
BestCrypt RandAttack..........the hidden part attack program files
BDK usage.............. the program illustrating the BDK usage files

libs the tools used for the analysis
BDK.....................................the BDK compilation result

source.................................... the BDK source code
CryptoPP..........................the Crypto++ compilation result

source...............................the Crypto++ source code
containers...test container files

containers info.txt....................test containers parameters
src.. source codes

thesisLATEX source codes of the thesis
text... the thesis text

thesis.pdf...........................the thesis text in PDF format

61

	Introduction
	State-of-the-art
	TrueCrypt with an attack on keyfile algorithm
	TrueCrypt Security Assessment
	TrueCrypt Cryptographic Review
	Security Analysis of TrueCrypt
	BitLocker Security Analysis
	Summary and further direction

	BestCrypt
	Data manipulation process
	The encryption modes
	Algorithm drivers and keys
	Functionalities
	Installation
	Usage

	BestCrypt Development Kit
	Installation
	BestCrypt container structure
	BDK and container files
	Functionalities
	BDK sample illustration

	Key generation process
	Password retrieval
	Password key generation
	Master key generation
	Correctness verification
	Key store
	I/O commands

	BestCrypt security
	Default encryption parameters
	Password strength
	Password manipulation
	Container Re-encryption
	Hidden container creation
	Random number generation
	Network connection
	Security conclusion

	Cryptographic processes re-implementation
	Covered areas
	Used tools
	Program setup
	How the program works
	Key generation
	Container data decryption
	Verification steps
	Necessary modifications
	The implementation results

	Impact evaluation
	Data leaks prevention
	Transparent file encryption
	Strong encryption algorithms
	Improved security in new key generator
	Hidden part security

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

